VIBSCANNER[®] Bilanciamento e analisi FFT

VIBSCANNER[®] Bilanciamento e analisi FFT

MANUALE D'ISTRUZIONI

Egregio Cliente,

se ritiene di avere una valida idea per migliorare questo prodotto o questo manuale d'istruzioni, non esiti a contattarci. Saremo lieti di ascoltare i Suoi suggerimenti.

PRÜFTECHNIK Condition Monitoring Fax: +49 (0)89 99616-300 eMail: info@pruftechnik.com

Edition 08/2002 Versione 1.4x N. d'ordine: VIB 9.664I

Novità nella versione 1.50

Modulo per bilanciamento

- VIB 5.487-HW: Nuovo pacchetto con tutti gli accessori per il bilanciamento su 2 piani.
- I parametri del setup di macchina possono essere modificati durante la procedura di bilanciamento.
- Il menù 'Tools' è disponibile durante la procedura di bilanciamento con setup di macchina.

Cambiamenti nel setup di macchina o nel menù 'Tools'

- 'Trial/ Trim masses add/remove':
- Prima di ogni passo di correzione e possibile stabilire se la massa debba essere aggiunta o rimossa dal rotore.
- 'Recalc. Coeff.' (solo bilanciamento su di 1 piano) Il coefficiente per la stima del valore della massa di bilanciamento può essere utilizzato avendo come riferimento la corsa di prova (opzione 'inactive') oppure la corsa precedente (opzione 'active').
- 'Auto Trial Mass' (solo con setup macchina)
 VIBSCANNER può calcolare il valore della massa di prova dai dati macchina e suggerire il suo utilizzo per la corsa di prova (opzione 'active'). Nessuno valore per la massa di prova viene suggerito se viene scelta l'opzione 'inactive' e l'utilizzatore deve inserire il valore della massa di prova che intende utilizzare.

Modulo per analisi in frequenza (FFT)

- Il modulo FFT può essere attivato per 30 ore senza password. Dopo questo periodo la password di registrazione deve essere inserita (vedi manuale operativo del VIBSCANNER, VIB 9.638).
- La misura può essere ripetuta con un doppio click sulla videata dei risultati.
- I parametri nel setup di misura e il nome del setup possono essere cambiati.
- Dopo la misura, le informazioni sulla misura stessa sono disponibili nel menù 'info'.

Content

Uso autorizzato	4
Sicurezza	4
REGISTRAZIONE	6
CAPITOLO 1: BILANCIAMENTO	8
PACCHETTO DI BILANCIAMENTO VIB 5.486-HW	8
INSTALLAZIONE	9
NOTE SULLE PROCEDURE DI BILANCIAMENTO	14
BILANCIAMENTO SU PIANO SINGOLO	16
OPZIONI DI VISUALIZZAZIONE	21
MOSTRA RISULTATI	
SALVARE I RISULTATI	23
ELIMINA PASSAGGI DI BILANCIAMENTO	24
MODALITA DI CORREZIONE: PUNTI PREFISSATI	26
MODALITA DI CORREZIONE: PESO PREFISSATO	
Modalità di Correzione: Misurazione con Metro	
	30
	34
	ככ דר
	/ د ۵۶
	_42 12
STRUMENTI	
	44
	40
INGRANDIMENTO DELL'ASSE X	40 //7
INGRANDIMENTO DELLASSE A	48
FUNZIONE "MAX10"	
INGRANDIMENTO "MAX10"	
Appendice	50
Measurement tasks for frequency analysis	50
GRADI E GRUPPI DI QUALITA' DI BILANCIAMENTO	53
PER STRUTTURE RIGIDE	53
TIPI DI MACCHINA	54
ACCESSORI	55
Moduli di commutazione VIB 5.445 / VIB 5.446	55
DATI TECNICI	56

Premessa

Questo manuale descrive i moduli opzionali di firmware: "BILANCIAMENTO" (VIB 5.486-FM) e "ANALISI IN FRE-QUENZA - FFT" (VIB 5.485-FM) e illustra in dettaglio la gestione del bilanciamento su uno o due piani delle macchine VIBSCANNER in condizioni d'esercizio e le nuove funzioni di analisi della frequenza.

Per la descrizione delle funzioni di base dello strumento, consultare il manuale "VIBSCANNER - Diagnostica di macchina e raccolta dati" (VIB 9.638.I) fornito con ogni strumento come parte del pacchetto standard.

Uso autorizzato

VIBSCANNER è uno strumento portatile di bilanciamento progettato unicamente per il bilanciamento di macchinari in ambienti industriali. VIBSCANNER può essere utilizzato da personale generico addestrato per bilanciare i rotori rigidi, mentre il bilanciamento di rotori elastici nel campo della frequenza di risonanza (\pm 25%) dev'essere eseguito solo operatori molto esperti. In ogni caso, l'uso di VIBSCANNER e dei suoi accessori è riservato a personale addestrato.

VIBSCANNER è uno strumento portatile di misurazione utilizzabile esclusivamente per registrare segnali macchina in ambienti industriali.

Le sonde e i cavi vanno impiegati solo in applicazioni specifiche con le modalità descritte nei corrispondenti datasheet tecnici.

Qualsiasi altro utilizzo costituisce uso improprio e va evitato. La PRÜFTECHNIK AG declina ogni responsabilità per eventuali danni a cose o persone generati da uso improprio

Sicurezza

- L'involucro di questo strumento è realizzato in plastica elettricamente conducibile. Per questo motivo, VIBSCAN-NER va impiegato per misurare unicamente segnali a bassa tensione (± 30V) o a bassa corrente (± 20 mA).
- Per la misurazione del segnale e per la trasmissione di dati, utilizzare esclusivamente il cavo di collegamento fornito a questo scopo.

- Durante le misurazioni sui macchinari si raccomanda di osservare strettamente tutte le misure di sicurezza prescritte per il compito specifico.
- Durante l'assemblaggio dei componenti di misurazione, assicurarsi che nessuno strumento, cavo, eccetera si trovi vicino alle parti rotanti della macchina o possa entrarvi accidentalmente in contatto.
- In caso vengano installati dei pesi di bilanciamento, seguire scrupolosamente le istruzioni del costruttore della macchina. Per i pesi da saldare, assicurarsi che i punti di contatto siano puliti; l'elettrodo di massa della saldatrice va collegato al rotore e non al corpo della macchina. Per i pesi da avvitare, osservare i massimi giri/min. ammissibili per il rotore.
- Per operare sul rotore, isolare la macchina elettricamente ed idraulicamente e prendere le misure necessarie per evitare avviamenti accidentali. Osservare strettamente le misure di sicurezza.
- Prima di iniziare le misurazioni (sbilanciamento iniziale) assicurarsi che i preparativi siano stati eseguiti correttamente e in modo completo. Oltre all'installazione dei componenti di misurazione, prestare particolare attenzione al corretto inserimento dei parametri d'impostazione. Per fare un esempio, l'errata definizione del peso del rotore può avere come risultato il calcolo di un peso di prova troppo grande con possibili conseguenze anche gravi per il personale e per le macchine.
- Il personale non deve mai restare nelle prossimità radiali della macchina durante il funzionamento di prova e di bilanciamento. L'area dev'essere chiusa agli accessi imprevisti. Se il peso di prova si stacca dal rotore mentre la macchina è in movimento, vi è il pericolo di gravi lesioni e anche di morte.
- Se il rotore si trova in un alloggiamento protettivo, chiudere i portelli dell'alloggiamento prima di avviare la macchina.
- Non superare il numero di avviamenti previsti per la macchina, poiché il motore potrebbe danneggiarsi.
- Prima del bilanciamento vanno determinate ed eliminate le cause dello sbilanciamento (p.es. tramite la rimozione del materiale solidificatosi sul rotore, di eventuali cricche nelle saldature della girante oppure direttamente tramite la sostituzione della girante).

REGISTRAZIONE

Dalla versione 1.3 in poi, ogni VIBSCANNER contiene i due moduli di firmware "Bilanciamento" e "Analisi FFT", che possono essere attivati tramite l'inserimento della rispettiva password di registrazione.

Le password di VIBSCANNER vengono fornite con i certificati di registrazione "Bilanciamento" (VIB 5.486-FM) e "Analisi FFT" (VIB 5.485-FM).

Per inserire la password, procedere come segue:

• Accendere VIBSCANNER. Spingere il joystick verso l'alto per circa 2 secondi e lasciarlo.

• Cliccare sul simbolo "Imposta (Setup) VIBSCANNER".

VIBSCANNER Setue	***
Units:	Selezione
Lin9ua99io:	Selezione
Disponibile sensori:	Selezione
Re9istration:	Selezione
Info strumento:	Mostra
Offset Compensation	nSelezione

• Cliccare sull'opzione "Registrazione" in VIBSCANNER setup.

Re9istration	+
N° ID:	00000106
FFT	re9istered
Balancin9	unre9istered

• Cliccare sul modulo da registrare e digitare la password nell'editor di testo.

Enter password		
LMNUT	FTMM	
ABCDEFG123!	OK	
H JKLMN456% npnps7 789/	Elim	
<u>VWXYZ0+)</u>	ESC	

• Cliccare quindi su OK:

• Accettare il messaggio e premere il tasto ESC fino a tornare alla schermata iniziale.

Per aprire il modulo di firmware appena registrato, cliccare ripetutamente sui simboli presenti in alto a sinistra nello schermo:

Schermata iniziale di "Bilanciamento"

à

CAPITOLO 1: BILANCIAMENTO

PACCHETTO DI BILANCIAMENTO VIB 5.486-HW

Tutti i componenti necessari per il bilanciamento su uno o due piani (modalità sequenziale) vengono forniti in questo pacchetto di accessori.

	, 1	<i>.</i>
	sa velocità, piano	M5.
VIB 6.146	Sonda industriale	mobile per macchine a bas-

- VIB 8.736 Magnete per superfici ricurve.
- VIB 3.306 Nastro riflettente, larghezza 10 mm.
- VIB 5.432-2,9 Cavo di VIBSCANNER per il trigger, lunghezza 2,9 metri.
- VIB 5.437-2,9 Cavo di VIBSCANNER per sonde con amplificatore di linea, lunghezza 2,9 metri.
- VIB 4.307 Trigger ottico, attivo e riflettente.
- VIB 4.330 Staffa di sostegno del trigger.

INSTALLAZIONE

Quando si lavora sulla macchina, accertarsi che questa sia isolata elettricamente ed idraulicamente e che non possa essere avviata per errore.

- 1. Cercare le cause dello sbilanciamento ispezionando visivamente la macchina e correggerle se possibile. Esempio: rimuovere gli eventuali depositi dalla girante, risistemare i pesi di correzione eventualmente perduti e stringere i bulloni di fondazione.
- 2. Determinare il piano di misurazione e di bilanciamento e installare la sonda di vibrazioni sull'alloggiamento cuscinetti al punto di misurazione che mostra i valori di vibrazione più elevati. Prestare attenzione ai seguenti punti:
- Il piano di misurazione deve possibilmente trovarsi in mezzo ai cuscinetti, vicino al piano del peso di correzione e al piano del peso significativo (p.es. lato della girante, rotore). Per trovare il punto di misurazione più idoneo, cercare la direzione con i valori di vibrazione più elevati, per esempio con una sonda manuale (prendere nota delle direzioni di misurazione secondo DIN ISO 10816-3).
- Installare la sonda con un adattatore magnetico (*) direttamente sull'alloggiamento cuscinetti il più vicino possibile al centro dell'albero. Non fissare le sonde a componenti soggetti a vibrazione propria, p.es. coperchi, eccetera.
- La direzione di misurazione deve corrispondere alla direzione delle vibrazioni principali.
 Per una direzione di misurazione orizzontale, fissare la sonda alla metà inferiore dell'alloggiamento cuscinetti.
- Le sonde manuali non sono adatte al bilanciamento.
- Solo per il bilanciamento dinamico su due piani: determinare il secondo piano (B) allo stesso modo.

Se la macchina non viene bilanciata sul posto nelle condizioni in cui viene installata, ancorarla in permanenza su un basamento rigido (direttamente sul basamento o su smorzatori di vibrazione).

(*) VIB 8.734 o VIB 8.736, adattatore per superfici piane e curve.

Nota

Nota

VIBSCANNER ha un solo canale per le sonde e quindi è necessario operare in modo sequenziale durante il bilanciamento su due piani (vd. pag. 15). Una soluzione può essere l'utilizzo di due sonde di vibrazioni cambiando il cavo quando si cambia il piano di misurazione, oppure usare una sola sonda installandola ogni volta nel rispettivo piano di misurazione.

- 3. Valutare le condizioni di funzionamento della macchina utilizzando una misura con somma di vibrazioni secondo DIN ISO 10816-3.
- Macchine a bassa velocità (< 600 giri/min.): Misurare la velocità delle vibrazioni tramite un setup idoneo (*) e l'accelerometro industriale per macchine a bassa velocità (VIB 6.146). Se i valori escono dal campo ammissibile, procedere con la misurazione dello spettro FFT.

* Impostazioni nella schermata $\Sigma 2$

 Macchine a media velocità (> 600 giri/min.): Misurare la velocità delle vibrazioni tramite un setup idoneo (*) e l'accelerometro industriale per macchine a media velocità (VIB 6.140). Se i valori escono dal campo ammissibile, procedere con la misurazione dello spettro FFT. Se vengono segnalate delle vibrazioni eccessive alla frequenza di rotazione, iniziare la procedura di bilanciamento. Registrare le misurazioni per paragoni successivi.

Esempio: sulla macchina vengono rilevati dei picchi intorno a 25 Hz cioè 1500 giri/min. VIBSCANNER riporterà la presenza di vibrazioni alla frequenza di rotazione che indicano uno sbilanciamento.

La presenza di valori eccessivi nella misurazione assiale indica un ampio sbilanciamento all'accoppiamento che non può essere corretto con le misure qui proposte.

- 4. Applicare all'albero un segno di riferimento angolare per il trigger. Prestare attenzione ai seguenti punti:
- Utilizzare il nastro riflettente VIB 3.306 e applicarlo in senso perpendicolare rispetto al senso di rotazione. Applicare il segno di riferimento il più vicino possibile alla cava della molla di regolazione, in modo da ritrovarlo più facilmente e semplificare la riproduzione dei risultati di misurazione.
- Convenzione sugli angoli: il segno di riferimento angolare è a 0°; l'angolo ø dei pesi di correzione viene misurato in senso opposto al senso di rotazione dell'albero.

Nei ventilatori, numerare le pale in base alla direzione in cui viene misurato l'angolo d'installazione. La pala n. 1 si trova alla posizione 0° (vd. "Correzione dei punti prefissati", pag. 26).

- 5. Installare il trigger con la staffa di supporto VIB 4.330. Prestare attenzione ai seguenti punti:
- Assemblare la staffa in modo che il trigger possa essere installato a una distanza di 5 - 40 mm. dalla superficie dell'albero. Ridurre al minimo l'ampiezza della staffa, in modo da ridurre il più possibile le vibrazioni del trigger.

* Impostazioni nella schermata $\Sigma 2$


```
Nota
```


- Prestare attenzione alla corretta "linea visiva" del trigger; la freccia deve indicare il segno di riferimento riflettente; il trigger va mantenuto il più possibile perpendicolare alla superficie dell'albero.
- Evitare la presenza di riflessi esterni (p.es. lampade a luminescenza) in quanto potrebbero interferire con il segnale del trigger.

6. Collegare a VIBSCANNER la sonda di vibrazioni e il trigger. Per completare i preparativi, prestare attenzione alle seguenti istruzioni:

- La velocità di bilanciamento deve avvicinarsi il più possibile alla velocità d'esercizio. Se questo non è possibile a causa degli alti valori di vibrazione, è necessario iniziare a velocità inferiori e avvicinarsi alla velocità di funzionamento gradualmente con varie corse di bilanciamento. Durante ogni bilanciamento la velocità deve restare costante, altrimenti la corsa andrà ripetuta!
- Durante la misurazione, il rotore deve funzionare in condizioni d'esercizio "a caldo" (p.es. se il rotore opera in un flusso d'aria calda).
- Spesso lo sbilanciamento statico è preponderante se i valori di vibrazione superano i 10 mm/s. Per correggerlo, utilizzare dapprima il bilanciamento su 1 piano e quindi continuare con il bilanciamento su 2 piani.

Nota

NOTE SULLE PROCEDURE DI BILANCIAMENTO

Prima di iniziare la misurazione, consultare le seguenti note sulle caratteristiche e le procedure specifiche della modalità di bilanciamento.

Impostazione (Setup)

Oltre ai setup di misurazione e delle sonde già illustrati nella versione di base, è necessario specificare i dati della macchina da bilanciare. Questi dati vengono gestiti nel cosiddetto "Setup di macchina" e sono richiesti per determinare il peso di prova, lo sbilanciamento residuo e la qualità del bilanciamento (*). La descrizione delle opzioni presenti nel setup di macchina viene fornita a pag. 31.

Display

- · Lo sbilanciamento viene visualizzato sotto forma di diagramma polare (vd. sotto). La distanza dell'indicatore dal punto di origine indica la quantità di vibrazioni (velocità, accellerazione, spostamento). L'angolo indica la posizione di fase dell'indicatore.
- Il campo visualizzato viene automaticamente impostato sul valore di misurazione attivo (ricerca automatica del fondoscala).
- Nel caso in cui occorrano più di due corse di bilanciamento, il diagramma polare visualizza solo la corsa attuale e quella subito prima. Per nascondere o mostrare l'indicatore di sbilanciamento delle corse precedenti, muovere il joystick in avanti o indietro.

Navigazione

Ogni passaggio di bilanciamento è supportato da schermate grafiche o di testo.

- Dopo il completamento di una misurazione o di un inserimento, muovere il joystick verso destra per passare alla fase successiva. Il risultato viene accettato automaticamente
- Per far scorrere le schermate avanti o indietro, muovere il joystick verso destra o verso sinistra.

0. Sbilanciamento iniziale 1. Corsa di prova 1.Trial: Meas. 2...N. Corsa di perfezionamento Valore misurato mm/s 10.85 Angolo di fase Giri/min. 2988 rem Passaggio precedente

cessivo

(*) Il bilanciamento senza setup di macchina va eseguito solo da operatori molto esperti (vd. pag. 42)

Corsa di bilanciamento con i

sequenti numeri:

Max. campo del display

Passaggio suc-

Misurazione

Prima di iniziare la misurazione controllare di nuovo l'installazione dei componenti e i dati del setup di macchina attivo. L'inserimento di dati errati sul rotore può portare al calcolo di un peso di prova troppo grande, con serie conseguenze per il personale e per la macchina in presenza di determinate condizioni.

Si raccomanda di seguire attentamente le prescrizioni di sicurezza a pag. 4.

Per il bilanciamento con VIBSCANNER va utilizzato esclusivamente un trigger esterno. Il trigger interno non è adatto al bilanciamento.

Il paragrafo successivo descrive il bilanciamento su 1 piano, la visualizzazione e la memorizzazione dei risultati e le singole opzioni disponibili durante la procedura di bilanciamento.

Dato che VIBSCANNER è dotato di un solo canale analogico di misurazione, per il bilanciamento su 2 piani è necessario procedere in modo sequenziale.

Esempi di misurazione sequenziale

a. Una sonda di vibrazioni:

Una volta completata la misurazione sul piano A, rimuovere la sonda e installarla sul punto di misurazione del piano B.

b. Due sonde di vibrazioni:

Una volta completata la misurazione sul piano A, staccare il cavo della sonda e collegare il cavo della sonda del piano B.

c. Due sonde di vibrazioni e modulo di commutazione opzionale VIB 5.445 / VIB 5.446

Le due sonde di vibrazioni sono collegate a entrambi i canali di input del modulo di commutazione, collegato a sua volta a VIBSCANNER. I canali di misurazione vengono commutati a mano tramite un tasto sul modulo VIB 5.445 o automaticamente con il modulo VIB 5.446. Per maggiori informazioni, vd. "Appendice" a pag. 55.

BILANCIAMENTO SU PIANO SINGOLO

Nota

La sottostante procedura di bilanciamento viene descritta come esempio nella modalità "Correzione libera" (pag. 26 - 31).

- Accendere il VIBSCANNER. Spingere il joystick verso l'alto per circa 2 secondi e quindi lasciarlo.
- Attivare la modalità "Bilanciamento". Cliccare ripetutamente sul simbolo delle schermate in alto a sinistra fino a far comparire il simbolo del bilanciamento, quindi muovere il joystick verso destra.

Simbolo della schermata di bilanciamento

• Selezionare con il joystick il tipo di macchina idoneo per il bilanciamento su 1 piano.

Una panoramica dei tipi di macchina viene fornita a pag. 54. elect machine type | Bil.

> File Carica Setup Tools Off

1Macchina

Nota

La *macchina* assegnata al "Tipo macchina" selezionato viene indicata sulla linea di stato:

• Tipo macchina: р

(p.es. rotore/ cuscinetto flottante/ 1 piano)

• Macchina: setup di macchina definito dall'operatore (p.es. "1Macchina", "Ventilatore15", eccetera)

La macchina e il setup di macchina possono essere modificati nel menu di Setup (vd. pagg. 30, 33)

-

• Cliccare su ENTER per aprire la schermata di misurazione

Se i parametri del setup di macchina sono incompleti comparirà un messaggio di errore. Accettare il messaggio con OK e controllare le impostazioni del setup di macchina (vd. pag. 30).

 Avviare la macchina. Attendere che la macchina raggiunga i giri/min. di bilanciamento e se necessario la temperatura d'esercizio. La sonda e il trigger di vibrazioni sono già collegati a VIBSCANNER.

Cliccare su START per iniziare la misurazione.

Se i giri/min. fluttuano troppo comparirà un messaggio d'errore. Controllare il collegamento e l'installazione del trigger.

- Quando i valori di misurazione si stabilizzano, cliccare su PAUSA per arrestare la misurazione. Per ripetere la misurazione, cliccare nuovamente su START.
- Fermare la macchina e disattivarla.

• Muovere il joystick verso destra per passare alla schermata d'inserimento della corsa di prova.

E' possibile modificare i valori proposti per il peso di prova (2,0 g) e per l'angolo d'installazione (100°).

• Applicare il peso di prova all'angolo specificato (vd. "Convenzione sugli angoli", pag. 11) e avviare nuovamente la macchina.

- Muovere il joystick verso destra per aprire la schermata di misurazione della corsa di prova.
- Cliccare su START per iniziare la corsa di prova.
- Quando i valori di misurazione si stabilizzano, cliccare su PAUSA per terminare la misurazione.

• Fermare la macchina e disattivarla.

• Muovere il joystick verso destra per memorizzare le misurazioni della corsa di prova.

Suggerimento per il peso di prova e l'angolo di installazione

Rispetto al valore di sbilanciamento iniziale, lo sbilanciamento nella corsa di prova dev'essere migliorato abbastanza da evitare il verificarsi di errori nelle corse successive. Se l'indicatore di sbilanciamento cambia solo leggermente, il peso di prova dev'essere aumentato. Se il valore di vibrazioni è più che raddoppiato, il peso di prova va ridotto (messaggio: "Eccessivo cambiamento dell'indicatore", vedere anche il parametro "Controllo influenze negative" a pag. 32). Se necessario, tornare indietro fino alla schermata d'in-

Se necessario, tornare indietro fino alla schermata d'inserimento della corsa di prova, modificare il peso come più opportuno e ripetere la corsa di prova.

Se la correzione dello sbilanciamento risulta soddisfacente, continuare con la corsa di perfezionamento. A seconda del verificarsi o meno di un miglioramento, è possibile lasciare il peso di prova sul rotore o rimuoverlo nuovamente:

• Cliccare sull'opzione richiesta per passare alla schermata di definizione della corsa di perfezionamento. *Se necessario, rimuovere il peso di prova.*

- Applicare il peso d'assetto proposto nell'angolo specificato e avviare nuovamente la macchina.
- Muovere il joystick verso destra e cliccare su START per misurare la corsa di perfezionamento.

 Quando l'indicatore di sbilanciamento è stabile, cliccare su PAUSA, fermare nuovamente la macchina e disattivarla.

• Muovere il joystick verso destra per memorizzare le misurazioni della corsa di perfezionamento.

• Se lo sbilanciamento nella corsa di perfezionamento è migliorato, lasciare il peso d'assetto sul rotore. In questo caso cliccare su "No". Altrimenti rimuovere il peso d'assetto.

Dopo la prima corsa di perfezionamento, il programma controlla se lo sbilanciamento nelle corse successive è migliorato. Se questo non avviene comparirà il seguente messaggio: "Nessun miglioramento". Ripetere la corsa con un altro peso d'assetto.

Si raccomanda di ripetere la misurazione del bilanciamento se i valori di vibrazione peggiorano e il peso d'assetto non è sostanzialmente inferiore al peso d'assetto precedente.

• Continuare la procedura di bilanciamento con la corsa di perfezionamento successiva.

Il bilanciamento è completo non appena viene raggiunta la qualità di bilanciamento desiderata (vd. "Setup di macchina", pag. 31 e 53).

VIBSCANNER annuncerà il completamento della procedura visualizzando "Smiley" nello schermo di definizione della corsa di perfezionamento successiva.

OPZIONI DI VISUALIZZAZIONE

Il diagramma polare mostra esclusivamente l'ultima e la penultima corsa di bilanciamento dopo il completamento di una misurazione.

Simboli nel campo del display:

- Corsa di prova/ di perfezionamento
- Corsa di sbilanciamento iniziale

Per visualizzare le corse precedenti, spingere il joystick verso l'alto:

Tirare il joystick verso il basso per tornare al campo del di-

2.Trim: Meas. 2.73 mm/s 136 ° 41.80 2991 rpm Start

splay originario.

MOSTRA RISULTATI

I risultati della misurazione possono essere visualizzati e salvati dopo ogni corsa di perfezionamento.

• Per visualizzare il menu, premere il tasto funzione nella schermata di definizione della corsa di perfezionamento:

• Cliccare su "Dati" per visualizzare i risultati delle corse precedenti.

Balance Dati	+
Nome:	1Macchina
Data & Ora: 👘	28.08.02 12:42
Planes:	uno
Aver.	20
Speed:	2991
Bal. Qualitis:	1.00

• Tirare il joystick verso il basso per tornare avanti nell'elenco dei risultati.

Oltre ai dati e all'ora dell'ultima misurazione, vengono mostrate la qualità di bilanciamento calcolata e la forza centrifuga dell'ultima corsa di perfezionamento valida.

Finestra dei dati

Sbilanciamento iniziale Corsa di prova 1º corsa di perfezionamento 2º corsa di perfezionamento

Qualità del bilanciamento:

Il programma calcola la qualità del bilanciamento dalla frequenza di rotazione del rotore e dallo sbilanciamento specifico residuo dell'ultimo passaggio di bilanciamento. Se la qualità calcolata è inferiore alla qualità selezionata nel setup di macchina, il bilanciamento è completo ("Smiley").

Forza centrifuga: Forza risultante sui cuscinetti nei singoli piani causata dallo sbilanciamento residuo ancora presente.

SALVARE I RISULTATI

• Visualizzare il menu premendo il tasto funzione nella schermata di definizione della corsa di perfezionamento:

3.1	[rim:	Mount	mass!	BiL.
	╻	+		Dati Indiet
	ľ	Δ	죠띡	<u>Salva</u> Setup
+		0	301°	

• Cliccare su "Salva" per aprire la "Gestione file".

λ	937	<u>(Multi</u>
bil_mf25	28.08.02	Elim
		Modif
		CrDir
		Salua
		Nuov
Balance		

• Premere il tasto funzione, cliccare su "Salva" e digitare il nome del file nell'editor di testo (vd. Manuale di funzionamento: "VIBSCANNER - diagnostica di macchina e raccolta dati - VIB 9.638.I).

I risultati possono anche essere salvati dalla finestra dei dati (vd. pag. precedente).

ELIMINA PASSAGGI DI BILANCIAMENTO

Se i risultati della misurazione peggiorano rispetto a una specifica corsa di perfezionamento, è possibile ritornare all'ultima corsa accettabile e proseguire il processo di bilanciamento con pesi e angoli diversi.

Nel seguente esempio, i valori misurati nella terza e quarta corsa peggiorano. Per eliminare questi passaggi, procedere come segue:

- Premere il tasto ESC per uscire dalla finestra dei dati.
- Muovere il joystick verso sinistra fino a raggiungere la schermata di definizione della corsa accettabile, in questo caso la seconda corsa di bilanciamento.

• Premere il tasto funzione e cliccare su "Elimina" nel menu.

Finestra dei dati (vd. pag. 22) dopo la quarta corsa di bilanciamento

• Accettando il sottostante messaggio, tutte le corse di bilanciamento successive (in questo caso la terza e quarta corsa) verranno eliminate.

Indietro Le masse inserite e tutti i punti successivi saranno cano i dati misurati sono persi UK Annulla

Assicurarsi che i pesi applicati al rotore nelle corse eliminate vengano rimossi!

Premere il tasto funzione nella schermata d'inserimento e cliccare su "Dati" per aprire la finestra dei dati. La terza e la quarta corsa sono state cancellate e il processo di bilanciamento può ora continuare con altri pesi e altri angoli.

0 1 2	[9] [°] 2.0 90 * 2.0 360 /	[mm/s] 10.09 8.26 1.90	34 3 107
+			

Modalità "Correzione libera"

Modalità di correzione "Punti prefissati"

MODALITÀ DI CORREZIONE: PUNTI PREFISSATI

Se i pesi di bilanciamento possono venir applicati solo su determinati punti del rotore (p.es. alle pale di un ventilatore), selezionare la modalità di correzione "Punti prefissati" nel setup di macchina. Il programma calcolerà due pesi per i punti specificati.

• Aprire il setup di macchina della macchina in oggetto (vd. pag. 30).

VIB-Demomachine	++
l → VIB-Den	nomachine
Machine Name:	Selact
Planes:	one
Correction:	free
Trial/Trim Masses	add
Bal. Quality:	0.4

• Cliccare su "Correzione" e quindi su "Punto prefissato".

Correction	
free	
fixed location	
fixed mass	
meas tape	

• Digitare il numero di punti prefissati del rotore.

VIB-Demomachine	++
l → VIB-Dei	momachine
Machine Name:	Select
Planes:	one
Correction: fixe	<u>a location</u>
Num.of locations:	24
Trial/Trim Masses	add

• Se necessario, modificare i restanti parametri.

- Infine, premere il tasto funzione e cliccare su "Salva" per salvare le modifiche.
- Iniziare la misurazione (vd. pag. 17).

Il programma calcola i pesi di bilanciamento per due punti. La posizione/ pala numero 1 corrisponde alla posizione 0°.

Nella modalità di correzione "Punti prefissati", il segno di riferimento va applicato all'altezza di una pala (vd. pagg. 10 e 11).

Schermata d'inserimento della modalità di correzione "Punto prefissato"

Nota

• Tirare il joystick verso il basso per visualizzare in un display dettagliato i pesi e le posizioni proposte.

Schermata d'inserimento (display dettagliato)

Applicare i pesi proposti ai punti specificati sul rotore o modificarli con ENTER.

- Per accettare le modifiche, premere il tasto funzione e cliccare su "OK".
- Per uscire dal display dettagliato, premere il tasto ESC.

Modalità di correzione libera

Modalità di correzione "Peso prefissato"

MODALITÀ DI CORREZIONE: PESO PREFISSATO

Se solo determinati pesi sono disponibili per compensare lo sbilanciamento (p.es. 2 g, 5 g, 10 g) selezionare la modalità di correzione "Peso prefissato". Il programma calcolerà due angoli d'installazione per ognuno dei pesi di bilanciamento specificati.

- Impostare la modalità di correzione nel setup di macchina su "Peso prefissato" come illustrato nel precedente paragrafo "Punti prefissati".
- Digitare il valore del peso prefissato (p.es. 10 g).

t. Name	1machine
Planes:	one
Correction:	<u>fixed mass</u>
Fixed mass[9]:	10.0
Bal.Qual.:	6.3
Foundation:	flexible
+	

- Salvare le modifiche e iniziare la misurazione.
- Tirare il joystick verso il basso per visualizzare l'angolo d'installazione proposto nel display dettagliato della schermata d'inserimento (vd. paragrafo precedente).

Schermata d'inserimento (display dettagliato)

2.Trim: Mount mass !	
Mass[9]: Peolo[9]:	Peso/ angolo per la correzione libera
Fixed mass[9]:	4.0L
1.Angle["]:	317 Angoli d'installazione
Z.Hn9tet"J:	127

• Applicare ogni volta un peso prefissato alle due posizioni angolari del rotore.

L'esempio di cui sopra necessita un peso di 10 g. fissato a 317° e un peso di 10 g. fissato a 127°.

Nota

Nella schermata di definizione (display dettagliato) è possibile definire altri pesi prefissati premendo ENTER nei passaggi di bilanciamento successivi. Il programma convertirà automaticamente i due angoli d'installazione.

Modalita di Correzione: Misurazione con Metro

Questa modalità di correzione consente di determinare la posizione dei pesi di bilanciamento tramite la "Misurazione con metro" senza dover prendere in considerazione un sistema di riferimento con suddivisione in gradi angolari. La distanza sulla superficie del rotore dal segno di riferimento (posizione 0°) viene espressa in millimetri e calcolata in senso opposto al senso di rotazione. In altre parole, basta applicare un metro attorno al diametro esterno del rotore e fissare i pesi di bilanciamento alle posizioni specificate.

La distanza del peso di bilanciamento dall'asse di rotazione è il raggio di bilanciamento, che normalmente è inferiore al raggio esterno.

- Impostare la modalità di correzione nel setup di macchina su "Misurazione con metro" procedendo come illustrato nel paragrafo "Punti prefissati" (pag. 26).
- Digitare il diametro esterno del rotore.

t. Name	1machine
Planes:	one
Correction:	meas tape
Outer Diam.[mm]:	120
Bal.Qual.:	6.3
Foundation:	flexible
+	

- Salvare le modifiche e iniziare la misurazione.
- Tirare il joystick verso il basso per visualizzare la distanza metrica nella schermata d'inserimento (p. 27).

Schermata d'inserimento (display dettagliato)

• Applicare alla posizione calcolata il peso specificato. Notare che il raggio esterno e il raggio di bilanciamento possono risultare diversi in certe condizioni (vd. figura soprastante).

Distanza sulla superficie del rotore

SETUP DI MACCHINA

Per calcolare il peso di prova, lo sbilanciamento residuo e la qualità del bilanciamento è necessario specificare i dati della macchina nel "Setup di macchina" e nella modalità di correzione selezionata (vd. pagg. 26 e succ.).

La grafica della schermata iniziale fa parte del setup di macchina e specifica il tipo di macchina da bilanciare, p.es. rotore a sbalzo su piano singolo (vd. pag. 54). Il setup di macchina attivo utilizzato per il bilanciamento viene visualizzato nella barra di stato.

• Premere il tasto funzione nella schermata iniziale (vd. pag. 16) e cliccare su "Setup" nel menu.

Select Setup:	+
Measurement → Balancin9 >600 (01L)	
Transducer → VIB 6.146	
Machine	
→ VIB-Demomachine	

Setup di macchina

Å

• Cliccare su "Macchina" per aprire il setup di macchina.

V	IB-Demomachine	++
- 17	→ VIB-De	emomachine
M	lachine Name:	Select
- P	lanes:	one
- C	orrection:	free
T	'rial/Trim Masses:	add
B	al. Quality:	0.4

Parametri del setup di macchina

Nome	Nome del setup di macchina Compare nella barra di stato della schermata iniziale e specifica il setup di macchina utilizza- to per la misurazione.
Piani	Uno oppure due (A; B) Il numero di piani non può essere modificato in questa schermata in quanto la selezione viene effettuata tramite la grafica di macchina.
Correzione	Modalità di correzione. La "Correzione libera" è impostata per default. Prende in considerazione le limitazioni imposte sulla macchina (punti prefissati, p.es. sulle pale di un ventilatore) o le circostanze specifiche (pesi prefissati, misurazione con metro). A seconda della selezione si renderà necessario impostare altri parametri specificati in questo elenco.
N. punti bilan	ciam.
	Nella modalità di correzione "Punti prefissati" è necessario specificare il numero di pale del ventilatore.
	lare.
Peso prefissate	0
	Nella modalità di correzione "Peso prefissato" va specificato il peso da utilizzare per il bilan- ciamento.
	Il peso prefissato può essere modificato dopo ogni passaggio di bilanciamento se sono dispo- nibili diversi pesi (p.es. 2 g. 5 g. ecc.).
Diametro este	rno
2	Diametro del rotore nella modalità di corre- zione "Misurazione con metro".
	La misurazione con metro consente al determi- nare la posizione del peso di bilanciamento a prescindere dall'angolo.
Oualità bilanc	iam.
ę	Valori conformi a DIN ISO 1940 - vd. pag. 53 Per la valutazione dei risultati di bilanciamen- to.

	Basamento	Elastico oppure rigido. Tipo di basamento secondo ISO 10816. A pa- rità di sollecitazioni, la macchina vibra di più su un basamento elastico che su un basamento rigido. Pertanto i limiti per un basamento ela- stico sono più elevati e possono venir selezionati dei pesi di bilanciamento inferiori.
(*) Pesi di bilanciamento = peso di prova & peso d'assetto.	Raggio di bil.	Distanza del peso di bilanciamento (*) dall'as- se di rotazione del rotore. A parità di giri/min, a raggio di bilanciamento maggiore corrisponde un peso di bilanciamento inferiore.
	Peso d. rot.	Il peso del rotore viene utilizzato per il calcolo del peso di prova e del peso d'assetto.
	Angolo trig.	Angolo tra la sonda e il trigger. Per il calcolo dell'angolo d'installazione del peso di prova. L'angolo del trigger viene calcolato in senso opposto al senso di rotazione.

Velocità	Velocità in cui viene eseguito il perfeziona- mento. I giri/min. devono avvicinarsi il più possibile ai giri/min. d'esercizio (vd. pag. 13).
Seq. di mis.	ABBA, ABAB Sequenza di misurazione per il bilanciamento su due piani (A, B). Vedere anche pag. 34.
Contr. vel.	On / Off Prima di ogni misurazione viene eseguito un controllo ("On") sulla corrispondenza tra i giri/min. misurati e quelli specificati per il bilanciamento.

Angolo trigger: L'angolo tra il trigger e la sonda viene calcolato in senso opposto al senso di rotazione.

VIBSCANNER 08.2002

Contr. stab. e aumento medie	On / Off Viene verificata la stabilità dell'indicatore di sbilanciamento ("On"). Il numero delle medie aumenta se l'indicatore è instabile.
Verifica infl. negative	On / Off Verifica le modifiche dell'indicatore di sbilancia- mento ("On"). Se la modifica è troppo ampia o troppo limitata comparirà un messaggio corri- spondente. In tal caso è necessario tornare alla corsa di bilanciamento precedente e ridurre/ aumentare i pesi applicati.

Opzioni del setup di macchina

• Premere il tasto funzione nel setup di macchina per aprire il menu:

Å

Tri99erAn9leB["]:	Bal
Speed[1/min]:	Save
Meas.Sequence:	New
Check speed:	Esc
Check stable & <u>inc ave</u>	Del
Check bad infl.	Help
★	

SALVA: Salva le modifiche nel setup di macchina attivo

Nuovo: Crea un nuovo setup di macchina

ELIMINA: Elimina il setup di macchina attivo

In presenza di diversi setup di macchina per lo stesso tipo di macchina, selezionare il setup più indicato come segue:

• Cliccare su "Nome" nel Setup di macchina e selezionare la macchina richiesta.

Select machine	Bal
Demo	
Rotor5	
KOTOPB	

BILANCIAMENTO SU DUE PIANI

PREPARAZIONE

• Selezionare il tipo di macchina e, se necessario, impostare i parametri di setup (misurazione, sonda, macchina: vd. pag. 30).

• Premere il joystick e selezionare quale piano di correzione (vd. pag. 10) va definito come "A" nella seguente schermata:

• Installare la sonda nei piani di misurazione "A" e "B" (vd. pag. 10) e collegare il trigger a VIBSCANNER.

MISURAZIONE DELLO SBILANCIAMENTO INIZIALE

• Premere il joystick e collegare a VIBSCANNER la sonda del piano di misurazione "A".

Avviare la macchina e cliccare su START

÷

SA".

- **♦**
- Sbilanciamento iniziale sul piano A

• Muovere il joystick verso destra per passare alla schermata successiva.

Quando i valori misurati si stabilizzano, cliccare su "PAU-

• Collegare a VIBSCANNER la sonda del piano di misurazione "B" e cliccare su START.

Å

- Quando i valori misurati si stabilizzano cliccare su "PAU-SA", fermare la macchina e disattivarla.
- Muovere il joystick verso destra per visualizzare i risultati della corsa di sbilanciamento iniziale.

Sbilanciamento iniziale sui piani "A" e "B"

• Muovere il joystick verso destra per passare alla schermata d'inserimento della corsa di prova. VIBSCANNER 08.2002

CORSA DI PROVA

Nella figura sottostante, il sistema propone un valore per il peso di prova di 1,1 g. e un angolo d'installazione di 351°. Questi valori possono essere modificati dall'operatore.

- Applicare il peso di prova del piano di correzione A nell'angolo specificato (vd. "Convenzione sugli angoli", pag. 11). Avviare nuovamente la macchina.
- Muovere il joystick verso destra per passare alla schermata successiva.

- Collegare a VIBSCANNER la sonda del piano di misurazione "A" e cliccare su START.
- Quando i valori misurati si stabilizzano, cliccare su "PAU-SA".

• Muovere il joystick verso destra per passare alla schermata successiva.

- Collegare a VIBSCANNER la sonda del piano di misurazione "B" e cliccare su START.
- Quando i valori misurati si stabilizzano cliccare su "PAU-SA", fermare la macchina e disattivarla.

 Muovere il joystick verso destra per visualizzare i risultati della corsa di prova (peso nel piano "A").
 Se lo sbilanciamento è migliorato in modo soddisfacente, lasciare il peso di prova nel piano "A".

Risultati della corsa di prova con peso nel piano "A".

• Muovere il joystick verso destra e specificare se si desidera rimuovere il peso di prova dal piano "A". • Applicare il peso di prova del piano "B" nell'angolo specificato e avviare nuovamente la macchina.

• Misurare la corsa di prova (peso nel piano "B") come descritto in precedenza.

CORSA DI PERFEZIONAMENTO

• Dopo le corse di prova, fermare la macchina e disattivarla. Muovere quindi il joystick verso destra per passare alla schermata di definizione della corsa di perfezionamento.

Peso d'assetto nel piano A

Scherm. di definizione della corsa di perfezionam.

• Applicare il peso d'assetto nel piano "A", quindi muovere il joystick verso destra.

• Applicare il peso d'assetto nel piano "B" e avviare nuovamente la macchina.

• Muovere il joystick verso destra per passare alla schermata successiva.

- Collegare a VIBSCANNER la sonda del piano di misurazione "A" e cliccare su START
 - Quando i valori misurati si stabilizzano, cliccare su "PAU-SA".

Risultato della corsa di perfezionam. nel piano A

à

÷

- Collegare la sonda del piano di misurazione "B" e muovere il joystick verso destra, quindi cliccare su START.
- •
- Quando i valori misurati si stabilizzano cliccare su "PAU-SA", fermare la macchina e disattivarla.

Risultato della corsa di perfezionam. nel piano B

В

• Muovere il joystick verso destra per visualizzare i risultati di entrambi i piani di misurazione.

Ĥ

Risultati del piano A e del piano B

Ó.98

 Muovere il joystick verso destra per passare alla schermata di definizione della corsa di perfezionamento successiva.

• Ripetere la procedura nella nuova corsa di perfezionamento.

Il bilanciamento è completo se viene raggiunta la qualità di bilanciamento specificata (vd. pagg. 31 e 53) e "Smiley" compare sullo schermo.

BILANCIAMENTO SENZA SETUP DI MACCHINA

Il bilanciamento senza setup di macchina viene effettuato quando i dati sul rotore non sono disponibili sul posto, oppure nei casi in cui va iniziata una misurazione senza definire i dati del rotore in un setup di macchina ("Quickstart"). Questa opzione dev'essere utilizzata solo da operatori molto esperti consapevoli delle possibili conseguenze dell'applicazione di pesi di bilanciamento sul rotore (vd. "Prescrizioni di sicurezza", pagg. 4 e 5).

Senza setup di macchina non viene specificato alcun peso di prova, non vi è alcuna valutazione dei risultati o della qualità del bilanciamento e non viene visualizzato "Smiley" a bilanciamento raggiunto.

PROCEDURA DI MISURAZIONE

• Selezionare nella schermata iniziale il tipo macchina idoneo (bilanciamento su 1 o 2 piani).

Se il setup di macchina per il tipo di macchina selezionato non è attivo, non comparirà alcun "Setup di macchina" nella barra di stato. La misurazione può quindi iniziare immediatamente (premere il joystick, vd. pag. successiva).

• Premere il tasto funzione e cliccare su "Setup".

Premere il tasto funzione e cliccare su "Opz."

Select Setup:	Multi
Measurement	Opt.
→ Balancin9 >600 (C1)	
Transducer	A⇔B
→ VIB 6.146	
M <u>achine</u>	Help
→ 1machine	

• Premere il joystick per disattivare il setup di macchina.

• Premere il tasto funzione e cliccare su "Salva". Ritornare alla schermata iniziale con il tasto "Escape".

• Premere il joystick ed eseguire la misurazione come descritto nel relativo capitolo (pag. 17 e successive per il bilanciamento su 1 piano e pag. 35 e succ. per il bilanciamento su 2 piani).

STRUMENTI

Se necessario, la voce "Strumenti" del menu (vd. pagg. 26 e succ.) consente di selezionare la modalità di correzione, definire la sequenza di misurazione (solo su 2 piani) e attivare diverse funzioni di prova (pag. 32). Questo strumento è disponibile anche durante la corsa di bilanciamento, con la possibilità di modificare la selezione come più opportuno.

Tools			
Correction	<mark>free</mark>		
Meas.Sequence	ABAB		
Check sreed	Off		
Check stable & inc	aver. Off		
Check bad infl.	Off		

CAPITOLO 2 : ANALISI IN FREQUENZA

Per la diagnosi dei danneggiamenti ai cuscinetti e dei malfunzionamenti di macchine e trasmissioni, VIBSCANNER può registrare l'ampiezza (0 - picco) e lo spettro d'inviluppo. I rispettivi compiti di misura sono preimpostati in fabbrica per il tipo di macchina e di campo dei giri/min. e vengono visualizzati nella terza schermata di selezione.

- ↓ ◆
 - Accendere VIBSCANNER.
 - Premere due volte il joystick per aprire la schermata di selezione dell'analisi della frequenza.

Schermata di selezione: Compiti di misura per l'analisi in frequenza (FFT)

Alta velocità

Media velocità

Nota

Per una descrizione dettagliata dei compiti di misura consultare l'Appendice o l'aiuto online di VIBSCANNER. Evidenziare il relativo simbolo e cliccare su "Aiuto" nel menu.

Per visualizzare i compiti di misura per basse velocità (giri/min.), portare il cursore oltre il limite inferiore della finestra.

- Selezionare il compito di misura.
- Se necessario, modificare le sonde selezionate tramite il menu di setup.

• Collegare la sonda al punto di misurazione e premere il joystick per iniziare la misura.

Una volta completata la misurazione, il cursore compare sulla linea con la maggior ampiezza dello spettro.

frequenza e Ampiezza (al cursore)

Cursore

Se la punta triangolare della linea del cursore è rivolta verso il basso, l'ampiezza si trova nel campo del display. Se invece la punta è rivolta verso l'alto, la linea esce dal campo del display.

Per spostare il cursore lungo l'asse della frequenza, muovere il joystick verso destra o verso sinistra. La velocità del cursore aumenta progressivamente se il joystick non viene lasciato andare.

Salvare la misurazione

• Premere il tasto funzione e cliccare su "Salva" nel menu (anche il Manuale di Funzionamento di VIBSCANNER).

Ripetere la misurazione

- Premere il tasto "ESC" per tornare alla terza schermata di selezione (vd. pag. precedente).
- Selezionare il compito di misura e premere il joystick per ripetere la misurazione.

INGRANDIMENTO E SCALA AUTOMATICA

Per scopi di valutazione, lo spettro può essere ingrandito lungo l'asse X (frequenza) e venir graduato lungo l'asse Y (ampiezza).

SCALA DELL'ASSE Y

Controllare che la modalità "Scala" sia attiva. Questo avviene se l'opzione "Zoom" viene mostrata nel menu. In caso contrario, cliccare su "Scale". Per aprire il menu, premere il tasto funzione.

 Spingere ripetutamente verso l'alto il joystick per abbassare il fondo scala dell'asse Y e visualizzare le linee a più basso livello. In questo modo la scala aumenta progressivamente di un fattore 2.

• Per ridurre il campo della scala, tirare il joystick verso il basso.

INGRANDIMENTO DELL'ASSE X

· Attivare la modalità "Zoom" premendo il tasto funzione per aprire il menu e cliccando su "Zoom".

Zoom area of the X axis

Area ingrandita dell'asse X = 100%

· Spingere ripetutamente il joystick verso l'alto per aumentare il campo di frequenza attorno al cursore e la risoluzione di linee con un intervallo di frequenza ridotto.

f:49.50 Hz

Ĥ٩

Ĥ:

1.8 mm/s

4.000

-100

X = 30%

L'area ingrandita visibile dell'asse X viene mostrata sulla barra in alto a destra dello schermo.

f:49.50 Hz

• Per eliminare la funzione "Zoom" passaggio dopo passaggio, tirare il joystick verso il basso.

INGRANDIMENTO DELLA LINEA

La funzione "Zoom di linea" consente l'ingrandimento diretto fino alle dimensioni massime del campo che circonda la frequenza selezionata. Questo consente la visualizzazione per singola linea di tutte le linee misurate.

• Evidenziare con il cursore nello spettro la linea richiesta e premere il joystick.

Durante questa procedura, la scala dell'asse Y resta invariata.

Ingrandim. della linea 49,5 Hz.

FUNZIONE "MAX10"

La funzione "Max10" consente di visualizzare le 10 maggiori ampiezze dello spettro.

• Premere il tasto funzione per aprire il menu e cliccare su "Max10".

Le 10 maggiori ampiezze dello spettro

Se si desidera classificare la lista in base alla frequenza, premere il tasto funzione.

INGRANDIMENTO "MAX10"

La funzione "Max10 zoom" consente l'ingrandimento diretto fino alle massime dimensioni del campo di frequenza che circonda una delle 10 maggiori ampiezze selezionate.

• Selezionare una linea nell'elenco "Max10" e premere il joystick.

Ingrandim. max10 della linea n. 1 (vd. figura sopra)

Il menu non può essere visualizzato perché il tasto funzione non è attivo in questa schermata.

Le modifiche alla scala e all'ingrandimento effettuate in questa schermata non influenzano la schermata di misurazione principale (vd. sopra).

Appendice

Measurement tasks for frequency analysis

The following section gives a brief description of the measurement tasks:

Quantità misurata:Velocità delle vibrazioniCampo di frequenza:10 Hz - 400 HzLinee:1600Risoluzione:0,25 HzWindow:HanningN. setup in OMNITREND:103

Per la diagnosi dei malfunzionamenti in macchine con velocità > a 600 giri/min.

(inviluono)

Accelerazione delle vibrazioni

2

Quantità misurata:

	(mvnuppo)
Campo di frequenza:	0 Hz - 5000 Hz
Filtro:	1 kHz (filtro passa-alto)
Linee:	3200
Risoluzione:	1,56 Hz
Window:	Hanning
End frequency:	3200 Hz

Per la diagnosi del deterioramento degli ingranaggi delle trasmissioni (idoneo solo parzialmente per i cuscinetti a rotolamento delle trasmissioni).

3	
Quantità misurata:	Accelerazione delle vibrazioni
	(inviluppo)
Campo di frequenza:	0 Hz - 1000 Hz
Filtro:	36 kHz (filtro passa-banda)
Linee:	1600

Risoluzione:	0.63 Hz
End frequency:	1600 Hz
Window:	Hanning
N. setup in OMNITREND:	108

Per la diagnosi dei danneggiamenti alle corse dei cuscinetti a rotolamento con velocità > a 600 giri/min. Utilizzare esclusivamente sonde e supporti per 36 kHz.

4

Velocità delle vibrazioni
2 Hz - 400 Hz
1600
0,5 Hz
Hanning
104

Per la diagnosi dei malfunzionamenti in macchine a bassa velocità con rotazione > a 120 giri/min. e corpo rigido su basamento rigido.

5

Quantità misurata:	Accellerazione delle vibrazioni
Campo di frequenza:	2 Hz - 5000 Hz
Linee:	3200
Risoluzione:	1,56 Hz
Window:	Hanning

Per la diagnosi dei danneggiamenti ai denti degli ingranaggi in trasmissioni con velocità > a 120 giri/min.

6

Quantità misurata:	Accellerazione delle vibrazioni		
	(inviluppo)		
Campo di frequenza:	0 Hz - 400 Hz		
Filtro:	1 kHz (filtro passa-alto)		
Linee:	800		
Risoluzione:	0,5 Hz		
Window:	Hanning		
End frequency:	400 Hz		
N. setup in OMNITREND:	143		

Per la diagnosi dei danneggiamenti alle corse dei cuscinetti a rotolamento con velocità < a 600 giri/min. e segnali in uscita > a 300 kW.

Quantità misurata:	Spostamento delle vibrazioni
Campo di frequenza:	2 Hz - 400 Hz
Linee:	400
Risoluzione:	1 Hz
Window:	Hanning
N. setup in OMNITREND:	133

Per la diagnosi dei malfunzionamenti in condizioni d'esercizio di macchine e trasmissioni con corpo relativamente elastico su basamenti elastici e velocità > a 120 giri/min. Utilizzare esclusivamente sonde per macchine a bassa velocità.

8

Quantità misurata:	Velocità delle vibrazioni
Campo di frequenza:	2 Hz - 5000 Hz
Linee:	3200
Risoluzione:	1,56 Hz
Window:	Hanning

Per la diagnosi dei malfunzionamenti in condizione di esercizio di trasmissioni con velocità > a 120 giri/min.

9

Accellerazione delle vibrazioni
(inviluppo)
0 Hz - 200 Hz
1 kHz (filtro passa-alto)
1600
0,13 Hz
Hanning
200 Hz
171

Per la diagnosi dei danneggiamenti alle corse dei cuscinetti a rotolamento con velocità < a 120 giri/min. Utilizzare esclusivamente sonde per macchine a bassa velocità.

GRADI E GRUPPI DI QUALITA' DI BILANCIAMENTO PER STRUTTURE RIGIDE

(Estratto da DIN ISO 1940)

Grado di qualità bilanciate	Esempi di macchine o strutture			
630	Azionamento con albero a gomiti di motori a quat-			
	installazione elastica.			
250	Azionamento con albero a gomiti di motori diesel ad alta velocità con quattro cilindri e installazione rigida.			
100	Azionamento con albero a gomiti di motori diesel ad alta velocità con sei o più cilindri e installazione rigida.			
40	Ruote d'automobile, cerchioni e assiemi delle ruote, azionamenti con albero a gomiti di alberi per motori a quattro tempi ad alta velocità con sei o più cilindri e installazione elastica.			
16	Componenti d'azionamento dell'albero a gomiti di motori per automobili, camion e treni, azionamen- to con albero a gomiti di motori con sei o più cilindri con speciali requisiti.			
6,3	Ventilatori, volani, pompe centrifughe, produzione di macchine e produzione di componenti di macchine utensili.			
2,5	Turbine di centrali elettriche a getto, a vapore e a gas, turbocompressori e generatori.			
1	Giradischi e piastre di registrazione/ riproduzione, parti in movimento delle macchine smerigliatrici.			
0,4	Rotore, alberi e dischi di smerigliatrici ad alta precisio- ne, giroscopi			

TIPI DI MACCHINA

Bilanciamento su 1 piano

Rotore a sbalzo

Bilanciamento su 2 piani

Rotore intermedio (p.es. a doppia girante)

Rotore a sbalzo

Un rotore a sbalzo e un rotore intermedio

Rotore a sbalzo (p.es. due pulegge d'azionamento)

Ogni figura presenta solo i tipi di macchina che hanno uno degli azionamenti mostrati nella pagina a fronte.

ACCESSORI

Moduli di commutazione VIB 5.445 / VIB 5.446

I moduli di commutazione opzionali semplificano il bilanciamento sequenziale su due piani poiché forniscono due canali di input per le sonde di vibrazioni, consentendo la commutazione manuale o automatica tra un piano e l'altro. Questo elimina la necessità di cambiare ogni volta a mano il collegamento delle sonde.

I moduli di commutazione vanno collegati alla presa analogica di input (colore blu) di VIBSCANNER. Il modulo di commutazione manuale VIB 5.445 è fornito di tasto per la commutazione del canale, mentre il modulo automatico VIB 5.446 prevede la commutazione automatica interna dei due canali di misurazione.

DATI TECNICI

Modulo FFT - VIB 5.485-FM

F _{max.}

100 / 200 / 400 / 1000 / 5000 Hz

Numero di linee

da 400 a 3200

Ampiezza delle linee

> 0,03 Hz

Display

Assi lineari nell'ambito del campo di frequenza

Ingrandimento

Assi X/ Y a regolazione libera

Curva d'inviluppo

Diagnosi di macchine, cuscinetti e trasmissioni

Impostazioni di misurazione

Setup ottimizzati per tipi diversi di macchine

"Ronda adattabile"

Guida di ronda basata sulle condizioni con diagnosi automatica

Modulo di bilanciamento - VIB 5.486-FM

Modalità di bilanciamento

Bilanciamento su 1 piano e bilanciamento sequenziale su 2 piani

Metodi di correzione

Punti prefissati, pesi prefissati, misurazione con metro, correzione libera, combinazione tra pesi

Display e funzionamento

Guida per l'operatore a orientamento grafico con testi esplicativi e grafica macchine

Valori misurati

Velocità, accellerazione e spostamento delle vibrazioni

VIBSCANNER 08.2002

58			
Nota			

VIBSCANNER 08.2002

PRÜFTECHNIK Condition Monitoring P.O. Box 1263 D-85730 Ismaning, Germany www.pruftechnik.com Phone +49 (0) 8999616-0 Fax +49 (0) 8999616-300 eMail: info@pruftechnik.com

Printed in Germany VIB 9.664.08.02.0I VIBSCANNER® e OMNITREND® sono marchi registrati della PRÜFTECHNIK Dieter Busch AG. I prodotti della PRÜFTECH-NIK AG sono brevettati o sottoposti a domanda di brevetto in tutto il mondo. Nell'interesse di un continuo miglioramento del prodotto, la PRÜFTECHNIK si riserva di modificare in qualsiasi momento le informazioni qui esposte. Questo manuale non è riproducibile in alcun modo senza l'autorizzazione scritta della PRÜFTECHNIK AG.

© Copyright 2002 by PRÜFTECHNIK AG

Tecnologia al servizio della Manutenzione

www.pruftechnik.it

PRUFTECHNIK S.r.l. Via De Nicola, 12/E I-20090 Cesano Boscone (MI) Tel.: +39 02 4516141 Fax: +39 02 45161430 info@pruftechnik.it www.pruftechnik.com

PRÜFTECHNIK Condition Monitoring Oskar-Messter-Straße 19-21 D-85737 Ismaning, Germany Tel.: +49 (0)89996160 Fax: +49 (0)8999616300 eMail: info@pruftechnik.com

Tecnologia produttiva per la manutenzione