R.E.M. s.r.l.

Via Ferruccia, 16/a – 03010 Patrica (FR)

Tel. 0775 830116 - Fax 0775 839345

Email: adele.pace@rem-motori.it - Email: alfredo.evangelisti@rem-motori.it

Email: carlo.spaziani@rem-motori.it - Email: amministrazione@rem-motori.it

PROVE ELETTRICHE NON DISTRUTTIVE

SISTEMA DLA Italia

Test DLA n. 12.512 E

Cliente **SORGENIA POWER** Sito **APRILIA (LT)**

Macchina MOTORE ASINCRONO 3F.

ROTORE GABBIA

Matricola n. 10198352

Posizione 10SGA01AP002

Impianto A09-AUX

Data esecuzione Test venerdì 27 gennaio 2017 Test eseguito da: Eddo Luigi Toscani

Mod.

PEND-DLAWEB-M-AS-3F-RG-FUS-15-I-DI A-I AY

PCQ 1226 Rev.03

Disciplina - Macchine Elettriche Rotanti

<u>SO</u>	<u>MMARIO</u>
INTEGRITY LEVEL	3
CONSIDERAZIONI FINALI AVVOLGIMENTO STAT	ORICO 4
CONSIDERAZIONI FINALI ACCESSORI	5
DATI DI TARGA DELLA MACCHINA IN PROVA	6
	GIMENTO STATORICO
CURVA DI POLARIZZAZIONE	
INDICE DI POLARIZZAZIONE	8
RESISTENZA DI ISOLAMENTO	9
MISURE DEL FATTORE DI PERDITA	10
TANGENTE DELTA	11
DELTA TANGENTE DELTA	12
CURVA DELLA CAPACITA'	13
CAPACITA VARIAZIONE IN %	14
RESISTENZA OHMICA DI FASE	15
PROV RESISTENZA DI ISOLAMENTO TERMORESISTEN RESISTENZA OHMICA TERMORESISTENZE RESISTENZA DI ISOLAMENTO RTD RESISTENZA OHMICA RTD	17 18
DATA TEST 27-gen-17 Operatore Preparato Verificato Identificativo	MATRICOLA N. 10198352
Operatore Preparato Verificato Identificativo Eddo Luigi Toscani O.M.G. C. Bruni 12.512 E	REM S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente senza la sua autorizzazione scritta.

<u>INTEGRITY LEVEL</u>

GRADO DI AFFIDABILITA' DIELETTRICO DELLA MACCHINA

		11					
_	K	I.L. FASI CHIUSE A STELLA					
	0.1	FASI CHIOSE A STELLA					
	1						
	,	0,98					
	0,98	,					
	1						
da0 a 10 MΩ SCADENTE	0,1						
da 10 a 100 MΩ TOLLERABILE	1,00						
da 100 a 1000 MΩ BUONA 0,98							
oltre 1000 MΩ OTTIMA	1						
oltre 160 * 10 - 3 SCADENTE	0,1						
da 80 a 160 * 10 - 3 TOLLERABILE	0,7	0.00					
da 40 a 80 * 10 - 3 BUONO	0,98	0,98					
da 0 a 40 * 10 - 3 OTTIMO	1						
da 0 a 10 OTTIMO	1						
da 10 a 20 BUONO	0,98	1,00					
da 20 a 30 TOLLERABILE	0,7	1,00					
oltre 30 SCADENTE	0,1						
oltre 10 % SCADENTE	0,1						
da 5 a 10 % TOLLERABILE	0,7	1.00					
da3a 5% BUONA	0,98	1,00					
da0a 3% OTTIMA	1						
FASI SQUILIBRATE	0,1	1.00					
FASI EQUILIBRATE	1	1,00					
	Ditre 160 * 10 - 3 SCADENTE Ditre 160 * 10 - 3 TOLLERABILE Ditre 10 0 TTIMO Dia 0 a 10 OTTIMO Dia 10 a 20 BUONO Dia 20 a 30 TOLLERABILE Ditre 30 SCADENTE Ditre 10 % SCADENTE Ditre 10 % SCADENTE Ditre 10 % SCADENTE Ditre 10 % TOLLERABILE Ditre 30 SCADENTE Ditre 10 % TOLLERABILE Ditre 10 % TOLLERABILE	STATORE K da 0 a 2 SCADENTE 0,1 da 2 a 3 TOLLERABILE 0,7 da 3 a 4 BUONO 0,98 da 4 a 6 OTTIMO 1 da 10 a 10 MΩ SCADENTE 0,1 da 10 a 1000 MΩ BUONA 0,98 da 100 a 1000 MΩ OTTIMA 1 OITE 0,1 da 80 a 160 * 10 - 3 SCADENTE 0,1 da 80 a 160 * 10 - 3 TOLLERABILE 0,7 da 0 a 40 * 10 - 3 OTTIMO 1 da 10 a 20 BUONO 0,98 da 20 a 30 TOLLERABILE 0,7 oltre 30 SCADENTE 0,1 oltre 30 SCADENTE 0,1 oltre 10 % SCADENTE 0,1 ola 5 a 10 % TOLLERABILE 0,7 da 3 a 5 % BUONA 0,98 da 0 a 3 % OTTIMA 1 da 0 a 3 % OTTIMA 1					

RISHII.	TATI FINAL		0,96040					
THOOL	1/ (1 1 1 1 1 1 1 1 1 1	-1						
	8352		BUON	10				
POSIZIONE 10SC	GA01AP002							
da 0,99 a 1	da 0,9 a 0,99 BUONO	da 0,167 a 0,9	da 0,024 a 0,167 SCADENTE	da 0,00001 a 0,024				

CONSIDERAZIONI FINALI AVVOLGIMENTI STATORICI

DETERMINAZIONE DELL'INDICE DI POLARIZZAZIONE ESITO BUONO

Gli avvolgimenti sono ben puliti ed asciutti, non presentano inneschi di scariche verso massa.

MISURA DELLA RESISTENZA DI ISOLAMENTO

ESITO OTTIMA

Gli avvolgimenti presentano valori in mega ohm elevati.

MISURA DEL FATTORE DI PERDITA TANGENTE DELTA

ESITO BUONO

Gli avvolgimenti si presentano con isolanti compatti e omogenei.

MISURA DEL FATTORE DI PERDITA DELTA TANGENTE DELTA

ESITO OTTIMO

Gli avvolgimenti si presentano con isolanti compatti e omogenei.

MISURA DEL FATTORE DI PERDITA CAPACITA'

ESITO OTTIMA

Gli avvolgimenti non presentano fenomeni di ionizzazione in corso.

MISURA DELLA RESISTENZA OHMICA DI FASE

ESITO FASI FASI EQUILIBRATE

Gli avvolgimenti non presentano corto circuiti di spira e sono concordi con i dati di progetto.

GLI AVVOLGIMENTI STATORICI SONO AL MOMENTO DIELETTRICAMENTE IN CONDIZIONI BUONE. I VALORI SONO STABILI RISPETTO ALLE PROVE PRECEDENTI E SONO CONCORDI CON LE NORME DI RIFERIMENTO APPLICABILI.

DATA TEST	27-gen-	17		MATRICOLA N. 10198352				
Operatore	Preparato	Verificato	Identificativo	REM S.r.l. si riserva tutti i diritti su questo documento che non può essere				
Eddo Luigi Toscani	O.M.G.	C. Bruni	12.512 E	riprodotto neppure parzialmente senza la sua autorizzazione scritta.				

CONSIDERAZIONI FINALI ACCESSORI

MISURA DELLA RESISTENZA OHMICA TERMORESISTENZE

ESITO REGOLARE

Gli avvolgimenti delle termoresistenze non presentano corto circuiti o interruzioni.

MISURA DELLA RESISTENZA DI ISOLAMENTO TERMORESISTENZE

ESITO OTTIMA

Gli avvolgimenti delle termoresistenze presentano valori in mega ohm accettabili.

MISURA DELLA RESISTENZA OHMICA RTD

ESITO REGOLARE

Gli avvolgimenti delle sonde non presentano corto circuiti o interruzioni, tutte sono funzionanti.

MISURA DELLA RESISTENZA DI ISOLAMENTO RTD

ESITO BUONO

Gli avvolgimenti delle sonde presentano valori in mega ohm elevati.

LE PROVE ESEGUITE SUGLI ACCESSORI RIENTRANO NELLA NORMA.

DATA TEST 27-gen-17

Operatore
Eddo Luigi Toscani

OM.G.

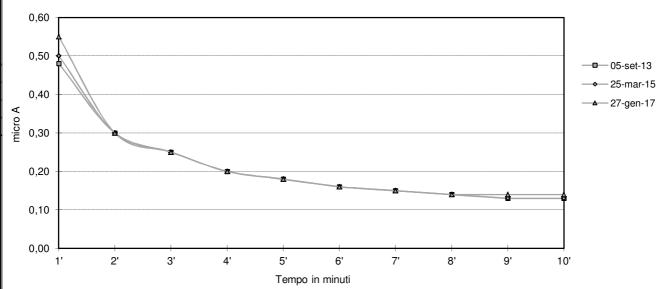
DATA TEST 27-gen-17

MATRICOLA N. 10198352

REM S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente senza la sua autorizzazione scritta.

<u>DATI DI TARGA</u>

MOTORE ASINCRONO 3 FASE


		1	-						
COSTRUTTORE	ANSALDO	POTENZA kW	160						
TIPO	CT315X2	POTENZA kVA							
MATRICOLA N.	10198352	POTENZA HP							
AREA	A09-AUX	TENSIONE kV	6						
POSIZIONE	10SGA01AP002	COLLEGAMENTO	STELLA						
FREQUENZA Hz	50	CORRENTE A	18,7						
Cos ø	0,89	GIRI/1'	2.974						
AVVOLGIMENTO TIPO	MATASSE =	POLI N.	2						
N. MORSETTI	3	CLASSE ISOLAMENTO	F						
ANNO COSTRUZIONE	2010	CIRCUITO VENTILAZIONE	VENTOLA ESTERNA						
ANNO REVISIONE		SERVIZIO	S1						
ANNO RIAVVOLGIMENTO		TERMORESISTENZE	V220 W640 PRESENTI						
FORMA COSTRUTTIVA	ASSE ORIZZONTALE	RTD	PRESENTI						
IM		CONDIZIONI DI PROVA TEMP. cu °C	14,00						
IC		CONDIZIONI DI PROVA TEMP. AMBIENTE °C	14,00						
IP	55	CONDIZIONI DI PROVA UMIDITA' RELATIVA %	47,00						
CERTIFICATO CESI N.									
PESO MACCHINA kg	1.450	ROTORE	GABBIA						
TIPO ROTOLAMENTO	CUSCINETTI								
IP kV dc DLA kV ac	5 3,468								
TEST ESEGUITO DA :	Eddo Luigi Toscani								
PROVE ESEGUITE IN:	IMPIANTO								
DATA	27-gen-17	SCADENZA CALIBR.	31-dic-17						
STATORE	COMPLETAMENTE CHIU	SO - CENTRO STELLA INTE	ERNO						
ROTORE GABBIA	OTORE GABBIA POSIZIONATO DENTRO LO STATORE								

CURVA DI POLARIZZAZIONE

AVVOLGIMENTO STATORICO FASI CHIUSE A STELLA

TENSIONE DI PROVA V dc 5.000 x 10' TEMPERATURA cu °C 14,00

				_		_	_			
Tempo in minuti '	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'
27-gen-17	0,55	0,30	0,25	0,20	0,18	0,16	0,15	0,14	0,14	0,14
05-set-13	0,48	0,30	0,25	0,20	0,18	0,16	0,15	0,14	0,13	0,13
25-mar-15	0,50	0,30	0,25	0,20	0,18	0,16	0,15	0,14	0,13	0,13

STRUMENTAZIONE		DLA - TRASFORMATORE DC BAUR PGK50E N.0410339006 - PGK25 N.041159002									
SCADENZA PROSSIMA CALIBRAZIONE STRUMENTI	31/12/20	31/12/2017									
CONDIZIONI DI PROVA STATORE	COMPL	ETAMEI	NTE CH	IUSO -	CENTRO STELLA INTERNO						
SPECIFICHE APPLICABILI	SPECIFICHE APPLICABILI NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 - IEEE std 43 - 2000										
DATA TEST	27-gen-	17			MATRICOLA N. 10198352						
Operatore	-	Verificato	ldentifi 12.5		REM S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente senza la sua autorizzazione						

12.512 E

O.M.G.

Eddo Luigi Toscani

C. Bruni

INDICE DI POLARIZZAZIONE

AVVOLGIMENTO STATORICO FASI CHIUSE A STELLA

TENSIONE I	DI PROVA V dc		5.0	000	x 10' TEMPE		ERATURA cu °C		14,00	
Tempo in minuti '	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'
27-gen-17	0,55	0,30	0,25	0,20	0,18	0,16	0,15	0,14	0,14	0,14
05-set-13 25-mar-15 27-gen-17	3,69 3,85 3,93									
4,50 4,00 3,50 3,00 1,50 1,00 0,50 0,00 1,50		27-gen-17		•	•			7		
STRUMENTAZIONE	DLA - TRASFORMATORE DC BAUR PGK50E N.0410339006 - PGK25 N.041159002									
SCADENZA PROSSIMA CALIBRAZIONE STRUMENTI LIMITI DI ACCETTABILITA' DELLA PROVA	31/12/20	017	ENTE - da	2 a 3 TOL	LERABILE	E - da 3 a 4	BUONO -	da 4 a 6 O	TTIMO	
ESITO DELLA PROVA IP		3,93 BUONO 0,98								
CONDIZIONI DI PROVA STATORE	COMPL		NTE CH	IUSO - (CENTRO	STELL	A INTEF	RNO		
SPECIFICHE APPLICABILI	NORME II	NTERNAT	IONAL ST	ANDARD (CEI - IEC 6	60034-1 ED	DITION 10.	2 - IEEE s	td 43 - 200	0
DATA TEST				. ,		MATRIC				non nuò
Operatore Eddo Luigi Toscani	Preparato O.M.G.	Verificato C. Bruni		icativo 12 E		odotto neppi				

RESISTENZA DI ISOLAMENTO

AVVOLGIMENTO STATORICO FASI CHIUSE A STELLA

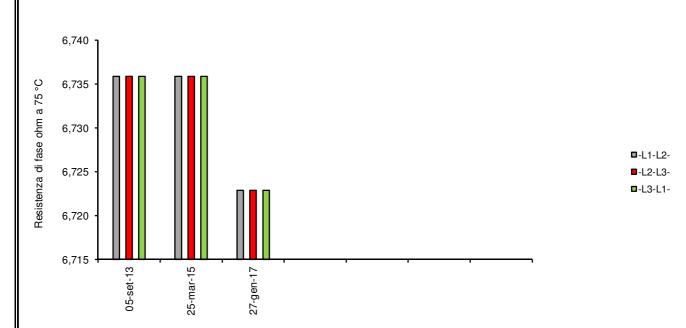
	TENSIONE I			E DI PRO	DI PROVA V dc 5.000		000	x 10'	TEMPERATURA cu °C 14,00		14,00		
	Tomp	o in miı	outi '	1'	2'	3'	4'	5'	6'	7'	8'	9'	10'
		-gen-17		9.091	16.667	20.000	25.000	27.778	31.250	33.333	35.714	35.714	35.714
		9011 11	<u>'</u>	0.00.	10.007				0200	00.000	00	00.7.1.	30.7.1.
		-set-13		10.417									
		-mar-1		10.000	<u> </u>								
	27	-gen-1	7	9.091	4								
					1								
					1								
Mega ohm	12.000 · 10.000 · 8.000 · 6.000 · 4.000 · 2.000 ·	05-set-13		25-mar-15	27-gen-17		•	,	•		-		
STRI	UMENTA	AZIONI	≣	DLA - ⁻ N.0411	TRASFO	RMATO	RE DC E	BAUR PO	GK50E N	I.041033	9006 - F	PGK25	
	DENZA BRAZIO		SIMA RUMENT	31/12/2									
	TI DI AC		BILITA'		a 0 a 10 S				OLLERAE	BILE -			
DELL	_A PRO\	/ A			a 1000 Bl		tre 1000	OTTIMA					
	O DELL			FASIC	HIUSE A 9.090,91								
VALC	ori in M	IEGA (OHM A 1'		OTTIMA								
	O I.L.				1,00								
	DIZIONI TORE	DI PR	OVA	СОМР	LETAME	NTE CH	IUSO - (CENTRO	STELL	A INTER	RNO		
SPE	CIFICHE	APPL	ICABILI	NORME	INTERNAT	IONAL ST	ANDARD	CEI - IEC 6	60034-1 E	DITION 10.	2 - IEEE s	td 43 - 2000	0
		D	ATA TES	T 27-gen	-17	_			MATRIC				·
		peratore			Verificato		icativo					mento che n la sua autori	
I	Eddo l	Luigi Tos	canı	O.M.G.	C. Bruni	12.5	12 E	scritta.					

MISURE DEL FATTORE DI PERDITA AVVOLGIMENTO STATORICO FASI CHIUSE A STELLA TENSIONE DI PROVA V ac 694 1.387 2.081 2.775 3.468 Misura del circuito di prova - Cu E -Tg δ * 10 - 3 8,50 12,80 9,60 9,30 8,40 Cu E 0,70 0,80 mΑ 1,50 3,00 5,00 7,30 7,24 7,22 7,21 7,20 Cu E Misura della macchina elettrica - C1 -Tg δ * 10 - 3 22,00 30,00 35,00 46,77 50,10 C1 10,00 20,00 40,00 50,00 30,00 mΑ 39,80 39,99 40,12 40,15 40,20 MILLIAMPERE TOTALI mΑ 9,30 19,20 28,50 37,00 45,00 CAPACITA' CX CX=C1-Cu E 32,50 32,75 32,90 32,94 33,00 CAPACITA' REALE pF=CX * CN 32.695 32.947 33.097 33.138 33.198 (CN=capacità condensatore campione) TANGENTE DELTA Tg δ * 10 - 3 Tg δ * 10 - 3 24,07 34,51 40,64 55,17 59,18 CIRCUITO DI PROVA TANGENTE DELTA TIPO 2805 TETTE DATA TEST 27-gen-17 MATRICOLA N. 10198352 REM S.r.I. si riserva tutti i diritti su questo documento che Preparato Verificato Operatore Identificativo non può essere riprodotto neppure parzialmente senza la Eddo Luigi Toscani O.M.G. C. Bruni 12.512 E

TANGENTE DELTA (Tg δ) AVVOLGIMENTO STATORICO FASI CHIUSE A STELLA TENSIONE DI PROVA kV ac 0,694 1,387 2,081 2,775 3,468 27-gen-17 24,07 34,51 40,64 55,17 59,18 05-set-13 23,76 38,18 39,90 55,26 78,09 25-mar-15 23,98 36,90 40,37 53,39 70,33 90 80 70 —■— 05-set-13 60 → 25-mar-15 Tg Delta * 10 - 3 △ 27-gen-17 50 40 30 20 10 0,694 1,387 2,081 2,775 3,468 kV ac DLA - TRAFO M.T. MAGLIANO T2 N.634-1 kVA 25 - PONTE DI SCHERING TETTEX 2405 N.132.500 STRUMENTAZIONE CONDENSATORE CAMPIONE 3360/1000/30BKN 1.006 pF N.131.031 SCADENZA PROSSIMA 31/12/2017 CALIBRAZIONE STRUMENTI LIMITI DI ACCETTABILITA' DELLA da 0 a 40 * 10 - 3 = OTTIMO da 80 a 160 * 10-3 = TOLLERABILE **PROVA** da 40 a 80 * 10 - 3 = BUONO oltre 160 * 10-3 = SCADENTE FASI CHIUSE A STELLA ESITO DELLA PROVA **BUONO** 0,98 ESITO I.L. CONDIZIONI DI PROVA STATORE COMPLETAMENTE CHIUSO - CENTRO STELLA INTERNO SPECIFICHE APPLICABILI NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 DATA TEST 27-gen-17 MATRICOLA N. 10198352 REM S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente Verificato Identificativo Operatore Preparato Eddo Luigi Toscani O.M.G. C. Bruni 12.512 E enza la sua autorizzazione scritta

<u>DELTA TANGENTE DELTA (ΔTg δ)</u>

	AVVOLGIMENT	O STATORI	CO FASI CI	HIUSE A ST	TELLA						
	GRADIENTI DI TENSIONE	0,4-0,2 Vn	0,6-0,4 Vn	0,8-0,6 Vn	1-0,8 Vn	(0,6-0,2)*0,5					
	27-gen-17	10,44	6,13	14,53	4,01	8,29					
	05-set-13 25-mar-15	14,42 12,92	1,73 3,47	15,36 13,03	22,82 16,94	8,07 8,19					
	25,00										
	20,00 —————————————————————————————————										
	0,00 + + 0,4-0,2 Vn 0,6-0,4 Vn	0,8-0,6 Vn Gradienti	1- di Tensione	0,8 Vn	(0,6-0,2)*0,5						
STF	RUMENTAZIONE		MAGLIANO T2 N.634 CAMPIONE 3360/100			TEX 2405 N.132.500					
CAL	ADENZA PROSSIMA LIBRAZIONE STRUMENTI	31/12/2017									
	ITI DI ACCETTABILITA' DELLA OVA		da 0 a 10 = OTTIMO da 10 a 20 = BUONO		da $20 \text{ a } 30 = \text{TOL}$ oltre $30 = \text{SCA}$						
ESI	TO DELLA PROVA		E A STELLA IMO								
ESI	TO I.L.	1,	00								
COI	NDIZIONI DI PROVA STATORE	COMPLETAMENTE CHIUSO - CENTRO STELLA INTERNO									
SPE	ECIFICHE APPLICABILI	NORME INTERN			034-1 EDITION 10	0.2					
	DATA TEST Operatore Eddo Luigi Toscani	T 27-gen-17 MATRICOLA N. 10198352 Preparato Verificato Identificativo REM S.r.l. si riserva tutti i diritti su questo docun che non può essere riprodotto neppure parzialn senza la sua autorizzazione scritta.									


CURVA DELLA CAPACITA' AVVOLGIMENTO STATORICO FASI CHIUSE A STELLA TENSIONE DI PROVA kV ac 0,694 1,387 2,081 2,775 3,468 27-gen-17 32.695 32.947 33.097 33.138 33.198 05-set-13 34.405 34.546 34.667 34.898 35.622 25-mar-15 34.164 34.244 34.787 35.109 35.401 36.000 35.500 35.000 34.500 ■ 05-set-13 ◆— 25-mar-15 34.000 ▲-- 27-gen-17 占 33.500 33.000 32.500 32.000 31.500 31.000 0,694 1,387 2,081 2,775 3,468 kV ac DLA - TRAFO M.T. MAGLIANO T2 N.634-1 kVA 25 - PONTE DI SCHERING TETTEX 2405 N.132.500 STRUMENTAZIONE CONDENSATORE CAMPIONE 3360/1000/30BKN 1.006 pF N.131.031 SCADENZA PROSSIMA 31/12/2017 CALIBRAZIONE STRUMENTI CONDIZIONI DI PROVA STATORE COMPLETAMENTE CHIUSO - CENTRO STELLA INTERNO SPECIFICHE APPLICABILI NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 DATA TEST 27-gen-17 MATRICOLA N. 10198352 REM S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente Verificato Identificativo Operatore Preparato O.M.G. 12.512 E Eddo Luigi Toscani C. Bruni enza la sua autorizzazione scritta

	<u>CAPACITA'</u>												
			AVV	OLG	IMEI	NΤ	O STATOR	ICO FASI C	HIUSE A S ⁻	ΓELLA			
	Т	ENSION	NE DI I	PROV	'A kV	ac	0,694	1,387	2,081	2,775	3,468		
		27-ge	n-17				32.695	32.947	33.097	33.138	33.198		
05-set-13 25-mar-15 27-gen-17							3,54 3,62 1,54						
VARIAZIONE in % di pF	4,00 - 3,50 - 3,00 - 2,50 - 2,00 - 1,50 - 0,50 - 0,00 -	05-set-13		25-mar-15	•	27-gen-17			•				
		ZIONE					DLA - TRAFO M.T. MAGLIANO T2 N.634-1 kVA 25 - PONTE DI SCHERING TETTEX 2405 N.132.500 CONDENSATORE CAMPIONE 3360/1000/30BKN 1.006 pF N.131.031						
CALIB	RAZIO DI ACC	PROSSI NE STR CETTAE	RUMEN		_A		31/12/2017 oltre 10% SCADE da 0 a 3% OTTIM		TOLLERABILE -	da 3 a 5% BUONA	-		
ESITO VARIA	DELLA ZIONE	A PROV	'A				1, OT	SE A STELLA 54 FIMA					
ESITO		DI PRO	۱۱/۸ ۲۶	ΓΔΤΩ	RE	\dashv		00 MENTE CHIUS	O - CENTRO	STELLA INTER	BNO		
		APPLIC			115					0034-1 EDITION 10			
				DAT	A TE	ST							
	I	Opera Eddo Luigi			_		Preparato O.M.G.	Verificato C. Bruni	Identificativo 12.512 E	REM S.r.l. si riserva tutti i c che non può essere riprod senza la sua autorizzazion	otto neppure parzialmente		

RESISTENZA OHMICA DI FASE

AVVOLGIMENTO STATORICO FASI CHIUSE A STELLA

VALORI MISURATI	FASI -L1-L2-	FASI -L2-L3-	FASI -L3-L1-	TEMPERATURA cu °C
27-gen-17	5,400000	5,400000	5,400000	Ω a °C 14,00
27-gen-17	6,722892	6,722892	6,722892	Ω a °C 75,00
		-	-	
05-set-13	6,735891	6,735891	6,735891	
25-mar-15	6,735891	6,735891	6,735891	
27-gen-17	6,722892	6,722892	6,722892	

STRUMENTAZIONE	DLA - MIKROOHMMETER BURSTER DIGITALE RESISTOMAT TIPO 2323 N.062103					
SCADENZA PROSSIMA CALIBRAZIONE STRUMENTI	31/12/2017					
LIMITI DI ACCETTABILITA' DELLA PROVA	DEVIAZIONE INFERIORE A	SURA DEVE ESSERE .RGA				
ESITO DELLA PROVA	FASI EQUILIBRATE					
ESITO I.L.	1,00					
CONDIZIONI DI PROVA STATORE	COMPLETAM	COMPLETAMENTE CHIUSO - CENTRO STELLA INTERNO				
SPECIFICHE APPLICABILI	NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2					
DATA TEST	27-gen-17	M	ATRICOLA N.	10198352		
Operatore Eddo Luigi Toscani	Preparato O.M.G.	Verificato C. Bruni	ldentificativo 12.512 E	REM S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente senza la sua autorizzazione scritta.		

RESISTENZA DI ISOLAMENTO **TERMORESISTENZE** TENSIONE DI PROVA VERSO MASSA V dc 500 x 1' I° GRUPPO 1.000,00 27-gen-17 05-set-13 1.000 1.000 27-gen-17 1.200 1.000 800 ■I° GRUPPO Mega ohm 600 400 200 0 05-set-13 27-gen-17 SCADENZA PROSSIMA 31/12/2017 CALIBRAZIONE STRUMENTI LIMITI DI ACCETTABILITA' $R \ge 10 \text{ M}\Omega \text{ (20°C)}$ **DELLA PROVA** I° GRUPPO ESITO DELLA PROVA **OTTIMA** MACCHINA FERMA - AUSILIARI IN SICUREZZA - COLLEGAMENTI CONDIZIONI DI PROVA **TERMORESISTENZE RIMOSSI**

Identificativo

12.512 E

NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2

MATRICOLA N. 10198352 REM S.r.I. si riserva tutti i diritti su questo documento che non può

essere riprodotto neppure parzialmente senza la sua autorizzazione

SPECIFICHE APPLICABILI

Operatore

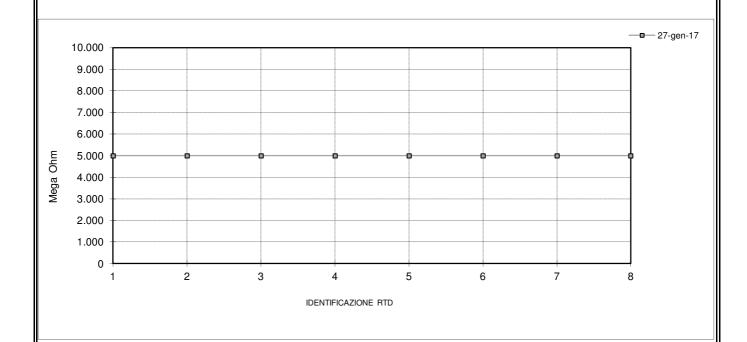
Eddo Luigi Toscani

DATA TEST 27-gen-17

Preparato Verificato

C. Bruni

O.M.G.

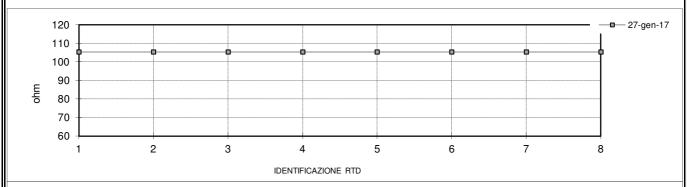

RESISTENZA OHMICA **TERMORESISTENZE** I° GRUPPO TEMPERATURA cu °C 106,00000 Ω a °C 14,00 27-gen-17 Ω a °C 75,00 131,96787 05-set-13 132,17054 131,96787 27-gen-17 140 120 100 **□**I° GRUPPO ohm 80 60 40 20 0 05-set-13 27-gen-17 STRUMENTAZIONE DLA - OSCILLOSCOPIO FLUKE SCOPEMETER 123 N.DM86209526 SCADENZA PROSSIMA 31/12/2017 CALIBRAZIONE STRUMENTI LIMITI DI ACCETTABILITA' DELLA LE TERMORESISTENZE DEVONO FUNZIONARE CORRETTAMENTE **PROVA** ESITO DELLA PROVA **REGOLARE** MACCHINA FERMA - AUSILIARI IN SICUREZZA - COLLEGAMENTI CONDIZIONI DI PROVA TERMORESISTENZE RIMOSSI SPECIFICHE APPLICABILI NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 MATRICOLA N. 10198352 DATA TEST 27-gen-17 REM S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente Operatore Preparato Verificato Identificativo 12.512 E Eddo Luigi Toscani O.M.G. C. Bruni senza la sua autorizzazione scritta.

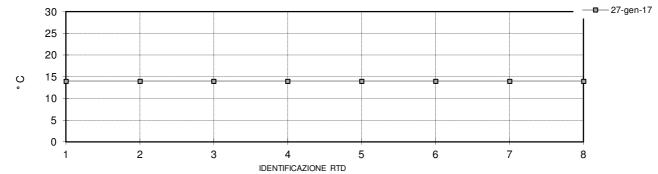
RESISTENZA DI ISOLAMENTO

RTD TERMOELEMENTI Pt 100 ohm a 0°C

TENSIONE DI PROVA VERSO MASSA = V dc 500 x 1'

1	2	3	4	5	6	7	8	9	IDENTIFICAZIONE
5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000		ΜΩ
10	11	12	13	14	15	16	17	18	IDENTIFICAZIONE
									ΜΩ
									
19	20	21	22	23	24	25	26	27	IDENTIFICAZIONE
									ΜΩ




STRUMENTAZIONE	DLA - MEGGER DIGITALE ELETTRONICO MEGABRAS TIPO 5060X N.SN1							
SCADENZA PROSSIMA CALIBRAZIONE STRUMEN ⁻		31/12/2017	31/12/2017					
LIMITE DI ACCETTABILITA' PROVA	$R \geq 100 \text{ M}\Omega \text{ (20°C)}$							
ESITO DELLA PROVA	BUONO							
CONDIZIONI DI PROVA	MACCHINA FERMA - AUSILIARI IN SICUREZZA - COLLEGAMENTI TERMORESISTENZE RIMOSSI							
SPECIFICHE APPLICABILI	NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2							
DATA TEST 27-ger	า-17			MATRICOLA N. 10198352				
Operatore Eddo Luigi Toscani	Preparato O.M.G.	Verificato C. Bruni	Identificativo 12.512 E	REM S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmente senza la sua autorizzazione				
Luub Luigi Toscanii	U.IVI.G.	C. Bruill	12.012 E	scritta.				

RESISTENZA OHMICA

RTD TERMOELEMENTI Pt 100 ohm a 0°C

1	2	3	4	5	6	7	8	9	IDENTIFICAZIONE
105,40	105,40	105,40	105,40	105,40	105,40	105,40	105,40		Ω
13,99	13,99	13,99	13,99	13,99	13,99	13,99	13,99		°C
10	11	12	13	14	15	16	17	18	IDENTIFICAZIONE
									Ω
									°C
19	20	21	22	23	24	25	26	27	IDENTIFICAZIONE
									Ω
									°C

STRUMENTAZIONE	DLA - OSCILLOSCOPIO FLUKE SCOPEMETER 123 N.DM8620526
SCADENZA PROSSIMA CALIBRAZIONE STRUMENTI	31/12/2017
LIMITE DI ACCETTABILITA' DELLA PROVA	IL RILEVAMENTO DEVE RISULTARE FUNZIONANTE PER TUTTE LE TERMORESISTENZE PT 100
ESITO DELLA PROVA	REGOLARE
	MACCHINIA FEDMA ALICHIADLINI CICLIDEZZA COLLECAMENTI

CONDIZIONI DI PROVA		MACCHINA FERMA - AUSILIARI IN SICUREZZA - COLLEGAMENTI TERMORESISTENZE RIMOSSI					
SPECIFICHE APPLICABILI		NORME INTERN	NATIONAL STAN	NDARD CEI - IEC 60034-1 EDITION 10.2			
DATA TEST 27-ger	n-17			MATRICOLA N. 10198352			
Operatore	Prenarato	Verificato	Identificativo	REM S.r.I. si riserva tutti i diritti su questo documento che non può			

Operatore	Preparato	Verificato	identineative	REM S.r.l. si riserva tutti i diritti su questo documento che non può
Eddo Luigi Toscani	O.M.G.	C. Bruni	12.512 E	essere riprodotto neppure parzialmente senza la sua autorizzazione scritta.