
DiCoder® CNS 50: Motor Feedback System for installation in electric motors

Incremental signals with resolutions up to 4,096 lines per revolution and commutation signals are available. Select the motor feedback system to suit your individual requirements.

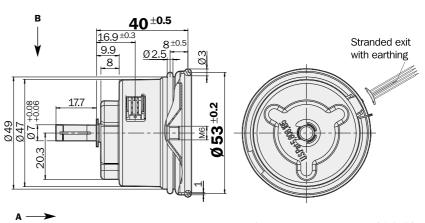
Possible product variations:

- Plug-in shaft or tapered shaft with different stator supports
- · 2 to 8 pole pairs

DiCoder CNS 50 series of motor feedback systems are used world-wide in many different applications and environments.

Number of lines 1,000 up to 4,096

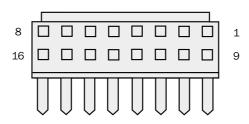
Motor Feedback System


Motor Feedback System CNS 50, Plug-in Shaft Ø 7 mm

Motor Feedback System

- Output driver for incremental signals and commutation signals to EIA 422
- Working temperature range up to + 100 °C
- Two square-wave signals (90° offset), reference pulse and the respective inverted signals
- Commutation signals R, S, T

General tolerances to DIN ISO 2768-mk


PIN and wire allocation/16 pin connector

PIN	Signal	Colour of Wires	Explanation
1	GND	blue	Ground connection
2	R	white/green	Commutation signal
3	S	white/yellow	Commutation signal
4	Т	white/grey	Commutation signal
5	Z	violet	Reference signal
6	В	pink	Incremental signal
7	А	white	Incremental signal
8	N. C.	_	Not connected
9	U _s	red	Supply voltage 5 V \pm 10 %
10	R	white/pink	Commutation signal inverted
11	S	white/blue	Commutation signal inverted
12	Ŧ	white/red	Commutation signal inverted
13	Z	yellow	Reference signal inverted
14	B	black	Incremental signal inverted
15	Ā	brown	Incremental signal inverted
16	N. C.	_	Not connected

Caution: Pins labelled "N. C." must not be occupied!

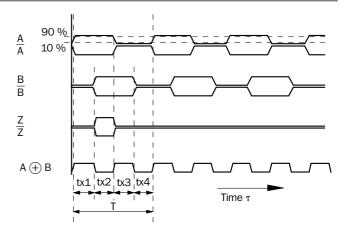
The encoder housing must be connected to the screen. Use the screen connection strand (200 mm, supplied) for this. It is included in the supply.

Technical Data	Plug-in Shaft CNS 50	CNS				
Number of lines per revolution	1,000, 1,024, 2,000, 2,048, 4,000, 4,096					
Commutation signals	(See diagram, page 4) other					
	commutation on request					
Dimensions	mm (see dimensional drawing)					
Mass	0,1 kg					
Inertial rotor moment	10 gcm ²					
Measurement step	90°/number of lines					
Reference signal No. off	1					
Position	90° electr., logically linked with A and B					
Max. operating speed	9,000 min ⁻¹					
Working speed	6,000 min ⁻¹					
Max. angular acceleration	0.2 x 10 ⁶ 1/s ²					
Operating torque	0.2 Ncm					
Starting torque	0.4 Ncm					
Permissible shaft movement						
static radial/a	xial ± 0.5 mm/± 0.75 mm					
dynamic radial/a	xial ± 0.05 mm/± 0.25 mm					
Angular motion, perpendicular t	to the rotational axis					
static	± 0.005 mm/mm					
dynamic	± 0.0025 mm/mm					
Life of ball bearings	3.6 x 10 ⁹ revolutions					
Working temperature range	0 + 100 °C					
Storage temperature range	− 40 + 125 °C					
Permissible relative humidity 1)	90 %					
Resistance						
to shocks ²⁾	100/10 g/ms					
to vibration ³⁾	20/10 2000 g/Hz					
Protection class acc. IEC 6052	9 ⁴⁾ IP 40					
EMC ⁵⁾						
Operating voltage range	5 V \pm 10 %				 	
Max. operating current, no load	50 mA					
Interface details:					 	
Output driver	To DIN 66259 part 3					
	and EIA Standard RS 422					
Output signal sequence	See pulse-time diagram (page 4)					
Signal tolerance					 	
tx1 tx4 _{max} . at 300 kHz	1.5 x 1/4 T				 	

¹⁾ Condensation not permissible

The EMC according to the standards quoted is achieved when the motor feedback system is mounted in an electrically conductive housing, which is connected to the central earthing point of the motor controller via a cable screen. This is also where the GND (0 V) connection of the supply voltage is linked

²⁾ To DIN EN 60068-2-27


³⁾ To DIN EN 60068-2-6

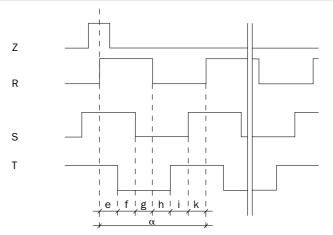
⁴⁾ With mating connector inserted

 $^{^{5)}\,}$ To DIN EN 61000-6-2 and DIN 61000-6-3

Incremental signals

At constant speed, looking at the input shaft, and clockwise rotation.

By linking the two signals A and B, an output sig- 2. by the tolerance in the 90° phase shift nal is created whose cycle durations $tx1 \dots tx4$ have different sizes.


The differences are determined:

- 1. by the mark/space ratio tolerance of the individual channels
- between A and B
- 3. by the frequency

Ideally, the times tx1 ... tx4 should always be 1/4 of the cycle duration T.

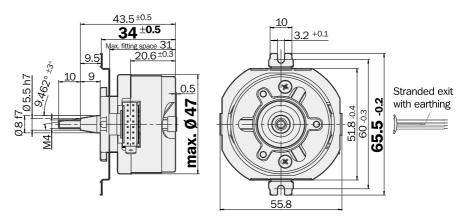
The typical output frequency of the encoder is defined such that the max. time tx is smaller than 1.5 x T/4.

Pulse-time diagram

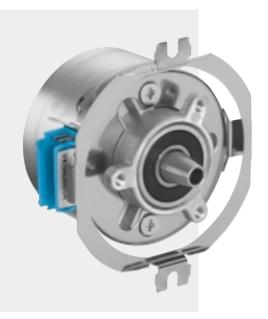
Pole pairs	Number of poles	e, f, g, h, i, k	α
2	4	30°	180°
3	6	20°	120°
4	8	15°	90°
6	12	10°	60°
8	16	7,5°	45°

The angular data is related to a mechanical shaft rotation.

Motor Feedback System CNS 50 with plug-in shaft, diameter 7 mm Position 1 | Position 2 | Position 3 | Position 4 | Position 5 | Position 6 | Position 7 | Position 8 | Position 9 | Position 10 | Position 11 | Position 12 | Position 13 | Position 14 | C S 0 X Type of connection **Lines per revolution** Pole pairs = 01 **= 02** Connector = A1,000 2 pole pairs Stranded cable = **V** 1,024 = **10** 3 pole pairs **= 03** 2,000 = **02** 4 pole pairs **= 04** 2,048 = **11** 6 pole pairs = 06 4,000 = 04 8 pole pairs = 08 4,096 = **12**


Ordering e	example: N	lotor Feed	back Syste	m CNS 50,	plug-in Sh	aft 7 mm,	rubber sup	port Ø 50					
4,096 lin	es, 3 pole	pairs, conn	ector exit										
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	Α	Α	1	2	Х	0	3
	,			,	,	,			·	,			
Please en	ter your in	dividual en	coder here										
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	Α				Х		
	,	,	·	,	,	,	'		'	,	,		
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	Α				Х		
		,							,				
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Δ	Δ		ĺ		X		

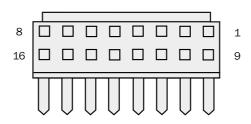
Motor Feedback System CNS 50, Tapered Shaft



- Output driver for incremental signals and commutation signals to EIA 422
- Working temperature range up to + 100 °C
- Two square-wave signals (90° offset), reference pulse and the respective inverted signals
- Commutation signals R, S, T

Dimensional drawing CNS 50, spring mounting support \emptyset 66

General tolerances to DIN ISO 2768-mk



PIN Signal Colour of Wires Explanation 1 GND blue Ground connection 2 R white/green Commutation signal 3 S white/yellow Commutation signal 4 T white/grey Commutation signal 5 Z violet Reference signal 6 B pink Incremental signal 7 A white Incremental signal 8 N. C. - Not connected 9 Us red Supply voltage 5 V ± 10 % 10 R white/pink Commutation signal inverted 11 S white/blue Commutation signal inverted 12 T white/red Commutation signal inverted 13 Z yellow Reference signal inverted 14 B black Incremental signal inverted 15 A brown Incremental signal inverted						
PIN	Signal	Colour of Wires	Explanation			
1	GND	blue	Ground connection			
2	R	white/green	Commutation signal			
3	S	white/yellow	Commutation signal			
4	T	white/grey	Commutation signal			
5	Z	violet	Reference signal			
6	В	pink	Incremental signal			
7	Α	white	Incremental signal			
8	N. C.	_	Not connected			
9	U _s	red	Supply voltage 5 V \pm 10 %			
10	\overline{R}	white/pink	Commutation signal inverted			
11	S	white/blue	Commutation signal inverted			
12	T	white/red	Commutation signal inverted			
13	Z	yellow	Reference signal inverted			
14	B	black	Incremental signal inverted			
15	Ā	brown	Incremental signal inverted			
16	N. C.	_	Not connected			

Caution: Pins labelled "N. C." must not be occupied!

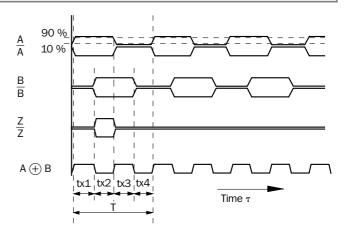
The encoder housing must be connected to the screen. Use the screen connection strand (200 mm, supplied) for this. It is included in the supply.

Technical Data		Tapered Shaft CNS 50	CNS					
Number of lines per rev	olution	1,000, 1,024, 2,000, 2,048, 4,000, 4,096						
Commutation signals		(See diagram, page 8) other						
		commutation on request						
Dimensions		mm (see dimensional drawing)						
Mass		0,1 kg						
Inertial rotor moment		10 gcm ²						
Measurement step		90°/number of lines						
Reference signal	No. off	1						
	Position	90° electr., logically linked with A and B						
Max. operating speed		9,000 min ⁻¹						
Working speed		6,000 min ⁻¹						
Max. angular accelerati	ion	0.2 x 10 ⁶ 1/s ²						
Operating torque		0.2 Ncm						
Starting torque		0.4 Ncm						
Permissible shaft move	ment							
static	radial/axial	± 0.5 mm/± 0.75 mm						
dynamic	radial/axial	\pm 0.05 mm/ \pm 0.25 mm						
Angular motion, perpen	dicular to the	rotational axis						
static		± 0.005 mm/mm						
dynamic		± 0.0025 mm/mm						
Life of ball bearings		3.6 x 109 revolutions						
Working temperature ra	inge	0 + 100 °C						
Storage temperature ra	nge	− 40 + 125 °C						
Permissible relative hur	nidity ¹⁾	90 %						
Resistance								
to shocks 2)		100/10 g/ms						
to vibration 3)		20/10 2000 g/Hz						
Protection class acc. IE	C 60529 4)	IP 40						
EMC ⁵⁾								
Operating voltage range	е	5 V \pm 10 %						
Max. operating current,	no load	50 mA						
Interface details:								
Output driver		To DIN 66259 part 3						
		and EIA Standard RS 422						
Output signal sequence	•	See pulse-time diagram (page 8)						
Signal tolerance								
tx1 tx4 max. at 300 kHz	Z	1.5 x 1/4 T		-				

¹⁾ Condensation not permissible

The EMC according to the standards quoted is achieved when the motor feedback system is mounted in an electrically conductive housing, which is connected to the central earthing point of the motor controller via a cable screen. This is also where the GND (0 V) connection of the supply voltage is linked

²⁾ To DIN EN 60068-2-27


³⁾ To DIN EN 60068-2-6

⁴⁾ With mating connector inserted

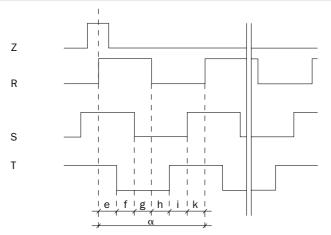
 $^{^{5)}\,}$ To DIN EN 61000-6-2 and DIN 61000-6-3

Incremental signals

At constant speed, looking at the input shaft, and clockwise rotation.

By linking the two signals A and B, an output sig- 2. by the tolerance in the 90° phase shift nal is created whose cycle durations $tx1 \dots tx4$ have different sizes.

The differences are determined:


1. by the mark/space ratio tolerance of the individual channels

- between A and B
- 3. by the frequency

Ideally, the times tx1 ... tx4 should always be 1/4 of the cycle duration T.

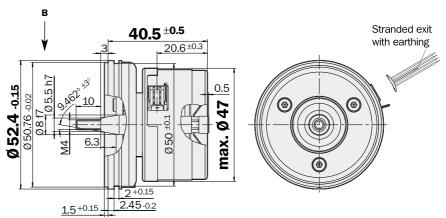
The typical output frequency of the encoder is defined such that the max. time tx is smaller than 1.5 x T/4.

Pulse-time diagram

Pole pairs	Number of poles	e, f, g, h, i, k	α
2	4	30°	180°
3	6	20°	120°
4	8	15°	90°
6	12	10°	60°
8	16	7,5°	45°


The angular data is related to a mechanical shaft rotation.

Motor Feedback System CNS 50 with tapered shaft Position 1 | Position 2 | Position 3 | Position 4 | Position 5 | Position 6 | Position 7 | Position 8 | Position 9 | Position 10 | Position 11 | Position 12 | Position 13 | Position 14 | C S 0 X Type of connection **Lines per revolution Pole Pairs** = 01 = **A** = **02** Connector 1,000 2 pole pairs Stranded cable = **V** 1,024 = **10** 3 pole pairs **= 03** 2,000 = **02** 4 pole pairs **= 04** 2,048 = **11** 6 pole pairs = 06 4,000 = 04 8 pole pairs = 08 4,096 = **12**

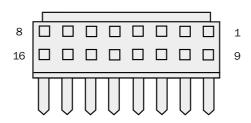

Ordering e	example: N	lotor Feed	back Syste	m CNS 50,	tapered sl	haft, spring	mounting	support Ø	66				
4,096 lin	es, 3 pole	pairs, conn	ector exit										
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	F	Α	1	2	Х	0	3
	,	,	,	,	,	,			,	,	,		,
Please en	ter your in	dividual en	coder here										
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	F				Х		
	,	,	,		,	,	',	,			,		
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	F				Х		
		-											
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
C	N	6	5	0		Δ	F				Y	i	

Motor Feedback System CNS 50, Tapered Shaft

Dimensional drawing CNS 50, resolver support Ø 52

- Output driver for incremental signals and commutation signals to EIA 422
- Working temperature range up to + 100 °C
- Two square-wave signals (90° offset), reference pulse and the respective inverted signals
- Commutation signals R, S, T

General tolerances to DIN ISO 2768-mk


PIN and wire allocation/16 pin connector

PIN	Signal	Colour of Wires	Explanation
1	GND	blue	Ground connection
2	R	white/green	Commutation signal
3	S	white/yellow	Commutation signal
4	T	white/grey	Commutation signal
5	Z	violet	Reference signal
6	В	pink	Incremental signal
7	A	white	Incremental signal
8	N. C.	_	Not connected
9	U _s	red	Supply voltage 5 V ± 10 %
10	R	white/pink	Commutation signal inverted
11	S	white/blue	Commutation signal inverted
12	T	white/red	Commutation signal inverted
13	Z	yellow	Reference signal inverted
14	B	black	Incremental signal inverted
15	Ā	brown	Incremental signal inverted
16	N. C.	_	Not connected

Caution: Pins labelled "N. C." must not be occupied!

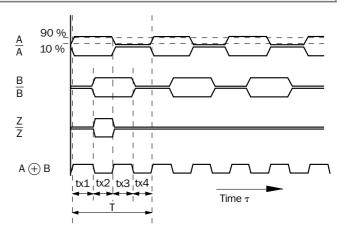
The encoder housing must be connected to the screen. Use the screen connection strand (200 mm, supplied) for this. It is included in the supply.

Technical Data		Tapered Shaft CNS 50	CNS					
Number of lines per re	evolution	1,000, 1,024, 2,000, 2,048, 4,000, 4,096		ĺ				
Commutation signals		(See diagram, page 12) other						
		commutation on request						
Dimensions		mm (see dimensional drawing)						
Mass		0,1 kg						
Inertial rotor moment		10 gcm ²						
Measurement step		90°/number of lines						
Reference signal	No. off	1						
	Position	90° electr., logically linked with A and B						
Max. operating speed		9,000 min ⁻¹						
Working speed		6,000 min ⁻¹						
Max. angular accelera	ntion	0.2 x 10 ⁶ 1/s ²						
Operating torque		0.2 Ncm						
Starting torque		0.4 Ncm						
Permissible shaft mov	ement							
static	radial/axial	± 0.5 mm/± 0.75 mm						
dynamic	radial/axial	\pm 0.05 mm/ \pm 0.25 mm						
Angular motion, perpe	endicular to the	rotational axis		-				
static		± 0.005 mm/mm						
dynamic		± 0.0025 mm/mm						
Life of ball bearings		3.6 x 109 revolutions						
Working temperature	range	0 + 100 °C						
Storage temperature	range	− 40 + 125 °C						
Permissible relative h	umidity ¹⁾	90 %						
Resistance								
to shocks 2)		100/10 g/ms						
to vibration 3)		20/10 2000 g/Hz						
Protection class acc.	IEC 60529 ⁴⁾	IP 40						
EMC ⁵⁾								
Operating voltage ran	ge	$5 V \pm 10 \%$						
Max. operating curren	it, no load	50 mA						
Interface details:					 	 ·	·	
Output driver		To DIN 66259 part 3						
		and EIA Standard RS 422						
Output signal sequence	ce	See pulse-time diagram (page 12)						
Signal tolerance								
tx1 tx4 max. at 300 kl	Hz	1.5 x 1/4 T						

¹⁾ Condensation not permissible

ductive housing, which is connected to the central earthing point of the motor controller via a cable screen. This is also where the GND (0 V) connection of the supply voltage is linked

²⁾ To DIN EN 60068-2-27


³⁾ To DIN EN 60068-2-6

⁴⁾ With mating connector inserted

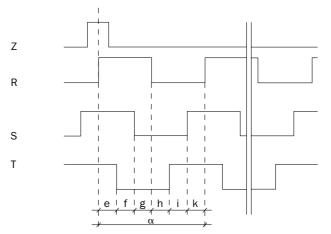
 $^{^{5)}\,}$ To DIN EN 61000-6-2 and DIN 61000-6-3 The EMC according to the standards quoted is achieved when the motor feedback system is mounted in an electrically con-

Incremental signals

At constant speed, looking at the input shaft, and clockwise rotation.

By linking the two signals A and B, an output sig- 2. by the tolerance in the 90° phase shift nal is created whose cycle durations $tx1 \dots tx4$ have different sizes.

The differences are determined:


1. by the mark/space ratio tolerance of the individual channels

- between A and B
- 3. by the frequency

Ideally, the times tx1 ... tx4 should always be 1/4 of the cycle duration T.

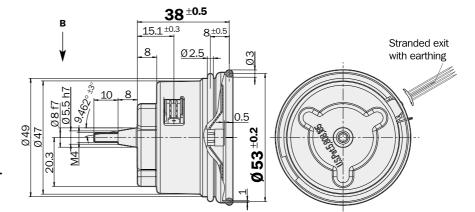
The typical output frequency of the encoder is defined such that the max. time tx is smaller than 1.5 x T/4.

Pulse-time diagram

Dala maina	Nough an af malas	1	1
Pole pairs	Number of poles	e, f, g, h, i, k	α
2	4	30°	180°
3	6	20°	120°
4	8	15°	90°
6	12	10°	60°
8	16	7,5°	45°


The angular data is related to a mechanical shaft rotation.

Motor Feedback System CNS 50 with tapered shaft Position 1 | Position 2 | Position 3 | Position 4 | Position 5 | Position 6 | Position 7 | Position 8 | Position 9 | Position 10 | Position 11 | Position 12 | Position 13 | Position 14 | C 0 G S X Type of connection **Lines per revolution Pole Pairs** = 01 = **02** Connector = A1,000 2 pole pairs Stranded cable = **V** 1,024 = **10 = 03** 3 pole pairs 2,000 = **02** 4 pole pairs **= 04** 2,048 = **11** 6 pole pairs = 06 4,000 = 04 8 pole pairs = 08 4,096 = **12**

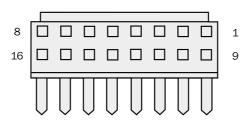

Ordering I	Example: N	/lotor Feed	back Syste	m CNS 50	tapered s	haft, resolv	er support	Ø 52					
4,096 lin	es, 3 pole	pairs, conn	ector exit										
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	G	Α	1	2	Х	0	3
	,	,		,	,	,	,			,	,	-	
Please en	ter vour in	dividual en	coder here										
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	G				Х		
	,	,		,	,		,	,			,		L
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	G				Х		
	,	,					,		'				1
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
	N	e	E	0		Λ	G				v	i	

Motor Feedback System CNS 50, Tapered Shaft

Dimensional drawing CNS 50, rubber support Ø 50

- Output driver for incremental signals and commutation signals to EIA 422
- Working temperature range up to + 100 °C
- Two square-wave signals (90° offset), reference pulse and the respective inverted signals
- Commutation signals R, S, T

General tolerances to DIN ISO 2768-mk


PIN and wire allocation/16 pin connector

PIN	Signal	Colour of Wires	Explanation				
1	GND	blue	Ground connection				
2	R	white/green	Commutation signal				
3	S	white/yellow	Commutation signal				
4	T	white/grey	Commutation signal				
5	Z	violet	Reference signal				
6	В	pink	Incremental signal				
7	A	white	Incremental signal				
8	N. C.	_	Not connected				
9	U _s	red	Supply voltage 5 V \pm 10 %				
10	\overline{R}	white/pink	Commutation signal inverted				
11	\overline{S}	white/blue	Commutation signal inverted				
12	T	white/red	Commutation signal inverted				
13	Z	yellow	Reference signal inverted				
14	B	black	Incremental signal inverted				
15	Ā	brown	Incremental signal inverted				
16	N. C.	_	Not connected				

Caution: Pins labelled "N. C." must not be occupied!

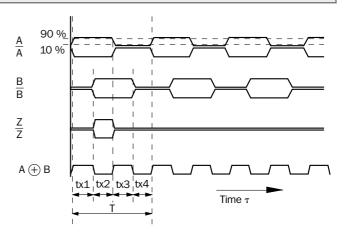
The encoder housing must be connected to the screen. Use the screen connection strand (200 mm, supplied) for this. It is included in the supply.

Technical Data		Tapered Shaft CNS 50	CNS					
Number of lines per re	evolution	1,000, 1,024, 2,000, 2,048, 4,000, 4,096		ĺ				
Commutation signals		(See diagram, page 16) other						
		commutation on request						
Dimensions		mm (see dimensional drawing)						
Mass		0,1 kg						
Inertial rotor moment		10 gcm ²						
Measurement step		90°/number of lines						
Reference signal	No. off	1						
	Position	90° electr., logically linked with A and B						
Max. operating speed		9,000 min ⁻¹						
Working speed		6,000 min ⁻¹						
Max. angular accelera	ation	0.2 x 10 ⁶ 1/s ²						
Operating torque		0.2 Ncm						
Starting torque		0.4 Ncm						
Permissible shaft mov	/ement							
static radial/axial		± 0.5 mm/± 0.75 mm						
dynamic radial/axial		± 0.05 mm/± 0.25 mm						
Angular motion, perpe	endicular to the	rotational axis						
static		± 0.005 mm/mm						
dynamic		± 0.0025 mm/mm						
Life of ball bearings		3.6 x 109 revolutions						
Working temperature	range	0 + 100 °C						
Storage temperature	range	− 40 + 125 °C						
Permissible relative h	umidity ¹⁾	90 %						
Resistance								
to shocks 2)		100/10 g/ms						
to vibration 3)		20/10 2000 g/Hz						
Protection class acc.	IEC 60529 ⁴⁾	IP 40						
EMC ⁵⁾								
Operating voltage ran	ge	5 V ± 10 %						
Max. operating current, no load		50 mA						
Interface details:								
Output driver		To DIN 66259 part 3						
		and EIA Standard RS 422						
Output signal sequence	ce	See pulse-time diagram (page 16)						
Signal tolerance								
tx1 tx4 max. at 300 k	Hz	1.5 x 1/4 T						

¹⁾ Condensation not permissible

the motor feedback system is mounted in an electrically conductive housing, which is connected to the central earthing point of the motor controller via a cable screen. This is also where the GND (0 V) connection of the supply voltage is linked

²⁾ To DIN EN 60068-2-27


³⁾ To DIN EN 60068-2-6

⁴⁾ With mating connector inserted

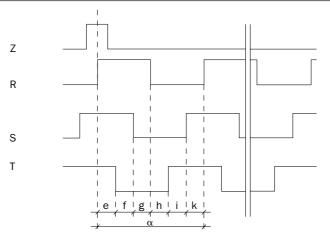
 $^{^{5)}\,}$ To DIN EN 61000-6-2 and DIN 61000-6-3 The EMC according to the standards quoted is achieved when

Incremental signals

At constant speed, looking at the input shaft, and clockwise rotation.

nal is created whose cycle durations $tx1 \dots tx4$ have different sizes.

The differences are determined:


1. by the mark/space ratio tolerance of the individual channels

- By linking the two signals A and B, an output sig- 2. by the tolerance in the 90° phase shift between A and B
 - 3. by the frequency

Ideally, the times tx1 ... tx4 should always be 1/4 of the cycle duration T.

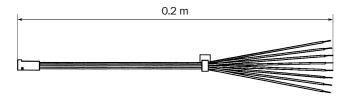
The typical output frequency of the encoder is defined such that the max. time tx is smaller than 1.5 x T/4.

Pulse-time diagram

Pole pairs	Number of poles	e, f, g, h, i, k	α
2	4	30°	180°
3	6	20°	120°
4	8	15°	90°
6	12	10°	60°
8	16	7,5°	45°

The angular data is related to a mechanical shaft rotation.

Motor Feedback System CNS 50 with tapered shaft Position 1 | Position 2 | Position 3 | Position 4 | Position 5 | Position 6 | Position 7 | Position 8 | Position 9 | Position 10 | Position 11 | Position 12 | Position 13 | Position 14 | C 0 S Ε X Type of connection **Lines per revolution Pole Pairs** = 01 = **02** Connector = A1,000 2 pole pairs Stranded cable = **V** 1,024 = **10 = 03** 3 pole pairs 2,000 **= 02** 4 pole pairs **= 04** 2,048 = **11** 6 pole pairs = 06 4,000 = 04 8 pole pairs = 08 4,096 = **12**


Ordering e	rdering example: Motor Feedback System CNS 50, tapered shaft, rubber support Ø 50												
4,096 lines, 3 pole pairs, connector exit													
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	E	Α	1	2	Х	0	3
	,			,	,		,	,	,	,	,		,
Please en	iter your in	dividual en	coder here										
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	E				Х		
	'	,		,		,	,		'	'	,		
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
С	N	S	5	0	_	Α	E				Х		
Position 1	Position 2	Position 3	Position 4	Position 5	Position 6	Position 7	Position 8	Position 9	Position 10	Position 11	Position 12	Position 13	Position 14
	N	e	E	0		Λ	F				v		

Accessories Connection Technology

Dimensional drawings and ordering information

Stranded cable/connector , straight, 14 wires, 14 x 0.24 mm^2

Туре	Part no.	Contacts	Wire length		
DOL-OB14-GOM2XB3	2 031 082	16	0.2 m		

Contact:

Australia

Phone +61 3 9497 4100 1800 33 48 02 – tollfree E-Mail sales@sick.com.au

Belgique/Luxembourg Phone +32 (0)2 466 55 66 E-Mail info@sick.be

Brasil

Phone +55 11 5091-4900 E-Mail sac@sick.com.br

Ceská Republika

Phone +420 2 57 91 18 50 E-Mail sick@sick.cz

China

Phone +852-2763 6966 E-Mail ghk@sick.com.hk

Danmark

Phone +45 45 82 64 00 E-Mail sick@sick.dk

Deutschland

Phone +49 (0)2 11 53 01-250 E-Mail vzdinfo@sick.de

España

Phone +34 93 480 31 00 E-Mail info@sick.es

France

Phone +33 1 64 62 35 00 E-Mail info@sick.fr

Great Britain

Phone +44 (0)1727 831121 E-Mail info@sick.co.uk

Italia

Phone +39 011 797965 E-Mail stegmann@stegmann.it

Japan

Phone +81 (0)3 3358 1341 E-Mail info@sick.jp

Korea

Phone +82-2 786 6321/4 E-Mail kang@sickkorea.net

Nederland

Phone +31 (0)30 229 25 44 E-Mail info@sick.nl

Norge

Phone +47 67 81 50 00 E-Mail austefjord@sick.no

Österreich

Phone +43 (0)22 36 62 28 8-0 E-Mail office@sick.at

Polska

Phone +48 22 837 40 50 E-Mail info@sick.pl

Schweiz

Phone +41 41 619 29 39 E-Mail contact@sick.ch

Singapore

Phone +65 6744 3732 E-Mail admin@sicksgp.com.sg

Suomi Phone +358-9-25 15 800

E-Mail sick@sick.fi Sverige Phone +46 8 680 64 50

E-Mail info@sick.se Taiwan

Phone +886 2 2365-6292 E-Mail sickgrc@ms6.hinet.net

USA

Phone +1 937-454-1956 E-Mail sales@stegmann.com

More representatives and agencies in all major industrial nations at

6900 West 110th Street Minneapolis, MN 55438 Ph: 800.325.SICK (7425) • Fax: 952.941.9287 www.sickusa.com

SICK

SICK STEGMANN, INC. 7496 Webster Street Dayton, OH 45414 Ph: 800.811.9110 • Fax: 937.454.1955 www.stegmann.com