
Indice

	Caratteristiche delle guide lineari a ricircolazione di sfere	5
1.	Le caratteristiche delle guide lineari	6
2.	Procedura per la scelta di una guida lineare	7
3.	Capacità di carico e durata di vita delle guide lineari	8
4.	Coefficiente di attrito	10
5.	Calcolo del carico di esercizio	11
6.	Calcolo del carico equivalente	14
7.	Calcolo del carico medio	14
8.	Esempio di calcolo	16
9.	Standard di precisione	19
10.	Precarico e rigidità	21
11.	Fattori importanti per la corretta applicazione	22
12.	Montaggio della guida lineare	25
13.	Opzioni	29
14.	Raccomandazioni	31
	Guide lineari a ricircolazione di sfere	
	serie NFL	35
	serie NGL	39
	serie NFR	41
	serie NGR	45

Caratteristiche delle guide lineari a ricircolazione di sfere

- » Lavorazioni meccaniche accurate e superfinite
- » Basso attrito
- » Quattro gole per lo scorrimento delle sfere
- » Basso centro di gravità e disegno compatto
- » Basso rumore e movimento dolce
- » Lunga durata ed alta rigidità

Come ordinare

Classi di precarico: ZF, ZO, Z1, Z2 Classi di precisione: C (Commerciale), H (Alta), P (Precisa) Numero di rotaie per l'utilizzo accoppiato: I 1 rotaia, II 2 rotaie Lunghezza rotaia (mm). Montaggio rotaia: R(dall'alto), T(dal basso). Numero di carrelli per rotaia. Montaggio carrello: A (dall'alto), B (dal basso), C (dall'alto e dal basso) Codice carrello (modello, simbolo) Tipo di carrello: NFL, NFR, (F: Flangiato) NGL, NGR (G: Compatto) Taglie: 15, 20, 25, 30, 35, 45

NITEK.

1. Le caratteristiche delle guide lineari

Hanno alta precisione di posizionamento e garantiscono alta ripetibilità del movimento. Le guide lineari di Nitek sono state progettate per lavorare con un bassissimo coefficiente di attrito.

La differenza fra attrito dinamico e statico è minima, tale da evitare durante il movimento fenomeni di impuntamento (Stick - slip).

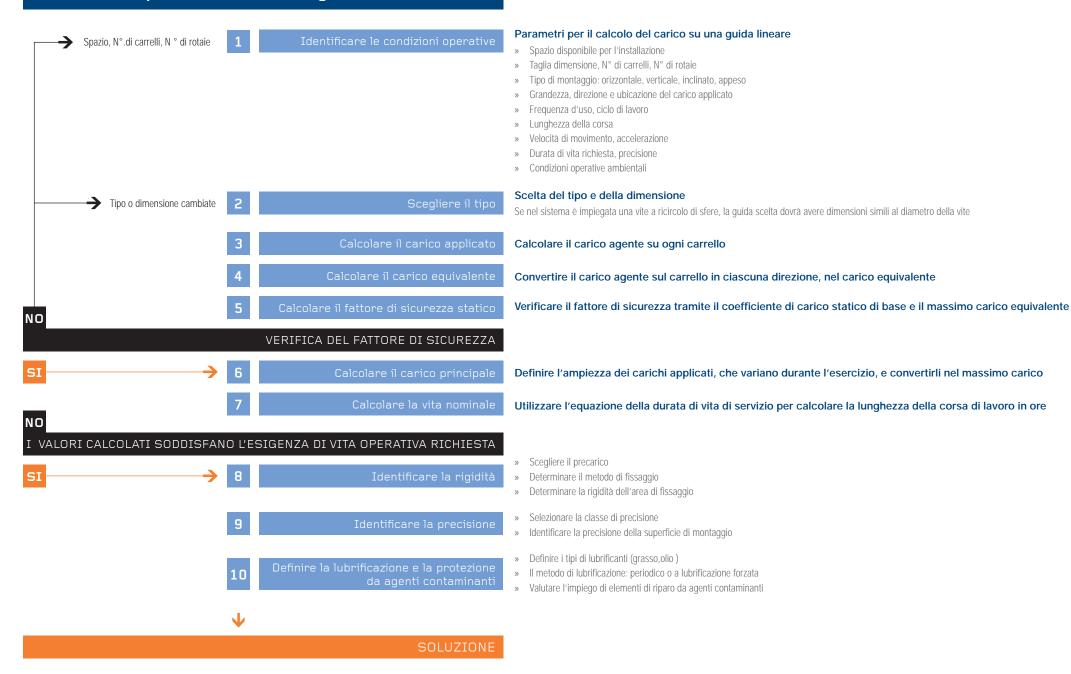
Mantenimento per un lungo periodo della precisione, bassa resistenza d'attrito

La resistenza all'attrito di una guida lineare è fino a 40 volte inferiore a quella di una guida a strisciamento. La guida lineare può essere facilmente lubrificata aggiungendo grasso dal nipplo di lubrificazione, di cui i carrelli sono muniti o utilizzando un sistema di lubrificazione ad olio centralizzato. La lubrificazione riduce il valore del coefficiente di attrito, l'usura dei corpi volventi a contatto nel movimento e garantisce quindi il mantenimento della precisione del sistema per lungo tempo.

Alta rigidità del sistema

La ottimizzazione del disegno geometrico, che prevede 4 ricircoli di sfere a contatto circolare, permette al sistema di sopportare il carico nelle quattro direzioni. La rigidità del sistema è di facile realizzazione tramite l'uso di carrelli precaricati o la adozione di un numero maggiore di carrelli sullo stesso asse.

Utilizzabili in condizioni di alta velocità

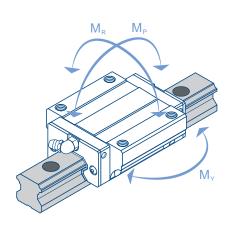

La forza necessaria per attuare il movimento è estremamente contenuta e lo sviluppo di calore è molto basso anche ad alta velocità. Le guide lineari di NITEK sono elementi di risparmio energetico se comparate ad altri sistemi tradizionali.

Facile installazione e intercambiabilità dei componenti

A differenza delle guide a strisciamento, per le guide lineari non occorre realizzare superfici di montaggio con alto grado di precisione, l'accuratezza del movimento è data dalla precisione del sistema. La manutenzione ed il montaggio delle parti che compongono una guida lineare sono facilitate a seguito della perfetta intercambiabilità dei componenti.

Tipo	Modello	Tipo di fissaggio	Caratteristiche	Applicazioni
Pieno riempimento	NFL-CA HA			
di sfere	NFL-CB HB			Centri di lavoro
Carico Pesante				Torni a controllo numerico
	NFL-CC HC			Assi XYZ per machine utensili pesanti da taglio
				Assi di alimentazione per teste di rettifica
Pieno riempimento	NGL-CA HA		Carico Pesante Alta rigidità Capacità di auto allineamento Movimento dolce Bassa rumorosità Intercambiabilità	Torni
di sfere Carico Pesante				Assi Z di macchine foratrici e macchine utensili
				Macchine per elettroerosione
				Assi Z di macchine industriali
	NFR-TA SA			Macchine di misurazione
Pieno riempimento				Tavole di precisione XY
di sfere	NFR-TB SB			Macchine per saldatura
Carico Pesante				Macchine curvatubi
	NFR-TC SC			Macchine per imballaggio
	-M-10-10-	[57.]		Macchine lavorazione legno
				Automazione industriale
Pieno riempimento di sfere Carico Pesante	NGR-TA SA			Macchine bio-medicali

2. Procedura per la scelta di una guida lineare


3. Capacità di carico e durata di vita delle guide lineari

Per scegliere il modello di guida lineare più idonea per un determinato impiego occorre tenere in considerazione la capacità di carico e la durata di vita richiesta dal sistema. Per verificare la capacità di carico statica si considererà il valore C₀ per ottenere il fattore di sicurezza statico. La durata di vita può essere ottenuta calcolando la vita nominale basata sul carico dinamico di base. Poichè sia le piste di rotolamento che i corpi volventi sono soggetti a ripetuti stress, la durata di vita di una guida lineare va considerata come la distanza totale percorsa prima che si presentino anomalie.

Capacità di carico statica (C_0)

Le piste di rotolamento e gli elementi volventi di una guida lineare esposta ad un carico eccessivo o a colpi severi, sono soggette a deformazioni permanenti. Quando l'ampiezza della deformazione supera certi limiti, il movimento dolce della guida lineare viene ostacolato. Il coefficiente di carico statico di base (Co) si riferisce ad un carico statico in una determinata direzione, di una ampiezza specifica applicato nell'area di contatto soggetta al più grande stress, dove il valore della deformazione permanente che si sviluppa fra la pista di rotolamento e i corpi volventi è di 0,0001 volte la dimensione del diametro del corpo volvente. Il carico statico di base definisce il limite di carico statico ammissibile.

Momento statico ammissibile (M_a)

Quando si applica un momento ribaltante ad una guida lineare, i corpi volventi ubicati alle estremità verranno sottoposti, nella distribuzione del carico, ad un maggiore stress .ll momento statico ammesso (Mo) si riferisce ad un momento statico in una determinata direzione, di una ampiezza specifica, dove il valore della deformazione permanente che si sviluppa fra pista di rotolamento e corpi volventi è di 0,0001 volte la dimensione del diametro del corpo volvente. Il momento statico ammissibile definisce il limite del momento statico. In un sistema di guida lineare il momento statico ammissibile è definito nelle tre direzioni con MP, MY, MR .Vedere figura a fianco.

Fattore di sicurezza Statico (f_s)

A seguito di colpi e vibrazioni indotte sulla guida ferma o in movimento o dell'inerzia dovuta alla partenza o all'arresto, la guida lineare può incorrere in forze esterne inaspettate. Per questi motivi deve essere tenuto in considerazione un fattore di sicurezza per effetto di questi carichi di lavoro. Il fattore di sicurezza statico in relazione a differenti tipi di applicazioni è illustrato nella Tabella.

$$f_s = \frac{C_0}{P}$$

$$oppure$$

 $f_s = \frac{M_0}{M}$

Fattore di sicurezza statico

 C_0 Coefficiente di carico statico di base (N)

 M_0 Momento statico ammissibile $(N \cdot m)$

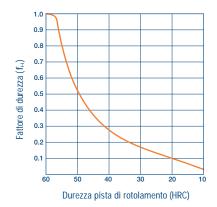
P Carico di lavoro calcolato(N)

M Momento calcolato $(N \cdot m)$

Tipo di macchina	Tipi di carico	f_s (Limite basso)
Macchine industriali	Tipo di carico normale	1.0 ~ 1.3
iviacchine industriali	Con colpi e vibrazioni	2.0 ~ 3.0
Macchine utensili	Tipo di carico normale	1.0 ~ 1.5
iviacchine utensiii	Con colpi e vibrazioni	2.5 ~ 7.0

Valori standard di fattori di sicurezza

Coefficiente di carico dinamico di base (C)

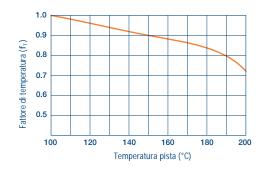

Anche quando un gruppo di guide identiche sia prodotto nello stesso modo o venga applicato nelle stesse condizioni, la durata di vita di una guida potrà variare rispetto alle altre. Di conseguenza la durata di vita viene usata come indicatore per determinare la durata di servizio di un sistema a guida lineare. La vita nominale (L) è definibile come la distanza totale di lavoro che il 90% di un gruppo identico di guide lineari, operanti nelle stesse condizioni, abbia lavorato senza fenomeni di affaticamento .ll coefficiente di carico dinamico di base (C) può essere utilizzato per calcolare la durata di vita di servizio, quando una guida lineare lavora sotto carico. Il coefficiente di carico dinamico di base (C), è definito come il carico in una determinata direzione e di una definita ampiezza , quando un gruppo di guide lavora nelle stesse condizioni. Nel caso i corpi volventi siano sfere la durata di vita nominale di una guida lineare corrisponde ad un tragitto di 50Km.

Calcolo della durata di vita nominale (L)

La durata di vita nominale di una guida lineare è in relazione al carico di lavoro agente. La durata di vita nominale può essere calcolata basandosi sul carico dinamico di base e sul carico di lavoro agente. La durata di vita nominale di un sistema a guida lineare può essere largamente influenzata da fattori ambientali quali la durezza delle piste di rotolamento, la temperatura dell'ambiente di lavoro, le condizioni del moto, tutti questi fattori devono essere tenuti in considerazione per il calcolo della vita nominale.

Sfere
$$L = \left(\frac{f_H \times f_T}{f_W} \times \frac{C}{P}\right)^3 \times 50$$

- *L* Durata di vita nominale (□□)
- C Coefficiente di carico dinamico di base (\Box)
- *P* Carico di lavoro (□)
- f_H Fattore di durezza
- f_T Fattore di temperatura
- f_W Fattore di carico



Fattore di durezza $(f_{\scriptscriptstyle H})$

Al fine di assicurare l'ottima capacità di carico di un sistema a guida lineare, la durezza della pista di rotolamento deve essere di HRC58-64. Se la durezza è inferiore a questi valori,il carico ammissibile e la vita nominale diminuiranno. Per questo motivo, il carico dinamico di base ed il carico statico di base dovranno essere moltiplicati per il fattore di durezza. Vedi figura a lato. La durezza delle guide lineari NITEK è superiore a HRC58, così fh=1,0.

Fattore di carico (f_{ij})

Sebbene il carico di lavoro di un sistema a guida lineare possa essere ricavato da un calcolo, il carico agente è generalmente più alto del valore calcolato. Questo a causa di vibrazioni o colpi,indotti da un movimento meccanico alternativo, che è difficile stimare. Questa condizione è particolarmente vera quando si producono vibrazioni dovute alla alta velocità di servizio e al ripetersi di urti dovuti a partenze ed arresti. Ne consegue che considerando velocità e vibrazioni, il valore del coefficiente di carico dinamico dovrà essere diviso per un fattore empirico di carico. Vedere tabella.

Fattore di temperatura (f_{τ})

Quando la temperatura di esercizio supera i 100°C, inizia un decadimento della durata di vita nominale. Ne deriva che il coefficiente dinamico e statico di base dovranno essere moltiplicati per un fattore di temperatura; per il calcolo del coefficiente: vedi grafico. Alcuni componenti delle guide lineari NITEK sono realizzati in gomma o materiale plastico, quindi si raccomanda di operare a temperature inferiori ai 100°C.

Condizioni di movimento	Velocità di servizio	f_{w}
Niente colpi o vibrazioni	V <u>≤</u> 15 m/min	1.0 ~ 1.2
Colpi e vibrazioni leggere	15 <v<u>≤60 m/min</v<u>	1.2 ~ 1.5
Colpi e vibrazioni moderate	60 <v≤120 m="" min<="" th=""><th>1.5 ~ 2.0</th></v≤120>	1.5 ~ 2.0
Forti colpi e vibrazioni	V≥120 m/min	2.0 ~3.5

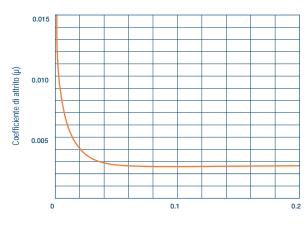
Calcolo del tempo di durata di vita (L_h)

Una volta definita la vita nominale (L), la durata di esercizio in ore può essere calcolata con l'utilizzo della seguente equazione nel caso che la lunghezza della corsa ed il ciclo di movimento di andata e ritorno siano costanti.

$$L_h = \frac{L \times 10^3}{2 \times l_S \times n_1 \times 60}$$

- L_h Vita di esercizio in ore $(h \square)$
- Vita nominale $(\Box \Box)$
- Lunghezza della corsa (□)
- n_1 Numero di cicli reciproci per minuto ($\square \square \square \square \square$)

4. Coefficiente di attrito

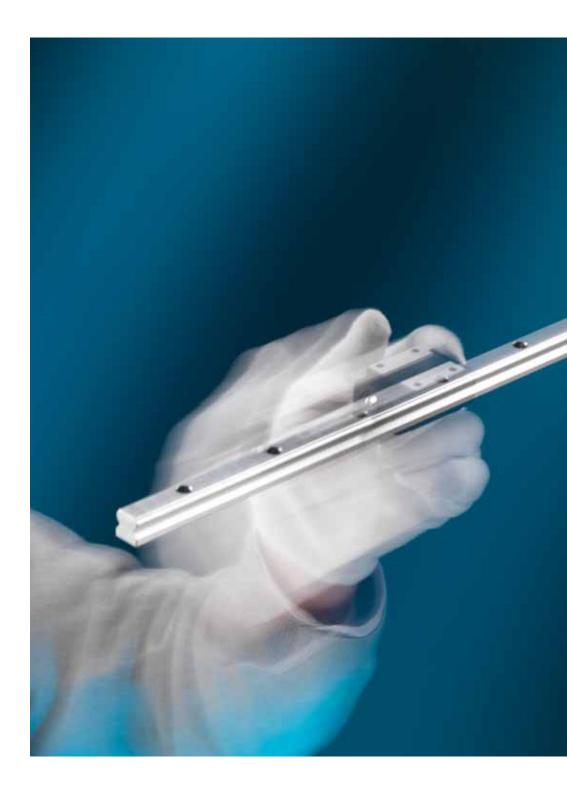

Una guida lineare realizza il movimento con l'utilizzo dei corpi volventi posti fra carrello e rotaia.

La resistenza all'attrito per quanto detto viene ridotta rispetto ad una guida a strisciamento da un ventesimo ad un quarantesimo. In modo particolare viene ridotto il valore di attrito statico che risulta molto più piccolo che in altri sistemi, inoltre essendo la differenza fra attrito statico e dinamico molto piccola non si manifestano effetti di impuntamento (Stick - slip). La resistenza d'attrito di un sistema a guida lineare può variare in relazione all'ampiezza del carico, al precarico, alla viscosità del lubrificante e ad altri fattori.

La resistenza d'attrito può essere calcolata con la seguente equazione basata sul carico di lavoro e sulla resistenza delle guarnizioni. Generalmente il coefficiente d'attrito può variare da serie a serie, nel caso di guide a sfere è 0,002-0,003 (se non si tiene in considerazione l'attrito delle tenute).

$$F = \mu \times P + f$$

- F Resistenza d'attrito (kgf)
- Coefficiente di attrito dinamico
- P Carico di lavoro (kgf)
- f Resistenza delle quarnizioni (kgf)



Rapporto (P/C)

P: Carico di esercizio

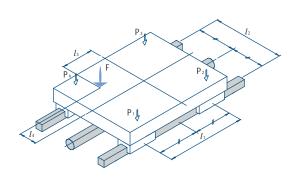
C: Coefficiente di carico dinamico di base

Relazione tra il carico di lavoro ed il coefficiente di attrito.

5. Calcolo del carico di esercizio

Il carico applicato ad una guida lineare può variare per molteplici fattori quali: l'ubicazione del centro di gravità di un oggetto, il punto di spinta, le forze di inerzia dovute ad accelerazioni o decelerazioni durante il movimento di partenza o di arresto.

Per scegliere la quida lineare più idonea occorre tenere in considerazione tutti questi fattori al fine di determinare l'ampiezza del carico applicato.

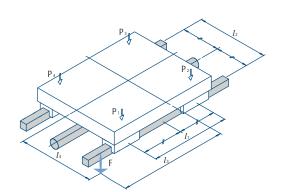

Esempi di calcolo del carico di esercizio

Tipo

Montaggio orizzontale Movimento uniforme o a riposo Montaggio orizzontale sospeso Movimento uniforme o a riposo

Montaggio verticale Movimento uniforme o a riposo

Condizioni operative

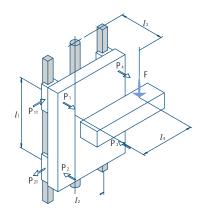


$$P_{I} = \frac{F}{4} + \frac{F \cdot l_{3}}{2 \cdot l_{1}} - \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$

$$P_{2} = \frac{F}{4} - \frac{F \cdot l_{3}}{2 \cdot l_{1}} - \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$

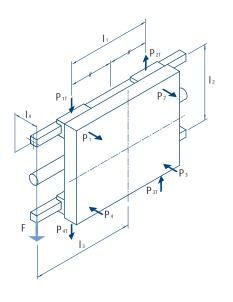
$$P_{3} = \frac{F}{4} - \frac{F \cdot l_{3}}{2 \cdot l_{1}} + \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$

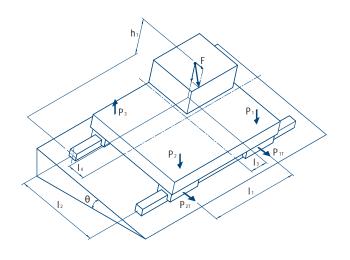
$$P_{4} = \frac{F}{4} + \frac{F \cdot l_{3}}{2 \cdot l_{1}} + \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$

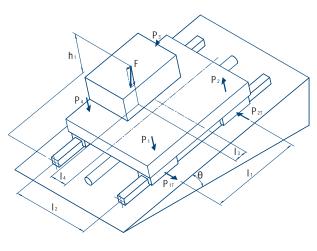


$$P_{1} = \frac{F}{4} + \frac{F \cdot l_{3}}{2 \cdot l_{1}} + \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$

$$P_{2} = \frac{F}{4} - \frac{F \cdot l_{3}}{2 \cdot l_{1}} + \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$


$$P_{3} = \frac{F}{4} - \frac{F \cdot l_{3}}{2 \cdot l_{1}} - \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$


$$P_{4} = \frac{F}{4} + \frac{F \cdot l_{3}}{2 \cdot l_{1}} - \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$



$$P_{1} = P_{2} = P_{3} = P_{4} = \frac{F \cdot l_{3}}{2 \cdot l_{1}}$$

$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{F \cdot l_{4}}{2 \cdot l_{1}}$$

$$P_{1} = P_{2} = P_{3} = P_{4} = \frac{F \cdot l_{4}}{2 \cdot l_{2}}$$

$$P_{1T} = P_{4T} = \frac{F}{4} + \frac{F \cdot l_{3}}{2 \cdot l_{1}}$$

$$P_{2T} = P_{3T} = \frac{F}{4} - \frac{F \cdot l_{3}}{2 \cdot l_{1}}$$

$$\begin{split} P_I &= \frac{F \cdot cos\theta}{4} + \frac{F \cdot cos\theta \cdot l_3}{2 \cdot l_1} - \frac{F \cdot cos\theta \cdot l_4}{2 \cdot l_2} + \frac{F \cdot sin\theta \cdot h_1}{2 \cdot l_2} \\ P_2 &= \frac{F \cdot cos\theta}{4} - \frac{F \cdot cos\theta \cdot l_3}{2 \cdot l_1} - \frac{F \cdot cos\theta \cdot l_4}{2 \cdot l_2} + \frac{F \cdot sin\theta \cdot h_1}{2 \cdot l_2} \\ P_3 &= \frac{F \cdot cos\theta}{4} - \frac{F \cdot cos\theta \cdot l_3}{2 \cdot l_1} + \frac{F \cdot cos\theta \cdot l_4}{2 \cdot l_2} - \frac{F \cdot sin\theta \cdot h_1}{2 \cdot l_2} \\ P_4 &= \frac{F \cdot cos\theta}{4} + \frac{F \cdot cos\theta \cdot l_3}{2 \cdot l_1} + \frac{F \cdot cos\theta \cdot l_4}{2 \cdot l_2} - \frac{F \cdot sin\theta \cdot h_1}{2 \cdot l_2} \\ P_{IT} &= P_{4T} &= \frac{F \cdot sin\theta}{4} + \frac{F \cdot sin\theta \cdot l_3}{2 \cdot l_1} \\ P_{2T} &= P_{3T} &= \frac{F \cdot sin\theta}{4} - \frac{F \cdot sin\theta \cdot l_3}{2 \cdot l_1} \end{split}$$

$$\begin{split} P_{I} &= \frac{F \cdot \cos\theta}{4} \ + \ \frac{F \cdot \cos\theta \cdot l_{3}}{2 \cdot l_{1}} \ - \ \frac{F \cdot \cos\theta \cdot l_{4}}{2 \cdot l_{2}} \ + \ \frac{F \cdot \sin\theta \cdot h_{I}}{2 \cdot l_{1}} \\ P_{2} &= \frac{F \cdot \cos\theta}{4} \ - \ \frac{F \cdot \cos\theta \cdot l_{3}}{2 \cdot l_{1}} \ - \ \frac{F \cdot \cos\theta \cdot l_{4}}{2 \cdot l_{2}} \ - \ \frac{F \cdot \sin\theta \cdot h_{I}}{2 \cdot l_{1}} \\ P_{3} &= \frac{F \cdot \cos\theta}{4} \ - \ \frac{F \cdot \cos\theta \cdot l_{3}}{2 \cdot l_{1}} \ + \ \frac{F \cdot \cos\theta \cdot l_{4}}{2 \cdot l_{2}} \ - \ \frac{F \cdot \sin\theta \cdot h_{I}}{2 \cdot l_{1}} \\ P_{4} &= \frac{F \cdot \cos\theta}{4} \ + \ \frac{F \cdot \cos\theta \cdot l_{3}}{2 \cdot l_{1}} \ + \ \frac{F \cdot \cos\theta \cdot l_{4}}{2 \cdot l_{2}} \ + \ \frac{F \cdot \sin\theta \cdot h_{I}}{2 \cdot l_{1}} \\ P_{1T} &= P_{4T} = + \ \frac{F \cdot \sin\theta \cdot l_{4}}{2 \cdot l_{1}} \\ P_{2T} &= P_{3T} = - \ \frac{F \cdot \sin\theta \cdot l_{4}}{2 \cdot l_{1}} \end{split}$$

Montaggio orizzontale

Soggetto ad inerzia

Montaggio verticale Soggetto ad inerzia

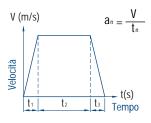
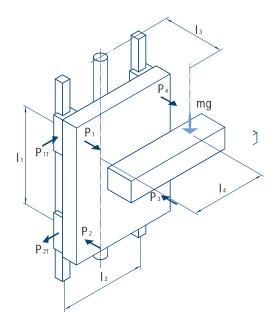



Diagramma di velocità

In accelerazione

$$P_{I} = P_{4} = \frac{mg}{4} - \frac{m \cdot a_{I} \cdot l_{3}}{2 \cdot l_{I}}$$

$$P_2 = P_3 = \frac{mg}{4} + \frac{m \cdot a_1 \cdot l_3}{2 \cdot l_1}$$

$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot a_I \cdot l_4}{2 \cdot l_I}$$

In moto uniforme

$$P_{1T} = P_{2T} = P_{3T} = P_{4T} = \frac{mg}{4}$$

In decelerazione

$$P_{I} = P_{4} = \frac{mg}{4} + \frac{m \cdot a_{3} \cdot l_{3}}{2 \cdot l_{I}}$$

$$P_2 = P_3 = \frac{mg}{4} - \frac{m \cdot a_3 \cdot l_3}{2 \cdot l_1}$$

$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot a_3 \cdot l_4}{2 \cdot l_1}$$

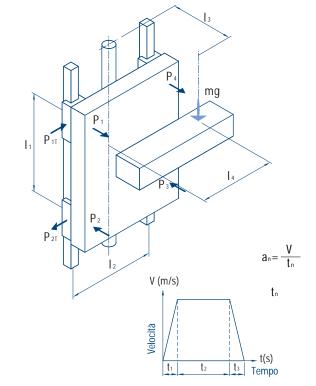


Diagramma di velocità

In accelerazione

$$P_{I} = P_{2} = P_{3} = P_{4} = \frac{m \cdot (g + a_{I}) \cdot l_{3}}{2 \cdot l_{I}}$$

$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot (g + a_I) \cdot l_4}{2 \cdot l_1}$$

In moto uniforme

$$P_{1}=P_{2}=P_{3}=P_{4}=\frac{m\cdot g\cdot l_{3}}{2\cdot l_{1}}$$

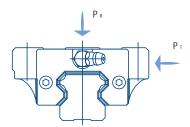
$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot g \cdot l_4}{2 \cdot l_1}$$

In decelerazione

$$P_1 = P_2 = P_3 = P_4 = \frac{m \cdot (g - a_3) \cdot l_3}{2 \cdot l_1}$$

$$P_{IT} = P_{2T} = P_{3T} = P_{4T} = \frac{m \cdot (g - a_3) \cdot l_4}{2 \cdot l_1}$$

6. Calcolo del carico equivalente


Un sistema di guida lineare può sopportare simultaneamente carichi e momenti in tutte e quattro le direzioni: quelli di carico radiale, di carico radiale inverso, e carico laterale. Quando più di un carico viene esercitato su di un sistema a guida lineare simultaneamente, tutti i carichi devono essere convertiti in carichi radiali o laterali equivalenti per calcolare la durata di esercizio ed il fattore di sicurezza statico. Le guide lineari di NITEK hanno la stessa capacità di sopportazione di carico sui quattro ricircoli. Il calcolo del carico equivalente, se si utilizzano due o più guide, è illustrato di seguito.

$$P_E = P_R + P_T$$

 P_{F} Carico equivalente (N)

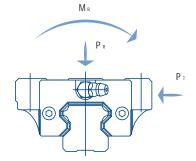
 P_R Carico radiale o radiale inverso (N)

 P_T Carico laterale (N)

Nel caso di una sola rotaia deve essere considerato il momento ribaltante

$$P_E = P_R + P_T + C_\theta \cdot \frac{M}{M_R}$$

 $P_{\rm F}$ Carico equivalente (N)


 P_R Carico radiale o radiale inverso (N)

 P_T Carico laterale (N)

Coefficiente di carico statico di base (N)

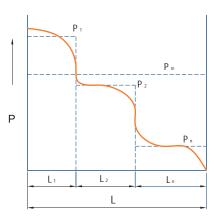
M Momento ribaltante calcolato ($N \square \square$)

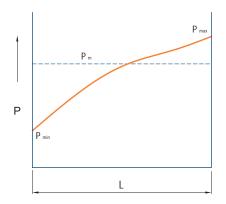
 M_R Momento statico ammissibile $(N \square \square)$

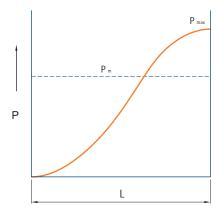
7. Calcolo del carico medio

Nel caso un sistema a guida lineare sia sottoposto a carichi variabili, la durata di vita di sevizio deve essere calcolata in considerazione di questi carichi. Per calcolare la durata di vita di servizio di un sistema sottoposto a carichi variabili si dovrà tenere in considerazione il carico medio P_m . L'equazione per definire il carico medio è la seguente:

- Lunghezza della corsa (□□)
- P Carico (N)


$$P_{m} = \sqrt[3]{\frac{1}{L} \cdot \sum_{n=1}^{n} \left(P_{n}^{3} \cdot L_{n} \right)}$$

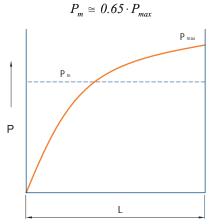

- P_m Carico medio (N)
- P_n Carico variabile (N)
- L_n Lunghezza della corsa sotto carico $\Box\Box$ ($\Box\Box$)


Carico variabile a gradini

Carico variabile uniforme

Carico variabile sinusoidale

- Lunghezza della corsa (mm)
- Carico (N)

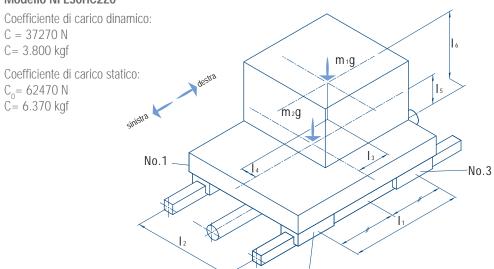

$$P_{m} = \sqrt[3]{\frac{1}{L}\left(P_{1}^{3} \cdot L_{1} + P_{2}^{3} \cdot L_{2} \cdot \dots + P_{n}^{3} \cdot L_{n}\right)}$$

- Carico medio (N)
- Carico variabile (N)
- Lunghezza della corsa sotto carico Pn (mm)

- Lunghezza della corsa (mm)
- Carico (N)

$$P_m \cong \frac{1}{3} \left(P_{min} + 2 \cdot P_{max} \right)$$

- Carico medio (N)
- Carico minimo (N)
- Carico massimo (N)


$$P_m \cong 0.75 \cdot P_{max}$$

- Lunghezza della corsa (mm)
- Carico (N)
- Carico medio (N)
- Carico massimo (N)

8. Esempio di calcolo

Condizioni di esercizio

Modello NFL30HC2Z0

Condizioni operative

Massa $m_1 = 460 kg$

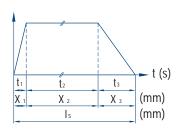
 $m_2 = 225 kg$

Velocità V = 1 m/s

Accelerazione $a_1 = 20 \text{ m/s}^2$

 $a_3 = 8 \text{ m/s}^2$

 $I_1 = 600 \text{ mm}$ Distanza


 $l_{2} = 380 \text{ mm}$

 $I_2 = 120 \text{ mm}$

= 50 mm

= 150 mm

 $I_{r} = 350 \text{ mm}$

No.4

Corsa

Spazio percorso in accelerazione $I_a = 1,69 \text{ m}$

Spazio percorso velocità costante $X_1 = 0.04 \text{ m}$

Spazio percorso in decelerazione $X_2 = 1,50 \text{ m}$

Tempo di accelerazione $t_1 = 0.08 \, s$

 $t_2 = 1,50 \text{ s}$ Tempo di rapido

Tempo di decelerazione $t_{a} = 0.30 \, s$

Calcolo del carico su ogni carrello

Moto uniforme carico radiale Pn

$$P_{l} = \frac{m_{l}g}{4} - \frac{m_{l}g \cdot l_{3}}{2l_{l}} + \frac{m_{l}g \cdot l_{4}}{2l_{2}} + \frac{m_{2}g}{4}$$

$$P_3 = \frac{m_1 g}{4} + \frac{m_1 g \cdot l_3}{2l_1} - \frac{m_1 g \cdot l_4}{2l_2} + \frac{m_2 g}{4}$$

$$P_2 = \frac{m_1 g}{4} + \frac{m_1 g \cdot l_3}{2l_1} + \frac{m_1 g \cdot l_4}{2l_2} + \frac{m_2 g}{4}$$
$$= 2.427.27 \text{ N}$$

$$P_{4} = \frac{m_{1}g}{4} - \frac{m_{1}g \cdot l_{3}}{2l_{1}} - \frac{m_{1}g \cdot l_{4}}{2l_{2}} + \frac{m_{2}g}{4}$$
= 931.507 N

In accelerazine verso sinistra, carico radiale Pnla,

$$P_{I}la_{I} = P_{I} - \frac{m_{I} \cdot a_{I} \cdot l_{6}}{2l_{I}} - \frac{m_{2} \cdot a_{I} \cdot l_{5}}{2l_{I}}$$

$$P_{3}la_{1} = P_{3} + \frac{m_{1} \cdot a_{1} \cdot l_{6}}{2l_{1}} + \frac{m_{2} \cdot a_{1} \cdot l_{5}}{2l_{1}}$$

$$= 5.079,55 \text{ N}$$

$$P_2 la_1 = P_2 + \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_1 \cdot l_5}{2l_1}$$

$$P_4 l a_1 = P_4 - \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_1 \cdot l_5}{2l_1}$$

= 5.673.11 N

Carico laterale Pt la

$$Pt_1 la_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -383,33 \text{ N}$$

$$Pt_3la_1 = \frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = 383,33 \text{ N}$$

$$Pt_2 la_1 = \frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = 383,33 \text{ N}$$

$$Pt_4 la_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -383,337 \text{ N}$$

In accelerazione verso sinistra, carico radiale P_nla_n

$$P_1 l a_3 = P_1 + \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2l_1}$$

= 2.823,40 N

$$P_3 l a_3 = P_3 - \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_3 \cdot l_5}{2l_1}$$

= 535.38 N

$$P_2 l a_3 = P_2 - \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_3 \cdot l_5}{2l_1}$$
$$= 1.128,94 \text{ N}$$

$$P_4 l a_3 = P_4 + \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2l_1}$$
$$= 2.229,84 \text{ N}$$

Carico laterale Pt la,

$$Pt_1 la_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 153,33 \text{ N}$$

$$Pt_3la_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 153,33 \text{ N}$$

$$Pt_2la_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -153,33 \text{ N}$$

$$Pt_4 la_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -153,33 \text{ N}$$

In accelerazione verso destra, carico radiale P_ra,

$$P_1 r a_1 = P_1 + \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_1 \cdot l_5}{2l_1}$$

= 4.770.90 N

$$P_3 r a_1 = P_3 - \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_1 \cdot l_5}{2l_1}$$
$$= -1.412.12 \text{ N}$$

$$P_2 r a_1 = P_2 - \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_1 \cdot l_5}{2l_1}$$

= -818.56 N

$$P_4 r a_1 = P_4 + \frac{m_1 \cdot a_1 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_1 \cdot l_5}{2l_1}$$
$$= 4.177.34 \text{ N}$$

Carico laterale Pt ra,

$$Pt_1 ra_1 = \frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = 383,33 \text{ N}$$

$$Pt_3ra_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -383,33 \text{ N}$$

$$Pt_2ra_1 = -\frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = -383,33 \text{ N}$$

$$Pt_4 ra_1 = \frac{m_1 \cdot a_1 \cdot l_4}{2l_1} = 383,33 \text{ N}$$

In accelerazione verso destra, carico radiale Para,

$$P_1 r a_3 = P_1 - \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_3 \cdot l_5}{2l_1}$$

= 226.73 N

$$P_3 r a_3 = P_3 + \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2l_1}$$

= 3.132,05 N

$$P_2 r a_3 = P_2 + \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} + \frac{m_2 \cdot a_3 \cdot l_5}{2l_1}$$
$$= 3.725.61 \text{ N}$$

$$P_4 r a_3 = P_4 - \frac{m_1 \cdot a_3 \cdot l_6}{2l_1} - \frac{m_2 \cdot a_3 \cdot l_5}{2l_1}$$
$$= -366.83 \text{ N}$$

Carico laterale Pt_ra

$$Pt_1 ra_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -153,33 \text{ N}$$

$$Pt_3ra_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 153,33 \text{ N}$$

$$Pt_2ra_3 = \frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = 153,33 \text{ N}$$

$$Pt_4ra_3 = -\frac{m_1 \cdot a_3 \cdot l_4}{2l_1} = -153,33 \text{ N}$$

Calcolo del carico equivalente

In moto uniforme

$$P_{E1} = P_1 = 2562.4 \text{ N}$$

$$P_{F3} = P_3 = 3072.6 \text{ N}$$

$$P_{E2} = P_2 = 3987.2 \text{ N}$$

$$P_{E4} = P_4 = 1647.8 \text{ N}$$

In accelerazione verso sinistra

$$P_{E1}la_1 = |P_1la_1| + |Pt_1la_1| = 2061.6 \text{ N}$$

$$P_{E3}la_1 = |P_3la_1| + |Pt_3la_1| = 7696.6 \text{ N}$$

$$P_{E2}la_1 = |P_2la_1| + |Pt_2la_1| = 8611.2 \text{ N}$$

$$P_{E4}la_1 = |P_4la_1| + |Pt_4la_1| = 2976.2 \text{ N}$$

In decelerazione verso sinistra

$$P_{E_1}la_3 = |P_1la_3| + |Pt_1la_3| = 4103.7 \text{ N}$$

$$P_{E3}la_3 = |P_3la_3| + |Pt_3la_3| = 1854.3 \text{ N}$$

$$P_{E2}la_3 = |P_2la_3| + |Pt_2la_3| = 2768.9 \text{ N}$$

$$P_{E4}la_3 = |P_4la_3| + |Pt_4la_3| = 3189.1 \text{ N}$$

In accelerazione verso destra

$$P_{E1}ra_1 = |P_1ra_1| + |Pt_1ra_1| = 7186.4 \text{ N}$$

$$P_{E3}ra_1 = |P_3ra_1| + |Pt_3ra_1| = 1551.4 \text{ N}$$

$$P_{E2}ra_1 = |P_2ra_1| + |Pt_2ra_1| = 636.8 \text{ N}$$

$$P_{E4}ra_1 = |P_4ra_1| + |Pt_4ra_1| = 6271.8 \text{ N}$$

In decelerazione verso destra

$$P_{E1}ra_3 = |P_1ra_3| + |Pt_1ra_3| = 1344.1 \text{ N}$$

$$P_{E3}ra_3 = |P_3ra_3| + |Pt_3ra_3| = 4613.9 \text{ N}$$

$$P_{E2}ra_3 = |P_2ra_3| + |Pt_2ra_3| = 5528.5 \text{ N}$$

$$P_{E4}ra_3 = |P_4ra_3| + |Pt_4ra_3| = 429.5 \text{ N}$$

Calcolo del fattore statico

Considerando il carico massimo sul carrello No 2 durante la fase di accelerazione otteniamo:

$$fs = \frac{C_O}{P_{E2}la_1} = \frac{100.6 \times 10^3}{8611.2} = 11.7$$

Calcolo del carico medio su ogni carrello Pm

$$P_{m1} = \sqrt[3]{\frac{\left(P_{E1}la_1^3 \cdot X_1 + P_{E1}^3 \cdot X_2 + P_{E1}la_3^3 \cdot X_3 + P_{E1}ra_1^3 \cdot X_1 + P_{E1}^3 \cdot X_2 + P_{E1}ra_3^3 \cdot X_3\right)}{2l_S}} = 2700.7 \text{ N}$$

$$P_{m2} = \sqrt[3]{\frac{\left(P_{E2}la_1^3 \cdot X_1 + P_{E2}^3 \cdot X_2 + P_{E2}la_3^3 \cdot X_3 + P_{E2}ra_1^3 \cdot X_1 + P_{E2}^3 \cdot X_2 + P_{E2}ra_3^3 \cdot X_3\right)}{2l_S}} = 4077.2 \text{ N}$$

$$P_{m3} = \sqrt[3]{\frac{\left(P_{E3}la_1^3 \cdot X_1 + P_{E3}^3 \cdot X_2 + P_{E3}la_3^3 \cdot X_3 + P_{E3}ra_1^3 \cdot X_1 + P_{E3}^3 \cdot X_2 + P_{E3}ra_3^3 \cdot X_3\right)}{2l_S}} = 3187.7 \text{ N}$$

$$P_{m4} = \sqrt[3]{\frac{\left(P_{E4}la_1^3 \cdot X_1 + P_{E4}^3 \cdot X_2 + P_{E4}la_3^3 \cdot X_3 + P_{E4}ra_1^3 \cdot X_1 + P_{E4}^3 \cdot X_2 + P_{E4}ra_3^3 \cdot X_3\right)}{2l_S}} = 1872.6 \text{ N}$$

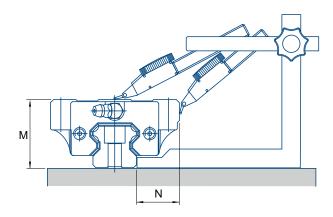
Calcolo della vita nominale (L_n)

Considerando l'equazione della durata di vita nominale, assumendo il coefficiente F_{...}=1,5 otteniamo:

$$L_1 = \left(\frac{C}{f_W \cdot P_{m1}}\right)^3 \times 50 = 193500 \text{ km}$$
 $L_3 = \left(\frac{C}{f_W \cdot P_{m3}}\right)^3 \times 50 = 117700 \text{ km}$

$$L_{2} = \left(\frac{C}{f_{W} \cdot P_{m2}}\right)^{3} \times 50 = 56231 \text{ km}$$

$$L_{4} = \left(\frac{C}{f_{W} \cdot P_{m4}}\right)^{3} \times 50 = 580400 \text{ km}$$


Da questi calcoli e sotto le specifiche condizioni operative indicate, la durata di servizio del carrello n° 2 è di 56231 km.

9. Standard di precisione

La precisione della guida lineare include la tolleranza dimensionale di altezza, larghezza e il gioco tra carrello e rotaia. La classe di precisione relativa alla differenza dimensionale è riiferita a due o più carrelli su una o più rotaie montate sullo stesso piano. La precisione di una guida lineare può essere divisa in 3 classi: grado commerciale (C), alta (H), precisa (P).

Parallelismo di movimento

La precisione di movimento è la deviazione del parallelismo tra la superficie di riferimento del carrello e la superficie di riferimento della rotaia quando il carrello si muove sull'intera lunghezza della rotaia.

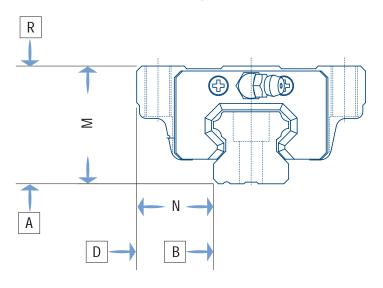
Differenza di altezza (△M)

ΔM è la differenza di altezza tra due carrelli montati sullo stesso piano.

Differenza di larghezza (△N)

 Δ N è la differenza di larghezza tra due carrelli montanti sulla stessa rotaia.

Note addizionali:


- 1. Quando due o più guide lineari sono montate sullo stesso piano, la tolleranza N e la differenza ΔN è applicabile solo alla rotaia principale.
- 2. La precisione è misurata al centro del carrello.

Scelta del grado di accuratezza

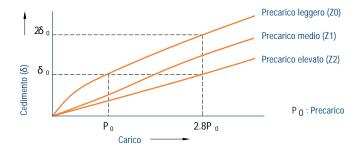
La tabella sotto riportata mostra il grado di accuratezza per differenti applicazioni.

		Grado	di accur	atezza
Area	Applicazioni	С	Н	Р
	Centri di lavoro			•
	Torni			•
=	Frese			•
Macchine utensili	Foratrici			•
e H	Rettificatrici		•	•
Ä	Macchina a elettroerosione			•
acc	Presse		•	•
Ž	Taglio laser		•	•
	Taglio legno	•	•	•
	Foratrice controllo numerico		•	•
Robot ind.	Robot cartesiani	•	•	•
<u>~</u>				
	Macchina stampaggio a iniezione	•	•	
Altri	Macchina misurazione 3D		•	•
Ā	Apparecchiature ufficio	•	•	

Standard di accuratezza di ogni serie

Parallelismi delle guide lineari

Unità / mm		NFL NGL 15/20/25/30/35/45 NFR NGR 15/20/25/30/35		
Parametro		commerciale (C)	alta (H)	precisa (P)
Tolleranza di alte	zza M	± 0.1	± 0.04	0 -0.04
Tolleranza di larghezza N		± 0.1	± 0.04	0 -0.04
Commis	differenza altezza M	0.02	0.015	0.007
Coppie	differenza larghezza N	0.02	0.015	0.007
Classe precarico		ZF, ZO, Z1	7.2	
Parallelismo tra le superfici dei carrelli R rispetto alla superficie A				
Parallelismo tra I D rispetto alla supe	e superfici dei carrelli ficie B	- vedere tabella sotto riportata		


Grado di accuratezza (μm)

Lunghezza rotaia (mm)	С	Н	Р
~100	12	7	3
100~200	14	9	4
200~300	15	10	5
300~500	17	12	6
500~700	20	13	7
700~900	22	15	8
900~1100	24	16	9
1100~1500	26	18	11
1500~1900	28	20	13
1900~2500	31	22	15
2500~3100	33	25	18
3100~3600	36	27	20
3600~4040	37	28	21

10. Precarico e rigidità

La rigidità di una guida lineare può essere incrementata utilizzando il precarico. Il precarico può essere aumentato fino a 2,8 volte il suo valore nominale.

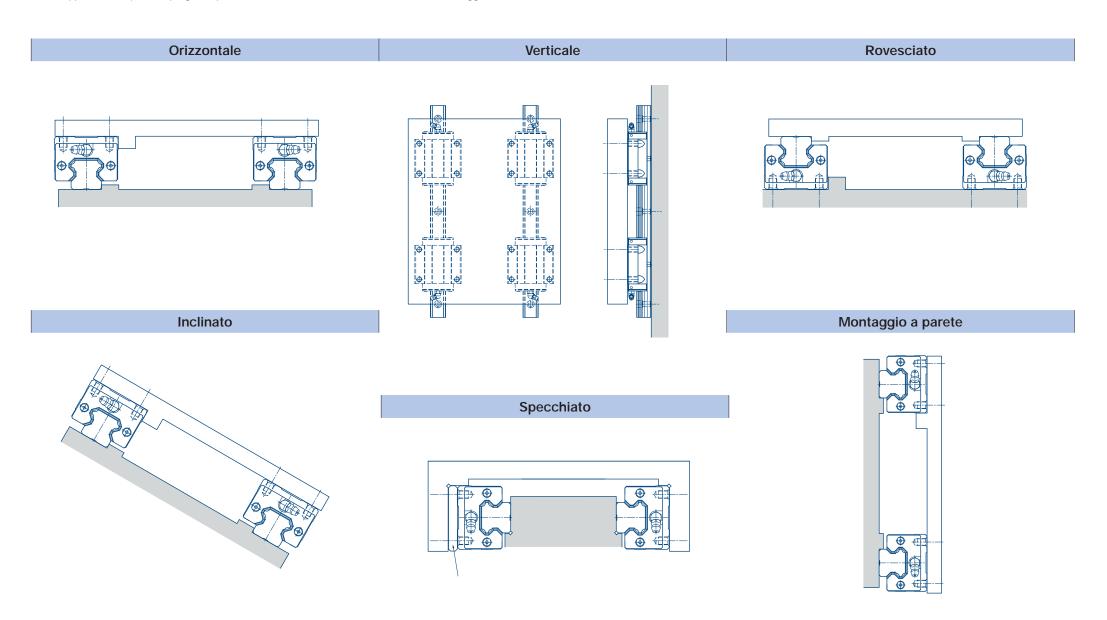
Il precarico si ottiene attraverso un gioco negativo creato da un incremento del diametro delle sfere. Il precarico va considerato nel calcolo della durata di vita della guida lineare.

Selezione del precarico

La tabella sotto riportata mostra le classi di precarico in funzione delle condizioni operative e del tipo di applicazione.

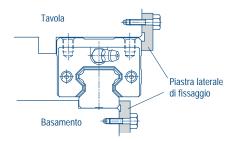
Precarico	Condizioni operative	Esempi di applicazioni
Precarico leggero (Z0)	La direzione del carico è fissata, sono presenti leggeri shock e vibrazioni, e sono utilizzati due assi in parallelo. Non è richiesta alta precisione ed è presente un basso valore di attrito.	Macchine di saldatura, macchine confezionatrici, macchine industriali due assi, dispositivi per la movimentazione dei materiali.
Precarico medio (Z1)	Presenza di momenti ribaltanti. Configurazione a singolo asse. Richiesta di precarico leggero e elevata precisione.	Asse verticale delle macchine industriali, EDM, tavole di precisione a due assi, foratrici per circuiti stampati, robot industriali, torni a controllo numerico, apparecchiature di misura, rettifiche, macchine di verniciatura.
Precarico elevato (Z2)	Macchine soggette a vibrazioni e shock dove è richiesta massima rigidità. Applicazioni a carico elevato.	Centri di lavoro, torni a controllo numerico, rettifiche, frese, foratrici e macchine utensili.

Gradi di precarico di ciascuna serie

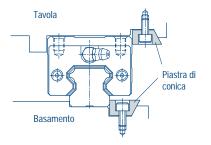

La tabella sotto riportata mostra i gradi di precarico di ogni serie in funzione della percentuale sul carico dinamico (C). Il carico dinamico corrispondente può essere ricavato dalle tabelle dimensionali di ogni serie.

Precarico	NFL	NFR	NGL	NGR
Precarico leggero (Z0)	0.02 C	0.02 C	0.02 C	0.02 C
Precarico medio (Z1)	0.05 C	0.05 C	0.05 C	0.05 C
Precarico elevato (Z2)	0.08 C	0.08 C	0.08 C	0.08 C

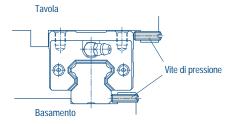
11. Fattori importanti per la corretta applicazione


Orientamento di montaggio delle guide lineari

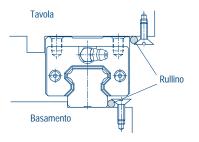
L'orientamento di montaggio della guida lineare dipende dalla struttura della macchina e dalla direzione del carico applicato. Quando si utilizza la lubrificazione ad olio, il percorso di lubrificazione può dipendere anch'esso dall'applicazione, quindi si prega di specificare, in fase di ordine, l'orientamento del montaggio.


Metodi di fissaggio della guida lineare

La rotaia ed il carrello dovrebbero essere distanziati quando la macchina riceve vibrazioni o shock.


Piastra laterale di fissaggio (Consigliata)

Con questo metodo, la rotaia ed il carrello devono sporgere leggermente rispetto sia al piano che alla tavola. Per evitare l'interferenza tra il bordo del carrello e della rotaia la piastra laterale di fissaggio deve avere una rientranza.


Piastra di fissaggio conica

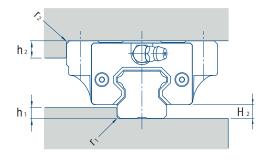
Utilizzando questo metodo bisogna porre attenzione alla coppia di serraggio della vite poiché potrebbe creare una elevata forza di pressione sul carrello della guida lineare creando deformazione sulla rotaia. Quindi, questo metodo di fissaggio deve essere utilizzato con cautela.

Vite di pressione

A causa della limitazione dello spazio di montaggio la dimensione della vite dovrà essere contenuta.

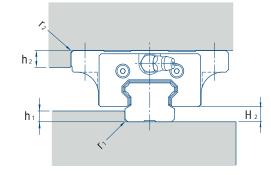
Rullino

Il rullino è pressato utilizzando la sezione conica della testa della vite, quindi deve essere fatta attenzione sul posizionamento della vite stessa.


Tecnica di montaggio

Per garantire la precisione durante il montaggio, si prega di seguire le specifiche sotto riportate.

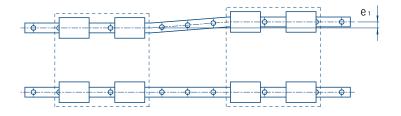
A. Altezza della spalla e raggio dello smusso


La superficie di montaggio della rotaia come pure quella del carrello sono accuratamente rettificate per garantire un posizionamento e un montaggio di alta precisione.

L'altezza della spalla e il raggio dello smusso della flangia (sotto riportate) garantiscono un sufficiente spazio di montaggio che non interferisce con le altre parti della rotaia e del carrello.

modello	r ₁ (max.)	r ₂ (max.)	h1	h ₂	h ₂
15	0.5	0.5	3	4	4.2
20	0.5	0.5	3.5	5	5
25	1	1	5	5	6.5
30	1	1	5	5	8
35	1	1	6	6	9.5
45	1	1	8	8	10

Unità: mm

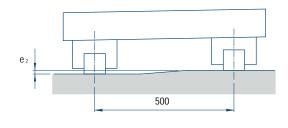

modello	r ₁ (max.)	r ₂ (max.)	h1	h ₂	h ₂
15	0.5	0.5	3	4	4.5
20	0.5	0.5	4	5	6
25	1	1	5	5	7
30	1	1	7	5	9.5
35	1	1	8	6	9.5

Unità: mm

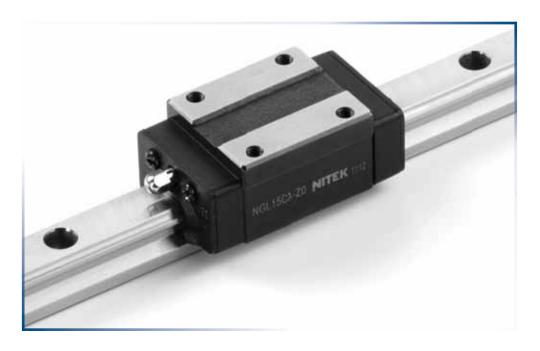
B. Tolleranze dimensionali della superficie di montaggio

Il risultante errore dimensionale dovuto alla superficie di montaggio potrà essere compensato attraverso la capacità di auto allineamento della guida, garantendo un movimento lineare dolce. Le tolleranze di parallelismo tra due assi sono mostrate qui sotto.

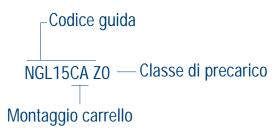
Deviazione di parallelismo tra due assi (e,)


madalla	grado di precarico				
modello	ZO	Z1	Z2		
15	25	18	-		
20	25	20	18		
25	30	22	20		
30	40	30	27		
35	50	35	30		
45	60	40	35		

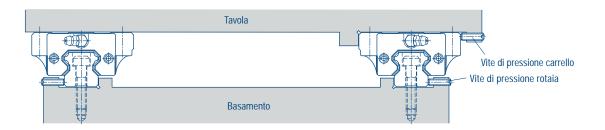
Unità: µm


Unità: µm

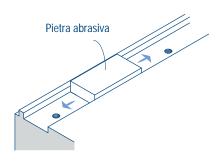
Differenza di livello tra due assi (e,)


modello	grado di precarico										
modello	ZO	Z1	Z2								
15	130	85	-								
20	130	85	50								
25	130	85	70								
30	170	110	90								
35	210	150	120								
45	250	170	140								

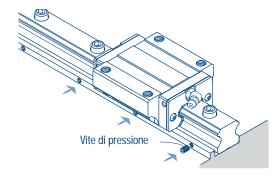
Marcatura della guida lineare



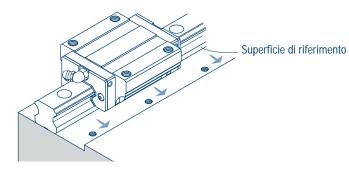
Marcatura sul carrello

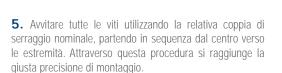

12. Montaggio della guida lineare

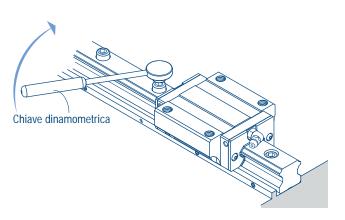
Montaggio della guida lineare in caso di assi soggetti a vibrazioni e shock.



Montaggio della rotaia.


1. Prima dell'installazione, rimuovere accuratamente lo sporco, l'olio antiruggine e le bave.

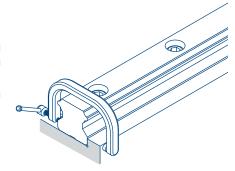

4. Spingere le viti di pressione in sequenza per assicurare che la rotaia della guida sia perfettamente appoggiata al piano di riferimento.

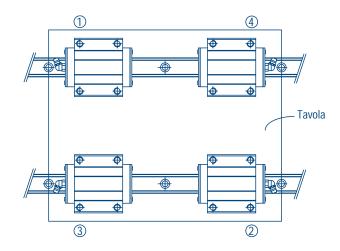

2. Posizionare delicatamente la guida lineare sul piano allineandola rispetto alla superficie di riferimento.

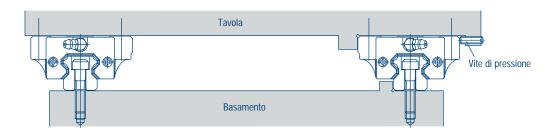
3. Controllare il corretto allineamento delle viti avvitandole leggermente.

Montaggio del carrello

- **1.** Posizionare accuratamente la tavola sopra i carrelli e fissare temporaneamente le viti.
- **2.** Avvitare la vite di pressione per fissare la rotaia principale rispetto alla superficie di riferimento e posizionare la tavola.
- **3.** Avvitare completamente le viti sulla rotaia principale e sulla rotaia secondaria. Seguire l'ordine da 1 a 4 per avvitare le viti.

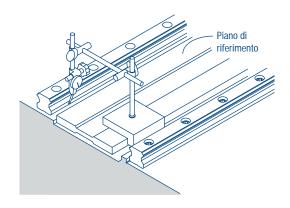

Montaggio della guida lineare senza viti di pressaggio

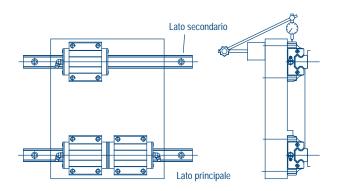

Montaggio della rotaia principale.

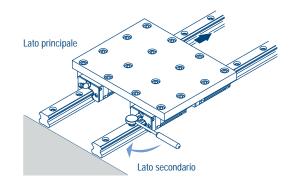

Utilizzando un morsetto

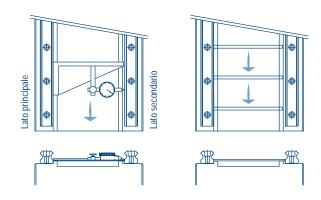
Fissare le viti temporaneamente mediante una prima avvitatura e utilizzando un morsetto a C premere la rotaia principale contro la superficie di riferimento.

Avvitare le viti di montaggio in sequenza utilizzando la coppia necessaria.




Montaggio della rotaia secondaria.


Utilizzando un piano di riferimento


Piazzare un piano di riferimento tra le due rotaie posizionandolo parallelamente sulla superficie di riferimento della rotaia che è stata temporaneamente fissata con le viti.

Controllare il parallelismo e l'allineamento della rotaia attraverso un comparatore. Ultimare il montaggio stringendo le viti in sequenza.

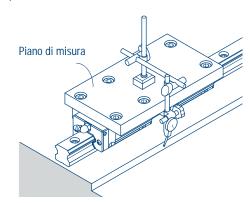
Utilizzando una tavola

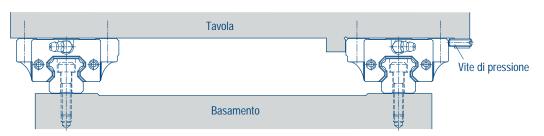
Fissare i due carrelli sul lato principale e un carrello sul lato secondario della tavola. Fissare temporaneamente l'altro carrello sul lato secondario e la rotaia sul piano di fissaggio. Posizionare il comparatore sulla tavola ed eseguire la misura sul lato del carrello secondario. Muovere la tavola da un'estremità all'altra della corsa e controllare il parallelismo tra il carrello e la rotaia del lato secondario. Ultimare il montaggio stringendo le viti in sequenza.

Utilizzando il lato principale come riferimento di misura

Fissare i due carrelli principali e il carrello sul lato secondario della tavola. Fissare temporaneamente l'altro carrello sul lato secondario e la rotaia al piano di appoggio. Muovere la tavola da un lato all'altro della sua corsa controllando il parallelismo tra la rotaia sul lato secondario basandosi sulla resistenza al movimento. Ultimare il montaggio stringendo le viti in sequenza.

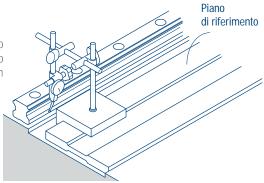
Utilizzando uno spessore di riferimento


Utilizzando uno speciale spessore allineare la rotaia sul lato principale e la rotaia sul lato secondario da un estremo all'altro della corsa. Fissare le viti in sequenza per ultimare il montaggio.


Montaggio del carrello della guida lineare senza superficie di riferimento per la rotaia principale

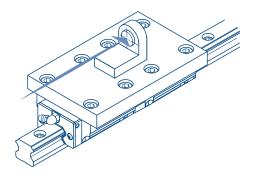
Montaggio della rotaia principale (guida di riferimento).

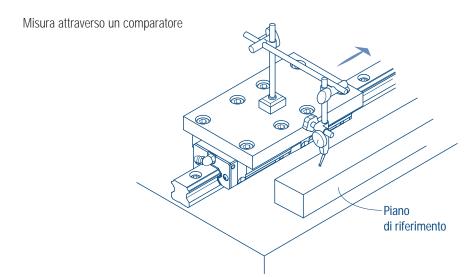
Utilizzando una superficie di riferimento temporanea


Preparare una superficie di riferimento temporanea vicina alla superficie di montaggio della rotaia sul piano e fissare due carrelli su un piano di misura. Controllare il parallelismo tra la rotaia e la superficie attraverso un comparatore. Ultimare il fissaggi della rotaia stringendo le viti in sequenza.

Utilizzando un piano di riferimento

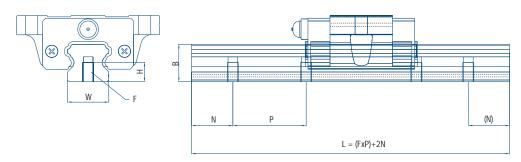
Fissare temporaneamente la rotaia al piano e utilizzando un comparatore controllarne l'allineamento con il piano di riferimento. Ultimare il fissaggio stringendo le viti in sequenza.




Il montaggio del carrello e della rotaia sul lato secondario può seguire le stesse fasi indicate negli esempi precedenti.

Misura della precisione dopo il montaggio

La misura della precisione di movimento può essere ottenuta fissando due carrelli ad un piano di misura dove è presente un collimatore per interferometro laser. Se invece viene utilizzato un comparatore, una superficie di riferimento deve essere piazzata più vicino possibile al piano di misura per garantire una misurazione corretta.


Misura attraverso un collimatore

Montaggio della guida con forature dal basso

Per il montaggio con le forature dal basso, indicare in fase d'ordine la lettera T come specificato a pag.5.

modello	lunghezza rotaia (mm)												
		Р	F	Н		В							
15	20	60	M5 x 0.8 P	8	15	15							
20	20	60	M6 x 1P	10	20	18							
25	20	60	M6 x 1P	12	2	22							
30	20	80	M8 x 1.25 P	15	28	26							
35	20	80	M8 x 1.25 P	17	34	29							
45	20	105	M12 x 1.75 P	24	45	38							

Coppia di serraggio raccomandata per le rotaie

Un improprio valore di coppia di serraggio può influenzare la precisione di movimento, per questo si suggerisce di stringere le viti ad uno specifico valore di coppia. Differenti tipi di materiale della superficie di montaggio richiedono differenti valori di coppia di serraggio come indicato in tabella.

filettatura	\	taglia		
Illettatura	ferro	ferro ghisa		taglia
M4 x 0.70 P x 16 L	4	2.7	2	15
M5 x 0.80 P x 16 L	8.8	5.9	4.4	20
M6 x 1.00 P x 20 L	13.7	9.2	6.8	25
M8 x 1.25 P x 25 L	30	20	15	30/35
M12 x 1.75 P x 25 L	120	78	58	45

Unità: N • m

13. Opzioni

Protezione dalla polvere

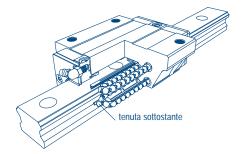
Codice delle protezioni dai contaminanti

Per il carrello:

codice	descrizione
UU	tenute bidirezionali (entrambi i lati)
SS	tenute bidirezionali + tenute sottostanti
ZZ	SS + raschiatore
DD	doppia tenuta bidirezionale + tenute sottostanti
KK	DD + raschiatore

Per la rotaia:

codice	descrizione
/CC	bandella di copertura
/MC	tappi per copertura foro vite

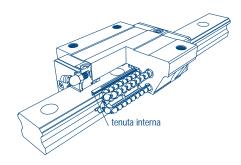

Protezione dai contaminanti

Ogni serie di guide lineari viene fornita con accessori per la protezione dai contaminanti per evitare che gli stessi entrino nel carrello.

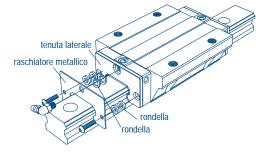
tenute su entrambi i lati

Sono disponibili due differenti tipologie di tenute:

- 1. tenuta bidirezionale per un'elevata protezione dai contaminanti
- 2. tenuta monodirezionale per bassi valori di frizione



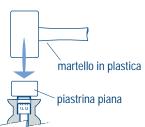
tenute sottostanti


Per evitare inclusione di contaminanti dalla parte sottostante del carrello.

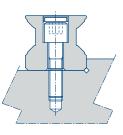
tenute interne

raschiatori metallici

Per evitare l'inclusione di contaminanti dal lato dei fori della rotaia.


Per rimuovere truciolo ferroso o contaminanti di grande dimensione aumentando la protezione realizzata con le tenute su entrambi i lati.

Tappo per copertura foro della rotaia


Per prevenire l'entrata dei materiali contaminanti all'interno del carrello è disponibile un tappo di plastica di copertura per i fori della rotaia.

Il tappo può essere inserito utilizzando un martello con testa in materiale plastico ed una piastrina piana, martellando fino a pareggiare la superficie del tappo a quella della rotaia.

Metodo di montaggio

modello	dimensione	filattatura	dimensioni principali (mm)						
	della vite	filettatura	D	h					
15	7.5	M4	7.8	1.2					
20	9.5	M5	9.8	2.2					
25	11	M6	11.4	2.5					
30/35	14	M8	14.4	3.4					
45	20	M12	20.4	4.4					

Lubrificazione

E' veramente importante per mantenere un buon funzionamento della guida lineare utilizzare una corretta lubrificazione. Se non viene rispettata questa regola la resistenza all'attrito nell'area di scorrimento delle sfere riceve un incremento e la vita di servizio della guida risulterà più corta o ridotta a causa dell'affaticamento delle sfere. I principali lubrificanti da utilizzare per i sistemi lineari in genere sono l'olio o il grasso, e i metodi di lubrificazione si possono riassumere in manuali o a lubrificazione forzata. La selezione del lubrificante ed il metodo dovrebbero essere scelti in base alle richieste di velocità/accelerazione e alle condizioni ambientali di lavoro.

Lubrificazione a grasso

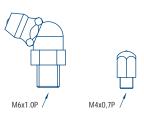
L'intervallo di lubrificazione con grasso varia a seconda delle condizioni operative e ambientali. Considerando condizioni operative normali il re-ingrassaggio deve avvenire ogni 100 Km di cammino della guida (ogni 3-6 mesi). Il grasso standard è a base litio tipo 2. Per un corretto ingrassaggio dei carrelli si consiglia di muoverli almeno avanti e indietro lungo la rotaia per una distanza pari a tre volte la dimensione del carrello. Per assicurare che il grasso sia distribuito in maniera uniforme all'interno del carrello si consiglia di ripetere questo processo almeno due volte.

Lubrificazione ad olio

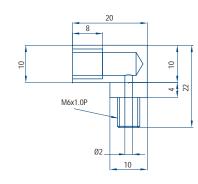
Per garantire una buona lubrificazione oraria si raccomanda di utilizzare un olio con viscosità tra i 30 e i 150 cst. Per il calcolo della quantità d'olio utilizzare la seguente equazione: Q = n/150 dove Q è la quantità d'olio necessaria, n è la larghezza della rotaia. Il tasso di alimentazione dell'olio deve essere di circa 0,3 cm³/ora. Occorre considerare il tipo di orientamento della rotaia per assicurare un corretto percorso di lubrificazione se ad esempio non si tratta di un movimento di tipo orizzontale.

Note:

Quando la corsa operativa è inferiore alla somma delle lunghezze di due carrelli il percorso di lubrificazione dovrebbe raggiungere entrambe le testate del carrello. Per una corretta lubrificazione del carrello quando la corsa di movimento è la metà della lunghezza di un carrello occorre muovere lo stesso avanti e indietro di almeno la lunghezza di due carrelli.


Punti di lubrificazione

Il punto di lubrificazione standard si trova al centro delle testate della guida lineare. Si possono avere altri punti di lubrificazione come quelli laterali e superiori su richiesta.



Per lubrificazione con grasso

Giunto di espansione rettangolare

14. Raccomandazioni

Manipolazione

- 1. Inclinare la guida lineare (in verticale) può causare l'uscita del carrello dalla rotaia.
- 2. Shock o cadute possono danneggiare il funzionamento interno della guida anche se l'aspetto esterno risulta intatto.
- 3. Si prega di non smontare il carrello poiché guesto potrebbe causare l'entrata di contaminanti e diminuire la precisione dello stesso.

Lubrificazione

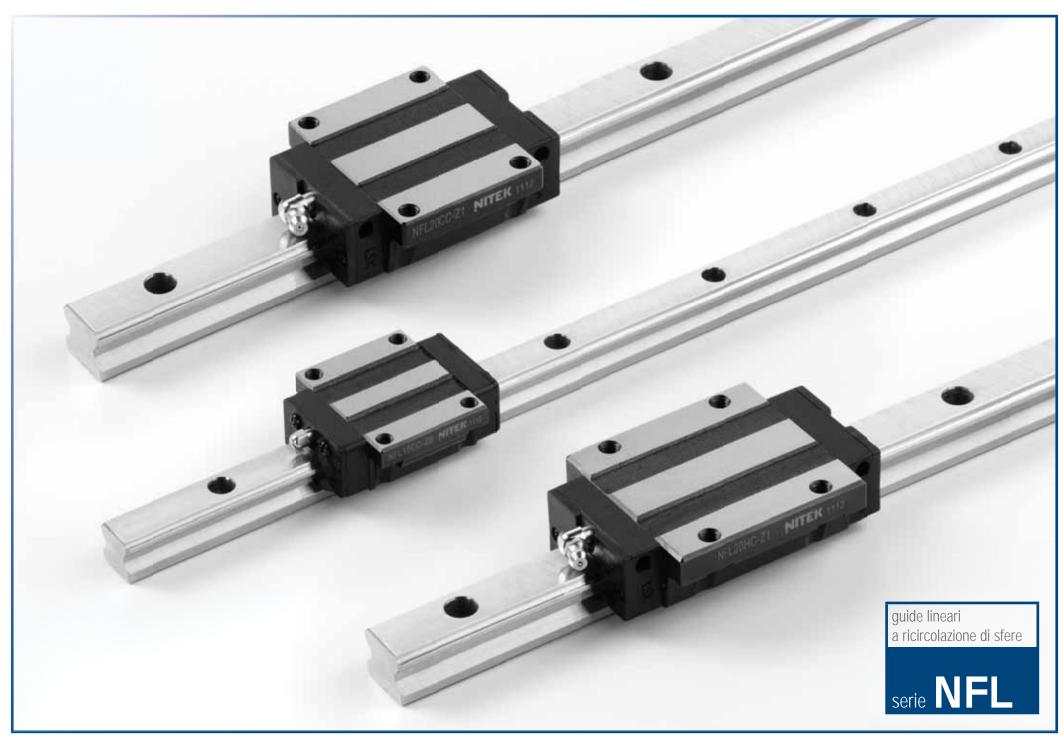
- 1. Pulire accuratamente la guida prima di lubrificarla.
- 2. Non mischiare lubrificanti di tipo diverso.
- 3. Prestare attenzione all'orientamento del montaggio poiché se il lubrificante è olio potrebbe non essere distribuito in maniera uniforme sulle sfere.

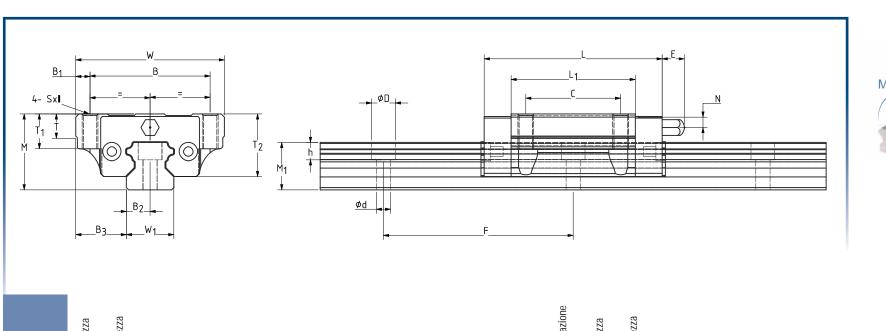
Utilizzo

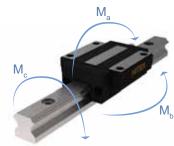
- 1. La temperatura della superficie dove viene montata la guida lineare non dovrebbe superare gli 80° C, poiché temperature superiori potrebbero danneggiare le testate in plastica.
- 2. Se si deve rimuovere il carrello da una guida si prega di utilizzare la finta rotaia in dotazione.
- 3. Sotto speciali condizioni operative quali vibrazioni, temperature elevate o elevata contaminazione si prega di contattare Nitek.

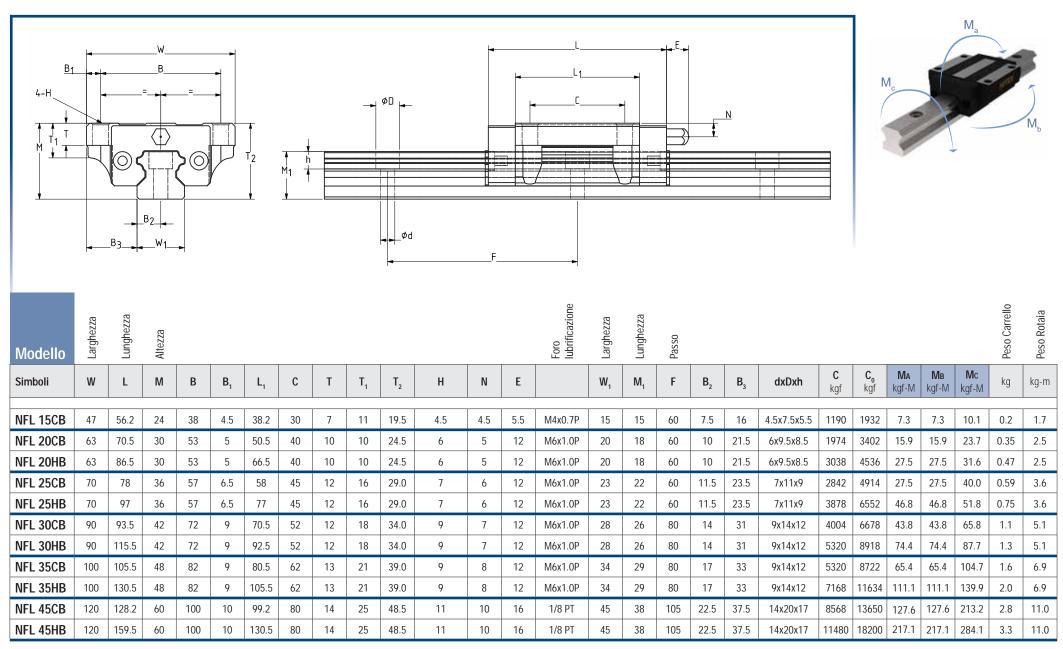
Stoccaggio

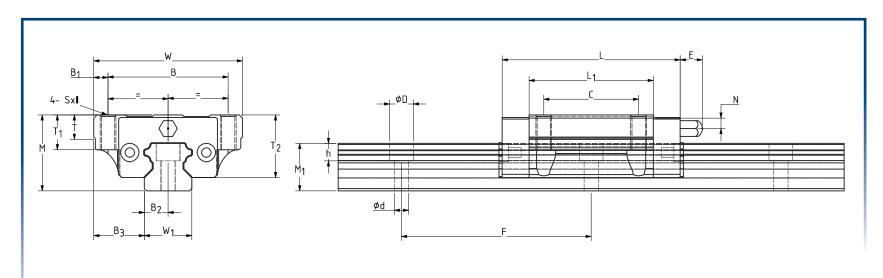
Quando si mantengono le guide lineari in magazzino si prega di mantenerle all'interno della confezione su di un piano orizzontale in condizioni di bassa umidità e bassa temperatura.

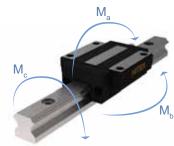




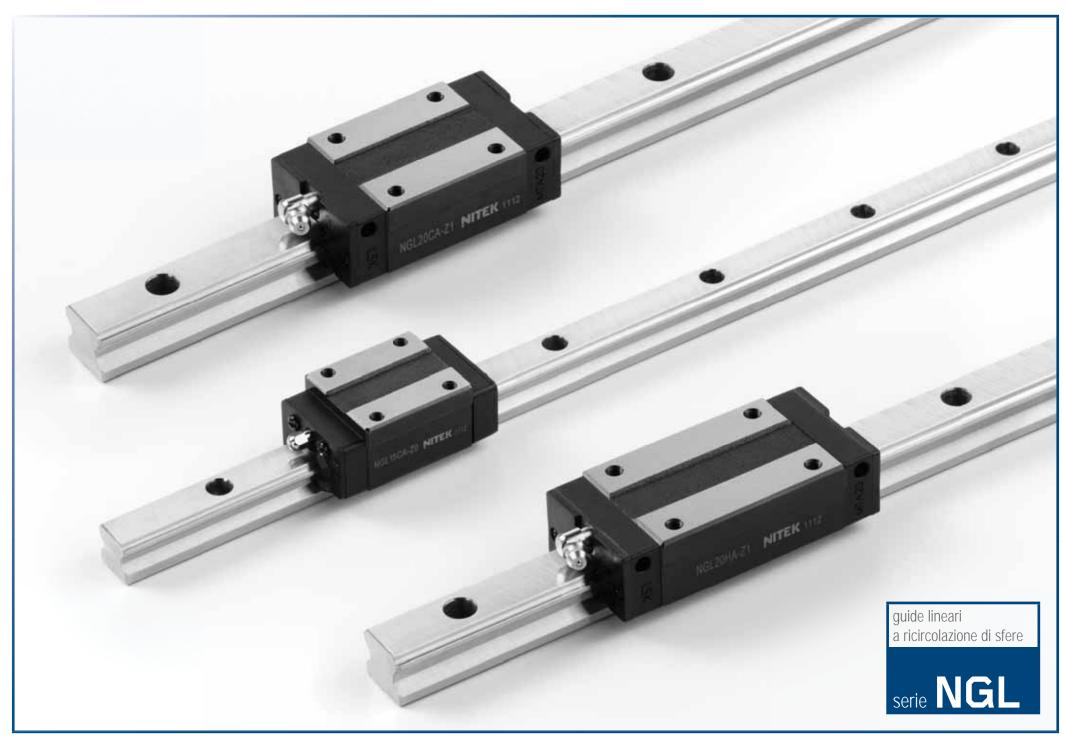


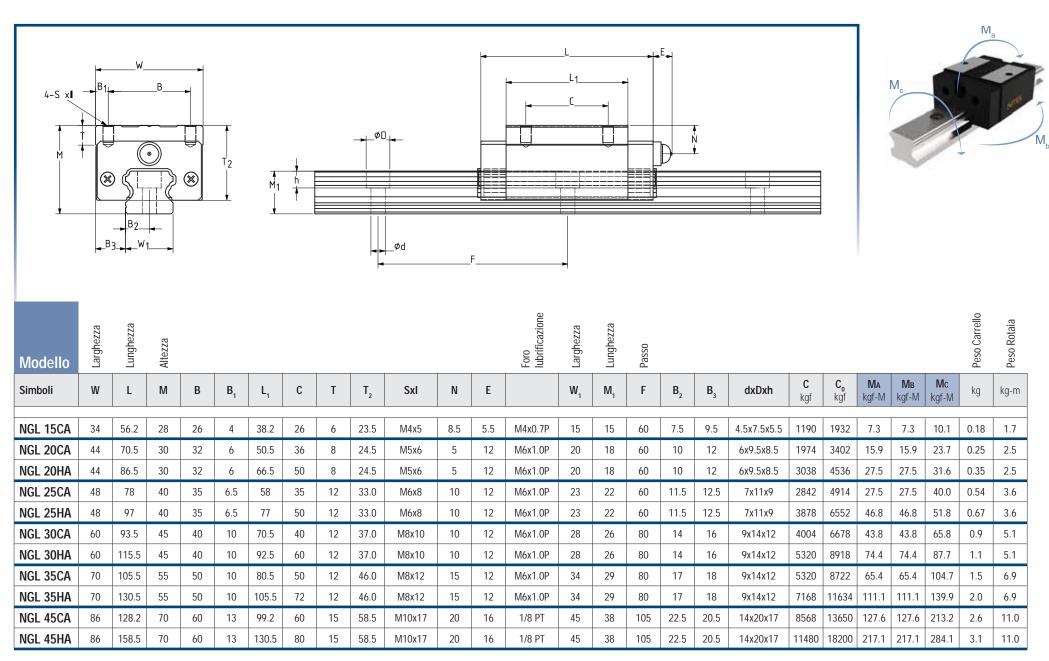


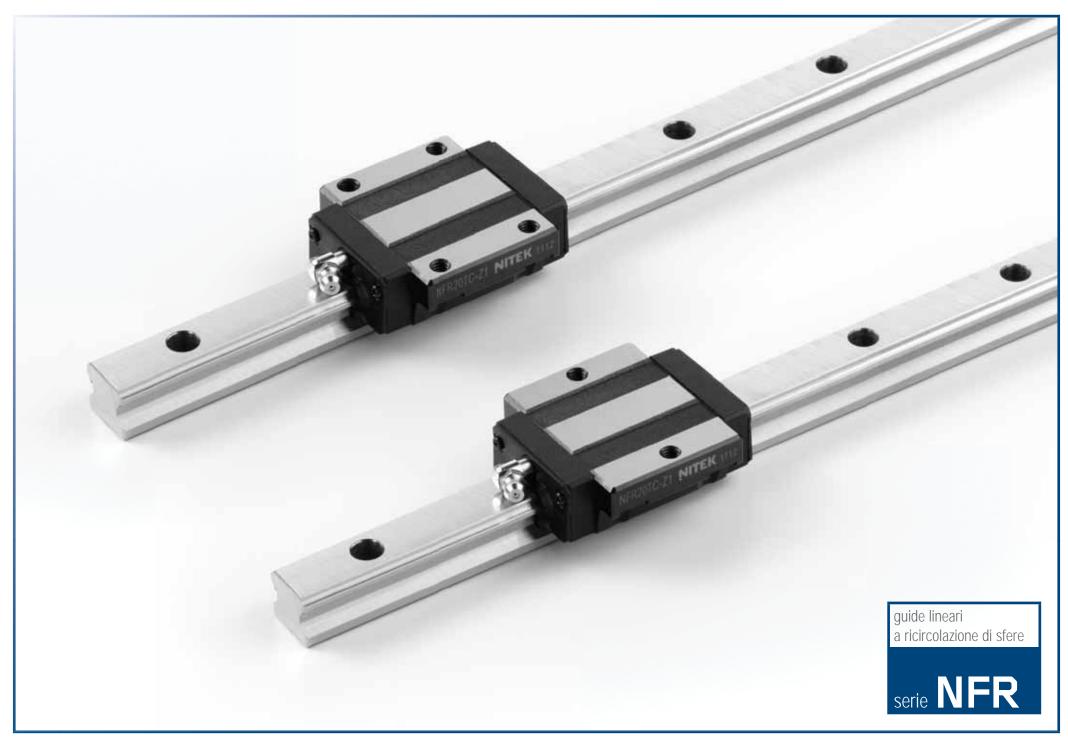


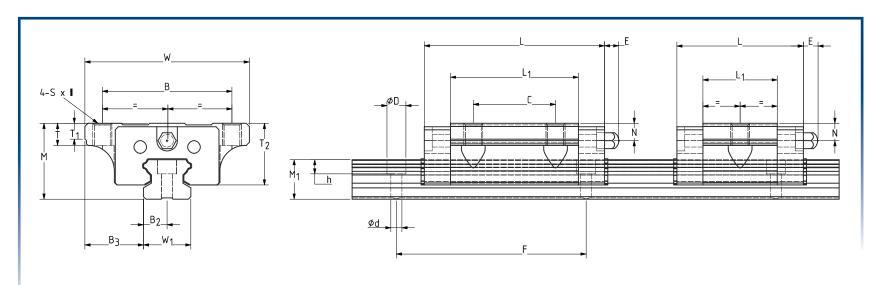


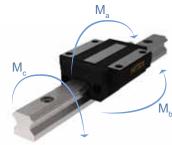
Modello	Larghezza	Lunghezza	Altezza											Foro Iubrificazione	Larghezza	Lunghezza	Passo									Peso Carrello	Peso Rotaia
Simboli	W	L	М	В	B ₁	L ₁	С	T	T ₁	T ₂	Sxl	N	E		W ₁	M ₁	F	B ₂	B ₃	dxDxh	C kgf	C _o kgf	Ma kgf-M	М в kgf-M	Mc kgf-M	kg	kg-m
NFL 15CA	47	56.2	24	38	4.5	38.2	30	7	11	19.5	M5x11	4.5	5.5	M4x0.7P	15	15	60	7.5	16	4.5x7.5x5.5	1190	1932	7.3	7.3	10.1	0.2	1.7
NFL 20CA	63	70.5	30	53	5	50.5	40	10	10	24.5	M6x10	5	12	M6x1.0P	20	18	60	10	21.5	6x9.5x8.5	1974	3402	15.9	15.9	23.7	0.35	2.5
NFL 20HA	63	86.5	30	53	5	66.5	40	10	10	24.5	M6x10	5	12	M6x1.0P	20	18	60	10	21.5	6x9.5x8.5	3038	4536	27.5	27.5	31.6	0.47	2.5
NFL 25CA	70	78	36	57	6.5	58	45	12	16	29.0	M8x16	6	12	M6x1.0P	23	22	60	11.5	23.5	7x11x9	2842	4914	27.5	27.5	40.0	0.59	3.6
NFL 25HA	70	97	36	57	6.5	77	45	12	16	29.0	M8x16	6	12	M6x1.0P	23	22	60	11.5	23.5	7x11x9	3878	6552	46.8	46.8	51.8	0.75	3.6
NFL 30CA	90	93.5	42	72	9	70.5	52	12	18	34.0	M10x18	7	12	M6x1.0P	28	26	80	14	31	9x14x12	4004	6678	43.8	43.8	65.8	1.1	5.1
NFL 30HA	90	115.5	42	72	9	92.5	52	12	18	34.0	M10x18	7	12	M6x1.0P	28	26	80	14	31	9x14x12	5320	8918	74.4	74.4	87.7	1.3	5.1
NFL 35CA	100	105.5	48	82	9	80.5	62	13	21	39.0	M10x21	8	12	M6x1.0P	34	29	80	17	33	9x14x12	5320	8722	65.4	65.4	104.7	1.6	6.9
NFL 35HA	100	130.5	48	82	9	105.5	62	13	21	39.0	M10x21	8	12	M6x1.0P	34	29	80	17	33	9x14x12	7168	11634	111.1	111.1	139.9	2.0	6.9
NFL 45CA	120	128.2	60	100	10	99.2	80	14	25	48.5	M12x25	10	16	1/8 PT	45	38	105	22.5	37.5	14x20x17	8568	13650	127.6	127.6	213.2	2.8	11.0
NFL 45HA	120	159.5	60	100	10	130.5	80	14	25	48.5	M12x25	10	16	1/8 PT	45	38	105	22.5	37.5	14x20x17	11480	18200	217.1	217.1	284.1	3.3	11.0

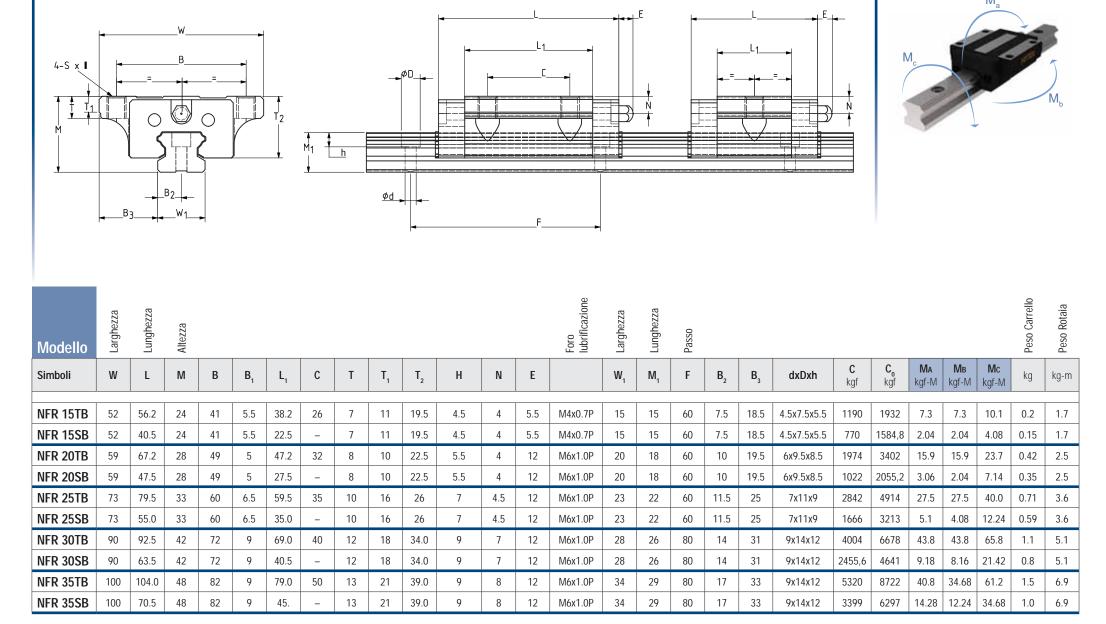

Dove non indicato unità di misura in mm

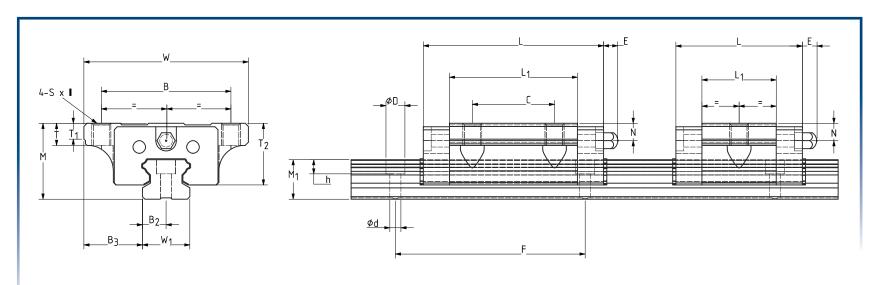


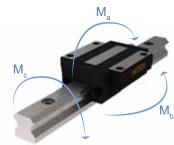


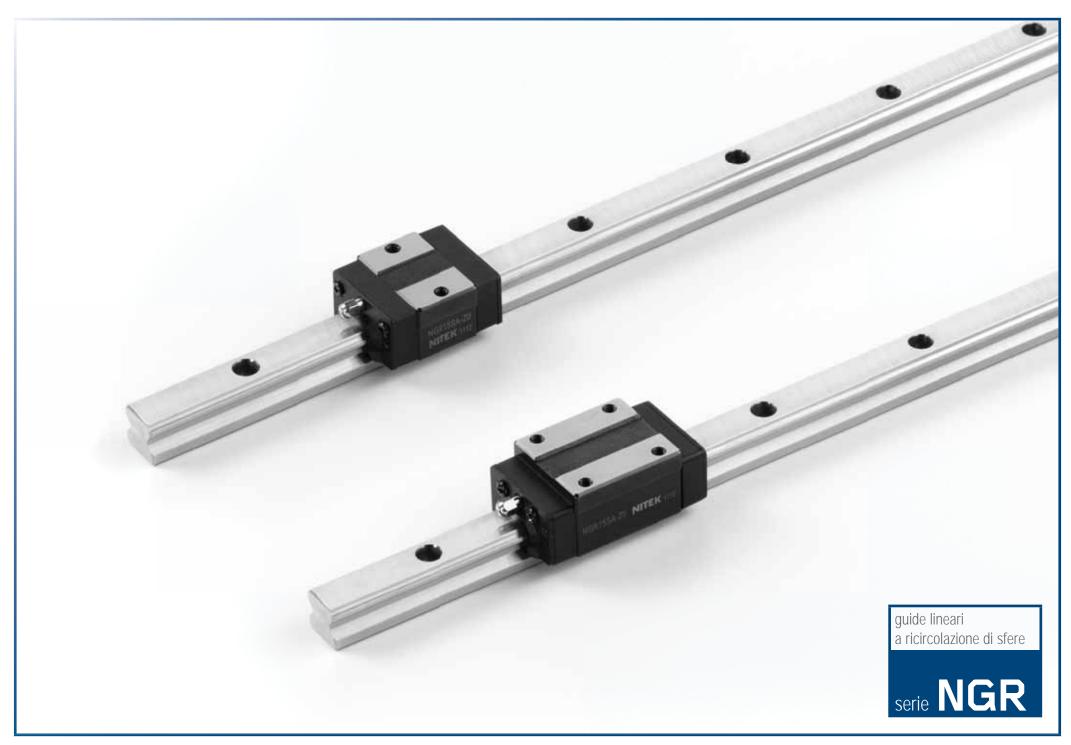


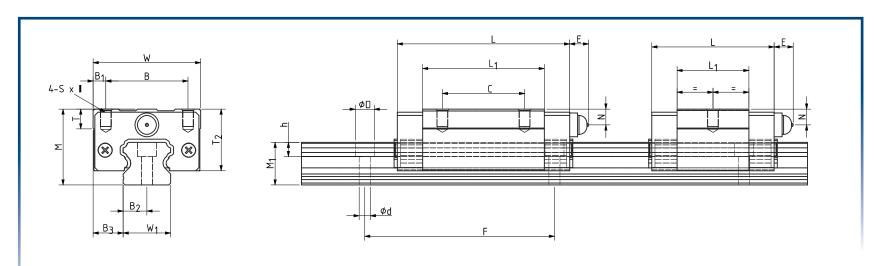

Modello	Larghezza	Lunghezza	Altezza											Foro Iubrificazione	Larghezza	Lunghezza	Passo									Peso Carrello	Peso Rotaia
Simboli	W	L	M	В	B ₁	L ₁	С	T	T ₁	T ₂	SxI	N	E		W ₁	M ₁	F	B ₂	B ₃	dxDxh	C kgf	C _o kgf	M a kgf-M	М в kgf-M	M c kgf-M	kg	kg-m
NFL 15CC	47	56.2	24	38	4.5	38.2	30	7	11	19.5	M5x7	4.5	5.5	M4x0.7P	15	15	60	7.5	16	4.5x7.5x5.5	1190	1932	7.3	7.3	10.1	0.2	1.7
NFL 20CC	63	70.5	30	53	5	50.5	40	10	10	24.5	M6x10	5	12	M6x1.0P	20	18	60	10	21.5	6x9.5x8.5	1974	3402	15.9	15.9	23.7	0.35	2.5
NFL 20HC	63	86.5	30	53	5	66.5	40	10	10	24.5	M6x10	5	12	M6x1.0P	20	18	60	10	21.5	6x9.5x8.5	3038	4536	27.5	27.5	31.6	0.47	2.5
NFL 25CC	70	78	36	57	6.5	58	45	12	16	29.0	M8x10	6	12	M6x1.0P	23	22	60	11.5	23.5	7x11x9	2842	4914	27.5	27.5	40.0	0.59	3.6
NFL 25HC	70	97	36	57	6.5	77	45	12	16	29.0	M8x10	6	12	M6x1.0P	23	22	60	11.5	23.5	7x11x9	3878	6552	46.8	46.8	51.8	0.75	3.6
NFL 30CC	90	93.5	42	72	9	70.5	52	12	18	34.0	M10x10	7	12	M6x1.0P	28	26	80	14	31	9x14x12	4004	6678	43.8	43.8	65.8	1.1	5.1
NFL 30HC	90	115.5	42	72	9	92.5	52	12	18	34.0	M10x10	7	12	M6x1.0P	28	26	80	14	31	9x14x12	5320	8918	74.4	74.4	87.7	1.3	5.1
NFL 35CC	100	105.5	48	82	9	80.5	62	13	21	39.0	M10x13	8	12	M6x1.0P	34	29	80	17	33	9x14x12	5320	8722	65.4	65.4	104.7	1.6	6.9
NFL 35HC	100	130.5	48	82	9	105.5	62	13	21	39.0	M10x13	8	12	M6x1.0P	34	29	80	17	33	9x14x12	7168	11634	111.1	111.1	139.9	2.0	6.9
NFL 45CC	120	128.2	60	100	10	99.2	80	14	25	48.5	M12x25	10	16	1/8 PT	45	38	105	22.5	37.5	14x20x17	8568	13650	127.6	127.6	213.2	2.8	11.0
NFL 45HC	120	159.5	60	100	10	130.5	80	14	25	48.5	M12x25	10	16	1/8 PT	45	38	105	22.5	37.5	14x20x17	11480	18200	217.1	217.1	284.1	3.3	11.0

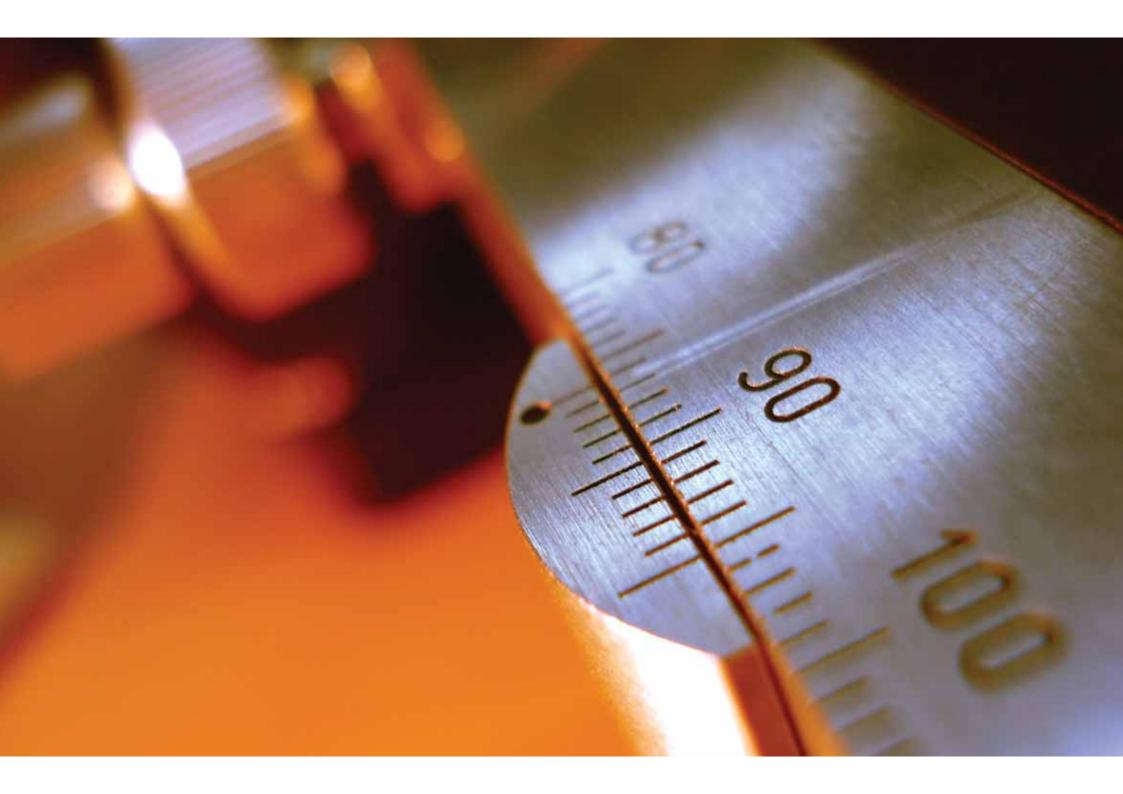







Modello	Larghezza	Lunghezza	Altezza											Foro Iubrificazione	Larghezza	Lunghezza	Passo									Peso Carrello	Peso Rotaia
Simboli	W	L	M	В	B ₁	L ₁	С	T	T ₁	T ₂	SxI	N	E		W ₁	M ₁	F	B ₂	B ₃	dxDxh	C kgf	C _o kgf	Ma kgf-M	М в kgf-M	M c kgf-M	kg	kg-m
NFR 15TA	52	56.2	24	41	5.5	38.2	26	7	11	19.5	M5x11	4	5.5	M4x0.7P	15	15	60	7.5	18.5	4.5x7.5x5.5	1190	1932	7.3	7.3	10.1	0.2	1.7
NFR 15SA	52	40.5	24	41	5.5	22.5	-	7	11	19.5	M5x11	4	5.5	M4x0.7P	15	15	60	7.5	18.5	4.5x7.5x5.5	770	1584,8	2.04	2.04	4.08	0.15	1.7
NFR 20TA	59	67.2	28	49	5	47.2	32	8	10	22.5	M6x10	4	12	M6x1.0P	20	18	60	10	19.5	6x9.5x8.5	1974	3402	15.9	15.9	23.7	0.42	2.5
NFR 20SA	59	47.5	28	49	5	27.5	_	8	10	22.5	M6x10	4	12	M6x1.0P	20	18	60	10	19.5	6x9.5x8.5	1022	2055,2	3.06	2.04	7.14	0.35	2.5
NFR 25TA	73	79.5	33	60	6.5	59.5	35	10	16	26	M8x16	4.5	12	M6x1.0P	23	22	60	11.5	25	7x11x9	2842	4914	27.5	27.5	40.0	0.71	3.6
NFR 25SA	73	55.0	33	60	6.5	35.0	-	10	16	26	M8x16	4.5	12	M6x1.0P	23	22	60	11.5	25	7x11x9	1666	3213	5.1	4.08	12.24	0.59	3.6
NFR 30TA	90	92.5	42	72	9	69.0	40	12	18	34.0	M10x18	7	12	M6x1.0P	28	26	80	14	31	9x14x12	4004	6678	43.8	43.8	65.8	1.1	5.1
NFR 30SA	90	63.5	42	72	9	40.5	-	12	18	34.0	M10x18	7	12	M6x1.0P	28	26	80	14	31	9x14x12	2455,6	4641	9.18	8.16	21.42	8.0	5.1
NFR 35TA	100	104.0	48	82	9	79.0	50	13	21	39.0	M10x21	8	12	M6x1.0P	34	29	80	17	33	9x14x12	5320	8722	40.8	34.68	61.2	1.5	6.9
NFR 35SA	100	70.5	48	82	9	45.	_	13	21	39.0	M10x21	8	12	M6x1.0P	34	29	80	17	33	9x14x12	3399	6297	14.28	12.24	34.68	1.0	6.9




Modello	Larghezza	Lunghezza	Altezza											Foro Iubrificazione	Larghezza	Lunghezza	Passo									Peso Carrello	Peso Rotaia
Simboli	W	L	M	В	B ₁	L ₁	С	T	T ₁	T ₂	SxI	N	E		W ₁	M ₁	F	B ₂	B ₃	dxDxh	C kgf	C _o kgf	M a kgf-M	М в kgf-M	Mc kgf-M	kg	kg-m
NFR 15TC	52	56.2	24	41	5.5	38.2	26	7	11	19.5	M5x7	4	5.5	M4x0.7P	15	15	60	7.5	18.5	4.5x7.5x5.5	1190	1932	7.3	7.3	10.1	0.2	1.7
	32	30.2	24	41	5.5	30.2	20	/	11	17.5	IVIOX7	4	5.5	IVI4XU.7F	10	10	00	7.5	10.5	4.387.383.3	1170	1732	7.3	7.3	10.1	0.2	1.7
NFR 15SC	52	40.5	24	41	5.5	22.5	-	7	11	19.5	M5x7	4	5.5	M4x0.7P	15	15	60	7.5	18.5	4.5x7.5x5.5	770	1584,8	2.04	2.04	4.08	0.15	1.7
NFR 20TC	59	67.2	28	49	5	47.2	32	8	10	22.5	M6x9	4	12	M6x1.0P	20	18	60	10	19.5	6x9.5x8.5	1974	3402	15.9	15.9	23.7	0.42	2.5
NFR 20SC	59	47.5	28	49	5	27.5	-	8	10	22.5	M6x9	4	12	M6x1.0P	20	18	60	10	19.5	6x9.5x8.5	1022	2055,2	3.06	2.04	7.14	0.35	2.5
NFR 25TC	73	79.5	33	60	6.5	59.5	35	10	16	26	M8x10	4.5	12	M6x1.0P	23	22	60	11.5	25	7x11x9	2842	4914	27.5	27.5	40.0	0.71	3.6
NFR 25SC	73	55.0	33	60	6.5	35.0	_	10	16	26	M8x10	4.5	12	M6x1.0P	23	22	60	11.5	25	7x11x9	1666	3213	5.1	4.08	12.24	0.59	3.6
NFR 30TC	90	92.5	42	72	9	69.0	40	12	18	34.0	M10x10	7	12	M6x1.0P	28	26	80	14	31	9x14x12	4004	6678	43.8	43.8	65.8	1.1	5.1
NFR 30SC	90	63.5	42	72	9	40.5	_	12	18	34.0	M10x10	7	12	M6x1.0P	28	26	80	14	31	9x14x12	2455,6	4641	9.18	8.16	21.42	0.8	5.1
NFR 35TC	100	104.0	48	82	9	79.0	50	13	21	39.0	M10x13	8	12	M6x1.0P	34	29	80	17	33	9x14x12	5320	8722	40.8	34.68	61.2	1.5	6.9
NFR 35SC	100	70.5	48	82	9	45.	-	13	21	39.0	M10x13	8	12	M6x1.0P	34	29	80	17	33	9x14x12	3399	6297	14.28	12.24	34.68	1.0	6.9

Modello	Larghezza	Lunghezza	Altezza										Foro IubrifiTAzione	Larghezza	Lunghezza	Passo									Peso Carrello	Peso Rotaia
Simboli	W	L	М	В	B ₁	L ₁	С	Т	T ₂	SxI	N	E		W ₁	M ₁	F	B ₂	B ₃	dxDxh	C kgf	C _o kgf	Ma kgf-M	М в kgf-M	Mc kgf-M	kg	kg-m
1100 4571						l	l						l		l	l		l							T	
NGR 15TA	34	56.2	24	26	4	38.2	26	6	19.5	M4x5	4	5.5	M4x0.7P	15	15	60	7.5	9.5	4.5x7.5x5.5	1190	1932	7.3	7.3	10.1	0.18	1.7
NGR 15SA	34	40.5	24	26	4	21.3	_	6	19.5	M4x5	4	5.5	M4x0.7P	15	15	60	7.5	9.5	4.5x7.5x5.5	770	1584,8	2.04	2.04	4.08	0.11	1.7
NGR 20TA	42	67.2	28	32	5	47.2	32	7.5	22.5	M5x6	4	12	M6x1.0P	20	18	60	10	11	6x9.5x8.5	1974	3402	15.9	15.9	23.7	0.25	2.5
NGR 20SA	42	47.5	28	32	5	27.5	_	7.5	22.5	M5x6	4	12	M6x1.0P	20	18	60	10	11	6x9.5x8.5	1022	2055,2	3.06	2.04	7.14	0.23	2.5
NGR 25TA	48	79.5	33	35	6.5	59.5	35	8	26	M6x8	4.5	12	M6x1.0P	23	22	60	11.5	12.5	7x11x9	2842	4914	27.5	27.5	40.0	0.54	3.6
NGR 25SA	48	55.0	33	35	6.5	35.0	_	8	26	M6x8	4.5	12	M6x1.0P	23	22	60	11.5	12.5	7x11x9	1666	3213	5.1	4.08	12.24	0.45	3.6
NGR 30TA	60	92.5	42	40	10	69.0	40	9	34	M8x10	7	12	M6x1.0P	28	26	80	14	16	9x14x12	4004	6678	43.8	43.8	65.8	0.9	5.1
NGR 30SA	60	63.5	42	40	10	40.5	_	9	34	M8x10	7	12	M6x1.0P	28	26	80	14	16	9x14x12	2455,6	4641	9.18	8.16	21.42	0.7	5.1
NGR 35TA	70	104.0	48	50	10	79.0	50	13	39	M8x12	8	12	M6x1.0P	34	29	80	17	18	9x14x12	5320	8722	40.8	34.68	61.2	2.6	6.9
NGR 35SA	70	70.5	48	50	10	45.5	-	13	39	M8x	8	12	M6x1.0P	34	29	80	17	18	9x14x12	3399	6297	14.28	12.24	34.68	1.2	6.9

I contenuti di questo catalogo sono protetti da copyright di pubblicazione e non possono essere riprodotti se non dietro preventivo consenso.

Ogni cura è stata posta per assicurare l'accuratezza delle informazioni contenute in questo catalogo ma nessunsa responsabilità può essere imputata per eventuali errori o amissioni.

NISE srl - NITEK © Copyright 2013

Progetto grafico: www.loryland.it

Copyright per le foto: Claudio Visentin | Creative Studio srl

Licenza Shutterstock.com

NISE srl sede di Bologna.

Le guide lineari NITEK sono realizzate nello stabilimento Leadchin Slidek inc. di Taichung, Taiwan.

NITEK® è un marchio registrato di NISE srl.

NITEK.

NISE srl

Via Roma 118/F
Zona Industriale Bargellino
40012 Calderara di Reno (Bo) - Italy
Tel. +39 051 727079
Fax +39 051 729543
info@nise.it
www.nise.it