
# Trasmissioni sincrone EAGLE NIRE

L'esigenza di trasmissioni di potenza sempre più compatte, affidabili e silenziose ha contribuito alla studio di nuove soluzioni tecniche ed alla ricerca di materiali innovativi sempre più performanti La SIT S.p.A è in grado di soddisfare, oggi più di ieri, queste necessità grazie alla cinghia "Eagle NRG™", ultima nata in casa Goodyear™.

Eagle NRG™ è in grado di trasmette il 25% in più rispetto alla cinghia Eagle Pd™

#### EAGLE NRG™ annienta il rumore

Nessun altro sistema di trasmissione riduce il rumore alla fonte come Eagle NRG™ della Goodyear. Si può addirittura affermare che non esista sul mercato una trasmissione sincrona così silenziosa. La cinghia e la puleggia Eagle NRG™ permettono di ridurre la rumorosità di lavoro di 17-19 decibel rispetto ad altri tipi di trasmissione dentata.



#### Un accoppiamento silenzioso fra cinghia e puleggia

Con Eagle NRG™ la Goodyear è andata al di là delle tradizionali trasmissioni sincrone con profilo del dente tondo o parabolico e ha adottato una rivoluzionaria tecnica HOT (Helical Offset Tooth) che accoppia cinghia e puleggia in un ciclo di lavoro estremamente silenzioso.

Il sistema HOT permette un ingranamento progressivo e continuo fra cinghia e puleggia ottenendo così una trasmissione con minori vibrazioni e minore rumorosità. L'assenza di slittamento consente inoltre un maggiore rendimento della trasmissione. Ricorrendo ad un concetto denominato "geometria ad arco circolare", la configurazione HOT offre:

- una più elevata resistenza all'usura del dente
- una migliore precisione nella trasmissione del moto
- più elevati livelli di potenza trasmissibile
- riduzione del backlash (inversione del moto)
- una migliore distribuzione delle sollecitazioni per cui i denti della cinghia possono meglio resistere all'azione di taglio dovuta alle elevate coppie da trasmettere.

#### Razionalità di progettazione

La caratteristica autoallineante delle cinghie Eagle NRG™ ovvia all'esigenza di utilizzare pulegge flangiate riducendo quindi il diametro, la larghezza e il peso di queste ultime. La cinghia è bidirezionale e pertanto può essere usata in applicazioni con inversione di moto. Inoltre, essendo la Eagle NRG™ costruita con materiali speciali ad alta tecnologia quali la gomma HiBrex™, gli elementi di tensione in Flexten® ed il rivestimento in tessuto Plioguard™, la larghezza della cinghia risulta essere minima anche per trasmissioni di coppie elevate senza compromettere la sua resistenza. Il risultato è una trasmissione più leggera, con ingombri molto contenuti e che meglio si adatta alle varie applicazioni.

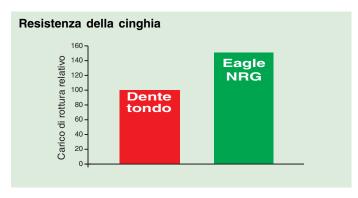


#### EAGLE NRG™: la soluzione su misura

In qualsiasi tipo di applicazione, le cinghie e le pulegge sincrone Eagle NRG™ possono ridurre in misura considerevole sia i livelli di rumorosità che i costi. Le combinazioni di pulegge standard sono oltre 1.000 per cui è estremamente facile ottenere la velocità di progetto desiderata. Poter scegliere fra una vasta gamma di rapporti di trasmissione possibili significa inoltre avere una maggiore compattezza delle trasmissioni. Le pulegge e le cinghie Eagle NRG™ della Goodyear possono essere utilizzate con successo in svariati campi applicativi

- Macchine agricole
- Impianti e macchinari per costruzioni civili
- Macchine per miniere
- Convogliatori, trasportatori
- Macchine utensili
- Macchine per la lavorazione dei metalli
- Macchine tessili
- Ventilatori industriali
- Macchine per la lavorazione del legno
- Macchine per la lavorazione della carta
- Macchine ed impianti per l'industria alimentare
- · Macchine per l'industria tipografica
- Macchine per l'imballaggio

#### Costruite più robuste per durare di più

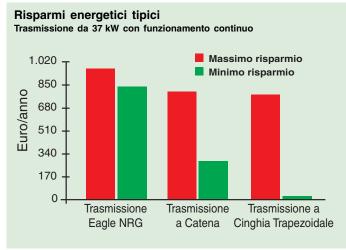

La cinghia e la puleggia Eagle NRG™ sono state progettate e realizzate per avere una lunga vita utile e per un funzionamento esente da manutenzione. La caratteristica di una lunga durata è dovuta alla mescola di gomma HiBrex™, un elastomero reticolato formulato per resistere alla deformazione del dente e per incrementare la rigidità.



La mescola HiBrex™ è inoltre chimicamente stabile per resistere agli effetti di olii, liquidi refrigeranti, calore ed ozono.



L'elemento di tensione in Flexten® ad alta resistenza conferisce alla cinghia una resistenza ottimale alla fatica a flessione, all'allungamento ed alle punte di carico in condizioni di funzionamento caratterizzate da elevate coppie da trasmettere.




Il rivestimento della cinghia in Plioguard™ riduce l'attrito al momento dell'impegno del dente e al contempo offre resistenza all'infiltrazione di oli e agenti chimici.

#### EAGLE NRG™: Risparmio Energetico



Gli investimenti connessi alla sostituzione di trasmissioni problematiche con il prodotto Eagle NRG™ offrono riduzioni di costi sia nel breve che nel lungo periodo. I vantaggi immediati saranno costituiti dai risparmi energetici grazie all'elevato rendimento della trasmissione Eagle NRG™, che è del 98%, cioè almeno il 5% in più del rendimento delle trasmissioni a cinghie trapezoidali.



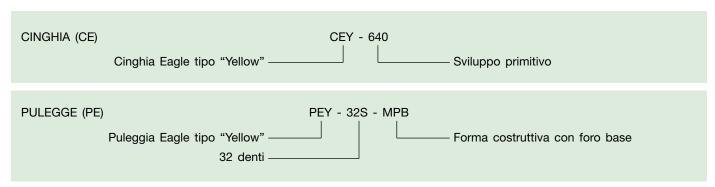
Nel lungo periodo, l'investimento Eagle NRG™ viene più che recuperato grazie alla **maggiore efficienza ed ai ridotti costi di manutenzione.** Tali risparmi diventano più consistenti quando Eagle NRG™ è impiegata per trasmissioni ad alto consumo energetico usate 24 ore su 24 o per trasmissioni di alta potenza che fanno aumentare il consumo energetico durante i periodi di funzionamento a carico massimo.

Diversamente dalle trasmissioni a catena, la trasmissione Eagle  $NRG^{\mathsf{TM}}$  non ha bisogno di lubrificazione. Non è necessario inoltre eseguire il ritensionamento tipico delle trasmissioni a cinghia trapezoidale ed a catena.

Installando la Eagle NRG™ osserverete che i vostri costi di manutenzione scenderanno praticamente a zero.

# Codifica della trasmissione

Il sistema di codificazione a colori, agevola la scelta del prodotto più adatto. Ogni colore indica un passo ed una larghezza di cinghia specifica. È sufficiente abbinare al colore della cinghia la rispettiva puleggia per installare il sistema Eagle NRG™. • I colori delle cinghie: dalla capacità di trasmettere potenza più bassa a quella più elevata, i colori sono: Yellow (Giallo), White (Bianco), Purple (Porpora), Blue (Blu), Green (Verde), Orange (Arancio), Red (Rosso).


Le cinghie di colore giallo, bianco e porpora hanno un passo di 8 mm. e quelle di colore blu, verde, arancio e rosso hanno un passo di 14 mm.

Per confrontare la potenza trasmissibile alla potenza di selezione, è più facile cominciare dal colore che ha la potenza trasmissibile inferiore. Si tratta del giallo per il passo da 8 mm e del blu per il passo da 14 mm.



| Simbolo - Colore | Passo<br><b>P</b> [mm] |
|------------------|------------------------|
| Y - Giallo       | 8                      |
| W - Bianco       | 8                      |
| P - Porpora      | 8                      |
| B - Blu          | 14                     |
| G - Verde        | 14                     |
| O - Arancio      | 14                     |
| R - Rosso        | 14                     |

#### Esempio di codifica:



• Aumento della potenza trasmissibile: la potenza trasmissibile aumenta con pulegge di grande diametro e con cinghie di grande larghezza.

## Considerazioni tecniche

- Temperatura: le cinghie Eagle NRG™ danno le migliori prestazioni in ambienti con temperature comprese fra i -60°C e +85°C. La gomma del dorso è calcolata per resistere a punti intermittenti di temperatura di 135°C (potrebbe essere utile per trasportare prodotti caldi).
- Ambienti con presenza d'olio: come tutte le trasmissioni a cinghia, il contatto con l'olio dovrà essere evitato; in un ambiente dove l'olio è inevitabile, la cinghia Eagle NRG™ ha comunque un buon comportamento.
- Rumori: il rumore di una cinghia è dovuto alla velocità ed alla larghezza della cinghia stessa. Con più alta è la velocità

- di rotazione, più forte è il rumore, allo stesso modo, più larga è la cinghia, più forte è il rumore.
- Gioco e precisione di posizionamento: le cinghie Eagle NRG™ hanno denti che si ingranano con quelli delle corrispettive pulegge permettendo una sincronizzazione positiva. Il profilo ad arco di cerchio dei denti ed il materiale ad elevata durezza fanno delle Eagle NRG™ le trasmissioni ideali per applicazioni che richiedano precisione di posizionamento.
- Prodotti chimici: la gomma HiBrex™ è stabile chimicamente e non si degraderà in caso di esposizione a parecchie sostanze chimiche. (vedi tabella sotto)

|                               | Resistenza chir | nica dell'HiBrex™   |        |
|-------------------------------|-----------------|---------------------|--------|
| Prodotto chimico              | Classe          | Prodotto chimico    | Classe |
| Vapore                        | В               | Iso-ottano          | А      |
| Acido acetico                 | В               | Toluene             | С      |
| Acido cloridrico              | А               | Tricloro etilene    | С      |
| Acido fosforico               | А               | Alcool metilico     | А      |
| Acido nitrico                 | В               | Alcool etilico      | А      |
| Idrossido di sodio (Soda)     | А               | Etere etilico       | С      |
| Sol. ammoniacale (28%)        | А               | Acetato di etile    | U      |
| Sol. Cloruro di sodio (30%)   | А               | Metil-etil-chetone  | U      |
| Sol. Carbonato di sodio (10%) | А               | Aldeide furanica    | В      |
| Acqua ossigenata (3%)         | В               | Trietanol annivers  | А      |
| Sol. Ipoclorito di sodio (5%) | В               | Solfuro di Carbonio | С      |

A = Scarsi effetti - B = Da scarsi a moderati - C = Da Moderati a negativi - U = Sconsigliato

• Trasmissione con pulegge multiple: queste trasmissioni sono tipiche poiché hanno una puleggia motrice e due, o più, pulegge condotte. In questo caso è corretto definire la trasmissione calcolandola sulla base dell'albero più carico. È generalmente l'albero motore che trasmette il carico a tutti gli alberi condotti. Tutte le pulegge devono avere almeno 6 denti in presa. Se ciò non accadesse, bisogna correggere la potenza trasmessa. Assicurarsi che la potenza corretta non sia più elevata rispetto alla potenza trasmessa dalla cinghia.

• Carico sui cuscinetti: in molte trasmissioni la vita di un cuscinetto è un problema. Riducendo il carico sul cuscinetto si incrementerà la durata del cuscinetto stesso.

Per ottimizzare il carico sui cuscinetti:

- Si consideri che pulegge con diametri grandi richiederanno minori tensioni di cinghia in ciascun tipo di trasmissione.
- Si posizioni sempre la puleggia vicino al cuscinetto. Ciò ridurrà l'effetto del carico del cuscinetto.
- È consigliabile in caso di dubbio interpellare il servizio tecnico della SIT per verificare la corretta tensione della cinghia ed il corrispondente carico sui cuscinetti.

Assicurarsi di installare una cinghia con una tensione non inferiore a quella consigliata. Una cinghia sottodimensionata avrà una durata inferiore.

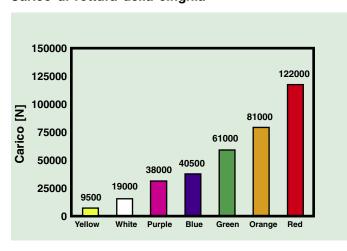
Le trasmissioni sincrone Eagle NRG™ trasmettono maggiori potenze con larghezze minori, quindi con minori sollecitazioni sui cuscinetti.

• Trasmissioni ad interasse fisso: una trasmissione con un interasse fisso è una trasmissione che non ha possibilità di regolazioni di tensione nel tempo o nell'installazione della cinghia. Questo tipo di trasmissione è sconsigliata. A causa delle tolleranze dei componenti delle trasmissioni, non possono essere assicurate adeguate tensioni delle cinghie. Per l'installazione, le tolleranze di variazione minime dell'interasse sono riportate nella tavola qui sotto. In alcuni casi, se trasmissioni ad interasse fisso non possono essere evitate, dovranno essere utilizzate, avendo ben chiaro che la durata della cinghia sarà ridotta.

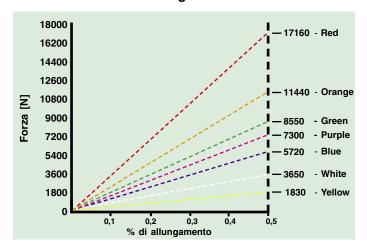
- Utilizzo del tenditore: i tenditori possono essere utilizzati indifferentemente all'interno o all'esterno della cinghia. I tenditori esterni aumenteranno il numero di denti in presa della puleggia. Sono comunemente utilizzati come meccanismo di tensionamento guando la trasmissione ha interasse fisso. Quando è necessario installare un tenditore, si seguano le seguenti regole.
- Posizionare il tenditore sul ramo lento della cinghia.
- I tenditori posizionati all'interno della cinghia devono essere dentati.
- I tenditori esterni devono essere piani non dentati.
- I tenditori interni devono avere un diametro minimo, pari a quello della puleggia più piccola.
- I tenditori esterni devono avere un diametro maggiore a quello della puleggia più piccola.
- Denti in presa: generalmente si considerano trasmissioni con più di 6 denti di presa. Nel caso di trasmissioni aventi pulegge con meno di 6 denti di presa, la potenza trasmissible

della cinghia deve essere ridotto. Il fattore TIM (Denti in presa) per una trasmissione a 2 pulegge può essere calcolato come

**TIM** = 
$$\frac{0.5 - (D-d)}{6c}$$
 x (numero dei denti nella puleggia piccola)


Basandosi sul TIM, il fattore di correzione,  $K_{\text{TM}}$  si ricava dalla tabella seguente:

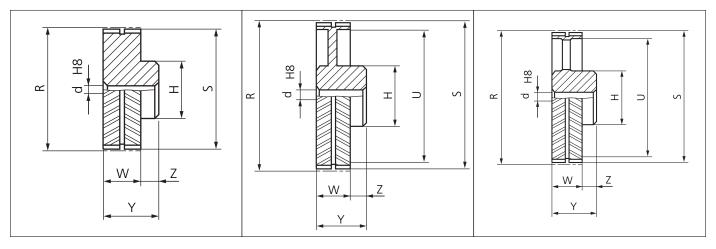
|                    | Den     | ti in presa | a - Fattore | TIM  |      |
|--------------------|---------|-------------|-------------|------|------|
| Denti in presa TIM | 6 o più | 5           | 4           | 3    | 2    |
| K <sub>TM</sub>    | 1,00    | 0,80        | 0,60        | 0,40 | 0,20 |


Potenza corretta trasmissibile dalla cinghia [kW] = Potenza trasmissibile dalla cinghia [kW] x  $K_{TM}$ .

#### Caratteristiche meccaniche della cinghia EAGLE NRG™

#### Carico di rottura della cinghia




#### Modulo elastico della cinghia



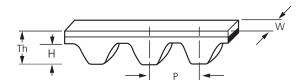
# La gamma standard delle pulegge EAGLENRE

Le pulegge Eagle NRG™, prodotte con attrezzature innovative ad alta tecnologia, sono state studiate per garantire la massima durata di servizio e le migliori prestazioni. I materiali di elevata qualità, utilizzati per la produzione delle pulegge, assicurano la massima resistenza all'usura. Le pulegge, inoltre, sono sottoposte a equilibratura statica e trattate per la resistenza alla ossidazione. Il sistema cinghia-puleggia Eagle NRG™ è stato progettato per ottenere una precisione di funzionamento con il minimo di attrito. L'ingranamento continuo e graduale del dente della cinghia con la puleggia riduce l'usura e la rumorosità e garantisce una vita più lunga alla trasmissione.

#### Forme standard delle pulegge Eagle NRG™



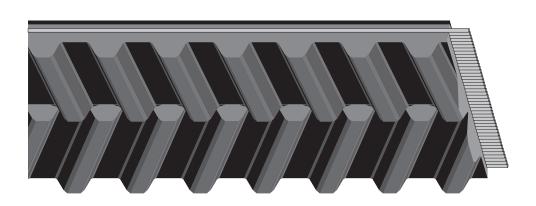
Nota per il cliente: è importante indicare, nei disegni costruttivi di pulegge non standard, l'orientamento delle dentature rispetto alla posizione del mozzo (come nelle figure sopra riportate).


#### Tolleranza delle pulegge Eagle NRG™

| dei di | nma<br>ametri<br>m] | Tolleranza sul<br>diametro esterno<br>[mm] | Tolleranza di<br>oscillazione radiale<br>[mm] | Tolleranza di<br>oscillazione assiale<br>[mm] | Variazione massima<br>sul passo del dente<br>[mm] |
|--------|---------------------|--------------------------------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| 0      | 101,6               | -0 / +0,13                                 | 0,13                                          | 0,12                                          | 0,1                                               |
| 101,6  | 177,8               | -0 / +0,13                                 | 0,13                                          | 0,15                                          | 0,1                                               |
| 177,8  | 304,8               | -0 / +0,15                                 | 0,15                                          | 0,20                                          | 0,1                                               |
| 304,8  | 508                 | -0 / +0,18                                 | 0,20                                          | 0,35                                          | 0,1                                               |
| 508    | 750                 | -0 / +0,20                                 | 0,30                                          | 0,43                                          | 0,1                                               |



# La gamma standard delle cinghie EAGLENRES


#### Dimensione delle cinghie



| Simbolo - Colore | Larghezza<br><b>W</b> [mm] | Passo<br><b>P</b> [mm] | Spessore<br><b>Th</b> [mm] | Altezza dente<br><b>H</b> [mm] |
|------------------|----------------------------|------------------------|----------------------------|--------------------------------|
| Y - Giallo       | 16                         | 8                      | 5,33                       | 3,05                           |
| W - Bianco       | 32                         | 8                      | 5,33                       | 3,05                           |
| P - Porpora      | 64                         | 8                      | 5,33                       | 3,05                           |
| B - Blu          | 35                         | 14                     | 8,64                       | 5,33                           |
| G - Verde        | 52,5                       | 14                     | 8,64                       | 5,33                           |
| O - Arancio      | 70                         | 14                     | 8,64                       | 5,33                           |
| R - Rosso        | 105                        | 14                     | 8,64                       | 5,33                           |

#### Sviluppi standard delle cinghie

| Tipo | Р  | Largh. |     |      |      |      |      |      | L <sub>cST</sub> S | Svilupp | standa | ard dis | ponibili | [mm] |      |      |      |      |      |      |
|------|----|--------|-----|------|------|------|------|------|--------------------|---------|--------|---------|----------|------|------|------|------|------|------|------|
| Υ    | 8  | 16     | 640 | 720  | 800  | 896  | 1000 | 1120 | 1200               | 1280    | 1440   | 1600    | 1792     | 2000 | 2240 | 2400 | -    | -    | -    | -    |
| w    | 8  | 32     | 640 | 720  | 800  | 896  | 1000 | 1120 | 1200               | 1280    | 1440   | 1600    | 1792     | 2000 | 2240 | 2400 | -    | -    | -    | -    |
| Р    | 8  | 64     | -   | 720  | 800  | 896  | 1000 | 1120 | 1200               | 1280    | 1440   | 1600    | -        | -    | -    | -    | -    | -    | -    | -    |
|      |    |        |     |      |      |      |      |      |                    |         |        |         |          |      |      |      |      |      |      |      |
| В    | 14 | 35     | 994 | 1120 | 1190 | 1260 | 1400 | 1568 | 1750               | 1960    | 2100   | 2240    | 2380     | 2520 | 2660 | 2800 | 3136 | 3304 | 3500 | 3920 |
| G    | 14 | 52,5   | 994 | 1120 | 1190 | 1260 | 1400 | 1568 | 1750               | 1960    | 2100   | 2240    | 2380     | 2520 | 2660 | 2800 | 3136 | 3304 | 3500 | 3920 |
| 0    | 14 | 70     | -   | 1120 | 1190 | 1260 | 1400 | 1568 | 1750               | 1960    | 2100   | 2240    | 2380     | 2520 | 2660 | 2800 | 3136 | 3304 | 3500 | 3920 |
| R    | 14 | 105    | -   | -    | -    | 1260 | 1400 | 1568 | 1750               | 1960    | 2100   | 2240    | 2380     | 2520 | 2660 | 2800 | 3136 | 3304 | 3500 | 3920 |



# Potenze base delle cinghie EAGLENIE



|                       |          |       | Pot   | tenza | tras  | miss  | ibile | [kW]  | per   | le ci | nghie | Eag   | le Ni | RG ti  | po "\  | /ellov | v" Y   | (Larg  | h. 16  | mm     | )      |        |        |        |
|-----------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| N° c                  | lenti    | 18    | 20    | 22    | 24    | 25    | 26    | 28    | 30    | 32    | 34    | 36    | 38    | 40     | 45     | 48     | 50     | 56     | 60     | 63     | 75     | 80     | 90     | 112    |
| Ø primit              | ivo [mm] | 45,84 | 50,93 | 56,02 | 61,12 | 63,66 | 66,21 | 71,30 | 76,39 | 81,49 | 86,58 | 91,67 | 96,77 | 101,86 | 114,59 | 122,23 | 127,32 | 142,60 | 152,79 | 160,43 | 190,99 | 203,72 | 229,18 | 285,20 |
|                       | 10       | 0,04  | 0,04  | 0,05  | 0,06  | 0,07  | 0,07  | 0,07  | 0,08  | 0,09  | 0,10  | 0,10  | 0,10  | 0,11   | 0,13   | 0,14   | 0,15   | 0,16   | 0,18   | 0,19   | 0,23   | 0,25   | 0,28   | 0,35   |
|                       | 20       | 0,07  | 0,09  | 0,10  | 0,12  | 0,13  | 0,13  | 0,15  | 0,16  | 0,17  | 0,19  | 0,20  | 0,21  | 0,22   | 0,25   | 0,28   | 0,29   | 0,33   | 0,35   | 0,37   | 0,45   | 0,48   | 0,55   | 0,69   |
|                       | 40       | 0,14  | 0,17  | 0,20  | 0,23  | 0,25  | 0,26  | 0,29  | 0,31  | 0,34  | 0,37  | 0,39  | 0,42  | 0,44   | 0,51   | 0,54   | 0,57   | 0,64   | 0,69   | 0,73   | 0,9    | 0,9    | 1,1    | 1,4    |
|                       | 60       | 0,21  | 0,25  | 0,30  | 0,34  | 0,37  | 0,39  | 0,42  | 0,46  | 0,50  | 0,54  | 0,57  | 0,61  | 0,65   | 0,7    | 0,8    | 0,8    | 1,0    | 1,0    | 1,1    | 1,3    | 1,4    | 1,6    | 2,0    |
|                       | 100      | 0,34  | 0,41  | 0,48  | 0,55  | 0,59  | 0,63  | 0,69  | 0,7   | 0,8   | 0,9   | 0,9   | 1,0   | 1,1    | 1,2    | 1,3    | 1,4    | 1,5    | 1,7    | 1,8    | 2,1    | 2,3    | 2,6    | 3,2    |
|                       | 200      | 0,6   | 0,8   | 0,9   | 1,0   | 1,1   | 1,2   | 1,3   | 1,4   | 1,5   | 1,6   | 1,7   | 1,8   | 2,0    | 2,2    | 2,4    | 2,5    | 2,9    | 3,1    | 3,3    | 3,9    | 4,2    | 4,8    | 6,0    |
|                       | 300      | 0,9   | 1,1   | 1,3   | 1,5   | 1,6   | 1,7   | 1,8   | 2,0   | 2,1   | 2,3   | 2,5   | 2,6   | 2,8    | 3,2    | 3,4    | 3,6    | 4,1    | 4,4    | 4,6    | 5,6    | 6,0    | 6,8    | 9      |
|                       | 400      | 1,2   | 1,4   | 1,6   | 1,9   | 2,0   | 2,1   | 2,3   | 2,5   | 2,7   | 2,9   | 3,1   | 3,3   | 3,5    | 4,1    | 4,4    | 4,6    | 5,2    | 5,6    | 5,9    | 7,1    | 8      | 9      | 11     |
|                       | 500      | 1,4   | 1,7   | 1,9   | 2,2   | 2,4   | 2,5   | 2,8   | 3,0   | 3,3   | 3,5   | 3,8   | 4,0   | 4,3    | 4,9    | 5,2    | 5,5    | 6,2    | 6,7    | 7,1    | 9      | 9      | 10     | 13     |
|                       | 600      | 1,6   | 1,9   | 2,3   | 2,6   | 2,8   | 2,9   | 3,2   | 3,5   | 3,8   | 4,1   | 4,4   | 4,7   | 4,9    | 5,7    | 6,1    | 6,4    | 7,2    | 8      | 8      | 10     | 11     | 12     | 15     |
|                       | 700      | 1,8   | 2,2   | 2,6   | 2,9   | 3,1   | 3,3   | 3,7   | 4,0   | 4,3   | 4,6   | 4,9   | 5,3   | 5,6    | 6,4    | 6,9    | 7,2    | 8      | 9      | 9      | 11     | 12     | 14     | 17     |
| _⊑                    | 800      | 2,0   | 2,4   | 2,8   | 3,3   | 3,5   | 3,7   | 4,1   | 4,4   | 4,8   | 5,1   | 5,5   | 5,9   | 6,2    | 7,1    | 8      | 8      | 9      | 10     | 10     | 13     | 13     | 15     | 19     |
| [min <sup>-1</sup> ]  | 870      | 2,2   | 2,6   | 3,0   | 3,5   | 3,7   | 4,0   | 4,4   | 4,7   | 5,1   | 5,5   | 5,9   | 6,3   | 6,7    | 8      | 8      | 9      | 10     | 10     | 11     | 13     | 14     | 16     | 20     |
|                       | 1000     | 2,4   | 2,9   | 3,4   | 3,9   | 4,2   | 4,4   | 4,9   | 5,3   | 5,7   | 6,2   | 6,6   | 7,0   | 7      | 9      | 9      | 10     | 11     | 12     | 12     | 15     | 16     | 18     | 23     |
| minore                | 1160     | 2,7   | 3,3   | 3,8   | 4,4   | 4,7   | 5,0   | 5,5   | 6,0   | 6,5   | 6,9   | 7     | 8     | 8      | 10     | 10     | 11     | 12     | 13     | 14     | 17     | 18     | 20     | 26     |
| <del>_</del> <u>=</u> | 1200     | 2,8   | 3,4   | 3,9   | 4,5   | 4,8   | 5,1   | 5,6   | 6,1   | 6,6   | 7,1   | 8     | 8     | 9      | 10     | 11     | 11     | 13     | 14     | 14     | 17     | 18     | 21     | 26     |
|                       | 1400     | 3,2   | 3,8   | 4,5   | 5,1   | 5,5   | 5,8   | 6,4   | 7,0   | 8     | 8     | 9     | 9     | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 20     | 21     | 24     | 30     |
| puleggia              | 1600     | 3,6   | 4,3   | 5,0   | 5,7   | 6,1   | 6,5   | 7,1   | 8     | 8     | 9     | 10    | 10    | 11     | 12     | 13     | 14     | 16     | 17     | 18     | 22     | 23     | 26     | 33     |
| <u>e</u>              | 1750     | 3,8   | 4,6   | 5,4   | 6,2   | 6,6   | 7,0   | 8     | 8     | 9     | 10    | 10    | 11    | 12     | 13     | 14     | 15     | 17     | 18     | 19     | 23     | 25     | 28     | 35     |
| ₫                     | 2000     | 4,3   | 5,1   | 6,0   | 6,9   | 7,3   | 8     | 9     | 9     | 10    | 11    | 12    | 12    | 13     | 15     | 16     | 17     | 19     | 20     | 22     | 26     | 28     | 31     | 39     |
| ± <u>a</u>            | 2400     | 5,0   | 6,0   | 7,0   | 8     | 9     | 9     | 10    | 11    | 12    | 13    | 13    | 14    | 15     | 17     | 19     | 19     | 22     | 24     | 25     | 30     | 32     | 36     | 44     |
| Velocità              | 2800     | 5,7   | 6,8   | 8     | 9     | 10    | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17     | 20     | 21     | 22     | 25     | 27     | 28     | 34     | 36     | 40     | 49     |
| ₹                     | 3200     | 6,4   | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 19     | 22     | 24     | 25     | 28     | 30     | 31     | 37     | 40     | 44     | 53     |
| -                     | 3500     | 6,9   | 8     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 20    | 21     | 24     | 25     | 26     | 30     | 32     | 34     | 40     | 42     | 47     | 56     |
|                       | 4000     | 8     | 9     | 11    | 12    | 13    | 14    | 15    | 17    | 18    | 19    | 21    | 22    | 23     | 26     | 28     | 29     | 33     | 35     | 37     | 44     | 46     | 51     | 59     |
|                       | 4500     | 9     | 10    | 12    | 14    | 15    | 16    | 17    | 18    | 20    | 21    | 23    | 24    | 26     | 29     | 31     | 32     | 36     | 39     | 40     | 47     | 50     | 54     | 61     |
|                       | 5000     | 9     | 11    | 13    | 15    | 16    | 17    | 19    | 20    | 22    | 23    | 25    | 26    | 28     | 31     | 34     | 35     | 39     | 42     | 43     | 50     | 52     | 56     | 61     |
|                       | 5500     | 10    | 12    | 14    | 16    | 17    | 18    | 20    | 22    | 24    | 25    | 27    | 28    | 30     | 34     | 36     | 38     | 42     | 44     | 46     | 52     | 55     | 58     | 60     |
|                       | 6000     | 11    | 13    | 15    | 18    | 19    | 20    | 22    | 23    | 25    | 27    | 29    | 30    | 32     | 36     | 38     | 40     | 44     | 47     | 48     | 54     | 56     | 59     | 57     |
|                       | 7000     | 13    | 15    | 17    | 20    | 21    | 23    | 25    | 27    | 29    | 31    | 32    | 34    | 36     | 40     | 43     | 44     | 48     | 50     | 52     | 56     | 57     | 56     | 44     |
|                       | 8000     | 14    | 17    | 20    | 22    | 24    | 25    | 27    | 30    | 32    | 34    | 36    | 38    | 40     | 44     | 46     | 47     | 51     | 53     | 54     | 55     | 54     | 49     |        |
|                       | 10000    | 17    | 20    | 24    | 27    | 28    | 30    | 33    | 35    | 37    | 39    | 41    | 43    | 45     | 48     | 50     | 51     | 52     | 52     | 51     |        |        |        |        |
|                       | 15000    | 23    | 27    | 31    | 35    | 37    | 39    | 41    | 43    | 45    | 46    | 46    | 47    | 46     | 43     | 40     | 36     | 23     |        |        |        |        |        |        |
|                       | 20000    | 27    | 32    | 35    | 38    | 40    | 41    | 42    | 41    | 40    | 38    | 34    | 30    |        |        |        |        |        |        |        |        |        |        |        |

|                      |          |       | Pot   | enza  | tras  | miss  | ibile | [kW]  | per   | le ci | nghie | Eag   | le Ni | RG ti  | po "\  | White  | " W (  | Larg   | h. 32  | mm     | )      |        |        |        |
|----------------------|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| N° d                 | enti     | 18    | 20    | 22    | 24    | 25    | 26    | 28    | 30    | 32    | 34    | 36    | 38    | 40     | 45     | 48     | 50     | 56     | 60     | 63     | 75     | 80     | 90     | 112    |
| Ø primiti            | ivo [mm] | 45,84 | 50,93 | 56,02 | 61,12 | 63,66 | 66,21 | 71,30 | 76,39 | 81,49 | 86,58 | 91,67 | 96,77 | 101,86 | 114,59 | 122,23 | 127,32 | 142,60 | 152,79 | 160,43 | 190,99 | 203,72 | 229,18 | 285,20 |
|                      | 10       | 0,07  | 0,09  | 0,10  | 0,12  | 0,13  | 0,13  | 0,15  | 0,16  | 0,18  | 0,19  | 0,19  | 0,21  | 0,22   | 0,25   | 0,28   | 0,30   | 0,33   | 0,36   | 0,37   | 0,46   | 0,49   | 0,55   | 0,70   |
|                      | 20       | 0,15  | 0,18  | 0,21  | 0,24  | 0,25  | 0,27  | 0,30  | 0,31  | 0,34  | 0,37  | 0,40  | 0,42  | 0,45   | 0,51   | 0,55   | 0,58   | 0,66   | 0,70   | 0,7    | 0,9    | 1,0    | 1,1    | 1,4    |
|                      | 40       | 0,28  | 0,34  | 0,40  | 0,46  | 0,49  | 0,52  | 0,58  | 0,63  | 0,67  | 0,73  | 0,8   | 0,8   | 0,9    | 1,0    | 1,1    | 1,1    | 1,3    | 1,4    | 1,5    | 1,8    | 1,9    | 2,2    | 2,7    |
|                      | 60       | 0,42  | 0,51  | 0,60  | 0,69  | 0,73  | 0,8   | 0,8   | 0,9   | 1,0   | 1,1   | 1,1   | 1,2   | 1,3    | 1,5    | 1,6    | 1,7    | 1,9    | 2,1    | 2,2    | 2,6    | 2,8    | 3,2    | 4,0    |
|                      | 100      | 0,69  | 0,8   | 1,0   | 1,1   | 1,2   | 1,3   | 1,4   | 1,5   | 1,6   | 1,7   | 1,9   | 2,0   | 2,1    | 2,4    | 2,6    | 2,7    | 3,1    | 3,3    | 3,5    | 4,2    | 4,5    | 5,1    | 6,5    |
|                      | 200      | 1,3   | 1,5   | 1,8   | 2,1   | 2,2   | 2,3   | 2,6   | 2,8   | 3,0   | 3,2   | 3,5   | 3,7   | 3,9    | 4,5    | 4,8    | 5,1    | 5,8    | 6,2    | 6,5    | 8      | 8      | 10     | 12     |
|                      | 300      | 1,8   | 2,2   | 2,5   | 2,9   | 3,1   | 3,3   | 3,7   | 4,0   | 4,3   | 4,6   | 4,9   | 5,3   | 5,6    | 6,4    | 6,9    | 7,2    | 8      | 9      | 9      | 11     | 12     | 14     | 17     |
|                      | 400      | 2,3   | 2,8   | 3,2   | 3,7   | 4,0   | 4,2   | 4,6   | 5,1   | 5,5   | 5,9   | 6,3   | 6,7   | 7,1    | 8      | 9      | 9      | 10     | 11     | 12     | 14     | 15     | 17     | 22     |
|                      | 500      | 2,8   | 3,3   | 3,9   | 4,5   | 4,8   | 5,1   | 5,6   | 6,1   | 6,6   | 7,0   | 8     | 8     | 9      | 10     | 10     | 11     | 12     | 13     | 14     | 17     | 18     | 21     | 26     |
|                      | 600      | 3,2   | 3,9   | 4,5   | 5,2   | 5,5   | 5,9   | 6,5   | 7,0   | 8     | 8     | 9     | 9     | 10     | 11     | 12     | 13     | 14     | 16     | 16     | 20     | 21     | 24     | 30     |
| _                    | 700      | 3,7   | 4,4   | 5,1   | 5,9   | 6,3   | 6,7   | 7,3   | 8     | 9     | 9     | 10    | 11    | 11     | 13     | 14     | 14     | 16     | 18     | 19     | 22     | 24     | 27     | 34     |
| <u>=</u>             | 800      | 4,1   | 4,9   | 5,7   | 6,5   | 7,0   | 7     | 8     | 9     | 10    | 10    | 11    | 12    | 12     | 14     | 15     | 16     | 18     | 20     | 21     | 25     | 27     | 30     | 38     |
| [min <sup>-1</sup> ] | 870      | 4,4   | 5,2   | 6,1   | 7,0   | 7     | 8     | 9     | 9     | 10    | 11    | 12    | 13    | 13     | 15     | 16     | 17     | 19     | 21     | 22     | 27     | 29     | 32     | 41     |
|                      | 1000     | 4,9   | 5,8   | 6,8   | 8     | 8     | 9     | 10    | 11    | 11    | 12    | 13    | 14    | 15     | 17     | 18     | 19     | 22     | 23     | 25     | 30     | 32     | 36     | 45     |
| minore               | 1160     | 5,5   | 6,6   | 8     | 9     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17     | 19     | 21     | 22     | 24     | 26     | 28     | 34     | 36     | 41     | 51     |
| ₹                    | 1200     | 5,6   | 6,7   | 8     | 9     | 10    | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17     | 20     | 21     | 22     | 25     | 27     | 29     | 35     | 37     | 42     | 52     |
| l a                  | 1400     | 6,4   | 8     | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 16    | 17    | 18    | 20     | 22     | 24     | 25     | 28     | 31     | 32     | 39     | 42     | 47     | 59     |
| eggi                 | 1600     | 7,1   | 9     | 10    | 11    | 12    | 13    | 14    | 15    | 17    | 18    | 19    | 21    | 22     | 25     | 27     | 28     | 32     | 34     | 36     | 43     | 46     | 52     | 65     |
| <u>e</u>             | 1750     | 8     | 9     | 11    | 12    | 13    | 14    | 15    | 17    | 18    | 19    | 21    | 22    | 23     | 27     | 29     | 30     | 34     | 37     | 39     | 47     | 50     | 56     | 70     |
| nd                   | 2000     | 9     | 10    | 12    | 14    | 15    | 16    | 17    | 19    | 20    | 22    | 23    | 25    | 26     | 30     | 32     | 34     | 38     | 41     | 43     | 52     | 55     | 62     | 77     |
| Ħ                    | 2400     | 10    | 12    | 14    | 16    | 17    | 18    | 20    | 22    | 23    | 25    | 27    | 29    | 30     | 35     | 37     | 39     | 44     | 47     | 50     | 60     | 64     | 72     | 88     |
| Velocità             | 2800     | 11    | 14    | 16    | 18    | 19    | 21    | 23    | 25    | 27    | 29    | 31    | 33    | 34     | 39     | 42     | 44     | 50     | 54     | 56     | 67     | 72     | 80     | 98     |
| ₽                    | 3200     | 13    | 15    | 18    | 20    | 22    | 23    | 25    | 28    | 30    | 32    | 34    | 36    | 39     | 44     | 47     | 49     | 55     | 60     | 63     | 74     | 79     | 88     | 106    |
| -                    | 3500     | 14    | 16    | 19    | 22    | 24    | 25    | 27    | 30    | 32    | 35    | 37    | 39    | 42     | 47     | 51     | 53     | 60     | 64     | 67     | 79     | 84     | 94     | 111    |
|                      | 4000     | 15    | 18    | 22    | 25    | 26    | 28    | 31    | 33    | 36    | 39    | 41    | 44    | 46     | 53     | 56     | 59     | 66     | 71     | 74     | 87     | 92     | 101    | 118    |
|                      | 4500     | 17    | 20    | 24    | 27    | 29    | 31    | 34    | 37    | 40    | 43    | 45    | 48    | 51     | 58     | 62     | 65     | 72     | 77     | 81     | 94     | 99     | 108    | 122    |
|                      | 5000     | 19    | 22    | 26    | 30    | 32    | 34    | 37    | 40    | 43    | 47    | 50    | 53    | 56     | 63     | 67     | 70     | 78     | 83     | 87     | 100    | 105    | 113    | 123    |
|                      | 5500     | 20    | 24    | 28    | 33    | 35    | 37    | 40    | 44    | 47    | 50    | 54    | 57    | 60     | 68     | 72     | 75     | 83     | 89     | 92     | 105    | 109    | 116    | 120    |
|                      | 6000     | 22    | 26    | 31    | 35    | 37    | 40    | 43    | 47    | 51    | 54    | 58    | 61    | 64     | 72     | 77     | 80     | 88     | 93     | 97     | 109    | 112    | 117    | 113    |
|                      | 7000     | 25    | 30    | 35    | 40    | 43    | 45    | 49    | 53    | 57    | 61    | 65    | 69    | 72     | 81     | 85     | 88     | 96     | 101    | 104    | 112    | 114    | 113    | 88     |
|                      | 8000     | 28    | 34    | 39    | 45    | 48    | 50    | 55    | 59    | 64    | 68    | 72    | 75    | 79     | 87     | 92     | 95     | 102    | 106    | 108    | 110    | 108    | 98     |        |
|                      | 10000    | 34    | 41    | 47    | 54    | 57    | 60    | 65    | 70    | 74    | 79    | 83    | 86    | 90     | 97     | 100    | 102    | 105    | 104    | 103    |        |        |        |        |
|                      | 15000    | 47    | 55    | 63    | 70    | 74    | 78    | 82    | 86    | 89    | 91    | 93    | 93    | 93     | 86     | 79     | 73     | 46     |        |        |        |        |        |        |
|                      | 20000    | 55    | 63    | 70    | 77    | 80    | 82    | 83    | 83    | 80    | 76    | 69    | 60    |        |        |        |        |        |        |        |        |        |        |        |

fattore di servizio ridotto a causa della elevata fatica a flessione della cinghia

i numeri in grassetto corsivo sono riferiti a velocità periferiche superiori a 35 m/s. Contattare l'ufficio tecnico SIT.

|                              |                                                                                               |      |      | Fattore | correttiv | vo della | lunghe | zza  |      |      |      |      |      |      |  |
|------------------------------|-----------------------------------------------------------------------------------------------|------|------|---------|-----------|----------|--------|------|------|------|------|------|------|------|--|
| Lunghezza della cinghia (mm) | unghezza della cinghia (mm) 640 720 800 896 1000 1120 1200 1280 1440 1600 1792 2000 2240 2400 |      |      |         |           |          |        |      |      |      |      |      |      |      |  |
| Fattore correttivo           | 0,79                                                                                          | 0,83 | 0,87 | 0,91    | 0,96      | 1,00     | 1,03   | 1,05 | 1,10 | 1,14 | 1,18 | 1,22 | 1,26 | 1,29 |  |

|                      |           |       | Pot   | enza  | tras  | missi | ibile | [kW]  | per   | le cir | nghie | Eag   | le NF | RG ti  | po "F  | urple  | e" P   | (Larg  | jh. 64 | mm     | )      |        |        |        |
|----------------------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| N° c                 | denti     | 18    | 20    | 22    | 24    | 25    | 26    | 28    | 30    | 32     | 34    | 36    | 38    | 40     | 45     | 48     | 50     | 56     | 60     | 63     | 75     | 80     | 90     | 112    |
| Ø primit             | tivo [mm] | 45,84 | 50,93 | 56,02 | 61,12 | 63,66 | 66,21 | 71,30 | 76,39 | 81,49  | 86,58 | 91,67 | 96,77 | 101,86 | 114,59 | 122,23 | 127,32 | 142,60 | 152,79 | 160,43 | 190,99 | 203,72 | 229,18 | 285,20 |
|                      | 10        | 0,15  | 0,18  | 0,21  | 0,24  | 0,27  | 0,27  | 0,30  | 0,33  | 0,36   | 0,39  | 0,39  | 0,42  | 0,45   | 0,51   | 0,57   | 0,60   | 0,66   | 0,72   | 0,75   | 0,92   | 0,98   | 1,10   | 1,40   |
|                      | 20        | 0,30  | 0,36  | 0,42  | 0,48  | 0,51  | 0,54  | 0,60  | 0,63  | 0,69   | 0,75  | 0,80  | 0,83  | 0,89   | 1,01   | 1,10   | 1,16   | 1,31   | 1,40   | 1,5    | 1,8    | 1,9    | 2,2    | 2,8    |
|                      | 40        | 0,57  | 0,69  | 0,80  | 0,92  | 0,98  | 1,04  | 1,16  | 1,25  | 1,34   | 1,46  | 1,5   | 1,7   | 1,8    | 2,0    | 2,2    | 2,3    | 2,6    | 2,8    | 2,9    | 3,5    | 3,8    | 4,3    | 5,4    |
|                      | 60        | 0,83  | 1,01  | 1,19  | 1,37  | 1,46  | 1,5   | 1,7   | 1,8   | 2,0    | 2,1   | 2,3   | 2,4   | 2,6    | 3,0    | 3,2    | 3,3    | 3,8    | 4,1    | 4,3    | 5,2    | 5,6    | 6,3    | 8,0    |
|                      | 100       | 1,37  | 1,6   | 1,9   | 2,2   | 2,4   | 2,5   | 2,7   | 3,0   | 3,2    | 3,5   | 3,7   | 4,0   | 4,2    | 4,8    | 5,2    | 5,4    | 6,1    | 6,6    | 7,0    | 8,5    | 9,1    | 10,3   | 12,9   |
|                      | 200       | 2,6   | 3,1   | 3,6   | 4,1   | 4,4   | 4,7   | 5,1   | 5,6   | 6,0    | 6,5   | 6,9   | 7,4   | 7,9    | 9,0    | 9,7    | 10,1   | 11,5   | 12,4   | 13,1   | 16     | 17     | 19     | 24     |
|                      | 300       | 3,6   | 4,4   | 5,1   | 5,8   | 6,3   | 6,6   | 7,3   | 7,9   | 8,6    | 9,2   | 9,9   | 10,5  | 11,1   | 12,8   | 13,7   | 14,4   | 16     | 18     | 19     | 22     | 24     | 27     | 34     |
|                      | 400       | 4,6   | 5,5   | 6,5   | 7,4   | 8,0   | 8,5   | 9,3   | 10,1  | 10,9   | 11,7  | 12,5  | 13,4  | 14,2   | 16     | 17     | 18     | 21     | 22     | 24     | 29     | 31     | 35     | 44     |
|                      | 500       | 5,5   | 6,6   | 7,8   | 8,9   | 9,5   | 10,2  | 11,1  | 12,1  | 13,1   | 14,1  | 15    | 16    | 17     | 20     | 21     | 22     | 25     | 27     | 28     | 34     | 37     | 42     | 52     |
|                      | 600       | 6,4   | 7,7   | 9,0   | 10,4  | 11,1  | 11,8  | 12,9  | 14,1  | 15     | 16    | 17    | 19    | 20     | 23     | 24     | 25     | 29     | 31     | 33     | 40     | 43     | 48     | 61     |
|                      | 700       | 7,3   | 8,7   | 10,2  | 11,7  | 12,5  | 13,4  | 14,6  | 16    | 17     | 19    | 20    | 21    | 22     | 26     | 28     | 29     | 33     | 35     | 37     | 45     | 48     | 55     | 69     |
| <u>-</u> _           | 800       | 8,1   | 9,7   | 11,4  | 13,1  | 13,9  | 15    | 16    | 18    | 19     | 21    | 22    | 23    | 25     | 29     | 31     | 32     | 36     | 39     | 41     | 50     | 54     | 61     | 76     |
| [min <sup>-1</sup> ] | 870       | 8,7   | 10,4  | 12,2  | 14,0  | 15    | 16    | 17    | 19    | 21     | 22    | 24    | 25    | 27     | 30     | 33     | 34     | 39     | 42     | 44     | 53     | 57     | 65     | 82     |
|                      | 1000      | 9,7   | 11,6  | 13,6  | 16    | 17    | 18    | 19    | 21    | 23     | 25    | 26    | 28    | 30     | 34     | 37     | 38     | 44     | 47     | 49     | 60     | 64     | 72     | 91     |
| minore               | 1160      | 11,0  | 13,1  | 15    | 18    | 19    | 20    | 22    | 24    | 26     | 28    | 30    | 32    | 34     | 38     | 41     | 43     | 49     | 53     | 56     | 67     | 72     | 81     | 102    |
| <u>=</u>             | 1200      | 11,3  | 13,5  | 16    | 18    | 19    | 21    | 23    | 25    | 27     | 29    | 31    | 33    | 34     | 39     | 42     | 44     | 50     | 54     | 57     | 69     | 74     | 84     | 105    |
|                      | 1400      | 12,8  | 15    | 18    | 21    | 22    | 23    | 26    | 28    | 30     | 32    | 35    | 37    | 39     | 45     | 48     | 50     | 57     | 61     | 65     | 78     | 83     | 94     | 118    |
| igi<br>igi           | 1600      | 14,2  | 17    | 20    | 23    | 24    | 26    | 28    | 31    | 33     | 36    | 39    | 41    | 44     | 50     | 53     | 56     | 63     | 68     | 72     | 87     | 93     | 105    | 131    |
| puleggia             | 1750      | 15    | 18    | 21    | 25    | 26    | 28    | 31    | 33    | 36     | 39    | 41    | 44    | 47     | 54     | 58     | 60     | 68     | 73     | 77     | 93     | 100    | 112    | 140    |
| l d                  | 2000      | 17    | 20    | 24    | 28    | 29    | 31    | 34    | 37    | 40     | 43    | 46    | 49    | 52     | 60     | 64     | 67     | 76     | 82     | 86     | 103    | 111    | 125    | 155    |
| 耍                    | 2400      | 20    | 24    | 28    | 32    | 34    | 36    | 40    | 43    | 47     | 50    | 54    | 57    | 61     | 69     | 74     | 78     | 88     | 95     | 100    | 119    | 127    | 143    | 176    |
| 8                    | 2800      | 23    | 27    | 32    | 37    | 39    | 41    | 45    | 49    | 53     | 57    | 61    | 65    | 69     | 79     | 84     | 88     | 100    | 107    | 113    | 135    | 143    | 160    | 195    |
| Velocità             | 3200      | 25    | 30    | 36    | 41    | 44    | 46    | 51    | 55    | 60     | 64    | 68    | 73    | 77     | 88     | 94     | 98     | 111    | 119    | 125    | 149    | 158    | 176    | 212    |
| _                    | 3500      | 27    | 33    | 38    | 44    | 47    | 50    | 55    | 60    | 64     | 69    | 74    | 78    | 83     | 95     | 101    | 106    | 119    | 128    | 134    | 159    | 169    | 187    | 222    |
|                      | 4000      | 31    | 37    | 43    | 50    | 53    | 56    | 61    | 67    | 72     | 77    | 82    | 88    | 93     | 105    | 113    | 118    | 132    | 142    | 148    | 174    | 184    | 203    | 236    |
|                      | 4500      | 34    | 41    | 48    | 55    | 58    | 62    | 68    | 74    | 80     | 85    | 91    | 97    | 102    | 116    | 124    | 129    | 145    | 154    | 162    | 188    | 198    | 216    | 243    |
|                      | 5000      | 37    | 45    | 52    | 60    | 64    | 68    | 74    | 81    | 87     | 93    | 99    | 105   | 111    | 126    | 134    | 140    | 156    | 166    | 174    | 200    | 210    | 226    | 245    |
|                      | 5500      | 41    | 49    | 57    | 65    | 69    | 74    | 81    | 87    | 94     | 101   | 107   | 114   | 120    | 136    | 144    | 150    | 167    | 177    | 184    | 210    | 219    | 232    | 240    |
|                      | 6000      | 44    | 53    | 61    | 70    | 75    | 79    | 87    | 94    | 101    | 108   | 115   | 122   | 129    | 145    | 154    | 160    | 176    | 187    | 194    | 217    | 225    | 234    | 227    |
|                      | 7000      | 50    | 60    | 70    | 80    | 85    | 90    | 99    | 107   | 115    | 122   | 130   | 137   | 144    | 161    | 170    | 176    | 193    | 202    | 208    | 225    | 228    | 225    | 176    |
|                      | 8000      | 57    | 67    | 78    | 90    | 95    | 101   | 110   | 119   | 127    | 135   | 143   | 151   | 158    | 175    | 184    | 190    | 204    | 211    | 216    | 221    | 217    | 197    |        |
|                      | 10000     | 68    | 81    | 94    | 107   | 114   | 120   | 130   | 140   | 149    | 157   | 165   | 173   | 180    | 194    | 200    | 204    | 209    | 209    | 206    |        |        |        |        |
|                      | 15000     | 93    | 109   | 125   | 140   | 148   | 155   | 165   | 172   | 178    | 183   | 186   | 186   | 185    | 173    | 159    | 146    | 92     |        |        |        |        |        |        |
|                      | 20000     | 110   | 126   | 141   | 154   | 159   | 165   | 167   | 165   | 160    | 151   | 138   | 120   |        |        |        |        |        |        |        |        |        |        |        |

fattore di servizio ridotto a causa della elevata fatica a flessione della cinghia

i numeri in grassetto corsivo sono riferiti a velocità periferiche superiori a 35 m/s. Contattare l'ufficio tecnico SIT.

|                                                                                                                                                                                                                |      |      |      | Fattore | correttiv | o della | lunghe | zza  |      |      |      |      |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|---------|-----------|---------|--------|------|------|------|------|------|------|------|
| Lunghezza della cinghia (mm)         640         720         800         896         1000         1120         1200         1280         1440         1600         1792         2000         2240         2400 |      |      |      |         |           |         |        |      |      |      |      |      |      |      |
| Fattore correttivo                                                                                                                                                                                             | 0,79 | 0,83 | 0,87 | 0,91    | 0,96      | 1,00    | 1,03   | 1,05 | 1,10 | 1,14 | 1,18 | 1,22 | 1,26 | 1,29 |

|                      |          |        | Pote   | enza i | trasm  | issibi | le [kV | V] pe  | r le c | inghi  | e Eag  | jle Ni | RG ti  | ро "В  | lue" l | 3 (La  | rgh. 3 | 5 mn   | n)     |        |        |        |
|----------------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| N° c                 | lenti    | 24     | 26     | 28     | 30     | 32     | 34     | 36     | 38     | 40     | 43     | 45     | 48     | 50     | 56     | 60     | 63     | 71     | 75     | 80     | 90     | 112    |
| Ø primit             | ivo [mm] | 106,92 | 115,83 | 124,78 | 133,69 | 142,60 | 151,52 | 160,43 | 169,34 | 178,25 | 191,62 | 200,54 | 213,90 | 222,82 | 249,55 | 267,38 | 280,75 | 316,40 | 334,23 | 356,51 | 401,08 | 499,12 |
|                      | 10       | 0,4    | 0,4    | 0,5    | 0,5    | 0,6    | 0,7    | 0,7    | 0,8    | 0,8    | 0,9    | 0,9    | 1,0    | 1,0    | 1,2    | 1,2    | 1,3    | 1,5    | 1,6    | 1,7    | 1,9    | 2,4    |
|                      | 20       | 0,8    | 0,9    | 1,0    | 1,1    | 1,2    | 1,3    | 1,4    | 1,5    | 1,6    | 1,7    | 1,8    | 2,0    | 2,0    | 2,3    | 2,5    | 2,6    | 2,9    | 3,1    | 3,3    | 3,8    | 4,7    |
|                      | 40       | 1,5    | 1,7    | 1,9    | 2,1    | 2,3    | 2,5    | 2,8    | 3,0    | 3,2    | 3,4    | 3,6    | 3,8    | 4,0    | 4,5    | 4,8    | 5,1    | 5,8    | 6,1    | 6,5    | 7,4    | 9      |
|                      | 60       | 2,3    | 2,5    | 2,8    | 3,1    | 3,4    | 3,8    | 4,1    | 4,4    | 4,7    | 5,0    | 5,3    | 5,7    | 5,9    | 6,7    | 7,2    | 8      | 9      | 9      | 10     | 11     | 14     |
|                      | 100      | 3,7    | 4,1    | 4,6    | 5,1    | 5,6    | 6,1    | 6,6    | 7,1    | 8      | 8      | 9      | 9      | 10     | 11     | 12     | 12     | 14     | 15     | 16     | 18     | 22     |
|                      | 200      | 6,8    | 8      | 9      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 20     | 22     | 23     | 26     | 27     | 29     | 33     | 41     |
|                      | 300      | 10     | 11     | 12     | 13     | 15     | 16     | 17     | 19     | 20     | 21     | 22     | 24     | 25     | 28     | 30     | 32     | 36     | 38     | 41     | 46     | 58     |
|                      | 400      | 12     | 14     | 15     | 17     | 19     | 20     | 22     | 24     | 25     | 27     | 29     | 31     | 32     | 36     | 39     | 41     | 46     | 49     | 52     | 59     | 73     |
|                      | 500      | 15     | 16     | 18     | 20     | 22     | 24     | 26     | 28     | 30     | 32     | 34     | 36     | 38     | 43     | 46     | 48     | 55     | 58     | 62     | 70     | 87     |
|                      | 600      | 17     | 19     | 21     | 23     | 26     | 28     | 30     | 33     | 35     | 37     | 39     | 42     | 44     | 49     | 53     | 56     | 63     | 67     | 72     | 81     | 101    |
| l                    | 700      | 19     | 21     | 24     | 26     | 29     | 32     | 34     | 37     | 39     | 42     | 44     | 47     | 50     | 56     | 60     | 63     | 71     | 75     | 81     | 91     | 113    |
| _⊑                   | 800      | 21     | 24     | 26     | 29     | 32     | 35     | 38     | 41     | 43     | 47     | 49     | 53     | 55     | 62     | 66     | 70     | 79     | 83     | 89     | 100    | 125    |
| [min <sup>-1</sup> ] | 870      | 23     | 25     | 28     | 31     | 34     | 37     | 40     | 44     | 46     | 50     | 52     | 56     | 59     | 66     | 71     | 74     | 84     | 89     | 95     | 107    | 133    |
|                      | 1000     | 25     | 28     | 31     | 35     | 38     | 41     | 45     | 49     | 51     | 56     | 58     | 62     | 65     | 73     | 79     | 83     | 93     | 99     | 105    | 118    | 147    |
| 5                    | 1160     | 28     | 32     | 35     | 39     | 43     | 46     | 50     | 55     | 58     | 62     | 65     | 70     | 73     | 82     | 88     | 92     | 104    | 110    | 117    | 132    | 163    |
| minore               | 1200     | 29     | 32     | 36     | 40     | 44     | 48     | 52     | 56     | 59     | 64     | 67     | 72     | 75     | 84     | 90     | 95     | 107    | 113    | 120    | 135    | 167    |
|                      | 1400     | 32     | 36     | 41     | 45     | 49     | 54     | 58     | 63     | 66     | 72     | 75     | 80     | 84     | 94     | 101    | 106    | 120    | 126    | 135    | 151    | 185    |
| gg                   | 1600     | 36     | 40     | 45     | 50     | 54     | 59     | 64     | 70     | 74     | 79     | 83     | 89     | 93     | 104    | 111    | 117    | 132    | 139    | 148    | 165    | 201    |
| puleggia             | 1750     | 39     | 43     | 48     | 53     | 58     | 64     | 69     | 75     | 79     | 85     | 89     | 95     | 99     | 111    | 119    | 125    | 140    | 148    | 157    | 175    | 213    |
| ₫                    | 2000     | 43     | 48     | 53     | 59     | 65     | 70     | 76     | 83     | 87     | 94     | 98     | 105    | 109    | 123    | 131    | 137    | 154    | 162    | 172    | 191    | 229    |
| <u>i</u>             | 2400     | 49     | 55     | 61     | 68     | 74     | 81     | 88     | 95     | 100    | 108    | 113    | 120    | 125    | 140    | 149    | 156    | 174    | 183    | 193    | 212    | 248    |
| Velocità             | 2800     | 56     | 62     | 69     | 76     | 84     | 91     | 99     | 107    | 112    | 121    | 126    | 134    | 140    | 155    | 165    | 173    | 191    | 200    | 210    | 228    | 257    |
| ₹                    | 3200     | 62     | 69     | 77     | 85     | 93     | 101    | 109    | 118    | 124    | 133    | 139    | 148    | 153    | 170    | 180    | 187    | 206    | 214    | 223    | 239    | 256    |
| -                    | 3500     | 66     | 74     | 82     | 91     | 99     | 108    | 117    | 126    | 133    | 142    | 148    | 157    | 163    | 179    | 190    | 197    | 215    | 222    | 231    | 243    | 248    |
|                      | 4000     | 74     | 83     | 91     | 101    | 110    | 119    | 129    | 139    | 146    | 156    | 162    | 171    | 177    | 193    | 203    | 210    | 225    | 231    | 236    | 241    | 218    |
|                      | 4500     | 81     | 90     | 100    | 110    | 120    | 130    | 140    | 151    | 158    | 168    | 174    | 183    | 189    | 205    | 213    | 219    | 230    | 233    | 234    | 228    | 166    |
|                      | 5000     | 88     | 98     | 108    | 118    | 129    | 140    | 150    | 161    | 169    | 179    | 185    | 194    | 199    | 212    | 219    | 223    | 228    | 227    | 222    | 201    |        |
|                      | 6000     | 100    | 112    | 123    | 134    | 145    | 157    | 168    | 179    | 186    | 195    | 200    | 207    | 210    | 217    | 218    | 216    | 202    | 189    | 167    |        |        |
|                      | 7000     | 112    | 124    | 135    | 147    | 159    | 170    | 181    | 192    | 197    | 204    | 207    | 209    | 210    | 205    | 195    | 185    | 141    |        |        |        |        |
|                      | 8000     | 122    | 134    | 145    | 157    | 168    | 179    | 189    | 198    | 201    | 203    | 203    | 200    | 195    | 173    | 149    | 126    |        |        |        |        |        |
|                      | 10000    | 136    | 147    | 157    | 166    | 174    | 181    | 186    | 189    | 184    | 171    | 159    | 136    | 117    |        |        |        |        |        |        |        |        |
|                      | 12000    | 141    | 148    | 154    | 158    | 159    | 157    | 153    | 145    | 126    |        |        |        |        |        |        |        |        |        |        |        |        |

|                      |         |        | Poten  | za tra | asmis  | sibile | [kW]   | per    | le cir | ghie   | Eagle  | NRC    | G tipo | "Gre   | en" (  | G (La  | rgh. 5 | 52,5 n | nm)    |        |        |               |
|----------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|
| N° d                 | enti    | 24     | 26     | 28     | 30     | 32     | 34     | 36     | 38     | 40     | 43     | 45     | 48     | 50     | 56     | 60     | 63     | 71     | 75     | 80     | 90     | 112           |
| Ø primiti            | vo [mm] | 106.92 | 115.83 | 124,78 | 133.69 | 142,60 | 151,52 | 160.43 | 169,34 | 178.25 | 191.62 | 200,54 | 213,90 | 222,82 | 249,55 | 267,38 | 280.75 | 316.40 | 334,23 | 356.51 | 401.08 | 499,12        |
| -                    | 10      | 0,6    | 0,7    | 0,7    | 0,8    | 0,9    | 1,0    | 1,1    | 1,2    | 1,2    | 1,3    | 1,4    | 1,5    | 1,5    | 1,7    | 1,9    | 2,0    | 2,2    | 2,4    | 2,5    | 2,8    | 3,6           |
|                      | 20      | 1,2    | 1,3    | 1,5    | 1,6    | 1,8    | 1,9    | 2,1    | 2,3    | 2,4    | 2,6    | 2,7    | 2,9    | 3,1    | 3,4    | 3,7    | 3,9    | 4,4    | 4,7    | 5,0    | 5,6    | 7,0           |
|                      | 40      | 2,3    | 2,6    | 2,9    | 3,2    | 3,5    | 3,8    | 4,1    | 4,5    | 4,7    | 5,1    | 5,4    | 5,8    | 6,0    | 6,8    | 7,3    | 8      | 9      | 9      | 10     | 11     | 14            |
|                      | 60      | 3,4    | 3,8    | 4,3    | 4,7    | 5,2    | 5,6    | 6,1    | 6,6    | 7,0    | 8      | 8      | 8      | 9      | 10     | 11     | 11     | 13     | 14     | 14     | 16     | 20            |
|                      | 100     | 5,5    | 6,2    | 6,9    | 8      | 8      | 9      | 10     | 11     | 11     | 12     | 13     | 14     | 14     | 16     | 17     | 18     | 21     | 22     | 23     | 26     | 33            |
|                      | 200     | 10     | 12     | 13     | 14     | 16     | 17     | 18     | 20     | 21     | 23     | 24     | 26     | 27     | 30     | 32     | 34     | 38     | 41     | 44     | 49     | 61            |
|                      | 300     | 14     | 16     | 18     | 20     | 22     | 24     | 26     | 28     | 30     | 32     | 34     | 36     | 38     | 42     | 46     | 48     | 54     | 58     | 61     | 69     | 87            |
|                      | 400     | 18     | 21     | 23     | 25     | 28     | 30     | 33     | 36     | 38     | 41     | 43     | 46     | 48     | 54     | 58     | 61     | 69     | 73     | 78     | 88     | 110           |
|                      | 500     | 22     | 25     | 27     | 30     | 33     | 36     | 39     | 43     | 45     | 49     | 51     | 55     | 57     | 64     | 69     | 73     | 82     | 87     | 93     | 105    | 131           |
|                      | 600     | 25     | 28     | 32     | 35     | 38     | 42     | 46     | 49     | 52     | 56     | 59     | 63     | 66     | 74     | 80     | 84     | 95     | 100    | 107    | 121    | 151           |
| _                    | 700     | 29     | 32     | 36     | 39     | 43     | 47     | 51     | 56     | 59     | 63     | 67     | 71     | 74     | 84     | 90     | 95     | 107    | 113    | 121    | 136    | 170           |
| [min <sup>-1</sup> ] | 800     | 32     | 36     | 40     | 44     | 48     | 52     | 57     | 62     | 65     | 70     | 74     | 79     | 82     | 93     | 100    | 105    | 118    | 125    | 134    | 151    | 187           |
| Ē                    | 870     | 34     | 38     | 42     | 47     | 51     | 56     | 61     | 66     | 69     | 75     | 79     | 84     | 88     | 99     | 106    | 112    | 126    | 133    | 142    | 160    | 199           |
|                      | 1000    | 38     | 42     | 47     | 52     | 57     | 62     | 68     | 73     | 77     | 83     | 87     | 94     | 98     | 110    | 118    | 124    | 140    | 148    | 158    | 178    | 220           |
| minore               | 1160    | 42     | 47     | 53     | 58     | 64     | 70     | 76     | 82     | 86     | 93     | 98     | 105    | 109    | 123    | 132    | 138    | 156    | 165    | 176    | 198    | 245           |
| Ē                    | 1200    | 43     | 49     | 54     | 60     | 65     | 71     | 78     | 84     | 89     | 96     | 100    | 107    | 112    | 126    | 135    | 142    | 160    | 169    | 181    | 203    | 250           |
| <u>\alpha</u>        | 1400    | 49     | 55     | 61     | 67     | 74     | 80     | 87     | 94     | 100    | 108    | 113    | 121    | 126    | 141    | 152    | 159    | 179    | 189    | 202    | 226    | 278           |
| gg                   | 1600    | 54     | 61     | 67     | 74     | 82     | 89     | 97     | 105    | 110    | 119    | 125    | 133    | 139    | 156    | 167    | 176    | 198    | 208    | 222    | 248    | 302           |
| puleggia             | 1750    | 58     | 65     | 72     | 80     | 87     | 95     | 104    | 112    | 118    | 127    | 133    | 143    | 149    | 167    | 179    | 187    | 211    | 222    | 236    | 263    | 319           |
|                      | 2000    | 64     | 72     | 80     | 88     | 97     | 106    | 115    | 124    | 131    | 141    | 148    | 158    | 164    | 184    | 197    | 206    | 231    | 243    | 258    | 287    | 343           |
| ij                   | 2400    | 74     | 83     | 92     | 102    | 111    | 122    | 132    | 142    | 150    | 162    | 169    | 180    | 188    | 210    | 224    | 234    | 261    | 274    | 289    | 318    | 371           |
| Velocità             | 2800    | 84     | 94     | 104    | 115    | 126    | 137    | 148    | 160    | 169    | 181    | 189    | 202    | 210    | 233    | 248    | 259    | 287    | 300    | 315    | 343    | 386           |
| Ş                    | 3200    | 93     | 104    | 115    | 127    | 139    | 151    | 164    | 177    | 186    | 200    | 209    | 222    | 230    | 255    | 270    | 281    | 309    | 321    | 335    | 359    | 385           |
|                      | 3500    | 100    | 112    | 124    | 136    | 149    | 162    | 175    | 189    | 199    | 213    | 222    | 236    | 244    | 269    | 285    | 296    | 322    | 333    | 346    | 365    | 372           |
|                      | 4000    | 111    | 124    | 137    | 151    | 165    | 179    | 194    | 208    | 219    | 233    | 243    | 257    | 266    | 290    | 305    | 315    | 338    | 346    | 355    | 362    | 328           |
|                      | 4500    | 121    | 136    | 150    | 165    | 180    | 195    | 210    | 226    | 237    | 252    | 261    | 275    | 284    | 307    | 320    | 328    | 345    | 349    | 351    | 342    | 249           |
|                      | 5000    | 132    | 147    | 162    | 178    | 194    | 210    | 226    | 242    | 253    | 268    | 277    | 290    | 298    | 319    | 329    | 335    | 342    | 340    | 333    | 301    |               |
|                      | 6000    | 151    | 167    | 184    | 201    | 218    | 235    | 252    | 269    | 279    | 292    | 300    | 310    | 316    | 326    | 327    | 324    | 303    | 283    | 250    |        | $\overline{}$ |
|                      | 7000    | 168    | 185    | 203    | 221    | 238    | 255    | 272    | 288    | 296    | 306    | 310    | 314    | 315    | 307    | 293    | 277    | 212    |        |        |        | $\vdash$      |
|                      | 8000    | 182    | 201    | 218    | 235    | 252    | 268    | 283    | 298    | 302    | 305    | 305    | 299    | 293    | 259    | 223    | 188    |        |        |        |        | $\vdash$      |
|                      | 10000   | 203    | 220    | 235    | 249    | 261    | 271    | 279    | 284    | 276    | 257    | 239    | 204    | 175    |        |        |        |        |        |        |        | $\vdash$      |
|                      | 12000   | 211    | 223    | 231    | 237    | 238    | 236    | 229    | 218    | 189    |        |        |        |        |        |        |        |        |        |        |        |               |

fattore di servizio ridotto a causa della elevata fatica a flessione della cinghia

i numeri in grassetto corsivo sono riferiti a velocità periferiche superiori a 35 m/s. Contattare l'ufficio tecnico SIT.

|                              |      |      |      | Fattore | correttiv | o della | lunghe | zza  |      |      |      |      |      |      |
|------------------------------|------|------|------|---------|-----------|---------|--------|------|------|------|------|------|------|------|
| Lunghezza della cinghia (mm) | 994  | 1120 | 1190 | 1260    | 1400      | 1568    | 1750   | 1960 | 2100 | 2240 | 2380 | 2520 | 2660 | 2800 |
| Fattore correttivo           | 0,68 | 0,73 | 0,75 | 0,77    | 0,81      | 0,85    | 0,89   | 0,94 | 0,96 | 0,99 | 1,01 | 1,03 | 1,05 | 1,07 |

|                      |          |        | Poten  | za tra | asmis  | sibile | [kW]   | ] per  | le cir | nghie  | Eagl   | e NR   | G tipo | o "Ora | ange"  | O (L   | argh.  | 70 m   | nm)    |        |        |        |
|----------------------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| N° d                 | lenti    | 24     | 26     | 28     | 30     | 32     | 34     | 36     | 38     | 40     | 43     | 45     | 48     | 50     | 56     | 60     | 63     | 71     | 75     | 80     | 90     | 112    |
| Ø primiti            | ivo [mm] | 106,92 | 115,83 | 124,78 | 133,69 | 142,60 | 151,52 | 160,43 | 169,34 | 178,25 | 191,62 | 200,54 | 213,90 | 222,82 | 249,55 | 267,38 | 280,75 | 316,40 | 334,23 | 356,51 | 401,08 | 499,12 |
|                      | 10       | 0,8    | 0,9    | 1,0    | 1,1    | 1,2    | 1,3    | 1,4    | 1,5    | 1,6    | 1,8    | 1,8    | 2,0    | 2,1    | 2,3    | 2,5    | 2,6    | 3,0    | 3,1    | 3,4    | 3,8    | 4,7    |
|                      | 20       | 1,6    | 1,8    | 2,0    | 2,2    | 2,4    | 2,6    | 2,8    | 3,0    | 3,2    | 3,5    | 3,6    | 3,9    | 4,1    | 4,6    | 4,9    | 5,2    | 5,9    | 6,2    | 6,6    | 8      | 9      |
|                      | 40       | 3,1    | 3,5    | 3,8    | 4,2    | 4,7    | 5,1    | 5,5    | 6,0    | 6,3    | 6,8    | 7,2    | 8      | 8      | 9      | 10     | 10     | 12     | 12     | 13     | 15     | 18     |
|                      | 60       | 4,5    | 5,1    | 5,7    | 6,3    | 6,9    | 8      | 8      | 9      | 9      | 10     | 11     | 11     | 12     | 13     | 14     | 15     | 17     | 18     | 19     | 22     | 27     |
|                      | 100      | 7,3    | 8      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 19     | 21     | 23     | 24     | 28     | 29     | 31     | 35     | 44     |
|                      | 200      | 14     | 15     | 17     | 19     | 21     | 23     | 25     | 27     | 28     | 30     | 32     | 34     | 36     | 40     | 43     | 45     | 51     | 54     | 58     | 66     | 82     |
|                      | 300      | 19     | 22     | 24     | 27     | 29     | 32     | 35     | 38     | 40     | 43     | 45     | 48     | 50     | 57     | 61     | 64     | 72     | 77     | 82     | 93     | 116    |
|                      | 400      | 24     | 27     | 31     | 34     | 37     | 41     | 44     | 48     | 50     | 54     | 57     | 61     | 64     | 72     | 77     | 81     | 92     | 97     | 104    | 117    | 146    |
|                      | 500      | 29     | 33     | 37     | 40     | 44     | 48     | 53     | 57     | 60     | 65     | 68     | 73     | 76     | 86     | 92     | 97     | 110    | 116    | 124    | 140    | 175    |
|                      | 600      | 34     | 38     | 42     | 47     | 51     | 56     | 61     | 66     | 69     | 75     | 79     | 84     | 88     | 99     | 106    | 112    | 127    | 134    | 143    | 161    | 201    |
| _                    | 700      | 38     | 43     | 48     | 53     | 58     | 63     | 69     | 74     | 78     | 85     | 89     | 95     | 99     | 112    | 120    | 126    | 143    | 151    | 161    | 182    | 226    |
| [min <sup>-1</sup> ] | 800      | 42     | 47     | 53     | 58     | 64     | 70     | 76     | 82     | 87     | 94     | 98     | 105    | 110    | 124    | 133    | 140    | 158    | 167    | 178    | 201    | 250    |
| 트                    | 870      | 45     | 51     | 56     | 62     | 68     | 75     | 81     | 88     | 93     | 100    | 105    | 112    | 117    | 132    | 141    | 149    | 168    | 178    | 190    | 214    | 266    |
| <u>o</u>             | 1000     | 50     | 56     | 63     | 69     | 76     | 83     | 90     | 97     | 103    | 111    | 117    | 125    | 130    | 146    | 157    | 165    | 187    | 197    | 211    | 237    | 294    |
| minore               | 1160     | 56     | 63     | 70     | 77     | 85     | 93     | 101    | 109    | 115    | 124    | 130    | 140    | 146    | 164    | 176    | 185    | 208    | 220    | 235    | 264    | 326    |
| Ē                    | 1200     | 58     | 65     | 72     | 80     | 87     | 95     | 103    | 112    | 118    | 128    | 134    | 143    | 149    | 168    | 180    | 189    | 214    | 226    | 241    | 270    | 334    |
| . <u>ख</u>           | 1400     | 65     | 73     | 81     | 89     | 98     | 107    | 116    | 126    | 133    | 143    | 150    | 161    | 168    | 188    | 202    | 212    | 239    | 253    | 269    | 302    | 370    |
| 6                    | 1600     | 72     | 81     | 90     | 99     | 109    | 119    | 129    | 139    | 147    | 159    | 166    | 178    | 185    | 208    | 223    | 234    | 263    | 278    | 296    | 331    | 403    |
| puleggia             | 1750     | 77     | 87     | 96     | 106    | 117    | 127    | 138    | 149    | 157    | 170    | 178    | 190    | 198    | 222    | 238    | 250    | 281    | 296    | 315    | 351    | 425    |
|                      | 2000     | 86     | 96     | 107    | 118    | 129    | 141    | 153    | 165    | 174    | 188    | 197    | 210    | 219    | 245    | 262    | 275    | 308    | 324    | 344    | 382    | 457    |
| 镁                    | 2400     | 99     | 111    | 123    | 136    | 149    | 162    | 176    | 190    | 200    | 215    | 226    | 240    | 250    | 279    | 298    | 312    | 348    | 365    | 386    | 424    | 495    |
| Velocità             | 2800     | 111    | 125    | 139    | 153    | 167    | 182    | 198    | 214    | 225    | 242    | 253    | 269    | 280    | 311    | 331    | 346    | 383    | 400    | 420    | 457    | 514    |
| Š                    | 3200     | 124    | 139    | 154    | 169    | 186    | 202    | 219    | 236    | 248    | 266    | 278    | 295    | 307    | 340    | 360    | 375    | 411    | 428    | 447    | 478    | 513    |
|                      | 3500     | 133    | 149    | 165    | 182    | 199    | 216    | 234    | 252    | 265    | 284    | 296    | 314    | 326    | 359    | 380    | 394    | 429    | 444    | 461    | 486    | 497    |
|                      | 4000     | 148    | 165    | 183    | 201    | 220    | 239    | 258    | 278    | 291    | 311    | 324    | 342    | 354    | 387    | 407    | 420    | 450    | 462    | 473    | 483    | 437    |
|                      | 4500     | 162    | 181    | 200    | 220    | 239    | 260    | 280    | 301    | 315    | 336    | 348    | 367    | 378    | 409    | 427    | 438    | 459    | 465    | 468    | 455    | 332    |
|                      | 5000     | 176    | 196    | 216    | 237    | 258    | 279    | 301    | 323    | 337    | 357    | 370    | 387    | 398    | 425    | 438    | 446    | 456    | 454    | 444    | 402    |        |
|                      | 6000     | 201    | 223    | 246    | 268    | 291    | 313    | 336    | 359    | 372    | 390    | 400    | 414    | 421    | 434    | 435    | 432    | 403    | 378    | 334    |        |        |
|                      | 7000     | 224    | 247    | 271    | 294    | 317    | 340    | 362    | 384    | 395    | 407    | 413    | 419    | 420    | 410    | 391    | 370    | 282    |        |        |        |        |
|                      | 8000     | 243    | 267    | 291    | 314    | 336    | 358    | 378    | 397    | 403    | 407    | 406    | 399    | 391    | 346    | 298    | 251    |        |        |        |        |        |
|                      | 10000    | 271    | 293    | 314    | 332    | 348    | 361    | 372    | 379    | 368    | 342    | 319    | 272    | 233    |        |        |        |        |        |        |        |        |
|                      | 12000    | 281    | 297    | 308    | 315    | 318    | 314    | 306    | 291    | 252    |        |        |        |        |        |        |        |        |        |        |        |        |

|                      |         |        | Pote   | nza t  | rasm   | issibi | le [kV | V] pe  | r le c | inghi  | e Eag  | le NF  | RG tip | o "R   | ed" R  | (Lar   | gh. 10 | )5 mr  | n)     |        |        |        |
|----------------------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| N° d                 | enti    | 24     | 26     | 28     | 30     | 32     | 34     | 36     | 38     | 40     | 43     | 45     | 48     | 50     | 56     | 60     | 63     | 71     | 75     | 80     | 90     | 112    |
| Ø primiti            | vo [mm] | 106,92 | 115,83 | 124,78 | 133,69 | 142,60 | 151,52 | 160,43 | 169,34 | 178,25 | 191,62 | 200,54 | 213,90 | 222,82 | 249,55 | 267,38 | 280,75 | 316,40 | 334,23 | 356,51 | 401,08 | 499,12 |
|                      | 10      | 1,2    | 1,3    | 1,5    | 1,6    | 1,8    | 2,0    | 2,1    | 2,3    | 2,4    | 2,6    | 2,8    | 3,0    | 3,1    | 3,5    | 3,7    | 3,9    | 4,4    | 4,7    | 5,0    | 5,7    | 7,1    |
|                      | 20      | 2,3    | 2,6    | 2,9    | 3,2    | 3,6    | 3,9    | 4,2    | 4,6    | 4,8    | 5,2    | 5,5    | 5,9    | 6,1    | 6,9    | 7,4    | 8      | 9      | 9      | 10     | 11     | 14     |
|                      | 40      | 4,6    | 5,2    | 5,8    | 6,4    | 7,0    | 8      | 8      | 9      | 9      | 10     | 11     | 12     | 12     | 14     | 15     | 15     | 17     | 18     | 20     | 22     | 28     |
|                      | 60      | 6,8    | 8      | 9      | 9      | 10     | 11     | 12     | 13     | 14     | 15     | 16     | 17     | 18     | 20     | 21     | 23     | 26     | 27     | 29     | 33     | 41     |
|                      | 100     | 11     | 12     | 14     | 15     | 17     | 18     | 20     | 21     | 23     | 24     | 26     | 27     | 29     | 32     | 35     | 36     | 41     | 44     | 47     | 53     | 66     |
|                      | 200     | 21     | 23     | 26     | 28     | 31     | 34     | 37     | 40     | 42     | 46     | 48     | 51     | 53     | 60     | 65     | 68     | 77     | 81     | 87     | 98     | 123    |
|                      | 300     | 29     | 33     | 36     | 40     | 44     | 48     | 52     | 56     | 60     | 64     | 67     | 72     | 75     | 85     | 91     | 96     | 109    | 115    | 123    | 139    | 174    |
|                      | 400     | 37     | 41     | 46     | 51     | 56     | 61     | 66     | 71     | 75     | 82     | 86     | 92     | 96     | 108    | 116    | 122    | 138    | 146    | 156    | 176    | 220    |
|                      | 500     | 44     | 49     | 55     | 61     | 67     | 73     | 79     | 85     | 90     | 97     | 102    | 109    | 114    | 129    | 138    | 145    | 165    | 174    | 186    | 210    | 262    |
|                      | 600     | 51     | 57     | 63     | 70     | 77     | 84     | 91     | 99     | 104    | 112    | 118    | 126    | 132    | 148    | 160    | 168    | 190    | 201    | 215    | 242    | 302    |
| _                    | 700     | 57     | 64     | 71     | 79     | 87     | 95     | 103    | 111    | 117    | 127    | 133    | 142    | 149    | 167    | 180    | 189    | 214    | 226    | 242    | 272    | 339    |
| [min <sup>-1</sup> ] | 800     | 63     | 71     | 79     | 87     | 96     | 105    | 114    | 123    | 130    | 141    | 147    | 158    | 165    | 185    | 199    | 209    | 237    | 250    | 267    | 301    | 375    |
| 프                    | 870     | 68     | 76     | 84     | 93     | 102    | 112    | 121    | 131    | 139    | 150    | 157    | 168    | 176    | 198    | 212    | 223    | 252    | 267    | 285    | 321    | 399    |
|                      | 1000    | 75     | 84     | 94     | 104    | 114    | 124    | 135    | 146    | 154    | 167    | 175    | 187    | 195    | 220    | 236    | 248    | 280    | 296    | 316    | 355    | 441    |
| minore               | 1160    | 84     | 95     | 105    | 116    | 128    | 139    | 151    | 164    | 173    | 187    | 196    | 209    | 218    | 245    | 263    | 277    | 313    | 330    | 352    | 396    | 489    |
| Ē                    | 1200    | 87     | 97     | 108    | 119    | 131    | 143    | 155    | 168    | 177    | 191    | 201    | 215    | 224    | 252    | 270    | 284    | 321    | 339    | 361    | 406    | 501    |
| <u>.a</u>            | 1400    | 97     | 109    | 122    | 134    | 147    | 161    | 175    | 189    | 199    | 215    | 226    | 241    | 252    | 283    | 303    | 318    | 359    | 379    | 404    | 452    | 555    |
| 99                   | 1600    | 108    | 121    | 135    | 149    | 163    | 178    | 193    | 209    | 221    | 238    | 249    | 267    | 278    | 312    | 334    | 351    | 395    | 417    | 444    | 496    | 604    |
| puleggia             | 1750    | 116    | 130    | 144    | 159    | 175    | 191    | 207    | 224    | 236    | 255    | 267    | 285    | 297    | 333    | 357    | 375    | 421    | 444    | 472    | 526    | 638    |
|                      | 2000    | 128    | 144    | 160    | 177    | 194    | 211    | 229    | 248    | 261    | 282    | 295    | 315    | 328    | 368    | 393    | 412    | 462    | 486    | 516    | 573    | 686    |
| ità                  | 2400    | 148    | 166    | 184    | 203    | 223    | 243    | 264    | 285    | 300    | 323    | 338    | 361    | 375    | 419    | 447    | 468    | 522    | 548    | 579    | 637    | 743    |
| Velocità             | 2800    | 167    | 187    | 208    | 229    | 251    | 274    | 297    | 320    | 337    | 362    | 379    | 403    | 419    | 466    | 496    | 518    | 574    | 600    | 631    | 685    | 772    |
| Ne Ne                | 3200    | 186    | 208    | 231    | 254    | 278    | 303    | 328    | 354    | 372    | 399    | 417    | 443    | 460    | 509    | 540    | 562    | 617    | 642    | 670    | 718    | 769    |
|                      | 3500    | 199    | 223    | 247    | 272    | 298    | 324    | 351    | 378    | 398    | 426    | 444    | 471    | 489    | 538    | 569    | 591    | 644    | 667    | 692    | 730    | 745    |
|                      | 4000    | 222    | 248    | 274    | 302    | 329    | 358    | 387    | 417    | 437    | 467    | 486    | 513    | 531    | 580    | 610    | 630    | 675    | 693    | 709    | 724    | 655    |
|                      | 4500    | 243    | 271    | 300    | 329    | 359    | 390    | 421    | 452    | 473    | 503    | 523    | 550    | 567    | 614    | 640    | 657    | 689    | 698    | 702    | 683    | 498    |
|                      | 5000    | 263    | 293    | 324    | 355    | 387    | 419    | 451    | 484    | 506    | 536    | 554    | 581    | 597    | 637    | 658    | 669    | 683    | 681    | 667    | 603    |        |
|                      | 6000    | 301    | 335    | 368    | 402    | 436    | 470    | 504    | 538    | 558    | 585    | 601    | 621    | 631    | 651    | 653    | 648    | 605    | 566    | 500    |        |        |
|                      | 7000    | 336    | 371    | 406    | 441    | 476    | 510    | 543    | 576    | 592    | 611    | 620    | 628    | 630    | 614    | 586    | 554    | 423    |        |        |        |        |
|                      | 8000    | 365    | 401    | 436    | 471    | 504    | 536    | 567    | 595    | 604    | 610    | 609    | 599    | 586    | 519    | 446    | 377    |        |        |        |        |        |
|                      | 10000   | 407    | 440    | 470    | 498    | 522    | 542    | 557    | 568    | 552    | 514    | 478    | 408    | 350    |        |        |        |        |        |        |        |        |
|                      | 12000   | 422    | 445    | 462    | 473    | 476    | 472    | 458    | 436    | 377    |        |        |        |        |        |        |        |        |        |        |        |        |

fattore di servizio ridotto a causa della elevata fatica a flessione della cinghia i numeri in grassetto corsivo sono riferiti a velocità periferiche superiori a 35 m/s. Contattare l'ufficio tecnico SIT.

|                              |      |      |      | Fattore | correttiv | vo della | lunghe | zza  |      |      |      |      |      |      |
|------------------------------|------|------|------|---------|-----------|----------|--------|------|------|------|------|------|------|------|
| Lunghezza della cinghia (mm) | 640  | 720  | 800  | 896     | 1000      | 1120     | 1200   | 1280 | 1440 | 1600 | 1792 | 2000 | 2240 | 2400 |
| Fattore correttivo           | 0,79 | 0,83 | 0,87 | 0,91    | 0,96      | 1,00     | 1,03   | 1,05 | 1,10 | 1,14 | 1,18 | 1,22 | 1,26 | 1,29 |

# Pulegge standard

### Tipo "Yellow" Y - Passo 8 mm - Larghezza W = 17 mm

| Codice     | N.<br>denti | Fig. | S      | R      | U   | Н    | w  | z  | Υ  | d    | Foro max | Materiale |
|------------|-------------|------|--------|--------|-----|------|----|----|----|------|----------|-----------|
| Y-18S-MPB  | 18          | 1    | 44,47  | 45,84  |     | 38,7 | 17 | 10 | 27 | 12,7 | 26       |           |
| Y-20S-MPB  | 20          | 1    | 49,56  | 50,93  |     | 40,7 | 17 | 12 | 29 | 12,7 | 27       |           |
| Y-22S-MPB  | 22          | 1    | 54,65  | 56,02  |     | 45,9 | 17 | 12 | 29 | 12,7 | 31       |           |
| Y-24S-MPB  | 24          | 1    | 59,75  | 61,12  |     | 51   | 17 | 16 | 33 | 12,7 | 34       |           |
| Y-25S-MPB  | 25          | 1    | 62,29  | 63,66  |     | 53,5 | 17 | 16 | 33 | 12,7 | 36       |           |
| Y-26S-MPB  | 26          | 1    | 64,84  | 66,21  |     | 57,8 | 17 | 16 | 33 | 12,7 | 39       |           |
| Y-28S-MPB  | 28          | 1    | 69,93  | 71,30  |     | 61   | 17 | 16 | 33 | 12,7 | 41       |           |
| Y-30S-MPB  | 30          | 1    | 75,03  | 76,40  |     | 67   | 17 | 16 | 33 | 12,7 | 45       |           |
| Y-32S-MPB  | 32          | 1    | 80,12  | 81,49  |     | 72   | 17 | 16 | 33 | 12,7 | 48       | 0         |
| Y-34S-MPB  | 34          | 1    | 85,21  | 86,58  |     | 77   | 17 | 16 | 33 | 12,7 | 51       | iaic      |
| Y-36S-MPB  | 36          | 1    | 90,30  | 91,68  |     | 82   | 17 | 16 | 33 | 12,7 | 55       | Acciaio   |
| Y-38S-MPB  | 38          | 1    | 95,40  | 96,77  |     | 87   | 17 | 16 | 33 | 12,7 | 58       | _         |
| Y-40S-MPB  | 40          | 1    | 100,49 | 101,86 |     | 92   | 17 | 16 | 33 | 12,7 | 62       |           |
| Y-44S-MPB  | 44          | 1    | 110,68 | 112,05 |     | 102  | 17 | 16 | 33 | 12,7 | 68       |           |
| Y-45S-MPB  | 45          | 1    | 113,22 | 114,59 |     | 105  | 17 | 16 | 33 | 12,7 | 70       |           |
| Y-48S-MPB  | 48          | 1    | 120,86 | 122,23 |     | 112  | 17 | 16 | 33 | 12,7 | 75       |           |
| Y-50S-MPB  | 50          | 1    | 125,96 | 127,33 |     | 118  | 17 | 16 | 33 | 12,7 | 79       |           |
| Y-52S-MPB  | 52          | 1    | 131,05 | 132,42 |     | 123  | 17 | 16 | 33 | 12,7 | 82       |           |
| Y-56S-MPB  | 56          | 1    | 141,24 | 142,61 |     | 133  | 17 | 16 | 33 | 12,7 | 89       |           |
| Y-60S-MPB  | 60          | 1    | 151,42 | 152,79 |     | 143  | 17 | 16 | 33 | 12,7 | 96       |           |
| Y-63S-MPB  | 63          | 2    | 159,06 | 160,43 | 139 | 110  | 17 | 16 | 33 | 12,7 | 73       |           |
| Y-64S-MPB  | 64          | 2    | 161,61 | 162,98 | 142 | 110  | 17 | 16 | 33 | 12,7 | 74       |           |
| Y-68S-MPB  | 68          | 2    | 171,79 | 173,17 | 152 | 110  | 17 | 16 | 33 | 12,7 | 74       |           |
| Y-72S-MPB  | 72          | 2    | 181,98 | 183,35 | 162 | 110  | 17 | 16 | 33 | 12,7 | 74       |           |
| Y-75S-MPB  | 75          | 2    | 189,62 | 190,99 | 170 | 110  | 17 | 16 | 33 | 12,7 | 73       | GS400     |
| Y-76S-MPB  | 76          | 2    | 192,17 | 193,54 | 172 | 110  | 17 | 16 | 33 | 12,7 | 74       | 38,       |
| Y-80S-MPB  | 80          | 2    | 202,35 | 203,72 | 182 | 110  | 17 | 16 | 33 | 12,7 | 73       |           |
| Y-90S-MPB  | 90          | 2    | 227,82 | 229,19 | 208 | 110  | 17 | 16 | 33 | 25,4 | 73       |           |
| Y-112S-MPB | 112         | 2    | 283,84 | 285,21 | 264 | 110  | 17 | 16 | 33 | 25,4 | 73       |           |
| Y-140S-MPB | 140         | 2    | 355,15 | 356,52 | 335 | 110  | 17 | 16 | 33 | 25,4 | 73       |           |
| Y-180S-MPB | 180         | 3    | 457,01 | 458,38 | 433 | 150  | 17 | 16 | 33 | 25,4 | 100      | GG        |
| Y-224S-MPB | 224         | 3    | 569,06 | 570,43 | 545 | 150  | 17 | 16 | 33 | 25,4 | 100      | GG        |

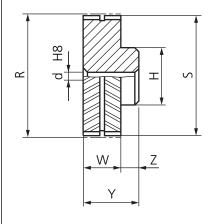



Figura 1

## Tipo "White" W - Passo 8 mm - Larghezza W = 33 mm

| Codice     | N.<br>denti | Fig. | S      | R      | U   | Н    | w  | z  | Υ  | d    | Foro max | Materiale |
|------------|-------------|------|--------|--------|-----|------|----|----|----|------|----------|-----------|
| W-18S-MPB  | 18          | 1    | 44,47  | 45,84  |     | 38,4 | 33 | 10 | 43 | 12,7 | 26       |           |
| W-20S-MPB  | 20          | 1    | 49,56  | 50,93  |     | 40,7 | 33 | 12 | 45 | 12,7 | 27       |           |
| W-22S-MPB  | 22          | 1    | 54,65  | 56,02  |     | 45,9 | 33 | 12 | 45 | 12,7 | 31       |           |
| W-24S-MPB  | 24          | 1    | 59,75  | 61,12  |     | 51   | 33 | 16 | 49 | 12,7 | 34       |           |
| W-25S-MPB  | 25          | 1    | 62,29  | 63,66  |     | 53,5 | 33 | 16 | 49 | 12,7 | 36       |           |
| W-26S-MPB  | 26          | 1    | 64,84  | 66,21  |     | 57,8 | 33 | 16 | 49 | 12,7 | 39       |           |
| W-28S-MPB  | 28          | 1    | 69,93  | 71,30  |     | 62   | 33 | 16 | 49 | 12,7 | 41       |           |
| W-30S-MPB  | 30          | 1    | 75,03  | 76,40  |     | 67   | 33 | 16 | 49 | 12,7 | 45       |           |
| W-32S-MPB  | 32          | 1    | 80,12  | 81,49  |     | 72   | 33 | 16 | 49 | 12,7 | 48       |           |
| W-34S-MPB  | 34          | 1    | 85,21  | 86,58  |     | 77   | 33 | 16 | 49 | 12,7 | 51       | _         |
| W-36S-MPB  | 36          | 1    | 90,30  | 91,68  |     | 82   | 33 | 16 | 49 | 12,7 | 55       | Acciaio   |
| W-38S-MPB  | 38          | 1    | 95,40  | 96,77  |     | 87   | 33 | 16 | 49 | 12,7 | 58       | JCC       |
| W-40S-MPB  | 40          | 1    | 100,49 | 101,86 |     | 92   | 33 | 16 | 49 | 12,7 | 62       | _         |
| W-44S-MPB  | 44          | 1    | 110,68 | 112,05 |     | 102  | 33 | 16 | 49 | 12,7 | 68       |           |
| W-45S-MPB  | 45          | 1    | 113,22 | 114,59 |     | 105  | 33 | 16 | 49 | 12,7 | 70       |           |
| W-48S-MPB  | 48          | 1    | 120,86 | 122,23 |     | 112  | 33 | 16 | 49 | 12,7 | 75       |           |
| W-50S-MPB  | 50          | 1    | 125,96 | 127,33 |     | 118  | 33 | 16 | 49 | 12,7 | 79       |           |
| W-52S-MPB  | 52          | 1    | 131,05 | 132,42 |     | 123  | 33 | 16 | 49 | 12,7 | 82       |           |
| W-56S-MPB  | 56          | 1    | 141,24 | 142,61 |     | 133  | 33 | 16 | 49 | 12,7 | 89       |           |
| W-60S-MPB  | 60          | 1    | 151,42 | 152,79 |     | 143  | 33 | 16 | 49 | 12,7 | 96       |           |
| W-63S-MPB  | 63          | 1    | 159,06 | 160,43 |     | 151  | 33 | 16 | 49 | 12,7 | 101      |           |
| W-64S-MPB  | 64          | 1    | 161,61 | 162,98 |     | 153  | 33 | 16 | 49 | 12,7 | 102      |           |
| W-68S-MPB  | 68          | 2    | 171,79 | 173,17 | 152 | 120  | 33 | 16 | 49 | 25,4 | 80       |           |
| W-72S-MPB  | 72          | 2    | 181,98 | 183,35 | 162 | 120  | 33 | 16 | 49 | 25,4 | 80       |           |
| W-75S-MPB  | 75          | 2    | 189,62 | 190,99 | 170 | 120  | 33 | 16 | 49 | 25,4 | 80       |           |
| W-76S-MPB  | 76          | 2    | 192,17 | 193,54 | 172 | 120  | 33 | 16 | 49 | 25,4 | 80       | GS400     |
| W-80S-MPB  | 80          | 2    | 202,35 | 203,72 | 182 | 120  | 33 | 16 | 49 | 25,4 | 80       | 38.       |
| W-90S-MPB  | 90          | 2    | 227,82 | 229,19 | 208 | 120  | 33 | 16 | 49 | 25,4 | 80       |           |
| W-112S-MPB | 112         | 2    | 283,84 | 285,21 | 264 | 120  | 33 | 16 | 49 | 25,4 | 80       |           |
| W-140S-MPB | 140         | 2    | 355,15 | 356,52 | 335 | 150  | 33 | 16 | 49 | 25,4 | 100      |           |
| W-180S-MPB | 180         | 3    | 457,00 | 458,38 | 433 | 150  | 33 | 16 | 49 | 25,4 | 100      | GG        |
| W-224S-MPB | 224         | 3    | 569,04 | 570,43 | 545 | 150  | 33 | 16 | 49 | 25,4 | 100      | GG        |

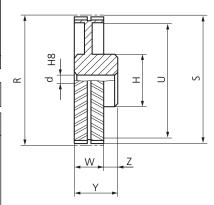



Figura 2



GS400 = ghisa sferoidale - GG = ghisa grigia - Tutte le dimensioni sono espresse in [mm]



## Tipo "Purple" P - Passo 8 mm - Larghezza W = 65 mm

| Codice     | N. Denti | Fig. | s      | R      | U   | Н    | w  | z  | Р  | d    | Foro max | Materiale |
|------------|----------|------|--------|--------|-----|------|----|----|----|------|----------|-----------|
| P-18S-MPB  | 18       | 1    | 44,47  | 45,84  |     | 38,4 | 65 | 20 | 85 | 12,7 | 26       |           |
| P-20S-MPB  | 20       | 1    | 49,55  | 50,93  |     | 40,7 | 65 | 20 | 85 | 12,7 | 27       |           |
| P-22S-MPB  | 22       | 1    | 54,64  | 56,02  |     | 45,9 | 65 | 20 | 85 | 12,7 | 31       |           |
| P-24S-MPB  | 24       | 1    | 59,74  | 61,12  |     | 51   | 65 | 20 | 85 | 12,7 | 34       |           |
| P-25S-MPB  | 25       | 1    | 62,28  | 63,66  |     | 53,5 | 65 | 20 | 85 | 12,7 | 36       |           |
| P-26S-MPB  | 26       | 1    | 64,83  | 66,21  |     | 57,8 | 65 | 20 | 85 | 12,7 | 39       |           |
| P-28S-MPB  | 28       | 1    | 69,92  | 71,30  |     | 62   | 65 | 20 | 85 | 12,7 | 41       |           |
| P-30S-MPB  | 30       | 1    | 75,01  | 76,39  |     | 67   | 65 | 20 | 85 | 12,7 | 45       |           |
| P-32S-MPB  | 32       | 1    | 80,11  | 81,49  |     | 72   | 65 | 20 | 85 | 12,7 | 48       |           |
| P-34S-MPB  | 34       | 1    | 85,20  | 86,58  |     | 77   | 65 | 20 | 85 | 12,7 | 51       | 0         |
| P-36S-MPB  | 36       | 1    | 90,29  | 91,67  |     | 82   | 65 | 20 | 85 | 12,7 | 55       | iai       |
| P-38S-MPB  | 38       | 1    | 95,39  | 96,77  |     | 87   | 65 | 20 | 85 | 12,7 | 58       | Acciaio   |
| P-40S-MPB  | 40       | 1    | 100,48 | 101,86 |     | 92   | 65 | 20 | 85 | 12,7 | 62       | -         |
| P-44S-MPB  | 44       | 1    | 110,67 | 112,05 |     | 102  | 65 | 20 | 85 | 12,7 | 68       |           |
| P-45S-MPB  | 45       | 1    | 113,21 | 114,59 |     | 105  | 65 | 20 | 85 | 12,7 | 70       |           |
| P-48S-MPB  | 48       | 1    | 120,85 | 122,23 |     | 112  | 65 | 20 | 85 | 25,4 | 75       |           |
| P-50S-MPB  | 50       | 1    | 125,94 | 127,32 |     | 118  | 65 | 20 | 85 | 25,4 | 79       |           |
| P-52S-MPB  | 52       | 1    | 131,04 | 132,42 |     | 123  | 65 | 20 | 85 | 25,4 | 82       |           |
| P-56S-MPB  | 56       | 1    | 141,22 | 142,60 |     | 133  | 65 | 20 | 85 | 25,4 | 89       |           |
| P-60S-MPB  | 60       | 1    | 151,41 | 152,79 |     | 143  | 65 | 20 | 85 | 25,4 | 96       |           |
| P-63S-MPB  | 63       | 1    | 159,05 | 160,43 |     | 151  | 65 | 20 | 85 | 25,4 | 101      |           |
| P-64S-MPB  | 64       | 1    | 161,60 | 162,98 |     | 153  | 65 | 20 | 85 | 25,4 | 102      |           |
| P-68S-MPB  | 68       | 2    | 171,79 | 173,17 | 152 | 120  | 65 | 20 | 85 | 25,4 | 108      |           |
| P-72S-MPB  | 72       | 2    | 181,97 | 183,35 | 162 | 120  | 65 | 20 | 85 | 25,4 | 115      |           |
| P-75S-MPB  | 75       | 2    | 189,61 | 190,99 | 170 | 120  | 65 | 20 | 85 | 25,4 | 120      |           |
| P-76S-MPB  | 76       | 2    | 192,15 | 193,53 | 172 | 120  | 65 | 20 | 85 | 25,4 | 120      | GS400     |
| P-80S-MPB  | 80       | 2    | 202,34 | 203,72 | 182 | 120  | 65 | 20 | 85 | 25,4 | 125      | S S       |
| P-90S-MPB  | 90       | 2    | 227,80 | 229,18 | 208 | 120  | 65 | 20 | 85 | 25,4 | 80       | _         |
| P-112S-MPB | 112      | 2    | 283,83 | 285,21 | 264 | 120  | 65 | 20 | 85 | 25,4 | 80       |           |
| P-140S-MPB | 140      | 2    | 355,14 | 356,51 | 335 | 150  | 65 | 20 | 85 | 25,4 | 100      |           |
| P-180S-MPB | 180      | 3    | 457,00 | 458,37 | 433 | 150  | 65 | 20 | 85 | 25,4 | 100      | GG        |
| P-224S-MPB | 224      | 3    | 569,04 | 570,41 | 545 | 150  | 65 | 20 | 85 | 25,4 | 100      | GG        |

GS400 = ghisa sferoidale - GG = Ghisa grigia - Tutte le dimensioni sono espresse in (mm)

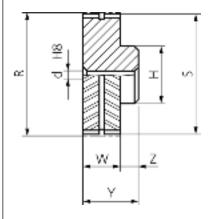



Figura 1

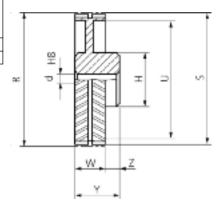



Figura 2

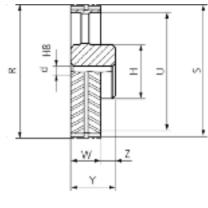
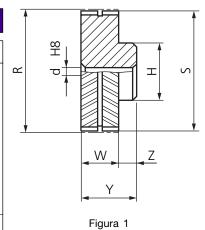




Figura 3

| Tipo "Bl   | ue" B       | - Pa | sso 14 | mm     | - La | arghe | ezza | W  | = 37 | mm   | l        |           |
|------------|-------------|------|--------|--------|------|-------|------|----|------|------|----------|-----------|
| Codice     | N.<br>denti | Fig. | s      | R      | U    | Н     | w    | z  | Y    | d    | Foro max | Materiale |
| B-28S-MPB  | 28          | 1    | 121,99 | 124,78 |      | 105   | 37   | 16 | 53   | 25,4 | 70       |           |
| B-30S-MPB  | 30          | 1    | 130,90 | 133,69 |      | 114   | 37   | 16 | 53   | 25,4 | 76       |           |
| B-32S-MPB  | 32          | 1    | 139,81 | 142,61 |      | 123   | 37   | 16 | 53   | 25,4 | 82       |           |
| B-34S-MPB  | 34          | 1    | 148,73 | 151,52 |      | 132   | 37   | 16 | 53   | 25,4 | 88       |           |
| B-36S-MPB  | 36          | 1    | 157,64 | 160,43 |      | 141   | 37   | 16 | 53   | 25,4 | 94       | aio       |
| B-38S-MPB  | 38          | 1    | 166,55 | 169,35 |      | 150   | 37   | 16 | 53   | 25,4 | 100      | Acciaio   |
| B-40S-MPB  | 40          | 1    | 175,46 | 178,26 |      | 159   | 37   | 16 | 53   | 25,4 | 106      |           |
| B-43S-MPB  | 43          | 1    | 188,83 | 191,63 |      | 172   | 37   | 16 | 53   | 25,4 | 115      |           |
| B-45S-MPB  | 45          | 1    | 197,75 | 200,54 |      | 181   | 37   | 16 | 53   | 25,4 | 121      |           |
| B-48S-MPB  | 48          | 1    | 211,12 | 213,91 |      | 195   | 37   | 16 | 53   | 25,4 | 130      |           |
| B-50S-MPB  | 50          | 2    | 220,03 | 222,82 | 185  | 150   | 37   | 16 | 53   | 25,4 | 100      |           |
| B-56S-MPB  | 56          | 2    | 246,77 | 249,56 | 212  | 150   | 37   | 16 | 53   | 25,4 | 100      |           |
| B-60S-MPB  | 60          | 2    | 264,59 | 267,39 | 130  | 150   | 37   | 16 | 53   | 25,4 | 100      | 0         |
| B-63S-MPB  | 63          | 2    | 277,96 | 280,76 | 243  | 150   | 37   | 16 | 53   | 25,4 | 100      | GS400     |
| B-71S-MPB  | 71          | 2    | 313,62 | 316,41 | 279  | 150   | 37   | 16 | 53   | 25,4 | 100      | Ö         |
| B-75S-MPB  | 75          | 2    | 331,44 | 334,24 | 296  | 150   | 37   | 16 | 53   | 25,4 | 100      |           |
| B-80S-MPB  | 80          | 2    | 353,72 | 356,52 | 319  | 150   | 37   | 16 | 53   | 25,4 | 100      |           |
| B-90S-MPB  | 90          | 2    | 398,29 | 401,08 | 358  | 150   | 37   | 16 | 53   | 25,4 | 100      | GG        |
| B-112S-MPB | 112         | 3    | 496,33 | 499,12 | 456  | 150   | 37   | 16 | 53   | 25,4 | 100      | GG        |
| B-140S-MPB | 140         | 3    | 621,11 | 623,91 | 581  | 150   | 37   | 16 | 53   | 25,4 | 100      | GG        |
| B-168S-MPB | 168         | 3    | 745,89 | 748,69 | 706  | 150   | 37   | 16 | 53   | 25,4 | 100      | GG        |



# Tipo "Green" G - Passo 14 mm - Larghezza W = 54,5 mm

| Codice     | N.<br>denti | Fig. | s      | R      | U   | н     | w    | z  | Υ    | d    | Foro max | Materiale |
|------------|-------------|------|--------|--------|-----|-------|------|----|------|------|----------|-----------|
| G-28S-MPB  | 28          | 1    | 121,99 | 124,78 |     | 109   | 54,5 | 20 | 74,5 | 25,4 | 73       |           |
| G-30S-MPB  | 30          | 1    | 130,90 | 133,69 |     | 117,5 | 54,5 | 20 | 74,5 | 25,4 | 78       |           |
| G-32S-MPB  | 32          | 1    | 139,81 | 142,61 |     | 126,5 | 54,5 | 20 | 74,5 | 25,4 | 84       |           |
| G-34S-MPB  | 34          | 1    | 148,73 | 151,52 |     | 135,5 | 54,5 | 20 | 74,5 | 25,4 | 90       |           |
| G-36S-MPB  | 36          | 1    | 157,64 | 160,43 |     | 141   | 54,5 | 16 | 70,5 | 25,4 | 94       | aio       |
| G-38S-MPB  | 38          | 1    | 166,55 | 169,35 |     | 150   | 54,5 | 16 | 70,5 | 25,4 | 100      | Acciaio   |
| G-40S-MPB  | 40          | 1    | 175,46 | 178,26 |     | 159   | 54,5 | 16 | 70,5 | 25,4 | 106      | ٩         |
| G-43S-MPB  | 43          | 1    | 188,83 | 191,63 |     | 172   | 54,5 | 16 | 70,5 | 25,4 | 115      |           |
| G-45S-MPB  | 45          | 1    | 197,75 | 200,54 |     | 181   | 54,5 | 16 | 70,5 | 25,4 | 121      |           |
| G-48S-MPB  | 48          | 1    | 211,12 | 213,91 |     | 195   | 54,5 | 16 | 70,5 | 25,4 | 130      |           |
| G-50S-MPB  | 50          | 2    | 220,03 | 222,82 | 185 | 150   | 54,5 | 16 | 70,5 | 25,4 | 100      |           |
| G-56S-MPB  | 56          | 2    | 246,77 | 249,56 | 212 | 150   | 54,5 | 16 | 70,5 | 25,4 | 100      |           |
| G-60S-MPB  | 60          | 2    | 264,59 | 267,39 | 230 | 150   | 54,5 | 16 | 70,5 | 25,4 | 100      | 0         |
| G-63S-MPB  | 63          | 2    | 277,96 | 280,76 | 243 | 150   | 54,5 | 16 | 70,5 | 25,4 | 100      | GS400     |
| G-71S-MPB  | 71          | 2    | 313,62 | 316,41 | 279 | 150   | 54,5 | 16 | 70,5 | 25,4 | 100      | Ğ         |
| G-75S-MPB  | 75          | 2    | 331,44 | 334,24 | 296 | 150   | 54,5 | 16 | 70,5 | 25,4 | 100      |           |
| G-80S-MPB  | 80          | 2    | 353,72 | 356,52 | 319 | 150   | 54,5 | 16 | 70,5 | 25,4 | 100      |           |
| G-90S-MPB  | 90          | 2    | 398,29 | 401,08 | 358 | 180   | 54,5 | 16 | 70,5 | 25,4 | 120      | GG        |
| G-112S-MPB | 112         | 3    | 496,33 | 499,12 | 456 | 180   | 54,5 | 16 | 70,5 | 25,4 | 120      | GG        |
| G-140S-MPB | 140         | 3    | 621,11 | 623,91 | 581 | 200   | 54,5 | 16 | 70,5 | 25,4 | 133      | GG        |
| G-168S-MPB | 168         | 3    | 745,89 | 748,69 | 706 | 200   | 54,5 | 16 | 70,5 | 25,4 | 133      | GG        |

GS400 = ghisa sferoidale - GG = ghisa grigia - Tutte le dimensioni sono espresse in [mm]

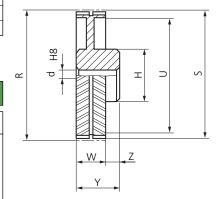



Figura 2

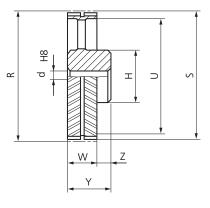



Figura 3

| Tipo "Or   | ange"       | 0 -  | Passo  | 14 mr  | n - | Lar   | ghez | zza | <b>W</b> = | <b>72</b> I | mm       |           |
|------------|-------------|------|--------|--------|-----|-------|------|-----|------------|-------------|----------|-----------|
| Codice     | N.<br>denti | Fig. | s      | R      | U   | Н     | w    | z   | Υ          | d           | Foro max | Materiale |
| O-28S-MPB  | 28          | 1    | 121,99 | 124,78 |     | 109   | 72   | 20  | 92         | 25,4        | 73       |           |
| O-30S-MPB  | 30          | 1    | 130,90 | 133,69 |     | 117,5 | 72   | 20  | 92         | 25,4        | 78       |           |
| O-32S-MPB  | 32          | 1    | 139,81 | 142,61 |     | 126,5 | 72   | 26  | 98         | 25,4        | 84       |           |
| O-34S-MPB  | 34          | 1    | 148,73 | 151,52 |     | 135,5 | 72   | 26  | 98         | 25,4        | 90       |           |
| O-36S-MPB  | 36          | 1    | 157,64 | 160,43 |     | 144   | 72   | 26  | 98         | 25,4        | 95       |           |
| O-38S-MPB  | 38          | 1    | 166,55 | 169,35 |     | 153   | 72   | 26  | 98         | 25,4        | 101      | Acciaio   |
| O-40S-MPB  | 40          | 1    | 175,46 | 178,26 |     | 162   | 72   | 26  | 98         | 25,4        | 107      | Acc       |
| O-43S-MPB  | 43          | 1    | 188,83 | 191,63 |     | 174   | 72   | 16  | 88         | 25,4        | 116      | ,         |
| O-45S-MPB  | 45          | 1    | 197,75 | 200,54 |     | 183   | 72   | 16  | 88         | 25,4        | 122      |           |
| O-48S-MPB  | 48          | 1    | 211,12 | 213,91 |     | 197   | 72   | 16  | 88         | 25,4        | 131      |           |
| O-50S-MPB  | 50          | 1    | 220,03 | 222,82 |     | 205   | 72   | 16  | 88         | 25,4        | 137      |           |
| O-56S-MPB  | 56          | 1    | 246,77 | 249,56 |     | 230   | 72   | 16  | 88         | 25,4        | 153      |           |
| O-60S-MPB  | 60          | 2    | 264,59 | 267,39 | 230 | 150   | 72   | 16  | 88         | 25,4        | 100      |           |
| O-63S-MPB  | 63          | 2    | 277,96 | 280,76 | 243 | 150   | 72   | 16  | 88         | 25,4        | 100      | 0         |
| O-71S-MPB  | 71          | 2    | 313,62 | 316,41 | 279 | 150   | 72   | 16  | 88         | 25,4        | 100      | GS400     |
| O-75S-MPB  | 75          | 2    | 331,44 | 334,24 | 296 | 180   | 72   | 16  | 88         | 25,4        | 120      | Ö         |
| O-80S-MPB  | 80          | 2    | 353,72 | 356,52 | 319 | 180   | 72   | 16  | 88         | 25,4        | 120      |           |
| O-90S-MPB  | 90          | 2    | 398,29 | 401,08 | 358 | 200   | 72   | 16  | 88         | 25,4        | 133      | GG        |
| O-112S-MPB | 112         | 3    | 496,33 | 499,12 | 456 | 200   | 72   | 16  | 88         | 25,4        | 133      | GG        |
| O-140S-MPB | 140         | 3    | 621,11 | 623,91 | 581 | 220   | 72   | 16  | 88         | 25,4        | 147      | GG        |
| O-168S-MPB | 168         | 3    | 745,89 | 748,69 | 706 | 220   | 72   | 16  | 88         | 25,4        | 147      | GG        |

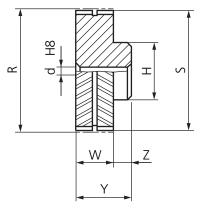



Figura 1

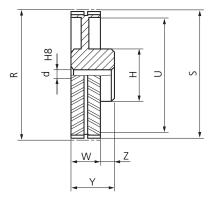



Figura 2

Tipo "Red" R - Passo 14 mm - Larghezza W = 107 mm

| Codice     | N.<br>denti | Fig. | s      | R      | U   | Н     | w   | z  | Y   | d    | Foro max | Materiale |
|------------|-------------|------|--------|--------|-----|-------|-----|----|-----|------|----------|-----------|
| R-28S-MPB  | 28          | 1    | 121,99 | 124,78 |     | 109   | 107 | 26 | 133 | 25,4 | 73       |           |
| R-30S-MPB  | 30          | 1    | 130,90 | 133,69 |     | 117,5 | 107 | 26 | 133 | 25,4 | 78       |           |
| R-32S-MPB  | 32          | 1    | 139,81 | 142,61 |     | 126,5 | 107 | 26 | 133 | 25,4 | 84       |           |
| R-34S-MPB  | 34          | 1    | 148,73 | 151,52 |     | 135,5 | 107 | 26 | 133 | 25,4 | 90       |           |
| R-36S-MPB  | 36          | 1    | 157,64 | 160,43 |     | 144   | 107 | 26 | 133 | 25,4 | 96       |           |
| R-38S-MPB  | 38          | 1    | 166,55 | 169,35 |     | 153   | 107 | 26 | 133 | 25,4 | 102      | iaio      |
| R-40S-MPB  | 40          | 1    | 175,46 | 178,26 |     | 162   | 107 | 26 | 133 | 25,4 | 108      | Acciaio   |
| R-43S-MPB  | 43          | 1    | 188,83 | 191,63 |     | 174   | 107 | 26 | 133 | 25,4 | 117      | ,         |
| R-45S-MPB  | 45          | 1    | 197,75 | 200,54 |     | 183   | 107 | 16 | 123 | 25,4 | 122      |           |
| R-48S-MPB  | 48          | 1    | 211,12 | 213,91 |     | 197   | 107 | 16 | 123 | 25,4 | 131      |           |
| R-50S-MPB  | 50          | 1    | 220,03 | 222,82 |     | 205   | 107 | 16 | 123 | 25,4 | 137      |           |
| R-56S-MPB  | 56          | 1    | 246,77 | 249,56 |     | 230   | 107 | 16 | 123 | 25,4 | 153      |           |
| R-60S-MPB  | 60          | 2    | 264,59 | 267,39 | 230 | 180   | 107 | 16 | 123 | 25,4 | 120      |           |
| R-63S-MPB  | 63          | 2    | 277,96 | 280,76 | 243 | 180   | 107 | 16 | 123 | 25,4 | 120      | 0         |
| R-71S-MPB  | 71          | 2    | 313,62 | 316,41 | 279 | 200   | 107 | 16 | 123 | 25,4 | 133      | GS400     |
| R-75S-MPB  | 75          | 2    | 331,44 | 334,24 | 296 | 200   | 107 | 16 | 123 | 25,4 | 133      | Ğ         |
| R-80S-MPB  | 80          | 2    | 353,72 | 356,52 | 319 | 200   | 107 | 16 | 123 | 25,4 | 133      |           |
| R-90S-MPB  | 90          | 2    | 398,29 | 401,08 | 358 | 220   | 107 | 16 | 123 | 25,4 | 147      | GG        |
| R-112S-MPB | 112         | 3    | 496,33 | 499,12 | 456 | 220   | 107 | 16 | 123 | 25,4 | 147      | GG        |
| R-140S-MPB | 140         | 3    | 621,11 | 623,91 | 581 | 240   | 107 | 16 | 123 | 25,4 | 160      | GG        |
| R-168S-MPB | 168         | 3    | 745,89 | 748,69 | 706 | 240   | 107 | 16 | 123 | 25,4 | 160      | GG        |

GS400 = ghisa sferoidale - GG = ghisa grigia - Tutte le dimensioni sono espresse in [mm]

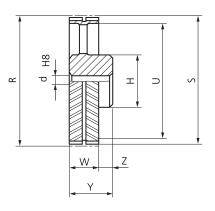



Figura 3

# Dimensionamento della trasmissione

Per un corretto dimensionamento della trasmissione, sono necessarie le seguenti informazioni:

- Potenza nominale Pz del motore [kW].
- Velocità di rotazione n₁ dell'albero motore [min⁻¹].
- Tipo di macchina condotta.
- Velocità di rotazione n<sub>2</sub> dell'albero condotto con eventuale tolleranza accettabile [min<sup>-1</sup>].
- Caratteristiche di partenza (tipi di avviamento).
- Ore per giorno di servizio.
- Interasse nominale c e tolleranze ammesse [mm].
- Diametro alberi [mm].
- Limitazioni di spazio (sul diametro e sulla larghezza delle pulegge).

#### Calcolo della trasmissione

#### A) Fattore di servizio

Si determini il fattore di servizio per la trasmissione utilizzando le tabelle di pagina 18 e 19.

Si seguano le istruzioni contenute in queste tabelle per determinare il fattore di servizio ottimale per la trasmissione.

#### B) Determinazione della combinazione della puleggia motrice e condotta

Ricordiamo che il rapporto di trasmissione è ottenibile come

$$RT = \frac{giri/ min. albero veloce}{giri/ min. albero lento}$$

Riferirsi alle tabelle da pag. 12 a 15 per quanto riguarda le dimensioni standard delle pulegge disponibili a magazzino e stabilirne la combinazione.

Una volta scelta la dimensione di una puleggia, l'altra è ricavabile dalla seguente formula:

oppure:

RT = rapporto di trasmissione

Controllare se le dimensioni della seconda puleggia appartengono a quelle standard disponibili a magazzino. (pag.12 a 15). In caso negativo, si consiglia tuttavia di provare ad adattare una puleggia con diametro primitivo (o numero di denti) standard che più si avvicina al valore calcolato e verificare se il nuovo rapporto di trasmissione è accettabile.

Ripetere la suddetta procedura aumentando o diminuendo (fin dove possibile) il diametro della puleggia di partenza del calcolo, finché non si trova una combinazione di dimensioni standard il cui rapporto di trasmissione sia uguale o molto

vicino a quello di una puleggia normalmente a stock. Sarà opportuno scegliere questa, così eventualmente solo la puleggia più piccola sarà di tipo speciale, con conseguente riduzione dei costi della trasmissione.

Qualora quanto sopra non fosse possibile, vogliate consultare l'ufficio tecnico SIT per la selezione della puleggia avente dimensioni speciali fuori standard.

#### C) Determinazione della lunghezza della cinghia

La lunghezza primitiva della cinghia può essere calcolata con la seguente formula:

$$Lp = 2C + \frac{\pi}{2}(D + d) + \frac{(D - d)^2}{4C}$$

dove:

Lp = lunghezza primitiva della cinghia (mm)

C = interasse richiesto (mm)

D = diametro primitivo puleggia maggiore (mm)

d = diametro primitivo puleggia minore (mm)

Una volta calcolata la lunghezza primitiva (Lp) della cinghia, selezionare nella tabella a pag. 7 la lunghezza di serie che più si avvicina al valore calcolato.

Il nuovo interasse effettivo determinato dall'adozione di una cinghia avente lunghezza standard è ricavabile dalla seguente formula:

$$C = \frac{b + \sqrt{b^2 - 32 (D - d)^2}}{16}$$

dove:

C = interasse

 $b = 4 \text{ Lp}^1 - 6,283 \text{ (D + d)}$ 

Lp1 = lunghezza primitiva (mm) della cinghia standard

D = diametro primitivo della puleggia maggiore (mm)

d = diametro primitivo della puleggia minore (mm)

#### D) Determinazione della larghezza della cinghia

Dalle tabelle riportate alle pag. 8-11 si ricavano i valori di potenza base Pb trasmissibile da una cinghia di tipo specificato avente 6 o più denti in presa sulla puleggia di diametro minore.

Calcolare il numero di denti in presa come segue:

denti in presa = 
$$\left(0.5 - \frac{D - d}{6C}\right) \times Ng$$

dove:

Ng = numero di denti della puleggia più piccola

= diametro primitivo della puleggia maggiore (mm) = diametro primitivo della puleggia minore (mm)

= interasse

In base al numero di denti in presa calcolato ricavare secondo la sottoriportata tabella il conseguente fattore F.

| N. denti in presa | 6 o più | 5   | 4   | 3   | 2   |
|-------------------|---------|-----|-----|-----|-----|
| Fattore F         | 1,0     | 0,8 | 0,6 | 0,4 | 0,2 |

Calcolare quindi il fattore larghezza Wf con la seguente formula:

$$Wf = \frac{Pd}{Pb \times F}$$

dove:

Pb = potenza base trasmissibile dalla cinghia secondo tabella

Pd = potenza di progetto calcolata al punto B

F = fattore dei denti in presa

Sulla base del fattore Wf calcolato verificare con quale tipo di cinghia (tra quelle presenti nelle tabelle a pag. 8-11) tenendo conto del fattore corretivo della lunghezza, la puleggia avente diametro minore è in grado di trasmettere una potenza superiore o uguale a quella di progetto.

La trasmissione risulta quindi completamente selezionata avendo dimensionato:

1 - passo della cinghia

2 - diametro (o n. di denti) della puleggia condotta e motrice

3 - lunghezza e larghezza della cinghia.

#### SITDrive: software di calcolo delle trasmissioni di potenza



SIT S.p.A. mette a disposizione un nuovo e sofisticato strumento di calcolo per la scelta e il dimensionamento delle trasmissione di potenza.

www.sitspa.it

# Fattore base di servizio

#### Il corretto fattore di servizio è determinato da:

- 1) La dimensione e la frequenza dei picchi di carico.
- 2) Il numero di ore/anno lavorate, o la media di ore giornaliere per servizio continuo.
- 3) La corretta categoria di servizio (intermittente, normale o continuo). Si selezioni approssimativamente la più vicina alle vostre condizioni di applicazione.

#### 3.1 Servizio intermittente

- a) Carico leggero, non più di 6 ore al giorno.
- b) Mai superare il carico nominale.

#### 3.2 Servizio normale

- 1. Servizio giornaliero 6 a 18 ore al giorno.
- 2. Dove occasionalmente i carichi di spunto od i picchi non eccedono il 200% del carico totale.

#### 3.3 Servizio continuo

- 1. Dove i carichi di spunto od i picchi sono oltre il 200% del carico totale oppure quando si manifestano di frequente.
- 2. Servizio continuo dalle 16 alle 24 ore al giorno.

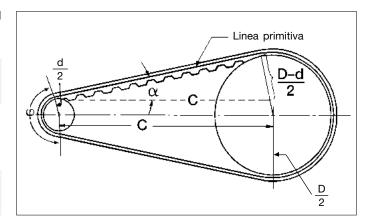
| Fatto                                                                                                                                                                    | ri tipici                 | di serv             | izio                 |                           |                     |                      |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|----------------------|---------------------------|---------------------|----------------------|--|--|--|--|--|--|--|
| MACCHINA CONDOTTA                                                                                                                                                        |                           |                     | MACCHINA             | MOTRICE                   |                     |                      |  |  |  |  |  |  |  |
| I tipi di macchine condotte qui sotto elencate sono solo dei campioni rappresentativi. Selezionare la categoria che si avvicini maggiormente alla vostra applicazione da | Conve                     |                     |                      |                           |                     |                      |  |  |  |  |  |  |  |
| quelle elencate.                                                                                                                                                         | NORMAL                    | E COPPIA DI         | SPUNTO               | ELEVATA                   | COPPIA DI           | SPUNTO               |  |  |  |  |  |  |  |
|                                                                                                                                                                          | Servizio<br>Intermittente | Servizio<br>Normale | Servizio<br>Continuo | Servizio<br>Intermittente | Servizio<br>Normale | Servizio<br>Continuo |  |  |  |  |  |  |  |
| Agitatore: liquido                                                                                                                                                       | 1,3                       | 1,5                 | 1,7                  | 1,5                       | 1,7                 | 1,9                  |  |  |  |  |  |  |  |
| Agitatore: semiliquido                                                                                                                                                   | 1,4                       | 1,6                 | 1,8                  | 1,6                       | 1,8                 | 2,0                  |  |  |  |  |  |  |  |
| Macchinario per panifici: impastatrici di madre bianca (pasta pane)                                                                                                      | 1,3                       | 1,5                 | 1,7                  | 1,5                       | 1,7                 | 1,9                  |  |  |  |  |  |  |  |
| Macchinario per mattoni ed argilla:<br>trivelle, granulatori, mescolatori                                                                                                | 1,4                       | 1,6                 | 1,8                  | 1,6                       | 1,8                 | 2,0                  |  |  |  |  |  |  |  |
| Macchinario per mattoni ed argilla: impastatori d'argilla                                                                                                                | 1,7                       | 1,9                 | 2,1                  | 1,9                       | 2,1                 | 2,3                  |  |  |  |  |  |  |  |
| Centrifughe                                                                                                                                                              | 1,6                       | 1,8                 | 2,0                  | 1,8                       | 2,0                 | 2,2                  |  |  |  |  |  |  |  |
| Sistemi di serraggio: tutti i tipi                                                                                                                                       | 2,2                       | 2,4                 | 2,6                  | 2,4                       | 2,6                 | 2,8                  |  |  |  |  |  |  |  |
| Compressori: centrifughi                                                                                                                                                 | 1,4                       | 1,6                 | 1,9                  | 1,6                       | 1,8                 | 2,0                  |  |  |  |  |  |  |  |
| Compressori: a pistoni                                                                                                                                                   | 1,7                       | 1,9                 | 2,1                  | 1,9                       | 2,1                 | 2,3                  |  |  |  |  |  |  |  |
| Trasportatori: a nastro, a tazze, elevatore, a benna                                                                                                                     | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Trasportatori: a nastro per lavoro pesante                                                                                                                               | 1,4                       | 1,6                 | 1,8                  | 1,9                       | 1,8                 | 2,0                  |  |  |  |  |  |  |  |
| Trasportatori: continuo a raschiamento, a coclea                                                                                                                         | 1,6                       | 1,8                 | 2,0                  | 1,8                       | 2,0                 | 2,2                  |  |  |  |  |  |  |  |
| Trasportatori: a nastro per colli leggeri                                                                                                                                | 1,2                       | 1,4                 | 1,6                  | 1,4                       | 1,6                 | 1,8                  |  |  |  |  |  |  |  |
| Imp. dimostrativi e di distribuzione                                                                                                                                     | 1,0                       | 1,1                 | 1,2                  | 1,1                       | 1,3                 | 1,5                  |  |  |  |  |  |  |  |
| Ascensori - Elevatori                                                                                                                                                    | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Dinamo                                                                                                                                                                   | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Ventilatori e motori soffianti: centrifughi, aspiratori a corrente d'aria indotta <7,5 kW                                                                                | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Ventilatori e motori soffianti: ventilatori                                                                                                                              | 17                        | 1.0                 | 0.4                  | 1.0                       | 0.4                 | 0.0                  |  |  |  |  |  |  |  |
| per miniere, eliche, compressori volumetrici                                                                                                                             | 1,7                       | 1,9                 | 2,1                  | 1,9                       | 2,1                 | 2,3                  |  |  |  |  |  |  |  |
| Generatori                                                                                                                                                               | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Mulini a martelli o frantoi                                                                                                                                              | 1,6                       | 1,8                 | 2,0                  | 1,8                       | 2,0                 | 2,2                  |  |  |  |  |  |  |  |
| Paranchi<br>Strumontogioni                                                                                                                                               | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Strumentazioni  Macchine per lavanderia: centrifughe lavatrici                                                                                                           | 1,0                       | 1,1<br>1 7          | 1,2                  | 1,1                       | 1,3<br>1 0          | 1,5                  |  |  |  |  |  |  |  |
| Macchine per lavanderia: centrifughe, lavatrici  Macchine per lavanderia: di tipo generico                                                                               | 1,5                       | 1,7<br>1,5          | 1,9<br>1,7           | 1,7                       | 1,9<br>1,7          | 2,1                  |  |  |  |  |  |  |  |
| Alberi di trasmissione                                                                                                                                                   | 1,3<br>1,4                | 1,5<br>1,6          | 1,7                  | 1,5<br>1,6                | 1,7<br>1,8          | 1,9<br>2,0           |  |  |  |  |  |  |  |
| אוויפון עו נומטווויסטוטופ                                                                                                                                                | 1,4                       | 1,0                 | 1,0                  | 1,0                       | 1,0                 | ۷,0                  |  |  |  |  |  |  |  |

| Fatto                                                                                                                        | ri tipici                 | di serv             | izio                 |                           |                     |                      |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|----------------------|---------------------------|---------------------|----------------------|--|--|--|--|--|--|--|
| MACCHINA CONDOTTA                                                                                                            |                           | MACCHINA MOTRICE    |                      |                           |                     |                      |  |  |  |  |  |  |  |
| I tipi di macchine condotte qui sotto elencate sono solo dei                                                                 | NORMAL                    | E COPPIA DI         | SPUNTO               | ELEVATA                   | COPPIA DI           | SPUNTO               |  |  |  |  |  |  |  |
| campioni rappresentativi. Selezionare la categoria che si avvicini maggiormente alla vostra applicazione da quelle elencate. | Servizio<br>Intermittente | Servizio<br>Normale | Servizio<br>Continuo | Servizio<br>Intermittente | Servizio<br>Normale | Servizio<br>Continuo |  |  |  |  |  |  |  |
| Macchine utensili: tornio verticale, rettificatrice, fresatrice, affilatrice, troncatrice/tagliabillette                     | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Macchine utensili: trapano, torni, tornio da viteria                                                                         | 1,3                       | 1,5                 | 1,7                  | 1,5                       | 1,7                 | 1,9                  |  |  |  |  |  |  |  |
| Apparecchi di misura                                                                                                         | 1,0                       | 1,1                 | 1,2                  | 1,1                       | 1,3                 | 1,5                  |  |  |  |  |  |  |  |
| Apparecchiature per uso medico                                                                                               | 1,0                       | 1,1                 | 1,2                  | 1,1                       | 1,3                 | 1,5                  |  |  |  |  |  |  |  |
| Mulini: a sfere, a barre, a sassi, ecc.                                                                                      | 1,6                       | 1,8                 | 2,0                  | 1,8                       | 2,0                 | 2,2                  |  |  |  |  |  |  |  |
| Miscelatore: liquido                                                                                                         | 1,3                       | 1,5                 | 1,7                  | 1,5                       | 1,7                 | 1,9                  |  |  |  |  |  |  |  |
| Miscelatore: semiliquido                                                                                                     | 1,4                       | 1,6                 | 1,8                  | 1,6                       | 1,8                 | 2,0                  |  |  |  |  |  |  |  |
| Apparecchiature per ufficio                                                                                                  | 1,1                       | 1,3                 | 1,5                  | 1,3                       | 1,5                 | 1,7                  |  |  |  |  |  |  |  |
| Macchinario per cartiera: agitatori, calandre, essiccatoi                                                                    | 1,2                       | 1,4                 | 1,6                  | 1,4                       | 1,6                 | 1,8                  |  |  |  |  |  |  |  |
| Macchinario per cartiera: olandesi, jordans, pompe di macerazione                                                            | 1,3                       | 1,5                 | 1,7                  | 1,5                       | 1,7                 | 1,9                  |  |  |  |  |  |  |  |
| Macchinario per cartiera: raffinatori                                                                                        | 1,6                       | 1,8                 | 2,0                  | 1,8                       | 2,0                 | 2,2                  |  |  |  |  |  |  |  |
| Macchinario da stampa: macchine linotype, taglierine, piegatrici                                                             | 1,3                       | 1,5                 | 1,7                  | 1,5                       | 1,7                 | 1,9                  |  |  |  |  |  |  |  |
| Macchinario da stampa: tutte le presse                                                                                       | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Apparecchiature da proiezione                                                                                                | 1,0                       | 1,1                 | 1,2                  | 1,1                       | 1,3                 | 1,5                  |  |  |  |  |  |  |  |
| Pompe: centrifughe, ad ingranaggi                                                                                            | 1,4                       | 1,6                 | 1,8                  | 1,6                       | 1,8                 | 2,0                  |  |  |  |  |  |  |  |
| Pompe: rotativa, volumetrica, per estrarre acqua in eccesso                                                                  | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Pompe: a stantuffo (a movimento alternato)                                                                                   | 1,9                       | 2,1                 | 2,3                  | 2,1                       | 2,3                 | 2,5                  |  |  |  |  |  |  |  |
| Macchine per spaccare pietre                                                                                                 | 1,9                       | 2,1                 | 2,3                  | 2,1                       | 2,3                 | 2,5                  |  |  |  |  |  |  |  |
| Macchinario per la produzione gomma: calandre, trafile, laminatoi                                                            | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,0                  |  |  |  |  |  |  |  |
| Macchinario per segheria                                                                                                     | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Vagli/crivelli: a tamburo, di tipo conico                                                                                    | 1,2                       | 1,4                 | 1,6                  | 1,4                       | 1,6                 | 1,8                  |  |  |  |  |  |  |  |
| Vagli/crivelli: a vibrazine (camma), a scosse                                                                                | 1,4                       | 1,6                 | 1,8                  | 1,6                       | 1,8                 | 2,0                  |  |  |  |  |  |  |  |
| Macchine per cucire                                                                                                          | 1,1                       | 1,3                 | 1,5                  | 1,3                       | 1,5                 | 1,7                  |  |  |  |  |  |  |  |
| Spazzatrici                                                                                                                  | 1,1                       | 1,3                 | 1,5                  | 1,3                       | 1,5                 | 1,7                  |  |  |  |  |  |  |  |
| Macchinario tessile: aspo, orditoio                                                                                          | 1,4                       | 1,6                 | 1,8                  | 1,6                       | 1,8                 | 2,0                  |  |  |  |  |  |  |  |
| Macchinario tessili: telaio, filatoio, ritorcitoio                                                                           | 1,5                       | 1,7                 | 1,9                  | 1,7                       | 1,9                 | 2,1                  |  |  |  |  |  |  |  |
| Macchinario per lavorazione legno: sega a nastro, trapano, tornio                                                            | 1,1                       | 1,3                 | 1,5                  | 1,3                       | 1,5                 | 1,7                  |  |  |  |  |  |  |  |
| Macchinario per lavorazione legno: sega circolare, pialla a filo, piallatrice                                                | 1,3                       | 1,5                 | 1,7                  | 1,5                       | 1,7                 | 1,9                  |  |  |  |  |  |  |  |

| FATTORE DI SERVIZIO ADDIZIONALE IN FUNZIONE DEL RAPPORTO DI VELOCITA |                                   |  |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|--|
| Gamma dei rapporti di velocità                                       | Fattori di servizio da aggiungere |  |  |  |  |  |  |  |  |  |
| Inferiore a 1.25                                                     | 0.00                              |  |  |  |  |  |  |  |  |  |
| 1.25 a 1.74                                                          | 0.10                              |  |  |  |  |  |  |  |  |  |
| 1.75 a 2.49                                                          | 0.20                              |  |  |  |  |  |  |  |  |  |
| 2.50 a 3.49                                                          | 0.30                              |  |  |  |  |  |  |  |  |  |
| maggiore di 3.49                                                     | 0.40                              |  |  |  |  |  |  |  |  |  |

## Formule utili e fattori di conversione

#### Calcolo dell'interasse


$$\mathbf{c} = \frac{L_c - 1,57 \, (D + d)}{4} + \sqrt{\left[\frac{L_c - 1,57 \, (D + d)}{4}\right]^2 - \left(\frac{D - d}{8}\right)^2} \quad [mm]$$

Sviluppo primitivo Lc della cinghia (calcolato utilizzando il diametro primitivo delle pulegge)

$$L_c = 2c + 1,57 (D + d) + \left(\frac{D - d}{4c}\right)^2 [mm]$$

o più precisamente:

$$L_c = 2c \cos \varphi + \frac{\pi (D + d)}{2} + \frac{\pi \varphi (D - d)}{180}$$
 [mm]



#### Velocità v della cinghia

$$\mathbf{v} = \frac{d \times n_1}{19100} \text{ [ms}^{-1}\text{]}$$

Nota: Per il calcolo della velocità lineare della cinghia si utilizzi sempre il diametro d (puleggia minore, solitamente motrice e più veloce).

#### Calcolo della coppia e della potenza

Coppia = 
$$\frac{\text{Potenza [kW] x 9550}}{n_1 \text{ [min}^{-1}]} \text{ [Nm]}$$

Potenza = 
$$\frac{\text{Coppia [Nm] x n}_{1} \text{ [min}^{-1}]}{9550} \text{ [kW]}$$

#### Lunghezze

Pollici x 25,40 = [mm]

(Pollici x 0.0254 = [m])

Piedi x 304,8 = [mm]

#### **Forze**

Kilogrammo forza [Kgf] x 9,81 = Newton [N] o Kilopond [kp]

Libbra forza [lbf] x 4,45 = Newton [N]

Newton [N] x 0,225 = libbra forza [lbf]

Newton [N] x 0,102 = Kilogrammo forza [Kgf] o Kilopond [kp]

Kilogrammo forza [Kgf] x 2,205 = libbra forza [lbf] o Kilipond [kp]

#### Masse

Libbra (lb x 0,454 = Kilogrammo [Kg]

Kilogrammo x 2,205 = libbra (lb)

#### Coppia

Kilogrammo forza metro [Kgfm] x 9,81 = Newton metro [Nm]

Libbra forza piede [lbf ft] x 1,36 = Newton metro [Nm]

Libbra forza pollici [lbf in] x 0,13 = Newton metro [Nm]

#### **Potenze**

Cavalli (HP)  $\times$  0,746 = [kW]

Chilowatt x 1,359 = [HP]

#### Velocità della cinghia

Piedi/minuto [ft/m $^{-1}$ ] x 0,00508 = metri/sec [ms $^{-1}$ ]

# Installazione e tensionamento delle cinghie EAGLE MRG

#### **Obbiettivo**

Le cinghie Eagle NRG™ devono essere installate e tensionate in modo appropriato per assicurare le migliori prestazioni. L'allineamento delle pulegge deve essere, in ogni modo, mantenuto. Prima di iniziare, cautelarsi che la cinghia non abbia subito danni e che le pulegge siano correttamente montate con l'orientamento dei denti nella stessa direzione. Le cinghie non dovrebbero mai essere piegate (o compresse) ad un diametro inferiore al diametro della puleggia più piccola (approssimativamente 50 mm per le cinghie Bianche, Gialle e Porpora, 115 mm per quelle Blu, Verdi, Arancio e Rosse).

- 1) Diminuire la distanza dell'interasse o allentare il galoppino per installare la cinghia Eagle NRG™. Non posizionare la cinghia sulla puleggia utilizzando una leva.
- 2) Posizionare la cinghia su ogni puleggia ed assicurare un corretto accoppiamento tra la puleggia ed i denti della cinghia.
- 3) Allungare l'interasse oppure aggiustare il galoppino per eliminare ogni allentamento della cinghia.
- 4) Misurare con un metro il tratto libero della trasmissione comparare la misura ottenuta con il valore "S" calcolabile con la formula a pag. 22.
- 5) Posizionare un asta rigida (linea di riferimento) parallelamente al tratto libero superiore della cinghia.

#### Tolleranze sugli assi

|                        | Tolleranze s   | ull'Interasse                  |                           |  |  |  |  |
|------------------------|----------------|--------------------------------|---------------------------|--|--|--|--|
| Lunghezza<br>primitiva |                | lell'Interasse<br>nstallazione | Incremento dell'Interasse |  |  |  |  |
| della cinghia          | Giallo, Bianco | Blu, Verde,<br>Arancio, Rosso  | dovuto al tensionamento   |  |  |  |  |
| Minore<br>di 1525 mm   | 10.0 mm        | 15.0 mm                        | 3.0 mm                    |  |  |  |  |
| Maggiore<br>di 1525 mm | 15.0 mm        | 18.0 mm                        | 5.0 mm                    |  |  |  |  |

#### Masse lineari della cinghia Eagle NRG™

| Simbolo - Colore | Massa lineare<br>[kg/m] |
|------------------|-------------------------|
| Y - Giallo       | 0,068                   |
| W - Bianco       | 0,137                   |
| P - Porpora      | 0,274                   |
| B - Blu          | 0,208                   |
| G - Verde        | 0,313                   |
| O - Arancio      | 0,417                   |
| R - Rosso        | 0,625                   |

Tolleranza sull'allineamento 0,25°.

- 6) Per prima cosa si determini l'appropriata forza di inflessione per tendere la cinghia. La forza di inflessione è data in tabella, in Kg, il calcolo di tale forza può anche essere richiesto al nostro ufficio tecnico.
- **6.1)** Se si utilizza un tensionatore a stilo (meccanico esistono anche misuratori di tensione elettrici) la scala della freccia è calibrata in cm di tratto libero. Verificare la forza richiesta per flettere la cinghia della freccia necessaria. Esiste un O-Ring che evidenzia la forza sullo stilo. Se la forza misurata è inferiore alla forza di verifica richiesta, si incrementi la distanza dell'interasse. Se la forza misurata è maggiore della forza di verifica richiesta si riduca la distanza dell'interasse.
- **6.2)** Se vengono utilizzati metodi diversi, per applicare la corretta forza alla cinghia, regolare l'interasse così che, quando la forza applicata sarà quella giusta, la freccia della cinghia "q" sarà di 0.015 cm per 1.0 cm di tratto libero "S".
- 7) Dopo che la cinghia è tesa correttamente, bloccare la regolazione dell'interasse e riverificare l'allineamento delle pulegge. Ricontrollare la tensione della cinghia e l'allineamento dopo 8 ore di lavoro, per assicurarsi che la trasmissione non si sia allentata.

#### Frequenza di vibrazione della cinghia

Tale metodo consiste nel verificare, con apposito strumento, la frequenza di vibrazione del tratto libero della cinghia con pulegge ferme. La corretta frequenza di vibrazione si calcola con la formula:

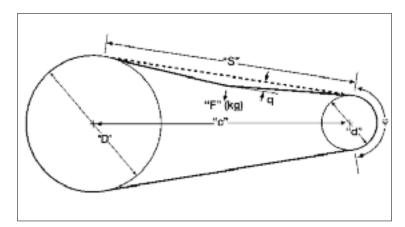
$$\upsilon = \sqrt{\frac{T}{4l^2 \cdot m}} \ [Hz]$$

in cui:

T [N] = tensione della cinghia m [Kg/m]\* = massa lineare della cinghia I [m] = tratto libero della cinghia

\* Per inserire il valore approriato di m consultare la tabella "Masse lineari" qui a sinistra, prestando attenzione alla larghezza e al passo della cinghia da montare.

/ [m] si calcola con la formula:


$$I = \frac{\sqrt{C^2 - \left(\frac{D-d}{2}\right)^2}}{1000} \text{ [m]}$$

in cui

C [mm] = il valore dell'interasse D e d [mm] = diametri delle due pulegge

#### Forze di verifica "F" [kg] di tensionamento delle cinghie

|                      | Υ    | - C    | ingh  | ie G | iall   | е     | w -    | Ciı   | nghi  | ie B | iand   | che   | Р-   | Cir    | nghi  | ie P  | orp     | ora   | E     | 3 - 1  | Cinç  | jhie  | Blu     | J     | G     | - C    | ingl  | nie ' | Verd   | li    | 0 -    | Cin   | ghie  | e Ar  | rand   | cio   | R     | - C    | ingl  | nie I | Ross    | se    |
|----------------------|------|--------|-------|------|--------|-------|--------|-------|-------|------|--------|-------|------|--------|-------|-------|---------|-------|-------|--------|-------|-------|---------|-------|-------|--------|-------|-------|--------|-------|--------|-------|-------|-------|--------|-------|-------|--------|-------|-------|---------|-------|
| Giri/min             | Cing | hie nu | ove   | Cing | hie us | ate   | Cinghi | e nuo | ve    | Cing | hie us | ate   | Cing | nie nu | ove   | Cin   | ghie us | sate  | Cingl | nie nu | ove   | Cingl | nie usa | ate   | Cingl | nie nu | ove   | Cing  | hie us | ate   | Cinghi | e nuo | /e    | Cingl | hie us | sate  | Cingh | ie nuo | ve    | Cingl | hie usa | ite   |
| puleggia             |      |        |       |      |        |       |        |       |       |      | Νι     | ıme   | ro   | dei    | dei   | nti d | della   | ари   | ıleg  | gia    | pic   | col   | a Z     | i -   | For   | ze o   | v ib  | erifi | ca     | "F"   | [kg    | 1     |       |       |        |       |       |        |       |       |         |       |
| piccola              | 18   | 24     | 32    | 18   | 24     | 32    | 18     | 24    | 32    | 18   | 24     | 32    | 18   | 24     | 32    | 18    | 24      | 32    | 28    | 32     | 40    | 28    | 32      | 40    | 28    | 32     | 40    | 28    | 32     | 40    | 28     | 32    | 40    | 28    | 32     | 40    | 28    | 32     | 40    | 28    | 32      | 40    |
| [min <sup>-1</sup> ] | ÷    | ÷      | е     | ÷    | ÷      | е     | ÷      | ÷     | e     | ÷    | ÷      | е     | ÷    | ÷      | е     | ÷     | ÷       | е     | ÷     | ÷      | е     | ÷     | ÷       | е     | ÷     | ÷      | е     | ÷     | ÷      | е     | ÷      | ÷     | е     | ÷     | ÷      | е     | ÷     | ÷      | е     | ÷     | ÷       | е     |
|                      | 23   | 31     | oltre | 23   | 31     | oltre | 23     | 31    | oltre | 23   | 31     | oltre | 23   | 31     | oltre | 23    | 31      | oltre | 31    | 39     | oltre | 31    | 39      | oltre | 31    | 39     | oltre | 31    | 39     | oltre | 31     | 39    | oltre | 31    | 39     | oltre | 31    | 39     | oltre | 31    | 39      | oltre |
| Fino a 100           | 6    | 7      | 8     | 5    | 5      | 6     | 12     | 15    | 15    | 9    | 11     | 11    | 24   | 30     | 30    | 18    | 22      | 22    | 24    | 26     | 28    | 18    | 20      | 20    | 37    | 39     | 42    | 27    | 29     | 30    | 49     | 53    | 55    | 36    | 39     | 41    | 73    | 79     | 83    | 54    | 59      | 62    |
| 101 ÷ 300            | 5    | 6      | 7     | 4    | 5      | 5     | 11     | 13    | 15    | 8    | 10     | 11    | 22   | 26     | 30    | 16    | 20      | 22    | 23    | 24     | 25    | 17    | 18      | 19    | 34    | 37     | 38    | 25    | 27     | 28    | 45     | 49    | 51    | 34    | 36     | 38    | 68    | 73     | 76    | 50    | 54      | 56    |
| 301 ÷ 600            | 5    | 6      | 6     | 4    | 5      | 5     | 10     | 12    | 13    | 7    | 9      | 10    | 20   | 24     | 26    | 14    | 18      | 20    | 20    | 22     | 23    | 15    | 16      | 17    | 31    | 34     | 35    | 23    | 24     | 26    | 41     | 44    | 46    | 30    | 33     | 34    | 61    | 67     | 69    | 45    | 49      | 51    |
| 601 ÷ 900            | 5    | 5      | 6     | 3    | 4      | 5     | 9      | 11    | 12    | 7    | 8      | 9     | 18   | 22     | 24    | 14    | 16      | 18    | 19    | 20     | 21    | 14    | 15      | 16    | 29    | 31     | 32    | 21    | 23     | 24    | 38     | 41    | 43    | 28    | 30     | 32    | 57    | 61     | 64    | 42    | 45      | 47    |
| 901 ÷ 1200           | 4    | 5      | 5     | 3    | 4      | 4     | 8      | 10    | 11    | 6    | 7      | 8     | 16   | 20     | 22    | 12    | 14      | 16    | 18    | 19     | 20    | 13    | 14      | 15    | 27    | 29     | 31    | 20    | 21     | 23    | 35     | 38    | 41    | 26    | 28     | 30    | 53    | 57     | 61    | 39    | 42      | 45    |
| 1201 ÷ 2000          | 4    | 5      | 5     | 3    | 3      | 4     | 8      | 9     | 10    | 6    | 7      | 7     | 16   | 18     | 20    | 12    | 14      | 14    | 17    | 18     | 20    | 12    | 14      | 15    | 25    | 27     | 30    | 19    | 20     | 22    | 34     | 36    | 40    | 25    | 27     | 29    | 50    | 54     | 60    | 37    | 40      | 44    |
| 2001 ÷ 3500          | 4    | 4      | 5     | 3    | 3      | 4     | 7      | 8     | 10    | 5    | 6      | 7     | 14   | 16     | 20    | 10    | 12      | 14    | 16    | 17     | 18    | 12    | 13      | 14    | 24    | 26     | 27    | 18    | 19     | 20    | 33     | 34    | 36    | 24    | 25     | 27    | 49    | 52     | 54    | 36    | 38      | 40    |
| 3501 e oltre         | 4    | 4      | 5     | 3    | 3      | 4     | 7      | 8     | 9     | 5    | 6      | 7     | 14   | 16     | 18    | 10    | 12      | 14    | 15    | 16     | 17    | 11    | 12      | 12    | 22    | 24     | 25    | 16    | 18     | 19    | 29     | 32    | 34    | 21    | 24     | 25    | 44    | 48     | 50    | 32    | 35      | 37    |



Importante - Le forze di verifica "F" sopra riportate hanno valori stimati per far fronte ai "casi peggiori" di trasmissioni e di conseguenza tendono ad essere maggiorl di quelli calcolati dal software Eagle NRG™ che, avendo la possibilità di considerare ed elaborare tutti i dati inerenti alla trasmissione, disponibili, sono generalmente più accurati.

Formula per calcolare il tratto libero "S"

$$\mathbf{S} = \sqrt{c^2 - \left(\frac{\mathsf{D} - \mathsf{d}}{2}\right)^2} \quad [\mathsf{mm}]$$

Formula per stimare il carico statico "HLs" applicato sul

**HLs** = 314 F sin 
$$\left(\frac{\varphi}{2}\right)$$
 [N]

dove 
$$\sin\left(\frac{\varphi}{2}\right) = \frac{S}{c} = \frac{1}{c} \times \sqrt{c^2 - \left(\frac{D-d}{2}\right)^2}$$

quindi **HLs** = 
$$\frac{314 \text{ F}}{c} \times \sqrt{c^2 - \left(\frac{D-d}{2}\right)^2}$$
 [N]

Nota: convertire la unità di "S" in [cm] dai [mm] dividendo per 10 prima di utilizzare il misuratore di tensione a stilo perché la scala dell'interasse che da automaticamente la freccia è calibrata in [cm].

## Ten-sit®

## **TEN-SIT®** è lo strumento elettronico progettato per ottenere la corretta tensione di qualsiasi cinghia di trasmissione

TEN-SIT®, grazie alle sue ridotte dimensioni, alla maneggevolezza e alla versatilita' è adatto per qualsiasi tipo di cinghia di trasmissione. Il principio di funzionamento è basato sulla relazione esistente fra la tensione della cinghia e la frequenza di vibrazione della cinghia stessa. La misurazione avviene rilevando la frequenza di vibrazione della cinghia a trasmissione ferma avvicinando il microfono dello strumento, montato su un

braccio flessibile, al tratto libero della cinghia mentre essa vibra in seguito ad un urto innescato da un oggetto rigido (es. manico di un cacciavite).

Il valore della frequenza (Hz) viene visualizzato sul display dello strumento. TEN-SIT® è tarato per riconoscere la frequenza della cinghia dai rumori di fondo dell'ambiente circostante.



adatto per qualsiasi tipo di cinghia

microfono unidirezionale

sensibilita' da 20 a 600 Hz

leggero e di ridotte dimensioni

affidabile e preciso

maneggevole e versatile

Per maggiori informazioni richiedete il catalogo tecnico

# Tipi di anomalie

| Eccessiva usura sui bordi | Eccessiva usura sui denti | Irregolare usura dei denti | Apparente allungamento della cinghia | Formazione di crepe da inversione di moto | Tranciatura di denti | Anomalie da tensione | Eccessiva rumorosità della trasmissione | Salto dei denti | Disallineamento della Cinghia | Usura eccessiva della puleggia | Eccessiva vibrazione della trasmissione | POSSIBILI CAUSE<br>DI ANOMALIE                                            | AZIONI<br>CORRETTIVE                                                             |
|---------------------------|---------------------------|----------------------------|--------------------------------------|-------------------------------------------|----------------------|----------------------|-----------------------------------------|-----------------|-------------------------------|--------------------------------|-----------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Cinghia che sbatte contro un ostacolo                                     | Rimuovere l'ostacolo. Usare un tendicinghia<br>per deviare la cinghia            |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Carico eccessivo                                                          | Riprogettare la trasmissione                                                     |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Cinghia sovratensionata                                                   | Ritensionare la cinghia con i valori corretti                                    |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Cinghia sottotensionata                                                   | Ritensionare la cinghia con i valori corretti                                    |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Pulegge danneggiate                                                       | Sostituire le pulegge                                                            |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Disallineamento                                                           | Allineare pulegge e/o alberi                                                     |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Pulegge usurate                                                           | Sostituire le pulegge                                                            |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Pulegge fuori tolleranza                                                  | Sostituire le pulegge, evitare rivalutazioni                                     |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Pulegge costruite con materiale tenero                                    | Utilizzare materiale più duro                                                    |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Corpi estranei (truccioli, sabbia,) sulla puleggia e/o nella trasmissione | Installare adeguate protezioni                                                   |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Variazione dell'interasse c                                               | Controllare il serraggio dei bulloni sul motore e sugli alberi                   |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Struttura debole della trasmissione                                       | Rinforzare la struttura                                                          |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Temperatura troppo bassa                                                  | Temperature miti specialmente all'avviamento                                     |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Temperatura troppo alta                                                   | Temperature miti, proteggere la trasmissione                                     |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Esposizione a oli, solventi, prodotti chimici                             | Proteggere la trasmissione, eliminare prodotti chimici                           |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Diametro della puleggia sotto il minimo                                   | Riprogettare la trasmissione incrementando il diametro puleggia                  |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Tendicinghia esterno                                                      | Riprogettare la trasmissione per ridurre la superficie di contatto del tenditore |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Carichi d'urto                                                            | Eliminare gli urti o riprogettare la trasmissione adeguandola                    |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Meno di 6 denti in puleggia                                               | Aumentare la superficie di contatto della puleggia                               |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Puleggia eccessivamente sfruttata                                         | Sostituire la puleggia                                                           |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Danno dovuto all'utilizzo                                                 | Sostituire il prodotto                                                           |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Vibrazioni causate da cuscinetti e supporti                               | Sostituire i cuscinetti o rinforzare i supporti                                  |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Interasse maggiore di 8 volte il diametro puleggia minore                 | L'allineamento fra le pulegge diventa critico                                    |
|                           |                           |                            |                                      |                                           |                      |                      |                                         |                 |                               |                                |                                         | Pulegge non bilanciate                                                    | Verificare la bilanciatura delle pulegge                                         |



## Simboli

TIM Numero denti in presa Interasse fra i centri delle pulegge c [mm] Diametro primitivo della puleggia minore (generalmente quella motrice) d [mm] D [mm] Diametro primitivo puleggia maggiore (generalmente quella condotta) Fattore di correzione, funzione del numero di denti in presa  $K_{TM}$ RT Rapporto di trasmissione Pr [kW] Potenza nominale (motore) da trasmettere n<sub>1</sub> [min<sup>-1</sup>] Velocità di rotazione albero motore Velocità di rotazione albero condotto  $n_2$  [min<sup>-2</sup>] CP Combinazione delle pulegge  $Z_1$ Numero denti puleggia motrice  $Z_2$ Numero denti puleggia condotta Pm Puleggia motrice Рс Puleggia condotta H<sub>LS</sub> [N] Carico statico sul mozzo Lunghezza primitiva della cinghia Lc [mm] Pd [kW] Potenza di progetto Pz [kW] Potenza nominale del motore  $\alpha \ [^\circ]$ Semi angolo inclinazione cinghia fra le pulegge Tratto libero S [mm] φ [°] Arco di contatto q [mm] Puleggia F [kgf] Forza di verifica W [mm] Larghezza dorso cinghia Passo cinghia P [mm] Th [mm] Spessore totale cinghia H [mm] Altezza denti cinghia