

Una Società Finmeccanica

Titolo title					Identifica document			Rev. rev.	Pagina page	Di of		
	DATI TECNICI ALTERNATORE TG					0420 OVMIZALIO02		0	1	6		
					0432 GXMKAU003		10003	Classe d		itezza	2	
						N. o.		Prodotto product/st		<u> </u>		
						DATI-27-0	37	GA501				
Tipo d	oc.	Codice EmittenteTeamcente teamcenter issuer code	er Ente Emitten	ite	Edizione language	in lingua	Derivato da derived from	<u>, L</u>		Rev	Rev.	
CE		MET	ME	-т	languago	IT		_		-		
Comm	nessa	Progetto			Cliente Client)CCA				
job no. 04 :		project APR	ILIA		Client		ع عال:	(GEN	/II 7			
A1/		APRILIA Centrale a ciclo combinato 2+1 da 800 MW				Willy.	(a)					
Rev. rev.					scrizione of revision							
0	Prim	na emissione										
									-			
		M Priano	V. La Teana	S. Dezz	zani		V. T	artaglione	-			
0	1		MET/ECOS	PE				ET/EPFE	22	2/10/2008	}	
Rev rev.	Scope	Preparato prepared	Controllato checked	Verific verifie		Verificato verified	A _I	oprovato approved		Data Date		

Progetto / Titolo
Project / title

APRILIA
Centrale a ciclo combinato 2+1 da 800 MW

Identificativo document no.

1dentificativo doc

Dati tecnici del generatore

per generatori raffreddati in aria in circuito chiuso ed eccitazione statica

Indice

Paragrafo	Titolo
Υ	Dati tecnici
Y.1 Y.2 Y.3 Y.4 Y.5 Y.6 Y.7 Y.8 Y.9	Dati principali Parametri caratteristici Rendimenti convenzionali Correnti e coppie elettromagnetiche in corto circuito Prescrizioni di sincronizzazione Sistema di raffreddamento dell'aria Cuscinetti Sistema di lubrificazione Camera anelli collettori

Progetto / Titolo Project / title

APRILIA
Centrale a ciclo combinato 2+1 da 800 MW

Identificativo document no.

Identificativo document no.

0 3 6

Classe di Riservatezza confidential class

Descrizione	Unità	Valore
Y.1 DATI PRINCIPALI		
Costruttore	_	Ansaldo Energia
Tipo	_	TRY-L56
Numero di matricola	_	0432 A1/A2
Motore primo	_	Turbina a Gas V94.3A
Senso di rotazione visto dal motore primo	_	Orario
Potenza nominale	MVA	330
Tensione nominale	kV	18
Fattore di potenza nominale	_	0,85
Frequenza nominale	Hz	50
Campo di variazione della tensione	%	± 5
Campo di variazione della frequenza	%	-5 / +3
Massimo valore V/F combinato tensione/frequenza	p.u.	1,05
Corrente nominale	A	10585
Velocità nominale / sovravelocità (prova per 2 min.)	giri/min	3000/3600
Numero delle fasi / connessione delle fasi	- / -	3/STELLA
Norme di riferimento	-	CEI/IEC
Tipo di sistema d'eccitazione	-	STATICO
Corrente d'eccitazione nelle condizioni nominali	Α	1457
Tensione d'eccitazione nelle condizioni nominali a 115°C	V	420
Classe d'isolamento dell'avvolgimento statore/rotore	-	F/F
Fluido refrigerante primario	-	Aria in circuito chiuso
Sistema di raffreddamento dell'avvolgimento Statore / Rotore	-	Indiretto / diretto
Campo di variazione della temperatura ambiente	°C	-5 / 45
Temp. dell'acqua di raffreddamento nominale (campo var.)	°C	35 (10 / 49)
Temp. aria di raffreddamento primario nominale (campo var.)	°C	40 (15 / 53)
Temperatura totale dell'avvolgimento statore (per ETD)	°C	119
Temperatura totale dell'avvolgimento rotore (per resistenza)	°C	115
Max. corrente di sequenza negativa		
Permanente (I ₂)	p.u.	0,08
Transitoria fino a 120s (I ₂ ² t)	S	10
Grado di protezione secondo IEC 34-5	-	IP 54
Codice sistema di raffreddamento secondo IEC 34-6	-	IC 8 A1 W7
Tipo di costruzione secondo IEC 34-7	-	IM 7315
Altitudine del sito	m a.s.l.	74
Momento di inerzia (J) del solo generatore	kg m ²	11000
Grado di sismicità	-	Zona 3

Progetto / Titolo Project / title	Identificativo document no.	Rev. rev.	Pagina page	Di of	
APRILIA	0422 CVMK ALIO02	0	4	6	
Centrale a ciclo combinato 2+1 da 800 MW	0432 GXMKAU003	Classe d	i Riservate al class	ezza	2

Y.2 PARAMETRI CARATTERISTICI

Y.2 PARAMETRI CARATTERISTICI						
Rapporto di cortocircuito		RCC	-		0,5	
Reattanze				Non octure	Coturo	
Reattanza sincrona d'asse d Reattanza sincrona d'asse q Reattanza transitoria d'asse d Reattanza transitoria d'asse q Reattanza subtransitoria d'asse d Reattanza subtransitoria d'asse q Reattanza di sequanza negativa Reattanza di sequenza zero Reattanza di dispersione d'armatura Reattanza di Potier	X _{di} / X _{qi} / X _{qi} / X'' _{qi} / X'' _{qi} / X'' _{qi} / X _{2i} / X _{0i} / X _p /		p.u. p.u. p.u. p.u. p.u. p.u. p.u. p.u.	Non satura / 2,14 / 2,02 / 0,193 / 0,839 / 0,155 / 0,166 / 0,101 / 0,131 / 0,223 /	2,00 2,02 0,188 0,839 0,137 0,137 0,137 0,101 0,114	
Resistenze e capacità Resistenza di ciascuna fase statore a 95°C Capacità di ciascuna fase verso massa Resistenza avvolgimento rotore a 95°C Capacità dell'avvolgimento rotore verso mas	ssa		Ω μF Ω μF	0,78 0,2	7	
Costanti di tempo Costante di tempo transitoria a vuoto d'asse Costante di tempo transitoria in c.c. d'asse Costante di tempo subtransitoria a vuoto d'a Costante di tempo subtransitoria in c.c. d'as Costante di tempo transitoria a vuoto d'asse Costante di tempo transitoria in c.c. d'asse Costante di tempo subransitoria a vuoto d'a Costante di tempo subransitoria in c.c. d'as Costante di tempo subransitoria in c.c. d'as Costante di tempo d'armatura	d asse d sse d e q q asse q	T,d0 T,d T,d0 T,d0 T,q0 T,q0 T,q0 T,q0 T,q0	S S S	10,9 0,99 0,03 0,03 2,79 1,14 0,30 0,09	58 4 3 5 4 0	
Y.3 RENDIMENTI CONVENZIONA	ALI (sec	ondo (CEI - IE	C)		
Rendimento a carico nominale e fattore di per Rendimento al 75% del carico e fattore di per Rendimento al 50% del carico e fattore di per Rendimento al 25% del 25% del 25% del 25% del 25% del 25% del 25% de	otenza n otenza n	ominal ominal	e % e %	98, ³ 98, ⁴ 98, ⁴ 96, ⁴	51 02	

Progetto / Titolo Project / title

APRILIA
Centrale a ciclo combinato 2+1 da 800 MW

Identificativo document no.

Identificativo document no.

0 5 6

Classe di Riservatezza confidential class

Y.4 CORRENTI E COPPIE ELETTROMAGNETICHE DI CORTOCIRCUITO

CORTOCIRCUITO		
Correnti di corto circuito: Trifase, valore di picco asimmetrico Trifase, valore permanente, corrente d'eccitazione nomin.	kA kA	235 15,5
Coppie elettromagnetiche: Di corto circuito trifase Di corto circuito linea-linea Di sincronizzazione fuori fase a 120°	MNm MNm MNm	9,2 12 11
Y.5 PRESCRIZIONI DI SINCRONIZZAZIONE		
ΔV modulo generatore - rete ΔV angolo di fase generatore - rete Δf generatore - rete	% ° el %	≤ 5 ≤ 10 < 0,5
Y.6 SISTEMA ARIA DI RAFFREDDAMENTO		
Refrigeranti: Numero di refrigeranti Numero di sezioni per refrigerante Tipo delle flange	- - -	5 1 6" ANSI B16.5 150LBS
Materiali dei refrigeranti: Tubi Piastre tubiere Alette Casse acqua	- - - -	Cu Ni 90-10 Acciaio galvaniz. Alluminio Acciaio al carbonio con protezione
Dati di progetto dei refrigeranti: Temperatura acqua ingresso refrigeranti Temperatura aria uscita refrigeranti Perdite da smaltire nelle condizioni nominali Carico con un refrigerante fuori servizio (cl. B +10K) Portata aria totale Portata acqua totale Incremento temperatura acqua di raffreddamento Pressione acqua, valore di progetto	°C °C kW % m³/s m³/h K MPa	35 40 3500 100 72 550 6

Progetto / Titolo Project / title

APRILIA
Centrale a ciclo combinato 2+1 da 800 MW

Identificativo document no.

Identificativo document no.

0 6 6

Classe di Riservatezza confidential class

Y.7 CUSCINETTI

Cuscinetto lato turbina:

Tipo	-	A tasca
Diametro albero	mm	450
Lunghezza attiva	mm	394
Gioco diametrale	°/ ₀₀	1,7

Cuscinetto lato anelli collettori:

Tipo	-	A tasca
Diametro albero	mm	425
Lunghezza attiva	mm	373
Gioco diametrale	°/ ₀₀	1,7

Y.8 SISTEMA DI LUBRIFICAZIONE

Tipo olio lubrificazione	-	ISO VG46
Temperatura olio in ingresso	$^{\circ}C$	48
Pressione olio in ingresso	bar	1,8
Sistema olio in pressione per sollevamento rotore	-	Si
Cuscinetto lato turbina:		
Portata nominale olio	l/min	340
Cuscinetto lato anelli collettori:		
Portata nominale olio	l/min	275

Y.9 CAMERA ANELLI COLLETTORI

Anelli collettori:

Diametro esterno	mm	400
Minimo diametro per rettifica	mm	396
Larghezza	mm	214

Portaspazzole:

Tipo	-	4 cas	setti (180PN12463)
Numero per anello collettore	-		6
Pressione della molla	g/c	:m²	180

Spazzole:

Fornitore	-	Carbonio o National
Tipo	-	LFC554 o National 634

Materiale -	Grafite Naturale
-------------	------------------

Numero per anello collettore	-	24
Densità di corrente	A/cm ²	10

Dimensioni mm 38,1x25,4x102

Ventilazione camera anelli collettori:

Portata aria di raffreddamento m³/s 2,2