

DIAGNOSI ELETTRICHE NON DISTRUTTIVE

SISTEMA DLA Italia

Disciplina - Macchine Elettriche Rotanti

IL-COLOR-DLA!

Mod.

	Test DLA n.	11.888 A
	Cliente Sito Macchina Matricola n.	FEDRIGONI VARONE RIVA DEL GARDA (TN) GENERATORE SINCRONO 3F. ECCITAZIONE BRUSHLESS MT-3737
	Posizione	TURBOVAPORE 1,1
	Data esecuzione Test Test eseguito da: Report approvato da:	venerdì 2 maggio 2014 Andrea Toscani O.M.G.
G-S-3F-EB-FS-13-I-DLAWEB-BRV-		Dudiea Cox

DLAweb S.r.l.

PCQ 1226 Rev.05

Sede legale e operativa : Via G. Verdi, 40 - 23847 Molteno (LC) - ITALIA

Tel. +39 031 850271 - Fax +39 031 875550

web: www.dlaweb.it - e-mail: dla@dlaweb.it

SOMMARIO CONSIDERAZIONI FINALI AVVOLGIMENTO STATORICO........ 4 CONSIDERAZIONI FINALI RUOTA POLARE..... 5 CONSIDERAZIONI FINALI ACCESSORI...... 6 DATI DI TARGA DELLA MACCHINA IN PROVA...... 7 PROVE AVVOLGIMENTO STATORICO INDICE DI POLARIZZAZIONE...... 8 RESISTENZA DI ISOLAMENTO......9 MISURE DEL FATTORE DI PERDITA FASE -L1-.... 10 MISURE DEL FATTORE DI PERDITA FASE -L2-.... 11 MISURE DEL FATTORE DI PERDITA FASE -L3-.... DELTA TANGENTE DELTA...... 14 CAPACITA'..... 15 RESISTENZA OHMICA DI FASE...... 16 PROVE AVVOLGIMENTO RUOTA POLARE RESISTENZA DI ISOLAMENTO STATICA...... 17 RESISTENZA OHMICA STATICA...... 18 PROVE ACCESSORI RESISTENZA DI ISOLAMENTO TERMORESISTENZE......19 RESISTENZA DI ISOLAMENTO RTD..... 21 DOCUMENTAZIONE FOTOGRAFICA 1..... 23 DOCUMENTAZIONE FOTOGRAFICA 2..... DATA TEST 02/05/2014 MATRICOLA N. MT-3737 Preparato Verificato Operatore Identificativo DLAWEB S.r.I. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmene senza la sua autorizzazione scritta Andrea Toscani O.M.G. Ing. C. Bruni 11.888 A

INTEGRITY LEVEL

GRADO DI AFFIDARII ITA' DIFI ETTRICO DELLA MACCHINA

GR/	GRADO DI AFFIDABILITA' DIELETTRICO DELLA MACCHINA								
PROVA	LIMITI DI TOLLERANZA	K	I.L.	I.L.	I.L.				
	STATORE		FASE -L1-	FASE -L2-	FASE -L3-				
	da 0 a 2 SCADENTE	0,1							
INDICE DI	da 2 a 3 TOLLERABILE	0,7	0,10	0,10	0,10				
POLARIZZAZIONE	da 3 a 4 BUONO	0,98	0, 10	5,	,,,,				
	da 4 a 6 OTTIMO	1							
	da 0 a 10 M Ω SCADENTE	0,1							
RESISTENZA DI	da 10 a 100 MΩ TOLLERABILE	0,7	0,98	0,98	0,98				
ISOLAMENTO	da 100 a 1000 MΩ BUONA	0,98	0,00	0,00	0,00				
	oltre 1000 MΩ OTTIMA	1							
TENSIONE	RAMPA NON OMOGENEA	0,1							
APPLICATA	RAMPA OMOGENEA	1							
	oltre 160 * 10 - 3 SCADENTE	0,1							
TANGENTE DELTA		0,7	0,98	0,98	0,98				
(Tg δ)	da 40 a 80 * 10 - 3 BUONO	0,98	0,00	0,00	0,00				
	da 0 a 40 * 10 - 3 OTTIMO	1							
	da 0 a 10 OTTIMO	1							
DELTA TANGENTE	da 10 a 20 BUONO	0,98	1,00	1,00	1,00				
DELTA (Δ Tg δ)	da 20 a 30 TOLLERABILE	0,7	1,00	1,00	1,00				
	oltre 30 SCADENTE	0,1							
	oltre 10 % SCADENTE	0,1							
CAPACITA'	da 5 a 10 % TOLLERABILE	0,7	0,70	0,70	0,70				
(Variazione in %)	da 3 a 5 % BUONA	0,98	0,70	0,70	0,70				
	da0a 3% OTTIMA	1							
RESISTENZA	FASI SQUILIBRATE	0,1	1,00	1,00	1,00				
OHMICA DI FASE	FASI EQUILIBRATE	1	1,00	1,00	1,00				
IMPEDENZA DI	FASI SQUILIBRATE	0,1							
FASE	FASI EQUILIBRATE	1							
PROVA	LIMITI DI TOLLERANZA RUOTA	К	TOTALE	POLI	COLLETTORE				
TROVA	POLARE	11	TOTALL	I OLI	COLLETTORE				
RESISTENZA DI	da 0 a 10 M Ω SCADENTE	0,1							
ISOLAMENTO	da 10 a 100 MΩ TOLLERABILE	0,7	0,98	0,98	0,98				
STATICA	da 100 a 1000 MΩ BUONA	0,98	0,00	0,96	0,00				
	oltre 1000 MΩ OTTIMA	1							
RESISTENZA	NON REGOLARE	0,1	1,00	1,00	1,00				
OHMICA STATICA	REGOLARE	1	1,00	1,00	1,00				
IMPEDENZA	NON ACCETTABILE	0,1							
STATICA	ACCETTABILE	1							
IMPEDENZA	NON ACCETTABILE	0,1							
DINAMICA	ACCETTABILE	1							
RISI	ULTATI FINALI		0,06588	0,06588	0,06588				
1/10/	OLIAIIIIINALI								
MATRICOLA N.	MT-3737		SCADENTE	SCADENTE	SCADENTE				
POSIZIONE	TURBOVAPORE 1,1								
		()							
da 0,99 a 1 OTTIMO		167 a ERAE			0,00001 a 0,024 RICOLO				

CONSIDERAZIONI FINALI AVVOLGIMENTI STATORICI

DETERMINAZIONE DELL'INDICE DI POLARIZZAZIONE

ESITO FASE L1 SCADENTE ESITO FASE L2 SCADENTE ESITO FASE L3 SCADENTE

Gli avvolgimenti sono inquinati, al momento non si evidenziano inneschi di scariche verso massa.

MISURA DELLA RESISTENZA DI ISOLAMENTO

ESITO FASE L1 BUONA ESITO FASE L2 BUONA ESITO FASE L3 BUONA

Gli avvolgimenti presentano valori in mega ohm ancora accettabili.

MISURA DEL FATTORE DI PERDITA TANGENTE DELTA

ESITO FASE L1 BUONO ESITO FASE L2 BUONO ESITO FASE L3 BUONO

Gli avvolgimenti si presentano con isolanti compatti e omogenei.

MISURA DEL FATTORE DI PERDITA DELTA TANGENTE DELTA

ESITO FASE L1 OTTIMO
ESITO FASE L2 OTTIMO
ESITO FASE L3 OTTIMO

Gli avvolgimenti si presentano con isolanti compatti e omogenei.

MISURA DEL FATTORE DI PERDITA CAPACITA'

ESITO FASE L1 TOLLERABILE ESITO FASE L2 TOLLERABILE ESITO FASE L3 TOLLERABILE

Gli avvolgimenti non presentano fenomeni di ionizzazione in corso.

MISURA DELLA RESISTENZA OHMICA DI FASE

ESITO FASI FASI EQUILIBRATE

Gli avvolgimenti non presentano corto circuiti di spira e sono concordi con i dati di progetto.

GLI AVVOLGIMENTI STATORICI SONO AL MOMENTO DIELETTRICAMENTE IN CONDIZIONI SCADENTI. I VALORI NON SONO CONCORDI CON LE NORME DI RIFERIMENTO APPLICABILI. GLI AVVOLGIMENTI SONO FORTEMENTE INQUINATI, PER UNA BUONA RAGIONE DI AFFIDABILITA' E' GIUNTO IL MOMENTO DI PRENDERE IN SERIA CONSIDERAZIONE LA NECESSITA' DI REVISIONARE LA MACCHINA.

١	DATA TEST	02/05/2	014		MATRICOLA N. MT-3737
١	Operatore	Preparato	Verificato	Identificativo	DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non può essere
١	Andrea Toscani	O.M.G.	Ing. C. Bruni	11.888 A	riprodotto neppure parzialmene senza la sua autorizzazione scritta

CONSIDERAZIONI FINALI RUOTA POLARE

MISURA DELLA RESISTENZA DI ISOLAMENTO STATICA

ESITO BUONA TOTALE ESITO BUONA POLI

ESITO BUONA POLI + COLLETTORE

Gli avvolgimenti presentano valori in mega ohm elevati.

MISURA DELLA RESISTENZA OHMICA STATICA

ESITO TOTALE ESITO REGOLARE POLI

ESITO POLI + COLLETTORE

Gli avvolgimenti presentano valori nella norma concordi con i dati di progetto.

GLI AVVOLGIMENTI ROTORICI SONO AL MOMENTO DIELETTRICAMENTE IN CONDIZIONI BUONE, I VALORI SONO STABILI RISPETTO ALLE PROVE PRECEDENTI E SONO CONCORDI CON LE NORME DI RIFERIMENTO APPLICABILI.

DATA TEST	02/05/20	14		MATRICOLA N. MT-3737
Operatore	Preparato V	Verificato	Identificativo	DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non può essere
Andrea Toscani	O.M.G. In	ng. C. Bruni	11.888 A	riprodotto neppure parzialmene senza la sua autorizzazione scritta

CONSIDERAZIONI FINALI ACCESSORI

MISURA DELLA RESISTENZA OHMICA TERMORESISTENZE

ESITO REGOLARE

Gli avvolgimenti delle scaldiglie non presentano corto circuiti o interruzioni.

MISURA DELLA RESISTENZA DI ISOLAMENTO TERMORESISTENZE

ESITO BUONA

Gli avvolgimenti delle scaldiglie presentano valori in mega ohm accettabili.

MISURA DELLA RESISTENZA OHMICA RTD

ESITO REGOLARE

Gli avvolgimenti delle sonde non presentano corto circuiti o interruzioni, tutte sono funzionanti.

MISURA DELLA RESISTENZA DI ISOLAMENTO RTD

ESITO BUONA

Gli avvolgimenti delle sonde presentano valori in mega ohm elevati.

LE PROVE ESEGUITE SUGLI ACCESSORI RIENTRANO NELLA NORMA.

DATA TEST	02/05/2	014		MATRICOLA N. MT-3737
Operatore	Preparato	Verificato	Identificativo	DLAWEB S.r.I. si riserva tutti i diritti su questo documento che non può essere
Andrea Toscani	OMG	Ina C Bruni	11 888 A	riprodotto neppure parzialmene senza la sua autorizzazione scritta

DATI DI TARGA **GENERATORE SINCRONO 3 FASE** COSTRUTTORE MARELLI POTENZA kW TIPO MX500AC4 1.500 POTENZA kVA MATRICOLA N. MT-3737 POTENZA HP C.LE TERMICA TENSIONE kV 0,4 **TURBOVAPORE 1,1** COLLEGAMENTO **STELLA** POSIZIONE 50 FREQUENZA Hz CORRENTE A 2.165,0 Cos ø GIRI/1' 1.500 AVVOLGIMENTO TIPO MATASSE = POLI N. CLASSE ISOLAMENTO N. MORSETTI 3+1 CIRCUITO ANNO COSTRUZIONE VENTILAZIONE **APERTA** ANNO REVISIONE **SERVIZIO S1** ANNO RIAVVOLGIMENTO **TERMORESISTENZE PRESENTI** FORMA COSTRUTTIVA ASSE H **RTD** N. 3 PRESENTI CONDIZIONI DI PROVA TEMP. cu °C 22,00 CONDIZIONI DI PROVA TEMP. AMBIENTE °C 15,00 CONDIZIONI DI PROVA UMIDITA' RELATIVA % 45,00 TENSIONE Ecc. V dc 20 CERTIFICATO CESI N. PESO MACCHINA kg 3.200 CORRENTE Ecc. A 6,0 TIPO ROTOLAMENTO **CUSCINETTI ECCITAZIONE TIPO BRUSHLESS** IP kV dc DIODI N. 0,5 DLA kW ac 0,231 DIODI TIPO TEST ESEGUITO DA : **Andrea Toscani** PROVE ESEGUITE IN: **IMPIANTO** SCADENZA CALIBR. 31-dic-14 DATA 02/05/2014 STATORE PARZIALMENTE APERTO - CENTRO STELLA INTERNO CAVO TERRA RIMOSSO **POSIZIONATA DENTRO LO STATORE** RUOTA POLARE

INDICE DI POLARIZZAZIONE AVVOLGIMENTO STATORICO 1 FASE IN PROVA LE ALTRE 2 A MASSA TENSIONE DI PROVA V dc 500 x 10' TEMPERATURA cu °C 22,00 FASE -L1-Tempo in minuti 2' 5' 6' 8' 9' 10' micro A 0,65 0,60 0,60 0,60 0,60 0,62 0,60 0,60 0,60 0,60 FASE -L2-2 Tempo in minuti 5' 6' 8' 9' 10' micro A 0,65 0,60 0,62 0,60 0,60 0,60 0,60 0,60 0,60 0,60 FASE -L3-1' 2' 7' 9' Tempo in minuti 3' 4' 5' 6' 8' 10' 0,65 0,60 0,62 0,60 0,60 0,60 0,60 0,60 0,60 0,60 micro A 0,66 0.65 0,64 0,63 0,62 O,60 - FASE -I 1-0,59 FASE -L2-0,58 FASE -L3-0,57 3' 2' 10' Tempo in minuti DLA - TRASFORMATORE DC BAUR PGK50E N.0410339006 - PGK25 STRUMENTAZIONE N.041159002 SCADENZA PROSSIMA 31/12/2014 CALIBRAZIONE STRUMENTI LIMITI DI ACCETTABILITA' valori da 0 a 2 SCADENTE - da 2 a 3 TOLLERABILE - da 3 a 4 BUONO - da 4 a 6 OTTIMO DELLA PROVA FASE -L1-FASE -L2-FASE -L3-ESITO DELLA PROVA IP 1,08 1,08 1,08 SCADENTE SCADENTE CADENTE ESITO I.L 0,10 0,10 CONDIZIONI DI PROVA PARZIALMENTE APERTO - CENTRO STELLA INTERNO CAVO TERRA STATORE **RIMOSSO** SPECIFICHE APPLICABILI NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 - IEEE std 43 - 2000 DATA TEST 02/05/2014 MATRICOLA N. MT-3737 DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non Operatore Preparato Verificato Identificativo può essere riprodotto neppure parzialmene senza la sua Ing. C. Bruni Andrea Toscani O.M.G. 11.888 A autorizzazione scritta

RESISTENZA DI ISOLAMENTO AVVOLGIMENTO STATORICO 1 FASE IN PROVA LE ALTRE 2 A MASSA TENSIONE DI PROVA V dc 500 x 10' TEMPERATURA cu °C 22,00 FASE -L1-5' 6' 8' 9' 10' 769,23 833,33 806,45 833,33 833,33 833,33 833,33 833,33 833,33 833,33 FASE -L2-2' 5' 6' 8' 9' 10' 833,33 833,33 833,33 833,33 833,33 769,23 833,33 806,45 833,33 833,33 FASE -L3-1' 2' 7' 9' 3 4' 5' 6' 8' 10' 769,23 833,33 806,45 833,33 833,33 833,33 833,33 833,33 833,33 833,33 ■FASE -L1-■FASE -L2-FASE -L3-Rilevamento nel tempo DLA - TRASFORMATORE DC BAUR PGK50E N.0410339006 - PGK25 N.041159002 31/12/2014 CALIBRAZIONE STRUMENTI LIMITI DI ACCETTABILITA' valori da 0 a 10 SCADENTE - da 10 a 100 TOLLERABILE da 100 a 1000 BUONA - oltre 1000 OTTIMA FASE -L1-FASE -L2-FASE -L3-769.23 769.23 769.23 VALORI IN MEGA OHM A 1' **BUONA BUONA BUONA** 0,98 0,98 PARZIALMENTE APERTO - CENTRO STELLA INTERNO CAVO TERRA

NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 - IEEE std 43 - 2000

autorizzazione scritta

MATRICOLA N. MT-3737 DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non

può essere riprodotto neppure parzialmene senza la sua

Tempo in minuti

mega ohm

Tempo in minuti

mega ohm

Tempo in minuti

mega ohm

400

300

200 100 0

STRUMENTAZIONE

DELLA PROVA

ESITO I.L

STATORE

SCADENZA PROSSIMA

ESITO DELLA PROVA

CONDIZIONI DI PROVA

SPECIFICHE APPLICABILI

Operatore

Andrea Toscani

Identificativo

11.888 A

RIMOSSO

O.M.G.

Preparato Verificato

Ing. C. Bruni

DATA TEST 02/05/2014

		MICLIDE	DEL EAT	TOPED	I DEDDIT	Λ	
		MISURE	<u>DEL FAT</u>	I UKE DI	<u>I PERDIT.</u>	<u>4</u>	
	AVV	OLGIMENTO S	TATORICO	FASE -L1- l	LE ALTRE 2	A MASSA	
TEN	ISIONE DI I	PROVA V ac	46	92	139	185	231
			Misura del ciro	cuito di prova -	· Cu E -		
Cu E	Tç	g δ * 10 - 3 mA	2,00 0,30	2,10	2,20	2,40 0,70	2,80 0,90
		Cu E	4,40	4,20	4,44	4,47	5,00
	Т.	~ C * 10 2	Misura della m			20 00	40.00
C1		ą δ * 10 - 3 mA	33,00 7,00	35,00 14,00		38,00 28,00	40,00 35,00
		C1	65,00	65,00	d	68,00	70,00
			MILLIAMPI	ERE TOTALI			
	mA	(6,70	13,60	20,50	27,30	34,10
			CAPAC	CITA' CX			
	CX=C1-	Cu E	60,60	60,80	62,36	63,53	65,00
			CAPACI ⁻	ΓA' REALE			
	pF=CX		60.964	61.165	62.734	63.911	65.390
(CN=capa	cità condens	satore campione)	TANGENTE DE	ELTA Tg δ * 10) - 3		
	Tg δ * 1	0 - 3	35,25	37,27	38,41	40,50	42,86
	DATA TEST	02/05/2014		N	IATRICOLA N.	MT-3737	
	ratore	Preparato Preparato	Verificato	Identificativo	DLAWEB S.r.l. si rise	erva tutti i diritti su que	
Andrea	Toscani	O.M.G.	Ing. C. Bruni	11.888 A	sua autorizzazione s	riprodotto neppure pai critta	ızıalillene senza la

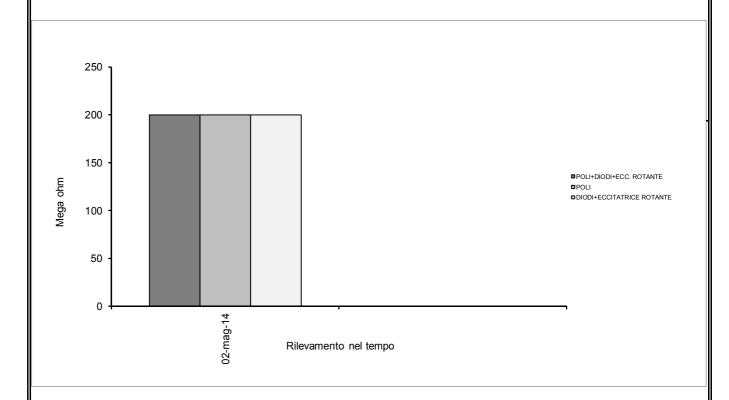
		MISURE	DEL FAT	TORE DI	PERDIT	Δ	
		IVIIOUNE	<u>DLL I A I</u>	<u>I OIL DI</u>	<u>I LIVUII)</u>	<u> </u>	
	AVV	OLGIMENTO S	STATORICO I	FASE -L2- L	E ALTRE 2 /	A MASSA	
TEN	NSIONE DI F	PROVA V ac	46	92	139	185	231
			Misura del circ	uito di prova -	Cu E -	1	
	To	j δ * 10 - 3	2,00	2,10		2,40	2,80
Cu E		mA	0,30	0,40		0,70	0,90
		Cu E	4,40			4,47	5,00
			Misura della m				
04	Ţç	η δ * 10 - 3	33,00	35,00		38,00	40,00
C1		mA C1	7,00	14,00		28,00	35,00 70,00
		CI	65,00	65,00	66,80	68,00	70,00
			MILLIAMPE	ERE TOTALI			
	mA		6,70	13,60	20,50	27,30	34,10
			CAPAC	CITA' CX			
	CX=C1-	Cu E	60,60	60,80	62,36	63,53	65,00
			CAPACIT	ΓΑ' REALE			
	pF=CX	* CN	60.964	61.165	62.734	63.911	65.390
(CN=capa	cità condens	satore campione)	TANGENTE DE	LTA Tg δ * 10	- 3		
	Tg δ * 1	0 - 3	35,25	37,27	38,41	40,50	42,86
	<u> </u>		POTENZA DISS			.0,00	,
	\A/					0.00	0.04
	W		0,01	0,05	0,11	0,20	0,34
		POTENZ	A DISSIPATA P	'ER UNITA' DI	CAPACITA'		
	NATA TEOT	00/05/00/4			ATDIOC! A A!	NAT 0707	
	DATA TEST		Varificata		ATRICOLA N. DLAWEB S.r.I. si rise	MT-3737 erva tutti i diritti su que	esto documento
1	ratore Toscani	Preparato O.M.G.	Verificato Ing. C. Bruni	Identificativo 11.888 A	che non può essere r	iprodotto neppure par	
Alluled	, oscarii	O.IVI.G.	ing. C. Bruill	11.000 A	sua autorizzazione so	critta	

		MISURE	DEL FAT	TORE DI	PERDITA	4	
	AVV	OLGIMENTO S				_	
TENS	SIONE DI F	PROVA V ac	46	92	139	185	231
			Misura del ciro	cuito di prova -	Cu E -	1	
	To	ιδ* 10 - 3	2,00	2,10		2,40	2,80
Cu E		mA	0,30		l l -	0,70	0,90
l '		Cu E	4,40			4,47	5,00
1				nacchina elettri		, ,	,
	Tg	ιδ* 10 - 3	33,00	35,00	36,00	38,00	40,00
C1		mA	7,00	14,00	21,00	28,00	35,00
		C1	65,00	65,00	66,80	68,00	70,00
	mA		MILLIAMPI	ERE TOTALI 13,60	20,50	27,30	34,10
	IIIA		0,70	13,00	20,50	21,30	34, 10
				CITA' CX			
	CX=C1-	Cu E	60,60	60,80	62,36	63,53	65,00
			CAPACI	ΓA' REALE			
	pF=CX	* CN	60.964	61.165	62.734	63.911	65.390
(CN=capac	ità condens	satore campione)	TANGENTE DE	LTA Tg δ * 10	- 3		
	Tg δ * 1	0 - 3	35,25	37,27	38,41	40,50	42,86
			POTENZA DISS	SIPATA IN WA	ATT		
	W		0,01	0,05	0,11	0,20	0,34
		POTENZ	A DISSIPATA F	'ER UNITA' DI	CAPACITA'		
D/	ATA TEST	02/05/2014		M	ATRICOLA N. I		
Opera		Preparato	Verificato	Identificativo		rva tutti i diritti su que: iprodotto neppure parz	
Andrea 7	Toscani	O.M.G.	Ing. C. Bruni	11.888 A	sua autorizzazione so		

	<u>TAN</u>	<u>IGENTE</u>	DELTA (<u>Τg δ</u>)				
	AVVOLGIMENTO STATORICO 1 FASE IN PROVA LE ALTRE 2 A MASSA							
FASE -L1-								
	TENSIONE DI PROVA kV ac	0,046	0,092	0,139	0,185	0,231		
	Tg δ * 10	35,25	37,27	38,41	40,50	42,86		
		FASI	E -L2-					
	TENSIONE DI PROVA kV ac	0,046	0,092	0,139	0,185	0,231		
	Tg δ * 10	35,25	37,27	38,41	40,50	42,86		
		FASI	E -L3-					
	TENSIONE DI PROVA kV ac		0,092	0,139	0,185	0,231		
	Tg δ * 10	35,25	37,27	38,41	40,50	42,86		
Tg Delta * 10 - 3 25 - 20 15 - 10 - 5 0 - 01						— FASE -L1-		
	0,092	0,139 kV ac	(),185	0,231			
STRUME	NTAZIONE		MAGLIANO T2 N.634 CAMPIONE 3360/100			EX 2405 N.132.500		
	ZA PROSSIMA ZIONE STRUMENTI	31/12/2014						
	ACCETTABILITA' DELLA		0 a 40 * 10 - 3 = OTT 0 a 80 * 10 - 3 = BUC		da 80 a 160 * 10-3 oltre 160 * 10-3	= TOLLERABILE = SCADENTE		
ESITO DI	ELLA PROVA	FASE -L1- BUONO	FASE -L2- BUONO	FASE -L3- BUONO				
ESITO I.L		0,98	0,98	0,98		0.041/0		
CONDIZI	ONI DI PROVA STATORE	TERRA RIMO						
SPECIFIC	CHE APPLICABILI	10.2 - IEEE 28	RNATIONAL S 36 e IEC 60894	1		-1 EDITION		
	DATA TEST Operatore	Ī	M. Verificato	ATRICOLA N.	MI-3737 DLAWEB S.r.I. si riserva tu	tti i diritti su questo		
	Andrea Toscani	Preparato O.M.G.	Ing. C. Bruni	11.888 A	documento che non può es parzialmene senza la sua a	sere riprodotto neppure		

	<u>DELTA 1</u>	TANGEN	TE DELT	<u> Α (ΔΤα δ</u>)				
	AVVOLGIMENTO STATORICO 1 FASE IN PROVA LE ALTRE 2 A MASSA								
		FAS	E -L1-			1			
	GRADIENTI DI TENSIONE	0,4-0,2 Vn	0,6-0,4 Vn	0,8-0,6 Vn	1-0,8 Vn	(0,6-0,2)*0,5			
	Δ Tg δ	2,02	1,13	2,10	2,36	1,58			
		FAS	E -L2-						
	GRADIENTI DI TENSIONE	0,4-0,2 Vn	0,6-0,4 Vn	0,8-0,6 Vn	1-0,8 Vn	(0,6-0,2)*0,5			
	ΔTg δ	2,02	1,13	2,10	2,36	1,58			
		FAS	E -L3-						
	GRADIENTI DI TENSIONE	0,4-0,2 Vn	0,6-0,4 Vn	0,8-0,6 Vn	1-0,8 Vn	(0,6-0,2)*0,5			
	 Δ Tg δ	2,02	1,13	2,10	2,36	1,58			
	3-1 1 1 1 1								
Delta Tg Delta	2,50 2,00 1,50 1,00								
Delta .	FASE -L 0,00 □ FASE -L □ FASE -L								
	0,4-0,2 Vn 0,6-0,4 Vn	0,8-0,6 Vn Gradienti	di Tensione	0,8 Vn	(0,6-0,2)*0,5				
STF	RUMENTAZIONE		MAGLIANO T2 N.634 CAMPIONE 3360/100			EX 2405 N.132.500			
	ADENZA PROSSIMA LIBRAZIONE STRUMENTI	31/12/2014							
	ITI DI ACCETTABILITA' DELLA		da 0 a 10 = OTTIMO		da 20 a 30 = TOLL oltre 30 = SCAI				
ESI	TO DELLA PROVA	FASE -L1- OTTIMO	FASE -L2- OTTIMO	FASE -L3- OTTIMO					
ESI	TO I.L.	1,00	1,00	1,00					
COI	NDIZIONI DI PROVA STATORE	PARZIALMEN TERRA RIMC	ITE APERTO - SSO	· CENTRO ST	ELLA INTERN	O CAVO			
SPE	ECIFICHE APPLICABILI	NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 - IEEE 286 e IEC 60894							
	DATA TEST	I		ATRICOLA N.	Ī	itti i diritti su questo			
	Operatore Andrea Toscani	Preparato O.M.G.	Verificato Ing. C. Bruni	Identificativo 11.888 A	DLAWEB S.r.l. si riserva tu documento che non può e parzialmene senza la sua	ssere riprodotto neppure			

[
			<u>C</u> APA	ACITA'				
	AVVOLGIMENTO STATORICO 1 FASE IN PROVA LE ALTRE 2 A MASSA							
	FASE -L1-							
	TE	ENSIONE DI PROVA kV ac	0,046	0,092	0,139	0,185	0,231	
		pF	60.963,60	61.164,80	62.734,16	63.911,18	65.390,00	
			FASI	E -L2-				
	TE	ENSIONE DI PROVA kV ac		0,092	0,139	0,185	0,231	
		pF	60.963,60	61.164,80	62.734,16	63.911,18	65.390,00	
		r·			,	, , , , ,		
			FASI	E -L3-				
	TE	ENSIONE DI PROVA kV ac	0,046	0,092	0,139	0,185	0,231	
		pF	60.963,60	61.164,80	62.734,16	63.911,18	65.390,00	
		·	•			•	•	
6	66.000							
6	65.000							
	64.000		<u>A</u>					
II	63.000							
	62.000 61.000				= 5105 14			
	60.000				FASE -L1-			
1	59.000				FASE -L2-			
	58.000				ı		─▲ FASE -L3-	
	0,0	46 0,092	0,13 kV ac	39	0,185	0,231		
STRUM	/IENTA	ZIONE		MAGLIANO T2 N.634		DI SCHERING TETT	EX 2405 N.132.500	
SCADE	NZA P	PROSSIMA	31/12/2014	2.12.2000,100				
1		NE STRUMENTI		DEETTO FO	III IDDIO 55: :	A	DELLEGAC	
PROVA		CETTABILITA' DELLA	STATORICHE			_A CAPACITA'	DELLE FASI	
II	ESITO DELLA PROVA		FASE -L1- 7,26	FASE -L2- 7,26	FASE -L3- 7,26			
VARIAZIONE % pF				TOLLERABILE				
ESITO	I.L.		0,70	0,70	0,70		0.041/0	
CONDI	ZIONI	DI PROVA STATORE	PARZIALMEN TERRA RIMO		CENTRO ST	ELLA INTERN	J CAVO	
SPECIF	FICHE	APPLICABILI	NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION				-1 EDITION	
		DATA TEST	10.2 - IEEE 286 e IEC 60894 02/05/2014 MATRICOLA N. MT-3737					
		Operatore	Preparato	Verificato	Identificativo	DLAWEB S.r.l. si riserva tut documento che non può es		
		Andrea Toscani	O.M.G.	Ing. C. Bruni	11.888 A	parzialmene senza la sua a		

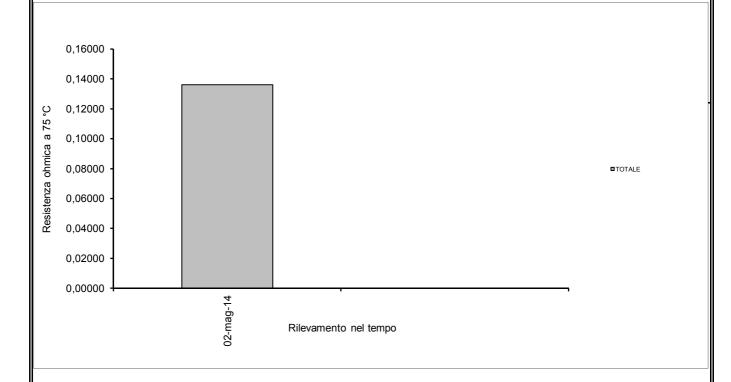

RESISTENZA OHMICA DI FASE **AVVOLGIMENTO STATORICO** TEMPERATURA cu °C FASE -L1-N-FASE -L2-N-FASE -L3-N-VALORI MISURATI 0,001500 0,001500 0,001500 Ω a °C 22,00 0,001809 0,001809 0,001809 Ω a °C 75,00 0,00200 0,00180 0.00160 0,00140 O,00120 ■FASE -L1-N-£0,00100 ■FASE -L2-N-■FASE -L3-N-₹0,00080 .ജ്o,00060 0,00040 <u>is</u>0,00020 [∞]_{0,00000} 02-mag-14 Rilevamento nel tempo DLA - MIKROOHMMETER BURSTER DIGITALE RESISTOMAT TIPO STRUMENTAZIONE 2323 N.062103 SCADENZA PROSSIMA 31/12/2014 CALIBRAZIONE STRUMENTI LIMITI DI ACCETTABILITA' DELLA DEVIAZIONE PERCENTUALE DELLA MISURA DEVE ESSERE **PROVA** INFERIORE AL 10 % DEL VALORE DI TARGA ESITO DELLA PROVA FASI EQUILIBRATE ESITO I.L. 1.00 PARZIALMENTE APERTO - CENTRO STELLA INTERNO CAVO CONDIZIONI DI PROVA STATORE TERRA RIMOSSO NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 : ABB U 009 C SPECIFICHE APPLICABILI ANSALDO 249W508; ALSTOM UQ602012C DATA TEST 02/05/2014 MATRICOLA N. MT-3737 DLAWEB S.r.l. si riserva tutti i diritti su questo Operatore Preparato Verificato Identificativo documento che non può essere riprodotto neppure parzialmene senza la sua autorizzazione scritta Andrea Toscani O.M.G. Ing. C. Bruni 11.888 A

RESISTENZA DI ISOLAMENTO STATICA

AVVOLGIMENTO ROTORICO

TENSIONE DI PROVA V dc 500 x 1' TEMPERATURA cu °C 22,00

	POLI+DIODI+EC	C. ROTANTE	POLI		DIODI+ECCITATRIC	CE ROTANTE
VALORI MISURATI	200,00	МΩ	200,00	МΩ	200,00	MΩ



STRUMENTAZIONE	DLA - TRASFORMATORE DC BAUR PGK50E N.0410339006 - PGK25 N.041159002					
SCADENZA PROSSIMA CALIBRAZIONE STRUMENTI	31/12/2014					
LIMITI DI ACCETTABILITA' DELLA PROVA	$R \ge 10 MΩ (20°C)$					
ESITO DELLA PROVA		TOTALE	POLI	COLLETTORE		
VALORI IN MEGA OHM A 1'	200,00		200,00	200,00		
VALORI IN MEGA OFIM A T	BUONA		BUONA	BUONA		
ESITO I.L.		0,98	0,98	0,98		
CONDIZIONI DI PROVA RUOTA POLARE	POSIZIO	ONATA DENTRO				
SPECIFICHE APPLICABILI	NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2 - IEEE std 43 - 2000					
DATA TEST	02/05/20)14		MATRICOLA N. MT-3737		
Operatore	Preparato Verificato		Identificativo	DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmene senza la sua		
Andrea Toscani	O.M.G. Ing. C. Bruni 11.888 A autorizzazione scritta					

RESISTENZA OHMICA STATICA

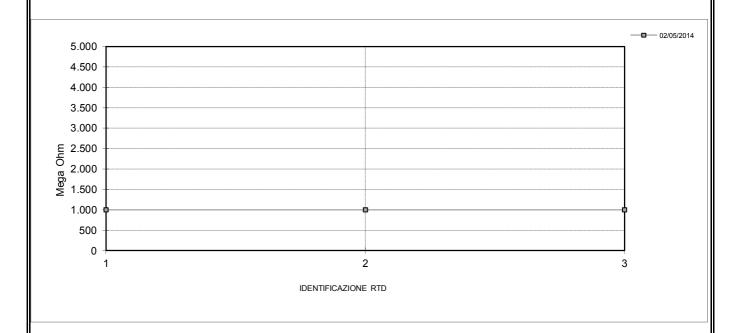
AVVOLGIMENTO ROTORICO

VALORI MISURATI		
TEMPERATURA cu °C	TOTALE	
22,00	0,11278 Ω	
75,00	0,13604 Ω	

STRUMENTAZIONE	DLA - MIKROOHMMETER BURSTER DIGITALE RESISTOMAT TIPO 2323 N.062103				
SCADENZA PROSSIMA CALIBRAZIONE STRUMENTI	31/12/2014				
LIMITI DI ACCETTABILITA' DELLA PROVA	DEVIAZIONE PERCENTUALE DELLA MISURA DEVE ESSERE INFERIORE AL 10 % DEL VALORE DI TARGA				
ESITO DELLA PROVA			TOTALI 0,13604 REGOLA	4	
ESITO I.L.			1,00		
CONDIZIONI DI PROVA RUOTA POLARE	POSIZIO	ONATA DENTRO	O LO STATORE		
SPECIFICHE APPLICABILI		NTERNATIONAL ST. ; ALSTOM UQ60201		60034-1 EDITION 10.2 ; ABB U 009 C ; ANSALDO	
DATA TEST	02/05/20)14	MATRICOLA N. MT-3737		
Operatore Andrea Toscani	Preparato O.M.G.	Verificato Ing. C. Bruni	Identificativo 11.888 A	DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmene senza la sua autorizzazione scritta	

RESISTENZA DI ISOLAMENTO

TERMORESISTENZE							
TENSION	NE DI PROVA V dc	500 x 1'					
	I° GRUPPO	II° GRUPPO	III° GRUPPO				
VALORI MISURATI	300,00 ΜΩ	ΜΩ	MΩ				
	•						
350,00							
300,00 -							
250,00 -							
200,00 - E			■1° GRUPPO ■11° GRUPPO ■1111° GRUPPO				
wy dega of the state of the sta							
100,00 -							
50,00 -							
0,00	4						
	02- E Rilevamento no 71-	el tempo					
STRUMENTAZIONE	DLA - MEGGER DIGIT	TALE ELETTRONICO ME	GABRAS TIPO 5060X N.SN1				
SCADENZA PROSSIMA CALIBRAZIONE STRUMEN							
LIMITI DI ACCETTABILITA' DELLA PROVA	$R \ge 10 M\Omega (20^{\circ}C)$						
ESITO DELLA PROVA	I° GRUPPO BUONA						
CONDIZIONI DI PROVA MACCHINA FERMA-AUSILIARI IN SICUREZZA-COLLEGAMEN TERMORESISTENZE RIMOSSI							
SPECIFICHE APPLICABILI			C 60034-1 EDITION 10.2				
DATA TE	ST 02/05/2014	12: ::::== 2 : : : :	COLA N. MT-3737				
Operatore Andrea Toscani		può essere riprodotto	va tutti i diritti su questo documento che non neppure parzialmene senza la sua				
	J.M. J. 119. J. Diulii 11	autorizzazione scritta					


RESISTENZA OHMICA **TERMORESISTENZE** TEMPERATURA cu °C 100,00000 Ω a °C 22,00 VALORI MISURATI 120,62257 Ω a °C 75,00 140,000 120,000 100,000 Resistenza totale ohm 0000'08 000'09 000'09 20,000 0,000 Rilevamento nel tempo STRUMENTAZIONE DLA - OSCILLOSCOPIO FLUKE SCOPEMETER 123 N.DM86209526 SCADENZA PROSSIMA 31/12/2014 CALIBRAZIONE STRUMENTI LIMITI DI ACCETTABILITA' DELLA LE SCALDIGLIE DEVONO FUNZIONARE CORRETTAMENTE **PROVA** ESITO DELLA PROVA REGOLARE MACCHINA FERMA-AUSILIARI IN SICUREZZA-COLLEGAMENTI CONDIZIONI DI PROVA **TERMORESISTENZE RIMOSSI** NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION SPECIFICHE APPLICABILI 10.2 DATA TEST 02/05/2014 MATRICOLA N. MT-3737 DLAWEB S.r.l. si riserva tutti i diritti su questo Operatore Preparato Verificato Identificativo locumento che non può essere riprodotto neppure larzialmene senza la sua autorizzazione scritta Andrea Toscani O.M.G. Ing. C. Bruni 11.888 A

RESISTENZA DI ISOLAMENTO

RTD TERMOELEMENTI Pt 100 ohm a 0°C

TENSIONE DI PROVA VERSO MASSA = V dc 500

1	2	3	4	5	6	7	8	9	IDENTIFICAZIONE
1.000	1.000	1.000							$M\Omega$
10	11	12	13	14	15	16	17	18	IDENTIFICAZIONE
									$M\Omega$
19	20	21	22	23	24	25	26	27	IDENTIFICAZIONE
									$M\Omega$

STRUMENTAZIONE	DLA - MEGGER DIGITALE ELETTRONICO MEGABRAS TIPO 5060X N.SN1					
SCADENZA PROSSIMA CALIBRAZIONE STRUMEN ⁻	31/12/2014	31/12/2014				
LIMITE DI ACCETTABILITA' PROVA	R ≥ 100 MΩ (20°C)					
ESITO DELLA PROVA	BUONA					
ESITO I.L.						
CONDIZIONI DI PROVA	MACCHINA FERMA-AUSILIARI IN SICUREZZA-COLLEGAMENTI RTD RIMOSSI					
SPECIFICHE APPLICABILI	NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION 10.2; ABB ISV-U 602010					
DATA TEST 02/05/	2014		•	MATRICOLA N. MT-3737		
Operatore	Preparato	Verificato	Identificativo	DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non può		
Andrea Toscani	O.M.G.	Ing. C. Bruni	11.888 A	essere riprodotto neppure parzialmene senza la sua autorizzazione scritta		

RESISTENZA OHMICA RTD TERMOELEMENTI Pt 100 ohm a 0°C 1 2 4 7 **IDENTIFICAZIONE** 3 5 6 8 9 108,50 108,50 108,50 °C 22,02 22,02 22,02 13 17 **IDENTIFICAZIONE** 10 11 12 14 15 16 18 **IDENTIFICAZIONE** 19 20 21 22 23 24 25 26 27 °C 120 02/05/2014 110 100 90 80 70 60 IDENTIFICAZIONE RTD 02/05/2014 20 15 10 S 5 0 IDENTIFICAZIONE RTD STRUMENTAZIONE DLA - OSCILLOSCOPIO FLUKE SCOPEMETER 123 N.DM8620526 SCADENZA PROSSIMA 31/12/2014 CALIBRAZIONE STRUMENTI LIMITE DI ACCETTABILITA' DELLA IL RILEVAMENTO DEVE RISULTARE FUNZIONANTE PER TUTTE **PROVA LE PT 100** ESITO DELLA PROVA **REGOLARE** ESITO I.L. MACCHINA FERMA-AUSILIARI IN SICUREZZA-COLLEGAMENTI CONDIZIONI DI PROVA **RTD RIMOSSI** NORME INTERNATIONAL STANDARD CEI - IEC 60034-1 EDITION SPECIFICHE APPLICABILI 10.2; ABB ISV-U 602010 DATA TEST 02/05/2014 MATRICOLA N. MT-3737 Verificato Identificativo Operatore Preparato DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non può essere riprodotto neppure parzialmene senza la sua autorizzazione scritt Ing. C. Bruni Andrea Toscani O.M.G. 11.888 A

DOCUMENTAZIONE FOTOGRAFICA

DATA TEST	02/05/2014			MATRICOLA N. MT-3737
Operatore	Preparato	Verificato	Identificativo	DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non può essere
Andrea Toscani	O.M.G.	Ing. C. Bruni	11.888 A	riprodotto neppure parzialmene senza la sua autorizzazione scritta

DOCUMENTAZIONE FOTOGRAFICA

DATA TEST	02/05/2014			MATRICOLA N. MT-3737
Operatore	Preparato	Verificato	Identificativo	DLAWEB S.r.l. si riserva tutti i diritti su questo documento che non può essere
Andrea Toscani	O.M.G.	Ing. C. Bruni	11.888 A	riprodotto neppure parzialmene senza la sua autorizzazione scritta