ROTALIGN touch

Aide en ligne

Version: 1.2 Edition: 01.2017 N° de référence.: DOC 50.201.FR

© 2017 PRÜFTECHNIK. All rights reserved

Les informations contenues dans le présent document sont susceptibles d'être modifiées sans avis préalable. Le logiciel décrit dans le présent document est mis à disposition dans le cadre d'un accord de licences. Le logiciel peut être copié uniquement dans le respect des conditions stipulées par cet accord. Toute reproduction, même partielle, du présent document est formellement interdite sans l'autorisation écrite de PRÜFTECHNIK.

ROTALIGN est la marque déposée de la PRÜFTECHNIK Dieter Busch AG. Les produits PRÜFTECHNIK font l'objet de brevets déposés ou en instance dans le monde. Le contenu peut être modifié sans notification préalable, notamment dans le cadre du développement technique. Toute reproduction, sous quelque forme que ce soit, n'est possible qu'avec l'accord écrit explicite de PRÜFTECHNIK

Contents

Contents3
Packs système
Écran d'accueil 10
Configuration 12
Composants14
Ordinateur ROTALIGN touch
Interfaces de l'ordinateur, appareil photo intégré et étiquettes14
Laser sensALIGN
Capteur sensALIGN
Étiquettes du laser et du capteur sensALIGN18
Batterie rechargeable sensALIGN19
Montage des composants
Montage des systèmes de serrage22
Montage du laser et du capteur sensALIGN23
Écran des dimensions
Propriétés de la machine24
Couleur de la machine25 Croissance thermiqueMouvement des axes d'arbre associé à ou résultant d'un changement de température de l'équipement entre les conditions de veille et de
fonctionnement
Calculateur de croissance thermique
Propriétés d'accouplement
CiblesValeurs de défaut d'alignement spécifiées comme une concentricité et un angle dans deux plans perpendiculaires (horizontaux et verticaux) et utilisées pour compenser les charges dynamiques
Aiustement du faisceau laser 28
Interprétation des LED d'ajustement du faisceau

Vue XY	30
Initialisation du capteur	. 33
Modes de mesure	34
Calcul de la moyenne	35
Mesure intelliSWEEP	37
IntelliEXTEND	39
Mesure IntelliPOINT	41
Mesure Multipoint	43
Mesure statique	45
Mesure IntelliPASS	47
Résultats	49
Convention de signe	50
Tolérances	51
Tableaux des tolérances disponibles	51
Tolérances definies par l'utilisateur Tolérances asymétriques et symétriques	52 .52
Tableau des tolérances fondé sur le format d'accouplement	52
Écran Live Move	54
Move simulator (simulateur de déplacement)	57
Sauvegarde des mesures machine et génération des rapports	. 59
Tableau des mesures	62
Modification des données de mesure	65
Ellipse éclatée	65
Autres diagrammes de déviation	66
Quelle est la conséquence de la désactivation de points individuels ?	67
Utilisation du cloud	68
Stockage d'un fichier de mesure dans le cloud	68
Téléchargement en aval d'un fichier de mesure depuis le cloud	68

RFID	70
Affecter un fichier de mesure enregistré à une étiquette RFID Ouvrir un fichier de mesure affecté à une étiquette RFID	70 71
Appareil photo intégré	73
Galerie	73
Réalisation d'une capture d'écran sur ROTALIGN touch	74
Pied bancal	75
Assistant de pied bancal Types de pied bancal	77 77
Machine verticale à bride Marquage des positions de mesure Paramétrage	79 79 80
Machines verticales montées sur bride – vertiSWEEP	82
Mesure à l'aide de vertiSWEEP Modes de calage	82 83
Machines verticales montées sur bride – Statique	85
Mesure à l'aide du mode de mesure statique	85
Mesure à l'aide du mode de mesure statique Live Move – machines verticales	85 87
Mesure à l'aide du mode de mesure statique Live Move – machines verticales Correction de l'angularité	85 87 87
Mesure à l'aide du mode de mesure statique Live Move – machines verticales Correction de l'angularité Correction du décentrage	85 87 87 87
Mesure à l'aide du mode de mesure statique Live Move – machines verticales Correction de l'angularité Correction du décentrage Alignement du train de machines	85 87 87 87 90
Mesure à l'aide du mode de mesure statique	85 87 87 87 90 92
Mesure à l'aide du mode de mesure statique	85 87 87 90 92 96
Mesure à l'aide du mode de mesure statique	85 87 87 90 92 96 98
Mesure à l'aide du mode de mesure statique Live Move – machines verticales Correction de l'angularité Correction du décentrage Alignement du train de machines Mesure Live Move – Train de 3 machines Présentation des transmissions à cardan Procédures de mesure dans l'application de cardan	85 87 87 90 92 96 98 98
Mesure à l'aide du mode de mesure statique	85 87 87 90 92 96 98 98 98
Mesure à l'aide du mode de mesure statique	85 87 87 90 92 96 98 98 100 100

Alignement de l'arbre à cardan – Procédure de mesure du plan rotatif	102
Prise de mesures	
Alignement de l'arbre à cardan – Utilisation du s port de cardan décalé	sup- 106
Supports de cardan décalés	
Montage du grand support de cardan décalé et ajustement d sensALIGN	u laser 106
Montage du support Montage du groupe de support du laser sur le rail Montage et ajustement du laser Ajustez le faisceau laser sur l'axe de rotation de la machine Positionnement du laser et montage du capteur pour la mesure	
Alignement de l'arbre à cardan – Procédure de mesure IntelliPOINT	
Prise de mesures	
Évaluation et alignement	
Présentation de Live Trend	
Qu'est-ce que Live Trend?	114
Dispositifs Live Trend	
Montage des supports Live Trend	
Configuration Live Trend	
Live Trend – Mesures	120
Live Trend – Évaluation des résultats	
Présentation de l'écran des résultats	
Interprétation de l'écran de résultats	122
Live Trend – Journal	
Qu'est-ce que le journal Live Trend ?	
Live Trend – Marqueurs	
Que sont les marqueurs ?	
Appliquer les marqueurs	
Marqueurs spécifiés par l'utilisateur	

Définir le point de mesure à zéro	127
Suppression des marqueurs	128
Identifier des marqueurs	128
Bonnes pratiques	130
Montage du capteur et du laser	130
Saisie des dimensions	130
Initialisation du capteur	130
Les causes qui peuvent influencer la mesure	130
Résultats et Live Move	130
Caractéristiques techniques – Ordinateur	132
Caractéristiques techniques – Capteur sensALIGN	134
Caractéristiques techniques – Laser sensALIGN	135
Glossaire	136

Packs système

Le système ROTALIGN touch est disponible dans quatre modèles différents.

- ALI 50.000-B ROTALIGN touch sans appareil photo et sans module de connectivité mobile intégrés
- ALI 50.000-CAM ROTALIGN touch **avec** appareil photo intégré
- ALI 50.000-MOB ROTALIGN touch **avec** connectivité mobile intégrée (qui inclut WiFi¹, RFID² et ALIGNMENT RELIABILITY CENTER 4.0 [ARC 4.0])
- ALI 50.000 ROTALIGN touch en version complète (comprend un appareil photo intégré et une connectivité mobile)

Numéro de référence	Composant	ALI 50.000	ALI 50.000- MOB	ALI 50.000- CAM	ALI 50.000-B
ALI 50.200	Ordinateur ROTALIGN touch	✓	V	v	V
ALI 4.900	Capteur sensALIGN	\checkmark	\checkmark	\checkmark	\checkmark
ALI 4.910	Laser sensALIGN	\checkmark	\checkmark	\checkmark	\checkmark
ALI 4.960	Batterie rechargeable sensALIGN (2 pièces dans le pack)	✓	V	✓	V
ALI 50.651	Chargeur ROTALIGN touch	V	V	V	✓
ALI 4.651	Chargeur sensALIGN	\checkmark	\checkmark	\checkmark	\checkmark
ALI 4.922-2	Câble de capteur sensALIGN	V	V	✓	V
ALI 12.502-2	Câble PC/USB	\checkmark	\checkmark	\checkmark	\checkmark
ALI 4.451	Clé USB	\checkmark	\checkmark	\checkmark	\checkmark
ALI 4.905	Sonde de contrôle des vibrations	V	V	V	V
ALI 2.118	Système de serrage à petite chaîne (2 pièces dans le pack)	V	~	~	✓
ALI 2.170	Montant 115 mm, blanc (4 pièces)	V	V	✓	✓

¹Le WiFi est utilisé pour transférer des mesures d'installations entre ROTALIGN touch et le cloud via la plate-forme logicielle ARC 4.0

²Cette technologie d'identification est utilisée pour identifier les installations à aligner.

Numéro de référence	Composant	ALI 50.000	ALI 50.000- MOB	ALI 50.000- CAM	ALI 50.000-B
ALI 2.171	Montant 150 mm, noir (4 pièces)	v	✓	V	✓
ALI 2.173	Montant 250 mm, vert (4 pièces)	\checkmark	✓	✓	✓
ALI 2.174	Montant 300 mm, jaune (4 pièces)	√	✓	✓	✓
ALI 2.114	Chaîne 300 mm	\checkmark	\checkmark	\checkmark	\checkmark
ALI 3.589	Mètre ruban mm/- pouce	\checkmark	✓	\checkmark	\checkmark
ALI 2.911	Tissu de nettoyage pour lentille	√	✓	✓	√
0 0739 1055	Clé Allen 2,5 mm	\checkmark	\checkmark	\checkmark	\checkmark
ALI 50.800	Mallette ROTALIGN touch	\checkmark	✓	v	\checkmark
Fonctionnalité	Appareil photo intégré	\checkmark	×	\checkmark	×
Fonctionnalité	Connectivité mobile intégrée	V	✓	×	×

Voir les composants des packs sur les images ci-dessous.

Écran d'accueil

L'écran d'accueil est affiché au démarrage de ROTALIGN touch. Vous pouvez aussi accéder à l'écran d'accueil en appuyant sur 1/2000 l'icône « Accueil ».

Vous pouvez accéder aux fonctions suivantes en appuyant sur l'icône correspondante :

- (1) L'icône « Alignement horizontal » permet d'accéder à l'application d'<u>alignement</u> <u>horizontal</u>.
- (2) L'icône « Pied bancal » permet d'accéder à la mesure du pied bancal.
- (3) L'icône « Alignement vertical » permet d'accéder à l'application d'<u>alignement ver</u>-<u>tical</u>.
- (4) L'icône « Live Trend » permet d'accéder à l'application Live Trend.
- (5) L'icône « Vérificatin vibration » permet d'accéder à l'application de mesure des vibrations.
- (6) L'icône « RFID » permet d'ouvrir les équipements affectés aux étiquettes RFID respectives.
- (7) L'icône « Nouvel actif » permet de démarrer un nouvel actif (ce peut être une combinaison de moteurs de pompe).

Note

Pour tout actif ouvert, différentes applications telles que l'alignement d'arbres, le Live Trend, l'analiseur de vibrations et la mesure du pied bancal, peuvent être exécutées.

- (8) L'icône « Appareil photo » permet d'accéder à l'appareil photo intégré.
- (9) L'icône « Parc d'actifs » permet d'afficher tous les actifs enregistrés.
- (10) L'icône « Reprendre » permet de rouvrir le dernier actif utilisé (dès lors qu'il a été enregistré) au démarrage du dispositif.
- (11) L'icône « Galerie » permet d'afficher toutes les images prises à l'aide de l'appareil photo intégré au système.
- (12) L'icône « Télécharger en amont » permet d'enregistrer les mesures d'actifs dans le <u>Cloud</u>.
- (13) L'icône « Télécharger en aval » permet d'ouvrir des mesures d'actifs depuis le <u>Cloud</u>.

- (14) L'icône « Configuration » permet de <u>configurer les paramètres</u> de ROTALIGN touch (notamment la langue, la date, l'heure, les paramètres par défaut) et d'accéder à la connectivité mobile intégrée.
- (15) L'icône « Retour » permet de revenir à l'écran précédent.
- (16) L'icône « Arrêt » permet d'éteindre l'ordinateur ROTALIGN touch.
- (17) L'icône « LED appareil photo on/off » permet d'activer/de désactiver les LED de l'appareil photo.
- (18) L'icône « Aide » permet d'accéder au fichier d'aide embarqué.

Configuration

Les paramètres et options suivants sont accessibles en cliquant sur l'icône de configuration :

 'System settings' (réglages système) permet de définir la langue, la date, l'heure et le fuseau horaire du système, de déterminer la transition entre les écrans des dimensions, de mesure et des résultats, et d'ajuster la luminosité de l'écran.

		(60% 23.11.2016 04:33
🍽 Language	English	System settings
Date	23.11.2016	
🔆 Time	04:33	Default settings
😚 Time zone	(UTC+01:00) Amsterdam, Berlin, Bern, Rome	
Animation state	×	Wireless
🜸 Auto brightness		Sensor list
		About
		\odot

 'Default settings' (réglages par défaut) permet de définir les unités de longueur, d'angle et de température ; il est également possible de configurer ici le diamètre par défaut. Vous pouvez par ailleurs activer ou désactiver le démarrage automatique d'IntelliSWEEP et le relevé automatique des lectures après stabilisation, notamment dans les modes de mesure à plusieurs points. Le type de tolérance à utiliser peut également être défini ici.

ි Note

Le fuseau horaire défini est associé à la vitesse de rotation par défaut à moins que la vitesse de rotation par défaut ne soit indiquée séparément. À titre d'exemple, définir le fuseau horaire sur "Central America" (Amérique centrale) entraîne une vitesse de rotation par défaut de 1800. Définir le fuseau horaire "London" (Londres) entraîne une vitesse de rotation de 1500.

A 11 A 41 - 11		(64% 08.12.2016 04:25
Units of length	mm	System settings
∠ Coupling angle unit	degrees	
⑧ ^E Temperature unit	Celsius	Default settings
Ø Default diameter	100 mm	
$\zeta^{\mathbb{N}}_{_{\mathrm{RPM}}}$ Default RPM	1500	Wireless
$\mathop{\bigodot}_{\scriptscriptstyle{\rm AUTO}}$ Autostart intelliSWEEP measurement	 	Sensor list
$\hat{k}_{\text{AUTO}}^{(1)}$ Take points automatically after stabilization	~	
(1) Default tolerance type Com	bined 50 Hz & 60 Hz	About
😪 Default cardan tolerance type	Quarter degree	\bigcirc

• En cas d'activation, 'Wireless connection' (connexion sans fil) permet de connecter ROTALIGN touch aux réseaux WiFi disponibles.

Network name Wireless connection	Status	C= 60% 23.11.20160436 System settings			
		Default settings			
		Wireless			
		Sensor list	Q Network name Wireless connection	Status	System settings
		About	eConais	all 🔒	Default settings
		\odot	FC Bayern PTLean	انہ ھ انہ ھ	Wireless
			O PTOffice	in all	Sensor list
					About
					\odot

L'ordinateur ROTALIGN touch peut être connecté uniquement à des réseaux WiFi ne nécessitant pas l'ouverture de navigateurs web séparés pour se connecter.

 '<u>Sensor list</u>' (liste des capteurs) affiche l'ensemble des capteurs sensALIGN disponibles.

• Le numéro de série de l'ordinateur, la version de microprogramme de l'application et la mémoire disponible sont affichés dans l'écran 'About' (à propos).

		62% 14.12.2016 09 :4
R © TALIGN [®] touct	System settings	
Serial number: Firmware version: Hardware version:	50200004 1.2 (5000) 3	Default settings
Hardware configuration: Free memory space:	All features 28.0 GB	Wireless
Copyright © 2003 - 2016 PRÜFTECHNIK AG This product has been developed and produced by Pl algorithms used in this product are patented.	Sensor list	
License and Copyright for AES Software Copyright © 1998-2008, Brian Gladman, Worcester, L		
Copyright © 2003-2015, Jouni Malinen <j@w1.fi> an This software may be distributed, used, and modified</j@w1.fi>	About	
Copyright © 2001 Lutz Müller <lutz@users.sourcefor This library is free software; you can redistribute it a General Public License as published by the Free Soft (at your option) any later version.</lutz@users.sourcefor 	ge.net> id/or modify it under the terms of the GNU Lesser ware Foundation; either version 2 of the License, or	\odot

Composants

Ordinateur ROTALIGN touch

L'ordinateur ROTALIGN touch est doté d'un écran avec technologie tactile multipoint ; vous devez appuyer et glisser votre doigt sur l'écran pour le faire fonctionner. Pour allumer l'ordinateur, maintenez enfoncé le bouton d'alimentation à l'avant de l'ordinateur jusqu'à l'émission d'un signal sonore.

Pour éteindre l'ordinateur, appuyez sur l'icône de mise hors tension [0] affichée à l'écran d'accueil.

Interfaces de l'ordinateur, appareil photo intégré et étiquettes

L'ordinateur ROTALIGN touch dispose de trois connecteurs logés sous le capuchon anti-poussière coulissant situé sur le dessus de l'ordinateur.

L'ordinateur ROTALIGN touch est équipé d'une batterie interne rechargeable qu'il est possible de charger en connectant l'ordinateur ROTALIGN touch au secteur à l'aide de l'adaptateur fourni. L'adaptateur doit être branché sur le connecteur d'alimentation (voir l'image ci-des-sus). Les LED d'état indiquent le niveau de charge approximatif de la batterie. Il est possible d'utiliser l'ordinateur ROTALIGN touch pour la réalisation de mesures pendant son chargement.

Activité	LED d'état de la batterie
L'ordinateur est éteint, aucune charge en cours	Les trois LEDs sont éteintes
L'ordinateur est allumé avec une capacité de charge < 10 %	La LED du bas clignote rouge
L'ordinateur est allumé avec une capacité de charge > 10 % mais < 40 %	La LED du bas est allumée vert fixe
L'ordinateur est allumé avec une capacité de charge > 40 % mais < 69 %	Les LEDs du bas et du milieu sont allumées vert fixe
L'ordinateur est allumé avec une capacité de charge \geq 70 %	Les trois LEDs sont allumées vert fixe
Charge détectée	Les trois LEDs clignotent à une ou deux reprises [bleu ou blanc si la tension de sortie est de 12 V]
Charge avec niveau de charge < 40 %	La LED du bas clignote vert
Charge avec niveau de charge > 40 % mais < 70 %	Les LEDs du bas et du milieu clignotent vert
Charge avec niveau de charge <u>></u> 70 %	Les LEDs du bas et du milieu sont allumées vert fixe et la LED du haut clignote vert

L'ordinateur ROTALIGN touch possède un appareil photo intégré à l'arrière de l'unité pouvant être utilisé pour prendre des photos des machines.

Laser sensALIGN

La diode laser semi-conductrice émet un rayon de lumière rouge (longueur d'onde de 635 nm) qui est visible à l'endroit où il touche une surface. Le faisceau laser de classe 2 est émis avec un diamètre d'environ 5 mm.

Pour allumer le laser sensALIGN, maintenez enfoncé le commutateur Marche/Arrêt. La LED « Faisceau actif » s'allume rouge.

Pendant la préparation, vous pouvez ajuster le faisceau en modifiant ses angles vertical et horizontal à l'aide des molettes de position, de sorte que le faisceau touche la lentille du capteur sensALIGN à la perpendiculaire de sa surface.

Le laser sensALIGN est protégé contre l'eau et la poussière (IP 65). Les composants optiques et électroniques internes bénéficient d'une étanchéité interne qui empêche toute contamination.

Les informations relatives à l'état de la batterie, l'angle de rotation, la température et le numéro de série du laser sensALIGN sont transmises par le faisceau laser au capteur sensALIGN. Ces informations sont également transmises à l'ordinateur ROTALIGN touch.

Le laser sensALIGN est alimenté à l'aide de la batterie rechargeable sensALIGN (batterie rechargeable lithium-polymère 3,7 V 1,6 Ah). La batterie rechargeable est fixée au laser et doit être rechargée exclusivement à l'aide du chargeur sensALIGN ; la charge peut être réalisée uniquement si la batterie est fixée au laser.

Capteur sensALIGN

Le capteur sensALIGN comporte deux détecteurs de position qui mesurent la position et l'inclinaison exactes du faisceau laser au fur et à mesure de la rotation des arbres. Le capteur intègre une technologie Bluetooth pour la transmission sans fil des données de mesure vers l'ordinateur ROTALIGN touch. Le capteur sensALIGN transmet par ailleurs les données du laser sensALIGN à l'ordinateur. La technologie de capteur intelligente sensALIGN permet de déterminer l'angle de rotation des arbres et le niveau de vibration des machines.

- À l'avant du capteur sensALIGN, vous trouverez les LED suivantes :
- >> LED de l'état de la batterie
- >> LED de la communication Bluetooth
- >> Quatre LED d'ajustement du faisceau

Étiquettes du laser et du capteur sensALIGN

Le schéma sur l'étiquette représente le capteur et le laser sensALIGN. Il montre les symboles, marques et étiquettes gravés tels qu'ils apparaissent sur la tête de mesure respective. Les étiquettes de sécurité du laser sont apposées sur le boîtier du laser sensALIGN aux emplacements indiqués dans le schéma. L'étiquette de la batterie rechargeable est située à l'arrière de la batterie rechargeable sensALIGN.

Batterie rechargeable sensALIGN

Le laser et le capteur sensALIGN sont tous deux alimentés par une batterie rechargeable sensALIGN. Cette batterie est chargée via la prise adaptateur à l'aide de l'adaptateur sensALIGN. Si la capacité de la batterie est supérieure à 50 % [capacité acceptable pour la mesure], la LED du niveau de la batterie sur le laser et le capteur sensALIGN s'allume vert pendant 2 secondes lors de la mise sous tension. Pendant le processus de charge, la LED du niveau de la batterie clignote vert. Lorsque la batterie est complètement chargée, la LED s'allume vert fixe si le chargeur reste connecté.

Activité	LED du niveau de batterie du laser sensALIGN	LED du niveau de batterie du capteur sensALIGN	LED de faisceau actif du laser sensALIGN
Interrupteur de mise sous ten- sion	S'allume vert pendant 3 secondes lorsque le temps de batterie res- tant est > 10 heures	S'allume vert pendant 3 secondes lorsque le temps de batterie res- tant est > 10 heures	S'allume rouge fixe lorsque le dispositif est en mode « beam finder » (trace)

Activité	LED du niveau de batterie du laser sensALIGN	LED du niveau de batterie du capteur sensALIGN	LED de faisceau actif du laser sensALIGN	
	Clignote vert toutes les 3 secondes lorsque le temps de batterie res- tant est compris entre 5 et 10 heures	Clignote vert toutes les 3 secondes lorsque le temps de batterie res- tant est compris entre 1 et 5 heures	Clignote rouge lorsque le dispositif est en mode de mesure	
	Clignote rouge toutes les 3 secondes lorsque le temps de batterie restant est compris entre 1 et 5 heures	Clignote rouge toutes les 3 secondes lorsque le temps de batterie restant est insuffisant pour des mesures plus longues	Notez que la mesure peut être effectuée dans les deux modes	
	Clignote rouge en per- manence lorsque le temps de batterie res- tant est < 1 heure	Clignote rouge en per- manence lorsque le temps de batterie res- tant est < 1 heure		
Charge de la batterie	Clignote vert lors de la charge	Clignote vert lors de la charge	LED éteinte	
	S'allume vert fixe lorsque la charge est terminée	S'allume vert fixe lorsque la charge est terminée		
	S'allume rouge en cas de défaillance au cours de la charge.	S'allume rouge en cas de défaillance au cours de la charge		

Pour remplacer les batteries rechargeables, utilisez la clé Allen 2,5 mm fournie [0 0739 1055] afin de retirer les deux vis à six pans utilisées pour fixer la batterie au laser ou au capteur sensALIGN.

X

Les batteries usagées doivent faire l'objet d'une mise au rebut respectueuse de l'environnement !

Montage des composants

Montage des systèmes de serrage

Montez les systèmes de serrage de chaque côté de l'accouplement, soit sur les arbres, soit sur les moyeux d'accouplement solides ; tous deux doivent être à la même position de rotation.

Gardez ce qui suit à l'esprit afin d'obtenir une précision de mesure optimale et d'éviter d'endommager l'équipement :

Assurez-vous que les systèmes de serrage soient fermement installés sur leurs surfaces de montage ! N'utilisez pas de systèmes de serrage que vous auriez construits vous-même ou ne modifiez pas la configuration du système d'origine fourni par PRUFTECHNIK (par exemple, n'utilisez pas de montants plus longs que ceux fournis avec le système de serrage).

- Choisissez les montants les plus petits qui permettront tout de même au faisceau laser de passer par-dessus ou à travers l'accouplement. Insérez les montants dans le système de serrage.
- Fixez-les en place en serrant les vis à six pans sur les côtés du cadre du système.
- Placez le système de serrage sur l'arbre ou l'accouplement, enroulez la chaîne autour de l'arbre et introduisez-la de l'autre côté du système : si l'arbre est plus fin que la largeur du cadre du système, insérez la chaîne depuis l'intérieur du système de serrage comme l'illustre le schéma ; si l'arbre est plus large que le système, insérez la chaîne dans le cadre depuis l'extérieur.
- Attachez la chaîne sans la serrer au crochet d'ancrage.
- Tournez la vis à ailettes du système de serrage pour serrer l'assemblage sur l'arbre.
- Attachez la partie libre de la chaîne sur elle-même.

Le système devrait désormais être correctement serré sur l'arbre. Ne tirez pas ou ne poussez pas sur le système pour vérifier, car cela pourrait desserrer le montage.

Pour retirer les systèmes de serrage, desserrez la vis à ailettes, puis retirez la chaîne de son crochet d'ancrage.

Montage du laser et du capteur sensALIGN

Montez le laser sensALIGN sur les montants du système de serrage fixé sur l'arbre de la machine de gauche (généralement la machine de référence) et le capteur sensALIGN sur les montants du système de serrage fixé sur l'arbre de la machine de droite (généralement la machine mobile) – en regardant depuis votre position de travail habituelle. Avant de monter le laser et le capteur sensALIGN, assurez-vous que les leviers de serrage jaunes soient en position ouverte en les abaissant vers l'avant. Ceci permet aux composants de coulisser le long des montants.

Fixez le capteur et le laser sensALIGN sur les montants respectifs en verrouillant les leviers de serrage jaunes. Verrouillez les leviers en les abaissant vers l'arrière jusqu'à ce qu'ils reposent sur les arrêts.

Assurez-vous que le laser puisse passer par-dessus ou à travers l'accouplement et qu'il ne soit pas bloqué.

Le laser et le capteur sensALIGN doivent se situer à la même hauteur, aussi bas que possible, mais suffisamment élevés pour que le faisceau puisse franchir la bride de l'accouplement. Ils doivent par ailleurs être visuellement alignés l'un par rapport à l'autre en termes de rotation.

Procédez aux derniers ajustements – desserrez légèrement les systèmes de serrage si nécessaire, puis tournez-les et resserrez-les.

Écran des dimensions

- (1) Les icônes grisées sont désactivées dans l'écran actif. L'icône « Mesure » est activée une fois toutes les dimensions saisies.
- (2) Appuyez sur l'icône des unités de mesure pour définir les unités souhaitées. L'icône bascule entre « mm » et « pouce ».

Appuyez sur le champ des dimensions et saisissez toutes les dimensions requises. L'utilisateur

peut choisir d'appuyer sur le bouton « Suivant » pour saisir la dimension suivante. Il est possible de saisir les dimensions uniquement lorsque le champ des dimensions est en surbrillance verte.

L'icône de rotation de la vue de la machine ermet de faire pivoter la vue des machines et des composants assemblés affichée à l'écran.

Les propriétés des machines et des accouplements peuvent être modifiées en appuyant sur la machine ou l'accouplement concerné(e).

Lorsque toutes les dimensions requises ont été saisies, l'icône « Mesure » 🧖 apparaît.

Appuyez dessus 🔍 pour lancer la mesure.

Propriétés de la machine

Glissez votre doigt vers le haut ou le bas sur le carrousel de la machine (ou appuyez sur la flèche du haut ou du bas) pour sélectionner la machine souhaitée. Positionnez la machine sou-

haitée au centre du carrousel, puis appuyez sur à l'écran des dimensions.

our confirmer la sélection et revenir

Couleur de la machine

Vous pouvez définir depuis cet écran la couleur à utiliser pour la machine en appuyant sur l'élément « Couleur de la machine » Une palette de couleurs est affichée.

Glissez votre doigt vers le haut ou le bas sur la palette pour sélectionner la couleur appro-

priée, puis appuyez sur pour confirmer la sélection et revenir aux dimensions ; les machines ont maintenant la couleur voulue.

Croissance thermique¹

Vous accédez à l'écran de la croissance thermique en appuyant sur l'élément « Croissance thermique ».

Les valeurs de la croissance thermique peuvent être saisies uniquement lorsque les pieds de la machine ont été définis.

Pour saisir une valeur de croissance thermique pour une position de pied requise, appuyez sur la zone de valeur correspondante, puis saisissez la valeur de la croissance thermique à l'aide

du clavier virtuel à l'écran. Naviguez entre les différentes zones de valeur avec ou en appuyant sur la position de pied souhaitée.

¹Mouvement des axes d'arbre associé à ou résultant d'un changement de température de l'équipement entre les conditions de veille et de fonctionnement.

Les valeurs de la croissance thermique sont activées en faisant glisser l'icône vers la droite [1]. Lorsque les valeurs de la croissance thermique sont activées, la machine correspondante au sein du petit encadré avec le train en haut à droite est affichée en orange [2].

Une fois les valeurs de la croissance thermique saisies, appuyez sur our continuer.

Calculateur de croissance thermique

Le calculateur permet de calculer la compensation de la croissance thermique en l'absence d'autres valeurs. La croissance thermique se calcule à partir du coefficient matériel d'expansion thermique linéaire, de l'écart de température attendu et de la longueur de l'axe de l'arbre par rapport au plan de calage.

Une fois dans l'écran de la croissance thermique, appuyez sur la zone de valeur de la paire de pieds [1] où la croissance thermique doit être saisie. La zone est affichée en vert [2] et l'onglet 'Calculator' (calculateur) [3] est affiché.

Appuyez sur 'Calculator' (calculateur) [3] pour accéder à l'écran du calculateur de la croissance thermique.

Appuyez sur (1) et sélectionnez une machine. L'expansion thermique linéaire correspondante est affichée. Saisissez les trois valeurs [2] requises pour calculer la valeur de la croissance thermique pour la paire de pieds sélectionnée à l'aide du clavier affiché à l'écran [3]. Les trois valeurs sont :

>> la température ambiante (température initiale)

>> la température de fonctionnement de la machine (température finale)

>> la distance entre la base de la machine (ou plan de calage) et l'axe central de l'arbre (longueur)

Avec les valeurs de la croissance thermique activées [4], la machine correspondante au sein du petit encadré avec le train en haut à droite est affichée en orange [5].

Appuyez sur pour à la fois afficher la valeur de croissance thermique calculée pour la paire de pieds concernée (6) et basculer vers la paire de pieds suivante (7).

Appuyez sur pour revenir à l'écran de la croissance thermique affichant les valeurs calculées.

Propriétés d'accouplement

Balayez le carrousel vers le haut ou le bas et sélectionnez le type d'accouplement souhaité.

Cibles¹

Vous accédez à l'écran des cibles d'accouplement en appuyant sur l'élément « Cibles ».

Afin de spécifier une cible pour l'accouplement, appuyez sur la zone de valeur correspondante, puis saisissez la valeur de la cible à l'aide du clavier virtuel à l'écran. Naviguez entre les dif-

férentes zones de valeur avec 📀 ou en appuyant sur la zone de valeur souhaitée.

Les valeurs de spécification de la cible sont activées en faisant glisser l'icône vers la droite [1]. Lorsque les valeurs de cible sont activées, l'accouplement [2] au sein du petit encadré avec le train en haut à droite est affiché en orange. Une fois les valeurs de cible saisies,

appuyez sur ontinuer.

¹Valeurs de défaut d'alignement spécifiées comme une concentricité et un angle dans deux plans perpendiculaires (horizontaux et verticaux) et utilisées pour compenser les charges dynamiques.

Ajustement du faisceau laser

1. Faites glisser le capuchon anti-poussière du laser sensALIGN pour accéder à l'ouverture.

AVERTISSEMENT Le laser sensALIGN DOIT rester éteint.

2. Le laser ÉTEINT, effectuez un préajustement pour vous assurer que le faisceau laser sera émis à la perpendiculaire du boîtier du laser. Utilisez les deux molettes jaunes de réglage du faisceau afin de le placer au centre aussi précisément que possible.

3. Appuyez sur le bouton ON/OFF pour allumer le laser sensALIGN.

4. La lentille couverte, laissez le faisceau laser toucher le centre du capuchon anti-poussière du capteur sensALIGN.

5. Faites glisser le capuchon anti-poussière pour ouvrir la lentille. Observez les quatre LED d'ajustement du faisceau du capteur sensALIGN tout en ajustant le faisceau laser à l'aide des molettes de réglage vertical et horizontal du faisceau. Ces molettes permettent d'ajuster les angles horizontal et vertical du faisceau laser.

6. Effectuez cet ajustement jusqu'à ce que les quatre LED du capteur sensALIGN clignotent vert une fois par seconde.

7. Si les LED clignotent vert deux fois par seconde, l'angle d'entrée du faisceau laser dans le capteur est correct, mais il existe une concentricité. Éliminez cette concentricité en remettant le capuchon anti-poussière du capteur sensALIGN sur la lentille, puis desserrez le système de serrage à chaîne utilisé pour fixer le capteur sensALIGN et déplacez le capteur sur le côté. En

parallèle, desserrez les leviers de serrage du capteur sensALIGN et déplacez le capteur vers le haut et le bas jusqu'à ce que le faisceau laser soit centré sur le capuchon anti-poussière.

Note Pendant cet ajustement, NE TOUCHEZ PAS au laser sensALIGN.

8. Ouvrez la lentille du capteur en glissant le capuchon anti-poussière et vérifiez le clignotement des quatre LED. Si les quatre clignotent vert une fois par seconde, le faisceau laser a été centré correctement et vous pouvez poursuivre avec la mesure.

Interprétation des LED d'ajustement du faisceau

Les quatre LED d'ajustement du faisceau vous apportent une aide supplémentaire lors de l'ajustement du faisceau laser sur les détecteurs de position du capteur sensALIGN. Les LED indiquent l'angle et la position d'entrée du faisceau laser dans le capteur. Les LED clignotent rouge ou vert en fonction de l'angle avec lequel le faisceau laser touche le capteur. Le vert indique un angle petit, le rouge indique un angle grand nécessitant une correction avant le début de la mesure.

Activité	LED d'ajustement du faisceau laser
Allumez le capteur sensALIGN	Les quatre LED s'allument rouge, puis cli- gnotent toutes les deux secondes
Le faisceau laser touche le capuchon anti- poussière [laser éteint]	Les quatre LED clignotent rouge toutes les secondes
Le faisceau laser entre dans le capteur avec une importante déviation angulaire	Au moins une LED clignote rouge toutes les secondes
Le faisceau laser entre dans le capteur avec une déviation angulaire faible ou négli- geable, mais avec une concentricité	Les quatre LED clignotent vert deux fois par seconde
Le faisceau laser entre dans le capteur sans déviation angulaire notable, ni concentricité	Les quatre LED clignotent vert toutes les secondes

Vue XY

La fonction Vue XY facilite le centrage du faisceau laser sur les deux plans de détection des capteurs sensALIGN avant de poursuivre avec la mesure.

- Appuyez sur la zone de détection indiquée (1) pour accéder directement à l'écran Vue XY.
- Vous pouvez accéder à l'écran Vue XY à l'aide de l'élément de menu « Vue XY » affiché lorsque vous appuyez sur « Zone du capteur/laser » (2).
- Vous pouvez accéder à l'écran Vue XY à l'aide de l'élément de menu « Vue XY » affiché lorsque vous appuyez sur le laser (3).

Les deux plans de détection des capteurs sont affichés dans l'écran Vue XY. Centrez le point du faisceau laser sur les deux plans à l'aide des molettes d'ajustement du faisceau. Dans certains cas, il peut s'avérer nécessaire de déplacer le capteur sensALIGN le long des montants ou sur le côté en desserrant le système de serrage à chaîne et en le faisant tourner légèrement.

La fonction « Définir sur zéro » peut être utilisée pour vérifier l'effet des vibrations de l'environnement et des machines sur la mesure. Notez que l'élément « Définir sur zéro » est actif uniquement lorsque le statut du faisceau laser [1] est « OK » ou « Centré ».

Si le statut du faisceau laser est « OK » ou « Centré » [1], appuyez sur « Définir sur zéro » [2] pour définir les valeurs XY des deux plans de détection sur 0,0. Ces valeurs sont ensuite surveillées pour vérifier leur stabilité. Appuyez sur « Absolues » pour revenir à des valeurs absolues.

Notez que les éléments de menu à l'écran peuvent être utilisés pour afficher les éléments suivants :

Liste de capteurs – affiche le numéro de série des capteurs détectés ou utilisés précédemment, ainsi que le type de connexion utilisé pour la communication.

Propriétés du laser – affiche des informations détaillées sur le laser sensALIGN en cours d'utilisation

Serial number	49100054	-
Angle	1.4°	Laser adjustment
		Làser OK
Temperature	22.0°C	Sensor list
Battery status	100%	
Calibration expiry date	2016-09-05	Laser properties
Laser FW version	1.08	Sensor properties
Laser status	Laser OK	XY View

Propriétés du capteur – affiche des informations détaillées sur le capteur sensALIGN en cours d'utilisation

Information		2015-09-11,16:44	
Serial number	49000680		
Angle	2.2°	Laser adjustment	
		Laser OK	
Temperature	22.0°C	Sensor list	
Battery status	100%	l aser properties	
Calibration expiry date	2016-01-17		
Sensor FW version	1.15	Sensor properties	
Laser status	Laser OK	XY View	
		\odot	

Initialisation du capteur

Le message « Erreur de communication » [1] indique que le capteur n'a pas été initialisé ou que le faisceau laser n'est pas été correctement ajusté.

Appuyez soit sur la zone de détection [2], soit sur la zone du capteur/laser [3] pour accéder à l'élément de menu « Liste de capteurs ».

Appuyez sur l'élément de menu « Liste de capteurs » [1] pour consulter les capteurs recherchés. Le message « Recherche de capteur(s) » [2] est affiché pendant le processus de recherche. Dès que le capteur est détecté, il est répertorié dans la liste et un point vert [3] est affiché en regard du capteur détecté.

Ø	Device type	Serial number	Connection type	Visibility	2015-09-11, 14:21
0	sensALIGN		Cable	٠	IntelliSWEEP
•	isensALIGN 💿	49000680	Bluetooth	•	Initializing
1					Sensor list
	New sensor h	as been selected f	for measurement.)	Laser properties
					Sensor properties
					XY View
					\odot

Initialisez le capteur en appuyant sur le capteur répertorié. Un point bleu [1] indique que le capteur est initialisé.

Modes de mesure

Les modes de mesure suivants sont disponibles pour la configuration des machines horizontales :

- IntelliSWEEP¹ Il s'agit du mode de mesure utilisé pour mesurer les machines accouplées standard. Il détecte les influences d'erreurs – comme le jeu au niveau des accouplements, la rotation irrégulière et la vibration environnementale – et élimine automatiquement les erreurs induites.
- IntelliPOINT² Ce mode est utilisé dans les cas où les arbres non couplés peuvent être arrêtés à des positions définies (par ex. en cas d'arbres à cardan démontés). Il est par ailleurs utilisé lorsque les arbres sont couplés mais qu'un jeu de torsion existe. Ce mode permet de s'assurer que les points de mesure restent sur le même arc de rotation et ainsi de renforcer la précision.
- IntelliPASS³ Ce mode est utilisé dans les cas où les arbres non couplés ne peuvent pas être arrêtés à des positions définies.
- Multipoint⁴ Il s'agit du mode utilisé pour mesurer les arbres désaccouplés et non rotatifs, les paliers à glissement [paliers (radiaux) lisses], les paliers en métal blanc, les arbres difficiles à faire tourner, les arbres à rotation saccadée, les configurations avec une longue portée ou un défaut d'alignement considérable qui entraîneront à coup sûr un déséquilibre du faisceau.
- Statique⁵ Ce mode est utilisé pour mesurer les <u>machines prémontées verticales</u>.

Vous sélectionnez le mode de mesure souhaité depuis l'écran de mesure.

Appuyez sur l'entête du mode de mesure [1] pour accéder au carrousel des modes de mesure.

⁵Le mode de mesure de l'horloge statique est utilisé pour les machines verticales et horizontales. Les mesures sont prises avec des arbres placés à l'une des huit positions d'horloge définies. Dans ce mode de mesure, l'inclinomètre électronique est inactif.

¹Mode de mesure haute définition qui assiste activement l'utilisateur en détectant automatiquement et en éliminant les influences d'erreurs telles que le jeu entre-dents de l'accouplement, l'angle de rotation et la vibration.

²Ce mode est utilisé dans les cas où les arbres non couplés peuvent être arrêtés à des positions définies. Il est par ailleurs utilisé lorsque les arbres sont couplés mais qu'un jeu de torsion existe.

³Dans ce mode, l'arbre soutenant le laser est pivoté de manière à ce que le faisceau laser passe par la zone centrale du détecteur.

⁴Mode de mesure pour les machines horizontales où les points de mesure sont pris à n'importe quelle position de rotation angulaire souhaitée.

Balayez le carrousel vers le haut ou le bas et sélectionnez le mode de mesure souhaité.

Dans l'exemple ci-dessus, le mode <u>Multipoint</u> a été sélectionné. La qualité de la mesure peut être affichée sous forme de déviation standard (SD) de mesure ou de facteur de qualité de mesure. Le facteur désiré est défini en appuyant sur l'élément correspondant. Le calcul de la moyenne est défini en appuyant sur le bouton « Calcul de la moyenne ».

Calcul de la moyenne

Dans certaines conditions industrielles, il peut s'avérer nécessaire d'augmenter le nombre de mesures (pulsions laser enregistrées) en vue de calculer leur moyenne pour obtenir la précision voulue. Les cas particuliers incluent les environnements connaissant des vibrations accrues des machines. Le renforcement du calcul de la moyenne améliore en outre la précision lors de la mesure de paliers à glissement, de paliers en métal blanc et de paliers lisses.

Le calcul de la moyenne est possible pour les mesures de "points" comme le « Multipoint » et le « mode Statique ».

Définissez le calcul de la moyenne en appuyant sur le bouton « Calcul de la moyenne » [1]. Un barème [2] utilisé pour déterminer la valeur du calcul de la moyenne apparaît à l'écran. Appuyez sur la valeur souhaitée, qui sera alors affichée dans le bouton « Calcul de la moyenne » [1].
Mesure intelliSWEEP

Le mode de mesure par défaut permet de mesurer les machines couplées horizontales standard. Ce mode assiste activement l'opérateur en détectant automatiquement les erreurs et en prodiguant des conseils adaptés afin de minimiser les erreurs.

Une fois le faisceau laser centré, la mesure peut être automatiquement lancée avec la rotation

des arbres ou en appuyant sur O. Faites tourner les arbres sur un angle aussi large que possible.

Pendant que les arbres tournent, et en fonction de la condition physique des machines, l'arc de rotation passe de rouge (qualité < 40 %) à ambre (qualité \geq 40 % < 60 %) à vert (qualité \geq 60 % < 80 %) à bleu (qualité \geq 80 %). Les résultats d'accouplement sont affichés dès que la qualité de la mesure atteint les 40 % (l'arc de rotation prend la couleur ambre).

Appuyez sur 💌 l'icône « Annuler » pour supprimer la mesure actuelle. Appuyez sur

l'icône « Continuer » pour accéder aux résultats de mesure ou répéter la mesure.

- (1) Appuyez sur pour mesurer les machines à nouveau.
- (2) Appuyez sur pour consulter les résultats des pieds des machines.

IntelliEXTEND

Cette fonctionnalité active automatiquement l'extension de la plage de mesures dans le mode de mesure intelliSWEEP. Cette extension de plage vous permet d'ajuster le faisceau laser de manière à ce qu'il ne manque pas la surface de détection lors de la mesure d'arbres avec un grand désalignement ou un désalignement angulaire sur de grandes distances.

 Lorsque vous réalisez une mesure avec intelliSWEEP et que le faisceau laser approche de l'extrémité de la surface de détection, un message est automatiquement affiché à l'écran.

• Appuyez sur pour procéder à l'extension de la plage de mesures. Suivez les instructions à l'écran et positionnez le point du faisceau laser sur l'astérisque bleu qui apparaît sur la surface de détection.

Une fois le faisceau laser centré, appuyez sur (1), puis poursuivez la mesure en faisant pivoter les arbres davantage.

Une fois que les arbres ont pivoté sur un angle aussi large que possible, appuyez sur
 (1) pour passer aux résultats, puis sur
 (2) pour afficher les résultats.

Mesure IntelliPOINT

Dans ce mode, l'arbre soutenant le laser est pivoté dans la position où le faisceau laser frappe le centre de la lentille du capteur. La mesure est prise lorsque le faisceau laser frappe le centre du détecteur.

Après avoir <u>centré le faisceau laser</u>, attendez que la mesure se stabilise en centrant l'aiguille dans la zone verte.

La lettre '**M**' est affichée en-dessous de **1** tel que le montre l'écran ci-dessous.

Appuyez sur '**M**' pour prendre le point de mesure.

Faites pivoter l'arbre soutenant l'une des têtes de mesure (par ex. le capteur) vers la position suivante, puis faites tourner l'arbre soutenant l'autre tête de mesure (par ex. le laser) jusqu'à ce que l'aiguille se situe dans la zone centrale bleue de l'indicateur d'aiguille à l'écran (1). Lorsque l'aiguille se trouve dans la zone bleue et que la durée de stabilisation de la valeur a été atteinte, la lettre '**M**' est affichée (2). Appuyez sur '**M**' pour prendre le point de mesure.

Note

Il est possible de prendre les mesures automatiquement sans avoir à appuyer sur **M** après la stabilisation si la fonction automatique est activée dans les <u>réglages par</u> <u>défaut</u>.

Faites tourner chacune des têtes vers le point de mesure suivant ; répétez la procédure pour prendre des mesures à trois positions au moins sur un angle de rotation minimal de 60°. Il est toutefois recommandé de prendre plus de mesures sur un angle plus large.

Une fois qu'un nombre suffisant de points de mesure a été relevé, appuyez sur verterminer la mesure.

Appuyez sur pour consulter les résultats de pied de la machine.

pour

Mesure Multipoint

Ce mode est utilisé pour mesurer les arbres qui ont du mal à tourner en continu ou qui ne permettent la prise de mesures que dans certaines positions de rotation. Cette méthode peut aussi être utilisée pour mesurer les arbres non couplés et non rotatifs, les paliers à glissement, les paliers en métal blanc, les paliers (radiaux) lisses, les arbres difficiles à faire tourner, les arbres à rotation saccadée, les configurations avec une longue portée ou un défaut d'alignement considérable qui entraîneront à coup sûr un déséquilibre du faisceau.

Si ce n'est déjà fait, saisissez les <u>dimensions de la machine</u>, puis <u>centrez le faisceau</u> laser.

- (1) Icône « Suivant » appuyez dessus pour relever le point de mesure initial
- (2) Conseil pour appuyer sur l'icône « Suivant »

Appuyez sur I'icône « Suivant » pour relever le point de mesure initial, puis faites tourner les arbres dans leur sens de fonctionnement habituel jusqu'à la position de mesure suivante.

- (1) Zone d'accouplement sur laquelle appuyer pour prendre la mesure suivante
- (2) Nombre de points déjà relevés
- (3) Icône « Annuler » utilisée pour annuler la mesure actuelle et en lancer une nouvelle

Appuyez sur la zone d'accouplement [1] pour relever le point de mesure. Faites tourner les arbres à nouveau et relevez les points de mesure en appuyant sur la zone d'accouplement [1]. Relevez le plus grand nombre de points à l'intérieur d'un angle de rotation le plus large possible.

- (1) Arc de rotation montrant les points relevés et l'angle de rotation couvert par les arbres. L'arc change de couleur et passe de rouge [< 60°] à ambre à vert [> 70°]
- (2) Angle de rotation effectué par les arbres pour la mesure actuelle
- (3) Nombre de points de mesure relevés pour la mesure actuelle
- (4) Déviation standard obtenue dans la mesure actuelle
- (5) Icône « Continuer » appuyez dessus pour consulter les résultats de la mesure

L'icône « Continuer » (dont la couleur change en fonction de l'arc de rotation) devient active une fois que trois points de mesure ont été relevés.

Les résultats de l'accouplement vertical et horizontal sont affichés lorsque les arbres tournent sur un angle de 60° au moins, et un minimum de trois points de mesure est enregistré. Si toutefois la **<u>qualité de la mesure</u>** a été sélectionnée, les résultats de l'accouplement sont affichés lorsque l'arc de rotation **(1)** devient jaune.

Appuyez sur il:cône « Continuer » pour consulter les <u>résultats</u> ou mesurer à nouveau. Si nécessaire, vous pouvez accéder à **Live Move** depuis l'écran « Résultats ».

Mesure statique

Ce mode de mesure est utilisé pour les arbres non couplés, les arbres non rotatifs et les machines verticales sur pied ou à bride.

Si ce n'est déjà fait, saisissez les dimensions, puis centrez le faisceau laser.

- (1) Les icônes de navigation « droite/gauche » permet de positionner le laser et le capteur sensALIGN affichés à un angle de rotation correspondant à la position effective des composants tels qu'ils sont installés sur les arbres.
- (2) Conseil à l'écran pour le positionnement du laser et du capteur affichés, puis pour la prise du point de mesure

Faites tourner les arbres dans l'une des huit positions à 45° (c'est-à-dire les positions 12:00, 1:30, 3:00, 4:30, 6:00, 7:30, 9:00 ou 10:30 vues depuis le capteur vers le laser). Positionnez l'arbre aussi <u>précisé</u>ment que possible à l'aide d'un inclinomètre ou d'un rapporteur externe.

Appuyez sur pour relever le premier point de mesure.

- (1) Nombre de points déjà relevés (dans cet exemple : point initial)
- (2) Zone d'accouplement sur laquelle appuyer pour prendre la mesure suivante
- (3) Conseil à l'écran pour le positionnement du laser et du capteur affichés, puis pour la prise du point de mesure
- (4) Icône « Annuler » utilisée pour annuler la mesure actuelle et en lancer une nouvelle

Faites tourner l'arbre dans la position de mesure suivante. La laser et le capteur affichés

doivent se trouver à la même position d'angle que les composants montés. Utilisez

pour positionner le laser et le capteur sensALIGN affichés, puis relevez le point de mesure suivant en appuyant sur la zone d'accouplement [2].

Les mesures doivent être prises dans au moins trois positions sur 90°, mais il est recommandé d'effectuer davantage de mesures sur un angle plus grand.

- (1) Arc de rotation montrant l'angle de rotation couvert par les arbres lors de la mesure. L'arc change de couleur et passe de rouge [< 60°] à ambre à vert [> 70°]
- (2) Angle de rotation effectué par les arbres pour la mesure actuelle
- (3) Nombre de points de mesure relevés pour la mesure actuelle
- (4) Qualité de la mesure actuelle
- (5) Icône « Continuer » appuyez dessus pour poursuivre avec les <u>résultats</u> de la mesure

Mesure IntelliPASS

Dans ce mode, l'arbre soutenant le laser est pivoté de manière à ce que le faisceau laser frappe la lentille du capteur lors de son passage. Les mesures sont prises lorsque le faisceau laser passe au centre du détecteur.

 <u>Centrez le faisceau laser</u>. Une lettre M (1) clignotante indique que la mesure peut être prise.

• Appuyez sur **M** ou sur **D** pour prendre le premier point de mesure.

• Faites tourner l'arbre soutenant l'une des têtes de mesure (par ex. le laser) vers la position suivante, puis faites tourner lentement l'arbre soutenant l'autre tête (par ex. le capteur) au-delà de la tête opposée. La mesure est automatiquement prise lorsque le faisceau laser touche et franchit le détecteur du capteur.

Les quatre LED d'ajustement du faisceau laser à l'avant du boîtier du capteur sensALIGN clignotent vert en fonction de la position à laquelle le faisceau touche le détecteur.

 Répétez l'étape 3 en prenant des mesures sur autant de positions que possible et sur un angle aussi large que possible. Il est recommandé de viser une qualité de mesure élevée (1).

 Une fois qu'un nombre suffisant de points de mesure a été relevé, appuyez sur pour passer aux résultats.

 \odot

• Appuyez sur pour afficher les résultats.

Note

Si un seul arbre est difficile à faire tourner alors que l'autre l'est facilement, montez systématiquement le capteur sur l'arbre non rotatif (utilisez le support coulissant magnétique ALI 2.230). NE MONTEZ PAS le laser sensALIGN sur l'arbre difficile à pivoter, même si cela implique de configurer votre laser et votre capteur à l'inverse de ce que vous feriez habituellement à des fins d'alignement. Vous pouvez toujours inverser les machines mobile et stationnaire à l'aide de la fonctionnalité 'rotate machine view' (rotation de la vue de la machine). Saisissez toutes les dimensions en fonction de votre configuration actuelle, en suivant l'orientation normale du laser et du capteur dans l'écran des dimensions.

Résultats

	m		015-09-12.01:41	Used to display both horizontal and vertical foot results in 3-D simultaneously. 2 Used to display vertical foot results only 3 Used to display horizontal foot results only 4 Displaye both bnorzontal and vertical foot results in 2-D
3D 0		ණ්ම Result 7 Save	s <mark>8</mark>	simultaneously. 5 Starts Live Move 6 Used to generate the measurement file report 7 Used to save measurement file to asset park 8 Used to select results mode
		6 Repor	t	Tapping the machines icon in this position opens the triple Train Manager/"Train Set-up?" Fixed Feet' screen. Alignment condition tolerance symbol
	·	-1× -1+	-0.04 -0.08	
Tap d to start Live Move.	•	9	-0.19	
)	

Dans l'écran des résultats, les trois icônes 🤐) 🔅 – dimensions, mesure et résultat – sont actives et peuvent être utilisées à tout moment.

Les écrans des résultats des pieds verticaux et horizontaux 2D affichent les positions respectives des pieds verticaux et horizontaux.

Les couleurs des flèches en gras en regard des valeurs de correction de pied sont directement liées à l'état d'alignement de l'accouplement :

Bleu – excellent [le pied ne doit pas être déplacé]

Vert – bon [si possible, ne pas toucher au pied]

Rouge – mauvais [le pied doit être déplacé pour obtenir un meilleur état d'alignement]

⋒	DIM $\left < \widehat{W} \right > \overset{RES}{ \longrightarrow } \qquad \qquad$	2015-09-12,01:43
٤	0.02 0.11	ණ්ල Results
3D		Save
۷	♥ ₩	Report
Н		
V/H	2 -0.01 0.32	(1) -0.10 -0.19
Тар 🙀	to start Live Move.	ģ

- (1) Résultats de la position du pied vertical
- (2) Résultats de la position du pied horizontal

Convention de signe

L'ouverture de l'accouplement est positive lorsque située sur le dessus ou du côté opposé à l'opérateur. L'opérateur est supposé se tenir devant les machines telles qu'elles apparaissent à l'écran.

La concentricité est positive lorsque l'axe de l'arbre de droite est plus haut que l'axe de l'arbre de gauche ou plus éloigné de l'opérateur que l'axe de gauche.

Les résultats verticaux et horizontaux montrent la position du pied par rapport à la ligne médiane de la machine désignée comme étant stationnaire. Des valeurs positives indiquent que la machine est tournée vers le haut ou du côté opposé à l'opérateur. Des valeurs négatives indiquent que la machine est tournée vers le bas ou vers l'opérateur.

Tolérances

La comparaison de ces paramètres avec les tolérances variables selon les dimensions et la vitesse de rotation spécifiées pour la machine permet d'apprécier la qualité de l'alignement.

Les plages de tolérances sont intégrées sous forme de tableaux en fonction du type d'accouplement, du format d'accouplement, du diamètre (pour la valeur d'ouverture) et de la vitesse de rotation. Lorsque le type d'accouplement est avec entretoise, les valeurs du tableau des tolérances sont déterminées par la longueur de l'arbre de transmission et la vitesse de rotation.

Pour l'arbre à cardan, des tolérances sont disponibles pour les limites 1/2° et 1/4°.

🔛 🔊 🛞 🔪 🎫 🛛 🛃 01490 7 8 9 ø110 5 6 4 1 2 3 145 300 0 π . \odot 3 Target \odot

Appuyez sur l'accouplement (1), puis utilisez le carrousel affiché pour sélectionner le type d'accouplement souhaité (2). Appuyez sur 'Tolerances' (tolérances) (3) pour accéder au tableau des tolérances d'accouplement.

Tableaux des tolérances disponibles

Les tableaux des tolérances disponibles sont fondés sur la fréquence d'exploitation des machines.

Balayez l'icône (1) vers la droite pour activer les tolérances. Appuyez sur (2) pour sélectionner le type souhaité de tolérance. Un menu pop-up (3) affiche les tolérances disponibles. Appuyez sur le type souhaité afin d'afficher le tableau des tolérances correspondant (4).

Vous pouvez accéder aux tolérances depuis l'écran des dimensions.

Tolérances définies par l'utilisateur

Balayez l'icône (1) vers la droite pour activer les tolérances définies par l'utilisateur. Tolérances asymétriques¹ (2) peut être activé uniquement si les tolérances définies par l'utilisateur sont activées. Appuyez sur (3) pour modifier les tolérances définies par l'utilisateur à l'aide du clavier à l'écran (4). Les valeurs modifiées sont alors affichées (5).

Tolérances asymétriques et symétriques

Lorsque les tolérances asymétriques n'ont pas été activées (1), les tolérances spécifiées affichées (2) sont symétriques. Les tolérances d'ouverture et de concentricité pour les plans horizontal et vertical sont identiques.

Si les tolérances asymétriques sont activées (3), les quatre valeurs spécifiées sont affichées (4).

Tableau des tolérances fondé sur le format d'accouplement

Pour le même type de tolérance, vitesse de rotation et diamètre d'accouplement, la valeur des tolérances varie en fonction du format d'accouplement sélectionné. Le format d'accouplement (1) est ouverture/concentricité pour l'accouplement flex court et (2) est angle/concentricité pour l'accouplement d'accouplement en appuyant sur 3.

¹Dans les tolérances asymétriques, les valeurs de tolérance des deux plans d'accouplement ne sont pas les mêmes.

Note

Aucun tableau de tolérances n'existe pour les formats consolidés d'accouplement d'arbres de transmission. Les formats consolidés considèrent la manchette de raccordement ou l'arbre de renvoi comme une extension de l'arbre de gauche ou de l'arbre de droite.

Écran Live Move

Live Move fait l'objet d'une surveillance simultanée dans les plans horizontal (H) et vertical (V).

Une fois Live Move activé, l'icône « Annuler » (Cancel)

0 (Undo)

- \bigotimes l'icône « Annuler » pour faire apparaître « Annuler • (1) Appuyez sur déplacement »
- \oslash l'icône « Continuer » pour relancer Live Move ou mesurer les • (2) Appuyez sur machines à nouveau.

 \odot pour lancer automatiquement Live Move. Si le faisceau laser est centré, appuyez sur

Si le faisceau laser n'est pas centré, appuyez sur la zone de détection à l'écran [1] pour accéder à la <u>Vue XY</u>.

N'essayez PAS de déplacer la machine en lui donnant des coups de masse. Cela pourrait endommager les paliers et entraîner des résultats Live Move imprécis. Des vis de pression au niveau des pieds ou autres dispositifs mécaniques ou hydrauliques sont recommandés pour le déplacement des machines.

Corrigez l'état d'alignement à l'aide de cales et en déplaçant les machines sur le côté en suivant les flèches verticales [2] et horizontales [3]. Les flèches colorées indiquent la tolérance d'accouplement atteinte : Bleu (état excellent), vert (état correct) et rouge (mauvais état). Les machines doivent être déplacées dans des tolérances acceptables signalées à l'aide d'une

émoticône souriante [] (tolérance excellente) ou un icône OK [] (tolérance acceptable) tout en respectant les meilleures pratiques pour l'alignement d'arbres.

Note

Le système surveille Live Move dans les sens horizontal et vertical simultanément. Si la vue verticale (V) est sélectionnée lors du lancement de la fonction Live Move, seul l'état vertical sera affiché (bien que les deux plans soient surveillés en même temps). De même, si la vue horizontale (H) est sélectionnée, seul l'état horizontal sera affiché (mais les deux plans sont surveillés simultanément).

Après avoir déplacé les machines dans la bonne plage de tolérances, resserrez les boulons des

pieds, puis appuyez sur

Appuyez sur pour mesurer à nouveau et vérifier les résultats Live Move, puis confirmez le nouvel état d'alignement.

Move simulator (simulateur de déplacement)

Comme son nom l'indique, le simulateur de déplacement sert à simuler des valeurs de calage et des corrections de déplacement horizontal nécessaires à un alignement adéquat. Le simulateur tient compte de l'épaisseur des cales et du degré de mobilité possible des machines.

Note

Le simulateur de déplacement peut être utilisé sur un plan uniquement (**V**ertical ou **H**orizontal). La simulation est possible pour la mesure actuelle (ou « après correction ») uniquement. La simulation peut être exécutée dans une vue 2D ou 3D.

Le simulateur de déplacement est démarré depuis l'écran des résultats. Après la prise d'une mesure, affichez les résultats en 2D ou en 3D et sur un seul plan.

Appuyez sur 'Move simulator' (simulateur de déplacement) (1).

Appuyez sur pour augmenter le pas de déplacement ou sur pour diminuer le pas de déplacement (1). Le pas de déplacement s'étend de 0,025 mm à 1,0 mm pour les unités métriques et de 1,0 thou à 40,0 thou pour les unités impériales.

Appuyez sur la paire de pieds de machine à simuler. Un curseur bleu clair apparaît sur la paire de pieds sélectionnée (2).

Avec le curseur sur la paire de pieds sélectionnée, appuyez sur <u>v</u> pour déplacer la machine vers le bas (dans la vue **V**erticale) ou vers l'opérateur (dans la vue **H**orizontale)

conformément au facteur de pas de déplacement défini. Appuyez sur pour déplacer la machine vers le haut (dans la vue **V**erticale) ou du côté opposé à l'opérateur (dans la vue **H**orizontale) conformément au facteur de pas de déplacement défini (**3**). Exécutez la simulation

tout en observant l'arbre et l'accouplement affichés en couleur, les flèches de tolérances en gras et l'émoticône. Faites en sorte d'obtenir une émoticône souriante (indiquée par un arbre et des flèches de tolérance bleus) ou une émoticône « OK » (indiquée par un arbre et des flèches de tolérance verts). La quantité et le sens du déplacement de la machine sont affichés dans les zones de valeurs (4) au-dessus des valeurs de pieds mesurées.

Pour supprimer les valeurs de simulation, appuyez sur 'Clear values' (supprimer les valeurs) (5).

Appuyez sur 🧭 (6) pour quitter le simulateur de déplacement.

Sauvegarde des mesures machine et génération des rapports

Avant d'éteindre le dispositif, vous pouvez sauvegarder dimensions, mesures, résultats et autres paramètres pour analyse, utilisation future ou stockage dans la mémoire de l'appareil ou dans le cloud. Les mesures machine sont sauvegardées depuis l'écran des résultats.

Pour enregistrer un fichier de mesure, appuyez sur l'élément de menu « Enregistrer », puis utilisez le clavier virtuel à l'écran pour saisir le nom du fichier de mesure.

						Sav	ve Assets				
Asset ID							Date &	Time Status			
•							15.10.2015 1	4:46 😢			
Drainag	Drainage Pump D 225										
q	w e	e I	•	t	у	u	i	о р			
a	s	d	f	g	h	j	k				
Û	z	x	с	v	b	n	m	-			
123 _{Sym}							\otimes	\bigcirc			

Une fois le nom du fichier saisi, appuyez sur pour enregistrer le fichier sous « Parc d'équipements ». Le fichier de mesure est répertorié sous forme d'ID d'équipement.

Asset list	Save Assets
Asset ID	Date & Time Status
Drainage Pump D 225	15.10.2015 14:46 😢
	\odot \odot

Les rapports de mesure peuvent être directement enregistrés au format PDF depuis le système vers un périphérique de stockage USB. Un périphérique de stockage USB doit être connecté à l'ordinateur ROTALIGN touch à l'aide du port USB. Les rapports de mesure sont générés depuis l'écran des résultats.

Appuyez sur l'élément de menu « Rapport ». L'écran « Génération de rapport » s'ouvre.

Generating report	
Machine alignment information	×
Date	12.09.2015
Results as Found	×
Signature	×
	\odot

Si ce n'est déjà fait, activez « Informations sur l'alignement de la machine » en faisant glisser

l'icône vers la droite. Une fois l'option activée, saisissez les informations nécessaires à l'aide du clavier virtuel à l'écran. Le cas échéant, les deux autres éléments « Résultats avant

corrections » et « Signature » peuvent être activés en faisant glisser l'icône vers la droite.

Generating report Machine alignment information	0 🔽	1 "Machine alignemnt information" activated 2 Location where asset is positioned 3 Asset (Machine) ID 4 Name of operator
Pump house 2		6 Date is automatically set 7 In this case, "Results as found" has been activated.
Drainage Pump D 225		
A.N. Other 4		
Scheduled maintenance 6		
Date	() 12.09.2015	
Results as Found	0 🗸	

Appuyez sur bour enregistrer le rapport de mesure au format PDF dans le périphérique de stockage USB connecté.

Appuyez sur pour enregistrer les informations sur l'alignement de la machine dans le fichier de mesure et revenir à l'écran des résultats.

Tableau des mesures

Le tableau de mesure est utilisé pour enregistrer et afficher tout alignement d'arbre et toute mesure Live Move prise sur les accouplements actuels. Accédez au tableau de mesure en appuyant soit sur le tableau de résultats de répétabilité (1) soit sur les résultats d'accouplements (2) / (3).

Les éléments suivants sont inclus dans le tableau de mesure pour chaque mesure.

0.04

0.03

0.05

0.01

0.07

0.00

-11-

ąĿ,

Ċ.

V/H

Tap 🥶 to start Live Move.

Me	asure	ement	t table at c	oupling 1						mm	Measurement table at cou	pling 1							mm
		#	Mea	s.	Vertical		Horizont	al	Quali	ty	Measure	ement details				Sensor		Lase	er
					-tj-	-th	44	-th	QF	SD	Date & time	Distance	Avg [s]	Rotation		Serial No.	Recalibration	Serial No.	Recalibration
JOB			09.06.201	9 🕡															
0	<	Ø)	AS FOUND	14	-0.045	0.027	-0.209	-0.228	6	0	8	9	10	1			2	1	3
	9			Ca	-0.064	-0.007	-0.202	-0.182	62%	0.052	09.06.2016 15:47:34	85	0.03	C		49000680	17.01.2016	49100054	05.09.2016
	୭	2		0	-0.045	0.027	-0.209	-0.228	70%	0.017	09.06.2016 15:48:32	85	Auto	C		49000680	17.01.2016	49100054	05.09.2016
0	•	† 1	MOVE	15	-0.012	0.013	-0.256	-0.212			09.06.2016 15:49:48	85	0.50			49000680	17.01.2016	49100054	05.09.2016
•	{		AS LEFT	16	-0.044	0.031	-0.221	-0.226											
-(ર	1	6	0	-0.049	0.038	-0.222	-0.226	65%	0.019	09.06.2016 15:51:42	85	0.03	C	١	49000680	17.01.2016	49100054	05.09.2016
	ত	2	6	Ũ	-0.040	0.024	-0.220	-0.226	60%	0.006	09.06.2016 15:52:16	85	Auto	C		49000680	17.01.2016	49100054	05.09.2016
	Î		Q						0										\odot

- (1) Appuyez sur la case à cocher pour inclure la mesure dans le calcul de la moyenne des résultats qui est affiché sur l'écran des résultats. Les mesures insérées ont une coche verte. La coche reste grisée si la mesure n'est pas sélectionnée.
- (2) Les mesures dans l'ordre chronologique
- (3) Le mode de mesure utilisé
- (4) L'angle de rotation couvert pendant la mesure
- (5) L'écart vertical et horizontal et les valeurs de décalage
- (6) Le facteur de qualité de mesure (QF)
- (7) La déviation standard de mesure (SD)
- (8) La date et l'heure à laquelle la mesure a été prise
- (9) La dimension entre le capteur et le centre de l'accouplement
- (10) La moyenne utilisée
- (11) Le sens de rotation de l'arbre lors de la mesure
- (12) Le numéro de série du capteur utilisé et date d'échéance du recalibrage
- (13) Le numéro de série du laser utilisé et la date d'échéance du recalibrage

Le résultat d'accouplement « TEL QUE TROUVÉ » **(14)** montre l'état d'alignement initial des machines avant que tout Live Move soit effectué. Le résultat affiché peut être une moyenne des mesures sélectionnées. Dans le tableau suivant, le résultat d'accouplement « TEL QUE TROUVÉ » est le seulement le numéro 2 de mesure sélectionnée.

Le résultat « MOVE » (15) montre l'état d'alignement après le Live Move.

Le résultat d'accouplement « TEL QUE LAISSÉ » (16) montre l'état d'alignement mesuré après le Live Move. Le résultat affiché peut être une moyenne des mesures sélectionnées. Dans le tableau suivant, le résultat d'accouplement « TEL QUE LAISSÉ » est la moyenne des nombres 1 et 2 de mesures.

La date « TÂCHE » (17) apparaît chaque fois qu'une nouvelle tâche d'alignement est démarrée.

Faites défiler horizontalement pour afficher toutes les colonnes et verticalement pour afficher toutes les lignes dans le tableau.

Appuyez pour supprimer « TEL QUE LAISSÉ » la lecture en surbrillance du tableau de mesure.

Appuyez pour afficher les paramètres qui déterminent le facteur de qualité de la mesure.

Quality parameters at coupling 1 (Measurement No.: 6 Mode: Static clock 🏀)							
1	Number of points	76%					
2	Rotation angle	88%					
3	Point standard deviation	100%					
4	Ellipse standard deviation	56%					
5	Environmental vibration	100%					
6	Equal point distribution	63%					

Overall	82%	

Appuyez opur sortir du tableau de mesures.

Modification des données de mesure

Afin d'améliorer la qualité des résultats d'alignement, il est possible de modifier les données de mesure pouvant avoir été affectées par des facteurs extérieurs tels que des supports touchant la tuyauterie. Les options de modification sont accessibles depuis le <u>tableau des</u> <u>mesures</u>.

Meas	Measurement table at coupling 1												
	# Meas.		Vertica	l	Horizont	al	Quality						
				416	-th	41-	-db	QF	SD				
JOB		01.12.20	16										
٠	0	AS FOUND		-0.005	-0.061	0.035	0.012						
10	1	۲	0	-0.008	-0.053	0.031	0.021	83%	0.002				
0	2	۹	0	-0.005	-0.061	0.035	0.012	95%	0.006				
				0									
Ĩ	1	Q		*				0					

Lorsque le tableau des mesures est affiché à l'écran, appuyez sur la mesure souhaitée (1),

puis sur 📖 (2) pour accéder à l'écran avec les données de mesure.

Ellipse éclatée

Le diagramme de déviation le plus souvent utilisé est appelé 'broken ellipse' (ellipse éclatée). Pendant la mesure, le faisceau laser traverse un arc qui dépend de l'état d'alignement des arbres rotatifs. Sur une rotation complète de 360°, le faisceau décrit une ellipse. Couper l'ellipse et la mettre à plat donne lieu au diagramme de déviation 'broken ellipse' (ellipse éclatée). Dans ce diagramme, les points hors du tracé sont parfaitement visibles.

- (1) Appuyez sur is ou sur is pour parcourir les points.
- (2) Le point actuellement sélectionné est actif. Le point est désactivé en appuyant sur 'Deactivate' (désactiver).
- (3) Montre le diagramme de déviation ou le plan de capteur actuellement affiché. Appuyez sur l'icône pour parcourir les différents diagrammes de déviation et plans de

```
capteur disponibles, qui incluent notamment : l'ellipse éclatée [ ]; l'ellipse [ ]; l'ellipse [ ]; l'ellipse polaire [ ]; le plan du capteur [ ]; la vue zoomée du plan du capteur [ ]]
```

- (4) Appuyez sur pour sélectionner automatiquement le point présentant la plus grande déviation au sein du diagramme. Le curseur (5) passe automatiquement à ce point. Notez que l'icône est inactive lorsque le point actuellement sélectionné présente la plus grande déviation au sein du groupe.
- (5) Le curseur permet de sélectionner n'importe quel point dans le diagramme. Le point sélectionné est affiché en bleu.
- (6) Le point actuellement sélectionné est inactif. Vous pouvez activer le point en appuyant sur 'Activate' (activer).
- (7) L'icône 'undo' (annuler) vous permet d'annuler toutes les modifications effectuées avant de sauvegarder la mesure de l'installation.

Autres diagrammes de déviation

Tous les diagrammes de déviation affichent le nombre effectif de points actifs et inactifs, la déviation standard (SD) actuelle et l'évolution totale de la déviation standard (delta SD) lorsque les points déviants sont désactivés.

Quelle est la conséquence de la désactivation de points individuels ?

Vous pouvez désactiver des points individuels afin de diminuer la valeur de la déviation standard. La modification de la déviation standard a des répercussions sur les résultats V et H affichés dans le tableau de reproductibilité des résultats. La coche verte indique des résultats présentant une meilleure déviation standard.

Utilisation du cloud

Pour configurer le cloud PRUFTECHNIK, une licence ALIGNMENT RELIABILITY CENTER 4.0¹ (ARC 4.0) est requise. Le cloud vous permet de partager des fichiers de mesure (ou équipements) actualisés sur plusieurs dispositifs.

Note

Une connexion sans fil entre l'ordinateur ROTALIGN touch et le réseau doit être établie pour permettre le transfert de fichiers via ARC 4.0.

Stockage d'un fichier de mesure dans le cloud

Après finalisation d'une mesure, <u>enregistrez le fichier de mesure</u> (1), puis téléchargez-le en amont dans le cloud.

Asset list	Save Assets
Asset ID	Date & Time Status
Main pump station 123	30.09.2015 09:59
2	

Appuyez sur l'icône « Télécharger en amont » (2) Le fichier de mesure apparaît dans la vue « Échange » d'ARC 4.0 avec le statut « Terminé ». Glissez-déposez le fichier de mesure à l'endroit souhaité sur le cloud.

Téléchargement en aval d'un fichier de mesure depuis le cloud

Depuis la vue « Échange » d'ARC 4.0, glissez-déposez le fichier de mesure voulu dans le panneau Nom. Le fichier de mesure apparaît avec le statut « Prêt ».

Depuis l'écran d'accueil, appuyez sur 🔐. Le fichier sélectionné est affiché dans le parc d'équipements (1).

¹Cette plate-forme logicielle également appelée ARC 4.0 permet la gestion des installations de l'usine sous une forme structurée, affichant des tendances. Elle permet également la préparation des tâches et le transfert des mesures d'installations dans le cloud.

\odot					\bigcirc
	Horizontal alignment		Configuration	Upload	
	Soft foot	New asset		Download	
	Vertical Alignment	Camera	Gallery	Asset park	
					\oslash

Appuyez sur pour ouvrir le fichier de mesure dans l'ordinateur ROTALIGN touch.

RFID

ROTALIGN touch utilise cette technologie d'identification automatique pour réaliser les activités suivantes :

- Identifier la machine devant être alignée
- Ouvrir les fichiers correspondants directement dans le dispositif
- Stocker automatiquement données et résultats sous le nom de fichier approprié

Affecter un fichier de mesure enregistré à une étiquette RFID

Depuis l'écran d'accueil, appuyez sur 💭 l'icône « Parc d'équipements » pour afficher les fichiers de mesure enregistrés.

Asset list	Save Assets	
Asset ID	Date & Time	Status
Pump-Motor 2D	27.09.2015 06:21	at
O P-G-M 255D	27.09.2015 05:57	at
vertical one	25.09.2015 03:42	at
test RFID	25.09.2015 03:40	at
	\otimes	$ \mathbf{\bullet} $

Appuyez sur le fichier de mesure [1] à affecter à l'étiquette RFID, puis appuyez sur l'icône RFID [2].

Positionnez ROTALIGN touch de sorte que son module NFC intégré soit le plus près possible de l'étiquette RFID (moins d'un centimètre).

Dès que des données ont été écrites sur l'étiquette RFID, le message correspondant est affiché à l'écran.

Writing to RFID tag	
Data written into RFID chip.	
	\odot

Appuyez sur pour quitter l'écran.

Note Si des données ont déjà été attribuées à l'étiquette RFID, un message vous demandant d'écraser ces données est affiché à l'écran.

Ouvrir un fichier de mesure affecté à une étiquette RFID

Depuis l'écran d'accueil, appuyez sur 💭 l'icône « RFID ».

Positionnez ROTALIGN touch de sorte que son module NFC intégré soit le plus près possible de l'étiquette RFID (moins d'un centimètre).

Loading from RFID tag	
Do you want to open this asset?	
	\odot

Appuyez sur ouvrir le fichier de mesure.

Note

Si aucune donnée n'a déjà été écrite sur l'étiquette RFID, un message concernant l'absence d'informations est affiché à l'écran.
Appareil photo intégré

Vous accédez à l'appareil photo intégré en appuyant sur 🛄 l'icône « Appareil photo ».

Orientez le dispositif vers l'objet à prendre en photo. L'objet apparaît à l'écran.

- (1) Paramètres de l'appareil photo pour la prise d'images en intérieur, en extérieur et de nuit, avec réglage automatique de la luminosité – Appuyez sur l'icône correspondant au paramètre de luminosité souhaité (activation/désactivation du flash possible ; mode Auto disponible uniquement pour le paramètre de réglage automatique de la luminosité).
- (2) Appuyez sur ⁽²⁾ l'icône « Prendre photo » pour prendre une photo de l'objet affiché à l'écran.
- (3) Appuyez à cet endroit pour accéder à la galerie d'images du dispositif.
- (4)Objet à photographier

Galerie

Pour visualiser l'ensemble des images enregistrées dans la galerie, touchez puis glissez vers le haut ou le bas. Toutes les images sont affichées sous forme de miniatures.

- (1) Appuyer sur vous permet de revenir à l'écran des paramètres d'image, où des objets peuvent être photographiés.
- (2) Appuyer sur ouvre l'écran d'accueil.
- (3) Appuyez sur n'importe quelle miniature pour afficher l'image à grande échelle.

Réalisation d'une capture d'écran sur ROTALIGN touch

Sélectionnez l'écran souhaité, puis appuyez rapidement sur le bouton d'alimentation à quatre reprises. Le message 'Screenshot saved' (capture d'écran sauvegardée) s'affiche à l'écran. L'image sauvegardée peut désormais être affichée dans la galerie.

Note

Les images sauvegardées dans la galerie peuvent être transférées vers un PC uniquement si elles sont affectées à une installation. Avant de prendre la photo ou la capture d'écran souhaitée, l'installation correspondante (existante ou nouvelle) doit être ouverte. L'image prise peut alors être transférée vers le logiciel PC ARC 4.0.

Pied bancal

La mesure du pied bancal peut être lancée depuis n'importe quel écran où l'icône « Pied

bancal » [] est active. Appuyez sur pour lancer la mesure du pied bancal. Le faisceau laser doit avoir le statut « Laser centré » ou « Laser OK ». Voir la rubrique <u>Ajustement</u> du faisceau laser.

Appuyez sur l'un des quatre champs de valeur clignotants pour lancer la mesure du pied bancal pour le pied de machine concerné.

Desserrez le boulon de pied correspondant (voir message 1). La valeur de pied bancal relevée

est affichée [**2**]. Lorsque la valeur de pied bancal se stabilise, appuyez sur l'icône « Continuer », puis resserrez le boulon (voir message **2**). Le cas échéant, la mesure du pied

bancal au niveau du pied correspondant peut être annulée en appuyant sur « Annuler ». Répétez la procédure de mesure du pied bancal décrite ci-dessus pour les quatre positions des pieds.

Toutefois, en cas de détection de pied bancal, 'Diagnose' (diagnostic) sera affiché à l'écran. Appuyez sur 'Diagnose' (diagnostic) pour démarrer <u>l'assistant de pied bancal</u> qui vous guidera pour le diagnostic et la correction du pied bancal.

Assistant de pied bancal

Appuyez sur 'Diagnose' (diagnostic) pour démarrer l'assistant de pied bancal. Cet assistant guidera l'utilisateur tout au long du diagnostic et de la correction du pied bancal.

Un message d'accueil (1) est affiché au démarrage de l'assistant. Appuyez sur (2) pour passer à l'étape suivante de l'assistant. Un message est affiché (3) et indique le type de pied

bancal détecté. Appuyez sur (4) pour afficher l'action suggérée (5). Appuyez sur (6) pour passer à l'étape suivante de l'assistant.

Types de pied bancal

Ils incluent :

- Pied bancal basculant Dans ce cas, les valeurs les plus élevées sont opposées en diagonale
- Pied bancal incliné Principalement observé sur les machines avec un pied courbé ou en cas d'embase courbée
- Pied bancal mou Lié à la saleté ou à un trop grand nombre de cales

 Pied bancal induit – Résultat de forces extérieures telles que les contraintes de tuyauterie

Après avoir parcouru toutes les étapes de l'assistant proposées, le message 'Wizard finished' (fin de l'assistant) (1) est affiché.

Appuyez sur opur revenir à l'écran de mesure du pied bancal. Mesurez à nouveau le pied bancal pour vérifier s'il a été correctement éliminé.

Machine verticale à bride

Une configuration de machine verticale type comprend une machine montée sur une autre à l'aide d'une bride boulonnée.

Les machines montées sur bride peuvent avoir une orientation verticale ou horizontale. Dans tous les cas, les corrections de l'alignement s'effectuent directement sur la bride.

L'angularité est corrigée en insérant ou retirant des cales entre les brides. ROTALIGN touch calcule l'épaisseur de calage pour chaque boulon de bride.

La concentricité est corrigée en positionnant la bride latéralement.

Le laser et le capteur sensALIGN sont montés de chaque côté de l'accouplement comme pour les <u>machines horizontales</u>, avec le laser sensALIGN sur l'arbre de la machine à l'arrière. L'inclinomètre électronique étant dans l'incapacité de déterminer directement l'angle de rotation des arbres verticaux, le mode de mesure pour les machines verticales est Static Clock.

Marquage des positions de mesure

Les huit positions de mesure à 45° utilisées avec ces procédures doivent être marquées en conséquence sur la machine.

- Marquez une position de référence sur le boîtier de l'accouplement à proximité de l'arbre et alignée sur une référence externe ou un boulon de bride. De même, marquez un point de référence sur l'arbre.
- Mesurez la circonférence de l'arbre et divisez-la par huit.
- Utilisez la distance obtenue pour faire sept autres marques à intervalles réguliers sur l'arbre, à partir du point de départ que vous avez choisi. Numérotez les points dans le sens inverse des aiguilles d'une montre tels que vous les voyez depuis le capteur vers le laser, en commençant par 0, suivi de 1:30, 3:00,4:30, 6:00, 7:30, 9:00 et 10:30.

Pour les boîtiers circulaires, mesurez la circonférence du boîtier

de l'accouplement et divisez-la par huit. Utilisez la distance obtenue pour faire huit marques à intervalles réguliers sur le boîtier, à partir du point de départ que vous avez choisi. Numérotez les points dans le sens des aiguilles d'une montre en regardant vers l'arbre, en commençant par 0, suivi de 1:30, 3:00,4:30, 6:00, 7:30, 9:00 et 10:30.

Paramétrage

- Montez le laser et le capteur sensALIGN de chaque côté de l'accouplement en vous assurant qu'ils sont précisément alignés avec le 0 ou la marque de référence.
- Allumez ROTALIGN touch, puis appuyez sur a l'écran d'accueil pour lancer l'application d'alignement vertical.

- Saisissez les dimensions de machine requises suivantes :
 - Distance entre le capteur et le centre de l'accouplement
 - Distance entre le centre de l'accouplement et la bride
 - Diamètre de l'accouplement
 - Tr/min
- Lors de la saisie des dimensions de la machine, la géométrie de la bride doit être prise en considération. Appuyez sur la zone de la machine à bride (5) pour configurer la bride.

- Appuyez sur la zone « Forme » [1] pour sélectionner la forme de la bride dans le menu déroulant [2] affiché. Dans l'exemple ci-dessus, la forme sélectionnée pour la bride est « Rectangle ».
- Appuyez sur la zone « Disposition » [3] pour sélectionner la disposition des boulons dans le menu déroulant affiché.

- Appuyez sur les zones de valeur respectives, puis utilisez le clavier virtuel à l'écran pour saisir les dimensions de la bride et les longueurs de disposition des boulons. Le nombre de boulons peut être modifié en appuyant sur [1], puis en saisissant directement la valeur.
- Une fois toutes les dimensions requises saisies, appuyez sur pour lancer la mesure.

Les procédures de mesure suivantes sont disponibles pour les machines verticales montées sur bride :

vertiSWEEP (mode de mesure par défaut)

Mesure statique

Machines verticales montées sur bride – vertiSWEEP

Mesure à l'aide de vertiSWEEP

• Centrez le faisceau laser.

vertiSWEEP est le mode de mesure par défaut des machines montées verticalement. Le mode de mesure alternatif <u>Statique</u> est accessible en appuyant sur (**1**) dans l'écran ci-dessous.

 Positionnez les arbres de manière à ce que le capteur et le laser sensALIGN soient sur la marque de référence '0'.

- Utilisez ou et sélectionnez le sens dans lequel les arbres doivent tourner.
 Une fois le sens de rotation des arbres sélectionné, la mesure est activée et la lettre 'M'
 - (1) est affichée ; (2) est également actif.

• Appuyez soit sur '**M**' ou sur et faites pivoter les arbres sur un angle supérieur à 360°.

• Après avoir fait tourner les arbres sur l'angle requis, appuyez sur (1) pour affi-

cher les résultats d'accouplement. Appuyez sur (2) pour afficher les corrections de calage.

Note

Si les mesures ont une déviation standard élevée [> 0,05 mm (> 2 thou)] résultant du jeu de palier, de l'accouplement rigide ou du jeu radial dans l'accouplement, un message suggérant d'utiliser le mode de mesure statique est affiché à l'écran. Dans ce cas, le mode de mesure doit être modifié pour la mesure statique.

Les modes de calage sont définis comme suit :

- le mode (1) indique tous les calages positifs
- le mode (2) indique un calage « zéro/plus ». Dans ce mode, une position de boulon est forcée sur zéro tandis que le reste est positif.

- le mode (3) indique un calage optimisé. Dans ce mode, la moitié des corrections est positive et l'autre moitié négative.
- le mode (4) indique un calage « zéro/moins ». Dans ce mode, une position de boulon est forcée sur zéro tandis que le reste est négatif.
- le mode (5) indique tous les calages négatifs.

Machines verticales montées sur bride – Statique

Mesure à l'aide du mode de mesure statique

• <u>Centrez le faisceau laser</u>.

Le <u>mode de mesure statique</u> est utilisé pour les machines montées verticalement.

• Faites tourner les arbres dans la première position de mesure. Si vous utilisez la convention de numérotation sur le boîtier de l'accouplement, la marque de référence et la position de mesure 0 doivent être alignées.

• Utilisez ou pour positionner le laser et le capteur sensALIGN affichés à l'angle de rotation correspondant à la position effective des composants installés sur les

arbres, puis appuyez sur pour relever le premier point de mesure.

Faites tourner les arbres dans la deuxième position de mesure (par ex. 1:30). Si la position de mesure sélectionnée ne correspond pas à l'angle sélectionné automatiquement à l'écran, utilisez les touches de navigation pour positionner manuellement le capteur et le laser sensALIGN à l'angle souhaité sur l'écran. Relevez le point de mesure en appuyant sur la zone d'accouplement [1].

• Relevez un maximum de points de mesure afin d'optimiser la qualité des résultats.

	<	2015-09-13, 02:12
	Static clock	
	Laser Ce	entered
		(intersection) 225.0°
		225.0°
Readings	6 →6	-0.05
81%	♥ ‡	-0.14
	3 -9 ‡	0.01
	A t	0.02
Measurement may be stopped	\otimes	\odot

• Appuyez sur 📀 pour consulter les résultats de mesure.

• Appuyez sur pour consulter les résultats de mesure.

Le mode de calage utilisé dans l'exemple ci-dessus est un calage « tout positif ».

Live Move – machines verticales

L'alignement est réalisé en corrigeant l'angularité et le décentrage.

Correction de l'angularité

Il est recommandé (mais pas nécessaire) de corriger d'abord l'angularité :

1. Desserrez les boulons de bride, ensuite soulevez la machine supérieure.

2. Les corrections de l'angularité sont réalisées à l'aide du calage. Les valeurs de calage au niveau des positions des boulons respectifs sont affichées sur l'écran. Insérez (ou enlevez) les cales avec l'épaisseur correcte sous le boulon sélectionné. Desserrez les boulons de bride, ensuite soulevez la machine supérieure.

3. Serrez les boulons puis refaites de nouveaux relevés pour confirmer les corrections de calage ; répétez le calage si nécessaire.

4. Dès que le désalignement général se trouve dans les limites de tolérance et qu'aucune cale supplémentaire n'est nécessaire, corrigez le décalage.

Correction du décentrage

1. La correction du défaut d'alignement peut être effectuée à l'aide de la fonction Live Move.

2. Appuyez pour enclencher le Live Move. Un écran d'indication demandant la position angulaire des deux capteurs et du laser apparaît.

Dans l'exemple ci-dessus, la position angulaire souhaitée du capteur et du laser est la position midi (1).

3. Appuyez sur (1) pour positionner le capteur d'écran sur cette position ensuite appuyez

pour poursuivre.

 \oslash

4. Desserrez les boulons de bride. Une fois que le Live Move a été détecté, l'icône « Cancel »

remplace l'icône « Undo » O. L'icône « Cancel » O incite l'indication « Cancel Live Move »

5. Déplacer la machine latéralement dans le sens de la flèche jaune en gras pour effectuer des corrections de décalage. Surveiller les flèches sur l'écran Live Move.

- Les corrections doivent être réglées au plus près de zéro.
- Utilisez des outils adaptés (par ex. leviers) pour positionner la machine.
- Vérifiez que les cales ne bougent pas pendant le positionnement latéral.

6. Lorsque le décalage est dans les limites admises, serrez les vis à collerette. Effectuez à nouveau la mesure pour vérifier que le nouvel alignement est dans les limites admises.

7. À défaut, répétez les étapes ci-dessus jusqu'à ce que l'alignement soit dans les limites admises.

Alignement du train de machines

Vous trouverez ci-dessous une description étape par étape de la mesure de l'état d'alignement d'un train composé de trois machines. Les composants doivent être <u>montés</u> et <u>le faisceau</u> <u>laser ajusté</u> tel que cela est requis.

Depuis l'écran d'accueil, appuyez sur 🖳 l'icône « Nouvel équipement » pour ouvrir un nouveau fichier de mesure.

Appuyez sur l'encadré avec le train en haut à droite (1) pour accéder à l'écran « Configuration du train ».

Train Manager	Train	Setup	Fixed Feet	
Machine train setup				
•	Pump 1	Motor 2		9
			⊗	DIM ₩

Appuyez sur l'une des deux icônes « Ajouter machine » [1/2] pour ajouter la troisième machine sur la gauche (1) ou sur la droite (2) du train.

Après l'ajout de la troisième machine au train, appuyez sur pour revenir à l'écran des dimensions, puis utilisez le <u>carrousel</u> pour configurer les trois machines en fonction de vos besoins. Pour accéder aux différents éléments au sein de ce train de trois machines, appuyez sur l'élément correspondant dans l'encadré avec le train [1] en haut à droite de l'écran. Dans l'exemple suivant, la configuration du train de machines comprend une pompe, un engrenage et un moteur.

L'écran « Pieds fixes » " est accessible en appuyant au centre de l'encadré avec le train [1].

Pour visualiser l'ensemble du train de trois machines et les dimensions associées, appuyez au centre de l'encadré avec le train [1] pour accéder à l'écran « Gestionnaire de train de machines ».

Utilisez les barres de défilement pour afficher le train de machines dans sa totalité.

Notez que le nombre de machines affiché dans l'écran du gestionnaire de train est identique à celui affiché dans l'écran des résultats.

Appuyez sur opur revenir à l'écran des dimensions affichant le train de machines dans sa totalité, accompagné de toutes les dimensions.

Mesure

Appuyez sur depuis l'écran des dimensions, puis <u>initialisez le capteur sensALIGN</u> monté sur l'accouplement comme cela est affiché dans l'encadré avec le train de machines [**1**].

Le **mode de mesure** utilisé pour mesurer l'accouplement dans cet exemple est **Intel**-**IISWEEP**.

Après avoir fait tourner les arbres sur un angle aussi large que possible, appuyez sur opur terminer la mesure sur l'accouplement spécifié.

Appuyez sur

pour passer à la mesure de l'accouplement suivant.

Éteignez le laser et le capteur sensALIGN, puis démontez-les de l'accouplement qui vient d'être mesuré afin de les monter sur l'accouplement suivant. Lorsque tout est prêt, allumez le laser et le capteur sensALIGN.

Note

Lorsque vous déplacez le laser et le capteur d'un accouplement à l'autre, assurez-vous que la distance entre le capteur et le centre de l'accouplement soit saisie correctement dans l'écran des dimensions.

Assurez-vous toujours que l'accouplement que vous mesurez est bien celui mis en surbrillance dans l'encadré avec le train (1) !

Le mode de mesure (2) utilisé pour la mesure du couple suivant dans cet exemple est <u>Mul-</u> tipoint.

Lorsque la mesure sur les deux accouplements est terminée, appuyez sur onsulter les résultats.

Appuyez sur pour afficher et évaluer les résultats des pieds et des accouplements.

Appuyez sur , l'icône « Déplacer », pour procéder aux corrections d'alignement impliquant le calage et le positionnement latéral du train à trois machines.

Live Move – Train de 3 machines

Déterminez la paire de machines à déplacer dans un train, il sera peut-être nécessaire de réinstaller et réajuster le laser et le capteur sensALIGN pour l'accouplement sélectionné. Sur l'arbre ou l'accouplement, assurez-vous d'installer le capteur exactement au même endroit qu'auparavant ou saisissez la nouvelle distance correcte entre le capteur et l'accouplement. Dans l'exemple suivant, la paire de machines sélectionnée est composée d'une pompe (machine de gauche) et d'un engrenage (machine de droite), comme le montre la fenêtre en surbrillance dans l'encadré avec le train (1).

Appuyez sur pour lancer Live Move. Si toutes les machines sont désignées comme étant mobiles, la configuration des pieds fixes des machines est affichée.

Appuyez sur la configuration de la correction de pied de machine souhaitée. Dans l'exemple ci-dessus, la pompe (machine de gauche) est désignée comme étant stationnaire tandis que l'engrenage (machine de droite) est mobile.

Commencez les corrections des machines. Dès que le mouvement des machines est détecté,

l'icône « Annuler » (Undo) est remplacée par l'icône « Annuler » (Cancel)

<u>/!</u> ATTENTION

N'essayez PAS de déplacer la machine en lui donnant des coups de masse. Cela pourrait endommager les paliers et entraîner des résultats Live Move imprécis. Des vis de pression au niveau des pieds ou autres dispositifs mécaniques ou hydrauliques sont recommandés pour le déplacement des machines.

Déplacez les machines jusqu'à ce que l'état d'alignement soit conforme à la tolérance spé-

cifiée (voir l'indication de l'émoticône) (1), puis appuyez sur 📀 pour terminer Live Move.

Accédez au « Gestionnaire de train » en appuyant sur l'encadré avec le train pour consulter l'état d'alignement de l'ensemble du train de machines.

Appuyez sur et refaites une mesure pour confirmer l'état d'alignement. Si le visage de l'émoticône est souriant ou que OK est affiché, l'état d'alignement est conforme à la tolérance. Dans le cas contraire, exécutez la procédure Live Move à nouveau.

Présentation des transmissions à cardan

Les transmissions à cardans sont installées et utilisées avec une concentricité importante entre l'entraînement et l'arbre entraîné. En fonction du type d'arbre à cardan en place, un angle de déflection minimal des joints universels peut être nécessaire afin de garantir une circulation suffisante de la lubrification qui évite aux joints universels de se solidifier. Une différence importante dans les angles de déflection B1 et B2 (voir illustration ci-dessous) conduit à une fluctuation rapide de la vitesse de rotation de l'arbre entraîné pendant l'exploitation, ce qui peut avoir des conséquences graves pour les moteurs à entraînement synchrone et asynchrone AC à contrôle électronique.

Pour un fonctionnement souple, les machines doivent être alignées de sorte à ce que les axes centraux des arbres d'entraînement et entraînés soient parallèles. Un alignement précis minimise les irrégularités des mouvements de rotation de l'arbre à cardan et la charge inégale des paliers pendant la rotation de l'arbre à cardan. La durée de vie des composants est ainsi prolongée et le risque de panne mécanique limité.

Procédures de mesure dans l'application de cardan

Pour les applications de cardan, sélectionnez le <u>type d'accouplement</u> 'Cardan' (cardan) lors de la <u>configuration</u> des machines.

Les procédures de mesure suivantes sont disponibles pour les applications de cardan :

- Plan de rotation du cardan¹ Il s'agit de la procédure de mesure par défaut pour les applications de cardan. Cette procédure permet de réaliser une mesure précise des machines reliées par des arbres à cardan sans avoir à retirer l'arbre à cardan. Cette procédure est utilisée en association avec le <u>support à bras rotatif à cardan</u>.
- IntelliPOINT- Dans cette procédure, le cardan doit être démonté. La mesure est exécutée à l'aide du mode de mesure intelliPOINT en combinaison avec le <u>support de car</u>-<u>dan décalé</u>.
- Horloge statique Dans cette procédure, le cardan doit être démonté. La mesure est exécutée à l'aide du mode de mesure statique en combinaison avec le <u>support de car</u>dan décalé.

¹Il s'agit de la procédure de mesure par défaut pour les applications de cardan. Cette procédure permet de réaliser une mesure précise des machines reliées par des arbres à cardan sans avoir à retirer l'arbre à cardan.

Alignement de l'arbre à cardan – Utilisation du support à bras rotatif à cardan

La mesure reposant sur le support à bras rotatif à cardan permet de mesurer précisément les machines connectées par les arbres à cardan sans devoir retirer l'arbre à cardan. Celui-ci doit être cependant pivoté pour pouvoir prendre les mesures.

Note

En nous fondant sur notre propre expérience, nous recommandons de monter en premier le laser et le capteur sensALIGN sur leur support respectif avec les ponts anti-torsion, puis de monter les groupes de supports avec les composants montés sur les arbres respectifs de la machine.

Il faut s'assurer que la surface où le support à bras rotatif à cardan doit être monté est propre, lisse, cylindrique et plane et qu'elle fournit la surface de contact nécessaire. Si la surface doit être peinte, assurez-vous que la peinture est retirée des quatre coins en contact avec le cadre en V du support.

Montage du laser et du capteur sensALIGN

1. Lorsque le laser est éteint, effectuez un pré-ajustement pour garantir que le faisceau laser sera émis à la perpendiculaire du boîtier du laser. Utilisez les deux molettes jaunes de positionnement du faisceau pour centrer l'« <u>œil de bœuf</u> » aussi précisément que possible, puis montez-le sur les montants du support à chaîne large.

2. Montez le pont anti-torsion sur les montants du support du laser pour fournir la rigidité nécessaire aux montants du support long.

3. Montez le capteur sur les montants du support à bras rotatif à cardan, puis montez le pont anti-torsion sur les montants du support du capteur afin de fournir la rigidité nécessaire aux montants du support long.

Montage des supports sur les arbres

Montez le support à chaîne large en tenant le laser sur l'arbre de la machine de gauche (généralement la machine de référence) et le support à bras rotatif à cardan en maintenant le capteur sur l'arbre de la machine de droite (généralement la machine mobile) – du point de vue de la position de travail normale. Assurez-vous que les deux marques sur le bras rotatif sont alignées.

Utilisez les inclinomètres externes pour positionner les deux supports sur le même angle de rotation. (Vous pouvez vous référer à la procédure de **montage du support**.) Retirez les inclinomètres externes, puis allumez le laser.

AVERTISSEMENT

Ne regardez pas directement le faisceau laser !

Alignement de l'arbre à cardan – Procédure de mesure du plan rotatif

1. Allumez le capteur sensALIGN, le laser sensALIGN et l'ordinateur ROTALIGN, puis configurez les machines. (Vous pouvez vous référer à l'<u>écran des dimensions</u>.)

2. Une fois les machines configurées et toutes les dimensions de machine requises saisies,

appuyez sur

🖗 pour passer à la mesure.

-

Note

Il est recommandé aux utilisateurs de se familiariser aux étapes requises pour la procédure de bras rotatif. Vous pouvez accéder au tutoriel disponible en appuyant sur **1** (voir l'écran suivant).

Prise de mesures

Dans une installation complexe, il est nécessaire de déterminer la position optimale pour démarrer la mesure. L'objectif est de garantir que la ligne de visée entre le capteur et le laser sensALIGN est maintenue sur un angle de rotation aussi large que possible lorsque l'arbre à cardan est pivoté dans le sens normal de la rotation de la machine.

1. Pivotez l'arbre à cardan dans le sens normal de la rotation de la machine vers la première position de mesure.

2. Desserrez le galet du bras rotatif, puis tournez le cadre avec les montants de support jusqu'à ce que le faisceau laser touche le montant du support du capteur médian.

3. Lorsque le faisceau laser touche ce montant du support, resserrez le galet du bras rotatif.

4. Desserrez le capteur en poussant les manettes de serrage jaunes du capteur en position ouverte, puis glissez le capteur en haut et en bas des montants du support pour vous assurer que le faisceau laser touche le centre du bouchon anti-poussière rouge coulissant.

5. Serrez le capteur dans cette position en verrouillant les manettes de serrage jaunes, puis glissez le bouchon anti-poussière de sorte que le faisceau laser touche l'ouverture du capteur.

6. Le faisceau laser doit désormais apparaître dans l'écran d'ajustement du laser.

7. Une fois la mesure stabilisée, la lettre 'M' est affichée en-dessous de 1 comme le montre l'écran ci-dessus.

Pour cette procédure de mesure, la mesure automatique après stabilisation doit être désactivée dans les réglages par défaut.

8. Appuyez sur '**M**' pour prendre le point de mesure.

9. Glissez le capuchon anti-poussière rouge du capteur pour couvrir l'ouverture du capteur, puis pivotez l'arbre à cardan d'environ 10° à 20° vers le point de mesure suivant.

10. Répétez les étapes 2 à 8 pour tous les points de mesure requis.

Prendre des mesures sur des points répartis également le long de l'arc de rotation a une influence positive sur la qualité de la mesure obtenue.

11. Appuyez sur pour afficher les résultats de l'alignement de cardan.

Alignement de l'arbre à cardan – Utilisation du support de cardan décalé

Supports de cardan décalés

Deux types de supports de cardan décalés sont disponibles.

- Le type grand format permet de mesurer précisément les machines connectées par des arbres à cardan sur des distances maximales de 10 m et des concentricités d'arbres maximales de 1000 mm.
- Le type petit format, également appelé Lite, permet de mesurer précisément les machines connectées par des arbres à cardan sur des distances maximales de 3 m et des concentricités d'arbres maximales de 400 mm.

Montage du grand support de cardan décalé et ajustement du laser sensALIGN

Montage du support

1. Montez la plaque avant sur la face de l'accouplement en utilisant les boulons fournis. Le support est habituellement monté sur la face de l'accouplement de l'arbre non rotatif, par exemple le rouleau dans une usine de papier. Deux configurations de montage différentes sont disponibles :

• Si l'extrémité de l'arbre ou la face de l'accouplement possède un trou fileté en son centre, la méthode de montage la plus facile et la plus solide est d'utiliser le boulon de centrage large montré ci-dessous. Un adaptateur de filetage peut être utilisé tel que montré pour adapter le boulon aux trous plus larges.

• La plaque avant peut être également attachée à la face d'accouplement en utilisant les trois boulons à fente en T et en formant ainsi un montage sur trois points.

පු⁄ Note

Ne boulonnez pas la plaque avant car le laser doit encore être ajusté.

Si l'accouplement possède une face rehaussée, les entretoises usinées avec précision sont utilisées tel que montré afin de séparer la plaque avant de la section intérieure rehaussée de la face d'accouplement tout en connectant la face avant à la face d'accouplement qui est la surface de référence.

 Placez le rail sur la plaque avant tel que montré ci-dessous (c1) puis utilisez les deux manettes supérieures (c2) pour serrer la coulisse et la maintenir en place. Assurez-vous que la rainure de centrage sur le rail est face à l'extérieur.

Montage du groupe de support du laser sur le rail

1. Desserrez légèrement le volant de manœuvre, puis faites glisser le support laser vers la rainure centrale du rail.

Montage et ajustement du laser

1. Faites glisser la plaque d'écartement sur les montants du support.

2. Faites glisser le laser sensALIGN sur les montants jusqu'à ce qu'il atteigne la plaque d'écartement.

3. Marquez une série de réticules cibles sur la ligne médiane de rotation de l'arbre de l'autre accouplement de machine (si la bride possède un trou central, une surface temporaire de cible comme un bouchon anti-poussière peut être fixée sur le trou).

4. Allumez le laser sensALIGN et réglez le faisceau afin qu'il touche le centre de la cible sur l'accouplement opposé.

• L'objectif est d'ajuster le faisceau laser de sorte qu'il soit colinéaire avec l'axe de rotation du support de laser ; cela permet de déplacer l'axe de rotation du support du laser.

Note

La plaque d'écartement influence la concentricité en positionnant le faisceau laser sur le même axe que l'axe de rotation du groupe de support du laser.

Les deux molettes jaunes de positionnement du faisceau sont utilisées pour régler la position angulaire sur le faisceau laser. En pivotant le support du groupe laser, le faisceau laser trace un cercle « approximatif » Si le cercle « approximatif » est un point unique sur la cible, le faisceau laser a été ajusté correctement. Si cela n'est pas le cas, répétez le processus d'ajustement du faisceau laser jusqu'à ce que le cercle « approximatif » corresponde à une position à « point unique ».

Note

Dès qu'une position à point unique est obtenue, ne touchez pas aux molettes du laser.

Ajustez le faisceau laser sur l'axe de rotation de la machine

Au cours de cette étape, le groupe de support du laser est ajusté sur le support de sorte que son axe linéaire soit grossièrement colinéaire de l'axe pivotant de la machine à aligner (qui peut être un moteur ou une boîte de vitesse).

-

Note

Pendant cette procédure, NE TOUCHEZ PAS aux molettes jaunes de positionnement du faisceau laser.

1. Effectuez l'ajustement vertical et horizontal du groupe de support du laser en le coulissant horizontalement sur la rainure centrale du rail et en le positionnant à la verticale en pivotant le rail.

2. Répétez la procédure ci-dessus jusqu'à ce que le faisceau laser touche le centre de la cible placée sur l'axe de rotation de la machine à aligner.

Une fois le faisceau laser centré sur la cible, serrez la plaque avant sur la face d'accouplement.

• Si vous utilisez le boulon de centrage, serrez-le avec la clé plate de 17 mm fournie.

• Si vous utilisez un boulon avec fente en T, serrez-le correctement.

Positionnement du laser et montage du capteur pour la mesure

Dans cette étape, le laser est remonté sur la partie inférieure du support de laser tandis que le capteur est monté sur l'arbre de la machine à aligner.

1. Désactivez le laser et retirez-le de son support.

2. Avec la clé Allen M4 fournie, desserrez les montants du support et faites-les glisser à travers le cadre de support du laser pour les faire ressortir de l'autre côté.

3. Resserrez les vis Allen M4 pour sécuriser les montants du support, puis remontrez le laser sur les montants du support.

4. Utilisez le support à chaîne ou les supports métalliques appropriés pour monter le capteur sur l'arbre de la machine à déplacer (comme le moteur ou la boîte de vitesse). Le capteur est aligné sur le laser en poussant ou en coulissant le support du capteur.

Alignement de l'arbre à cardan – Procédure de mesure IntelliPOINT

Cette procédure de mesure est utilisée en association avec le support de cardan décalé ; l'arbre à cardan reliant les machines doit être démonté pendant la mesure.

1. Allumez le capteur sensALIGN, le laser sensALIGN et l'ordinateur ROTALIGN, puis configurez les machines. (Vous pouvez vous référer à l'<u>écran des dimensions</u>.)

2. Une fois les machines configurées et toutes les dimensions de machine requises saisies,

appuyez sur 🖤 pour passer à la mesure.

- 3. Appuyez sur **1** pour accéder à l'écran 'Measurement mode' (mode de mesure).
- 4. Balayez le carrousel (2) et sélectionnez le mode de mesure requis 'IntelliPOINT' (3).
- 5. Appuyez sur (4) pour passer à la mesure.

Prise de mesures

1. Avec le faisceau laser centré et l'aiguille parfaitement au centre de la zone verte (1), patientez le temps que la mesure se stabilise.

Note

Pour centrer l'aiguille, le laser et le capteur doivent être sur le même angle de rotation.

2. Une fois la mesure stabilisée, la lettre 'M' est affichée (2).

- 3. Appuyez sur '**M**' pour prendre le point de mesure.
- 4. Pivotez le capteur sensALIGN vers le point de mesure suivant.

5. Tournez l'arbre du côté du laser et observez l'indicateur d'aiguille à l'écran (1). La mesure ne se stabilise que lorsque l'aiguille est dans la zone bleue.

6. Une fois la mesure stabilisée, appuyez sur 'M' (2) pour prendre la mesure.

7. Répétez les étapes 4 à 6 et prenez des mesures sur autant de positions que possible sur un angle aussi large que possible afin de vous assurer que la qualité de mesure est acceptable.

8. Lorsqu'une qualité de mesure suffisamment bonne (1) a été obtenue, appuyez sur

(2) pour arrêter la mesure. Appuyez sur (3) pour afficher les résultats de l'alignement de cardan.

 \odot

Évaluation et alignement

L'écart n'a pas d'influence réelle sur la condition de l'alignement mais toute angularité des axes pivotants doit être corrigée.

Étant donné que seule l'angularité doit être corrigée dans l'alignement de l'arbre à cardan, les résultats affichés montrent uniquement les valeurs de pied pour une paire de pieds. L'angularité peut être exprimée en mrad ou en degrés. Les unités de l'arbre à cardan sont définies dans les <u>réglages par défaut</u> sous 'Configuration' (configuration).

Note

Un tableau des tolérances de l'arbre à cardan PRUFTECHNIK est disponible pour les limites 1/2° et 1/4°. Le type de tolérance requis peut être défini dans les <u>réglages par</u> <u>défaut</u> sous 'Configuration' (configuration).

Les machines en dehors des tolérances peuvent être repositionnées à l'aide de la fonction <u>Live</u> <u>Move</u>.

Présentation de Live Trend

Qu'est-ce que Live Trend?

Live Trend est une application utilisée pour le suivi en direct des mouvements de la machine résultant de la croissance thermique, des fondations de la machine et des changements dans la charge de fonctionnement. L'application est également utilisée pour vérifier la pression du tuyau. Live Trend peut en outre être utilisée pour suivre la dérive de la machine sous forme de données brutes du capteur dans les coordonnées X, Y.

Dispositifs Live Trend

Pour être en mesure de monter à la fois le capteur sensALIGN et le laser sur les machines à surveiller, deux dispositifs de support sont disponibles.

- ALI 4.005/2-10 Live Trend module complémentaire avec des supports magnétiques
- ALI 4.005/2-20 Live Trend module complémentaire avec des supports PERMAFIX

ALI 4.005/2-10 – Live tiques	Trend module complémentaire avec des supports magné-
Numéro de réfé- rence	Composant
ALI 14.310	Support magnétique Live Trend de montage pour laser et capteur comprenant des montants de soutien de 115 mm (Notez que ce dispositif contient 2 n° ALI 14.310)
ALI 14.320	Support magnétique pour module Bluetooth (pour le capteur ROTALIGN)
ALI 2.191	Bridge anti-torsion [Notez que ce dispositif contient 2 nº ALI 2.191)
ALI 2.193	Boîtier Live Trend pour supports magnétiques
ALI 4.743	Bon ROTALIGN Ultra Shaft Expert firmware
ALI 4.451	Clé USB
DOC 04.100.fr	Guide de démarrage Live Trend
0 0739 1055	Clé allen de 2,5 mm

Voir les composants de l'emballage sur les images suivantes.

ALI 4.005/2-20 – Live Trend module complémentaire avec des supports	
PERMAFIX	

Numéro de réfé- rence	Composant
ALI 2.190	Montage de support PERMAFIX pour laser et capteur [Notez que ce dispositif contient 2 nº ALI 2.190)
ALI 2.191	Bridge anti-torsion [Notez que ce dispositif contient 2 nº ALI 2.191)
ALI 2.192	Boîtier Live Trend pour supports PERMAFIX
ALI 2.194	Cône de frappe
ALI 4.743	Bon ROTALIGN Ultra Shaft Expert firmware
ALI 4.451	Clé USB
DOC 04.100.fr	Guide de démarrage Live Trend

Voir les composants de l'emballage sur les images suivantes.

Montage des supports Live Trend

Monter les supports de mesure Live Trend nécessaires tels que décrit dans « ROTALIGN Ultra Live Trend guide de démarrage » DOC 04.100.fr qui est inclus dans les dispositifs Live Trend.

Configuration Live Trend

Utilisez l'écran de dimensions pour définir les machines à surveiller.

Note

Les supports Live Trend sont montés sur les machines et NON PAS sur les arbres.

Après avoir saisi toutes les dimensions nécessaires, appuyez sur well, ensuite définissez l'intervalle d'échantillonnage et la durée de mesure sur l'écran de configuration qui apparaît.

Sur l'écran de configuration, les paramètres de mesure suivants et l'état de fonctionnement de la machine sont définis :

- (1) L'état de fonctionnement de la machine est réglé en faisant glisser le bouton bleu soit de « Cold à hot » soit de « Hot à cold ».
- (2) « La réduction des données » est un processus par lequel les lectures ne sont prises que lorsque des événements importants ont lieu. Cela permet de réduire le volume des données inutiles. La réduction des données est définie par défaut. Une coche apparaît dans le bouton bleu. Glissez le bouton vers la gauche pour désactiver la « réduction des données ». Une fois désactivée, un « X » apparaît dans le bouton gris.
- (3) « Commencer à partir de l'alignement du dernier arbre » définit la condition d'alignement du dernier arbre « Tel que laissé » comme le point de départ de la mesure Live Trend. Cette option est active uniquement si une mesure d'alignement d'arbre a été réalisée sur l'installation particulière.

- (4) La « Durée » est réglée soit en heures, soit en minutes ou bien en secondes. C'est l'heure fixée pour l'ensemble de la mesure.
- (5) L'« Intervalle » est réglé soit en heures, soit en minutes ou bien en secondes. Il s'agit du temps écoulé entre les prises de lectures.

Appuyez sur la boîte de valeur respective puis entrez l'intervalle de durée ou de mesure à

l'aide du clavier à l'écran. Appuyez sur 🙆 ou 🛏 pour quitter le clavier à l'écran et revenir à l'écran de configuration.

Appuyez sur l'unité respective de la boîte de temps, puis sélectionnez l'unité désirée à partir de la fenêtre des unités qui apparaît.

- (6) La capacité de stockage libre indiquée est basée sur l'intervalle d'échantillonnage.
- (7) La barre indique l'état actuel de la mesure.
- (8) Appuyez sur pour annuler la configuration
- ((9) Appuyez sur opur procéder à la mesure Live Trend

Live Trend – Mesures

Si le capteur a été initialisé et centré sur le faisceau laser, appuyez sur pour commencer la mesure Live Trend. Si ce n'est pas le cas, voir « Initialiser le capteur » et « Réglage du faisceau laser » respectivement.

Measurement Setup	mm	24.05	.2016 16:09
Start time		Laser centere	etup ed
Duration	01h 40m 00s		0.2°
Stop time			351.7°
Interval	every 30 seconds		ج
Count			
Measurement not started		@ #	
Tap \odot to start measurement.		\odot	

Note

NE PAS toucher le laser sensALIGN, ou le réglage du faisceau de laser une fois que la mesure a commencé.

Une fois la mesure commencée, l'« écran de mesure » affiche les valeurs de décalage d'écart d'accouplement en cours (1). La barre de progression de mesure bleue (2) montre le pourcentage approximatif de mesure. L'heure de début de la mesure, la durée prévue, son heure de fin, l'intervalle d'échantillonnage et le nombre de mesures prises s'affichent également.

	mm	< 31 37%	25.05.2016 11:26
Measurement information		Measurer	ment setup
Start time	11:11:18	Laser	entered
Duration	01h 40m 00s		() 358.5°
Stop time	12:51:18	•	3 56.8°
Interval eve	ery 30 seconds	-16	0.41
Count	31	•	0.63
Taking point 3		40 ‡	0.00 0.56
Measurement in progress		\odot	

La barre d'état de mesure (3) indique quand la lecture est terminée. Appuyez sur our

arrêter la mesure en cours avant que la durée réglée s'écoule. Appuyez sur **et a**pour <u>éva</u>luer les résultats.

Les résultats peuvent être consultés avec la mesure en cours. Appuyez sur pour	
consulter quelques résultats et les graphiques de mesures.	

Live Trend – Évaluation des résultats

Présentation de l'écran des résultats

Interprétation de l'écran de résultats

- (1) L'icône « Graphique » permet d'afficher les résultats sous la forme d'un graphique. Le type de données affiché dans le graphique est sélectionné via le menu « Configuration Graphique » (3).
- (2) Le curseur¹ qui est librement mobile possède une infobulle de données qui indique la date et l'heure de la position sur le graphique. Les résultats d'accouplement et de pieds affichés correspondent à la position actuelle du curseur.
- (3) L'élément de menu « Configuration Graphique » est utilisé pour sélectionner le type de données à afficher sur les graphiques. Les options suivantes sont disponibles :

¹Il s'agit d'un indicateur de position sur les graphiques Live Trend. Il est librement mobile. Les résultats de tracé affichés correspondent à la position du curseur.

Coupling (Horizontal & Vertical)	۲
Feet (Horizontal & Vertical) left machine	0
Feet (Horizontal & Vertical) right machine	0
Raw (Coordinates)	0

- Appuyez sur « Accouplement (horizontal et vertical) » pour afficher l'écart d'accouplement et les graphiques de valeur de décalage
- Appuyez sur « Pieds (horizontal et vertical) machine de gauche » pour afficher les graphiques de valeur de pieds de machine de gauche
- Appuyez sur « Pieds (horizontal et vertical) machine de droite » pour afficher les graphiques de valeur de pieds de machine de droite
- Appuyez sur « Brut (coordonnées) » pour afficher des graphiques de valeurs brutes XY sur les deux détecteurs de position
- (4) Les résultats affichés correspondent à la position actuelle du curseur et la configuration du graphique sélectionné.
- (5) Les résultats d'accouplement affichés correspondent à la position actuelle du curseur. Appuyez sur les résultats d'accouplement (5) pour accéder à la feuille de contrôle Live Trend.
- (6) Cette zone est utilisée pour contrôler la chronologie de l'application Live Trend.

Les deux barres coulissantes sont utilisées pour ajuster l'échelle de temps des graphiques à l'affichage. La barre coulissante gauche marque le début de la chronologie. La barre coulissante droite marque la fin de la chronologie. Le curseur restera toujours sur l'écran et est

repositionné en le faisant glisser sur l'écran ou à l'aide 🕑 ou </u> (7).

- (7) Appuyez volume ou vo
- (8) Appuyez ou e pour basculer respectivement le curseur entre la position de mesure finale et la position de mesure sélectionnée précédemment.
- (9) Les résultats 3D montrent les résultats d'accouplement et de pieds pour la lecture à la position actuelle du curseur (2).
- (10) Les résultats 2D (V / H) montrent les résultats d'accouplement et de pieds pour la lecture à la position actuelle du curseur (2)

Live Trend – Journal

Qu'est-ce que le journal Live Trend ?

Une mesure de journal Live Trend est un tableau qui enregistre les résultats de toutes les mesures prises au cours de la surveillance en temps réel de la machine. Les éléments suivants sont également inclus dans le journal.

- Les résultats d'accouplement vertical et horizontal pour chaque mesure enregistrée
- Marqueurs
- La date et l'heure à laquelle chaque mesure a été prise
- Le statut de laser au moment de la mesure (qui peut être « laser centré » ou « OK » ou « extrémité du laser » ou « laser faible »)
- Le temps de calcul moyen pour chaque mesure
- Les valeurs brutes de capteurs qui comprennent les coordonnées X Y des deux détecteurs de position, l'angle de rotation et la température
- Les valeurs brutes de laser qui comprennent l'angle de rotation et la température
- La vitesse moyenne quadratique (RMS)
- Les numéros de série du capteur et du laser et leurs dates respectives de récalibrage

Faites défiler horizontalement pour afficher toutes les colonnes et verticalement pour afficher toutes les lignes dans le journal.

Live t	rend log at	coupling 1					Live trend log at cou	pling 1					Live trend log	at coupling 1	i i	ve trend log at coupling 1					mm
	Ve	tical	Horiz	ontal	Markers	Time	Status						R	aw values				Se	nsor	La	iser
	44	- dh	49	4Þ		Ť.		Avg [5]	X1	۲1	Х2	¥2	Sensor angle	Sensor temperature [°C]	Laser angle	Laser temperature [°C]	Velocity RMS [mm/s]	Serial No.	Recalibration	Serial No.	Recalibration
1	0.00	0.00	0.00	0.00		25.05.2016 11:11:36	Laser OK	10.0	-2.310	-1.517	-3.204	1.245	354.3	21.5	356.2	22.5	0.01	49000680	17.01.2016	49100054	05.09.20 6
2	0.40	0.63	-0.01	0.57		25.05.2016 11:12:06	Laser centered	10.0	-1.670	-0.843	-2.655	0.476	354.3	22.0	356.1	23.0	0.12	49000680	17.01.2016	49100054	05.09.2016
3	0.40	0.61	-0.00	0.60		25.05.2016 11:12:36	Laser centered	10.0	-1.651	-0.848	-2.656	0.473	355.4	22.0	356.2	23.0	0.01	49000680	17.01.2016	49100054	05.09.2016
4	0.41	0.62	-0.01	0.57		25.05.2016 11:13:06	Laser centered	10.0	-1.694	-0.828	-2.668	0.466	355.9	22.0	356.2	23.0	1.16	49000680	17.01.2016	49100054	05.09.2016
5	0.41	0.64	-0.02	0.55		25.05.2016 11:13:36	Laser centered	10.0	-1.694	-0.827	-2.674	0.466	354.5	22.0	356.3	23.0	0.01	49000680	17.01.2016	49100054	05.09.2016
6	0.41	0.62	0.00	0.55		25.05.2016 11:14:06	Laser centered	10.0	-1.714	-0.818	-2.703	0.461	356.7	22.5	358.5	23.0	0.01	49000680	17.01.2016	49100054	05.09.2016
7	0.41	0.62	0.00	0.56		25.05.2016 11:14:36	Laser centered	10.0	-1.712	-0.818	-2.702	0.462	356.8	22.5	358.5	23.0	0.01	49000680	17.01.2016	49100054	05.09.2016
								10.0	1 71 7	0.010	3 704	0.472								_	
1	at 👘	Markers	Q	<	1 🕥	\odot	All Ma	arkers	Q I	9 0			All	Markers 🔍	4	All Markers	Q (0			\odot

La lecture actuellement en surbrillance dans le journal correspond au curseur de lecture sur le graphique.

Live tre	nd log at co	oupling 1					mm			4 57	*	* •
	Vert	ical .	Horiz	ontal	Markers	Time	s					-
	414	46	44	- dh				٤	0.80 1a			5
7	-0.02	-0.02	0.01	0.28		25.05.2016 17:05:06		- 0	0.663052016	Г		
8	-0.02	-0.02	0.01	0.27		25.05.2016 17:05:07		~~				
9	-0.02	-0.01	0.01	0.28		25.05.2016 17:05:08		20				PU
10	-0.02	-0.01	0.01	0.28		25.05.2016 17:05:09		30	-0.20			_
11	-0.03	-0.02	0.01	0.25		25.05.2016 17:05:10	0 🛛	v	-0.40	0	y)	2 !
12	-0.03	-0.03	0.01	0.27		25.05.2016 17:05:11			25.05.2016 25.05.2016 25.05.2016 17:05:00 17:05:03 17:06:06		-	
13	-0.03	-0.03	0.01	0.28		25.05.2016 17:05:12		н	Coupling gap V -0.03 Coupling gap H 0.01 Coupling offset V -0.02 Coupling offset H 0.25	¢)	
AI		Aarkers 2		9 4	1 5	60						
· ~ ·	· · ·	Tarkers						V/Н				

- (1) Lecture en cours en surbrillance dans le journal. Appuyez pour voir les résultats La position du curseur (1a) correspond à la lecture en surbrillance dans le journal. Les résultats d'accouplement affichés (1b) correspondent à ceux en surbrillance dans le journal.
- (2) Faites glisser le bouton bleu pour sélectionner « Tous » ou « Marqueurs ». Lorsque « Tous » est sélectionné, le journal affiche toutes les lectures prises. Lorsque « Marqueurs » est sélectionné, seules les lectures avec <u>des marqueurs</u> sont affichées.

- (3) Appuyez ou pour basculer le curseur entre la lecture actuelle en surbrillance et la dernière lecture enregistrée respectivement.
- (4) Appuyez pour affecter le marqueur à la lecture du journal en surbrillance.
- (5) Appuyez pour mettre la lecture du journal en surbrillance à zéro.
- (6) Appuyez opur voir les résultats.

Live Trend – Marqueurs

Que sont les marqueurs ?

Dans l'application Live Trend, les marqueurs sont des points sur le graphique qui mettent en évidence les événements importants lors d'une mesure. Ceux-ci peuvent inclure le démarrage ou l'arrêt de la machine. Les marqueurs suivants sont disponibles.

- Hot" : utilisé pour indiquer le régime de la machine ou si elle a chauffé
- Cold" : utilisé pour indiquer la phase de fonctionnement initiale à partir de l'état stationnaire
- • Custom » : un marqueur choisi par le client
- • Start" : utilisé pour indiquer le point de démarrage des machines
- . 🖲 "Stop" : utilisé pour indiquer le point d'arrêt des machines

Appliquer les marqueurs

Les marqueurs sont appliqués dans le journal. Le journal est accessible à partir de l'écran « Mesures » ou « Résultats ».

⇮	₩ > 🕸 >	RES	mm	C 37% 02.06.2016 12:53
٤	9.2			a Results
<u>A</u> R	6.9 25.05.2016 11:13:06 4.6			Save
30	2.3			Plot setup
30	-2.3		_	0.41
V	-4.6 25.05 2016 11:11:36	25.05.2016 12:04:27	25.05.2016 12:57:17	0.62
Η	 Coupling gap V Coupling offset V 	0.41 Coupling gap H 0.62 Coupling offset H	-0.01 0.57	···· ·······························
V⁄H	<	-	• > @	(i)) (ii)

Appuyez sur la zone où les résultats d'accouplement sont affichés (1). Cela ouvre le journal Live Trend.

	d log at cou	ipling 1					mm											
	Verti	:al	Horizon	tal	Markers	Time	s											
	414	÷	44	*														
	0.00	0.00	0.00	0.00 🚺		25.05.2016 11:11:36												
	0.40	0.63	-0.01	0.57		25.05.2016 11:12:06	La											
	0.40	0.61	-0.00	0.60		25.05.2016 11:12:36	La											
	0.41	0.62	-0.01	0.57		25.05.2016 11:13:06	La Live t	rend log at coupling	1			mm						
	0.41	0.64	-0.02	0.55		25.05.2016 11:13:36	La #	Vertical	Horizontal	Markers		s						
	0.41	0.62	0.00	0.55		25.05.2016 11:14:06	La	46 - 40	44 44									
	0.41	0.62	0.00	0.56		25.05.2016 11:14:36	La 1	0.00 0	l 🔒 Hot		0.05.2016 11:11:36							
							2	0.40 0	A Cold		.05.2016 11:12:06	La						
AII	M	arkers	Q	4	-0	\odot	3	0.40 0.			.05.2016 11:12:36	La						
							4	0.41 0.	() Custom		05.2016 11:13:06	Live	trend log at o	oupling 1				
							5	0.41 0.	. 💿 Start		05.2016 11:13:36	La #	Ver	tical	Horiz	ontal	Marke	rs Time
							6	0.41 0.	• Stop		05.2016 11:14:06	La	4		4			
							7	0.41 0.	.62 0.00 0.56		25.05.2016 11:14:36	La 1	0.00	0.00	0.00	0.00	4 0	25.05.2016 11:
												2	0.40	0.63	-0.01	0.57		25.05.2016 11:
								ll Marke	rs Q 4		\odot	3	0.40	0.61	-0.00	0.60		25.05.2016 11:
												4	0.41	0.62	-0.01	0.57		25.05.2016 11:
												5	0.41	0.64	-0.02	0.55		25.05.2016 11:
												6	0.41	0.62	0.00	0.55		25.05.2016 11:
												7	0.41	0.62	0.00	0.56		25.05.2016 11:

Appuyez sur la mesure sur laquelle un marqueur est souhaité (1) puis appuyez sur (2). Appuyez sur le marqueur souhaité dans la liste disponible (3). Le tableau de journal montre ensuite la mesure sélectionnée avec le marqueur désiré (4).

Marqueurs spécifiés par l'utilisateur

Les marqueurs spécifiés par l'utilisateur sont définis en utilisant le marqueur « Custom ».

Appuyez sur la mesure souhaitée dans le journal, puis appuyez sur tom » dans la liste des marqueurs affichés. Utilisez le clavier qui apparaît pour personnaliser l'infobulle de données¹ de marqueur.

Définir le point de mesure à zéro

Si besoin, tout point de mesure peut être mis à zéro en utilisant le marqueur « mettre à zéro »

¹L'infobulle de données est une petite zone qui s'affiche sur le curseur. Elle indique la date, l'heure et les informations de marqueur personnalisé à la position actuelle du curseur. raît sur la mesure (3) avec les valeurs verticales et horizontales d'accouplement définies à zéro. Les valeurs d'accouplement (4) sont alors affichées par rapport au point de mise à zéro.

	end log at co	upling 1					mm						
#	Vert	ical	Horiz	ontal	Markers	Time	s						
	414	-tp	410	46									
194	-1.96	-3.01	-2.03	-0.29		25.05.2016 12:48:07							
195	-1.96	-3.01	-2.03	-0.29		25.05.2016 12:48:37							
196	-1.96	-3.01	-2.03	-0.29		25.05.2016 12:49:07							
197	-1.96	-3.01	-2.03	-0.29		25.05.2016 12:49:37	Li	ve trend log at	coupling 1			.	
198	-1.96	-3.01	-2.03	-0.29		25.05.2016 12:50:07		4 ۵۱	/ertical	🕨 🛆 Hori	zontal	Markers	Time
199	-1.96	-3.01	-2.03	-0.29		25.05.2016 12:50:37		41-	46	44	46		
200	-1.96	-3.01	-2.03	-0.29	0	25.05.2016 12:51:07	1	94 0.0	0 -0.00	0.00	-0.00		25.05.2016 12:48:0
۵		larkers	Ð	ব	6		1	95 -0.0	D -0.00	0.00	0.00		25.05.2016 12:48:37
7.0		lancers	4				1	96 0.0	0 -0.00	-0.00	-0.00		25.05.2016 12:49:07
							1	97 -0.0	0 -0.00	0.00	0.00		25.05.2016 12:49:37
							1	98 0.0	0 -0.00	0.00	0.00		25.05.2016 12:50:07
							1	99 0.0	0 -0.00	-0.00	-0.00		25.05.2016 12:50:37
							()	0 00	0.00	0.00	0.00		25 05 2017 12 51 0

Note

Un seul marqueur peut être appliqué à toute mesure spécifique. Le marqueur spécial « mettre à zéro » est le seul qui peut être combiné avec un autre marqueur.

Suppression des marqueurs

Dans le journal, faites glisser le bouton bleu à droite (1) pour afficher uniquement des marqueurs. Appuyez sur la mesure avec le marqueur à supprimer (2). Une icône de corbeille

apparaît à côté de l'icône du marqueur (3). Appuyez soit sur de marqueur à supprimer.

Live trend log at coupling 1 mm							
#	∆ Vertical		∆ Horizontal		Markers	Time	S
	414	46	41-	- dF			
1	0.04	0.09	-0.01	-0.40	$igodoldsymbol{igo$	25.05.2016 17:05:00	
12	0.01	0.07	-0.00	-0.12	&	25.05.2016 17:05:11	
46	0.02	0.07	-0.01	-0.30	Stable	25.05.2016 17:05:45	
53	0.00	0.00	0.00	0.00	2 OHeating up	25.05.2016 17:05:52	
60	0.01	0.06	0.00	-0.00	۲	25.05.2016 17:05:59	
		~			•		
		Ú					
Al	L N	1arkers	Q	4	[₫] C+ [₫]	\odot	

Identifier des marqueurs

Les marqueurs sur les graphiques peuvent être identifiés en utilisant le journal. Accédez au journal en tapant sur les résultats d'accouplement **(1)**. Faites glisser le bouton bleu **(2)** vers la droite. Seules les mesures avec des marqueurs seront affichées. Le curseur sur les gra-

phiques (3) correspond à la mesure en surbrillance dans le journal (4). Appuyez sur our afficher les graphiques.

Live trer	nd log at co	oupling 1					mm							
	∆ Ver	tical	∆ Hori:	zontal	Markers	Time		s						
	44	- dt	44	4F										
1	1.96	3.01	2.03	0.29	۲	25.05.2016 11:11:36								
4	2.36	3.63	2.03	0.86	&	25.05.2016 11:13:06	L	a						
63	2.38	11.85	1.97	-0.62	Restart	25.05.2016 11:42:37								
200	0.00	0.00	0.00	0.00	0 4	25.05.2016 12:51:07			DIM) (M)	RES		mm	07.06	6.20161
		0						٤	12.0 ₀	₽	Set to zero 25.05.2016	8	© Results	
All		1arkers	Q		1 0°	\bigcirc		م 3D	6.0 3.0 0.0		12.3130		Plot setup	
								v	-3.0 -6.0 25.05.2016	25.05.2016	25.0	5.2016		0.0 0.0
								н	Coupling gap V Coupling offset V	0.00 Coupling	gap H offset H	0.00 0.00	()	0.0 0.0
								V⁄H	<	_	- • >	Q	(ii)	

Dans cet exemple, la mesure en surbrillance est la mesure numéro 200 et se trouve être le dernier point de mesure pris. Le marqueur « mettre à zéro » a été appliqué à cette mesure.

Les marqueurs « Start » 🕑 et « Cold » 🌡 ont également été définis avec les numéros de mesure 1 et 4 respectivement.

Bonnes pratiques

Montage du capteur et du laser

>> L'écran « Dimensions » montre les côtés où le capteur et le laser doivent être montés. Si

nécessaire, utiliser l'icône « Caméra » 🤐, pour faire pivoter la vue sur l'écran afin de permettre aux machines d'être vues telles qu'elles apparaissent physiquement.

>> Monter les supports directement sur l'arbre ou sur les accouplements.

>> Monter le capteur et le laser aussi bas que possible sur les montants de soutien fournis. Les accouplements ne doivent pas obstruer la trajectoire du faisceau laser.

>> Monter le laser sur la machine désignée fixe et le capteur sur la machine désignée mobile.

>> Le capteur et le laser ne doivent pas se toucher ni toucher les carters de la machine lors de la rotation de l'arbre.

Saisie des dimensions

>> Les dimensions prises à \pm 2 mm [\pm 1 / 16 po.) sont acceptables.

>> En entrant la dimension entre les pieds avant et arrière, utilisez la distance au milieu des deux boulons de pied.

Initialisation du capteur

>> Si une « erreur de communication » se produit, tapez sur la zone de détection en dessous de la touche « <u>Erreur de communication</u> » puis tapez sur « liste Capteur » pour vérifier si le capteur a été détecté.

Les causes qui peuvent influencer la mesure

>> Un montage incorrect ou lâche du cadre support, des montants de soutien

>> Un montage incorrect ou lâche du capteur et du laser sur les montants de soutien

>> Des boulons d'ancrage de la machine desserrés

>> Les fondations de la machine instables ou endommagées

>> Les composants montés frappent les fondations de la machine ou les carters de machines ou encore le cadre pendant la rotation de l'arbre

>> Les composants montés ont bougé pendant la rotation de l'arbre

>> La rotation d'arbre non uniforme

>> Les variations de température dans les machines

>> Les vibrations externes provenant d'autres machines rotatives

Résultats et Live Move

>> V est l'orientation verticale des machines vue depuis le côté.

>> H est l'orientation horizontale des machines vue depuis le haut.

>> Les résultats du pied qui sont utilisés pour corriger les défauts d'alignement sont des valeurs de position par rapport à la machine de référence.

>> Les flèches de tolérance de pied en couleur et en gras indiquent la direction et la magnitude dans laquelle déplacer la machine. Le code couleur indique également la tolérance d'alignement atteint.

Caractéristiques techniques – Ordinateur

Ordinateur ROTAL	IGN touch
UC	Processeur : 1.0 GHz quad core ARM [®] Cortex-A9 Mémoire : 2 GB RAM, 1 GB Flash interne, carte mémoire SD 32 GB
Écran	Technologie : Écran multi-tactile capacitif projectif Type : Écran couleur TFT transmissif rétro éclairé (lisible à la lumière du jour) Optiquement garanti, affichage industriel de protection, capteur de lumière intégré pour le réglage automatique de la luminosité de l'écran Résolution : 800 x 480 pixels Dimensions : diagonale de 178 mm [7"]
Témoins LED	3 LED pour l'état de la batterie 1 LED pour la communication WiFi
Alimentation élec- trique	Autonomie : 12 heures d'utilisation courante (basée sur un cycle d'utilisation de 25 % de mesure, 25 % de calcul et 50 % de mode « veille ») Batterie : Batterie rechargeable au Lithium-Ion de 3,6 V / 80 Wh Chargeur / adaptateur CA : 12 V / 36 W ; connecteur cylindrique stan- dard (5,5 x 2,1 x 11 mm)
Interface externe	Hôte USB pour clé USB esclave pour la communication PC, charge (5 V DC / 1,5 A) RS-232 (série) pour capteur RS-485 (série) pour capteur I-Data pour capteur De communication sans fil Bluetooth [®] intégrée (couvre la ligne directe des distances de visibilité allant jusqu'à 30 m / 100 ft en fonction des conditions environnementales) IEEE 802.11 b / g / n LAN intégré sans fil jusqu'à 72,2 Mbps (selon la configuration) RFID intégré avec capacités de lecture et d'écriture (selon la confi- guration)
Protection de l'environnement	IP 65 (résistant à la poussière et aux projections d'eau) - tels que défi- nis dans la réglementation DIN EN 60529 (VDE 0470-1), anti-chocs Humidité Relative : de 10 % à 90 %
Essai de chute	1 m (3 1/4 ft)
Plage de tem- pératures	Service : 0 °C à 40 °C (32°à 104 °F) Charge : 0 °C à 40 °C (32°à 104 °F) Stockage : -10 °C à 50 °C (14 °F à 122 °F)
Dimensions	Env. 273 x 181 x 56 mm (10 3/4" x 7 1/8" x 2 3/16")
Poids	Env. 1,88 kg (4,1 lbs)
Appareil photo	5 MP intégrés (selon la configuration) LED : Classe de risque 1 conformément à la norme IEC 62471:2006

Ordinateur ROTALIGN touch				
Conformité CE	Voir le certificat de conformité CE sur www.pruftechnik.com			
Étui	Standard : ABS, test de chute $(2 \text{ m} / 6 1/2 \text{ ft.})$ Dimensions : Env. 470 x 388 x 195 mm (18 1/2" x 15 9/32" x 7 11/16") Poids : Avec toutes les pièces standard – env. 8,5 kg [18,7 lb]			
Conformité FCC	Exigences remplies (se référer au document fourni « Sécurité et infor- mations générales »)			

Caractéristiques techniques – Capteur sensALIGN

Capteur sensALIG	N
UC	Type : ARM Cortex™ M3 Mémoire : Mémoire flash de 2 Go
LED	4 LED pour le réglage du laser 1 LED pour la communication Bluetooth [®] 1 LED pour l'état de la batterie
Alimentation	Autonomie : Utilisation continue 12 heures Batterie : Batterie rechargeable au lithium-polymère 3,7 V / 1,6 Ah 6 Wh
Protection de l'environnement	IP 65 (résistant à la poussière et aux projections d'eau) – as defined in regulation DIN EN 60529 (VDE 0470-1), résistant aux chocs Humidité relative : 10% à 90%
Protection contre la lumière ambiante	Compensation numérique électronique optique et active
Plage de tem- pératures	Service : de -10°C à 50°C (de 14°F à 122°F) Charge : de 0°C à 40°C (de 32°F à 104°F) Stockage: -20°C à 60°C (de -4°F à 140°F)
Dimensions	Env. 103 x 84 x 60 mm (4 1/16" x 3 5/16" x 2 3/8")
Poids	Env. 310 g (10.9 oz)
Plage de mesures	Illimitée, extensible dynamiquement (brevet américain 6 040 903)
Résolution de mesure	1μm
Erreur de mesure	< 1.0%
Résolution de l'inclinomètre	0,1°
Erreur de l'inclinomètre	± 0,25% déviation maximale
Mesure des vibra- tions	mm/s, RMS, 10Hz à 1kHz, 0 mm/s – 5000/f • mm/s² (f en Hertz [1/s])
Interface externe	Communication sans fil Bluetooth $^{\mathbb{R}}$ de classe 1, RS232, RS485, I-Data
Conformité CE	Voir le certificat de conformité CE sur www.pruftechnik.com

Caractéristiques techniques – Laser sensALIGN

Laser sensALIGN	
Туре	Laser à semi-conducteur
LED	1 LED pour la transmission laser 1 LED pour l'état de la batterie
Alimentation	Autonomie: 70 heures en utilisation continue (batterie Li-polymère) Batterie: Batterie rechargeable au lithium-polymère 3,7 V / 1,6 Ah 6 Wh Adaptateur/chargeur CA : 5 V / 3 A
Protection de l'environnement	IP 65 (résistant à la poussière et aux projections d'eau) – as defined in regulation DIN EN 60529 (VDE 0470-1), résistant aux chocs Humidité relative : 10% to 90%
Plage de tem- pératures	Service : de -10°C à 50°C (de 14°F à 122°F) Charge : de 0°C à 40°C (de 32°F à 104°F) Stockage : de -20°C à 60°C (de -4°F à 140°F)
Dimensions	Env. 103 x 84 x 60 mm (4 1/16" x 3 5/16" x 2 3/8")
Poids	Env. 330 g [11.6 oz]
Puissance du fais- ceau	< 1mW
Longueur d'onde	630 – 680 nm (rouge, visible)
Classe de sécurité	Classe 2 conformément à la norme IEC 60825-1:2007 Le laser est conforme aux normes 21 CFR 1040.10 et 1040.11, à l'exception d'écarts en vertu de la notice laser N° 50, datée du 24 juin 2007.
Divergence du fais- ceau	0,3 mrad
Résolution de l'inclinomètre	0,1°
Erreur de l'inclinomètre	± 0,25% déviation maximale
Conformité CE	Voir le certificat de conformité CE sur www.pruftechnik.com

Glossaire

A

ALIGNMENT RELIABILITY CENTER 4.0

Cette plate-forme logicielle également appelée ARC 4.0 permet la gestion des installations de l'usine sous une forme structurée, affichant des tendances. Elle permet également la préparation des tâches et le transfert des mesures d'installations dans le cloud.

ARC 4.0

Cette plate-forme logicielle également appelée ARC 4.0 permet la gestion des installations de l'usine sous une forme structurée, affichant des tendances. Elle permet également la préparation des tâches et le transfert des mesures d'installations dans le cloud.

С

Cibles

Valeurs de défaut d'alignement spécifiées comme une concentricité et un angle dans deux plans perpendiculaires (horizontaux et verticaux) et utilisées pour compenser les charges dynamiques.

Connectivité mobile

La connectivité mobile de ROTALIGN touch permet à l'appareil d'accéder à la fonctionnalité de cloud pour le partage de fichiers sans fil.

Croissance thermique

Mouvement des axes d'arbre associé à ou résultant d'un changement de température de l'équipement entre les conditions de veille et de fonctionnement.

Curseur

Il s'agit d'un indicateur de position sur les graphiques Live Trend. Il est librement mobile. Les résultats de tracé affichés correspondent à la position du curseur.

Е

Écart standard

La déviation standard (SD) est l'écart carré moyen profond (moyenne des moyens) des points de mesure. Elle décrit à quel point un groupe de points de données est regroupé autour de la moyenne de ces points de données. Elle constitue une mesure du calibre de mesure. Plus la SD est petite, meilleure est la qualité des données recueillies.

G

Galerie

C'est l'emplacement au sein du dispositif où sont enregistrées toutes les images prises avec ROTALIGN touch.

Ι

Infobulle de données

L'infobulle de données est une petite zone qui s'affiche sur le curseur. Elle indique la date, l'heure et les informations de marqueur personnalisé à la position actuelle du curseur.

Installation

L'installation fait référence aux machines et à l'équipement au sein d'une usine.

Installations

Les installations regroupent les machines au sein d'une usine.

IntelliPASS

Dans ce mode, l'arbre soutenant le laser est pivoté de manière à ce que le faisceau laser passe par la zone centrale du détecteur.

IntelliPOINT

Ce mode est utilisé dans les cas où les arbres non couplés peuvent être arrêtés à des positions définies. Il est par ailleurs utilisé lorsque les arbres sont couplés mais qu'un jeu de torsion existe.

IntelliSWEEP

Mode de mesure haute définition qui assiste activement l'utilisateur en détectant automatiquement et en éliminant les influences d'erreurs telles que le jeu entre-dents de l'accouplement, l'angle de rotation et la vibration.

Μ

Multipoint

Mode de mesure pour les machines horizontales où les points de mesure sont pris à n'importe quelle position de rotation angulaire souhaitée.

Ρ

Parc de machines

Le parc de machines est le lieu où les mesures de machines sont enregistrées.

ROTALIGN touch

Plan de rotation du cardan

Il s'agit de la procédure de mesure par défaut pour les applications de cardan. Cette procédure permet de réaliser une mesure précise des machines reliées par des arbres à cardan sans avoir à retirer l'arbre à cardan.

Q

Qualité de la mesure

La qualité de mesure est un facteur défini par les critères d'environnement et de mesure suivants : une rotation angulaire, la déviation standard de l'ellipse de mesure, la vibration, la planéité de rotation, l'inertie de rotation angulaire, le sens de rotation, la vitesse et la sortie du filtre. Plus le facteur est élevé, meilleure est la qualité de la mesure.

R

RFID

Cette technologie d'identification est utilisée pour identifier les installations à aligner.

S

Statique

Le mode de mesure de l'horloge statique est utilisé pour les machines verticales et horizontales. Les mesures sont prises avec des arbres placés à l'une des huit positions d'horloge définies. Dans ce mode de mesure, l'inclinomètre électronique est inactif.

Т

Tolérances asymétriques

Dans les tolérances asymétriques, les valeurs de tolérance des deux plans d'accouplement ne sont pas les mêmes.

W

WiFi

Le WiFi est utilisé pour transférer des mesures d'installations entre ROTALIGN touch et le cloud via la plate-forme logicielle ARC 4.0

La technologie pour une maintenance efficace

PRÜFTECHNIK 85737 Ismaning, Allemagne info@pruftechnik.com www.pruftechnik.com