

ISTRUZIONI DI INSTALLAZIONE, USO E MANUTENZIONE PER MACCHINE A CORRENTE CONTINUA

SERIE P-NP-XP-NE

GRANDEZZE 80-112 (2 POLI) GRANDEZZE 132-450 (4 POLI) GRANDEZZE 500-630 (6 POLI) GRANDEZZE 710-800 (8 POLI) GRANDEZZE 2110-5813 (4 POLI)

ATTENZIONE!

Le macchine elettriche della SICMEMOTORI sono utilizzate in ambienti industriali. Durante il loro funzionamento possono essere fonte di pericoli gravi, sia per le persone che per le cose. E' pertanto indispensabile effettuare una corretta installazione, messa in servizio e manutenzione ed evitare di rimuovere o modificare le protezioni.

Queste istruzioni non hanno la pretesa di coprire tutti i possibili problemi e casi che si possono verificare durante l'utilizzo di macchine elettriche. Qualunque problema non contemplato dalle presenti istruzioni deve essere immediatamente comunicato alla SICMEMOTORI.

Cod. M-CC-80-800-I-05

INDICE

	NOTE IMPORTANTI	5.9	Vita utile dei cuscinetti
		5.10	Ispezione ai cuscinetti
	PRESCRIZIONI DI SICUREZZA	5.11	Dati generali sui cuscinetti (macchine standard)
		5.12	Tipi di cuscinetti e carichi radiali ammessi (macchine
1.	GENERALITA'		standard)
1.1.	Applicabilità e Norme di riferimento	5.13	Programmi di lubrificazione
1.2.	Identificazione del Costruttore e della macchina	5.14	Lubrificazione. Istruzioni specifiche
1.3.	Dichiarazione di conformità	5.15	Sostituzione completa del grasso
1.4.	Utilizzo e conservazione del presente manuale. Limiti	5.16	Cuscinetti per macchine speciali
	di utilizzo	5.17	Sostituzione dei cuscinetti
1.5.	Rete di assistenza	5.18	Filtro per l'aria
1.6.	Sicmeservice	5.19	Dispositivo controllo mancata ventilazione
1.7.	Responsabilità del Produttore	5.20	Dinamo tachimetrica
1.8.	Condizioni di garanzia	5.21	Generatore di impulsi (encoder)
1.9.	Avvertenze importanti	5.22	
1.10.		5.23	Relè centrifugo
	Limiti di impiego		Dispositivo controllo usura spazzole
1.11.	Rumorosità delle macchine	5.24	Scambiatore di calore
1.12.	Trasporto, ricezione e movimentazione delle macchine	6.	SMONTAGGIO E RIMONTAGGIO DELLA
1.13.	Immagazzinamento delle macchine	0.	MACCHINA
1.14.	Macchine serie NE	6.1	
			Operazioni preliminari allo smontaggio
1.15.	Macchine serie XP	6.2	Smontaggio. Operazioni analoghe per tutte le macchine
2.	INSTALLAZIONE	6.3	Smontaggio delle cuffie (motori 80-630)
2.1	Installazione della macchina	6.3.1	Smontaggio degli scudi (motori 710-800)
2.2	Piazzamento	6.4	Smontaggio del rotore
		6.5	Sostituzione dei cuscinetti (motori 80-630)
3.	ACCOPPIAMENTO ALLA MACCHINA	6.6	Sostituzione dei cuscinetti (motori 710-800)
	OPERATRICE	6.6.1	Montaggio dei cuscinetti nuovi (motori 710-800)
3.1	Calettamento a freddo degli organi di trasmissione	6.6.2	Montaggio del cuscinetto sull'albero (motori 710-800)
0.1	(alberi con chiavetta)	6.6.3	Montaggio cuscinetto nello scudo (motori 710-800)
3.2	Calettamento a caldo degli organi di trasmissione	6.7	Smontaggio dei poli
J.Z	(alberi senza chiavetta)	6.8	Rimontaggio della macchina
2.2		6.9	
3.3	Accoppiamento diretto		Spostamento della scatola morsetti (motori 132÷315)
3.4	Accoppiamento con cinghie e pulegge	6.9.1	Spostamento della scatola morsetti (motori 355÷450)
	MEGGA IN GERVIZIO	6.9.2	Spostamento della scatola morsetti (motori 500-800)
4.	MESSA IN SERVIZIO	6.10	Disposizione e sfalsamento del portaspazzole sul
4.1	Collegamenti elettrici		collettore
4.2	Collegamento a terra		
4.3	Ispezioniprima dell'avviamento	7.	ANOMALIE DI FUNZIONAMENTO
4.4	Dispositivi di protezione consigliati	7.1	Anomalie meccaniche
4.5	Avviamento	7.2	Anomalie elettriche
4.6	Ispezioni dopo l'avviamento	7.3	Anomalie di commutazione e spazzole
4.7	Schemi elettrci di collegamento	7.3.1	Scintillio
4.7.1	Schema collegamenti elettrici motore – macchina a 2-		
	4 poli	8.	ISTRUZIONI PER LE RIPARAZIONI DI TIPO
4.7.2	Schema collegamenti elettrici motore – macchina a 6-		ELETTRICO
	8 poli		
4.7.3	Schema collegamenti elettrici motore – macchine a	9.	PARTI DI RICAMBIO CONSIGLIATE
1.7.0	norme NEMA	0.	TARTI BIRTORII BIO GORGIGEIATE
4.7.4	Accessori installati	10.	DISEGNI DIMOSTRATIVI D'ASSIEME E NOMEN-
	, tooosoon motanaa		CLATURA
5.	MANUTENZIONE		
5.1	Manutenzione programmata		
5.2	Collettore	<u>APPEI</u>	NDICE
5.3	Tornitura, smicatura e lucidatura collettore		
5.4	Commutazione	В	SCAMBIATORE DI CALORE ARIA-ARIA
5.5	Spazzole		
5.6	Manutenzione delle spazzole	С	SCAMBIATORE DI CALORE ARIA-ACQUA
5.7	Sostituzione delle spazzole		·
5.7.1	Sostituzione dei portaspazzole		COMMENTI ALL'UTILIZZAZIONE DEL PRESENTE
5.8	Cuscinetti a rotolamento		MANUALE

NOTE IMPORTANTI

Per evidenziare al meglio i pericoli nei quali può incorrere l'operatore che utilizza macchine elettriche rotanti, le varie operazioni o situazioni verranno evidenziate in grassetto e/o con i seguenti avvertimenti, in funzione della loro pericolosità:

PERICOLO!

Operazioni e/o situazioni che possono portare a danni fisici molto gravi, fino alla morte, se non vengono strettamente seguite le istruzioni che vengono date.

ALLARME!

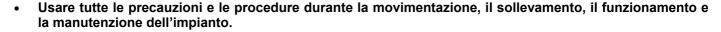
Operazioni e/o situazioni che devono essere strettamente seguite per evitare seri danni alle persone e/o all'ambiente circostante.

Prudenza!

Operazioni e/o situazioni che devono essere strettamente seguite per evitare danni alle persone, contaminazione dell'ambiente circostante e danni materiali.

Attenzione!

Operazioni e/o situazioni che richiedono particolare attenzione.


PRESCRIZIONI DI SICUREZZA

Alte tensioni e parti rotanti possono causare seri danni e/o ferite mortali. L'uso di macchine elettriche può dunque essere molto pericoloso. L'installazione, il funzionamento e la manutenzione di macchine elettriche deve essere realizzata a cura di personale qualificato, in accordo con le regole applicabili e con le norme vigenti nei vari paesi.

Per le macchine elettriche oggetto di questo manuale, è importante osservare le prescrizioni di sicurezza per proteggere il personale da possibili danni. In particolare, il personale deve essere informato di:

- Evitare contatti con circuiti sotto tensione o con parti rotanti;
- Non by-passare o rendere inoperativi i circuiti o le barriere di sicurezza;
- Evitare di sostare a lungo in prossimità di macchinari molto rumorosi;

Le macchine elettriche devono essere trasportate, messe in servizio, manutenute e riparate esclusivamente da personale qualificato, con la supervisione di un esperto che verifichi la correttezza di queste operazioni. Il personale qualificato deve essere appositamente autorizzato dal responsabile della sicurezza della ditta ove le macchine vengono installate. A questo proposito, le Norme Internazionali IEC364 proibiscono l'utilizzo di personale non qualificato per lavori ove sia presente potenza elettrica. Prima di avviare una procedura di manutenzione, accertarsi che:

- Il macchinario collegato all'albero della macchina non causi rotazioni meccaniche;
- Gli avvolgimenti della macchina siano stati disconnessi dall'alimentazione elettrica e che non vi sia possibilità di accidentale alimentazione;

 Tutti i dispositivi accessori associati al funzionamento della macchina nell'area di lavoro siano stati disconnessi dalla loro alimentazione.

La mancata messa a terra della macchina può causare danni mortali al personale. La messa a terra della macchina e dell'impianto deve essere fatta in accordo con le norme vigenti nei vari paesi.

Qualunque modifica delle macchine deve essere espressamente autorizzata per iscritto dalla SICMEMOTORI.

Utilizzare esclusivamente i materiali indicati (isolanti, oli, grassi, solventi, ecc.).

1. GENERALITA'

1.1 Applicabilità e Norme di riferimento

Le presenti istruzioni si applicano ai motori/generatori a corrente continua costruiti dalla SICMEMOTORI, quando installati in ambienti industriali

Questo manuale non è valido per motori/generatori a corrente continua installati in ambienti con pericolo di esplosione.

Questo manuale è redatto in conformità alla Direttiva Macchine 98/37/CE ed alle Norme UNI EN292-1 e 292-2.

1.2 Identificazione del Costruttore e della macchina

Ogni macchina a corrente continua prodotta dalla SICMEMOTORI è munita di targhetta identificativa realizzata in conformità alla Norma IEC 60034-8, come da figura 1.

Figura 1.

Significato dei simboli:

TIPO/TYPE tipo del motore (secondo il codice della SICMEMOTORI)

N numero di matricola
P potenza nominale

VEL/SPEED velocità

ARM/ARM(V) tensione di armatura
ARM/ARM (A) corrente di armatura
CAMPO/FIELD (V) tensione di eccitazione
CAMPO/FIELD (A) corrente di eccitazione

MASSA/MASS peso del motore completo del sistema di ventilazione

J(kgm²) momento d'inerzia del rotore ANNO/MESE-YEAR/MONTH anno/mese di costruzione

SERV/DUTY servizio

IP grado di protezione
IC metodo di raffreddamento
IM forma costruttiva

CL.ISOL/INS.CL classe di isolamento (viene anche data la sovratemperatura se diversa dalla classe H)

TEMP.AMB/AMB.TEMP. temperatura ambiente

CUSC.LA/DR.END BEAR. cuscinetto lato accoppiamento

CUSC.LO/COMM.END BEAR. cuscinetto lato opposto accoppiamento INT.LUBR/LUBR.INT. intervallo di lubrificazione dei cuscinetti

Ogni macchina è inoltre munita di marcatura CE.

1.3 Dichiarazione di conformità

I motori descritti nel presente catalogo soddisfano i requisiti essenziali delle seguenti Direttive:

- Direttiva Bassa Tensione 72/23/EEC
 - Direttiva EMC 89/336/EEC (Compatibilità Elettromagnetica)
- Direttiva Macchine 98/37/CE

I motori/generatori elettrici costituiscono componenti che vengono incorporati in altre macchine, sistemi, impianti e pertanto il comportamento EMC risultante è sotto la responsabilità del costruttore della macchina o installazione in cui il motore/generatore viene incorporato.

Con riferimento alla Direttiva Macchine 98/37/CE, si precisa che i motori/generatori devono essere installati in accordo con le proprie istruzioni di installazione e non possono essere messi in servizio prima che il macchinario nel quale saranno incorporati sia dichiarato conforme alla Direttiva Macchine 98/37/CE.

1.4 Utilizzo e conservazione del presente manuale. Limiti di utilizzo

Il presente manuale è stato realizzato al fine di rendere semplice e sicuro al personale addetto l'utilizzo di questo prodotto, personale che deve essere:

- esperto nell'utilizzo di prodotti destinati ad uso esclusivamente industriale e professionale;
- edotto sui pericoli che possono derivare dall'uso di macchine elettriche rotanti per tensioni di alimentazione fino a 1000 V.

La SICMEMOTORI è disponibile, su richiesta specifica scritta, a provvedere all'istruzione del personale del cliente (o dell'utilizzatore finale) addetto all'utilizzo dei suoi prodotti sul corretto uso e manutenzione dei prodotti stessi, sia sul sito di installazione che presso la SICMEMOTORI stessa. Per maggiori informazioni Interpellare il nostro servizio SICMESERVICE.

Questo manuale deve essere sempre a disposizione del personale addetto all'uso dei motori/generatori, e deve esserne conservata copia (a cura dell'Utilizzatore) per futuri riferimenti.

Altre copie ed eventuali aggiornamenti possono essere richiesti direttamente a:

SICME MOTORI SpA

Strada del Francese 126/130

10156 Torino – Italia

tel. 011-4076311

fax 011-4500047

e-mail: sicmeservice@sicmemotori.com

o possono essere scaricati dal sito web della SICMEMOTORI www.sicmemotori.com.

La SICMEMOTORI si riserva la facoltà di apportare qualunque tipo di variazione ritenesse necessarie al presente manuale, senza che ciò comporti l'obbligo ad aggiornare i manuali precedenti.

1.5 Rete di assistenza

La SICMEMOTORI ha creato una capillare rete di officine di assistenza e riparazione autorizzate nei principali Paesi del Mondo, alle quali l'Utilizzatore può rivolgersi direttamente in caso di necessità.

L'elenco di tali officine, che viene costantemente aggiornato, è pubblicato sul sito web della SICMEMOTORI <u>www.sicmemotori.com</u>, e può essere agevolmente scaricato.

1.6 Sicmeservice

SICMESERVICE si propone per servizi di manutenzione finalizzati all'ottimizzazione dei processi di produzione, che abbracciano tutti i motori elettrici.

Le prestazioni offerte sono:

Manutenzione predittiva

Permette di valutare in anticipo lo stato dei motori e di pianificare una eventuale azione di manutenzione preventiva in occasione di fermo impianti programmati.

Manutenzione preventiva

Le prestazioni preventive vengono effettuate presso le ns. officine, e consistono in una serie di operazioni atte a ripristinare lo stato originario dei motori.

Manutenzione correttiva

Permette di evidenziare la necessità di interventi più risolutivi. I nostri uffici tecnici sono in grado di effettuare una esatta valutazione di quanto necessario al ripristino di una completa funzionalità.

In caso di riparazione antieconomica, gli stessi uffici tecnici sono in grado di effettuare il corretto dimensionamento per la sostituzione di qualunque tipo di motore di qualsiasi marca con uno tecnologicamente più aggiornato.

Per informazioni sul servizio, contattare:

Sig. A Dolfi Tel. 0039-011-4076464 Fax 0039-011-4500047 Cell. 0039-348-2716623

e-mail: service@sicmemotori.com

1.7 Responsabilità del Produttore

SICMEMOTORI è soggetta ad assumersi la responsabilità per danni a persone o cose attribuite dalla legge Italiana DPR 224 del 24-05-1988 (che ha recepito la Direttiva CEE 85/374) e successive eventuali varianti, purché note ed in vigore al momento dell'ordine, con la precisazione essenziale che la responsabilità stessa decadrà se non risulteranno rispettate le prescrizioni delle presenti istruzioni, o in caso di manomissione dei suoi prodotti, per riparazione o qualsiasi altra causa, da parte di terzi non esplicitamente autorizzati per iscritto dalla SICMEMOTORI stessa.

1.8 Condizioni di garanzia

SICMEMOTORI garantisce i propri prodotti per 12 mesi dalla data della consegna. La garanzia riguarda esclusivamente i difetti di fabbricazione imputabili a SICMEMOTORI, la quale, nell'eventualità, ha la facoltà, a sua scelta, di provvedere alla riparazione o alla sostituzione del prodotto o del pezzo del prodotto ritenuto difettoso. Il costo ed il rischio del trasporto del prodotto difettoso dal Committente a SICMEMOTORI sono a carico del primo. La garanzia decade in caso di manomissione o interventi non autorizzati da SICMEMOTORI e non si estende alle parti del prodotto normalmente soggette ad usura (a solo titolo di esempio: cuscinetti, spazzole, filtri,...). La garanzia decade altresì in caso di mancata osservanza delle prescrizioni indicate nelle ISTRUZIONI PER INSTALLAZIONE, USO E MANUTENZIONE, disponibili a richiesta del Committente e il cui estratto è contenuto all'interno delle

scatole morsetti di tutte le macchine di fornitura SICMEMOTORI. Nel caso di sostituzione o riparazione di un pezzo, la garanzia si intende rinnovata limitatamente al pezzo sostituito o riparato. Il Committente non può opporre a SICMEMOTORI il mancato pagamento della fornitura facendolo dipendere dall'operatività o meno della garanzia.

In ogni caso il committente decade dalla garanzia qualora abbia omesso la relativa denuncia ai sensi dell'art. 1495 1° comma c.c.

1.9 Avvertenze importanti

Per un corretto impiego delle macchine di ns. costruzione occorre tenere sempre ben presenti le avvertenze sequenti:

Progettazione e costruzione. Sono fatte in accordo alle Norme IEC 60034, secondo la tabella a) di seguito indicata:

IEC	CEI	Titolo		
60034-1	EN 60034-1	Caratteristiche nominali e di funzionamento		
60034-2	EN 60034-2	Metodi per la determinazione delle perdite e rendimento		
60034-5	EN 60034-5	Classificazione dei gradi di protezione (codice IP)		
60034-6	EN 60034-6	Metodi di raffreddamento (codice IC)		
60034-7	EN 60034-7	Tipi di costruzione, forme costruttive e posizione scatola morsetti (codice IM)		
60034-8	EN 60034-8	Marcatura dei terminali e senso di rotazione		
34-9	EN 60034-9	Limiti di rumore		
60034-14	EN 60034-14	Vibrazioni meccaniche delle parti rotanti		
72-1	72-1	Dimensioni e potenze delle macchine rotanti		
1293	16-8	Marcatura delle apparecchiature elettriche		
UNI ISC	2768/1-2	Tolleranze generali		
UN	I 9321	Estremità d'albero		
73/2	3/EEC	Direttiva bassa tensione		
89/336/	EC (EMC)	Direttiva compatibilità elettromagnetica		
98/	37/CE	Direttiva macchine		

Tabella a)

Prove. Tutte le macchine a corrente continua prodotte dalla SICMEMOTORI subiscono un completo collaudo presso la ns. Sala Prove, ove ne vengono verificate la rispondenza ai requisiti contrattuali.

Assicurazione della qualità. Tutto il procedimento produttivo è gestito dal Sistema Assicurazione Qualità interno, che è responsabile della corretta osservanza delle procedure e delle istruzioni di costruzione, controllo, prove e collaudi emessi dal Sistema di Qualità interno.

Il Sistema di Qualità interno è certificato e controllato dal CSQ (*) in conformità alle Norme Europee ISO 9001-2000.

(*) Il Sistema di Certificazione della Qualità CSQ è gestito dall'IMQ in collaborazione con il CESI, ed è parte della convenzione CISQ (Certificazione Italiana dei Sistemi di Qualità) e aderisce all'accordo internazionale EQNET.

1.10 Limiti di impiego

Le macchine a corrente continua costruite dalla SICMEMOTORI sono adatte all'impiego in ambiente industriale, per applicazioni in impianti quali (ma non solo) quelli siderurgici, delle materie plastiche, della gomma, della lavorazione di materiali ferrosi e non ferrosi, dei cavi, degli impianti per il trasporto di persone (funivie, seggiovie, ecc.) o per la movimentazione della merce (gru, nastri trasportatori, ecc.), del cemento, nell'industria alimentare, della carta e della stampa, nell'industria mineraria (esclusivamente ambienti senza presenza di atmosfera esplosiva), ecc.. **Pertanto questi prodotti sono riservati esclusivamente ad un uso professionale.**

Ambiente di installazione. La macchina è prevista in via generale per funzionare in ambiente asciutto e pulito. La presenza di umidità elevata (o l'eventuale installazione all'aperto), e/odiagenti o polveri aggressivi nell'atmosfera, deve essere comunicata in sede di ordine; gli accorgimenti costruttivi da adottare per ottenere un funzionamento accettabile intalicondizioni non normali devono essere concordati, ed essere indicati nella conferma dell'ordine. Infine, la macchina è progettata, salvo diverso accordo col cliente:

- per temperatura ambiente di –15 +40°C
- per altezza massima sul livello del mare di 1000 m.

Condizioni di temperatura o altezza di installazione diverse, comportano in generale variazioni per i valori nominali delle prestazioni (interpellare SICMEMOTORI). Vedere il punto 1.12 per i problemi di sollevamento quando la temperatura dell'ambiente è molto bassa.

Alimentazione. La macchina è prevista per fornire le prestazioni di contratto (potenza – coppia - velocità) se alimentata (circuiti di armatura e di campo) in condizioni nominali, come precisato in targa. Alimentazioni non corrette possono portare all'impossibilità di fornire le prestazioni contrattuali o a disservizi per guasti o per intervento delle protezioni.

Protezioni. La macchina deve essere permanentemente protetta contro situazioni non accettabili di alimentazione o di carico, e contro l'insorgere di guasti. SICMEMOTORI è sempre a disposizione per collaborare a identificare le protezioni più adatte per ogni caso particolare. La mancanza o la non corretta taratura o inefficienza delle protezioni necessarie hanno come conseguenza l'esclusione di responsabilità SICMEMOTORI in caso di guasti o disservizi.

A Protezioni elettriche

Le macchine vengono di norma fornite con alcune protezioni di natura elettrica, che devono essere collegate ed il cui funzionamento deve essere verificato prima della messa in servizio delle macchine stesse.

Le macchine devono inoltre essere assolutamente messe a terra prima della loro messa in servizio (vedere par. 4.2).

B Protezioni meccaniche

Prima di mettere in servizio le macchine, l'utilizzatore deve accertarsi che tutte le protezioni meccaniche di cui dispongono le macchine stesse siano operative. In particolare, **non dovrà mettere in servizio la macchina** se:

- la macchina non è stata adeguatamente fissata al suo basamento (vedere par.2.2);
- le portelle della macchina non sono state tutte accuratamente richiuse;
- il coperchio della scatola morsetti principale (ed ausiliaria se esistente) non è stato adeguatamente chiuso con le sue viti, per evitare contatti accidentali con parti sotto tensione;
- il ventilatore, se esistente, non ha il filtro montato o, in sua mancanza, una rete di protezione per evitare contatti accidentali con la girante dell'elettoventilatore.

Oltre alle protezioni meccaniche intrinseche alle macchine, l'utilizzatore dovrà anche verificare che tutti gli organi accoppiati alle macchine stesse e in movimento (giunti, pulegge, cinghie di trasmissione, ecc.) siano adeguatamente protetti da contatti accidentali.

Le superfici esterne delle macchine a corrente continua possono, durante il funzionamento, raggiungere valori molto elevati (rischio termico). Per questo motivo, sulle superfici stesse delle macchine sono affisse apposite targhette segnalanti tale rischio termico. E' cura dell'utilizzatore predisporre eventuali barriere protettive qualora le macchine siano installate in zone con rischio di contatto anche accidentale con gli operatori.

D Protezioni contro il livello acustico

Prima di mettere in funzione le macchine, l'utilizzatore deve assicurarsi che tutte le protezioni contro il rumore emesso da parte delle macchine stesse siano state rese funzionanti. SICMEMOTORI è disponibile a fornire la sua esperienza al riguardo.

1.11 Rumorosità delle macchine

La rumorosità delle macchine espressa in "pressione sonora" è rilevata con un fonometro nel funzionamento a vuoto, con alimentazione nominale e con il sistema di ventilazione funzionante (Norme IEC 34-9). Il fonometro è posizionato al centro dei 4 lati della macchina a corrente continua in prova e in corrispondenza dell'entrata dell'aria nel ventilatore (o dei motori asincroni dei ventilatori in caso di macchine raffreddate con scambiatori di calore) ad una distanza di circa 1 m. Il valor medio fra i valori ottenuti è il livello di rumorosità adottato da SICMEMOTORI.

I valori di rumorosità delle macchine della SICMEMOTORI sono riportati nella tabella 1.11 seguente.

Motore	Pressione sonora (dBA) Raffreddamento IC06 (PVA)	Pressione sonora (dBA) Raffreddamento IC17 (BCA)	Pressione sonora (dBA) Raffreddamento IC37 (CBA)	Pressione sonora (dBA) Raffreddamento IC86W (CBARH)	Pressione sonora (dBA) Raffreddamento IC666 (CBARO)
80 N	76	76	76		
90 N	76	76	76		
100 N	76	76	76		
112 N	80	80	80		
132 N	80	80	80	80	86
132 K	80	80	80	80	86
160 N	80	80	80	80	86
160 K	80	80	80	80	86
180 N	82	82	80	80	86
180 K	82	82	80	80	86
200 N	85	85	80	80	86
200 K	85	85	82	82	86
225 N	85	85	82	82	86
225 K	85	85	82	82	86
250 N	85	85	82	82	86
250 K	85	85	82	82	86
280 K	85	85	82	82	86
315 K	85	85	82	82	86
355 K	85	85	82	82	90
400 K	85	85	82	82	90
450 K	85	85	82	82	90
500 K	85	85	84	84	90
560 K	85	85	84	84	90
630 K	90	90	84	84	90
710 K	90	90	85	85	95
800 K	90	90	90	90	95

Tabella 1.11

I valori in tale tabella si riferiscono ai valori emessi dalle macchine, e non necessariamente ai valori ai quali saranno esposti i lavoratori. Questi ultimi infatti dipendono anche dalla presenza di altre macchine, dall'ambiente di installazione, dal tipo di lavorazione, ecc. E' cura dell'utilizzatore decidere se i valori di cui sopra comportano la necessità di installare opportune barriere di protezione dal rumore.

1.12 Trasporto, ricezione e movimentazione delle macchine

Le macchine vengono spedite dalla fabbrica pronte per l'installazione, salvo casi particolari da concordare. La spedizione viene effettuata senza imballaggio salvo richiesta specifica in sede di ordinazione.

Attenzione:

si raccomanda, a destinazione, di esaminare lo stato delle macchine per verificare che durante il trasporto non abbiano subito danni; in tal caso fare immediata riserva al corriere per non incorrere nella perdita della garanzia. Il reclamo deve arrivare alla SICMEMOTORI entro 8 gg dal ricevimento della merce!

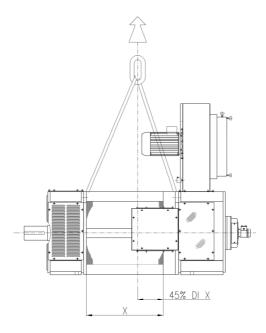
Nelle operazioni di movimentazione, le macchine devono essere sollevate agganciandole agli appositi golfari di sollevamento posti sulla superficie delle macchine. Ad eccezione dei motori di altezza d'asse P132÷P200 con scambiatore di

calore montato in alto, non utilizzare mai i golfari posti sui mezzi di raffreddamento della macchina (elettroventilatori, scambiatori di calore, ecc.) per movimentare la macchina stessa. Se il carico risultasse squilibrato a causa digiunti oesecuzioni particolari, èopportuno equilibrarlo usando corde addizionali.

Il sollevamento mediante i golfari deve essere evitato quando la temperatura ambiente è inferiore a -15°C. La tabella seguente fornisce i pesi delle macchine, complete dei sistemi di raffreddamento. Si ricorda comunque che i pesi sono anche riportati sulle targhette principali delle macchine stesse.

Grandezza	PVA-BPVA	CBA-BCA	CBARH	CBARO
motore	BPVAB kg	CNV-CNVC kg	kg	kg
NP 80 NS2	36	31		
NP 80 NM2	40	35		
NP 80 NL2	46	41		
NP 90 NR2	53	48		
NP 90 NS2 NP 90 NM2	60 69	55 64		
NP 90 NL2	79	74		
NP 100 NR2	81	73		
NP 100 NS2	93	85		
NP 100 NM2	107	99		
NP 100 NL2	114	106		
P 112 NS2 P 112 NM2	113 128	105 120		
P 112 NL2	143	135		
P 132 N(K)S2	135	125	195	205
P 132 N(K)M2	150	140	210	220
P 132 N(K)L2	170	160	230	240
P 132 N(K)X2	185	175	245	255
P 160 N(K)S2	235	220	315	325
P 160 N(K)M2 P 160 N(K)L2	265 305	250 290	345 385	355 395
P 160 N(K)X2	330	315	410	420
P 180 N(K)S4	370	345	470	480
P 180 N(K)M4	415	390	515	525
P 180 N(K)L4	475	450	575	585
P 180 N(K)X4	515	490	615	625
P 200 N(K)S4 P 200 N(K)M4	490	455	625	625
P 200 N(K)M4 P 200 N(K)L4	555 640	520 605	690 775	690 775
P 200 N(K)X4	690	655	825	825
NP 225 N(K)S5	910	865	1060	1080
NP 225 N(K)M5	970	925	1120	1140
NP 225 N(K)L5	1030	985	1180	1200
NP 250 NK)S5	1200	1145	1405	1425
NP 250 N(K)M5	1275	1220	1480	1500
NP 250 N(K)L5 NP 280 KS6	1365 1665	1310 1600	1570 1955	1590 1970
NP 280 KM6	1785	1720	2075	2090
NP 280 KL6	1925	1860	2215	2230
NP 315 KR 6	1905	1795	2175	2210
NP 315 KS 6	2155	2045	2425	2460
NP 315 KM 6	2305	2195	2575	2610
NP 315 KL 6 NP 315 KR 8	2480 1960	2370 1850	2750 2230	2785 2265
NP 315 KS 8	2210	2100	2480	2515
NP 315 KM 8	2360	2250	2630	2665
NP 315 KL 8	2535	2425	2805	2840
NP 355 KR 4	2545	2405	2815	2855
NP 355 KS 4	2860	2720	3130	3170
NP 355 KM 4 NP 355 KL 4	3050 3275	2910 3135	3320	3360
NP 355 KL 4 NP 355 KX 4	3275 3520	3135	3545 3790	3585 3830
NP 355 KR 6	2615	2475	2885	2925
NP 355 KS 6	2930	2760	3200	3240
NP 355 KM 6	3120	2980	3390	3430
NP 355 KL 6	3345	3205	3615	3655
NP 355 KX 6	3590	3450	3860	3900
NP 355 KR 7 NP 355 KS 7	2650 2965	2510 2825	2920 3235	2960 4275
NP 355 KS 7	3155	3015	3425	3465
NP 355 KL 7	3380	3240	3650	3690
NP 355 KX 7	3625	3485	3895	3935
NP 400 KR 4	3285	3095	3565	3615
NP 400 KS 4	3650	3460	3930	3980
NP 400 KM 4	3870	4680	4150	4200
NP 400 KL 4 NP 400 KX 4	4150 4450	3960 4260	4430 4730	4480 4780
NP 400 KX 4	3375	3185	3655	3704
NP 400 KS 6	3740	3550	4020	4070
NP 400 KM 6	3960	3770	4240	4290
NP 400 KL 6	4240	4050	4520	4570
NP 400 KX 6	4540	4350	4820	4870
NP 400 KR 7	3420	3230	3700	3750
NP 400 KS 7 NP 400 KM 7	3785 4005	3595 3815	4065 4285	4115 4335
		Sicme Motori		

stesse.						
	PVA-BPVA	CBA-BCA				
Grandezza	BPVAB	CNV-CNVC	CBARH	CBARO		
motore	kg	kg	kg	kg		
NP 400 KL 7	4280	4090	4560	4610		
NP 400 KX 7 NP 450 KRS 4	4585 3600	4395 3380	4865 3950	4915 3990		
NP 450 KRS 4	3800	3580	4150	4190		
NP 450 KR 4	4020	3800	4370	4410		
NP 450 KS 4	4260	4040	4610	4650		
NP 450 KSM 4	4570	4350	4950	5000		
NP 450 KM 4 NP 450 KML 4	4870 5220	4650 5000	5250 5600	5300 5650		
NP 450 KL 4	5620	5400	6000	6050		
NP 450 KX 4	6060	5840	6450	6500		
NP 450 KRS 6	3700	3480	4050	4090		
NP 450 KRM 6 NP 450 KR 6	3900 4120	3680 3900	4250 4470	4290 4510		
NP 450 KS 6	4360	4140	4710	4750		
NP 450 KSM 6	4670	4450	5050	5100		
NP 450 KM 6	4970	4750	5350	5400		
NP 450 KML 6	5320	5100	5700	5750 6150		
NP 450 KL 6 NP 450 KX 6	5720 6160	5500 5940	6100 6550	6600		
NP 450 KRS 8	3800	3580	4160	4210		
NP 450 KRM 8	4000	3780	4360	4310		
NP 450 KR 8	4220	4000 4240	4580	4620		
NP 450 KS 8 NP 450 KSM 8	4460 4770	4240 4550	4820 5160	4870 5220		
NP 450 KM 8	5070	4850	5460	5520		
NP 450 KML 8	5420	5200	5810	5870		
NP 450 KL 8	5820	5600	6210	6270		
NP 450 KX 8 NP 500 KRS 6	6260 5120	6040 4850	6660 5500	6720 5530		
NP 500 KRS 7	5185	4915	5565	5595		
NP 500 KRM 6	5320	5050	5700	5730		
NP 500 KRM 7	5385	5115	5765	5795		
NP 500 KR 6	5550 5615	5250 5215	5900	5930		
NP 500 KR 7 NP 500 KS 6	5615 5770	5315 5500	5965 6150	5995 6180		
NP 500 KS 7	5835	5565	6215	6145		
NP 500 KSM 6	5970	5700	6350	6380		
NP 500 KSM 7 NP 500 KM 6	6035 6250	5765 5970	6415 6620	6445 6650		
NP 500 KM 7	6315	6035	6685	6715		
NP 500 KML 6	6520	6250	6900	6930		
NP 500 KML 7	6858	6315	6965	6995		
NP 500 KL 6 NP 500 KL 7	6870	6600	7250	7280 7345		
NP 500 KL 7	6935 7270	6665 7000	7315 7650	7680		
NP 500 KX 7	7335	7065	7715	7745		
NP 560 KRS 6	5430	5130	5930			
NP 560 KRS 7	5510 5700	5210	6010			
NP 560 KRM 6 NP 560 KRM 7	5700 5780	5400 5480	6200 6280			
NP 560 KR 6	5990	5690	6490			
NP 560 KR 7	6070	5770	6570			
NP 560 KS 6	6350	6050	6850			
NP 560 KS 7 NP 560 KSM 6	6430 6700	6130 6400	6930 7230			
NP 560 KSM 7	6780	6480	7310			
NP 560 KM 6	7120	6820	7650			
NP 560 KM 7	7200	6900	7730			
NP 560 KML 6 NP 560 KML 7	7600 7680	7300 7380	8150 8230			
NP 560 KL 6	8150	7850	8700			
NP 560 KL 7	8230	7930	8780			
NP 560 KX 6	8780	8480	9330			
NP 560 KX 7 NP 630 KRS 6	8860 6980	8560 6600	9410 7500			
NP 630 KRS 8	7280	6900	7800			
NP 630 KRM 6	7380	7000	7900			
NP 630 KRM 8	7680	7300	8200			
NP 630 KR 6 NP 630 KR 8	7830 8130	7450 7750	8350 8650			
NP 630 KS 6	8330	7950	8850			
NP 630 KS 8	8630	8250	9150			
NP 630 KSM 6	8830	8450	9350			
NP 630 KSM 8	9130	8750	9650			


Grandezza motore	PVA-BPVA BPVAB kg	CBA-BCA CNV-CNVC kg	CBARH kg	CBARO kg
NP 630 KM 6	9430	9050	9950	
NP 630 KM 8	9730	9350	10250	
NP 630 KML 6	10230	9850	10750	
NP 630 KML 8	10530	10150	11050	
NP 630 KL 6	11030	10650	11550	
NP 630 KL 8	12330	11950	11850	
NP 630 KX 6	11930	11550	12450	
NP 630 KX 8	12230	11850	12750	
NP 710 KRS 6	9150	8700	9750	
NP 710 KRS 8	9450	9000	10050	
NP 710 KRM 6	9600	9150	10200	
NP 710 KRM 8	9900	9450	10500	
NP 710 KR 6	10100	9650	10700	
NP 710 KR 8	10400	9950	11000	
NP 710 KS 6	10750	10300	11350	
NP 710 KS 8	11050	10600	11650	
NP 710 KSM 6	11350	10900	11950	
NP 710 KSM 8	11650	11200	12250	
NP 710 KM 6	12000	11550	12650	
NP 710 KM 8	12300	11850	12950	
NP 710 KML 6	12900	12450	13550	
NP 710 KML 8	13200	12750	13850	
NP 710 KL 6	13950	13400	14550	

Grandezza motore	PVA-BPVA BPVAB kg	CBA-BCA CNV-CNVC kg	CBARH kg	CBARO kg
NP 710 KL 8	14150	13700	14850	
NP 710 KX 6	14850	14400	15550	
NP 710 KX 8	15150	14700	15850	
NP 800 KRS 6		10300	11500	
NP 800 KRS 8		10650	11850	
NP 800 KRM 6		11050	12250	
NP 800 KRM 8		11400	12600	
NP 800 KR 6		11500	12700	
NP 800 KR 8		11850	13050	
NP 800 KS 6		12500	13800	
NP 800 KS 8		12850	14150	
NP 800 KSM 6		13100	14400	
NP 800 KSM 8		13450	14750	
NP 800 KM 6		13950	15250	
NP 800 KM 8		14300	15600	
NP 800 KML 6		15000	16300	
NP 800 KML 8		15350	16650	
NP 800 KL 6		16200	17500	
NP 800 KL 8		16550	17850	
NP 800 KX 6		17450	18750	
NP 800 KX 8		17800	19100	

Per il sollevamento del motore, controllare il peso sulla targa e utilizzare mezzi di sollevamento con portata maggiore.

Attenzione: le operazioni di scarico e movimentazione delle macchine devono essere effettuate da personale esperto (imbracatori, gruisti, carrellisti, ecc.); si consiglia di fare assistere a queste operazioni una persona al suolo incaricata alle segnalazioni.

Posizione del baricentro – la quota "X" è la lunghezza del pacco magnetico statorico

1.13 Immagazzinamento delle macchine

Se le macchine non vengono subito messe in servizio, occorre sistemarle in un ambiente coperto, pulito ed asciutto. **La temperatura minima di immagazzinamento non deve essere inferiore a –30°C**. Se è previsto l'immagazzinamento delle macchine a temperature inferiori a –30°C, occorre prendere accordi con la SICMEMOTORI in sede d'ordine. Se la giacenza fosse prolungata (alcuni mesi) o se siano previsti prolungati periodi di inattività occorre prendere le seguenti ulteriori precauzioni:

- sollevare le spazzole dal collettore per evitare sullo stesso la formazione di impronte dannose;
- controllare periodicamente la resistenza d'isolamento (vedi par. 4.3). Gli isolamenti devono essere protetti dall'umidità;
- ruotare l'albero di alcuni giri almeno ogni due mesi per evitare danni sulle piste dei cuscinetti;
- è consigliabile, per l'estremità albero, verificare lo stato della vernice protettiva per evitare corrosioni ed ossidazioni. Eventualmente, ritrattare con vernice o grassi anticorrosivi.

I cuscinetti a rotolamento in questo periodo non richiedono alcuna manutenzione perché il grasso è già immesso in quantità sufficiente per mantenerli lubrificati.

1.14 Macchine Serie NE

Le macchine della serie NE rispondono dimensionalmente alle Norme NEMA. Tutte le operazioni di installazione, uso e manutenzione descritte di seguito valgono anche per tali motori. Per quanto riguarda le varie grandezze, vale la tabella di equivalenza di seguito indicata.

Grandezza	Grandezza NEMA	Grandezza IEC	Grandezza	Grandezza NEMA	Grandezza IEC
NEMA	Sicme	Sicme	NEMA	Sicme	Sicme
2110ATZ	NE132NS2	P132NS2	3613ATZ	NE225KM5	NP225KM5
2111ATZ	NE132NM2	P132NM2	4012ATZ	NE250KS5	NP250KS5
2112ATZ	NE132NL2	P132NL2	4013ATZ	NE250KM5	NP250KM5
2113ATZ	NE132NX2	P132NX2	4014ATZ	NE250KL5	NP250KL5
2510ATZ	NE160NS2	P160NS2	4412ATZ	NE280KS6	NP280KS6
2511ATZ	NE160NM2	P160NM2	4413ATZ	NE280KL6	NP280KL6
2512ATZ	NE160NL2	P160NL2	5011ATZ	NE315KS6	NP315KS6
2512ATZ	NE160NX2	P160NX2	5012ATZ	NE315KM6	NP315KM6
2812ATZ	NE180NM4	P180NM4	5013ATZ	NE315KL6	NP315KL6
2813ATZ	NE180NL4	P180NL4	5810ATZ	NE355KR6	NP355KR6
2814ATZ	NE180NX4	P180NX4	5811ATZ	NE355KM6	NP355KM6
3212ATZ	NE200KL4	P200KL4	5812ATZ	NE355KL6	NP355KL6
3213ATZ	NE200KX4	P200KX4	5813ATZ	NE355KX6	NP355KX6
3612ATZ	NE225KS5	NP225KS5			

Dunque, per avere le istruzioni relative ad un motore NE160NX2 (grandezza NEMA 2512ATZ), riferirsi alle istruzioni nel presente manuale relative al motore grandezza IEC Sicme tipo P160 NX2.

1.15 **Macchine Serie XP**

Si tratta di macchine derivate da quelle della Serie NP, delle quali conservano tutte le caratteristiche, salvo per la presenza di 2 collettori: uno dal lato accoppiamento, uno dal lato opposto accoppiamento.

Tutte le operazioni di installazione, uso e manutenzione descritte in questo fascicolo valgono pertanto anche per queste macchine, con l'avvertenza che i controlli relativi a collettore, spazzole e portaspazzole devono essere effettuati per entrambi i collettori.

2 INSTALLAZIONE

2.1 Installazione delle macchine

Laposizione di installazione della macchina deve essere tale che l'accessibilità alle spazzole dal lato collettore e alle portelle laterali lato accoppiamento sia sempre facilmente possibile. Installare la macchina nel rispetto della forma costruttiva e di montaggio IM, del tipo di raffreddamento IC e del grado di protezione IP definiti in sede di ordine e specificati in targa.

Qualora l'utilizzatore non disponesse del disegno d'ingombro delle macchine, lo può richiedere, comunicandone il numero di matricola stampigliato sulla targhetta principale, all'Ufficio Tecnico della SICMEMOTORI.

2.2 Piazzamento

Per le macchine in forma IM 1001 (B3, ad asse orizzontale con piedi), il fissaggio deve essere fatto con 4 viti di diametro adeguato al foro dei piedi (vedi tabella 2.a). In caso di motori doppi o tripli, consultare la SICMEMOTORI.

Il piano di appoggio deve essere uniforme, con tolleranza tale che la differenza massima fra i piedi non sia maggiore di 0,1 mm (se necessario, usare spessori di allineamento) e deve essere in grado di sopportare le coppie generate dalle macchine elettriche (vedi tabella 2.c.).

In caso di macchine a flangia ed asse orizzontale (forme IM3001 B5) o asse verticale (forma IM3011 - V1), il fissaggio alla controflangia deve essere fatto con viti secondo la tabella 2.b ed in numero corrispondente ai fori della flangia. La superficie della controflangia deve essere accuratamente lavorata, per garantire planarità e perpendicolarità all'asse della macchina comandata, con tolleranza almeno corrispondente alla classe normale secondo DIN 42955. Non sono ammessi spessori di allineamento.

Il piano di appoggio e/o la controflangia di applicazione devono essere rigidi, esenti da deformazioni e vibrazioni.

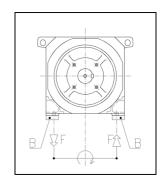
Le macchine con forma costruttive IM2001 e derivate (con albero e flangia) devono essere installate facendo riferimento alla tabella 2.a per quanto riguarda le viti di fissaggio dei piedi e alla tabella 2.b per le viti di fissaggio della flangia.

Motore	Viti *	Coppia di serraggio (Nm) **
NP80	M8 x25	25
NP90	M8 x25	25
NP100	M8 x25	25
P 112	M10x40	50
P 132	M10x40	50
P 160	M12x40	85
P 180	M12x40	85
P 200	M16x40	200
NP225	M16x40	200
NP250	M20x50	400
NP280	M20x60	400
NP315	M24x70	700
NP355	M24x70	700
NP400	M30x70	1370
NP450	M30x90	1370
NP500	M36x100	2150
NP560	M36x120	2150
NP630	M36x120	2150
NP710	M36x130	2150
NP800	M36x130	2150

Tabella 2.a – Dimensioni viti di fissaggio motore su basamento e coppie di serraggio
*La lunghezza della vite è da intendere la lunghezza massima per viti a testa esagonale infilate dal piede verso il basamento

** Le coppie indicate sono per viti metriche a passo grosso materiale 8G

Diametro interasse fori flangia	Viti *	Coppia di serraggio (Nm) **
165	M10X30	50
215	M12X35	85
265	M12X35	85
300	M16X45	200
350	M16X45	200
400	M16X50	200
500	M16X50	200
600	M20X65	400
740	M20X65	400


Tabella 2.b – Dimensioni viti di fissaggio motore su controflangia e coppie di serraggio

* La lunghezza della vite è da intendere la lunghezza massima per viti a testa esagonale infilate dall' interno del motore

verso la controflangia

** Le coppie indicate sono per viti metriche a passo grosso materiale 8G

La tabella 2.c fornisce il valore in N del carico dinamico di corto circuito per ogni grandezza di motore, necessario a calcolare le fondazioni ed i relativi ancoraggi

Taglia	Carico dinamico (*)	Taglia	Carico dinamico (*)	Taglia	Carico dinamico (*)
motore	massimo di	motore	massimo di	motore	massimo di
	corto circuito (N)		corto circuito (N)		corto circuito (N))
NP 80 NS	± 880	NP280KS	± 66.300	NP560KRS	± 102.000
NP 80 NM	± 1.200	NP280KM	± 73.300	NP560KRM	± 118.000
NP 80 NL	± 1.450	NP280KL	± 83.100	NP560KR	± 129.000
NP 90 NR	± 1.570	NP315KS	± 79.700	NP560KS	± 145.000
NP 90 NS	± 2.000	NP315KM	± 89.700	NP560KSM	± 163.000
NP 90 NM	± 2.620	NP315KL	± 101.900	NP560KM	± 181.500
NP 90 NL	± 3.070	NP355KR	± 74.000	NP560KML	± 206.000
NP100NR	± 2.560	NP355KS	± 95.000	NP560KL	± 231.000
NP100NS	± 3.250	NP355KM	± 105.900	NP560KX	± 253.000
NP100NM	± 3.940	NP355KL	± 119.600	NP630KRS	± 116.500
NP100NL	± 4.250	NP355KX	± 135.000	NP630KRM	± 130.000
P 112 NS	± 2.900	NP400KR	± 85.000	NP630KR	± 146.000
P 112 NM	± 3.700	NP400KS	± 110.700	NP630KS	± 161.000
P 112 NL	± 4.480	NP400KM	± 122.400	NP630KSM	± 177.000
P 132 N(K)S	± 4.400	NP400KL	± 137.000	NP630KM	± 196.000
P 132 N(K)M	± 5.550	NP400KX	± 153.900	NP630KML	± 217.000
P 132 N(K)L	± 6.950	NP450KRS	± 75.000	NP630KL	± 245.000
P 132 N(K)X	± 7.870	NP450KRM	± 88.400	NP630KX	± 278.000
P 160 N(K)S	± 8.250	NP450KR	± 94.800	NP710KRS	± 121.000
P 160 N(K)M	± 10.730	NP450KS	± 106.300	NP710KRM	± 137.000
P 160 N(K)L	± 13.200	NP450KSM	± 118.300	NP710KR	± 153.000
P 160 N(K)X	± 14.950	NP450KM	± 133.200	NP710KS	± 170.000
P 180 N(K)S	± 12.900	NP450KML	± 148.800	NP710KSM	± 189.000
P 180 N(K)M	± 16.500	NP450KL	± 167.500	NP710KM	± 208.000
P 180 N(K)L	± 20.800	NP450KX	± 188.700	NP710KML	± 236.000
P 180 N(K)X	± 22.950	NP500KRS	± 85.500	NP710KL	± 261.000
P 200 N(K)S	± 16.700	NP500KRM	± 98.000	NP710KX	± 296.000
P 200 N(K)M	± 21.400	NP500KR	± 107.000	NP800KRS	± 173.000
P 200 N(K)L	± 28.000	NP500KS	± 120.000	NP800KRM	± 195.000
P 200 N(K)X	± 31.500	NP500KSM	± 131.000	NP800KR	± 220.000
NP225N(K)S	± 37.600	NP500KM	± 153.000	NP800KS	± 244.000
NP225N(K)M	± 42.100	NP500KML	± 167.000	NP800KSM	± 274.000
NP225N(K)L	± 47.100	NP500KL	± 191.000	NP800KM	± 306.000
NP250N(K)S	± 49.200	NP500KX	± 218.000	NP800KML	± 342.000
NP250N(K)M	± 54.900			NP800KL	± 385.000
NP250N(K)L	± 60.300			NP800KX	± 432.000

^(*) su ogni area B. La tensione del carico di compressione (+) o di trazione (-) è legata alla reazione elettrodinamica e dipende dal senso di rotazione.

TAB. 2.c - Carichi dinamici di corto circuito

Prudenza!

La base di appoggio delle macchine, sia che si tratti di basamenti in ferro, sia che si tratti di colate di cemento, deve essere fatta da personale esperto in questo tipo di lavoro.

ACCOPPIAMENTO ALLA MACCHINA OPERATRICE

L'organo di accoppiamento ed il tipo di trasmissione va scelto e progettato in base alle particolari condizioni di impiego. La responsabilità della scelta e della progettazione è a carico del cliente: SICMEMOTORI è responsabile della correttezza dei dati tecnici di sua competenza, che fornisce al cliente su richiesta. È necessario, prima del montaggio dell'organo di accoppiamento, rimuovere con adatto solvente la vernice di protezione che ricopre l'estremità d'albero. Evitare l'uso di tela smeriglio. La tolleranza di lavorazione del foro deve essere quella corrispondente al diametro nominale dell'albero indicato sui disegni di ingombro con tolleranza del sistema ISO.

3.1 Calettamento a freddo degli organi di trasmissione (alberi con chiavetta)

I motori della SICMEMOTORI sono sempre equilibrati con mezza chiavetta (salvo richiesta diversa in sede d'ordine). Pertanto gli organi di trasmissione devono anch'essi essere equilibrati con mezza chiavetta.

Calettare l'organo di trasmissione riferendosi alle istruzioni dettagliate del fornitore dell'organo stesso.

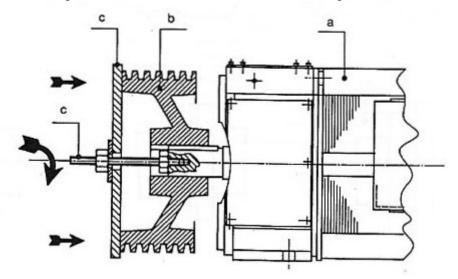


Fig. 3.a – Esempio di calettamento a freddo di organi di trasmissione utilizzante il foro filettato di testa sull'estremità d'albero del motore

- a) **Motore**
- b) Organo di trasmissione
- c) Attrezzo di montaggio

3.2 Calettamento a caldo degli organi di trasmissione (alberi senza chiavetta)

Assicurarsi che il giunto di accoppiamento sia stato equilibrato SENZA chiavetta.

Prima di procedere con l'operazione, controllare i materiali di accoppiamento.

Le dimensioni dell'albero e del foro del mozzo devono essere conformi a quelli indicati sui disegni d'ingombro (tolleranze del Sistema ISO).

I fori dell'olio per le future estrazioni devono essere assolutamente puliti e senza alcuna presenza di residui di lavorazione.

- Scaldare il mozzo per ottenere il gioco necessario per il montaggio; ciò può essere fatto a bagno d'olio a circa 220 °C (il normale punto di incendio per olii è di circa 270 °C; verificare tale valore per l'olio che si sta utilizzando!). Se sono necessarie temperature maggiori, il mozzo deve essere scaldato per induzione o messo in un forno ad aria.
- Per essere certi che il montaggio del mozzo sull'albero avvenga senza difficoltà, controllare il diametro interno del mozzo con un micrometro, prima di cominciare le operazioni di calettamento.

Calettare l'organo di trasmissione riferendosi alle istruzioni dettagliate del fornitore dell'organo stesso.

Prudenza

Se la superficie dell'estremità albero e/o il foro del mozzo sono danneggiati, tale danno deve essere eliminato PRIMA del montaggio tramite pietra indiana.

3.3 Accoppiamento diretto

È consigliabile l'uso di giunti elastici che evitino la trasmissione di eventuali spinte assiali ai cuscinetti.

L'effettuazione di un buon allineamento comporta l'uso di un comparatore e di uno spessimetro per le seguenti operazioni:

- Montare i due semigiunti sul motore e sulla macchina accoppiata, posizionare le due macchine realizzando un primo allineamento grossolano. Stringere le viti di fissaggio dei piedi.
- Applicare il comparatore sui due semigiunti e misurare l'allineamento radiale. Ripetere la misura dopo aver ruotato assieme i due alberi di 45°, di 90° e di 180°.
- Inserire uno spessimetro tra le facce dei semigiunti e misurare la loro distanza. Ripetere la misura a 90°, 180°, 270°.
- Correggere gli errori di allineamento riscontrati nelle operazioni descritte infilando degli spessori tra la base e piedi di fissaggio.
- Avvitare a fondo le viti di fissaggio, ripetere le misure ese l'allineamento è accurato, applicare le spine di registro tra il motore e la base.

Per valori orientativi di tolleranza radiale ed assiale vedi fig. 3.c.

Si ricorda che tra gli organi di trasmissione deve esserci un gioco sufficiente per consentire le dilatazioni assiali dovute al riscaldamento.

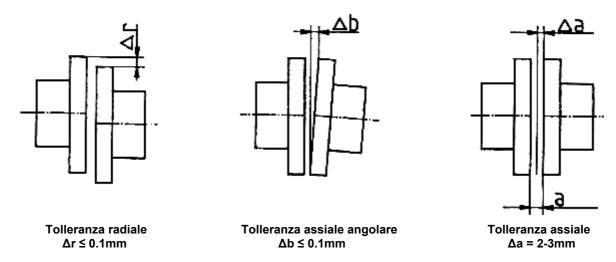


Fig. 3.c Valori orientativi di tolleranza per accoppiamento

Accoppiamento con cinghie e pulegge

Per contenere la sollecitazione radiale sul cuscinetto del motore, conviene scegliere per la puleggia motrice il diametro massimo compatibile con il rapporto di riduzione richiesto e col diametro massimo accettabile per la puleggia mossa. Il diametro scelto in prima approssimazione deve essere verificato calcolando il tiro che ne deriva e confrontandolo con il tiro ammissibile (vedere punto 5.12 per macchine di esecuzione normale). Se la verifica da esito negativo, occorre aumentare il diametro della puleggia, o passare al cuscinetto a rulli, se inizialmente era previsto a sfere, oppure aumentare il diametro dell'albero (interpellare SICMEMOTORI).

Per contenere il tiro sull'albero a parità di coppia conviene aumentare l'angolo della puleggia motrice abbracciato dalle cinghie (aumentare l'interasse fra le due pulegge - contenere il rapporto di riduzione).

Per realizzare un buon accoppiamento a cinghie, occorre anche curare che ci sia un buon parallelismo tra gli alberi e che esista un sistema comodo e sicuro per tendere le cinghie.

4. MESSA IN SERVIZIO

4.1 Collegamenti elettrici

Tutte le macchine sono di norma fornite con scatola cavi completa di morsettiera. I cavi sono contrassegnati dalle lettere riportate nello schema allegato alla macchina.

La marcatura dei terminali è effettuata secondo le Norme IEC 60034-8 o a richiesta secondo le Norme NEMA, CSA ecc.

Per i collegamenti riferirsi agli schemi riportati al par 4.7, collegando la macchina per il senso di rotazione previsto.

Di norma il senso di rotazione può essere indifferentemente orario o antiorario. Talvolta la messa a punto di una macchina può essere stata fatta per un solo senso di rotazione.

In tal caso una freccia sullo scudo LA indica il senso di rotazione predeterminato.

Su richiesta in sede di ordine, al posto della scatola morsetti possono essere talvolta forniti cavi liberi di lunghezza concordata. Anche per questo caso valgono le considerazioni su esposte per la marcatura dei terminali e gli schemi di collegamento.

Attenzione: prima di avviare un motore assicurarsi che il campo separato sia alimentato a piena tensione.

4.2 Collegamento a terra

PERICOLO!

La macchina deve sempre essere collegata all'impianto di terra dello stabilimento dove è installata. Per la messa a terra sono predisposte una vite con rispettiva rondella antiallettante sul gioco statore in posizione visibile ed una vite nella scatola morsetti, entrambe complete di targhetta con contrassegno. Entrambe le viti devono essere collegate all'impianto di messa a terra.

Assicurarsi che non sia rimasta vernice tra le viti e le superfici della macchina. Se necessario,

rimuovere la vernice prima di effettuare il collegamento.

4.3 Ispezioni prima dell'avviamento

Prima di mettere in servizio la macchina o dopo un lungo periodo di inattività è opportuno eseguire le verifiche seguenti:

• Controllare con un Megger a 500 V l'isolamento verso massa dell'indotto e degli avvolgimenti di statore. Il valore rilevato non deve essere inferiore a 1,5 MΩ per motori fino a grandezza 280, a 7MΩ per motori più grandi. L'operazione deve essere eseguita con i cavi di alimentazione scollegati.

ALLARME!

Durante ed immediatamente dopo la misura della resistenza di isolamento, i terminali della macchina sono potenzialmente pericolosi e non devono essere toccati. E' necessario assicurarsi che non vi siano residui di tensione.

Se non esiste questa condizione, le cause ed i rimedi potrebbero essere i seguenti:

- a) *Presenza di polvere*. La polvere non grassa può essere asportata mediante uno straccio pulito ed asciutto o, meglio, con aspirapolvere. La polvere su parti inaccessibili può essere eliminata pulendo energicamente l'interno della macchina con un soffio di aria pulita e secca ad una pressione compresa fra 2-3,5 bar. Togliere prima di questa operazione le portelle di ispezione o di chiusura della macchina. Ripetere la prova di isolamento.
- b) *Presenza di grasso o di olio*. Strofinare con uno straccio inumidito (non impregnato) di solvente dielettrico. Se il problema persiste, smontare la macchina e lavare ed essiccare in forno le parti interessate per 3 o 4 ore ad una temperatura di 100-120°C. Prima di rimettere il motore in servizio ripetere la prova di isolamento.
 - Controllare che i motori asincroni degli eventuali elettroventilatori (o scambiatori di calore) siano predisposti per essere alimentati correttamente dalla rete a corrente alternata disponibile (numero di fasi, tensione, frequenza) e per ruotare nel senso prescritto.
 - Per motori con scambiatore di calore aria-acqua accertarsi che il circuito dell'acqua sia funzionante.
 - Assicurarsi che i contatti del relè di protezione per difetto di ventilazione (pressostato) commutino con il ventilatore in funzione. Nel caso di ventilazione con condotte assicurarsi che la qualità dell'aria ed i dati di portata e di pressione siano rispondenti ai valori prescritti, e controllare la direzione dell'aria di ventilazione.
 - Controllare che i valori delle tensioni di armatura e di eccitazione siano uguali a quelli riportati sulla targa.
 - Verificare che le trecciole delle spazzole siano ben fissate e non interferiscano con le molle.
 - Controllare che le spazzole non abbiano subito danni durante il trasporto; in caso positivo, sostituire le spazzole danneggiate con spazzole nuove di uguale qualità e dimensioni e pulire accuratamente l'interno del motore.
 - Controllare che le spazzole scorrano liberamente dentro i propri cassetti portaspazzole.
 - Verificare che tutti gli accessori e/o i dispositivi di protezione siano stati correttamente collegati e siano funzionanti.

PERICOLO!

I lavori sulla macchina elettrica possono essere fatti solamente se si è assolutamente sicuri che la macchina stessa non è collegata alla rete elettrica.

15

4.4 Dispositivi di protezione consigliati

Tutti gli organi di trasmissione devono essere adeguatamente protetti con carter per evitare contatti con le parti in movimento.

4.5 **Avviamento**

PERICOLO!

La tensione di armatura può essere data alla macchina solamente se l'eccitazione è inserita! Se viene applicata la tensione di armatura senza che l'eccitazione sia inserita o con il circuito di eccitazione aperto o interrotto, la macchina a corrente continua si può distruggere (infatti in tali condizioni la velocità della macchina aumenta fino al cedimento dei banchi cuscinetto o all'esplosione del rotore!).

Prima di avviare la macchina, oltre alle operazioni del paragrafo precedente, accertarsi che:

- possa ruotare liberamente;
- il circuito di eccitazione non sia interrotto;
- i dispositivi di sicurezza per il trasporto (se esistenti) siano stati rimossi.

ALLARME!

La macchina a corrente continua non deve funzionare senza ventilazione, in quanto si riscalderebbe eccessivamente fino a bruciare. Attenzione dunque che i ventilatori siano correttamente funzionanti e che l'acqua di raffreddamento degli scambiatori di calore (ove previsti) circoli nelle quantità e pressioni segnalate sulle targhe degli scambiatori di calore stessi.

Quando la macchina è messa in servizio per la prima volta, è opportuno accertarsi che non vi siano segni visibili di malfunzionamento, quali rumori strani, vibrazioni, ecc. . E' sempre conveniente far funzionare la macchina per qualche tempo a vuoto, prima di applicare il carico. In caso di problemi, consultare il par. 7 e, eventualmente, il SICME SERVICE.

Ispezioni dopo l'avviamento

Dopo l'avviamento della macchina (entro le prime 100 ore di funzionamento) è opportuno eseguire le seguenti verifiche:

a) Controllare che la temperatura dei cuscinetti non superi gli 80°C a regime.

Il surriscaldamento dei cuscinetti è dovuto normalmente ad una delle seguenti cause:

- cattivoalineamento conconseguenti vibrazioni e tendenza al grippaggio;
- spinta assiale o radiale eccessiva;
- eccessiva quantità di grasso. In questo caso occorre fermare il motore, smontare il/i paragrassi ed eliminare con una spatola il grasso in eccesso; quindi rimontare il/i paragrassi.
- b) Verificare che la corrente di eccitazione del campo indipendente sia quella indicata in targa, tenendo presente che la resistenza dell'avvolgimento di campo aumenta del 45% circa da freddo a regime termico raggiunto.
- I valori di targa sono riferiti al funzionamento a regime.
- c) Verificare che la corrente d'armatura sia inferiore o uguale a quella di targa.

Attenzione: un valore di corrente eccessivamente basso provoca un'usura eccessiva delle spazzole con conseguenti rigature del collettore (vedere par. 7.3). Interpellare immediatamente SICME SERVICE.

- d) Verificare che le spazzole formino una patina uniforme di colore grigio-argento sul collettore, la cui presenza è indice di buona commutazione (vedere par. 5.2).
- e) Misurare l'altezza delle spazzole e registrarne il valore.

ALLARME!

Temperatura in servizio

La sovratemperatura massima ammessa dalle Norme IEC per il giogo statore è di 125°C se la macchina è in classe H (105°C se è in classe F, 80°C se è in classe B).

Pur avendo normalmente valori di sovratemperatura ampiamente inferiori, le macchine di ns. costruzione richiedono comunque adeguate precauzioni nei contatti anche accidentali. Inoltre, deve essere accuratamente evitato che materiali facilmente infiammabili siano lasciati a contatto con macchine funzionanti.

Una temperatura esterna dello statore troppo bassa è da attribuire ad un carico di lavoro basso, con possibile insorgere di problematiche legate al funzionamento a basso carico (vedere par. 7.3) In caso, interpellare il SICME SERVICE.

4.7 Schemi elettrici di collegamento

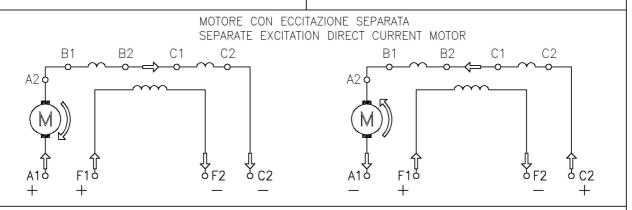
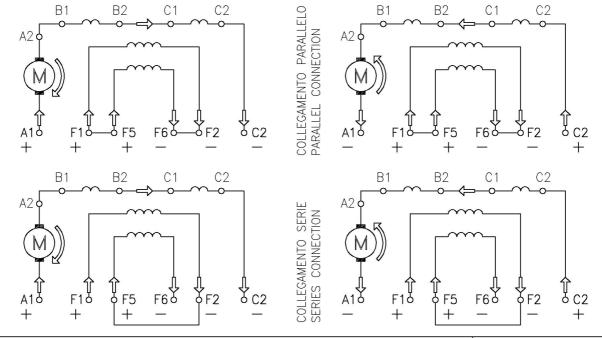

ROTAZIONE ORARIA VISTA LATO ACCOPPIAMENTO ROTAZIONE ANTIORARIA VISTA LATO ACCOPPIAMENTO CON INVERSIONE DI INDOTTO CLOCKWISE ROTATION DRIVE END VIEW COUNTERCLOCKWISE ROTATION DRIVE END VIEW BY ARMATURE REVERSAL MOTORE CON ECCITAZIONE SEPARATA SEPARATE EXCITATION DIRECT CURRENT MOTOR C2 **B1** B2 **B1** B2 C1Ծ B2 δ B2 ₫F2 δF2 F1 MOTORE CON ECCITAZIONE SEPARATA CON POSSIBILITA' DI COLLEGAMENTO SERIE O PARALLELO SEPARATE EXCITATION DIRECT CURRENT MOTOR WITH POSSIBILITY OF PARALLEL/SERIES CONNECTION В1 C1 В1 В2 COLLEGAMENTO PARALLELO PARALLEL CONNECTION A2 Α2 δ B2 δ B2 F5 F6 ₫ F2 F5 F6 F2 A16 C1 C2 В1 В2 C1 C2 В1 B2 A2 COLLEGAMENTO SERIE SERIES CONNECTION F5 δ B2 F16 F5 F6d F66 F2 F2 MARCATURA DEI TERMINALI CON SIGLE IEC 34-8 NOMENCLATURA TERMINAL MARKINGS IN ACCORDANCE WITH IEC 34-8 NOMENCLATURE A1-A2AVVOLGIMENTO INDOTTO ARMATURE WINDING AVVOLGIMENTO POLI AUSILIARI COMMUTATING WINDING B1-B2 C1-C2 AVVOLGIMENTO DI COMPENSAZIONE COMPENSATING WINDING F1-F2 / F5-F6 AVVOLGIMENTO ECCITAZIONE SEPARATA SEPARATE FIELD WINDING A TERMINE DI LEGGE CI RISERVIAMO LA PROPRIETA' DI QUESTO DISEGNO CON IL DIVIETO DI RIPRODURLO O DI RENDERLO NOTO A TERZI SENZA LA NOSTRA AUTORIZZAZIONE. MOTORE A CORRENTE CONTINUA GRANDEZZE 71 - 450 SICMEMOTORI S.p.A. SCHEMA ELETTRICO MOTORE STANDARD D.C. MOTOR TYPE 71 CONNECTION DIAGRAM FOR STANDARD MOTOR TORINO - ITALIA

Fig. 4.7.1 Schema collegamenti elettrici motore – macchine a 2-4 poli Marcatura dei terminali con sigle IEC 34-8


ROTAZIONE ORARIA VISTA LATO ACCOPPIAMENTO

CLOCKWISE ROTATION DRIVE END VIEW

ROTAZIONE ANTIORARIA VISTA LATO ACCOPPIAMENTO CON INVERSIONE DI INDOTTO COUNTERCLOCKWISE ROTATION DRIVE END VIEW BY ARMATURE REVERSAL

MOTORE CON ECCITAZIONE SEPARATA CON POSSIBILITA' DI COLLEGAMENTO SERIE O PARALLELO SEPARATE EXCITATION DIRECT CURRENT MOTOR WITH POSSIBILITY OF PARALLEL/SERIES CONNECTION

MARCATURA DEI TERMINALI TERMINAL MARKINGS IN AC	NOMENCLATURA NOMENCLATURE		
AVVOLGIMENTO INDOTTO	/	ARMATURE WINDING	A1-A2
AVVOLGIMENTO POLI AUSILIARI	/	COMMUTATING WINDING	B1-B2
AVVOLGIMENTO DI COMPENSAZIONE	/	COMPENSATING WINDING	C1-C2
AVVOLGIMENTO ECCITAZIONE SEPARATA	/	SEPARATE FIELD WINDING	F1-F2 / F1-F6
A TERMINE DI LEGGE CI RISERVIAMO LA PROPRIETA' RIPRODURLO O DI RENDERLO NOTO A TERZI SENZA			

MOTORE A CORRENTE CONTINUA GRANDEZZE 500 - 800 SCHEMA ELETTRICO MOTORE STANDARD D.C. MOTOR TYPE 500 - 800 CONNECTION DIAGRAM FOR STANDARD MOTOR

Fig. 4.7.2 Schema collegamenti elettrici motore – macchine a 6-8 poli Marcatura dei terminali con sigle IEC 34-8

ROTAZIONE ORARIA VISTA LATO COLLETTORE ROTAZIONE ANTIORARIA VISTA LATO COLLETTORE CON INVERSIONE DI INDOTTO COUNTERCLOCKWISE ROTATION COMMUTATOR END VIEW CLOCKWISE ROTATION COMMUTATOR END VIEW BY ARMATURE REVERSAL MOTORE CON ECCITAZIONE SEPARATA SEPARATE EXCITATION DIRECT CURRENT MOTOR A2d MOTORE CON ECCITAZIONE SEPARATA CON POSSIBILITA' DI COLLEGAMENTO SERIE O PARALLELO SEPARATE EXCITATION DIRECT CURRENT MOTOR WITH POSSIBILITY OF PARALLEL/SERIES CONNECTION COLLEGAMENTO PARALLELO PARALLEL CONNECTION COLLEGAMENTO SERIE SERIES CONNECTION F5 F6 d F5 φF2 F6d φF2 LA MARCATURA DEI TERMINALI CON SIGLE NEMA E': NOMENCLATURA TERMINAL MARKINGS IN ACCORDANCE WITH NEMA IS: NOMENCLATURE AVVOLGIMENTO INDOTTO ARMATURE WINDING A2-A1AVVOLGIMENTO POLI AUSILIARI COMMUTATING WINDING AVVOLGIMENTO DI COMPENSAZIONE COMPENSATING WINDING AVVOLGIMENTO ECCITAZIONE SEPARATA SEPARATE FIELD WINDING F1-F2 / F5-F6 A TERMINE DI LEGGE CI RISERVIAMO LA PROPRIETA' DI QUESTO DISEGNO CON IL DIVIETO DI RIPRODURLO O DI RENDERLO NOTO A TERZI SENZA LA NOSTRA AUTORIZZAZIONE. MOTORE A CORRENTE CONTINUA > SICMEMOTORI S.p.A. SCHEMA ELETTRICO MOTORE STANDARD D.C. MOTOR CONNECTION DIAGRAM FOR STANDARD MOTOR TORINO - ITALIA

Fig. 4.7.3 Schema collegamenti elettrici motore – macchine a norme NEMA

ACCESSORI INSTALLATI INSTALLED ACCESSORIES							
	NOMENCLATURA NOMENCLATURE		ATURA TEI VAL MARK 2				
	TERMOPROTETTORE KLIXON DI INTERVENTO BOBINA POLI AUSILIARI KLIXON THERMAL PROTECTOR FOR CUT-OFF COMMUTATING POLE WINDING	PK1	PK2				
0/	TERMOPROTETTORE KLIXON DI INTERVENTO BOBINA POLI PRINCIPALI KLIXON THERMAL PROTECTOR FOR CUT-OFF MAIN POLE WINDING	PK3	PK4				
	TERMOPROTETTORE KLIXON DI ALLARME BOBINA POLI AUSILIARI KLIXON THERMAL PROTECTOR FOR ALARM COMMUTATING POLE WINDING	PK5	PK6				
1 2	TERMOPROTETTORE KLIXON DI ALLARME BOBINA POLI PRINCIPALI KLIXON THERMAL PROTECTOR FOR ALARM MAIN POLE WINDING	PK7	PK8				
	TERMOSONDA PT 100 \(\Omega\) O°C DI INTERVENTO BOBINA POLI AUSILIARI PT 100 \(\Omega\) O°C THERMAL DETECTOR FOR CUT—OFF COMMUTATING POLE WINDING	PT1	PT2	PT3			
$ \uparrow $	TERMOSONDA PT 100 \(\Omega\) O°C DI INTERVENTO BOBINA POLI PRINCIPALI PT 100 \(\Omega\) O°C THERMAL DETECTOR FOR CUT-OFF MAIN POLE WINDING	PT4	PT5	PT6			
	TERMOSONDA PT 100 Ω 0°C DI ALLARME BOBINA POLI AUSILIARI PT 100 Ω 0°C THERMAL DETECTOR FOR ALARM COMMUTATING POLE WINDING	PT7	PT8	PT9			
1 2 3	TERMOSONDA PT 100Ω 0°C DI ALLARME BOBINA POLI PRINCIPALI PT 100Ω 0°C THERMAL DETECTOR FOR ALARM MAIN POLE WINDING	PT10	PT11	PT12			
	TERMOSONDA PTC DI INTERVENTO BOBINA POLI AUSILIARI PTC THERMAL DETECTOR FOR CUT—OFF COMMUTATING POLE WINDING	PC1	PC2				
	TERMOSONDA PTC DI INTERVENTO BOBINA POLI PRINCIPALI PTC THERMAL DETECTOR FOR CUT-OFF MAIN POLE WINDING	PC3	PC4				
	TERMOSONDA PTC DI ALLARME BOBINA POLI AUSILIARI PTC THERMAL DETECTOR FOR ALARM COMMUTATING POLE WINDING	PC5	PC6				
1 2	TERMOSONDA PTC DI ALLARME BOBINA POLI PRINCIPALI PTC THERMAL DETECTOR FOR ALARM MAIN POLE WINDING	PC7	PC8				
0 0 0 0 2 1 3	MICROSWITCH PER CONTROLLO USURA SPAZZOLE TIPO MC1 ED MC1p MICROSWITCH FOR BRUSHES WEAR CONTROL DEVICE TYPE MC1 AND MC1p	MK1	MK2	MK3			
N O A2	USCITE PER CONTROLLO USURA SPAZZOLE DA CABLARE AL RELE' AI2 BRUSHES WEAR CONTROL TERMINALS TO CONNECT TO AI2 RELAY	A11					
- o A1	BRUSHES WEAR CONTROL TERMINALS TO CONNECT TO AIZ RELAT		A21				
	TERMOSONDA PT 100 Ω 0°C CUSCINETTO LATO ACCOPPIAMENTO PT 100 Ω 0°C THERMAL DETECTOR ON DRIVE END BEARING	RK1	RT1	RS1			
1 2 3	TERMOSONDA PT 100 Ω 0°C CUSCINETTO LATO COLLETTORE PT 100 Ω 0°C THERMAL DETECTOR ON COMMUTATOR END BEARING	RK2	RT2	RS2			
Z Z Z	RESISTENZA ANTICONDENSA TRIFASE THREE—PHASE SPACE HEATER	R1	R2	R3			
1 2 3	RESISTENZA ANTICONDENSA MONOFASE SINGLE-PHASE SPACE HEATER	R1	R2				
NOTE:							

Fig. 4.7.4 Accessori installati

MANUTENZIONE 5.

Un programma di manutenzione preventiva accuratamente predisposto può ridurre al minimo i guasti, riducendo nel contempo il costo d'esercizio.

Il programma di manutenzione deve essere studiato da tecnici competenti, che tengano nel dovuto conto le caratteristiche della macchina elettrica utilizzata, ma anche quelle dell'impiego particolare a cui è destinata e dell'ambiente in cui è chiamata ad operare. Intendiamo per impiego della macchina il ruolo più o meno strategico che le è assegnato nel complesso dell'impianto, da cui dipenderà l'accuratezza e la frequenza delle operazioni di controllo e di manutenzione preventiva da programmare.

Intendiamo per ambiente il complesso delle caratteristiche di temperatura, umidità, vibrazioni sollecitazioni meccaniche eccezionali, nonché presenza di agenti chimici aggressivi, a cui la macchina può essere sottoposta nel luogo di installazione; anche dall'ambiente nel suo complesso dipenderà in parte il tipo e la frequenza degli interventi di manutenzione preventiva.

Infine ogni operazione di manutenzione deve essere eseguita da personale sufficientemente esperto, e sicuramente edotto sul contenuto delle presenti Istruzioni, che devono sempre essere a sua immediata disposizione.

SICMEMOTORI consiglia vivamente la preparazione da parte dell'utilizzatore di una scheda di manutenzione specifica per ogni macchina cc installata, ed il suo costante aggiornamento da parte di personale esperto.

Dopo qualunque interruzione di funzionamento a causa di interventi delle apparecchiature di protezione o per qualsivoglia causa, è necessaria una ispezione approfondita della macchina e, se necessario, degli altri componenti dell'impianto. Le cause dell'interruzione del servizio devono essere chiarite PRIMA di rimettere in servizio la macchina.

PERICOLO!

Prima di effettuare qualsiasi lavoro sulla macchina elettrica disconnetterla dalla rete!

5.1 Manutenzione programmata

Nella tabella 5.a viene indicato un programma-tipo di manutenzione programmata; resta inteso che detto programma deve essere adattato alle necessità del cliente, e che SICMEMOTORI è a disposizione su richiesta per collaborare a studiare gli adattamenti più opportuni in occasione della messa in servizio e del primo periodo di esercizio.

Tabella 5.a – Manutenzione programmata – programma tipo

Componente	Operazioni	Intervallo (H)	Vedere al punto
	Verifica delle vibrazioni di fondo e della rumorosità sulle sedi dei cuscinetti. Valori di riferimento Norme ISO 3945 (a)	annuale	
Macchina completa	Rilevamento di eventuali rumori anomali (colpi, strisciamenti, ecc.) (a)	settimanale	
	Verifica visiva dello stato di pulizia interno della macchina	mensile	
	Verifica visiva della superficie del collettore	settimanale	
Collettore	Verifica eccentricità (a)	1200	
	Pulizia accurata del collettore con appositi bastoncini di gomma speciale e pietra pomice	3500-4000	5.2
	Verifica usura e gioco fra spazzola e cassetto portaspazzole		5.4
Spazzole	(a) (b)	400-500	5.5
	. , , ,		5.6
Porta-spazzole	Verifica efficienza molle premispazzole	400-500	
Avvolgimenti di statore e rotore	Misurare la resistenza di isolamento (con temperatura della carcassa di circa 25°C) (a)	900-1200 (300-600)*	4.3
Statule e l'utule	Pulizia generale degli avvolgimenti	3500-4000	4.3
Cavi di alimentazione	Controllare il serraggio dei cavi ai morsetti della macchina. Se necessario procedere con il loro serraggio	annuale	
	Misura della temperatura (h) (i)	1200	5.9
Cuscinetti	Rilubrificazione e ripristino grasso (escluso cuscinetti autolubrificati) (h) (j) (k)	vedere targa motore	5.13 5.14 5.15
	Sostituzione completa del grasso dei cuscinetti	3 anni	
	Verifica presenza ruggine nei cuscinetti (g)	3 anni	
Isolamenti	Verifica valore resistenza di isolamento da effettuare con il Megger	900-1200 (300-600)*	4.3
Filtri	Verifica intasamento filtri	settimanale	5.18
Scambiatori di calore aria-acqua e aria-aria	Vedere appendice		
Viti e bulloni di fissaggio	Verifica che non ci siano eventuali allentamenti (la verifica è opportuna soprattutto per i collegamenti elettrici della morsettiera in quanto contatti insufficienti possono originare surriscaldamenti localizzati)	1800-2200	

Componente	Operazioni	Intervallo (H)	Vedere al punto
	Controllare lo stato dell'allineamento macchina-carico e	biennale e ad	
Giunti di	registrare le misurazioni (f)	ogni smontaggio	
accoppiamento	Fare la manutenzione del giunto di accoppiamento secondo le	_	
	istruzioni del costruttore del giunto	_	
Elettroventilatore	Verificare la presenza di eventuale ruggine o sporcizia	semestrale	
Liettioveritiiatore	Se previsto, ingrassare i cuscinetti del motore asincrono (g)	Semestrate	
Accessori vari	Controllarne la corretta funzionalità	annuale	
Spazzola di messa	Verificare che scorra liberamente nel suo portaspazzole.		
a terra (se	Pulire la superficie di contatto tra spazzola ed albero con carta	annuale	
esistente)	vetrata molto fine. (a) (b)		

^{*} Ambienti umidi

- Confrontare con le misure o osservazioni precedenti
- Calcolare il consumo in mm per 1000 ore di servizio a confrontare con le misure precedenti; con questa misura si ottiene (b) una buona indicazione sul collettore e sul comportamento della commutazione
- Rimuovere l'eventuale ruggine usando una pietra a olio e quindi coprire la superficie con uno strato anticorrosivo
- Dipende dalla contaminazione dell'aria ambiente (d)
- (e) Dipende dalla contaminazione dell'acqua
- (f) Se le vibrazioni aumentano, ispezionare immediatamente o abbreviare gli intervalli di ispezione
- Rimuovere la ruggine. (g)
- Per i cuscinetti lubrificati a grasso (h)
- Confrontare con le misure precedenti (i)
- (j) Osservare gli intervalli di lubrificazione indicati sulla targa della macchina a corrente continua. Macchine che stanno molto ferme hanno bisogno di una rilubrificazione almeno annuale (in quanto il grasso può invecchiare o si può creare della condensa all'interno del cuscinetto)
- Non appena sopravvengono fenomini quali vibrazioni, sovratemperature, rumori, o quando bisogna comunque smontare (k) la macchina. L'esperienza ci dice che i problemi ai cuscinetti sono causati per la massima parte dal loro consumo, piuttosto che da fatica del materiale. Comunque, il consumo dipende a sua volta dalle condizioni di funzionamento.

Di seguito vengono date istruzioni particolari per la manutenzione relativa al collettore, alle spazzole, ai cuscinetti ed ai filtri per l'aria.

5.2 Collettore

Il collettore è la parte più delicata della macchina a corrente continua e quindi la più sensibile ad ogni abuso. In condizioni normali il collettore può richiedere poca manutenzione all'infuori di ispezioni periodiche. Indice di buon funzionamento è la patina uniforme che si forma in esercizio sul collettore. Il colore della patina può variare in funzione delle sostanze presenti nell'ambiente. In questo caso il collettore non richiede attenzioni di sorta, all'infuori della periodica pulizia.

Attenzione!

La patina che si forma sul collettore non deve essere rimossa, neanche quando si sostituiscono le spazzole.

Qualora la superficie del collettore si presenti scabra o ruvidaoconleggere solcature, è opportuna una ripassata con pietra carborundum o pietra pomice.

Occorre inoltre verificare l'eccentricità del collettore assicurandosi che non superi il valore di 0.05 mm.

Qualora ciò non si verificasse o la superficie risultasse molto ruvida e con presenza di solcature o piste, è necessario sottoporre il collettore a tornitura. (Vedere punto 5.3)

Tornitura, smicatura e lucidatura del collettore 5.3

Queste operazioni vanno eseguite solo da personale esperto.

Il centraggio deve essere posizionato sulla sede dei cuscinetti per consentire la perfetta concentricità con la superficie del collettore.

Il diametro minimo di tornitura al disotto del quale non è lecito andare, è indicato con apposita tacca circolare sulla superficie frontale del collettore (vedi figura 5.3.a). Per i collettori bandati il diametro minimo di tornitura coincide con il diametro esterno del bandaggio (vedi figura 5.3.b).

Dopo la tornitura deve essere effettuata l'operazione di smicatura con apposita fresa, oppure a mano con seghetto di spessore appropriato. L'esecuzione della smicatura deve essere effettuata nel rispetto delle indicazioni riportate in tabella e nelle figg 5.3.c e

A smicatura ultimata occorre eliminare la bava e gli spigoli vivi sulle superfici delle lamelle con opportuno raschietto. La lucidatura del collettore è l'ultima operazione e va eseguita con pietra pomice o con carta abrasiva finissima n. 3/0. Aspirare la polvere metallica che si è prodotta e rimettere in servizio.

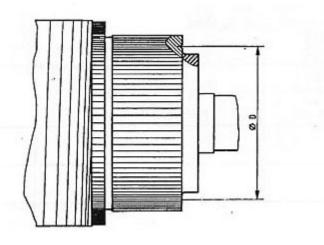


Fig. 5.3.a – Diametro minimo di tornitura per collettori stampati e a coda di rondine

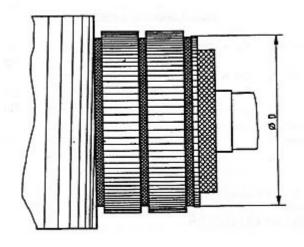


Fig. 5.3.b – Diametro minimo di tornitura per collettori bandati

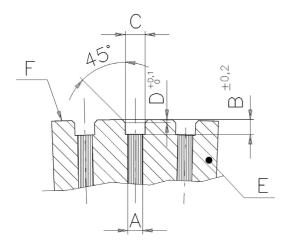


Fig. 5.3.c – Smicatura del collettore Motori grandezze 80-800

E – Lamella di rame

F - Superficie del collettore

A (mm)	B (mm)	C (mm)	D(mm)
Spessore nominale della micanite	Profondità di fresatura	Larghezza di fresatura	smusso
0.60	1.2	1.0	0.25x45°
0.80	1.2	1.2	0.25x45°
1.00	1.5	1.4	0.5x45°
1.2	1.8	1.6	0.5x45°

Profondità e larghezza di fresatura della mica – Motori grandezza 80-800

Corretto - Right - Correct

Fig. 5.3.d – Esecuzioni corrette o errate della smicatura

Errato - Wrong - Non correct

5.4 Commutazione

Attraverso la verifica visiva della commutazione si può facilmente riconoscere se la macchina funziona regolarmente oppure se presenta anomalie.

Per avere una guida alla valutazione della qualità della commutazione occorre riferirsi all'Istruzione nº 1.00.49.0113.0. (tabella 5.c) di seguito riportata.

Alcune anomalie della commutazione possono essere evitate attraverso un accurato controllo delle spazzole, come descritto ai punti seguenti (da 5.5 a 5.7).

Anche l'aspetto del collettore è un indice importante della salute della macchina.

5.5 Spazzole

Le spazzole devono essere del tipo consigliato dalla SICMEMOTORI. Ogni eventuale cambiamento del tipo deve essere preventivamente autorizzato per iscritto da SICMEMOTORI.

Attenzione!

L'utilizzo di spazzole di qualità diversa non preventivamente autorizzato fa automaticamente decadere la garanzia del motore.

L'usura accentuata delle spazzole può essere provocata da una pressione insufficiente delle stesse. Il riscaldamento eccessivo del collettore può viceversa essere dovuto alla pressione troppo elevata delle spazzole.

Eccessivo consumo delle spazzole e rigatura del collettore possono dipendere dal fatto che la macchina lavora per lunghi periodi a carico molto ridotto.

I rimedi corrispondenti proposti sono presentati al punto 7.3.

5.6 Manutenzione delle spazzole

PERICOLO!

Prima di effettuare qualsiasi lavoro sulla macchina elettrica disconnetterla dalla rete!

Occorre periodicamente accertarsi del corretto montaggio e collegamento elettrico delle spazzole, come segue:

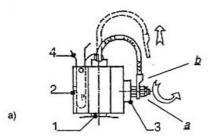
- le spazzole devono essere libere di scorrere nel cassetto portaspazzole (gioco compreso fra 0,1 e 0,3 mm);
- le spazzole devono essere ben collegate elettricamente (cavetti ben fissati alle spazzole, integri, correttamente collegati alle corrispondenti viti dell'arco portaspazzole)
- la pressione esercitata dalla molla sulla spazzola deve essere compresa fra i valori indicati nella tabella 5.b.

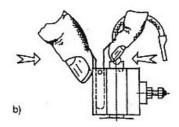
Grandezza motore	Pressione molla (cN/cm²)
80-450	200-250
500	225-250
560-630	250-290
710-800	250-290

Tabella 5.b - Pressione delle molle sulle spazzole

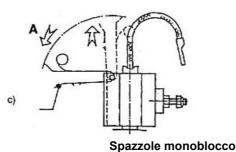
SICMEMOTORI TORINO		I DI COMMUTAZIONE K OF COMMUTATION	SPECIFICA TECNICA N° 1.00.49.0113.0						
RAPPRESENTAZIONE DIAGRAM	INDICE INDEX	DESIGNAZION DESCRIPTION							
	1	NERO BLACK							
	1 1/4	SCINTILLE INTERMITTENTI INTERMITTENT SPARKINGS							
	1 1/2	QUALCHE SCINTILLA SEVERAL SPARKINGS							
	1 3/4	NUMEROSE SCINTILLE NUMEROUS SPARKINGS							
	2	PROIEZIONI INTERMITTENTI INTERMITTENT STREAMERS							
	2 1/4	QUALCHE PROIEZIONE SEVERAL STREAMERS							
-******	2 1/2	NUMEROSE PROIEZIONI NUMEROUS STREAMERS							
	3	NUMEROSE PROIEZIONI CON LARGE AND CONTINUOUS ST							
SCINTILLE SENZA PRO • SPARKINGS WITHOUT S		SCINTILLE CON PROIEZIONI X SPARKINGS WITH STREAMER	(INCANDESCENTE) S						
I LIMITI ACCETTABILI, AMMESSI SONO : REGIME NORMALE DA 1 A 1 1/2 REGIME DI SOVRACCARICO 2									
USUALLY ADMISSIBLE	USUALLY ADMISSIBLE LIMITS ARE: NORMAL OPERATING CONDITIONS 1 TO 1 1/2 OVERLOAD CONDITIONS 2								

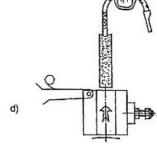
Tabella 5.c - Indici di commutazione

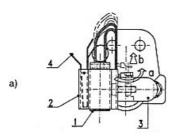

5.7 Sostituzione delle spazzole

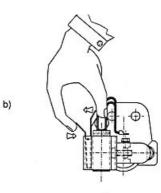


PERICOLO!

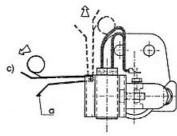

Prima di effettuare qualsiasi lavoro sulla macchina elettrica disconnetterla dalla rete!


Le spazzole usurate (che presentano pericolo di contatto col collettore della trecciola di fissaggio del cavetto alla spazzola stessa) devono essere sostituite senza indugio. La sostituzione deve essere preferibilmente fatta per tutte le spazzole contemporaneamente. Le relative operazioni sono illustrate in figura 5.d.





- 1)Spazzola
- 2)Cassetto portaspazzola
- 3)Sostegno portaspazzola
- 4)Supporto portamolla



- 1)Spazzola
- 2)Cassetto portaspazzola
- 3)Sostegno portaspazzola
- 4)Supporto portamolla

Spazzole gemellari

- a) Accertarsi che il motore sia elettricamente scollegato
- b) Allentare il dado di bloccaggio del capocorda <u>a</u> e sfilare il capocorda <u>b</u>
- c) Premere tra il pollice e l'indice i lembi del supporto portamolla e sganciarlo
- d) Sollevare il supporto portamolla fino all'arresto, ruotarlo in posizione di riposo secondo la freccia A
- e) Sfilare la spazzola
- f) Inserire la nuova spazzola
- g) Serrare il dado di bloccaggio <u>a</u> del capocorda <u>b</u>
- h) Riagganciare il supporto portamolla
- i) Verificare il corretto agganciamento del supporto portamolla al cassetto e verificare eventuali interferenze o eccesivi giochi fra la nuova spazzola e il vecchio cassetto. Tale operazione può essere facilamente effettuata tirando la spazzola dalla trecciola e facendola scorrere per tutta la lunghezza del cassetto.

Fig. 5.d - Sostituzione delle spazzole

In generale, le spazzole devono essere sostituite quando il loro consumo è arrivato all'altezza della scritta del tipo di spazzola presente sulla spazzola stessa (questa scritta agisce come riferimento per determinare il momento della sostituzione della spazzola), per evitare il contatto fra la trecciola di fissaggio alla grafite ed il collettore.

Usare sempre spazzole di qualità uguale a quelle originali e cambiare eventualmente qualità solo dopo aver ottenuto parere favorevole dal Servizio Assistenza SICMEMOTORI.

Attenzione!

L'utilizzo di spazzole di qualità diversa non preventivamente autorizzato fa automaticamente decadere la garanzia del motore.

Una guida generica all'impiego delle varie qualità di spazzole è esposta nella tabella 5.e, dalla quale risultano anche le qualità che possono essere considerate equivalenti secondo la ns. esperienza.

La superficie delle spazzole nuove a contatto col collettore deve essere formata, seguendo la direzione prevalente di rotazione, se è nota, mediante tela smeriglio a grana non troppo grossa, e facendo attenzione a non rompere o arrotondare gli spigoli.

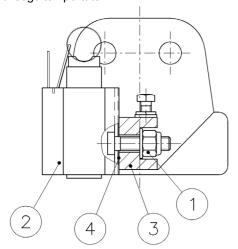
A tal fine è opportuno far scorrere sotto le spazzole una striscia di tela smeriglio larga quanto il collettore. La polvere di carbone deve essere accuratamente asportata.

Esecuzione della	a macchina (IP-IC)	Q	ualità consigliata	1	
Ambiente normale	Ambiente acido	(1)	(2)	(3)	4
PVA-CBA-BPVA-PV-BCA		RE59W	EG319P		351AN6
(IP23-IP44-IP23-IP23-IP23)		RE60N6	EG319PJ		
(IC06-IC37-IC06-IC01-IC17)		RE60N7	EG319Pi		
	PVA-CBA-BPVA-PV-BCA (IP23-IP44-IP23-IP23) (IC06-IC37-IC01-IC17)	RE60N7			
	– CBARO – (IP44-IC666)			EG571	
(11 44 100011)	(11 44 10000)			20071	
CNV - (IP44-IC0041) Tensione di ar	RE92N7 RE54Z1	EG389P			
CNV - (IP44-IC0041) Tensione di a	RE92M2	M621			

Tabella 5.e - Spazzole di qualità normale

- (1) Risomesa Ringsdorf
- (2) Il Carbonio Le Carbone-Lorraine
- (3) Morganite Italiana Morganite Carbon Limited
- (4) Toyo Tanso

In caso di macchina con dispositivo controllo usura spazzole, accertarsi di collegare correttamente le spazzole speciali al dispositivo stesso.


5.7.1 Sostituzione dei portaspazzole

PERICOLO!

Prima di effettuare qualsiasi lavoro sulla macchina elettrica disconnetterla dalla rete!

Quando i cassetti portaspazzole presentano evidenti segni di usura quali bruciature, solchi provocati da flash, oppure quando il gioco fra spazzola e portaspazzola è molto grande (vedere par. 5.4 5.5 5.6) occorre sostituire i portaspazzole stessi riferendosi alle istruzioni di seguito riportate.

- a) Accertarsi che il motore sia elettricamente scollegato
- b) Rimuovere la spazzola secondo le istruzioni al par. 5.7
- c) Rimuovere il dado pos. 1
- d) Sfilare il portaspazzole pos. 2
- e) Inserire il nuovo portaspazzole avendo cura di allineare il cassetto stesso con la dentatura pos. 4 presente sul sostegno portaspazzole pos. 3
- f) Serrare nuovamente il dado pos. 1
- g) Rimontare la spazzola secondo le istruzioni al paragrafo 5.7
 - 1 Dado fissaggio cassetto portaspazzole
 - 2 Cassetto portaspazzole
 - 3 Sostegno portaspazzole
 - 4 dentatura

5.8 Cuscinetti a rotolamento

Nei paragrafi seguenti con LA si intende lato accoppiamento e con LOA si intende lato opposto accoppiamento.

Le macchine di questa gamma sono normalmente previste con cuscinetti a rotolamento. Tutti i cuscinetti utilizzati dalla SICMEMOTORI sono con gioco maggiorato (C3), e così devono essere assolutamente i ricambi.

Normalmente, il cuscinetto LOA è a sfere (salvo sui motori 710-800, che è a rulli); il cuscinetto LA può invece essere a sfere o a rulli (sulle grandezze 710-800 sono applicati un cuscinetto a sfere ed uno a rulli).

Nei motori grandezza 800 lo scudo LOA è isolato per eliminare gli effetti dannosi provocati sui cuscinetti da eventuali correnti d'albero. I tipi di cuscinetti utilizzati sono indicati nella tabella 5.f e sulla targa del motore. In caso di incongruenza, fa fede quanto riportato sulla targa.

5.9 Vita utile dei cuscinetti

La scelta dei cuscinetti è fatta da SICMEMOTORI in base ai dati dei cataloghi dei fornitori ed al tipo di accoppiamento, e prevede una vita teorica per:

- accoppiamento diretto (assenza di carichi radiali):
- motori grandezze 80-112: 60000ore;
- motori grandezze 132-800: 80.000 ore;
- accoppiamento indiretto con carichi radiali motori grandezze 80-450: 20.000 ore.

Per i motori grandezze 500-800 previsti per accoppiamento indiretto si prega di consultare preventivamente la SICMEMOTORI.

La vita teorica è calcolata per condizioni di esercizio normali, ossia per servizio normale (servizio continuo con carico inferiore o uguale al nominale, senza bruschi sovraccarichi o inversioni di marcia) con accoppiamento normale diretto mediante giunto elastico o indiretto mediante pulegge e cinghie con diametro della puleggia motrice, tiro delle cinghie e baricentro del tiro stesso entro i limiti prescritti, (vedere punto 5.12), in ambiente normale (senza vibrazioni o colpi, asciutto, pulito, con temperatura ambiente massima di 40°C). La vita teorica non può essere oggetto di garanzia (perché si tratta di un valore statistico, che non può essere utilizzato senza cautela nel caso singolo), e viene da SICMEMOTORI trasmessa al cliente sulla base delle informazioni ricevute dal suo fornitore. La vita utile effettiva del cuscinetto dipende in larga parte dal servizio particolare, e dalla manutenzione più o meno efficiente. La determinazione di un valore ragionevole di vita utile effettiva, da prendere in considerazione per un piano di manutenzione programmata, è necessariamente affidata al Servizio Manutenzione dell'utilizzatore, e deve basarsi sull'assiduo e sistematico controllo della macchina in esercizio.

Ispezioni ai cuscinetti

Le ispezioni devono essere oggetto di un piano preciso di manutenzione programmata, con lo scopo di tenere sotto controllo:

- la sovratemperatura, che non deve mai superare i 70°C a regime. Una sovratemperatura più elevata denota in genere un deterioramento delle condizioni di accoppiamento con sollecitazioni radiali o assiali non accettabili:
- il rumore. Non si devono percepire colpi più o meno regolarmente intervallati. Eventuali colpi sono il sintomo del deterioramento di uno o più elementi volventi. Al primo insorgere di rumori anormali, occorre predisporre una sollecita, approfondita verifica dello stato del cuscinetto (usura delle piste, consumo della gabbia, gioco fra anello esterno e sede, spinte esterne, ecc.) a macchina ferma e smontata.

All'aggravarsi dei fenomeni suddetti o al primo sospetto di guasto a un cuscinetto occorre disporre la sostituzione urgente, per evitare il pericolo di guasti gravi alla macchina (vedi punto 6.5 e 6.6).

Dati generali sui cuscinetti (macchine standard)

Le indicazioni che seguono (da par. 5.12 a 5.17) sono fornite per agevolare la stesura di un piano di manutenzione programmato.

Tipi di cuscinetti e carichi radiali ammessi (macchine standard)

I tipi di cuscinetti usati ed i cariche radialiammessi sull'estremità d'albero delle macchine normali della SICMEMOTORI sono indicati nella tabella 5.f Occorre comunque sempre fare riferimento ai tipi di cuscinetti indicati sulla targhetta della macchina a corrente continua. In caso di informazioni discrepanti, fanno fede quelle stampigliate sulla targhetta.

Grandezza		Cusci	netto LA	Cuscinetto LOA			
motore	Tipo		CodiceSICMEMOTORI		Tipo	Codice SICMEMOTORI	
NP 80	Sfere	6305-2Z-C3	8.3.09.19.025.0	Sfere	6204-2Z-C3	8.3.09.10.020.0	
NP 90	Sfere	6306-2Z-C3	8.3.09.19.030.0	Sfere	6305-2Z-C3	8.3.09.19.025.0	
NP100	Sfere	6308-2Z-C3	8.3.09.19.040.0	Sfere	6306-2Z-C3	8.3.09.19.030.0	
P 112	Sfere	6308-2Z-C3	8.3.09.19.040.0	Sfere	6306-2Z-C3	8.3.09.19.030.0	
P 132	Sfere	6310-2Z-C3	8.3.09.19.050.0	Sfere	6308-2Z-C3	8.3.09.19.040.0	
P 160	Sfere	6312-2Z-C3	8.3.09.19.060.0	Sfere	6309-2Z-C3	8.3.09.19.045.0	
P 180	Sfere	6312-2Z-C3	8.3.09.19.060.0	Sfere	6310-2Z-C3	8.3.09.19.050.0	
P 200	Sfere	6314-Z-C3	8.3.09.18.070.0	Sfere	6314-Z-C3	8.3.09.18.070.0	
NP225	Rulli	NU2218-C3	8.3.09.75.090.0	Sfere	6315-C3	8.3.09.17.075.0	
NP250	Rulli	NU2220-C3	8.3.09.75.100.0	Sfere	6318-C3	8.3.09.17.090.0	
NP280	Rulli	NU2220-C3	8.3.09.75.100.0	Sfere	6318-C3	8.3.09.17.090.0	
NP315	Rulli	NU321-C3	8.3.09.63.105.0	Sfere	6321-C3	8.3.09.17.105.0	
NP355	Rulli	NU324-C3	8.3.09.63.120.0	Sfere	6324-C3	8.3.09.17.120.0	
NP400	Rulli	NU228-C3	8.3.09.74.140.0	Sfere	6228-C3	8.3.09.09.140.0	
NP450KRS-KS	Rulli	NU320-C3	8.3.09.74.150.0	Sfere	6230-C3	8.3.09.09.150.0	
NP450KSM-KX	Rulli	NU232-C3	8.3.09.74.160.0	Sfere	6232-C3	8.3.09.09.160.0	
NP500KRS-KS	Rulli	NU234-C3	8.3.09.74.170.0	Sfere	6234-C3	8.3.09.09.170.0	
NP500KSM-KX	Rulli	NU236-C3	8.3.09.74.180.0	Sfere	6236-C3	8.3.09.09.180.0	
NP560KRS-KS	Rulli	NU236-C3	8.3.09.74.180.0	Sfere	6236-C3	8.3.09.09.180.0	
NP560KSM-KX	Rulli	NU238-C3	8.3.09.74.190.0	Sfere	6238-C3	8.3.09.09.190.0	
NP630KRS-KS	Rulli	NU238-C3	8.3.09.74.190.0	Sfere	6238-C3	8.3.09.09.190.0	
NP630KSM-KX	Rulli	NU244-C3	8.3.09.72.220.0	Sfere	6244-C3	8.3.09.09.220.0	
	Rulli	NU244-C3	8.3.09.74.220.0				
NP710KRS-KR	+ oforo	+	+	Rulli	NU244-C3	8.3.09.74.220.0	
	sfere	6044-C3	8.3.09.05.220.0				

Grandezza		Cusci	netto LA	Cuscinetto LOA			
motore	Tipo		CodiceSICMEMOTORI		Tipo	Codice SICMEMOTORI	
	Rulli	NU248-C3	8.3.09.74.240.0				
NP710KS-KM	+	+	+	Rulli	NU248-C3	8.3.09.74.240.0	
	sfere	6048-C3	8.3.09.05.240.0				
	Rulli	NU252-C3	8.3.09.74.260.0				
NP710KML-KX	+	+	+	Rulli	NU252-C3	8.3.09.74.260.0	
	sfere	6052-C3	8.3.09.05.260.0				
	Rulli	NU248-C3	8.3.09.74.240.0				
NP800KRS-KR	+	+	+	Rulli	NU248-C3	8.3.09.74.240.0	
	sfere	6048-C3	8.3.09.05.240.0				
	Rulli	NU252-C3	8.3.09.74.260.0				
NP800KS-KM	+	+	+	Rulli	NU252-C3	8.3.09.74.260.0	
	sfere	6052-C3	8.3.09.05.260.0				
	Rulli	NU256-C3	8.3.09.74.280.0				
NP800KML-KX	+	+	+	Rulli	NU256-C3	8.3.09.74.280.0	
	sfere	6056-C3	8.3.09.05.280.0				

Tabella 5.f

I carichi radiali massimi ammessi espressi in Newton sulle estremità d'albero normali dei motori della SICMEMOTORI sono riportati nelle tabelle seguenti.

Motore	Х				Velocit	à (g/1')			
	(mm)	600	750	1000	1500	2000	2500	3000	3500
80	25		1970	1920	1550	1450	1340	1270	1150
	50			12	200			1130	1100
90	30		2580	2320	2020	1830	1680	1570	1500
	60				1500				1420
100	40		3750	3400	2950	2660	2460	2300	2180
	80		3150		2750	2500	2300	2150	2050
112	40	4020		3360	2910	2620	2420	2260	2140
	80	3500		3150	2730	2460	2270	2130	2020
132	40	5840		4870	4210	3800	3500	3280	3100
	80				3000				2920
160	55	7530		6270	5410	4870	4480	4180	3950
	110			42	200			3920	3700
180	55	7340		6060	5180	4630	4230	3930	3690
	110	5500		5500	4910	4380	4010	3720	3500
200	70	9090		9470	6370	5680	5180	4800	
	140	7900		7010	5980	5320	4860	4500	
225	85	25000		23000	20500	18000	17000	16000	
	170			15	000			13000	
250	85		32000		28000	26000	24000		
	170			20000			18000		
280	85		24000						
	170		15000						
315	105			12000					
	210			8000					

Tabella 5.g.1 - carichi radiali massimi con cuscinetti standard

Motor	Х		Speed (rpm)							
size	(mm)	600	750	1000	1500	2000	2500	3000	3500	
112	40		70	000		6750	6300	5960	5680	
	80				35	500				
132	40				58	340				
	80				30	000				
160	55				85	500				
	110				42	200				
180	55			11:	200			10720	10200	
	110		5500							
200	70		15700 15150 14280							
	140				7900					

Tabella 5.g.2 - carichi radiali massimi per motori 112-200 con cuscinetto LO a rulli

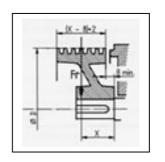
Il carico radiale F_r è calcolato usando la formula seguente:

$$F_r = \frac{19,1 \times P \times K \times 10^6}{D_p \times n}$$

dove:

 F_r = carico radiale sull'albero in N

P = potenza nominale del motore in kW


n = velocità nominale del motore in g/1'

D_p = diametro della puleggia in mm

K = coefficente di tensione della cinghia, approssimabile a:

K = 1 per cinghie a denti

K = 2.35 per cinghie trapezoidali

K = 3.75 per normali cinghie piane

Il punto X di applicazione del carico radiale F_r sull'albero dipende dal tipo e dal numero di cinghie usate e, nel caso di cinghie trapezoidali, può essere determinato utilizzando la tabella 5.g.3.

Per motori non compresi nelle tabelle consultare SICMEMOTORI.

Numero di		Sezione della cinghia trapezoidale									
cinghie	SPA-A	SPB-B	SPC-C	D	5V	8V					
	X	X	X	X	X	X					
2	26	30	38	50	30	41					
3	33	40	50	69	39	56					
4	40	49	63	88	47	70					
5	48	59	76	106	56	84					
6	56	68	89	125	65	99					
7	63	78	102	145	74	113					
8	70	87	114	165	83	127					
9	78	97	127	181	91	142					
10	85	106	140	199	100	156					
11	93	115	153		109	170					
12	100	125	166		117	184					
13	108	135	179		126	199					
14	115	144	192		135	213					
15	123	153	205		144						
16	130	163			153						
17	138	172			161						
18	145	182			170						
19	153	191			178						
20	160	201			187						
21	168	210			196						
22	175				205						
23	183										
24	190										
25	198										
26	205										
27	212										

Tabella 5.g.3

La quota B deve comunque sempre essere:

- < 50 mm per motore tipo 80
- < 60 mm per motore tipo 90
- < 80 mm per motori tipo 100-112-132
- < 110 mm per motori tipo 160-180
- < 140 mm per motori tipo 200
- < 170 mm per motori tipo 225-250-280
- < 210 mm per motore tipo 315

In caso di dubbio, e per taglie non comprese nelle tabelle di cui sopra, consultare sempre la SICMEMOTORI.

N.B.1 - Gamma 355÷800 - Per queste macchine è previsto di norma solo l'accoppiamento diretto, senza carichi radiali ed assiali apprezzabili. Una macchina di guesta gamma non deve guindi essere usata con accoppiamento che comporti sollecitazioni radiali e/o assiali, senza aver prima ottenuto parere favorevole da SICMEMOTORI.

N.B.2 - Macchine ad asse verticale con altezza d'asse 200 o superiore - L'eventuale impiego con accoppiamento tale da provocare carichi radiali apprezzabili deve essere sempre sottoposto all'esame preliminare di SICMEMOTORI.

5.13 Programmi di lubrificazione

Per ogni macchina deve essere stabilito preventivamente dal Servizio Manutenzione del Cliente un programma di lubrificazione periodica dei cuscinetti, che per macchine standard in condizioni di esercizio normali può essere desunto in prima approssimazione dalle tabelle 5.h, 5.i e 5.l. Per condizioni di esercizio normali vedere punto 5.9.

Ogni scostamento da queste condizioni comporta in linea teorica un peggioramento, e quindi un accorciamento degli intervalli di rilubrificazione, che solo la pratica, dopo un primo periodo di servizio, può indicare. Ogni 4-5 rilubrificazioni occorre procedere alla sostituzione completa del grasso (vedere punto 5.15).

Motore	Cuscinetto		Velocità (g/1')						
MOTOLE	Rulli	Sfere	1000	1500	2000	3000	4000	(gr)	
NP 90	LA		15000-	12000	10000	6000	5000	20	
NP 90		LOA	-	-	-	-	-	-	
NP 100	LA		12500	9500	8000	4500	2700	20	
NF 100		LOA	-	-	-	-	-	-	
P 112	LA		12500	9500	8000	4500	2700	20	
F I I Z		LOA	-	-	-	-	-	-	
P132	LA		9250	6900	4350	2900	1750	20	
F 132		LOA	-	-	-	-	-	-	
P160	LA		8500	6250	4000	2500	1500	25	
F 100		LOA	_	-	-	-	-	-	

Motore	Cusc	inetto		Grasso				
Motore	Rulli	Sfere	1000	1500	2000	3000	4000	(gr)
P180	LA		7500	5000	3500	2000	1100	30
F 100		LOA	-	-	-	-	-	-
P200	LA		7000	4500	3000	1500	-	35
F200		LOA	14000	9000	6000	3000	-	35
NP225	LA		7000	4500	2750	1400	-	40
INF ZZ3		LOA	13000	8500	5500	3000	-	40
NP250	LA		6500	4000	2500	1400	-	45
NF250		LOA	12000	8000	5000	3000	-	45
NP280	LA		6500	4000	2500	1400	-	45
INF200		LOA	10000	6500	4000	2800	-	45
NP315	LA		5000	3500	2000	-	-	60
INFSIS		LOA	9500	5500	3000	-	-	60

Tabella 5.h – Intervalli orientativi di lubrificazione in ore e quantità di grasso (gamma 132-315)*

Motore	Cuscinetto		Velocità (g/1')						
WOLOTE	Rulli	Sfere	400	750	1000	1250	1600	2000	(gr)
NP355	LA		10000	6000	4250	2500	1500	800	70
NP355		LOA	2000	12000	8500	5000	3000	1600	70
NP400	LA		9000	4500	3750	2000	1000	400	55
NP400		LOA	18000	9000	7500	4000	2000	800	55
NP450	LA		8500	4000	2500	1250	400	-	70
NP450		LOA	17000	8000	5000	2500	800	-	70
NP 500	LA		8000	3500	2000	1000	300	-	85
NP 500		LOA	8000	3500	2000	1000	300	-	85
NP 560	LA		7500	3000	1500	750	250	-	95
INP 560		LOA	7500	3000	1500	750	250		95
ND 620	LA		7000	2000	500	250	-	-	130
NP 630		LOA	7000	2000	500	250	-	-	130

Tabella 5.i – Intervalli orientativi di lubrificazione in ore e quantità di grasso (gamma 355-630)*

			Intervallo di lubrificazione (ore)								
N	/lotore	Rulli+sfere	Grasso (gr)	Rulli	Grasso (gr)	400	600	Veloc 800	ità (g/1') 1000	1100	1250
	KRS KRM KR	LA	225	LOA	130	5000	3750	2500	1100	500	450
NP 710	KS KSM KM	LA	260	LOA	160	4300	3000	1800	750	350	250
	KML KL KX	LA	320	LOA	190	3500	2500	1400	500	150	-
	KRS KRM KR	LA	260	LOA	160	4300	3000	1800	750	350	250
NP 800	KS KSM KM	LA	320	LOA	190	3500	2500	1400	500	150	-
	KML KL KX	LA	340	LOA	200	2700	1600	800	300	100	-

Tabella 5.I - Intervalli orientativi di lubrificazione in ore e quantità di grasso (gamma 710-800)*

Lubrificazione - Istruzioni specifiche

Questa operazione deve essere fatta con macchine in movimento. Applicare la pompa all'ingrassatore, togliere il tappo di scarico del grasso per consentire la fuoriuscita dell'olio proveniente dal grasso deteriorato. Aggiungere il grasso nelle quantità previste sulla targa della macchina a corrente continua. Togliere la pompa e rimettere il tappo.

Le posizioni dell'ingrassatore e del foro di scarico sono segnalate da apposite targhette.

Attenzione!

Non applicare una quantità eccessiva di grasso. Un eccesso di grasso surriscalda i cuscinetti e può danneggiarli. Il grasso eccedente tende a sfuggire lungo l'albero. Non mescolare tipi diversi di grasso perché potrebbero essere incompatibili.

In condizioni normali (in particolare con temperatura ambiente non superiore a 40°C) il grasso da usare deve avere le caratteristiche

^{*} Le tabelle 5.h. 5.i e 5.l sono valide per cuscinetti di alberi orizzontali su macchine di tipo stazionario ed in presenza di carichi normali e sono applicabili a grassi al litio di buona qualità ad una temperatura che non superi i 70°C. All'aumentare della temperatura bisogna tenere conto dell'invecchiamento accelerato del grasso, quindi si consiglia di dimezzare gli intervalli delle suddette tabelle per ogni 15°C di aumento della temperatura di lavoro del cuscinetto oltre i 70°C, ricordando che non va superata la temperatura massima ammissibile per il grasso. Per cuscinetti di alberi verticali gli intervalli vanno ridotti della metà. Inoltre: verificare i dati con quelli riportati sulla targa del motore! In caso di incongruenze, fanno fede quelli riportati su di essa.

- Base del sapone: litio o poliurea
- Punto di goccia: 180-190°C
- Consistenza: Nº 3NLGI con valori di penetrazione compresi tra 220 e 250 decimi di mm;
- Temperatura di esercizio: -25 a +120°C.

In tabella 5.m sono indicati alcuni tipi di grasso per condizioni normali.

Per condizioni di impiego difficile (ed in particolare quando la temperatura massima dell'ambiente supera i 50°C) occorre usare grassi speciali con elevata stabilità termica, che abbiano le seguenti caratteristiche:

- Base organica: urea o sali di calcio complesso;
- Punto di goccia: 220-250°C;
- Consistenza: con valori dipenetrazione compresi tra 240 e 270 decimi di mm;
- Temperatura di esercizio: -30 a +150°C.

Intabella 5.n sono indicati alcuni tipi di grasso per condizioni difficili.

Denominazione commerciale del prodotto	Fornitore
Athesia Gr3	IP
Mobilux 3	Mobil
Exxon Beacon	Exxon
Alvania 3	Shell

Tabella 5.m – Alcuni tipi di grasso per condizioni normali

Denominazione commerciale del prodotto	Fornitore
SRI 2	Chevron
Mobilplex 48	Mobil
Aeroshell 12	Shell

Tabella 5.n – Alcuni tipi di grasso per condizioni difficili

5.15 Sostituzione completa del grasso

Deve essere fatta ogni 4-5 rilubrificazioni, se non è ancora arrivato il momento opportuno per la sostituzione dei cuscinetti. La macchina deve essere parzialmente smontata, seguendo i punti da 6.1 a 6.6. Successivamente asportare il grasso usato dall'anello esterno del cuscinetto a rulli, dai rulli e dalla gabbia nonché dal paragrasso interno; asportare il grasso usato dal cuscinetto a sfere. Ciò deve essere fatto prima con petrolio e successivamente con olio caldo. Asciugare infine con aria secca e pulita e rimontare paragrassi e cuscinetti secondo le istruzioni date al punto 6.5 per cuscinetti nuovi. Riempire di grasso il cuscinetto e le camere adiacenti per i 2/3 della loro capacità e rimontare la macchina.

5.16 Cuscinetti per macchine speciali

Macchine in esecuzione meccanica speciale (ad esempio con estremità d'albero con diametro diverso dal normale) possono avere cuscinetti speciali.

Ciò risulta in modo sicuro dal confronto tra i tipi di cuscinetti indicati sulla targa e quelli indicati nel Catalogo o Fascicolo Tecnico corrispondente (chiederli eventualmente alla Rete di Vendita).

5.17 Sostituzione dei cuscinetti

Deve essere prevista, in coincidenza con le operazioni di manutenzione generale programmata della macchina, quando ci si avvicina alla vita utile effettiva prevista per i cuscinetti (vedere punto 5.9). Per le operazioni relative vedere punto 6.5 e 6.6

5.18 Filtro per l'aria

Quando esiste, il pannello filtrante deve essere controllato settimanalmente per evitare che si intasi e provochi eccessiva caduta di pressione e riduzione della portata a valori non accettabili.

Il pannello può essere pulito con mezzi meccanici (battitura e/o aspirazione) o con lavaggio in acqua.

Dopo un certo numero di lavaggi il pannello deve essere sostituito.

5.19 Dispositivo controllo mancata ventilazione

Solitamente il dispositivo controllo mancata ventilazione si trova posizionato nella parte superiore degli scambiatori di calore o calettato sulla coclea degli elettroventilatori.

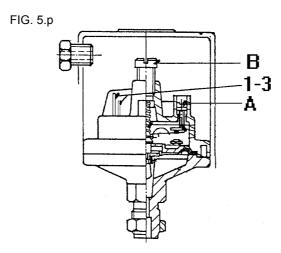
Il dispositivo controllo mancata ventilazione non deve mai essere manomesso; l'operazione di taratura deve essere effettuata da personale qualificato, pena il suo non corretto funzionamento, che si manifesta in:

- Interventi troppo frequenti, con continue interruzioni del servizio; in tal caso, è assolutamente vietato cortocircuitare il dispositivo per permettere alla macchina di lavorare;
- Interventi ritardati, con mancato intervento anche quando lo stato di sporcizia del filtro lo richiederebbe. In tal caso, esiste un forte rischio di un fuori servizio grave della macchina protetta.

Qualora in casi eccezionali, ad esempio durante una manutenzione, o per la sua sostituzione, debba essere effettuata una sua taratura, seguire le seguenti istruzioni.

Attenzione!

In caso di dubbio consultare sempre il Servizio Assistenza Clienti della SICMEMOTORI.


Strumenti : Tester analogico o Tester Digitale

Modalità

- Predisporre il tester sulla portata ohmica
- Posizionare i puntali ai capi dei contatti del Pressostato identificati con i numeri 1 e 3 (fig 5.p).
- Avvitare completamente la vite "A" di regolazione del differenziale (vite non sigillata).
- Verificare l'avvenuto spostamento dell'indice del tester (chiusura contatto).

- Svitare lentamente la vite "A" affinchè l'indice del tester ritorni nella posizione di riposo (apertura contatti).
- Svitare ulteriormente la vite "A" di 1/4 di giro.
- Svitare la vite di regolazione "B" affinchè l'indice del tester si sposti (chiusura contatti).
- Riavvitare lentamente la vite "B" affinchè l'indice del tester ritorni nella posizione di riposo (apertura contatti).
- Avvitare ulteriormente la vite "B" di 1/2 di giro.
- Attivare la ventilazione e verificare che l'indice del tester si sposti (chiusura contatti).
- Disattivare la ventilazione e verificare che l'indice del tester ritorni nella posizione di riposo (apertura contatti).

Disattivando ed attivando la ventilazione si devono verificare le due commutazioni.

5.20 Dinamo tachimetrica

Riferirsi alle Norme di manutenzione del costruttore

Attenzione: prima di montare e/o collegare la dinamo tachimetrica leggere attentamente le seguenti istruzioni. La garanzia decade immediatamente se tali istruzioni non verranno rispettate o se la dinamo risulterà manomessa e/o riparata da personale non autorizzato.

Il montaggio e/o collegamento della dinamo tachimetrica devono essere effettuati da personale qualificato. In caso di dubbi, consultare il Servizio Assistenza Clienti della SICMEMOTORI.

5.21 Generatore di impulsi (encoder)

Riferirsi alle Norme di manutenzione del costruttore

Attenzione: prima di montare e/o collegare l'encoder, leggere attentamente le seguenti istruzioni. La garanzia decade immediatamente se tali istruzioni non verranno rispettate o se l'encoder risulterà manomesso e/o riparato da personale non autorizzato.

Montaggio e/o collegamento dell'encoder devono essere effettuati da personale qualificato. In caso di dubbi, consultare il Servizio Assistenza Clienti della SICMEMOTORI.

Operazioni da NON fare riguardanti lo strumento tachimetrico (dinamo e/o encoder)

MECCANICHE

NON smontare lo strumento, per non perdere la garanzia; le riparazioni sono accettate in garanzia solo per apparecchi inviati in porto franco alla Sicme Motori

NON collegare l'alberino ad organi in movimento con giunti rigidi, ma esclusivamente con giunti flessibili. Un montaggio non corretto riduce drasticamente la vita dei cuscinetti ed esclude ogni forma di garanzia

NON sottoporre lo strumento a urti: è possibile provocare la rottura degli organi interni escludendo ogni forma di garanzia. In particolare, fare molta attenzione quando si montano organi di accoppiamento all'albero del motore cui lo strumento tachimetrico è accoppiato: NON usare martelli o altri mezzi per calettare gli organi di trasmissione!

NON eseguire lavorazioni di alcun genere sull'albero; ciò può provocare la rottura del disco, il deterioramento dei cuscinetti e la perdita di garanzia

NON esercitare pressioni, flessioni, torsioni anomale sull'albero dello strumento

NON eseguire montaggi diversi da quelli previsti.

Durante il rimontaggio del giunto flessibile prestare attenzione a non chiudere i grani con il giunto stesso compresso o esteso poiché impedirebbe la propia funzione di compensazione degli allungamenti dovuti al riscaldamento dell'albero del motore.

ELETTRICHE

NON utilizzare fonti di alimentazione con un autotrasformatore che non assicuri un isolamento galvanico dalla rete di alimentazione NON fare scorrere il cavo vicino e/o parallelamente a linee di alta tensione o alla linea di alimentazione di potenza, né riunire cavi nella medesima canaletta. Questa è una precauzione da osservare scrupolosamente, al fine di prevenire malfunzionamenti dovuti ad interferenze induttive.

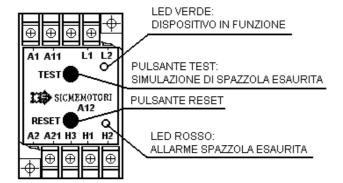
NON utilizzare cablaggi di lunghezza superiore al necessario. Cercare di mantenere la lunghezza del cavo il più possibile ridotta, in modo da evitare l'influsso di disturbi di natura elettrica.

NON effettuare collegamenti qualora sorgessero dubbi circa gli stessi (vedere schema di connessioni sull'etichetta dello strumento). Connessioni errate possono provocare guasti ai circuiti interni dello strumento.

NON collegare la schermatura del cavo dello strumento ad un circuito 0 Volt

Lo schermo del cavo DEVE essere collegato a terra (GND). NON lasciarlo scollegato! Lo schermo deve essere collegato a massa solo dal lato dell'alimentazione del motore; in alcuni casi, a seconda della tipologia dell'impianto, può capitare che lo schermo debba essere collegato sia dal lato alimentazione che sul connettore femmina lato strumento.

NON optare per l'elettronica NPN o PNP con collegamenti maggiori di 6 m. In tal caso è consigliabile l'impiego dell'uscita line-driver, oppure complementata. Per il prolungamento del cavo, utilizzare il cablaggio a schermatura ritorta ed un line-receiver compatibile al RS422A nel circuito ricevente.


NON optare per una tensione di alimentazione di 24 Vcc se si riceve un'alta risposta in frequenza. Orientarsi su una tensione di 5 Vcc ed un'elettronica line-driver.

Relè centrifugo 5.22

Riferirsi alle Norme di manutenzione del costruttore

Dispositivo controllo usura spazzole

Riferirsi alle istruzioni di seguito indicate.

- 1) Applicare la tensione di rete (indicata sullo schema elettrico) ai capi L1 ed L2 e verificare l'accensione del led verde.
- 2) Premere il pulsante TEST e verificare l'accensione del led rosso.
- 3) Premere il pulsante **RESET** e verificare il ritorno alla posizione iniziale (led verde acceso).
- 4) Ponticellare A1 con A11 e verificare l'accensione del led rosso.
- 5) Resettare e provare più volte.
- 6) Ripetere la stessa prova ponticellando i capi A2 e A21.
- 7) Collegare i puntali del tester (in continuità) ai capi H1 H3 verificando che il contatto sia normalmente chiuso e successivamente collegare su H1 - H2 verificando che il contatto sia aperto.
- 8) Premere il pulsante TEST e verificare l'inversione dei contatti, cioè H1 - H3 da chiuso deve diventare aperto e H1 - H2 da aperto deve diventare chiuso.

5.24 Scambiatori di calore aria-aria e aria-acqua Vedi appendice.

6. SMONTAGGIO E RIMONTAGGIO DELLA MACCHINA

Per particolari e nomenclatura fare riferimento al paragrafo 10 – "disegni dimostrativi d'assieme e nomenclatura".

PERICOLO!

Prima di effettuare qualsiasi lavoro sulla macchina elettrica disconnetterla dalla rete!

6.1 Operazioni preliminari allo smontaggio

Dopo il disaccoppiamento meccanico (apertura del giunto o operazione equivalente, vedi punto 62)), togliere le viti che bloccano i piedi e/o la flangia, e sfilare le spine di riferimento. Inoltre:

- MACCHINE PVA-BPVABPVAB: togliere dalle bocche le viti, le portelle se presenti e l'elettroventilatore.
- MACCHINE CNVC-CBARH-CBARO: rimuovere dal motore il gruppo di raffreddamento.

6.2 Smontaggio. Operazioni analoghe per tutte le macchine Scollegare la macchina da tutti i cavi elettrici.

Estrarre il semigiunto d'accoppiamento: con apposito attrezzo a freddo se l'estremità d'albero ha la chiavetta (vedere fig.6.a) o riferirsi alle istruzioni del fornitore dell'organo di trasmissione se l'estremità d'albero è liscia.

Togliere la dinamo tachimetrica (vedi fig. 6.b e istruzioni di seguito) e/o altri accessori, togliere le portelle o le chiusure laterali lato accoppiamento e lato collettore.

Scollegare i cavi di collegamento dai rispettivi portaspazzole togliendo le viti ed i dadi di fissaggio.

Sfilare le spazzole dai rispettivi cassetti portaspazzole.

Per le grandezze dove esiste il paragrasso, togliere le viti 4.8 che fissano i paragrassi interni 4.17 lato accoppiamento e 4.7 lato collettore.

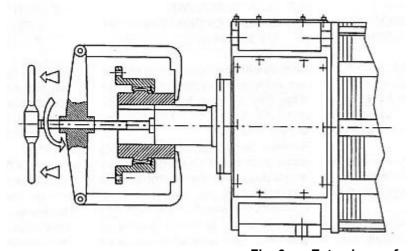


Fig. 6.a – Estrazione a freddo di un semigiunto

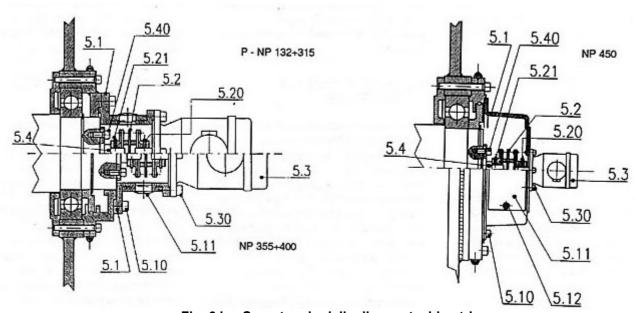
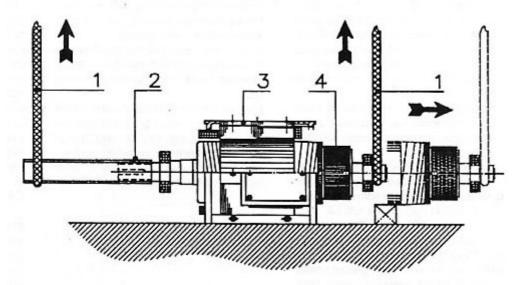


Fig. 6.b - Smontaggio della dinamo tachimetrica

Togliere il coperchio in 5.11 dal supporto 5.1 per accedere al giunto 5.2.


Svitare il grano filettato 5.20 dal semigiunto lato dinamo tachimetrica e le viti 5.30, e asportare la dinamo tachimetrica 5.3.

Se si deve rendere accessibile l'estremità dell'albero principale lato collettore, occorre proseguire con le seguenti operazioni:

- togliere il supporto 5.1 svitando le viti 5.10;
 - svitare le viti 5.40 e asportare il codolo 5.4 assieme al giunto flessibile 5.2

A questo punto l'estremità dell'albero principale lato collettore risulta accessibile.

Durante il rimontaggio del giunto flessibile prestare attenzione a non chiudere i grani con il giunto stesso compresso o esteso poiché impedirebbe la propia funzione di compensazione degli allungamenti dovuti al riscaldamento dell'albero del motore.

- 1 Fune di sollevamento
- 2 Prolunga per l'albero
- 3 Statore completo
- 4 Indotto

Fig. 6.c - Smontaggio dell'indotto

6.3 Smontaggio delle cuffie (motori 80-630)

Per grandezze 80÷200, togliere le viti di fissaggio delle cuffie, battere leggermente le cuffie lato accoppiamento e lato collettore sugli spigoli con martello di nylon o di piombo per favorire lo scalettamento dal centraggio del giogo, indi sfilare la cuffia lato accoppiamento e la cuffia lato collettore. Durante l'operazione tenere sollevato l'indotto con un tiro opportuno, ed interporre nella parte inferiore, tra il rotore ed i poli principali, strisce di cartone spessore 0,5-1 mm per evitare che le parti magnetiche venendo a contatto si danneggino.

Per grandezze 225÷630 lo smontaggio delle cuffie viene fatto utilizzando due delle viti 3.12 o 3.13, applicate nei fori filettati appositamente previsti sulle cuffie; si avvitano dette viti fino a scalettamento avvenuto, indi si svitano. Durante la successiva estrazione delle cuffie occorre tenere sollevato l'indotto con un tiro opportuno dopo che le cuffie sono state asportate, inserire dei cartoncini di spessore 0,5-1 mm nel tra ferro fra l'indotto 1 ed i poli principali 2.2, per evitare che il contatto possa danneggiarli.

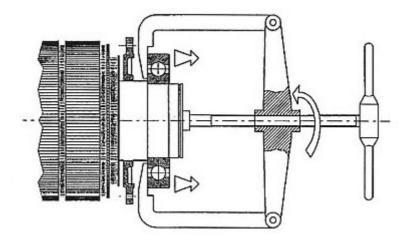


Fig. 6.d – Estrazione di un cuscinetto

6.3.1 Smontaggio degli scudi (motori 710-800)

Togliere dall'albero gli anelli seeger 3.19 lato accoppiamento e lato collettore. Scalettare con l'ausilio di tiranti filettati e di apposito attrezzo gli anelli valvola grasso 4.10 e 4.14 lato collettore e lato accoppiamento. Togliere le viti 3.12 e 3.13 che fissano gli scudi 3.1 e 3.4 alla carcassa 2.1. lo smontaggio degli scudi (3.1 lato accoppiamento e 3.4 lato collettore) viene fatto utilizzando due delle viti 3.12 o 3.13 applicate nei fori filettati appositamente previsti: si avvitano dette viti fino a scalettamento avvenuto, indi si svitano. Durante la successiva estrazione degli scudi occorre tenere sollevato l'indotto con un tipo opportuno; dopo che gli scudi sono stati

ISTRUZIONI PER INSTALLAZIONE, USO E MANUTENZIONE PER MACCHINE A C.C. SERIE P-NP-XP-NE

asportati, inserire dei cartoncini di spessore 0,5- 1 mm nel traferro fra l'indotto 1 ed i poli principali 2.2 per evitare che il contatto possa danneggiarli.

6.4 Smontaggio del rotore

Dopo tolte le cuffie, sfilare il rotore (indotto), e provvedere alle operazioni di pulizia ed eventuale riparazione. Seguire le indicazioni di smontaggio di figura 6.c.

6.5 Sostituzione dei cuscinetti (motori 80-630)

Lo smontaggio ed il montaggio dei cuscinetti vanno eseguiti sempre con la massima cura, prestando particolare attenzione a non rovinare la sede dei cuscinetti sull'albero.

I cuscinetti usati vanno sfilati utilizzando un apposito estrattore (fig. 6.d). I cuscinetti nuovi devono essere dello stesso tipo di quelli usati: attenzione in particolare al gioco, che di norma è C3 (maggiorato), salvo diversa indicazione sulla targa della macchina. Per il montaggio dei cuscinetti nuovi procedere come segue:

Pulire accuratamente i cuscinetti, le relative sedi di calettamento e la camera del paragrasso interno. Scaldare il cuscinetto a 80-100°C ad induzione, ponendolo in forno o immergendolo in bagno d'olio. Calettarlo sull'albero e tenerlo appoggiato contro lo spallamento per 60-90 secondi.

Eliminare la pressione esercitata e verificare che l'anello interno non ruoti sull'albero.

La prima lubrificazione del cuscinetto nuovo deve essere fatta tenendo presente quanto segue:

- a) grandezze 80÷180 cuscinetti a sfera con doppio schermo. Nessun lubrificante;
- b) grandezze 132÷180 con cuscinetto a rulli lato accoppiamento. Nessun lubrificante per il cuscinetto a doppio schermo lato opposto accoppiamento. Riempire per 2/3 la camera del paragrasso interno, e per 1/3 + 2/3 l'alloggiamento del cuscinetto a rulli lato accoppiamento, con grasso adatto;
- c) grandezza 200 cuscinetti a sfere con uno schermo. Riempire per 1/3 + 2/3 l'alloggiamento del cuscinetto con grasso adatto;
- d) grandezza 200 cuscinetto a rulli lato accoppiamento. Provvedere come detto in c) per il cuscinetto a sfere lato opposto accoppiamento. Provvedere come detto in b) per il cuscinetto a rulli lato accoppiamento;
- e) grandezze 225÷630 Riempire per 2/3 la camera del paragrasso interno, e per 1/3 + 2/3 l'alloggiamento del cuscinetto, sia lato accoppiamento che lato opposto accoppiamento, con grasso adatto.

Riguardo altri tipi di grasso da usare riferirsi alle tabelle 5.m – 5.n del punto 5.14.

6.6 Sostituzione dei cuscinetti (motori 710-800)

I cuscinetti vanno smontati a freddo utilizzando un apposito estrattore manuale o idraulico. I cuscinetti a rulli applicati sono del tipo NU, composti da un anello interno calettato sull'albero, e da un anello esterno con orletti e relativa gabbia calettato nello scudo. Il cuscinetto a sfere applicato congiuntamente dal lato accoppiamento è del tipo radiale ad una corona di sfere.

Procedura di smontaggio: (FIG. 10.4 – 10.5 – 6e e 6f)

-Estremità lato accoppiamento fig. 6.e. Usare un estrattore manuale o idraulicoposizionato posteriormente al paragrasso interno 4.17, sfilando simultaneamente l'anello interno 3.22, il distanziale 4.16 ed il cuscinetto a sfere 3.3.

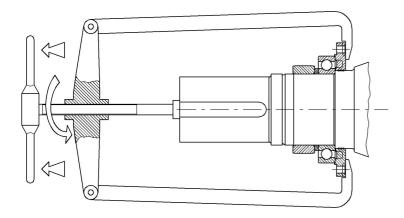


Fig. 6.e - Estrazione cuscinetto lato accopiamento

• -Estremità lato collettore fig. 6.f. Usare un estrattore manuale o idraulico posizionato posteriormente all'anello interno 3.22 del cuscinetto a rulli, e sfilare l'anello interno stesso.

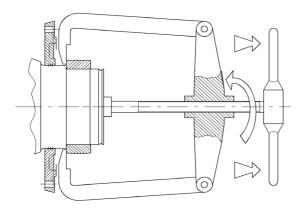


Fig. 6.f – Estrazione cuscinetto lato collettore

Successivamente si estrae l'anello esterno del cuscinetto 3.23 dagli scudi 3.1 e 3.4.

- Scudo lato accoppiamento: togliere le viti 4.8, scalettare il paragrasso esterno 4.9 e la bussola portacuscinetto a sfere 4.15 utilizzando gli appositi fori filettati di estrazione e due viti 4.8.
- Scudo lato collettore: scalettare il paragrasso esterno 4.9 utilizzando gli appositi fori filettati di estrazione e due viti 4.8 serrando sino a scalettamento avvenuto.

Proseguire estraendo per entrambi gli scudi 3.1 lato accoppiamento e 3.4 lato collettore l'anello esterno del cuscinetto a rulli 3.23. Utilizzando una mazzetta di piombo o di ferro, applicando l'urto su un estrattore di materiale tenero (tondo o equivalente di rame, alluminio o ferro dolce) distribuendo gli urti sulla periferia dell'anello esterno in punti simmetrici opposti per facilitare lo sfilamento senza grippaggi; evitare colpi sulla gabbia per non danneggiare i rulli.

6.6.1 Montaggio dei cuscinetti nuovi (motori 710-800)

Prima del montaggio, pulire accuratamente i cuscinetti e le relative sedi di calettamento sull'albero e sullo scudo 3.1 o 3.4 usando un solvente adatto (petrolio odaltro), con esclusione di utensili abrasivi.

Fig. 6.g – Calettamento a freddo cuscinetti LA

6.6.2 Montaggio dell'anello interno del cuscinetto sull'albero (motori 710-800)

Riferirsi alle figg. 10.4, 10.5 e 6.g.

a) Cuscinetto estremità lato accoppiamento. Infilare a freddo a mano il paragrasso interno 4.17 sull'albero. Riempire la camera del paragrasso per 1/3 con grasso adatto (tab. 5.m - 5.n paragrafo 5.14). Scaldare il cuscinetto a sfere 3.3 e l'anello interno del cuscinetto a rulli 3.22 a 90-100°C (ad induzione, ponendolo in forno o immergendolo in bagno di olio). Calettare il cuscinetto a sfere 3.3 sull'albero e tenerlo appoggiato contro lo spallamento per 60-90 secondi. Eliminare la pressione esercitata e verificare che l'anello interno non ruoti sull'albero.

Riempire l'alloggiamento del cuscinetto per 1/2 2/3 con grasso adatto (tab. 5.m-5.n paragrafo 5.14).

Infilare a mano a freddo il distanziale 4.16 sull'albero sino a battuta del cuscinetto a sfere 3.3. Calettare l'anello interno a rulli 3.22 sull'albero e tenerlo appoggiato sullo spallamento del distanziale per 60-90 secondi. Eliminare la pressione esercitata e verificare che l'anello interno non ruoti sull'albero.

b) Cuscinetto estremità lato collettore. Infilare a freddo a mano il paragrasso interno 4.7 sull'albero.

Riempire la camera del paragrasso per 1/3 con grasso adatto, (tab. 5.m – 5.n paragrafo 5.14). Scaldare l'anello interno del cuscinetto a rulli 3.22 a 90-100°C (ad induzione, ponendolo in forno o immergendolo in bagno di olio). Calettare l'anello interno a rulli 3.22 sull'albero e tenerlo appoggiato sullo spallamento dell'albero per 60-90 secondi. Eliminare la pressione esercitata e verificare che l'anello interno non ruoti sull'albero.

c) Avvertenza per rischi di natura termica. Durante il maneggio dei cuscinetti riscaldati indossare guanti protettivi ben puliti. Se non fosse possibile il calettamento a caldo, occorreeffettuarlo a freddo.

Si può procedere in due modi:

- impiegando una mazzetta di piombo o di ferro applicando l'urto su un tubo di materiale tenero (rame, alluminio o ferro dolce) per distribuire lo sforzo su tutta la periferia dell'anello interno.
- utilizzando un tubo di diametro e lunghezza adeguata, un anello di pressione ed un tirante da awitare nel foro dell'estremità albero come in fig. 6.g (quest'ultimo sistema è preferibile).

6.6.3 Montaggiodell'anello esterno del cuscinetto nello scudo (grandezze 710-800)

Riferirsi alle figg. 10.4 e 10.5.

Cuscinetto scudo lato acoppiamento e lato opposto accoppiamento: applicare dal lato interno scudo 3.1 la bussola portacuscinetto a sfere 4.15 e portarla in battuta utilizzando due viti di servizio 4.8.

Proseguire le operazioni per entrambi gli scudi 3.1 e 3.4.

ISTRUZIONI PER INSTALLAZIONE, USO E MANUTENZIONE PER MACCHINE A C.C. SERIE P-NP-XP-NE

Posizionare l'anello esterno 3.23 nello scudo indi con l'ausilio di una mazzetta in legno o resina calettarlo distribuendo gli urti sulla periferia dell'anello esterno. Evitare colpi sulla gabbia per non danneggiare i rulli.

È consigliabile per questa operazione riscaldare gli scudi pos. 3.1 o 3.4 in forno a 50-60°C ed infilare l'anello cuscinetto 3.23 con leggera pressione.

Lubrificare riempiendo l'alloggiamento del cuscinetto 1/2-2/3 con grasso adatto, vedi tabelle 5.m - 5.n del paragrafo 5.14. Infilare sull'albero gli scudi.

6.7 Smontaggio dei poli

Nell'eventualità di smontaggio dei poli completi di avvolgimento occorre prima sconnettere i terminali di collegamento delle connessioni interne e delle morsettiere. Indi togliere le viti 2.6 per lo smontaggio dei poli principali completi o le viti 2.7 per lo smontaggio dei poli ausiliari completi e dei relativi lamierini di correzione traferro.

6.8 Rimontaggio della macchina

Procedere, in modo inverso allo smontaggio, ponendo attenzione, qualora si fosse verificata la necessità di smontaggio dei poli, di riporre gli spessori di isolamento e di correzione nelle condizioni di origine.

Qualora nello smontaggio si fosse effettuato lo spostamento della raggera portaspazzole e la posizione della "zona neutra" non fosse stata contrassegnata, occorre ripristinarla agendo come segue:

- alimentare il campo indipendente con tensione alternata e frequenza industriale (il valore efficace dovrebbe possibilmente essere dello stesso ordine di grandezza della tensione continua nominale del campo, ma sono accettabili anche valori diversi)
- misurare la tensione fra due file di spazzole di polarità opposta mediante un Voltmetro a zero centrale con fondo scala ±1,5 V (valore indicativo), mentre si fa ruotare lentamente l'arco portaspazzole.
- la zona neutra è raggiunta guando l'indicazione del Voltmetro tende ad azzerarsi (controllo grossolano).
- ripetere infine l'operazione con altro Voltmetro a fondo scala ridotto, indicativamente ±60 V (messa a punto precisa).

Il ripristino della zona neutra deve essere tassativamente esequito nel caso di sostituzione dell'indotto.

Le operazioni sopradescritte danno buon risultato se la superficie delle spazzole è adeguatamente formata. Se le spazzole sono nuove, è bene fare il controllo grossolano con Voltmetro a scala più ampia ed attendere che la superficie delle spazzole si sia formata per effettuare la messa a punto precisa con Voltmetro a scala ridotta.

Completare infine l'operazione serrando le viti che bloccano la raggera portaspazzole.

6.9 Spostamento della scatola morsetti (motori 132+315)

Qualora per esigenze particolari di installazione si rendesse necessario posizionare la scatola morsetti su un lato diverso da quello inizialmente prescritto, e qualora non fosse possibile far eseguire il lavoro da SICMEMOTORI o da una officina autorizzata, si potrà procedere come segue (nomenclatura e particolari come da figure 10.2 e 10.5):

- Togliere i gruppi di raffreddamento se esistenti (vedere punto 6.1).
- Togliere eventuali accessori (dinamo tachimetrica, ecc.) (punto 6.2).
- Scollegare i cavi di connessione tra statore e gruppo raggera portaspazzole (viti 3.17) avendo cura di contrassegnare i terminali.
- Scalettare le cuffie 3.1 e 3.4 come descritto al punto 6.3, ruotare le stesse di 90 o 180° a seconda della posizione che si vuole realizzare.
- Ripristinare i collegamenti elettrici con particolare attenzione alle polarità. Le polarità devono essere invertire rispetto alle polarità iniziali

Prima di bloccare le viti delle cuffie occorre allinearle appoggiando il motore su un piano. Successivamente bloccare le viti e ripristinare le eventuali spinature di riferimento.

ATTENZIONE: qualora l'anello portaspazzole sia stato mosso dalla sua posizione originale e la zona neutra non sia stata segnata, procedere come indicato in 6.8.

L'operazione è terminata. Procedere ai controlli per l'avviamento (punti 4.3 e 4.4).

6.9.1 Spostamento della scatola morsetti (motori 355+450)

Per queste macchine non è possibile ottenere lo spostamento della scatola morsetti mediante rotazione degli scudi, ed occorre quindi smontare la scatola e rimontarla sul lato opposto.

A tal fine, il giogo statore è provvisto di due fori di uscita cavi sui due lati opposti. Su un foro (normalmente a D visto LA) è fissata la scatola morsetti 3.10 mediante le viti 3.18, sull'altro un coperchio di chiusura.

Per realizzare lo spostamento occorre procedere come segue:

- aprire la scatola morsetti (togliere il coperchio 3.20 svitando le viti 3.14)
- scollegare tutti i cavi che dall'interno della macchina arrivano alle barre 3.11, allentando i dadi 3.15. Se necessario, togliere anche i cavi esterni di alimentazione
- staccare la scatola dal corpo di statore, svitando le viti 3.18
- fare passare i cavi interni di collegamento fra avvolgimenti e morsettiera, all'interno della macchina e nella parte inferiore, fino a presentarli in corrispondenza dell'uscita cavi da utilizzare
- fissare la scatola morsetti nella nuova posizione, serrando le viti 3.18
- riallacciare i cavi interni alle sbarre della morsettiera; fare particolare attenzione al rispetto delle polarità. Riallacciare i cavi esterni di alimentazione, se erano stati staccati, e chiudere la scatola fissando il coperchio 3.20 mediante le viti 3.14
- chiudere il foro uscita cavi rimasto libero utilizzando l'apposito coperchio.

L'operazione è terminata. Procedere ai controlli per l'avviamento (punti 4.3 e 4.4).

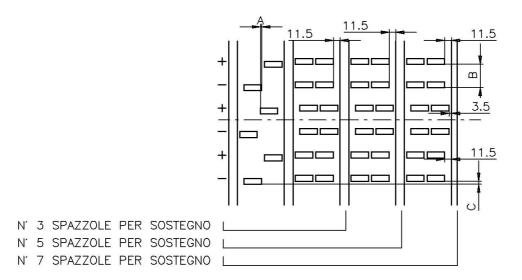
N.B.- Talvolta può accadere che alcuni cavi di collegamento interno risultino troppo corti. Occorre in tal caso prolungarli mediante giunzione di un cavo di pari sezione ed uguale isolamento; per le prescrizioni particolari da seguire riguardo alla scelta del cavo, all'esecuzione delle giunzioni ed al loro isolamento, rivolgersi a SICMEMOTORI.

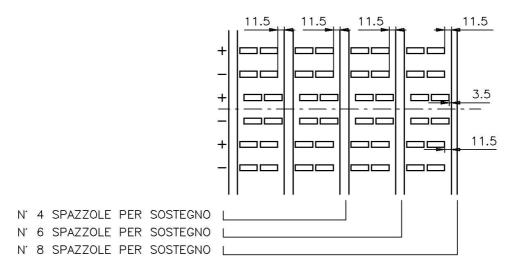
6.9.2 Spostamento della scatola morsetti (motori 500-800)

Qualora per esigenze particolari di installazione si rendesse necessario posizionare la scatola morsetti su un lato diverso da quello inizialmente prescritto, far eseguire il lavoro da SICMEMOTORI o da una officina autorizzata.

6.10 Disposizione e sfalsamento dei portaspazzole sul collettore

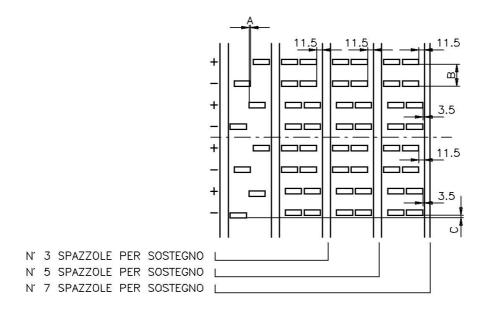
Questa operazione si può eseguire per le grandezze 500-800.

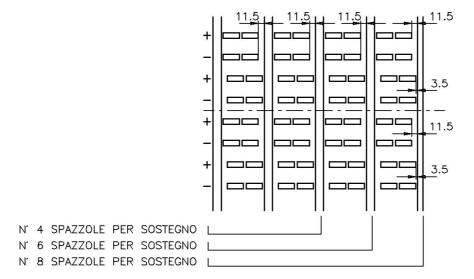

L'usura del collettore provocata dalle spazzole di polarità opposte, non è uniforme. Per ridurre la formatura di rigature superficiali occorre sfalsare assialmente le spazzole sulla superficie di strisciamento del collettore.


È importante che lo sfalsamento sia eseguito in modo che su ogni pista strisci un uguale numero di spazzole positive e negative. Questo risultato si ottiene sfalsando coppie di portaspazzole.

a) Sfalsamento: lo sfalsamento deve essere leggermente superiore alla distanza fra spazzole adiacenti per eliminare la formazione di creste.

Nel caso delle macchine in esame è di 8 mm.


- b) Distanziamento portaspazzole: i portaspazzole devono essere egualmente distribuiti in circonferenza con tolleranza ±0,6 mm misurata sulla superficie del collettore.
- c) Allineamento portaspazzole: tutti i portaspazzole dello stesso sostegno devono essere paralleli ed allineati alle lamelle del collettore con tolleranza ±6 mm. Lo schema di disposizione e sfalsamento in funzione del numero di portaspazzole per sostegno è riportato in fig. 6.h per le macchine a sei poli ed in fig. 6.i per le macchine a otto poli.



A = SfalsamentoB = DisallineamentoC = Allineamento

Fig. 6.h - Sfalsamento spazzole per motori a 6 poli

A = Sfalsamento B = Disallineamento C = Allineamento

Fig. 6.i - Sfalsamento spazzole per motori a 8 poli

ANOMALIE DI FUNZIONAMENTO

Se durante la marcia o l'avviamento della macchina si presentassero dei fenomeni anormali, si devono ricercare immediatamente le cause e provvedere alla loro eliminazione.

Vengono di seguito prese in esame le probabili anomalie, le loro cause ed i consigli di rimedio (tab. 7.1 – 7.2 – 7.3.1 – 7.3.2). Per fenomeni non previsti nelle tabelle o non bene individuati, si consiglia di interpellare SICMEMOTORI.

PERICOLO!

Prima di effettuare qualsiasi lavoro sulla macchina elettrica, disconnetterla dalla rete!

7.1 Anomalie meccaniche

Anomalia	Possibili cause	Rimedi	Vedi punto
	Cuscinetti difettosi	Sostituire i cuscinetti	5.17
Vibrazioni a macchina non accoppiata	Semigiunto non equilibrato	Bilanciare la macchina col semigiunto	
	Bulloni di fondazione allentati	Stringere e bloccare i bulloni	
	Macchina accoppiata o giunto non equilibrato	Verificare l'equilibratura	
Vibrazioni a macchina	Difetto di allineamento	Verificare l'accoppiamento	3.3-3.4
accoppiata	Cuscinetti difettosi	Verificare i cuscinetti	5.12-5.17
	Difetto nell'alimentazione o nella macchina accoppiata	Verificare l'azionamento, il controllo, la macchina comandata e l'allineamento	
Riscaldamento anomalo	Eccessiva quantità di grasso	Togliere il grasso in eccesso	5.14
dei cuscinetti immediatamente dopo l'avviamento o l'ingrassaggio	Carico assiale eccessivo	Verificare il carico assiale	
Riscaldamento anomalo del cuscinetto dopo un lungo periodo di funzionamento	Sfregamento del paragrasso del cuscinetto sull'albero	Sostituire l'anello di tenuta del cuscinetto e rilavorare il paragrasso	
	Poco grasso	Ingrassare	5.14
	Cuscinetto difettoso	Sostituire il cuscinetto	5.17
Fischio ai cuscinetti	Gabbia rumorosa	Lasciar funzionare la macchina sotto stretto controllo	*
Consumo eccessivo dei cuscinetti	Carico eccessivo sul cuscinetto		
Piste del cuscinetto segnate, a macchina in servizio (bruciature) Cuscinetto attraversato da correnti parassite		Arrestare la macchina e interpellare SICMEMOTORI	

^{*} Le gabbie tendono ad adattarsi col tempo

Tabella 7.1 - Anomalie meccaniche

7.2 Anomalie elettriche

Anomalia	Possibili cause	Rimedi	Vedere punto
	Mancanza di tensione di alimentazione	Controllare l'alimentazione	
	Mancanza tensione di eccitazione	Controllare l'alimentazione	
Motore che non si avvia		Rifare il campo principale	8
a vuoto	Spire dell'indotto in corto circuito	Riparare o riavvolgere l'indotto	8
	Corto circuito nei collegamenti	Riparare i collegamenti	
	Cattivo contatto delle spazzole sul collettore	Controllare le spazzole e sostituire quelle più consumate	5.6 5.7
Motore che ruota a	Spire dell'indotto in corto circuito	Riparare o riavvolgere l'indotto	8
scatti (non voluti)	Lamelle del collettore in corto circuito	Riparare il corto circuito, ripristinando l'isolamento tra le lamelle del collettore	5.3
	Carico eccessivo	Controllare la corrente assorbita ed eliminare il sovraccarico	
Motore che non parte	Macchina con spazzole fuori zona neutra	Rimettere le spazzole in zona neutra	6.8
accoppiato	Campo principale interrotto	Rifare il campo principale, controllare le connessioni interne	8
	Tensione di alimentazione bassa	Controllare l'alimentazione	
Motore che va in	Macchine con spazzole fuori zona neutra nella direzione opposta di direzione	Rimettere le spazzole in zona neutra	6.8
sovravelocità o pendola sotto carico	Campo principale interrotto	Rifare il campo principale, controllare le connessioni interne	8
Circuito		Riparare o riavvolgere l'indotto	8
	Sovraccarico eccessivo	Verificare tensione, corrente d'armatura e corrente di eccitazione	
	Velocità troppo bassa	Mettere a punto l'azionamento (velocità minima)	
	Ventilazione insufficiente	Controllare l'intasamento dei filtri, rimuovere eventuali ostacoli al passaggio dell'aria, pulire la condotta di adduzione aria, verificare il senso di rotazione degli elettroventilatori	5.18
Eccessivo riscaldamento	Temperatura dell'aria di raffreddamento o dell'acqua dello scambiatore di calore troppo alta	Controllare i circuiti di ventilazione ed eventualmente pulirli. Utilizzare aria o acqua di raffreddamento alla temperatura indicata da SICMEMOTORI	
	Temperatura ambiente troppo elevata	Sospendere il servizio. Interpellare la SICMEMOTORI	
	Portelle di ispezione spazzole aperte o chiuse male	Serrare le portelle	
	Fattore di forma della corrente di armatura troppo elevato	Verificare ed eventualmente sostituire l'alimentatore di armatura. Inserire una impedenza di spianamento (interpellare SICMEMOTORI)	

Tabella 7.2 - Anomalie elettriche

7.3 Anomalie di commutazione e spazzole

Una buona commutazione dipende da molti fattori, come l'umidità dell'aria, la presenza di gas o polveri nell'aria, temperatura dell'aria di raffreddamento troppo bassa, vibrazioni, basso carico per un lungo periodo di tempo.

La scelta del corretto tipo di spazzole per ogni tipo di servizio è indispensabile per ottenere una buona commutazione ed un ridotto consumo delle spazzole stesse. Nonostante la SICMEMOTORI abbia una lunga esperienza in tal senso, può succedere che fattori inaspettati intervengano a peggiorare il comportamento delle spazzole. In tal caso si prega di contattare la SICMEMOTORI.

Quando si rilevano problemi di commutazione e si contatta il Servizio Post Vendita della SICMEMOTORI, è necessario fornire le sequenti informazioni:

- Tipo di motore e numero di matricola (da leggere sulla targa del motore stesso);
- Tipo e quantità delle spazzole montate, loro aspetto (spigoli smussati, superficie di contatto con il collettore rigata, ecc..)
- Descrizione del controllo visivo della superficie del collettore (colore, se esiste una patina, presenza di righe, ecc.)
- Corrente di armatura: valore medio assorbito dal motore e, se possibile, un oscillogramma della corrente di armatura
- Tipo di ambiente (umidità, ecc.)

Scintillìo

Un leggero scintillìo è accettabile ed in certi casi è anche normale, fino a quando non raggiunge intensità tale da lasciare tracce di bruciato sul collettore e sugli spigoli delle spazzole.

Può anche succedere che alcune lame (generalmente ad intervalli regolari) mostrino colore diverso, o che la patina abbia una distribuzione non uniforme sulla lama. Normalmente ciò non è pericoloso, ma a volte la situazione può rapidamente peggiorare e portare a seri problemi al collettore.

Scintille causate da veloci variazioni di corrente o di velocità non sono generalmente pericolosi.

In ogni caso, anche uno scintillìo che inizialmente sembra non dannoso può, con l'andare del tempo, ed in tempi anche molto rapidi, diventare estremamente pericoloso per il motore; pertanto, si raccomanda di ispezionare regolarmente la superficie del collettore, in modo da rilevare immediatamente un aumento dello scintillìo.

Principali cause dello scintillìo o di anomalie di commutazione

- Lo scintillio può essere causato dall'aumento dell'attrito fra spazzola e portaspazzole, causato ad esempio da sporcizia. In tal caso, la pressione della molla non è più sufficiente ad assicurare un buon contatto fra spazzola e collettore. La soluzione sta nel pulire il portaspazzole. L'alimentazione deve essere interrotta prima di effettuare questa operazione di pulizia.
- Quando un motore comincia a scintillare senza ragione apparente, è molto probabile ci sia un difetto nell'alimentazione (per esempio un tiristori bruciato o un difetto nel controllo).
- 3 Un'altra causa di scintillìo con produzione di bruciature sulla superficie di contatto del collettore è un contatto non corretto fra spazzola e collettore. Ciò può essere dovuto a:
 - una o più spazzole inceppate o molla rovinata. Se ciò accade su una spazzola sola, il problema può non essere molto importante, ma se capita su un numero elevato di spazzole, le altre spazzole si trovano sovraccaricate e lo scintillìo
 - spazzole consumate. Se una o più spazzole consumate non vengono sostituite in tempo utile, la superficie di contatto del collettore può essere danneggiata dalla trecciola della spazzola, con conseguente scintillìo del motore
 - presenza di olio sul collettore. In tal caso, l'olio forma un film isolante sulla superficie del collettore, impedendo un buon contatto tra collettore e spazzole. Si formano dei piccoli archi che provocano bruciature sul collettore (l'olio bruciato)
 - presenza di polveri. Le polveri si depositano sul collettore, e lo strisciare delle spazzole provoca la rigatura del collettore e, dunque, lo scintillìo.
- Vibrazioni. Le vibrazioni, causate ad esempio da un giunto mal equilibrato, da allineamento mal fatto, o indotte dalla macchina operatrice, possono causare un aumento dello scintillìo; generalmente questo tipo di scintillìo si presenta con problemi agli spigoli delle spazzole
- Umidità. Se l'aria è troppo secca (inferiore a 6g/m3) la patina sul collettore non si forma. Se l'aria è troppo umida (maggiore di 15g/m3) la patina diventa troppo spessa.. In entrambi i casi, si crea scintillìo.
- Sottocarico. Se una macchina a corrente continua funziona per lunghi periodi con bassa corrente, è consigliabile diminuire il numero di spazzole, per ottenere una densità di corrente nelle spazzole restanti tale da garantire un buon riscaldamento della spazzola stessa e, quindi, il crearsi della patina sul collettore.

Un collettore che presenta una patina omogenea, di colore non troppo intenso, garantirà un'ottima commutazione e dunque una lunga vita al collettore stesso e, di conseguenza, al motore. Quindi un collettore con una buona patina non deve mai essere tornito o pulito con pietra pomice.

PERICOLO!

Le operazioni descritte di seguito devono essere effettuate unicamente da personale esperto e formato. Devono essere prese tutte le misure protettive necessarie ed il motore deve essere disconnesso dalla rete.

Alcuni difetti minori possono trovare rimedio con l'aiuto di una pietra pomice, che, sebbene rimuova la patina, non altera il profilo del collettore.

Se i danni al collettore sono profondi, è necessario procedere con una rettifica del collettore stesso, operazione che richiede personale altamente qualificato per essere eseguita.

In casi estremi può essere necessario ricorrere allo smontaggio ed alla tornitura del collettore.

Anomalia	Possibili cause e rimedi *
Scintillio in entrata delle spazzole	1 4 8 9 10 33
Scintillio in uscita delle spazzole	1 3 19 21 32 33
Scintillio leggero	1 3 4 6 8 9 12
Scintillio forte con spruzzi	6 8 9 10 13 26 27 29 30 31 32 33
Flash al collettore	1 8 10 22 30
Scintillio di alcune spazzole o gruppo di spazzole	2 6 7 9 14 16 17 21 23 24 26 27 28 31 32
Bruciatura dell'angolo posteriore delle spazzole	1 4 8 12 16 23 24 25 27 32
Vibrazione e rottura degli spigoli delle spazzole	5 9 20 21 25 27 28 31 32
Consumo eccessivo delle spazzole	6 7 8 9 11 12 19 20 23 25 26 27 28 32 33
Consumo non uniforme delle spazzole	2 6 7 11 13 17 21 23 24 25 26 27 29 32
Interruzioni e bruciature delle trecciole	2 6 8 9 10 13 14 15 17 20 26 30
Scanalature sulle superfici di contatto delle spazzole	6 8 14
Irregolare consumo del collettore	6 11 14 15 17 20 33
Scanalature sulla superficie del collettore	6 11 12 13 14 15 17 21 23 25 28
Macchie simmetriche sul collettore	1 10 18 30
Macchie asimmetriche sul collettore	17 29 31 32
Rigature sul collettore	6 7 11 12 13 14 16 21 23 25 33

^{*} Vedere Tab. 7.3.2

Tabella 7.3.1 - Anomalie di commutazione

	Possibili cause	Rimedi	Vedere punto
1	Portaspazzole fuori zona neutra	Riportare le spazzole in zona neutra	6.8
2	Dissimmetria fra i sostegni portaspazzole	Correggere la distanza fra i sostegni	
3	Flusso dei poli ausiliari forte	Aumentare il traferro dei poli ausiliari	
4	Flusso dei poli ausiliari debole	Diminuire il traferro dei poli ausiliari	
5	Eccessivo funzionamento a vuoto	Adoperare spazzole adatte, ridurre le spazzole	
6	Sporcizia ed olio sul collettore	Pulire il collettore ed accertare le cause	4.3
7	Polvere abrasiva sulla superficie delle spazzole	Togliere le spazzole e pulirle	-
8	Sovraccarichi eccessivi	Ridurre il carico	
9	Vibrazioni	Verificare l'allineamento, eventualmente bilanciare	3.3-3.4
10	Guasto dell'avvolgimento di indotto	Riparare, eventualmente riavvolgere	8
11	Densità di corrente alle spazzole troppo bassa	Diminuire il numero delle spazzole	
12	Umidità dell'aria troppo elevata	Introdurre aria fresca, scegliere spazzole idonee	
13	Polvere o sabbia sospese in aria	Montare filtri ed eliminare le cause	
14	Gas o acidi nell'aria	Introdurre aria fresca, scegliere spazzole idonee	
15	Attrito alle spazzole troppo elevato	Ridurre la pressione delle spazzole, usare spazzole non abrasive	
16	Spazzole non adattate al collettore	Adattare perfettamente le spazzole	5.7
17	Diverse qualità di spazzole	Usare spazzole della stessa qualità	
18	Macchie sul collettore a macchina ferma	Sollevare le spazzole	
19	Pressione alle spazzole troppo bassa	Sostituire i supporti completi di molla	
20	Pressione alle spazzole troppo elevata	Sostituire i supporti completi di molla	
21	Pressione alle spazzole diversa tra loro	Sostituire le molle inefficienti	
22	Spazzole bloccate nel portaspazzole	Pulire i portaspazzole, controllare il gioco	
23	Portaspazzole con gioco eccessivo	Sostituire i portaspazzole	
24	Portaspazzole non paralleli alle lamelle	Regolare i portaspazzole	
25	Distanza del cassetto portaspazzole dal collettore troppo elevata	Regolare la distanza a 2-2,5 mm	
26	Disuniforme distribuzione della corrente nelle spazzole	Aumentare la densità di corrente, riducendo la quantità delle spazzole; adoperare spazzole più abrasive	
27	Mica sporgente dal collettore	Smicare e smussare gli spigoli	5.3
28	Sbavature alle lamelle	Eliminare le sbavature, smussare gli spigoli, sostituire le spazzole con altre più adatte	
29	Collettore ovalizzato	Tornire il collettore	5.3
30	Saldature interrotte	Saldare le forcelle al collettore	
31	Scanalature sul collettore	Tornire il collettore	5.3
32	Lamelle del collettore sporgenti	Passare il collettore con pietra; eventualmente tornire il collettore	5.3
33	Mancanza della reattanza di spianamento ove prevista	Mettere la reattanza di spianamento	

Tabella 7.3.2 - Anomalie di commutazione – cause e rimedi

8. ISTRUZIONI PER LE RIPARAZIONI DI TIPO ELETTRICO

Quando le riparazioni consistono in riavvolgimenti di bobine di campo principale, di campo ausiliare o di indotto, occorre di norma rivolgersi ad una officina di riparazioni esperta ed adeguatamente attrezzata.

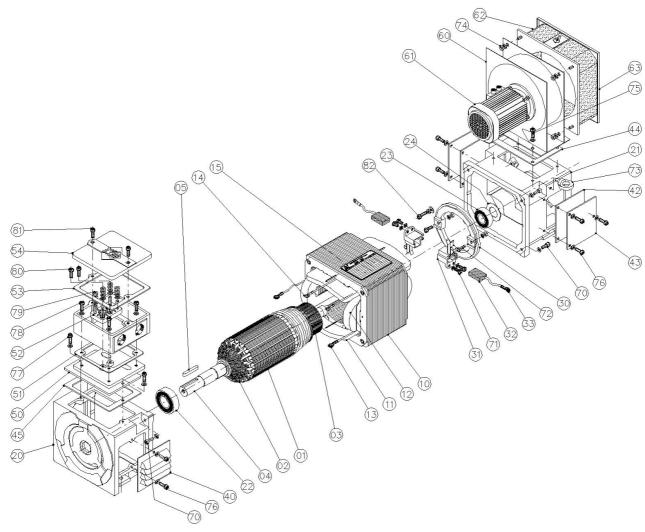
SICMEMOTORI invierà su richiesta l'elenco aggiornato delle officine da lei riconosciute idonee.

Particolare attenzione deve essere data ai materiali da usare a questo proposito. Indicazioni specifiche per ogni macchina, insieme agli schemi ed alle istruzioni di avvolgimento, saranno messi a disposizione da SICMEMOTORI su richiesta, con il mezzo più rapido. Nel seguito sono date alcune indicazioni generali, da tenere sempre presenti:

Componente	Materiale consigliato	Classe
Fili	Rame smaltato, doppio smalto	H; H+
Piattine	Rame smaltato, quadruplo smalto	H; H+
Isolamento verso massa	Nomex	Н
Flange isolanti	Poliestere	Н
Bandaggi delle testate d'indotto	Nastro vetro Polyglass	Н
Impregnazione avvolgimenti	Vernice essiccante in forno	Н
Protezione superficiale avvolgimenti	Smalto epossidico antitraccia (essiccante all'aria o in forno)	-

Tabella 8 - Materiali consigliati per riparazioni elettriche

9. PARTI DI RICAMBIO CONSIGLIATE


Una appropriata scorta di ricambi permette di assicurare la continuità di servizio all'impianto e di risolvere in breve tempo fermate dovute ad eventuali guasti. Perl'ordinazione di parti di ricambio è sempre necessario indicare il tipo di macchina, il numero di matricola ed i dati di targa.

La quantità di parti di ricambio da tenere a disposizione dipende dalla quantità di macchine uguali utilizzate e dall'importanza attribuita al tempo di fermata. Nella tabella 9 sono indicati i quantitativi minimi consigliati da tenere a scorta:

Parti di ricambio	Macchine uguali in servizio			
	1	2-3	4-6	=>7
Filtro	1	2	3	4
Elettroventilatore completo	1	-	1	2
Muta di spazzole	2	4	6	8
Muta di portaspazzole	-	-	1	1
Muta di cuscinetti	1	1	1	2
Polo principale completo	-	2	2	2
Polo ausiliario completo	-	2	2	2
Bobina di compensazione	-	2	2	2
Indotto completo	-	1	1	1
Macchina completa	-	-	1	1

Tabella 9 - Parti di ricambio consigliate

10. DISEGNI DIMOSTRATIVI D'ASSIEME E NOMENCLATURA

- 01 Indotto completo
- 02 Matassa indotto
- 03 Collettore
- 04 Albero
- 05 Linguetta estremità d'albero
- 10 Giogo completo
- 11 Bobina polo principale
- 12 Bobina polo ausiliare
- 13 Terminale bobina polo ausiliare
- 14 Terminale bobina polo principale
- 15 Targa identificativa
- 20 Cuffia lato accoppiamento
- 21 Cuffia lato collettore
- 22 Cuscinetto lato accoppiamento
- 23 Cuscinetto lato collettore
- 24 Rispan
- 30 Raggera portaspazzole
- 31 Cassetto porta spazzole
- 32 Spazzola
- 33 Capocorda spazzole
- 40 Portella alettata
- 42 Guarnizione laterale lato collettore
- 43 Portella laterale lato collettore
- 44 Guarnizione superiore cuffia lato collettore
- 45 Guarnizione superiore cuffia lato accoppiamento

- 50 Telaio scatola morsetti
- 51 Guarnizione inferiore scatola morsetti
- 52 Basetta morsettiera
- 53 Guarnizione coperchio scatola morsetti
- 54 Coperchio scatola morsetti
- 60 Elettroventilatore
- 61 Motore asincrono
- 62 Pannello filtrante
- 63 Telaio portafiltro
- 70 Vite fissaggio cuffia al giogo
- 71 Vite fissaggio capocorda spazzole
- 72 Vite fissaggio cassetto portaspazzole
- 73 Golfare di sollevamento
- 74 Dadi di fissaggio complesso filtrante
- 75 Vite fissaggio elettroventilatore
- 76 Vite fissaggio portella laterale
- 77 Vite fissaggio telaio scatola alla cuffia
- 78 Vite fissaggio scatola morsetti al telaio scatola
- 79 Dadi per terminali di alimentazione
- 80 Vite fissaggio basetta morsettiera
- 81 Vite fissaggio coperchio scatola morsetti
- 82 Vite fissaggio raggera portaspazzole

Fig. 10.1 - Disegno dimostrativo d'assieme per grandezze P-NP 80-112

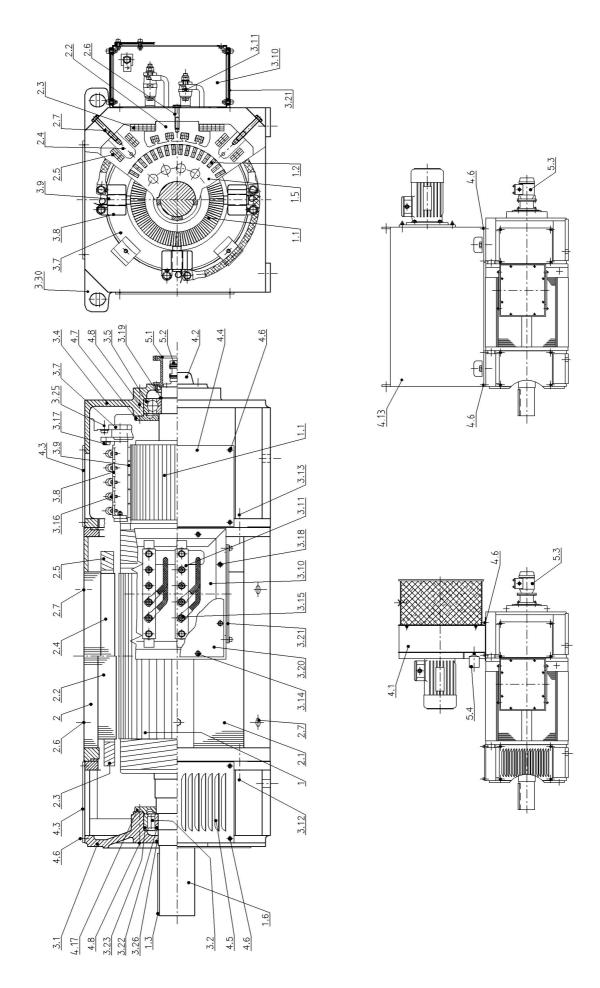


Fig. 10.2 - Disegno dimostrativo d'assieme per grandezze P 132-450 (Per la nomenclatura vedere fig. 10.5)

48

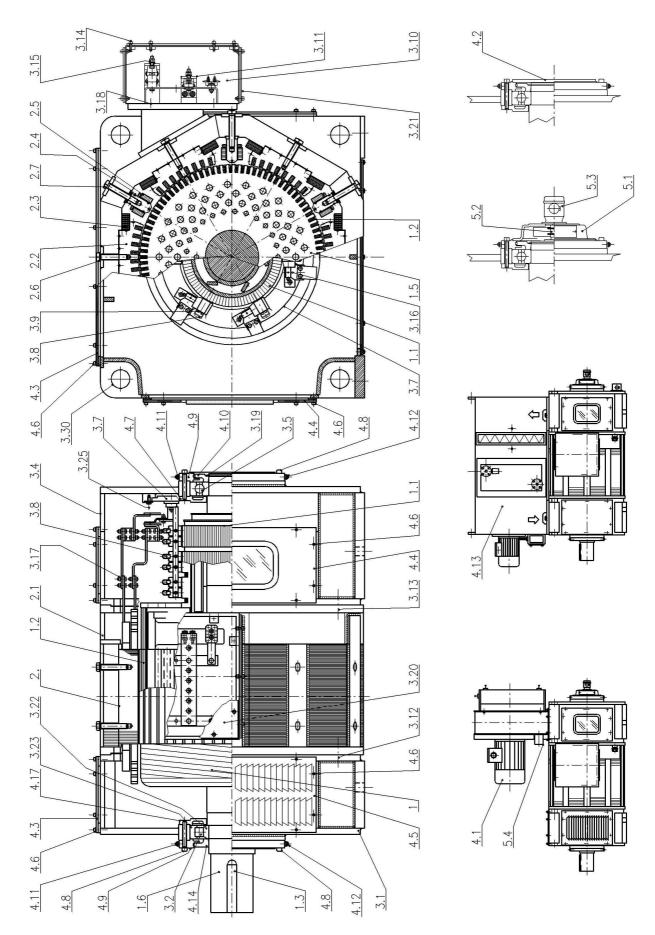


Fig. 10.3 - Disegno dimostrativo d'assieme per grandezze NP 500-630 (Per la nomenclatura vedere fig. 10.5)

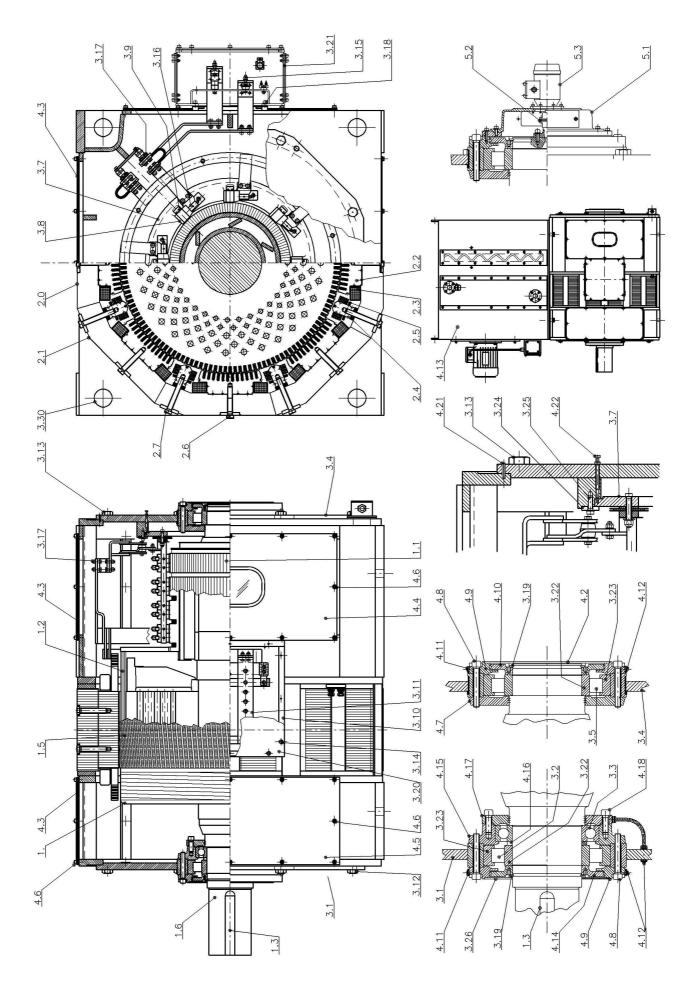


Fig. 10.4 - Disegno dimostrativo d'assieme per grandezze NP 710-800 (Per la nomenclatura vedere fig. 10.5)

1 1.1 1.2 1.3 1.5 1.6	Indotto completo Collettore Matassa indotto Linguetta albero (se prevista) Pacco indotto Albero	5 5.1 5.2 5.3 velocità 5.4	Accessori (solo se richiesti) Lanterna per tachimetrica Giunto per tachimetrica Dinamo tachimetrica o altro dispositivo controllo Relè anemometrico
<u>2</u> 2.1	Statore completo di poli Carcassa completa di giogo statore	LISTA RIMON	ORGANI DI SERRAGGIO PER SMONTAGGIO E TAGGIO
2.2 2.3 2.4 2.5 3.1 3.2 3.3 3.4	Polo principale completo di bobina Bobina polo principale Polo ausiliare completo di bobina Bobina polo ausiliare Scudo/Cuffia lato accoppiamento Cuscinetto a rulli lato accoppiamento Cuscinetto a sfere lato accoppiamento Scudo isolato/Cuffia lato collettore	2.6 2.7 3.12 3.13 3.14 3.15 3.16 3.17	Viti fissaggio poli principali Viti fissaggio poli ausiliari Viti fissaggio scudo/cuffia lato accoppiamento Viti fissaggio scudo/cuffia lato collettore Viti coperchio scatola morsetti Viti fissaggio cavi di alimentazione Viti fissaggio capicorda spazzole Viti fissaggio terminali raggera portaspazzole
3.5 3.7 3.8	Cuscinetto a rulli/sfere lato collettore Raggera completa di sostegni portaspazzole Portaspazzola	3.17 3.18 3.25	Viti fissaggio terminali raggera portaspazzole Viti fissaggio scatola morsetti Viti fissaggio raggera portaspazzole
3.9 3.10 3.11 3.19 3.20 3.21 3.22 3.23 3.24 3.26 3.30	Spazzola Scatola morsettiera Barre morsettiera Anello seeger lato accoppiamento e lato collettore Coperchio scatola morsetti Coperchio per apertura uscita cavi Anello interno del cuscinetto a rulli Anello esterno del cuscinetto a rulli Piastrina bloccaggio raggera Anello di tenuta lato accoppiamento Golfari di sollevamento	4.6 4.8 4.18 4.21 4.22	Viti fissaggio portelle Viti fissaggio paragrasso Viti fissaggio paragrasso interno lato accoppiamento Spina posizionamento scudo lato collettore Dispositivo allineamento zona neutra
4.1 4.2 4.3 4.4 4.5 4.7 4.9 4.10 4.11 4.12 4.13 4.14 4.15 4.16 4.17	Elettroventilatore Protezione estremità albero Portella superiore lato collettore e lato accoppiamento Portella lato collettore (con oblò per 355÷800) Portella lato accoppiamento Paragrasso interno lato collettore Paragrasso esterno Anello valvola a grasso lato collettore Ingrassatore Tappo scarico grasso Gruppo di raffreddamento Anello valvola a grasso lato accoppiamento Bussola portacuscinetto a sfere lato accoppiamento Distanziale cuscinetto lato accoppiamento Paragrasso interno lato accoppiamento		

Fig. 10.5 - Nomenclatura relativa a Figg. 10.2-10.3-10.4 (P132÷NP800)

APPENDICE

B b.1 b.2 b.3 b.3.1 b.3.2 b.4 b.4.1 b.5 b.5.1 b.6 b.6.1 b.7 b.8 b.9 b.10	Descrizione scambiatore Cassone Filtro aria Estrazione filtro Rigenerazione del panno filtrante Batteria di raffreddamento Pulizia fascio tubiero Elettroventilatore del circuito interno Pulizia girante circuito aria interna Elettroventilatore del circuito esterno Pulizia girante circuito aria esterna Scatola morsetti scambiatore Apparecchi di controllo Ciclo di manutenzione consigliato Taratura apparecchi di controllo
C c.1 c.2 c.3 c.3.1 c.3.2 c.4 c.4.1 c.4.2 c.5 c.5.1 c.6 c.7	SCAMBIATORE DI CALORE ARIA-ACQUA Descrizione scambiatore Cassone Filtro aria Estrazione filtro Rigenerazione del panno filtrante Batteria di raffreddamento Pulizia interna dei tubi Pulizia esterna fascio tubiero Elettroventilatore Pulizia girante del ventilatore Scatola morsetti scambiatore Apparecchi di controllo

Ciclo di manutenzione consigliato

Taratura apparecchi di controllo

c.8

c.9

B SCAMBIATORE DI CALORE ARIA-ARIA

Normalmente lo scambiatore di calore aria-aria è montato sul lato superiore del motore, che è in esecuzione chiusa.

b.1 Descrizione scambiatore aria-aria

Lo scambiatore è composto dai seguenti componenti principali (vedere figg. 1 e 2).

Cassone (2.0)
Filtro aria (3.0)
Batteria a fascio tubiero (4.0)
Elettroventilatore circuito interno (5.0)
Elettroventilatore circuito esterno (6.0)
Scatola morsettiera (7.0)
Apparecchi di controllo

Nelle figure 1 e 2 sono evidenziati i flussi dell'aria interna e di quella esterna

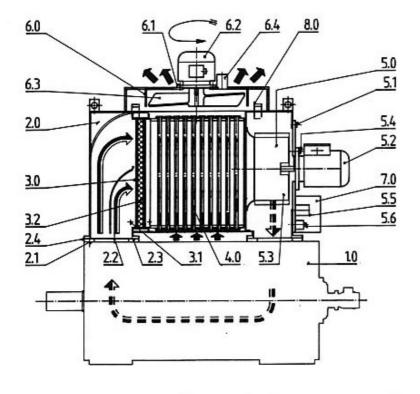


Fig. 1 – Scambiatore di calore aria-aria per macchine 132-315

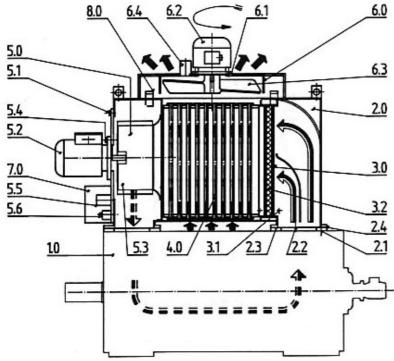
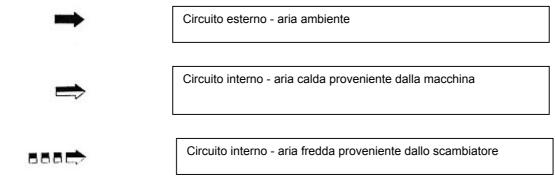



Fig. 2 – Scambiatore di calore aria-aria per macchine 355-800

Macchina a c.c.

- 2.0 Cassone
- 2.1 Viti fissaggio piastra alla macchina
- 2.2 Viti fissaggio scambiatore alla piastra
- 2.3 Piastra
- 2.4 Guarnizione
- 3.0 Complesso filtrante
- 3.1 Dadi fissaggio coperchio del filtro
- 3.2 Pannello filtrante
- 4.0 Fascio tubiero
- 5.0 Complesso Elettroventilatore circuito interno
- 5.1 Dadi fissaggio complesso elettroventilatore
- 5.2 Motore asincrono circuito interno
- 5.3 Girante ad alta pressione
- 5.4 Dadi fissaggio motore asincrono
- 5.5 Pressostato aria circuito interno
- 5.6 Termostato aria circuito interno
- 6.0 Complesso elettroventilatore circuito est.
- 6.1 Dadi fissaggio motore asincrono
- 6.2 Motore asincrono circuito esterno
- 6.3 Ventola assiale
- 6.4 Pressostato circuito esterno
- 7.0 Scatola morsetti scambiatore di calore
- 8.0 Chiusure a gancio registrabili

Fig. 3 - Nomenclatura relativa alle figure 1 e 2

b.2 Cassone

Il cassone 2.0 ha la funzione di custodia e racchiude il filtro 3.0, la batteria di raffreddamento a fascio tubiero 4.0 e l'elettroventilatore 5.0 per la circolazione dell'aria di raffreddamento all'interno della macchina 1.0. È previsto per il montaggio sulla macchina con flange di attacco e due aperture (bocche) di ingresso e uscita aria, per circolazione in ciclo chiuso. È collegato al motore mediante le viti 2.1 con l'interposizione di un telaio 2.3 per rapida rimozione, collegato allo scambiatore con le viti 2.2. Le guarnizioni 2.4 in gomma cloroprene hanno lo scopo di ottenere una sufficiente tenuta.

b 3 Filtro aria

Il filtro per l'aria interna 3.0 è montato all'ingresso del fascio tubiero nel circuito interno di ventilazione. È estraibile, rigenerabile ed autoestinguente.

b.3.1 Estrazione filtro

Allentare i dadi 3.1 e togliere il coperchio del complesso filtrante; indi estrarre il filtro utilizzando gli appositi fori di estrazione.

b.3.2 Rigenerazione del panno filtrante

Il pannello filtrante 3.2 è rigenerabile e non ha la necessità di essere sostituito se non dopo un certo numero di lavaggi. Il filtro si pulisce mediante soffiatura con getto d'aria in pressione, battitura o aspirazione, oppure sciacquando in acqua tiepida sino a 40°C con l'eventuale aggiunta di detersivo. In casi estremi utilizzare benzina. Evitare la torcitura dopo il lavaggio. In caso di pulizia mediante lavaggio è indispensabile lasciare asciugare il filtro prima del rimontaggio. Ad operazione ultimata reintrodurre il filtro nel cassone e serrare i dadi 3.1 del coperchio. Si raccomanda di effettuare periodicamente il controllo dell'intasamento filtro, per evitare perdite di carico eccessive nel circuito di ventilazione qualora il pressostato 5.5 (vedere punto b.8) fosse male tarato o guasto.

b.4 Batteria di raffreddamento

La batteria 4.0 è costituita da un fascio tubiero realizzato con tubi in alluminio mandrinati su piastre longitudinali forate. È trattata con resine per assicurare la tenuta.

b.4.1 Pulizia fascio tubiero

Sganciare le leve delle chiusure a gancio 8.0 che bloccano il complesso del circuito di raffreddamento esterno al cassone 2.0 e sollevare detto complesso per esporre a giorno l'ingresso tubi. Eseguire la pulizia del fascio tubiero mediante soffiatura cin aria secca e pulita immessa in pressione (2-3 bar).

b.5 Elettroventilatore del circuito interno

La circolazione interna dell'aria in ciclo chiuso per il raffreddamento della macchina a corrente continua avviene a mezzo di un elettroventilatore, composto dal motore asincrono trifase 5.2 e dalla girante ad alta pressione 5.3.L'aria calda, dopo la filtrazione, ritorna in ciclo, raffreddandosi nel passaggio attraverso il fascio tubiero. Il senso di rotazione corretto del ventilatore è indicato da una freccia. E' importante curare la pulizia della girante, perché la presenza di sporcizia o incrostazioni possono provocare squilibrio, con conseguenti vibrazioni.

b.5.1 Pulizia girante circuito aria interna

Allentare i dadi 5.1 che bloccano il gruppo elettroventilatore al cassone 2.0 e sfilare il complesso motore-girante dal cassone. Provvedere alla pulizia delle pale con getto d'aria in pressione ed eventualmente mediante spazzolatura o lavaggio. Rimontare l'elettroventilatore e serrare i dadi 5.1.

b.6. Elettroventilatore del circuito esterno

L'aria dell'ambiente viene fatta circolare all'interno dei tubi della batteria di raffreddamento. La circolazione dell'aria avviene per mezzo dell'elettroventilatore 6.0 che aspira l'aria dal basso verso l'alto mediante la ventola assiale 6.3 azionata dal motore asincrono trifase 6.2. Il senso di rotazione corretto è indicato da una freccia.

b.6.1 Pulizia girante circuito aria esterna

Per verificare lo stato di pulizia della girante sganciare le leve delle chiusure a gancio 8.0 che bloccano al cassone 2.0 il complesso, e sollevarlo per rendere accessibile la ventola. Pulire con getto d'aria secca o mediante spazzolatura o lavaggio. Indi rimontare, riagganciando le leve di chiusura a gancio 8.0.

b.7 Scatola morsetti scambiatore di calore aria-aria

Lo scambiatore è corredato di una scatola morsetti 7.0 per i collegamenti di tutti i dispositivi di controllo, e per l'alimentazione dei motori asincroni.

b.8 Apparecchi di controllo (vedere schema di fig. 5)

Lo scambiatore è corredato di due pressostati 5.5 e 6.4 per segnalare l'insorgere di eventuali anomalie (cadute di pressione eccessive) nel circuito dell'aria interna o di quella esterna. Nel circuito interno è previsto anche un termostato 5.6, per segnalare una eventuale temperatura eccessiva della aria all'ingresso nella macchina. Il pressostato 5.5 e il termostato 5.6 sono montati all'interno della scatola morsetti 7.0.

PERICOLO!

Prima di effettuare qualsiasi operazione di manutenzione, assicurarsi che la macchina elettrica ed i ventilatori dello scambiatore di calore siano disconnessi dalla rete.

b. 9 Ciclo di manutenzione consigliato

Componente	Operazione	Periodicità (ore)
Filtro	Controllo intasamento ed eventuale pulizia	750
Batteria di raffreddamento	Pulizia fascio tubiero	4000
Elettroventilatori circuiti interno ed esterno	Pulizia girante	8000
Apparecchi di controllo	Controllo efficienza apparecchi e verifica serraggio delle connessioni elettriche	2500
Guarnizioni di tenuta	Sostituzione di tutte le guarnizioni	15000
Viti	Verifica eventuali allentamenti	2500

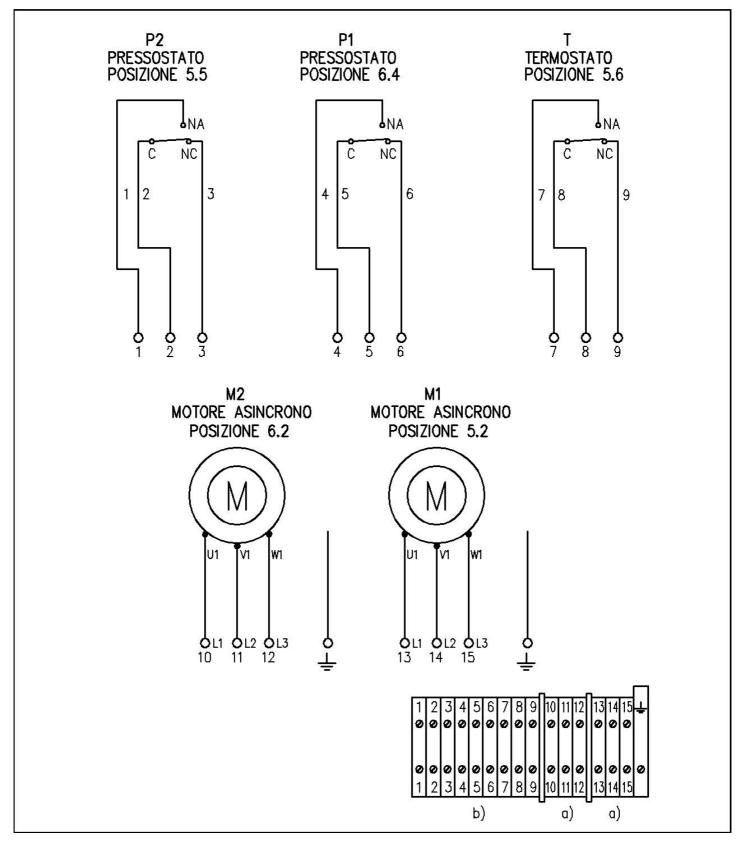
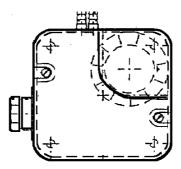


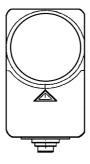
Fig. 5 - Schema elettrico scambiatore di calore aria-aria


Alimentazione da linea trifase (400 V – 50 Hz salvo indicazione diversa) Alimentazione da linea monofase (230 V - 50 Hz salvo indicazione diversa)

b.10 Taratura apparecchi di controllo

-Pressostato aria interna:

Il pressostato aria interna è tarato presso la nostra sala prove. In caso di sostituzione o di funzionamento anomalo del pressostato, per la nuova taratura riferirsi alle seguenti istruzioni.


- 1) Posizionare l'apposita manopola in prossimità del valore minimo di taratura.
- 2) Attivare la ventilazione.
- 3) Ruotare lentamente la manopola in senso orario affinchè si verifichi la commutazione del contatto.
- **4)** Ruotare nuovamente <u>in senso antiorario</u> la manopola di pochi millimetri (≅ 0.2 0.3 mbar).
- 5) Disattivare la ventilazione e verificare, molto prima che la ventola sia completamente ferma, che il contatto ritorni nella posizione di riposo.

-Termostato aria interna:

Il termostato aria interna è tarato presso la nostra sala prove. In caso di sostituzione o di funzionamento anomalo del termostato, per la nuova taratura riferirsi alle seguenti istruzioni.

- 1) Ruotare l'apposita manopola in prossimità della temperatura ambiente.
- 2) Verificare la commutazione del contatto.
- 3) Ruotare nuovamente la manopola impostandola in prossimità della temperatura di 45/55°C. Se la macchina è installata in un luogo con temperatura ambiente diversa da –20°C ÷ +40°C consultare SICMEMOTORI.
- 4) Verificare il ritorno del contatto nella posizione di riposo.

SCAMBIATORE DI CALORE ARIA-ACQUA C

Normalmente lo scambiatore di calore aria-acqua è montato sul lato superiore del motore, che è in esecuzione chiusa.

Descrizione scambiatore

Lo scambiatore di calore aria-acqua si compone di (vedere fig. 6 e 7):

Cassone (2.0)

Filtro aria (3.0)

Batteria di raffreddamento aria-acqua (4.0)

Elettroventilatore (5.0)

Scatola morsetti scambiatore (6.0)

Apparecchi di controllo.

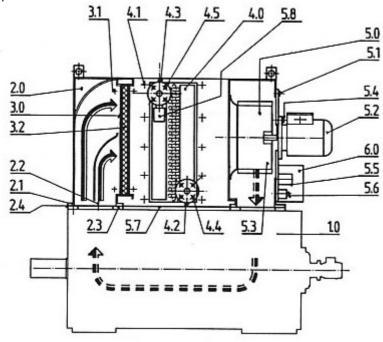


Fig. 6 - Scambiatore di calore ariaacqua per macchine 132-315

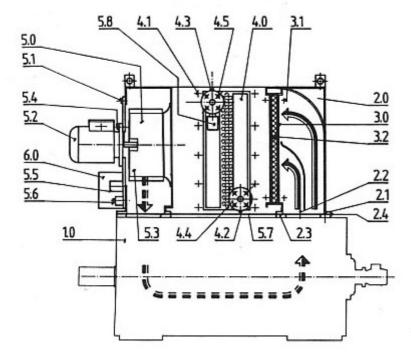


Fig. 7 – Scambiatore di calore aria-acqua per macchine 355-800

58

Aria calda proveniente dalla macchina

Aria fredda proveniente dallo scambiatore

- 1.0 Macchina a c.c.
- 2.0 Cassone
- Viti fissaggio piastra alla macchina
- 2.2 Viti fissaggio scambiatore alla piastra
- 2.3 Piastra
- 2.4 Guarnizione
- 3.0 Complesso filtrante
- 3.1 Dadi coperchio complesso filtrante
- 3.2 Panno filtrante
- 4.0 Batteria di raffreddamento aria-acqua
- 4.1 Viti fissaggio batteria di raffreddamento.
- 4.2 Tappo sul tubo di mandata
- 4.3 Tappo sul tubo di scarico
- 4.4 Flangia sul tubo di mandata
- 4.5 Flangia sul tubo di scarico
- 5.0 Elettroventilatore
- 5.1 Viti fissaggio elettroventilatore
- 5.2 Motore asincrono
- 5.3 Girante
- 5.4 Viti fissaggio motore asincrono
- 5.5 Pressostato
- 5.6 Termostato
- 5.7 Indicatore perdite acqua
- 5.8 Flussostato
- 6.0 Scatola morsetti scambiatore di calore

Fig. 8 - Nomenclatura relativa alle figure 6 e 7

c.2 Cassone

Il cassone 2.0 ha funzione di custodia e racchiude il filtro, 3.0 la batteria di raffreddamento 4.0 e l'elettroventilatore 5.0. È previsto per montaggio sul motore con flange di attacco, con due aperture (bocche) di ingresso e uscita aria, per circolazione dell'aria in ciclo chiuso. È collegato al motore mediante le viti 2.1 con l'interposizione di un telaio 2.3 per rapida rimozione, collegato allo scambiatore con le viti 2.2. Le guarnizioni 2.4 in gomma cloroprene hanno lo scopo di ottenere una sufficiente tenuta.

c.3 Filtro aria

Il filtro 3.0 è montato all'ingresso della batteria di raffreddamento ed è estraibile, rigenerabile ed autoestinguente.

c.3.1 Estrazione del filtro

Allentare i dadi 3.1 e togliere il coperchio del complesso filtrante; indi estrarre il filtro utilizzando gli appositi fori di estrazione.

c.3.2 Rigenerazione del panno filtrante

Il panno filtrante 3.2 è rigenerabile e non ha necessità di essere sostituito se non dopo un certo numero di lavaggi. Il filtro si pulisce mediante soffiatura di aria in pressione, battitura o aspirazione, oppure sciacquandolo in acqua tiepida sino a 40° C con l'eventuale aggiunta di detersivo. In casi estremi utilizzare benzina. Evitare la torcitura dopo il lavaggio. In caso di pulizia mediante lavaggio, è indispensabile lasciare asciugare il filtro prima del rimontaggio. Rimontare e serrare i dadi 3.1. Si raccomanda di effettuare periodicamente il controllo dell'intasamento del filtro, per evitare perdite di carico eccessive nel circuito di ventilazione.

c.4 Batteria di raffreddamento

La batteria 4.0 è costituita da un fascio tubiero in rame entro un pacco di lamine di alluminio. All'interno dei tubi passa l'acqua. L'aria lambisce le lamine d'alluminio, che le sottraggono calore e lo trasmettono per conduzione ai tubi. Attenzione alle caratteristiche della acqua: salvo accordi diversi, gli scambiatori sono previsti per acqua dolce industriale o rurale, senza sostanze in sospensione, e dimensionati per acqua entrante alla temperatura massima di 26°C, con pressione massima di 7 bar. Il fascio tubiero termina con flange normalizzate 4.4 e 4.5 per attacco alle tubazioni di mandata e scarico della acqua. Sulla mandata è montato il tappo 4.2 per drenaggio. Sul ritorno dell'acqua è montato il tappo 4.3 per lo sfiato.

c.4.1 Pulizia interna dei tubi

Chiudere la valvola a saracinesca (esclusa dalla ns. fornitura), posta a monte della flangia di mandata per interrompere l'erogazione dell'acqua. Togliere il tappo 4.2 sul tubo di mandata per svuotare completamente dall'acqua la batteria, togliere il tappo 4.3, indi immettere nell'interno dei tubi di rame un getto d'aria in pressione per eliminare lo sporco e il deposito di incrostazioni. Eventualmente lavare con disincrostanti. Per ridurre il pericolo di formazione di incrostazioni all'interno dei tubi utilizzare periodicamente detergenti adatti.

c.4.2 Pulizia esterna del fascio tubiero

Allentare le viti 4.1 che bloccano la batteria al cassone. Sfilare la batteria dal cassone e procedere alla pulizia del fascio tubiero con getto d'aria in pressione o mediante lavaggio per eliminare l'eventuale deposito di polvere. Rimontare la batteria e serrare le viti 4.1.

c.5 Elettroventilatore

L'elettroventilatore 5.0 provvede a far circolare l'aria nel circuito chiuso macchina-scambiatore; è costituito dal motore asincrono trifase 5.2 e dalla girante 5.3. Il senso di rotazione corretto è indicato da una freccia.

c. 5.1 Pulizia girante del ventilatore

Per verificare lo stato di pulizia della girante allentare le viti 5.1 che bloccano il gruppo elettroventilatore al cassone e sfilare il complesso motore-girante dal cassone. Incrostazioni sulla girante possono provocarne lo squilibrio, con conseguente vibrazione. Provvedere alla sua pulizia con getto d'aria in pressione, mediante spazzolatura o lavaggio. Rimontare l'elettroventilatore e serrare le viti 5.1.

c.6 Scatola morsetti dello scambiatore aria-acqua

Lo scambiatore è corredato di una scatola morsetti 6.0 per i collegamenti di tutti gli apparecchi di controllo, e per l'alimentazione del motore asincrono

PERICOLO!

Prima di effettuare qualsiasi operazione di manutenzione, assicurarsi che la macchina elettrica ed il suo ventilatore siano disconnessi dalla rete.

Assicurarsi inoltre che le saracinesche dell'acqua di raffreddamento siano chiuse.

c. 8 Ciclo di manutenzione consigliato

Componente	Operazione	Periodicità (ore)
Filtro	Controllo intasamento ed eventuale pulizia	750
Batteria di raffreddamento	Pulizia esterna fascio tubiero	4000
	Pulizia completa	8000
Elettroventilatore	Pulizia girante	8000
Apparecchi di controllo	Controllo efficienza apparecchi e verifica serraggio delle connessioni elettriche	2500
Guarnizioni di tenuta	Sostituzione di tutte le guarnizioni	15000
Viti	Verifica eventuali allentamenti	2500

c.7 Apparecchi di controllo (vedere schema di fig. 9)

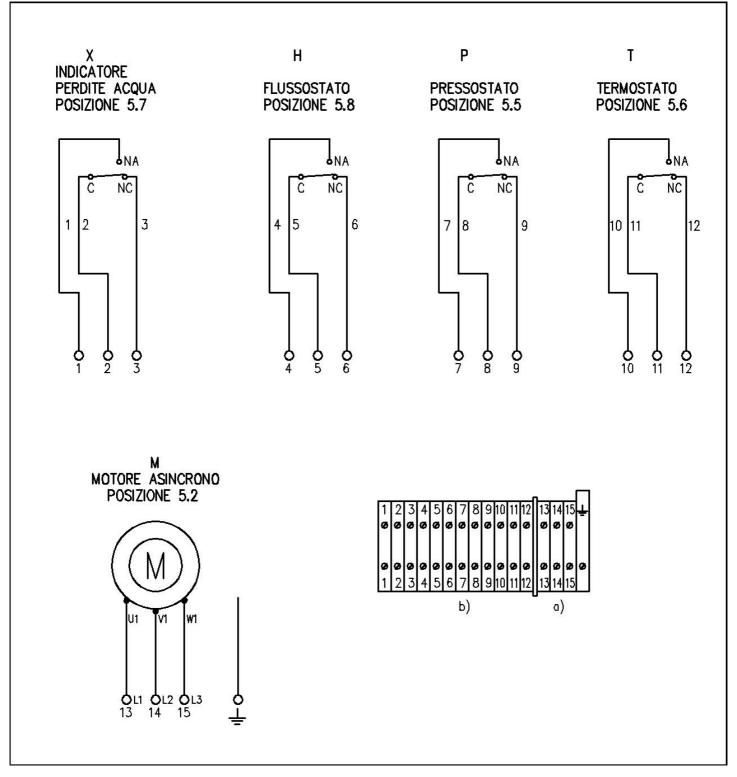
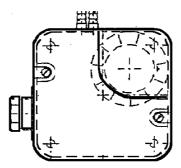


Fig. 9 - Schema elettrico per scambiatore di calore aria-acqua

- a) alimentazione da linea trifase (400 V 50 Hz salvo indicazione diversa)
- b) alimentazione da linea monofase (230 V 50 Hz salvo indicazione diversa)

Nella versione standard lo scambiatore è completo di:

- un pressostato 5.5 sul circuito della aria per la segnalazione di eventuali anormali cadute di pressione.
- un termostato 5.6 per segnalare una eventuale temperatura eccessiva della aria all'ingresso nella macchina.
- un flussostato 5.8 per segnalare una eccessiva riduzione della portata dell'acqua.
- un indicatore perdite acqua 5.7 (limitatamente agli scambiatori per macchine della gamma 225 e superiori).


Il pressostato 5.5 e il termostato 5.6 sono montati all'interno della scatola morsetti 6.0.

c.9 Taratura apparecchi di controllo

-Pressostato:

Il pressostato è tarato presso la nostra sala prove. In caso di sostituzione o di funzionamento anomalo del pressostato, per la nuova taratura riferirsi alle seguenti istruzioni.

- 1) Posizionare l'apposita manopola in prossimità del valore minimo di taratura.
- 2) Attivare la ventilazione.
- 3) Ruotare lentamente la manopola in senso orario affinchè si verifichi la commutazione del contatto.
- 4) Ruotare nuovamente in senso antiorario la manopola di pochi millimetri (≅ 0.2 0.3 mbar).
- 5) Disattivare la ventilazione e verificare, molto prima che la ventola sia completamente ferma, che il contatto ritorni nella posizione di riposo.

-Termostato:

Il termostato è tarato presso la nostra sala prove. In caso di sostituzione o di funzionamento anomalo del termostato, per la nuova taratura riferirsi alle seguenti istruzioni.

- 1) Ruotare l'apposita manopola in prossimità della temperatura ambiente.
- 2) Verificare la commutazione del contatto.
- 3) Ruotare nuovamente la manopola impostandola in prossimità della temperatura di 45/55°C. Se la macchina è installata in un luogo con temperatura ambiente diversa da –20°C ÷ +40°C consultare SICMEMOTORI.
- 4) Verificare il ritorno del contatto nella posizione di riposo.

COMMENTI DELL'UTILIZZATORE DEL PRESENTE MANUALE

Al fine di rendere questo manuale il più completo possibile e con tutte le informazioni necessarie a facilitare il lavoro dei tecnici addetti alla manutenzione dei ns. prodotti, qualunque suggerimento, osservazione, critica, sarà dalla SICMEMOTORI fonte di continuo miglioramento.

Nome dell'utilizzatore	Data	Se necessario, come Vi possiamo contattare?
Nome e indirizzo della Società	Codice del manuale	Fax
		Tel
Funzione nell'azienda/Motivo dell'uso del presente		E-mail
manuale		

Giudizio generale

Eccellente	Buono	Discreto	Pessimo	Commenti
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
0	0	0	0	
	0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Suggerimenti specifici (correzioni, informazioni che potrebbero trovare più spazio, ecc.)				
Pag. N.	Commenti			
Altri commenti (cosa vorreste, cosa potrebbe essere aggiunto, come migliorare il manuale, ecc.)				
In confronto a manuali similari di altri fabbricanti di prodotti similari, come giudicate questa pubblicazione?				
O migliore	O uguale	O inferiore	O non so	O commenti
Inviare copia di questo formulario via fax a:				
Sicme Motori SpA Strada del Francese 126-130 10156 Torino – Italy fax +39-011-4500047 Attn. Responsabile Gestione Sistema Qualità				

Questo documento e le informazioni in esso contenute sono esclusiva proprietà della SICME MOTORI S.p.A.

Il documento e le informazioni non possono essere riprodotte nemmeno parzialmente, né essere mostrate, riferite o comunque inoltrate a terzi senza l'espressa autorizzazione della SICME MOTORI S.p.A.

Le informazioni contenute in questa pubblicazione sono date a titolo puramente indicativo e possono essere modificate senza preavviso. L'uso dei prodotti qui illustrati al di fuori dei limiti delle caratteristiche indicati, non comportano alcuna responsabilità da parte della SICME MOTORI S.p.A.

SICME MOTORI SpA Strada del Francese 126/130 10156 Torino - Italy tel. 0039-011-4076311 fax 0039-011-4500047 sicmemotori@sicmemotori.com www.sicmemotori.com