Project planning EN

Servo motors

MQA asynchronous servo motor

Contents

About this document	5
Document description	5
Further documents	5
Notations and conventions	6
Product information	
Product description	
Identification of the products	
Features	
The modular system	g
Information on project planning	10
Safety instructions	
Basic safety instructions	11
Application as directed	12
Foreseeable misuse	12
Residual hazards	13
Drive dimensioning	
Final configuration	20
Surface and corrosion protection	20
Information on mechanical installation	21
Important notes	
Transport	
Installation	
Information on electrical installation	
Important notes.	
Preparation	
Technical data	
Notes regarding the given data	
Standards and operating conditions.	
Conformities and approvals	
Protection of persons and device protection	
EMC data	
Environmental conditions.	
Radial forces and axial forces	
Rated data	
Inverter mains connection 400 V, Forced ventilated motors	
Selection tables	
Torque characteristics	
Dimensions	
Basic dimensions	
Additional lengths	
Weights	
Basic weights	
Additional weights	

Contents

Product extensions	51
Motor connection	51
Connection via terminal box	51
Connection via ICN connector	53
Brakes	57
Spring-applied brakes	59
Feedback	62
Resolver	63
Incremental encoder	64
Absolute value encoder	65
Blower	66
Temperature monitoring	67
Thermal detectors PT1000	67
Product codes	68
Environmental notes and recycling	69
Appendix	70
Good to know	70
Approvals and directives	70
Operating modes of the motor	71
Englacures	77

About this document

Document description

This document addresses to all persons who want to carry out any configurations with the products described.

The data and information compiled in this document serve to support you in the dimensioning and selection processes and in carrying out the electrical and mechanical installation. You will receive information regarding product extensions and accessories.

- The document includes safety instructions which must be observed.
- All persons working on and with the drives must have the documentation at hand during work and observe the information and notes relevant for it.
- The documentation must always be complete and in a perfectly readable state.

NOTICE

Please observe the notes in the following chapters!

- ► Safety instructions 🕮 10
- ► Information on mechanical installation 🕮 21
- ► Information on electrical installation □ 22

Further documents

Information and tools with regard to the Lenze products can be found on the

www.Lenze.com → Downloads

About this document

Notations and conventions

Notations and conventions

This document uses the following conventions to distinguish different types of information:

Nur	nbers		
	Decimal separator	Point	In general, the decimal point is used. Example: 1 234.56
Wai	rning		
	UL warning	UL	Are used in English and French.
	UR warning	UR	
Text		•	
	Programs	» «	Software Example: »Engineer«, »EASY Starter«
Icor	ns	<u>'</u>	
	Page reference		Reference to another page with additional information Example: 16 = see page 16
	Documentation reference	(Reference to another documentation with additional information Example: (3) EDKxxx = see documentation EDKxxx

Layout of the safety instructions

⚠ DANGER!

Indicates an extremely hazardous situation. Failure to comply with this instruction will result in severe irreparable injury and even death.

⚠WARNING!

Indicates an extremely hazardous situation. Failure to comply with this instruction may result in severe irreparable injury and even death.

⚠CAUTION!

Indicates a hazardous situation. Failure to comply with this instruction may result in slight to medium injury.

NOTICE

Indicates a material hazard. Failure to comply with this instruction may result in material damage.

.....

Product information

Product description

The MQA asynchronous servo motor for precisely controlled motion.

The naturally ventilated MQA asynchronous servo motor is suitable for applications that require a high dynamic performance, high construction-related operational reliability and precisely controlled motion.

In connection with the i700 and i950 servo inverters, Servo Drives 9400, and Inverter Drives 8400 TopLine, high-performance drive solutions in the torque range from 66 to 1100 Nm can be obtained.

Customer benefit

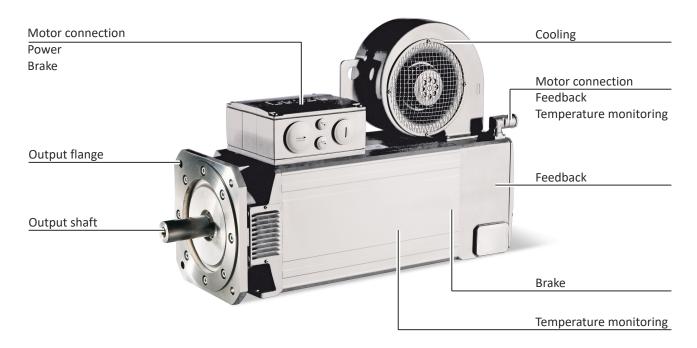
- · Optimum controllability and high dynamic performance thanks to low moments of inertia
- Optimal smooth running characteristics for exact work results
- Wide speed setting range
- Field weakening operation usable
- Robust resolvers are included as a standard, and incremental encoders or absolute value encoders ensure a high precision

Fig. 1: Asynchronous servo motor MQA22P08-

Identification of the products

Product name: MQA asynchronous servo motor

		Motor				
Example		MQA	20	L	14	Н
Meaning	Variant					
Product family		MQA				
Size			20			
			22			
			26			
Overall length				L		
				Т		
Rated speed	rpm x 100				05	
					29	
Inverter mains	3 x 400 V			•		Н
connection						


Product information

Features

Features

The following figure provides an overview of the elements and connections on the product. Their position, size and appearance may vary.

The modular system

Values printed in bold are standard designs. Values that are not printed in bold are potential extensions, some of them including a surcharge.

Motor		MQA20	MQA22	MQA26		
Technical data						
Rated power	kW	10.6 20.3	11.5 38.4	17.0 60.2		
Rated torque	Nm	66.2 71.3	125 145	257 296		
Max. torque	Nm	250	500	1100		
Rated speed	rpm	1420 2930 760 2935 550 223				
Color		Primed RAL9005 matt jet blac RAL color	:k			
Surface and corrosion protection		OKS-G Different types of OKS				
Output shaft						
Solid shaft with featherkey	mm	38 x 80	38 x 80	55 x 110		
Solid shaft without keyway	mm	38 x 80	38 x 80	55 x 110		
Shaft material		Steel	-			
Shaft sealing ring material		FKM				
Shaft seal		Standard Oil-proof Dust-proof				
A-side end shield		Not oil-proof Oil-proof				
Design		With flange (B3/B35)				
Output flange	mm	FF215 FF265	FF265	FF265 FF350		
Cooling		Forced ventilated IP23s	-1	•		
Dust filter		Without With				
Motor connection						
Power + brake + blower		ICN connector Terminal box	Terminal box			
Encoder + temperature monitoring		ICN connector				
Spring-applied holding brake		Without With				
Standard braking torque	Nm	80.0	130	260		
Increased braking torque	Nm	130	260	-		
DC brake voltage	V	24		•		
AC brake voltage	V	230 (not for cURus an ICN con	nector)			
Feedback						
Without functional safety		Resolver Absolute value encoder Incremental encoder				
With functional safety		Resolver Incremental encoder				
Temperature monitoring		PT1000 temperature sensor TCO thermal contact (not for ICN connector and spring-applied brake)				

Safety instructions

Information on project planning

Safety instructions

Disregarding the following basic safety measures and safety information may lead to severe personal injury and damage to property!

Observe all specifications of the corresponding documentation supplied. This is the precondition for safe and trouble-free operation and for obtaining the product features specified.

Please observe the specific safety information in the other sections!

Safety instructions Basic safety instructions

Basic safety instructions

A DANGER!

Dangerous electrical voltage

Possible consequences: Death or severe injuries from electric shock

- ► Any work on the device must only be carried out in a deenergized state.
- ▶ After switching off the mains voltage, observe the signs on the product.

Product

- The product must only be used as directed.
- Never commission the product in the event of visible damage.
- The product must never be technically modified.
- Never commission the product before assembly has been completed.
- The product must never be operated without required covers.
- Connect/disconnect all pluggable terminals only in de-energized condition.
- Only remove the product from the installation in the de-energized state.

Personnel

Only qualified and skilled personnel are allowed to work with the product. IEC 60364 and/or CENELEC HD 384 define the qualifications of these persons as follows:

- They are familiar with the installation, mounting, commissioning, and operation of the product.
- They possess the appropriate qualifications for their tasks.
- They are familiar with all regulations for the prevention of accidents, directives, and laws
 applicable at the location and are able to apply them.

Electrical connection

When working on energized products, comply with the applicable national accident prevention regulations.

The electrical installation work must be carried out according to the appropriate regulations (e.g. cable cross-sections, fusing, PE conductor connection). Additional information can be obtained from this documentation.

This documentation contains notes about installation according to EMC regulations. Also observe these notes for CE-marked products. The manufacturer of the system or machine is responsible for adherence to the limits required in connection with EMC legislation.

Operation

Where appropriate, you must equip the system with additional monitoring and protective devices. Comply with the safety regulations and other regulations applicable at the place of operation.

After disconnecting the product from the supply voltage, do not touch live device parts and power terminals immediately because capacitors may be charged. Observe the corresponding information labels on the product.

Dirt or dust deposits impede the heat dissipation and cooling. Remove any such deposits where appropriate at regular intervals.

Process engineering

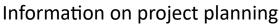
The procedural notes and circuit details described are only proposals. It is up to the user to check whether they can be adapted to the particular applications. Lenze does not take any responsibility for the suitability of the procedures and circuit proposals described.

Disposal

The products and accessories must be properly disposed of in accordance with the applicable regulations. The products contain raw materials that can be recycled such as metals, plastics and electronic components.

Safety instructions Application as directed

Application as directed


NOTICE

Please observe the notes in the following chapters!

- ► Safety instructions 🕮 10
- ▶ Information on mechanical installation 🕮 21
- ► Information on electrical installation 🕮 22
- The product must only be actuated under the operating conditions and power limits specified in this documentation.
- The product meets the protection requirements of 2014/35/EU: Low-Voltage Directive.
- The product is not classed as a machine under 2006/42/EC: Machinery Directive.
- No machine is to be commissioned or put into operation as intended in conjunction with the product until it has been determined that the machine meets the regulations of EC Directive 2006/42/EC: Machinery Directive; observe EN 60204-1.
- Commissioning or putting into operation as intended is only permitted in compliance with the EMC Directive 2014/30/EU.
- The product is not a household appliance. Instead, it is a component that is intended
 exclusively for further use in the context of commercial or professional use as defined by
 EN 61000-3-2.
- The product can be used according to the technical data if the drive systems have to comply with categories in accordance with EN 61800–3.
- Do not use the built-in brakes as fail-safe brakes. Disruptive factors that cannot be influenced may cause the braking torque to be reduced.
- The product is only to be operated together with an inverter.
- The harmonized standards of the series IEC/EN60034 are used.

Foreseeable misuse

- Operate directly on the mains voltage
- Use in potentially explosive atmospheres
- · Operate in aggressive environments (acids, gases, vapors, dusts, oils)
- Operate under water
- · Operate under radiation
- Operate in generator mode

Safety instructions Residual hazards

Residual hazards

Even if notes given are taken into consideration and protective measures are implemented, the occurrence of residual risks cannot be fully prevented.

The user must take the residual hazards mentioned into consideration in the risk assessment for his/her machine/system.

If the above is disregarded, this can lead to severe injuries to persons and damage to property!

Product

Observe the warning labels on the product!

Dangerous electrical voltage:

Before working on the product, make sure there is no voltage applied to the power terminals! After mains disconnection, the power terminals will still carry the hazardous electrical voltage for the time given next to the symbol!

Electrostatic sensitive devices:

Before working on the product, the staff must ensure to be free of electrostatic charge!

High leakage current:

Carry out fixed installation and PE connection in compliance with: EN 61800–5–1 / EN 60204–1

Hot surface:

Use personal protective equipment or wait until the device has cooled down!

Protection of persons

- The product does not provide any safety-related functions.
 - A higher-level safety system must be implemented.
 - Provide additional monitoring and protective equipment complying with the safety regulations applicable in each case.
- The power terminals may carry voltage in the switched-off state or when the motor is stopped.
 - Before working, check whether all power terminals are deenergized.
- Voltages may occur on the drive components (e.g. capacitive, caused by inverter supply).
 - Careful earthing must be carried out at the marked positions of the components.
- There is a risk of burns from hot surfaces!
 - Provide protection against accidental contact.
 - Use personal protective equipment or wait until the device has cooled down!
 - Prevent contact with flammable substances.
- Risk of injury from rotating parts.
 - Before working on the drive system, ensure that the motor is at a standstill.
- There is a danger of unintentional start-up or electric shocks!
- Installed brakes are no fail-safe brakes.
 - torque may be reduced by disruptive factors that cannot be influenced such as ingressing oil.

Safety instructions Residual hazards

Motor protection

- · Version with plug:
 - Never disconnect the plug when energized. The plug could be destroyed.
 - Switch off the voltage supply or disable the inverter prior to disconnecting the plug.
- Installed thermal detectors are no full protection for the machine.
 - Limit the maximum current if necessary. Parameterize the inverter so that it will be switched off after several seconds of operation with I > I_{rated} especially if there is a danger of blocking.
 - The integrated overload protection does not prevent overloading under all conditions.
- The fuses are no motor protection.
 - Use a current-dependent motor protection switch.
 - Use the built-in thermal detectors.
- Excessively high torques cause a fracture of the motor shaft.
 - Do not exceed the maximum torques according to the technical data on the nameplate.
- Lateral forces on the motor shaft are possible.
 - Align the shafts of motor and driven machine exactly to each other.

Information on project planning Drive dimensioning

_

Drive dimensioning

In order to carry out an accurate drive dimensioning process, you can use our configuring software, the »Drive Solution Designer«.

With the «Drive Solution Designer«, you can design the drive both quickly and to a high quality. The software contains profound and proven expertise with regard to drive applications and mechatronic drive components.

Please get in touch with your Lenze representative.

The dimensioning is suitable for:

- · kinematic profiles
- operating modes S1, S2, S3, S6 4 71
- · simple linear speed profiles, not for S-curves or similar

The following 3 elements are taken into consideration in the dimensioning process:

Drive function

On the basis of the values required for the process that are specified, a drive is selected, for which all operating points are within the speed-torque characteristic curve of the motor.

As a result, a motor with a suitable speed and an inverter with a sufficient maximum current are selected. Further limits (maximum speed, installation height...) are specified in tables.

Mechanical strength

On the basis of the occurring forces and torques, a drive is selected that has a sufficient mechanical strength (endurance strength for the periodically occurring torques and fatigue strength for the sporadically occurring torques).

Thermal dimensioning

For the inverter, the thermal dimensioning process is carried out on the basis of the continuous inverter current or on the basis of the continuous torque from the motor-inverter combination, which can be reached.

The motor is thermally dimensioned on the basis of the mean speed and the effective torque.

The mean speed of the drive should not exceed the values specified.

If dimensioning processes are complex or reach limit loads, please refer to your Lenze representative.

Information on project planning Drive dimensioning

Operation chart

S1 operation	S2,S3 and S6 operation	Speed profiles
↓	↓	↓
	Check operating conditions	
	†	
	Define required input variables	
	†	
	Determine correction factor	
Operating modes and operating time	Operating modes and operating time	
Ambient temperature and installation height	Ambient temperature and installation height	Ambient temperature and installation height
	↓	
	Determine motor on the basis of the forces acting	3
1	1	↓
1	1	Define load characteristic for the individual
•	•	time segments
1	†	†
1	1	Calculation of the values required for the
~	~	process
+	+	+
	Inspect and select motor	
	†	
	Final configuration	

Check operating conditions

Check	
Approvals	
Conformities	
Supply voltage	
Degree of protection	
Ambient temperature	
Surface protection	

- ▶ Standards and operating conditions ☐ 24
- ▶ Surface and corrosion protection ☐ 20

Define required input variables

Necessary input variables	Note	Symbol	Unit
Mean speed utilisation	Relating to the load speed n _L		%
Ambient temperature		T _U	°C
Site altitude Amsl		Н	m
Radial force		F _{rad}	N
Axial force		F _{ax}	N
Transmission element at the output	Gear wheels, sprockets		
Effective diameter of the transmission element		d _w	mm
Load torque	Only with S1, S2, S3, and S6 operating modes	M _L	Nm
Load speed	Only with S1, S2, S3, and S6 operating modes	n _L	rpm
Short-time maximum torque	Emergency off, quick stop, occasional high starting duty	M _{L,max}	Nm
Runtime with maximum torque		t _L	%

Information on project planning Drive dimensioning

Determine correction factor

Operating modes S1, S2, S3, S6, and operating time									
Operating mode \$1		Operating	g mode S2	Operating mode S3 Operating r		g mode S6			
ED	k _L	ED	k _L	k _L ED k _L		ED	k _L		
%		min		%		%			
100	1.0	10	1.4 - 1.5	15	1.4 - 1.5	15	1.5 - 1.6		
		30	1.15 - 1.2	25	1.3 - 1.4	25	1.4 - 1.5		
		60	1.07 - 1.1	40	1.15 - 1.2	40	1.3 - 1.4		
		90	1.0 - 1.05	60	1.05 - 1.1	60	1.15 - 1.2		

▶ Operating modes of the motor ☐ 71

Ambient temperature		Installation	height amsl				
	≤ 1000 m	≤ 2000 m	≤ 3000 m	≤ 4000 m			
	Correction factor						
T _U	k _H	k _H	k _H	k _H			
≤ 20 °C	1.15	1.06	0.97	0.89			
30 °C	1.07	0.99	0.90	0.83			
40 °C	1.00	0.92	0.83	0.77			
50 °C	0.92	0.85	0.76	0.71			
60 °C	0.83	0.77	0.70	0.65			

Determine product on the basis of the forces

Transmission element			Gear wheels	Sprockets	Toothed belt pulleys	Narrow V-belt	
					(depending on the preloading)	(depending on the preloading)	
			≥ 17 teeth = 1.0	≥ 20 teeth = 1.0	With belt tightener= 2.0 - 2.5	1.5 - 2.0	
Additional radial force factor	f _z		< 17 teeth = 1.15	< 20 teeth = 1.25	Without belt tightener= 2.5 - 3.0		
				< 13 teeth = 1.4			
			Calculation	•	Check		
Radial force	F _{rad}	N	$F_{rad} = 2000 \times \frac{M_{L,max} \times f_z}{dw}$		F _{rad} ≤ F _{rad,max}		
Axial force	F _{ax}	N			$F_{ax} \le F_{ax,max}$		

Effective diameter of transmission element dw

▶ Radial forces and axial forces ☐ 26

Operating mode S1

Check and select servo motor/inverter combination				
Check Selection Unit			Unit	
Output torque	$M_{rated} \ge M_L / (k_L x k_H)$	M _{rated}	Nm	
Output speed	$n_{\text{rated}} \ge n_{\text{L}}$	n _{rated}	rpm	

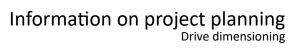
▶ Rated data 🕮 28

Information on project planning Drive dimensioning

Operating modes S2, S3, and S6

Check and select servo motor/inverter combination				
	Check	Selection	Unit	
Output torque	$M_{\text{rated}} \ge M_{\text{L}} / (k_{\text{L}} \times k_{\text{H}})$	M _{rated}	Nm	
Output speed (recommendation)	$n_{rated} \ge n_L$	n _{rated}	rpm	
Max. output torque.	$M_{\text{max}} \ge M_{\text{L}}$	M _{max}	Nm	
Max. output speed	$n_{\text{max}} \ge n_{\text{L}}$	n _{max}	rpm	
All operating points (●)				
below the maximum torque characteristic of the servo motor/		n _L		
inverter combination here, M _{L,max} must	[E] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	M _L		
be considered	Σ			
Thermally effective operating point (0)		n _L		
below the S1 torque characteristic of				
the servo motor	n [r/min]	$M_L/(k_L \times k_H)$		

▶ Rated data 🕮 28


▶ Torque characteristics 🕮 35

Speed profiles

Total time	Individual time segments	Load speed	Load speed variation	Steady-state load torque	Torque	Acceleration torque	Moment of inertia
t	Δt _z	n _{L,z}	Δn _{L,z}	M _{L,z}	M _z	M _{s,z}	J _L
S	s	rpm	rpm	Nm	Nm	Nm	kgcm ²

	Calculation	Symbol	Unit
Load cycle duration	$T = \sum \Delta t_z$	Т	S

Calculation of the values required for the process				
	Calculation	Symbol	Unit	
Torque per time segment	$M_z = M_{L,z} + J_L \frac{2\pi \times \Delta n_{L,z}}{60 \times \Delta t_z}$	M _z	Nm	
Maximum torque of the profile	$M_{P,max} = max (M_z)$	M _{P,max}	Nm	
Effective torque	$M_{eff} = \sqrt{\frac{1}{T} \sum_{z} M_{z}^{2} \times \Delta t_{z}}, T \leq 1 min$	M _{eff}	Nm	
Mean speed	$n_{m} = \overline{n_{L,z}} = \frac{1}{T} \sum_{z} n_{L,z} \times \Delta t_{z}$	n _m	rpm	
Maximum load speed	$n_{L,max} = max (n_{L,z})$	n _{L,max}	rpm	

Check and select servo motor/inverter co	mbination		
	Check	Preselection	Unit
Output torque	$M_{rated} > M_{eff} / k_{H}$	M _{rated}	Nm
Output speed	$n_{rated} \ge n_{m}$	n _{rated}	rpm
Load-matching factor			
for an optimum dynamic performance/ control properties	Requirement $k_j = 0.5 \dots 10$ Optimum $k_j = 1$	$k_{J} = J_{L} / (J_{M} + J_{B})$	
Checking the motor torques			
Acceleration torque	$M_{S,z} = M_z + (J_M + J_B) \times \frac{2\pi \times \Delta n_{L,z}}{60 \times \Delta t_z}$	$M_{S,z}$	Nec
Effective torque	$M_{S,eff} = \sqrt{\frac{1}{T} \sum_{z} M_{S,z}^2 \times \Delta t_z}$	M _{S,eff}	- Nm
All operating points (●)			
below the maximum torque characteristic of the servo motor/ inverter combination here, M _{L,max} must be considered	N N N N N N N N N N N N N N N N N N N	n _{L,z} M _{S,z}	
Thermally effective operating point (o)		n _m	
below the S1 torque characteristic of the servo motor	n [r/min]	M _{S,eff} / k _H	

▶ Rated data 🕮 28

▶ Torque characteristics 🕮 35

Final configuration
Surface and corrosion protection

Final configuration

	Check	
Connection dimensions	Output shaft	
	Output flange	
Product extensions	Motor connection (connector/terminal box)	
	Brake	
	Feedback	
	Blower	

More information about the final configuration:

- ▶ The modular system 🕮 9
- ▶ Product extensions ☐ 51

Surface and corrosion protection

Depending on the ambient conditions, the surface and corrosion protection system (called OKS) offers solutions for optimum protection.

Various surface coatings ensure that the motors operate reliably at high air humidity, in outdoor installation or in the presence of atmospheric impurities. Any color from the "RAL Classic" collection can be chosen for the top coat.

Surface and corrosion protection	Applications	Туре
OKS-G (primed)	Dependent on subsequent top coat applied	Standard
OKS-S (small)	 Standard applications Internal installation in heated buildings Air humidity up to 90 % 	Optional
OKS-M (medium)	 Internal installation in non-heated buildings Covered, protected external installation Air humidity up to 95 % 	
OKS-L (large)	 External installation Air humidity above 95 % Chemical industrial plants Food industry 	

Surface and corrosion protection	Corrosivity category	Surface coating	Colour	Coating thickness
	DIN EN ISO 12944-2	Design		
OKS-G (primed)		2K PUR priming coat	RAL 9005 matt jet black	60 90 μm
OKS-S (small)	Comparable to C1	2K-PUR top coat		80 120 μm
OKS-M (medium)	Comparable to C2	2K PUR priming coat	According to RAL Classic	110 160 μm
OKS-L (large)	Comparable to C3	2K-PUR top coat		140 200 μm

Information on mechanical installation Important notes

Information on mechanical installation

Important notes

- Install the product according to the information in the chapter "Standards and operating conditions".
 - ▶ Standards and operating conditions □ 24
- The technical data and the data regarding the supply conditions can be found on the nameplate and in this documentation.
- Ambient media especially chemically aggressive ones may damage shaft sealing rings, lacquers and plastics.
- Lenze offers special surface and corrosion protection in this case.

NOTICE

Bearing damage caused by unbalance!

Shafts with keyway are balanced with a half featherkey!

▶ Balance transmission elements with a half featherkey!

Transport

- · Ensure appropriate handling.
- Make sure that all component parts are securely mounted. Secure or remove loose component parts.
- Only use safely fixed transport aids (e.g., eye bolts or support plates).
- Do not damage any components during transport.
- Avoid electrostatic discharges on electronic components and contacts.
- Avoid impacts.
- Check the carrying capacity of the hoists and load handling devices. The weights can be found in the shipping documents.
- Secure the load against tipping and falling down.
- Standing beneath suspended loads is prohibited.

Installation

- The mounting surfaces must be plane, torsionally rigid and free from vibrations.
- The mounting areas must be suited to absorb the forces and torques generated during operation.
- · Ensure an unhindered ventilation.
- For versions with a fan, keep a minimum distance of 10 % from the outside diameter of the fan cover in intake direction.

Important notes

Information on electrical installation

Important notes

A DANGER!

Risk of injury and risk of burns from dangerous voltage

Power terminals may also carry voltage in the switched-off state or when the motor is stopped and may cause life-threatening cardiac arrhythmia and serious burns.

- ▶ Disconnect the product from the mains.
- ► Check that the power terminals are deenergized before starting work.
- When working on energized products, comply with the applicable national accident prevention regulations.
- The electrical installation must be carried out according to the appropriate regulations (e.g. cable cross-sections, fuses, PE connection).
- The manufacturer of the system or machine is responsible for adherence to the limits required in connection with EMC legislation.

Operation on an external inverter

A max. pulse voltage amplitude of U_{pk} = 1560 V at the motor terminals must not be exceeded. Here, the minimum pulse rise time must be t_R = 0.1 μ s.

If it cannot be ruled out that the permissible voltage peaks will be exceeded or that the minimum pulse rise time will not be reached, the following measures must be initiated:

- Reduction of the DC-bus voltage (threshold for brake chopper voltage)
- Use of filters, chokes
- Use of special motor cables

Preparation

The notes for the electrical connection can be found in the enclosed mounting instructions.

EMC-compliant wiring

The EMC-compliant wiring is described in detail in the documentation of the Lenze inverters.

Technical data

Notes regarding the given data

The power values, torques and speeds specified in the configuration are rounded values and apply to:

- ambient temperature $T_U = 40$ °C for motors (in compliance with EN 60034)
- Site altitude ≤ 1000 m above mean sea level

The selection tables specify the inverter/ motor combination with the achievable torques.

The rated data applies to the S1 operating mode S1 (in accordance with EN 60034) and the operation on a servo inverter with a switching frequency of at least 4 kHz.

NOTICE

In case of other operating conditions, the achievable values can differ for those mentioned.

▶ In case of extreme operating conditions, please get in touch with your Lenze representative.

Technical data

Standards and operating conditions Conformities and approvals

Standards and operating conditions

Conformities and approvals

Conformities				
	2011/65/EU	RoHS Directive		
CE	2014/30/EU	EMC Directive (reference: CE-typical drive system)		
	2014/35/EU	Low-Voltage Directive		
FAC	TP TC 020/2011	Eurasian conformity: Electromagnetic compatibility of technical means		
EAC	TP TR 004/2011	Eurasian conformity: Safety of low voltage equipment		
Approvals	·			
		UL 1004-1	for USA and Canada (requirements of the CSA	
cURus	-	UL 1004-6	22.2 No. 100) servo motor, Lenze File No. F210321	

for Ukraine

Protection of persons and device protection

	•		
Degree of protection			
EN	EN 60529,EN 60034-5	IP23S	
Temperature class			
Insulation system	EN 60034-1	F (155 °C)	Insulation system
Permissible voltage			
Limit curve A of the pulse voltage	IEC/TS 60034-25:2007	IEC/TS 60034-25:2007	
IVIC C	IEC 60034-18-41	at 500 V	

EMC data

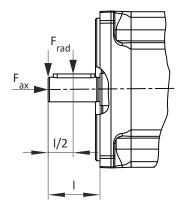
UkrSepro

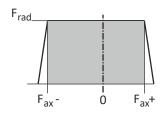
Noise emission					
Fulfils requirements according to	EN 60034-1	A final overall assessment of the drive system is indispensable			
Noise immunity	Noise immunity				
Fulfils requirements according to	EN 60034-1	A final overall assessment of the drive system is indispensable			

Technical data
Standards and operating conditions
Environmental conditions

Environmental conditions

Climate			
Ctorogo	EN IEC	1K3 (-20 +40 °C)	>3 months
Storage	60721-3-1:1997	1K3 (-20 +60 °C)	<3 months
Transport	EN IEC 60721-3-2:1997	2K3 (-20 +70 °C)	
	EN IEC	3K3 (-10 +40 °C)	Operation with brake
Operation	60721-3-3:1995 + A2:1997	3K3 (-15+40 °C)	Operation, without brake
Site altitude			
0 1000 m amsl		without current derating	
1000 4000 m amsl	1-	reduce power by 5 %/1000 m	
Air humidity		•	
Without condensation	-	Average relative humidity 85 %	
Vibration resistance			
Operation	EN IEC 60721-3-3:1995 + A2:1997	3M6	
Vibration severity			
Α	EN 60034-14	-	-
Vibration velocity			
Free suspension	-	1.6 mm/s	
Smooth running, axial ru	nout, concentricity		
Normal class	EN 50347 / IEC 60072-1	-	-




Radial forces and axial forces

The values of the bearing service life L_{10h} refer to an average motor speed of 3000 rpm. Depending on the ambient temperatures, they are also limited by the grease lifetime.

Application of forces

Application of force at I/2

Motor			MQA 20	MQA 22	MQA 26
Bearing service life 5000					
Radial force	F _{rad}	rated	3400	3600	6950
Min. axial force	F _{ax,-}	rated	-1330	-2370	-2500
Max. axial force	F _{Fax,+}	rated	690	1700	1580
Bearing service life 10000					
Radial force	F _{rad}	rated	2500	2800	5400
Min. axial force	F _{ax,-}	rated	-1020	-1740	-1800
Max. axial force	F _{Fax,+}	rated	380	1090	880
Bearing service life 20000	'				
Radial force	F _{rad}	rated	1950	2200	4300
Min. axial force	F _{ax,-}	rated	-780	-1280	-1300
Max. axial force	F _{Fax,+}	rated	140	640	380
Bearing service life 30000	'				1
Radial force	F _{rad}	rated	1700	1900	3700
Min. axial force	F _{ax,-}	rated	-690	-1080	-1090
Max. axial force	F _{Fax,+}	rated	40	440	160
Bearing service life 50000	<u> </u>				
Radial force	F _{rad}	rated	-	1600	-
Min. axial force	F _{ax,-}	rated	-	-880	-
Max. axial force	F _{Fax,+}	rated	-	240	-

Application of force at I

Motor			MQA 20	MQA 22	MQA 26
Bearing service life 5000					
Radial force	F _{rad}	rated	3150	3500	6400
Min. axial force	F _{ax,-}	rated	-1170	-2240	-2080
Max. axial force		rated	530	1600	1150
Bearing service life 10000					
Radial force	F _{rad}	rated	2300	2600	5000
Min. axial force	F _{ax,-}	rated	-920	-1640	-1600
Max. axial force		rated	280	1100	680
Bearing service life 20000	'				
Radial force	F _{rad}	rated	1800	2050	4000
Min. axial force	F _{ax,-}	rated	-710	-1200	-1160
Max. axial force	F _{Fax,+}	rated	70	560	230
Bearing service life 30000					I.
Radial force	F _{rad}	rated	1400	1800	3400
Min. axial force	F _{ax,-}	rated	-650	-1020	-1090
Max. axial force		rated	0	380	50
Bearing service life 50000					
Radial force	F _{rad}	rated	-	1450	-
Min. axial force	F _{ax,-}	rated	-	-850	-
Max. axial force		rated	-	200	-

Technical data

Rated data

Inverter mains connection 400 V, Forced ventilated motors

Rated data

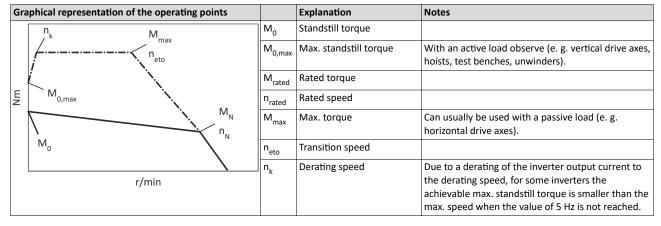
Inverter mains connection 400 V, Forced ventilated motors

Motor			MQA 20L29H	MQA 20L14H	MQA 22P29H	MQA 22P17H	MQA 22P14H	MQA 22P08H
Degree of protection			IP23	IP23	IP23	IP23	IP23	IP23
Standstill torque	M ₀	Nm	76.0	76.0	156	156	156	156
Rated torque	M _{rated}	Nm	66.2	71.3	125	130	135	145
Max. torque	M _{max}	Nm	250	250	500	500	500	500
Rated speed	n _{rated}	rpm	2930	1420	2935	1670	1425	760
Max. speed	n _{max}	rpm	6500	6500	6500	6500	6500	6500
Rated power	P _{rated}	kW	20.3	10.6	38.4	22.7	20.1	11.5
Standstill current	I ₀	А	54.0	27.0	102	59.0	51.0	29.5
Rated current	I _{rated}	А	46.9	26.5	86.0	50.3	45.6	27.6
Max. current	I _{max}	А	188	106	344	201	182	110
Rated voltage	V _{rated}	V	360	360	360	360	360	360
Rated frequency	f _{rated}	Hz	100	50	100	58	50	28
Moment of inertia	J	kgcm²	171	171	487	487	487	487
Efficiency	η		0.900	0.800	0.900	0.880	0.860	0.770
Stator terminal resistance	R _{UV 20}	Ω	0.183	0.731	0.089	0.268	0.357	1.072
Stator terminal resistance	R _{UV 150}	Ω	0.276	1.102	0.134	0.404	0.538	1.616
Mutual inductance	L _H	mH	13.68	57	23.2	23.86	93.3	92.8
Stator leakage inductance	L _{1σ}	mH	0.493	1.979	0.892	0.895	3.568	3.53
Rotor leakage inductance	L _{2σ}	mH	0.524	2.103	1.203	1.206	4.813	4.762
Stator resistance	R _{1, 20}	Ω	0.0915	0.365	0.134	0.134	0.536	0.536
Rotor resistance	R _{2′, 20}	Ω	0.09	0.361	0.12	0.12	0.477	0.477
Weight	m	kg	63.0	63.0	102	102	102	102

Technical data
Rated data
Inverter mains connection 400 V, Forced ventilated motors

Motor			MQA 26T22H	MQA 26T12H	MQA 26T10H	MQA 26T05H
Degree of protection			IP23	IP23	IP23	IP23
Standstill torque	M ₀	Nm	325	325	325	325
Rated torque	M _{rated}	Nm	257	282	288	296
Max. torque	M _{max}	Nm	1100	1100	1100	1100
Rated speed	n _{rated}	rpm	2235	1200	1030	550
Max. speed	n _{max}	rpm	5500	5500	5500	5500
Rated power	P _{rated}	kW	60.2	35.4	31.1	17
Standstill current	I _o	А	171	109	85.5	48.5
Rated current	I _{rated}	А	138	88.8	76.2	44.5
Max. current	I _{max}	Α	552	355	305	178
Rated voltage	V _{rated}	V	340	360	360	360
Rated frequency	f _{rated}	Hz	76	42	36	20
Moment of inertia	J	kgcm²	1340	1340	1340	1340
Efficiency	η		0.920	0.820	0.870	0.810
Stator terminal resistance	R _{UV 20}	Ω	0.05	0.15	0.196	0.589
Stator terminal resistance	R _{UV 150}	Ω	0.075	0.226	0.295	0.888
Mutual inductance	L _H	mH	18.38	16.8	69.23	69.96
Stator leakage inductance	L _{1σ}	mH	0.78	0.65	2.91	2.873
Rotor leakage inductance	L _{2σ}	mH	1.3	0.69	5.09	5.049
Stator resistance	R _{1, 20}	Ω	0.075	0.075	0.294	0.294
Rotor resistance	R _{2′, 20}	Ω	0.0621	0.1	0.25	0.25
Weight	m	kg	193	193	193	193

Selection tables



Selection tables

Notes on the selection tables

The selection tables represent the combinations of servo motors and servo inverters. The serve as a rough overview.

In the case of the servo inverters, the overload capacity depending on the switching frequency in the default setting is taken into consideration. For more information, please refer to the inverter documentation.

Derating speed

<u> </u>	
Motor	Derating speed
	n _k
	rpm
MQA20	
MQA22	150
MQA26	

9400 HighLine servo drives

The data apply to a mains voltage of $3x\ 400\ V$ and a switching frequency of $8\ kHz$ of the inverter.

If the motors are operated at a lower switching frequency, please get in touch with your Lenze representative!

When operating at 4 kHz, the motor generates just 95 % of its rated torque with increased noise emissions.

MQA20 ... 22, forced ventilated

Motor							Inverter				
							E94A □□				
			E0174	E0244	E0324	E0474	E0594	E0864	E1044	E1454	E1724
MQA20L14H				•					•		
Standstill torque	M ₀	Nm	32.5	66.0							
Rated torque	M _{rated}	Nm	32.5	66.0							
Max. standstill torque	M _{0,max}	Nm	154.2	190.0							
Max. torque	M _{max}	Nm	154.2	190.0							
MQA20L29H		-		1							
Standstill torque	M ₀	Nm			28.0	51.6	51.6				
Rated torque	M _{rated}	Nm			28.0	51.6	51.6				
Max. standstill torque	M _{0,max}	Nm			116.0	148.2	192.8				
Max. torque	M _{max}	Nm			116.0	148.2	192.8				
MQA22P08H					l				-		
Standstill torque	M ₀	Nm		116.0	156.0						
Rated torque	M _{rated}	Nm		116.0	145.0						
Max. standstill torque	M _{0,max}	Nm		313.0	402.0						
Max. torque	M _{max}	Nm		313.0	402.0						
MQA22P14H											
Standstill torque	M ₀	Nm					118.0				
Rated torque	M _{rated}	Nm					118.0				
Max. standstill torque	M _{0,max}	Nm					372.0				
Max. torque	M _{max}	Nm					372.0				
MQA22P17H		-		1	I.		I.		1	l.	I
Standstill torque	M ₀	Nm					99.0	156.0			
Rated torque	M _{rated}	Nm					99.0	130.0			
Max. standstill torque	M _{0,max}	Nm					325.0	463.0			
Max. torque	M _{max}	Nm					325.0	463.0			
MQA22P29H											
Standstill torque	M ₀	Nm							109.0	156.0	156.0
Rated torque	M _{rated}	Nm							109.0	125.0	125.0
Max. standstill torque	M _{0,max}	Nm							335.0	416.0	486.0
Max. torque	M _{max}	Nm							335.0	416.0	486.0

Technical data Selection tables

MQA26, forced ventilated

Motor							Inve	rter				
				E94A □□								
			E0474	E0594	E0864	E1044	E1454	E1724	E2024	E2454	E2924	E3664
MQA26T05H												
Standstill torque	M ₀	Nm	268.0	268.0	325.0							
Rated torque	M _{rated}	Nm	268.0	268.0	296.0							
Max. standstill torque	M _{0,max}	Nm	665.0	826.0	1100.0							
Max. torque	M _{max}	Nm	665.0	826.0	1100.0							
MQA26T10H									I	I	l .	
Standstill torque	M ₀	Nm			270.0	298.0	325.0					
Rated torque	M _{rated}	Nm			270.0	288.0	288.0					
Max. standstill torque	M _{0,max}	Nm			713.0	855.0	1044.0					
Max. torque	M _{max}	Nm			713.0	855.0	1044.0					
MQA26T12H									I	I		
Standstill torque	M ₀	Nm				219.0	291.0	325.0	325.0			
Rated torque	M _{rated}	Nm				219.0	282.0	282.0	282.0			
Max. standstill torque	M _{0,max}	Nm				609.0	739.0	840.0	950.0			
Max. torque	M _{max}	Nm				609.0	739.0	840.0	950.0			
MQA26T22H		-										1
Standstill torque	M ₀	Nm							242.0	290.0	325.0	325.0
Rated torque	M _{rated}	Nm							242.0	257.0	257.0	257.0
Max. standstill torque	M _{0,max}	Nm							711.0	843.0	1001.0	1100.0
Max. torque	M _{max}	Nm							711.0	843.0	1001.0	1100.0

8400 TopLine inverter drives

The data apply to a mains voltage of $3x\ 400\ V$ and a switching frequency of $8\ kHz$ of the inverter.

If the motors are operated at a lower switching frequency, please get in touch with your Lenze representative!

When operating at 4 kHz, the motor generates just 95 % of its rated torque with increased noise emissions.

MQA20 ... 22, forced ventilated

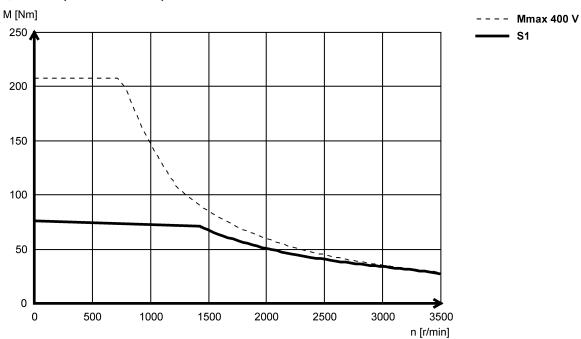
Motor						Inverter			
						E84AVTC□			
			1134	1534	1834	2234	3034	3734	4534
MQA20L14H									
Standstill torque	M ₀	Nm	-	76.0	76.0	76.0	76.0		
Rated torque	M _{rated}	Nm	-	71.3	71.3	71.3	71.3		
Max. standstill torque	M _{0,max}	Nm	146.0	202.0	249.2	250.0	250.0		
Max. torque	M _{max}	Nm	146.0	202.2	249.2	250.0	250.0		
MQA20L29H				1	1	1	1		'
Standstill torque	M ₀	Nm			-	76.0	76.0	76.0	76.0
Rated torque	M _{rated}	Nm			-	66.2	66.2	66.2	66.2
Max. standstill torque	M _{0,max}	Nm			121.8	140.9	183.7	224.5	250.0
Max. torque	M _{max}	Nm			121.8	140.9	183.9	225.5	250.0
MQA22P08H									
Standstill torque	M ₀	Nm	-	156.0	156.0	156.0	156.0		
Rated torque	M _{rated}	Nm	-	144.5	144.5	144.5	144.5		
Max. standstill torque	M _{0,max}	Nm	222.8	310.5	377.0	372.9	374.6		
Max. torque	M _{max}	Nm	223.0	310.5	377.0	372.9	374.6		
MQA22P14H									1
Standstill torque	M ₀	Nm		-	-	156.0	156.0	156.0	156.0
Rated torque	M _{rated}	Nm		-	-	134.7	134.7	134.7	134.7
Max. standstill torque	M _{0,max}	Nm		185.1	230.6	267.1	343.7	418.3	500.0
Max. torque	M _{max}	Nm		185.1	230.6	267.1	344.4	420.0	500.0
MQA22P17H		-		1	1				1
Standstill torque	M ₀	Nm			-	-	156.0	156.0	156.0
Rated torque	M _{rated}	Nm			-	-	129.8	129.8	129.8
Max. standstill torque	M _{0,max}	Nm			198.6	230.2	300.0	365.3	447.0
Max. torque	M _{max}	Nm			198.6	230.4	300.0	367.5	449.9
MQA22P29H									1
Standstill torque	M ₀	Nm					-	-	156.0
Rated torque	M _{rated}	Nm					-	-	124.9
Max. standstill torque	M _{0,max}	Nm					176.1	218.9	263.2
Max. torque	M _{max}	Nm					176.4	219.6	264.1

Technical data Selection tables

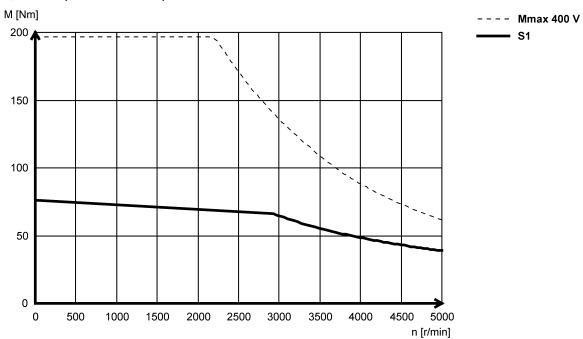
MQA26, forced ventilated

Motor					Inve	erter					
				E84AVTC□							
			1534	1834	2234	3034	3734	4534			
MQA26T05H								•			
Standstill torque	M ₀	Nm	-	-	325.0	325.0	325.0	325.0			
Rated torque	M _{rated}	Nm	-	-	295.2	295.2	295.2	295.2			
Max. standstill torque	M _{0,max}	Nm	390.4	489.6	567.1	744.4	902.3	1080.2			
Max. torque		Nm	390.4	490.2	568.0	744.8	904.7	1080.2			
MQA26T10H	<u>'</u>					•	1	'			
Standstill torque	M ₀	Nm				-	-	325.0			
Rated torque	M _{rated}	Nm				-	-	288.3			
Max. standstill torque		Nm				429.7	532.5	638.2			
Max. torque	M _{max}	Nm				431.4	534.1	641.5			
MQA26T12H						•	•				
Standstill torque	M ₀	Nm					-	325.0			
Rated torque	M _{rated}	Nm					-	281.7			
Max. standstill torque		Nm					458.2	550.4			
Max. torque		Nm					460.6	552.9			

Torque characteristics


The torque/speed characteristic for your motor/inverter combination can be found on the Internet:

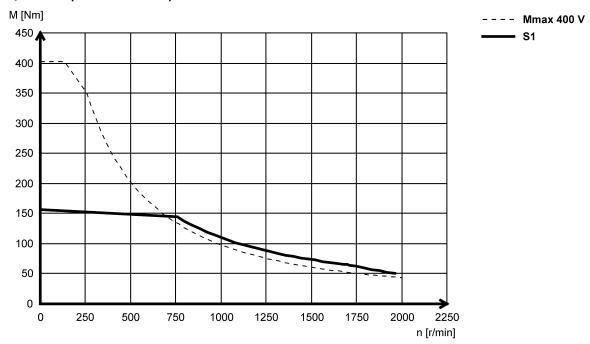
http://www.lenze.com → Product Finder → M-n characteristics



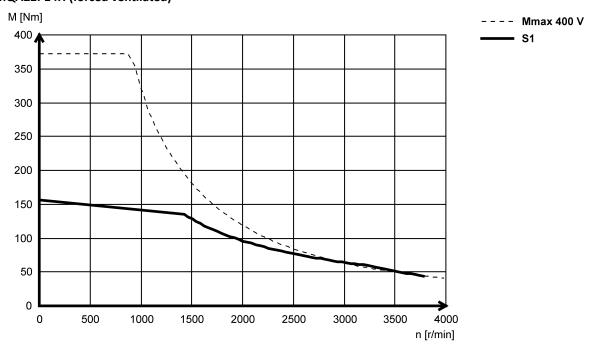
The following data apply to a mains voltage 3 x 400 V of the inverter.

MQA20L14H (forced ventilated)

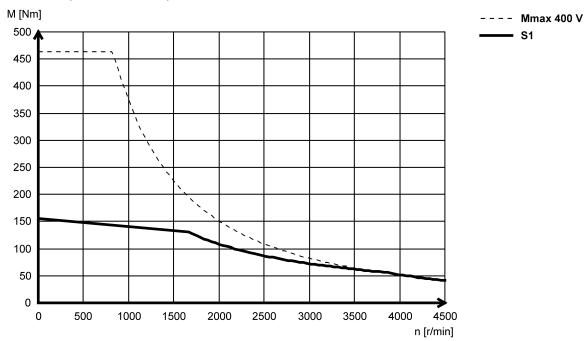
MQA20L29H (forced ventilated)



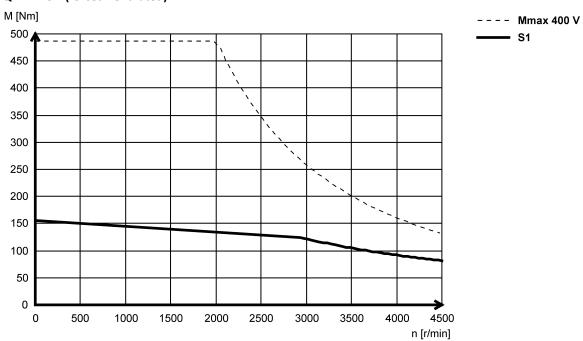
Technical data


Torque characteristics

MQA22P08H (forced ventilated)

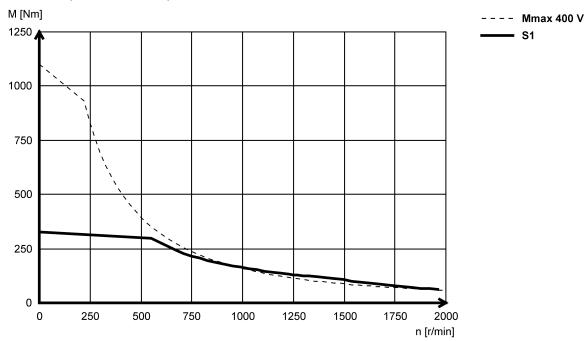


MQA22P14H (forced ventilated)

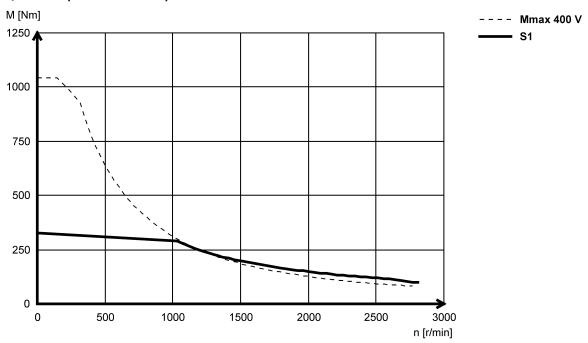


MQA22P17H (forced ventilated)

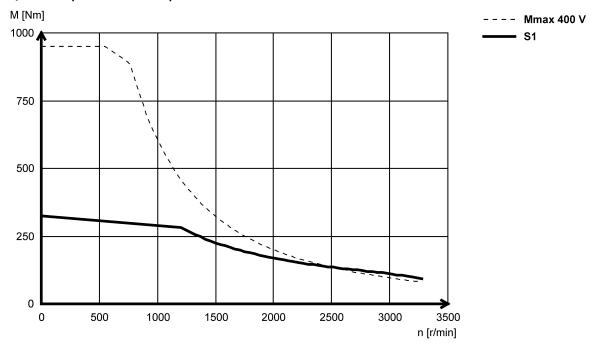
MQA22P29H (forced ventilated)



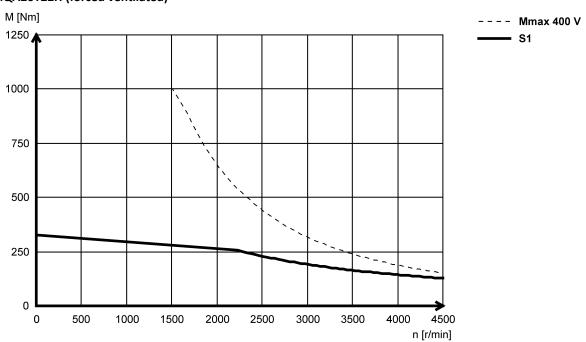
Technical data


Torque characteristics

MQA26T05H (forced ventilated)



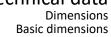
MQA26T10H (forced ventilated)



MQA26T12H (forced ventilated)

MQA26T22H (forced ventilated)

Technical data Dimensions

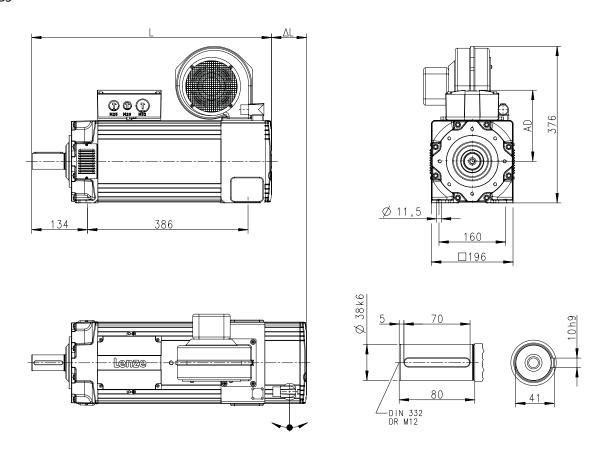


Dimensions

Notes on the basic dimensions

Table content	Explanation
---------------	-------------

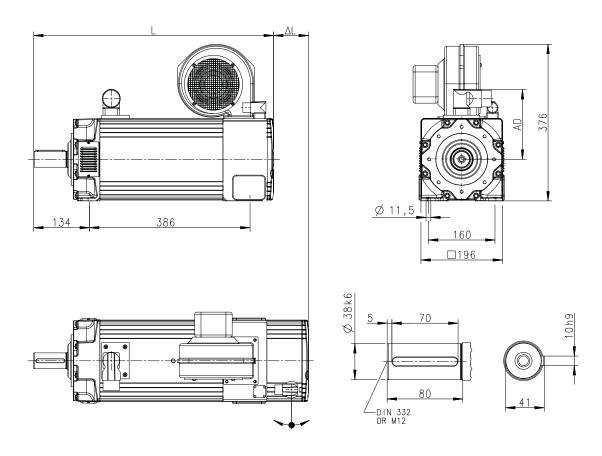
Total length without brake	L	Total length of the drive with resolver
Total length with brake	L	Total length of the drive with resolver
Motor/connection distance	AD	Distance from center of motor to end of connector/terminal box



Basic dimensions

MQA20, forced ventilated

Design B3

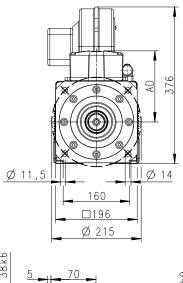

8800714-00

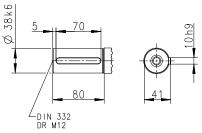
Motor			MQA 20L14H	MQA 20L29H
Total length without brake	L	mm	57	77
Motor/connection distance	AD	mm	17	71

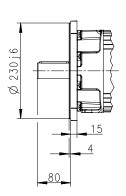
MQA20, forced ventilated

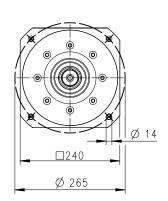
Design B3

8800712-00

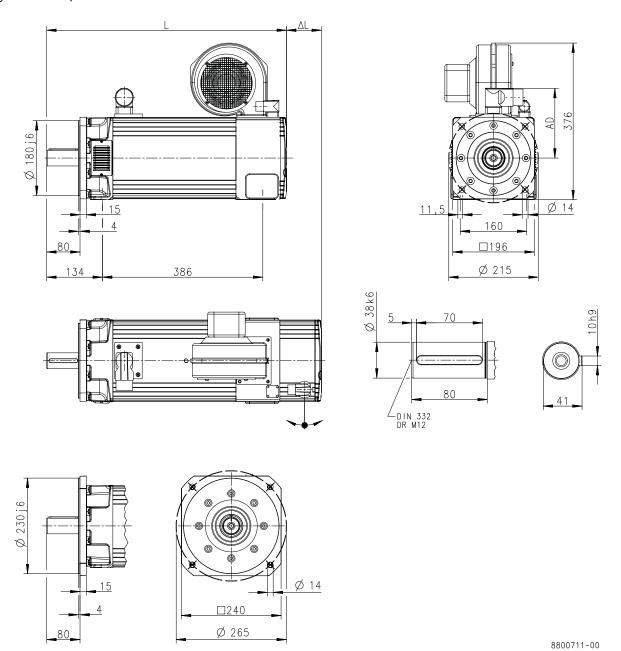

Motor			MQA 20L14H MQA 20L29H	
Total length without brake	L	mm	57	77
Motor/connection distance	AD	mm	17	71




MQA20, forced ventilated


Design B35-FF215/265

8800669-00

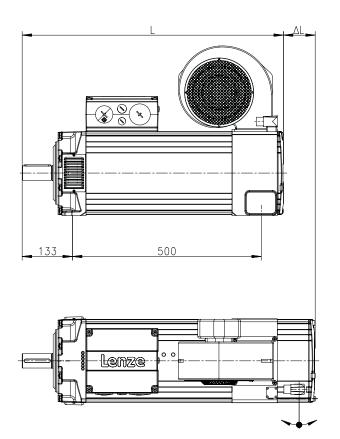

Motor			MQA 20L14H MQA 20L29H		
Total length without brake	L	mm	577		
Motor/connection distance	AD	mm	17	71	

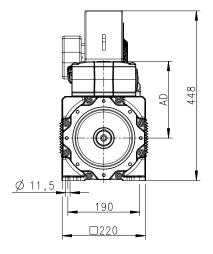
Δ L ▶ Additional lengths □ 49

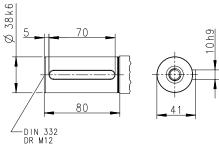
MQA20, forced ventilated

Design B35-FF215/265

Motor			MQA 20L14H	MQA 20L29H
Total length without brake	L	mm	57	77
Motor/connection distance	AD	mm	17	71

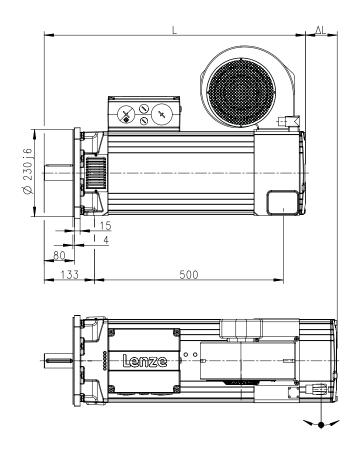

Δ L ▶ Additional lengths □ 49

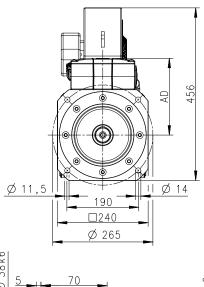


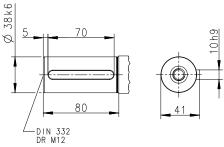

Dimensions Basic dimensions

MQA22, forced ventilated

Design B3

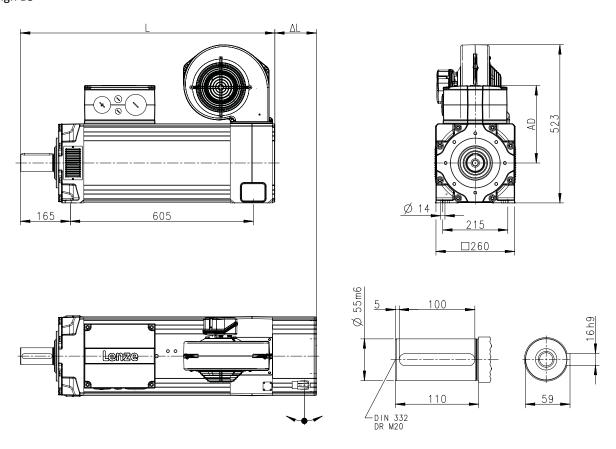

8800716-00


Motor			MQA 22P08H	MQA 22P14H	MQA 22P17H	MQA 22P29H
Total length without brake	L	mm		69	91	
Motor/connection distance	AD	mm		20)3	



MQA22, forced ventilated

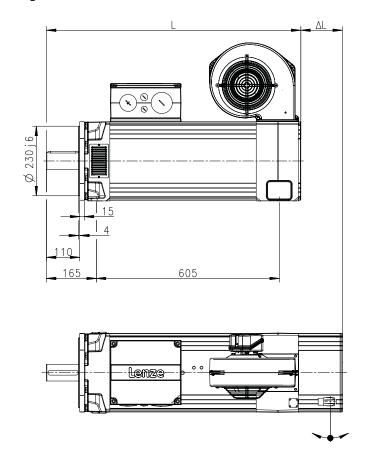
Design B35-FF265

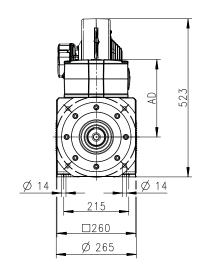

8800715-00

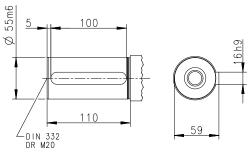
Motor			MQA 22P08H	MQA 22P14H	MQA 22P17H	MQA 22P29H
Total length without brake	L	mm		69	91	
Motor/connection distance	AD	mm		20)3	

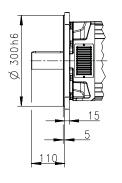
MQA26, forced ventilated

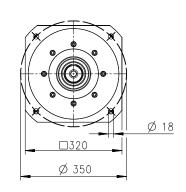
Design B3


8800718-00


Motor			MQA 26T05H	MQA 26T10H	MQA 26T12H	MQA 26T22H
Total length without brake	L	mm		84	11	
Motor/connection distance	AD	mm		25	56	




MQA26, forced ventilated


Design B35-FF350

8800717-00

Motor			MQA 26T05H	MQA 26T10H	MQA 26T12H	MQA 26T22H
Total length without brake L mm			841			
Motor/connection distance	AD	mm		25	56	

Δ L ▶ Additional lengths □ 49

Dimensions Additional lengths

Additional lengths

The motor code indicates the short designation of the brake and feedback. Detailed information can be found for

- ▶ Product codes ☐ 68
- ▶ Brakes 🕮 57
- ▶ Feedback 🕮 62

MQA20

Motor			MQA20L14H	MQA20L29H		
Cooling type			Forced	Forced		
Feedback (without brake B0)						
R□0	ΔL	mm		0		
S	ΔL	mm	0			
Brake (F1/FG) and feedback						
R□0	ΔL	mm	84			
S	ΔL	mm	1	27		
Brake (F2/FH) and feedback						
R□0	ΔL	mm	152			
S	ΔL	mm	1	52		

MQA22

Motor			MQA22P08H	MQA22P14H	MQA22P17H	MQA22P29H
Cooling type			Forced	Forced	Forced	Forced
Feedback (without brake B0)						
R□0	ΔL	mm	0			
S / T / E	ΔL	mm	0			
Brake (F1/FG) and feedback						
R□0	ΔL	mm		1	82	
S / T / E	ΔL	mm		1	.25	
Brake (F2/FH) and feedback						
R□0	ΔL	mm	157			
S / T / E	ΔL	mm		1	157	

MQA26

Motor Cooling type			MQA26T05H	MQA26T10H	MQA26T12H	MQA26T22H
			Forced	Forced	Forced	Forced
Feedback (without brake B0)				1		1
R□0	ΔL	mm	0			
S / T / E	ΔL	mm	0			
Brake (F1/FG) and feedback						
R□0	ΔL	mm	138		38	
S / T / E	ΔL	mm	176			
Brake (F2/FH) and feedback						
R□0	ΔL	mm	176			
S / T / E	ΔL	mm	176			

Technical data

Weights Basic weights

Weights

Basic weights

The basic weights are listed in the rated data.

▶ Rated data □ 28

Observe ▶ Additional weights ☐ 50!

Additional weights

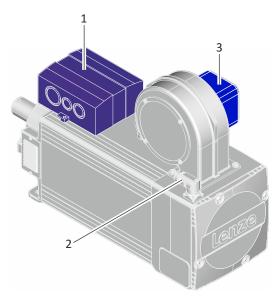
Motors

Motor		MQA20	MQA22	MQA26	
Spring-applied holding brake					
Standard braking torque	m	kg	13.0	20.5	30.7
Increased braking torque	m	kg	15.4	26	-

Connection via terminal box

Product extensions

Motor connection


Connection via terminal box

If a motor is to be connected to an existing cable or plug connectors are not to be used for other reasons, the connection can also be made via a terminal box.

The connection for feedback and temperature monitoring is generally via the ICN connector and the electric fan is connected via a terminal box.

The terminals are designed as tension spring terminals to ensure here the long-term vibration resistance of the cable contacts with adequate contact pressure required.

Position of the connections

Position	Meaning
1	Power connection
	Brake connection
	PE connection
2	Feedback connection
	Connection of temperature monitoring
3	Blower connection

Product extensions

Motor connection Connection via terminal box

Cable glands

The cut-outs for the cable glands are closed with sealing plugs.

The cable glands are arranged on both sides with MQA20.

The cable glands are arranged on one side with MQA22 and MQA26. If required, the terminal box can be rotated by 180 $^{\circ}$ after loosening the screws in the terminal box.

Motor		MQA20	MQA22	MQA26
Screwed connections		2x M20 x 1.5	1x M40 x 1.5	1x M50 x 1.5
		2x M25 x 1.5	1x M50 x 1.5	1x M63 x 1.5
		2x M32 x 1.5	1x M20 x 1.5	1x M20 x 1.5
			1x M16 x 1.5	1x M16 x 1.5
Cable cross-section	mm ²	2.5 16	10 35	-
Terminal design		Spring-loaded terminal	Screw terminal	Threaded bolt
Stripping length	mm	18 20	18	-
Threaded bolt		-	-	M12
Tightening torque	Nm	-	3.2	15.5

Terminal box, power			
Contact	Name	Meaning	
U1	L1		
V1	L2	Motor winding phase	
W1	L3		
PE	PE	PE conductor	

Terminal box, DC brake			
Contact	Name	Meaning	
BD1	+	Brake +	
BD2	-	Brake -	

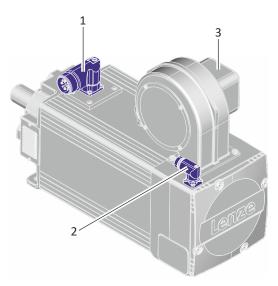
Terminal box, AC brake			
Contact	Name	Meaning	
~	L1	Mains	
	N	Ividitis	
+	+	Holding brake (factory-wired)	
-	-	Holding brake (lactory-wired)	
Schalter		Switching contact - DC switching	

Terminal box, temperature monitoring		
Contact	Name	Meaning
R1	+	Temperature sensor +
R2	-	Temperature sensor -

Terminal box, 1-phase separate fan		
Contact	Name	Meaning
PE	PE	PE conductor
U1	L1	Mains
U2	N	ivianis

Terminal box, 3-phase separate fan			
Contact	Name	Meaning	
PE	PE	PE conductor	
U1	L1		
V1	L2	Mains connection	
W1	L3		

Motor connection Connection via ICN connector


Connection via ICN connector

The connectors can be rotated by 270 ° and are provided with a bayonet catch. Since the catch of the connector is also compatible with conventional box nuts, existing mating connectors with a screw plug can continue to be used without any problems.

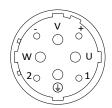
In order to provide for a quick and error-free connection of Lenze motors to Lenze inverters, we recommend using prefabricated Lenze system cables.

Position of the connections

Position	Meaning
1	Power connection
	Brake connection
	PE connection
2	Feedback connection
	Connection of temperature monitoring
3	Blower connection

Product extensions

Motor connection Connection via ICN connector

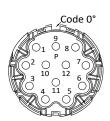


Power and brake connection

Valid for MQA20

ICN-M40 connector assignment

8-pole


ICN M40 8-pole			
Contact	Name	Meaning	
+	BD1	Holding brake +	
-	BD2	Holding brake -	
PE	PE	PE conductor	
U	U	Power phase U	
V	V	Power phase V	
W	W	Power phase W	
1		Not assigned	
2		Not assigned	

Feedback and temperature monitoring connection

ICN-M23 connector assignment

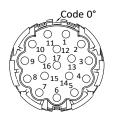
Resolver

ICN M23 for resolvers	CN M23 for resolvers					
Contact	Name	Meaning				
1	+Ref	Transformer windings				
2	-Ref	Transformer windings				
3	+VCC ETS	Supply: Electronic nameplate (Only for motors and inverters that suppor this function)				
4	+COS	Stator windings cosine				
5	-COS	Stator windings cosine				
6	+SIN	Stator windings sine				
7	-SIN	Stator windings sine				
8		Not assigned				
9		Not assigned				
10	Schirm	Encoder housing shield				
11	+	Temperature monitoring: PT1000				
12	-	Temperature monitoring: PT1000				

ICN-M23 connector assignment

Incremental and SinCos absolute value encoder Hiperface©

CN M23 for incremental and SinCos absolute value encoder Hiperface				
Contact	Name	Meaning		
1	В	Track B / + SIN		
2	A ⁻	Track A inverse /-COS		
3	Α	Track A / + COS		
4	+UB	Supply +		
5	GND	Mass		
6	Z ⁻	Zero track inverse /-RS485		
7	Z	Zero track / + RS485		
8		Not assigned		
9	B ⁻	Track B inverse/-SIN		
10	Schirm	Encoder housing shield		
11	+	Temperature monitoring: PT1000		
12	-	Temperature monitoring: PT1000		


Product extensions

Motor connection Connection via ICN connector

ICN-M23 connector assignment

SinCos absolute value encoder with EnDat interface

CN M23 SinCos absolute value encoder with EnDat					
Contact	Name	Meaning			
1	UP Sensor	Up Sensor			
2		Not assigned			
3		Not assigned			
4	0 V Sensor	0 V sensor			
5	+	PT1000/KTY temperature sensor			
6	-	PT1000/KTY temperature sensor			
7	+UB	Supply +			
8	Takt	EnDat interface cycle			
9	Takt-	Inverse EnDat interface cycle			
10	GND	Mass			
11	Schirm	Encoder housing shield			
12	В	Track B			
13	B-	Track B inverse/-SIN			
14	Daten	EnDat interface data			
15	A	Track A			
16	A-	Track A inverse /-COS			
17	Daten-	Data inverse EnDat interface			

Brakes

⚠ CAUTION!

They may not be used as safety elements (particularly with hoist axes) without additional measures being implemented.

The brakes used are not fail-safe brakes in the sense that prospective disruptive factors, e.g. oil ingress, can lead to a reduction in torque!

- ► The brakes must only be used as holding brakes for holding the axes at a standstill or in the deenergised state.
- ▶ The brake must not be used as a service brake.

ACAUTION!

If no suitable voltage (incorrect value, incorrect polarity) is applied to the brake, the brake will be applied and can be overheated and destroyed by the motor continuing to rotate.

Motor supply cables

If long motor supply cables are used, pay attention to the ohmic voltage drop along the cable and compensate for it with a higher voltage at the input end of the cable.

The following applies to Lenze system cables:

[V]	U	V	Resulting supply voltage
$U[V] = U_B[V] + 0.08 \frac{[V]}{[A] \times [m]} \times I_{Lg}[m] \times I_{B}[A]$	U _B	٧	Rated voltage of the brake
	I _{Lg}	m	Cable length
	I _B	А	Rated current of the brake

NOTICE

- ► The brakes become active when the supply voltage has been switched off (closed-circuit principle).
- When using the brakes purely as holding brakes, virtually no wear occurs on the friction surfaces.
- ► The friction surfaces must always be free from oil and grease because even small amounts of grease or oil will considerably reduce the braking torque.

NOTICE

In case of travel axes, the compliance of the permissible ratio of mass inertia load/brake motor (J_L/J_{MB}) ensures that the permissible maximum switching energy of the brake will not be exceeded and at least the values given for the emergency stop functions from the given speed (see rated data) are applied.

For hoist axes, the load torque resulting from the weight acts additionally. In this case, the specifications for (J_1/J_{MR}) do not apply.

To simplify matters, the friction energy per switching cycle can be calculated using the formula below and must not exceed the limit value for emergency stops, which depends on the switching rate:

$$Q = \frac{1}{2} \times J_{ges} \times \left(2\pi \times \frac{\Delta n}{60}\right)^2 \times \frac{M_N}{M_N - M_I}$$

Q	J	Friction energy
J _{total}	kgm ²	Total mass inertia (motor + load)
Δn	rpm	Differential speed
M_N	Nm	Rated torque of the brake
M_L	nM	Load torque

The shortest operating times of the brakes are achieved by DC switching of the voltage and an external suppressor circuit (varistor or spark suppressor).

Without suppressor circuit, the operating times may increase. A varistor/ spark suppressor limits the breaking voltage peaks. It must be ensured that the power limit of the suppressor circuit is not exceeded. This limit depends on the brake current, brake voltage, disengagement time and the switching operations per time unit.

Furthermore the suppressor circuit is necessary for interference suppression and for increasing the service life of the relay contacts (external, is not integrated into the motor).

It is not possible to readjust the brake.

Brakes Spring-applied brakes

Spring-applied brakes

Rated data

Engagement and disengagement times apply to rated voltage (\pm 0 %) and suppressor circuit of the brakes with a varistor with DC switching. Without a suppressor circuit, the times may be longer.

The currents are the maximum values when the brake is cold (value used for dimensioning the current supply). The values for a motor at operating temperature are considerably lower.

With 24 V DC brake: smoothed DC voltage, ripple \leq 1 %.

With 230 V AC brake: connection to an integrated rectifier (no cURus possible).

Maximum switching energy for each emergency stop with n= 3000 rpm for at least 300 , and a maximum of 4 emergency stops per hour.

Standard braking torque

Supply voltage DC 24 V

Motor			MQA20L	MQA22P	MQA26T
Supply voltage range	V _{in}	V	21.6 26.4		
Supply voltage	V _{rated}	V		24	
Bemessungsdrehmoment					
At 20 °C	M _{rated}	Nm	90	150	300
At 120 °C	M _{rated}	Nm	80	130	260
Rated current	I _{rated}	А	3.13	3.	75
Engagement time t1	t ₁	ms	70	50	175
Disengagement time t2	t ₂	ms	220	260	320
Friction energy	Q _E	kJ	18	23	51
Weight	m	kg	13	20.5	30.7
Massenträgheitsmoment					
Brake	J	kgcm²	6.88	18.1	70.4
Brake motor	J _{MB}	kgcm²	177	505	1405
Load/brake motor ratio	J _L /J _{MB}		19.6	8.2	12.7
Motor code				F1	

Product extensions

Brakes Spring-applied brakes

Standard braking torque

Supply voltage AC 230 V

Motor			MQA20L	MQA22P	MQA26T
Supply voltage range	V _{in}	٧	207 253		
Supply voltage	V _{rated}	٧		230	
Bemessungsdrehmoment					
At 20 °C	M _{rated}	Nm	90	150	300
At 120 °C	M _{rated}	Nm	80	130	260
Rated current	I _{rated}	А	0.37	0.44	0.37
Engagement time t1	t ₁	ms	70	130	175
Disengagement time t2	t ₂	ms	220	260	360
Friction energy	Q _E	kJ	18	23	51
Weight	m	kg	13	20.5	30.7
Massenträgheitsmoment					
Brake	J	kgcm²	6.88	18.1	70.4
Brake motor	J _{MB}	kgcm²	177	505	1405
Load/brake motor ratio	J _L /J _{MB}		19.6	8.2	12.7
Motor code				FG	

Increased braking torque

Supply voltage DC 24 V

Motor			MQA20L	MQA22P
Supply voltage range	V _{in}	V	21.6	26.4
Supply voltage	V _{rated}	V	2	24
Bemessungsdrehmoment				
At 20 °C	M _{rated}	Nm	150	300
At 120 °C	M _{rated}	Nm	130	260
Rated current	I _{rated}	А	2.58	3.75
Engagement time t1	t ₁	ms	70	175
Disengagement time t2	t ₂	ms	240	320
Friction energy	Q _E	kJ	31	39
Weight	m	kg	15.4	26
Massenträgheitsmoment				
Brake	J	kgcm²	14.1	36.3
Brake motor	J _{MB}	kgcm²	185	523
Load/brake motor ratio	J _L /J _{MB}		33	14.1
Motor code			F	- 2

Brakes Spring-applied brakes

Increased braking torque

Supply voltage AC 230 V

Motor			MQA20L	MQA22P
Supply voltage range	V _{in}	V	207 253	
Supply voltage	V _{rated}	V	23	30
Bemessungsdrehmoment				
At 20 °C	M _{rated}	Nm	150	300
At 120 °C	M _{rated}	Nm	130	260
Rated current	I _{rated}	А	0.3	0.44
Engagement time t1	t ₁	ms	70	130
Disengagement time t2	t ₂	ms	240	310
Friction energy	Q _E	kJ	31	39
Weight	m	kg	15.4	26
Massenträgheitsmoment				
Brake	J	kgcm²	14.1	36.3
Brake motor	J _{MB}	kgcm²	185	523
Load/brake motor ratio	J _L /J _{MB}		33	14.1
Motor code			F	Н

Feedback

For speed control with a servo inverter, the servo motor can be equipped with the following feedback systems:

Inverter	Feedback without functional safety					
	Resolver	Absolute value encoder	Incremental encoder			
i950 servo inverter	RS0	AM1024-8V-H AS1024-8V-H	-			
i700 servo inverter	RS0	AM1024-8V-H AS1024-8V-H	-			
8400 TopLine inverter drives	RSO	AM1024-8V-H AS1024-8V-H	IG2048-5V-S IG2048-5V-T IG4096-5V-T			
9400 HighLine servo drives	RSO	AM32-5V-E AM1024-8V-H AM2048-5V-E AS1024-8V-H AS2048-5V-E	IG2048-5V-S IG2048-5V-T IG4096-5V-T			

Inverter	Feedback with functional safety				
	Resolver	Absolute value encoder	Incremental encoder		
i950 servo inverter	RV03	-	-		
9400 HighLine servo drives	RV03	-	IG1024-5V-V3		

Feedbacks in the environment of functional safety

Motors can perform speed-dependent safety functions for safe speed and/or safe relative position monitoring in a drive system by Lenze inverters or Controllers. In case of inverters, these functions are implemented by integrable safety modules and in case of Controllers by the additionally required Safety Controller.

When planning systems/installations of this kind, always observe the following:

- When using just one single feedback system in the environment of these safety
 applications, the applicable safety engineering standard IEC 61800-5-2 (adjustable speed
 electrical power drive systems Part: 5-2: Safety requirements Functional) stipulates
 special requirements for the connection between feedback system and motor shaft.
- This is due to the fact that two-channel safety systems at this point in the mechanical system are actually designed as single-channel systems. If this mechanical connection is designed with considerable overdimensioning, the standard permits exclusion of the fault "encoder-shaft breakage" or "encoder-shaft slip". As such, the permissible angular acceleration limit values must not be exceeded for the individual drive solutions.

You can find the limit values in the corresponding feedback data of the individual motor ranges.

Speed-dependent safety functions

Examples of speed-dependent safety functions:

- Safe stop 1 (SS1)
- Safe operational stop (SOS)
- Safely limited speed (SLS)
- Safe maximum speed (SMS)
- Safe direction (SDI)
- Operation mode selector (OMS) with confirmation (ES)
- Safe speed monitor (SSM)
- Safely limited increment (SLI)

.....

Resolver

The stator-supplied, 2-pole resolver with two stator windings shifted by 90 degrees and a rotor winding with a transformer winding can record both the speed and the rotor position, just like a single-turn absolute value encoder. The rotor position can be determined within one mechanical motor revolution after a voltage failure.

Feedback type			Reso	olver
Feedback			RS0	RV03
Speed-dependent safety functions			No	Yes
Design			Mou	nting
Resolution - angle		'	0.8	0.8
Min. accuracy			-10	-10
Max. accuracy		'	10	10
Absolute positioning			1 revolution	1 revolution
Max. speed	n _{max}	rpm	8000	8000
Max. DC input voltage	V _{in,max}	V	10	10
Max. input frequency	f _{in,max}	kHz	4	4
Ratio stator/rotor			0.3	0.3
Min ratio tolerance		%	-5	-5
Max ratio tolerance		%	5	5
Rotor impedance	Z _{ro}	Ω	51+j90	51+j90
Stator impedance	Z _{so}	Ω	102+j150	102+j150
Impedance	Z _{rs}	Ω	44+j76	44+j76
Min. insulation resistance at DC 500 V	R _{min}	ΜΩ	10	10
Number of pole pairs			1	1
Max. angle error Min		'	-10	-10
Max. angle error Max		1	10	10

Speed-dependent safety functions

Feedback			RV03
Motor code			RV03
Max. permissible angular acceleration	α	rad/s ²	22000
Functional safety			
IEC 61508			SIL3
EN 13849-1			Up to Performance Level e

Product extensions

Feedback Incremental encoder

Incremental encoder

Incremental encoders can be used for speed measurement. Homing is required in order to enable positioning later.

Feedback type			SinCos-In	TTL-Inkremental			
Feedback			IG1024-5V-V3	IG2048-5V-S	IG2048-5V-T	IG4096-5V-T	
Speed-dependent safety functions			Yes	No	No	No	
Design				Mou	nting		
Pulses			1024	024 2048 2048		4096	
Output signals			SinCos 1 Vss	SinCos 1 Vss	TTL	TTL	
Interfaces			SinCos		A, B; N; Ai, Bi; Ni		
Absolute revolution			0	0	0	0	
Min. accuracy		1	-0.8	-0.8	-2	-2	
Max. accuracy		'	0.8	0.8	2	2	
Min. DC input voltage	V _{in,min}	V	4.75	4.5	4.75	4.75	
Max. DC input voltage	V _{in,max}	V	5.25	5.5	5.25	5.25	
Max. current consumption	I _{max}	А	0.07	0.1	0.15	0.15	
Limit frequency	f _{max}	kHz	200	180	300	300	

Speed-dependent safety functions

opeca acpeniant surety randitions							
Feedback type			SinCos incremental				
Feedback			IG1024-5V-V3				
Motor code			S1S				
Max. permissible angular acceleration	α	rad/s ²	73000				
Functional safety							
IEC 61508			SIL3				
EN 13849-1			Up to Performance Level e				

Feedback Absolute value encoder

Absolute value encoder

Absolute value encoders can detect the speed, the rotor position, and the machine position with a very high resolution. They are used for the positioning of dynamic applications and do not require homing.

Feedback type			SinCos absolute value encoder						
Feedback			AM1024-8V-H	AM2048-5V-E	AS1024-8V-H	AS2048-5V-E			
Speed-dependent safety functions			No	No	No	No			
Design			Mounting	Mounting	Mounting	Mounting			
Encoder type			Multi-turn	Multi-turn	Single-turn	Single-turn			
Resolution		bit	-	-	-	-			
Pulses			1024	2048	1024	2048			
Output signals			SinCos 1 Vss	SinCos 1 Vss	SinCos 1 Vss	SinCos 1 Vss			
Interfaces			Hiperface	EnDat	Hiperface	EnDat			
Absolute revolution			4096	4096	1	1			
Resolution - angle			0.4	0.4	0.4	0.4			
Min. accuracy			-0.8	-0.6	-0.8	-0.6			
Max. accuracy			0.8	0.6	0.8	0.6			
Fehlergrenze Positionswert									
System accuracy			-	-	-	-			
Integral nonlinearity			-	-	-	-			
Min. DC input voltage	V _{in,min}	V	7	4.75	7	4.75			
Max. DC input voltage	V _{in,max}	V	12	5.25	12	5.25			
Max. current consumption	I _{max}	А	0.08	0.25	0.08	0.15			
Limit frequency	f _{max}	kHz	200	200	200	200			

Product extensions

Blower

Blower

The motors are cooled as a standard by means of a separate radial fan.

The separate fans are optionally available with a dust filter.

Rated data 50 Hz

Motor series			MQA			
Size			20	22		
Degree of protection			IP23			
Number of phases			1	1		
Rated voltage	V _{rated}	V	230	230		
Rated power	P _{rated}	kW	0.09	0.26		
Rated current	I _{rated}	А	0.39	1.1		

Motor series			MQA					
Size			20	20 22 26				
Degree of protection			IP23					
Number of phases			3	3				
Rated voltage	V _{rated}	V	400	400	400			
Rated power	P _{rated}	kW	0.067	0.23	0.43			
Rated current	I _{rated}	Α	0.13	0.37	0.68			

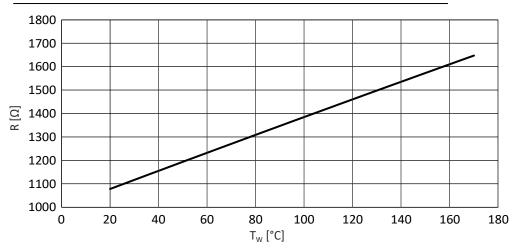
Rated data 60 Hz

Motor series			MQA			
Size			20	22		
Degree of protection			IP23			
Number of phases			1	1		
Rated voltage	V _{rated}	V	230	230		
Rated power	P _{rated}	kW	0.12	0.3		
Rated current	I _{rated}	А	0.49	1.28		

Motor series			MQA					
Size			20	20 22 26				
Degree of protection			IP23					
Number of phases			3	3	3			
Rated voltage	V _{rated}	V	400	400	400			
Rated power	P _{rated}	kW	0.1	0.37	0.6			
Rated current	I _{rated}	А	0.16	0.48	0.79			

Temperature monitoring Thermal detectors PT1000

Temperature monitoring


Thermal detectors PT1000

The thermal detector used continuously monitors the motor temperature. The temperature information is transferred to the inverter using the system cable of the feedback system. **This is not a full motor protection!**

This makes it possible to determine the motor temperature in the permissible operating range with great accuracy.

When supplying the thermal sensors with a measurement current of 1 mA, the connection between the temperature and the resistance measured applies.

R Resistance

 ${\rm T_W}$ Winding temperature

Product codes

Product code of MQA asynchronous servo motor

Example				Α	20	L	14	-	RS0	В0
Meaning	Variant									
Product family	Motor	М								
Туре	Compact servo motors		Q	1						
Variant	Asynchronous			Α						
Motor frame size	Square dimension 200 mm			•	20					
	Square dimension 220 mm				22					
	Square dimension 260 mm				26					
Overall length						L P T				
Rated speed	rpm x 100						05 29			
Inverter mains connection	3 x 400 V							Н		
Feedback	SinCos absolute value encoder, single-turn, EnDat AS2048-5V-E								ECN	
	SinCos absolute value encoder, multi-turn, EnDat AM32-5V-E								EQI	
	SinCos absolute value encoder, multi-turn, EnDat AM2048-5V-E								EQN	
	Resolver								RS0	
	Safety resolver RV03								RV0	
	SinCos safety incremental encoder, single-turn IG1024-5V-V3								S1S	
	SinCos incremental encoder, single-turn IG2048-5V-S								S20	
	SinCos absolute value encoder, multi-turn, Hiperface® AM1024-8V-H								SRM	
	SinCos absolute value encoder, single-turn, Hiperface® AS1024-8V-H								SRS	
	TTL incremental encoder IG2048-5V-T								T20	
	TTL incremental encoder IG4096-5V-T								T40	
Brake	Without brake									В0
	Spring-applied brake DC 24 V									F1
	Spring-applied brake DC 24 V, reinforced									F2
	Spring-applied brake AC 230 V									FG
	Spring-applied brake AC 230 V, reinforced									FH

Environmental notes and recycling

Lenze has been certified to the worldwide DIN EN ISO 14001 environmental management standard for many years. As part of our environmental policy and the associated climate responsibility, please note the following information on hazardous ingredients and the recycling of Lenze products and their packaging:

Lenze products are partly subject to the EU Directive 2011/65/EU on the restriction of certain hazardous substances in electrical and electronic equipment (RoHS). This is documented accordingly in the EU declaration of conformity and with the CE mark.

Lenze products are not subject to EU Directive 2012/19/EU on waste electrical and electronic equipment (WEEE), but some contain batteries/rechargeable batteries in accordance with EU Directive 2006/66/EC (Battery Directive). The disposal route, which is separate from household waste, is indicated by corresponding labels with the "crossed-out trash can".

Any batteries/rechargeable batteries included are designed to last the life of the product and do not need to be replaced or otherwise removed by the end user.

Lenze products are usually sold with cardboard or plastic packaging. This packaging complies with EU Directive 94/62/EC on packaging and packaging waste (Packaging Directive). The required disposal route is indicated by material-specific labels with the "recycling triangle".

Example: "21 - other cardboard"

REACH Lenze products are subject to the European Regulation EC No. 1907/2006 (REACH Chemicals Regulation). When used as intended, exposure of substances to humans, animals and the environment is excluded.

Lenze products are industrial electrical and electronic products and are disposed of professionally. Both the mechanical and electrical components such as electric motors, gearboxes or inverters contain valuable raw materials that can be recycled and reused. Proper recycling and thus maintaining the highest possible level of recyclability is therefore important and sensible from an economic and ecological point of view.

- Coordinate professional disposal with your waste disposal company.
- Separate mechanical and electrical components, packaging, hazardous waste (e.g. gear oils) and batteries/rechargeable batteries wherever possible.
- Dispose of the separated waste in an environmentally sound and proper manner (no household waste or municipal bulky waste).

What?	Material	Disposal instructions
Pallets	Wood	Return to manufacturers, freight forwarders or reusable materials collection system
Packaging material	Paper, cardboard, pasteboard, plastics	Collect and dispose of separately
Products		
Electronic devices	Metal, plastics, circuit boards, heatsinks	As electronic waste give to professional disposer for recycling
Gearbox	Oil	Drain oil and dispose of separately
	Casting, steel, aluminium	Dispose as metal scrap
Motors	Casting, copper, rotors, magnets, potting compound	As engine scrap give to professional disposer for recycling
Dry-cell batteries/rechargeable batteries		As used batteries give to professional disposer for recycling

Further information on Lenze's environmental and climate responsibility and on the topic of energy efficiency can be found on the Internet:

www.Lenze.com → search word: "Sustainability"

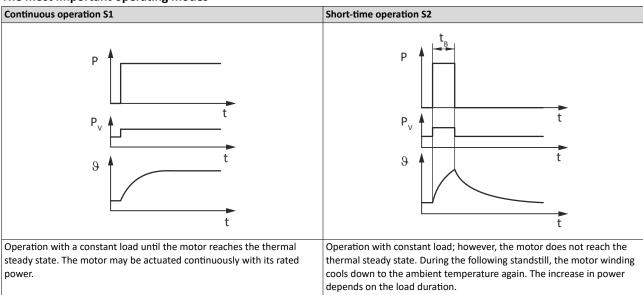
Appendix Good to know Approvals and directives

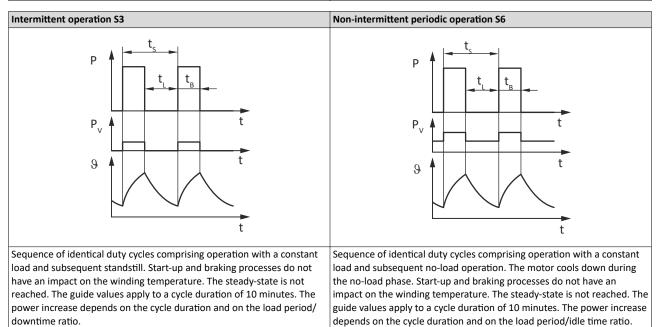
Appendix

Good to know

Approvals and directives

CCC	China Compulsory Certification
	documents the compliance with the legal product safety requirements of the PR of China - in accordance with Guobiao standards.
_C CSA _{US}	CSA certificate, tested according to US and Canada standards
UE	Union Européenne documents the declaration of the manufacturer that EU Directives are complied with.
CEL	China Energy Label documents the compliance with the legal energy efficiency requirements for motors, tested according to the PR of China and Guobiao standards
CSA	CSA Group (Canadian Standards Association) CSA certificate, tested according to Canada standards
UL ^{Energy} US CA	Energy Verified Certificate Determining the energy efficiency according to CSA C390 for products within the scope of energy efficiency requirements in the USA and Canada
_C UL _{US}	UL certificate for products, tested according to US and Canada standards
_C UR _{US}	UL certificate for components, tested according to US and Canada standards
EAC	Customs union Russia / Belarus / Kazakhstan certificate documents the declaration of the manufacturer that the specifications for the Eurasian conformity (EAC) required for placing electronic and electromechanical products on the market of the entire territory of the Customs Union (Russia, Belarus, Kazakhstan, Armenia and Kyrgyzstan) are complied with.
UL	Underwriters Laboratory Listed Product
UL _{LISTED}	UL Listing approval mark as proof that the product has been tested and the applicable safety requirements have been confirmed by UL (Underwriters Laboratory).
UR	UL Recognized Component approval mark as proof that the UL approved component can be used in a product or system bearing the UL Listing approval mark.


Operating modes of the motor


Operating modes S1 ... S10 as specified by EN 60034-1 describe the basic stress of an electrical machine.

In continuous operation a motor reaches its permissible temperature limit if it outputs the rated power dimensioned for continuous operation. However, if the motor is only subjected to load for a short time, the power output by the motor may be greater without the motor reaching its permissible temperature limit. This behaviour is referred to as overload capacity.

Depending on the duration of the load and the resulting temperature rise, the required motor can be selected reduced by the overload capacity.

The most important operating modes

Р	Power	P_V	Power loss
t	Time	t_B	Load period
t_L	Idle time	$t_{\rm S}$	Cycle duration
θ	Temperature		

Appendix Good to know

Enclosures

Enclosures

The degree of protection indicates the suitability of a motor for specific ambient conditions with regard to humidity as well as the protection against contact and the ingress of foreign particles. The degrees of protection are classified by EN 60529.

The first code number after the code letters IP indicates the protection against the ingress of foreign particles and dust. The second code number refers to the protection against the ingress of humidity.

Code number 1	Degree of protection	Code number 2	Degree of protection
0	No protection	0	No protection
1	Protection against the ingress of foreign particles d > 50 mm. No protection in case of deliberate access.	1	Protection against vertically dripping water (dripping water).
2	Protection against medium-sized foreign particles, d > 12 mm, keeping away fingers or the like.	2	Protection against diagonally falling water (dripping water), 15 ° compared to normal service position.
3	Protection against small foreign particles d > 2.5 mm. Keeping away tools, wires or the like.	3	Protection against spraying water, up to 60 ° from vertical.
4	Protection against granular foreign particles, d > 1 mm, keeping away tools, wire or the like.	4	Protection against spraying water from all directions.
5	Protection against dust deposits (dust-protected), complete protection against contact.	5	Protection against water jets from all directions.
6	Protection against the ingress of dust (dust-proof), complete protection against contact.	6	Protection against choppy seas or heavy water jets (flood protection).

