
�Synchronized actions�

SINUMERIK

SINUMERIK 840D sl / 828D
Synchronized actions

Function Manual

Valid for

Controls
SINUMERIK 840D sl / 840DE sl
SINUMERIK 828D

Software Version
CNC software 4.5 SP2

03/2013
6FC5397-5BP40-3BA1

Preface

Brief description
 1

Detailed description
 2

Examples
 3

Data lists
 4

Appendix
 A

 Siemens AG
Industry Sector
Postfach 48 48
90026 NÜRNBERG
GERMANY

Order number: 6FC5397-5BP40-3BA1
Ⓟ 04/2013 Technical data subject to change

Copyright © Siemens AG 1994 - 2013.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 3

Preface

SINUMERIK documentation
The SINUMERIK documentation is organized in the following categories:

● General documentation

● User documentation

● Manufacturer/service documentation

Additional information
You can find information on the following topics at www.siemens.com/motioncontrol/docu:

● Ordering documentation/overview of documentation

● Additional links to download documents

● Using documentation online (find and search in manuals/information)

Please send any questions about the technical documentation (e.g. suggestions for
improvement, corrections) to the following address:

docu.motioncontrol@siemens.com

My Documentation Manager (MDM)
Under the following link you will find information to individually compile OEM-specific
machine documentation based on the Siemens content:

www.siemens.com/mdm

Training
For information about the range of training courses, refer under:

● www.siemens.com/sitrain

SITRAIN - Siemens training for products, systems and solutions in automation technology

● www.siemens.com/sinutrain

SinuTrain - training software for SINUMERIK

FAQs
You can find Frequently Asked Questions in the Service&Support pages under Product
Support. http://support.automation.siemens.com

http://www.siemens.com/motioncontrol/docu:
mailto:docu.motioncontrol@siemens.com
http://www.siemens.com/mdm
http://www.siemens.com/sitrain
http://www.siemens.com/sinutrain
http://support.automation.siemens.com

Preface

 Synchronized actions
4 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

SINUMERIK
You can find information on SINUMERIK under the following link:

www.siemens.com/sinumerik

Target group
This publication is intended for:

● Project engineers

● Technologists (from machine manufacturers)

● System startup engineers (Systems/Machines)

● Programmers

Benefits
The function manual describes the functions so that the target group knows them and can
select them. It provides the target group with the information required to implement the
functions.

Standard version
This documentation only describes the functionality of the standard version. Extensions or
changes made by the machine tool manufacturer are documented by the machine tool
manufacturer.

Other functions not described in this documentation might be executable in the control. This
does not, however, represent an obligation to supply such functions with a new control or
when servicing.

Further, for the sake of simplicity, this documentation does not contain all detailed
information about all types of the product and cannot cover every conceivable case of
installation, operation or maintenance.

Technical Support
You will find telephone numbers for other countries for technical support in the Internet under
http://www.siemens.com/automation/service&support

http://www.siemens.com/automation/service&support
http://www.siemens.com/sinumerik

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 5

Contents

 Preface .. 3

1 Brief description... 9

2 Detailed description ... 11

2.1 Definition of a synchronized action ..11

2.2 Components of synchronized actions..12
2.2.1 Validity, identification number (ID, IDS) ...12
2.2.2 Frequency (WHENEVER, FROM, WHEN, EVERY)..13
2.2.3 G function (condition)...14
2.2.4 Condition ..15
2.2.5 G function (action)..16
2.2.6 Action (DO) ..16

2.3 System variables for synchronized actions..17
2.3.1 Reading and writing ...17
2.3.2 Operators and arithmetic functions..18
2.3.3 Type conversions...20
2.3.4 Marker/counter ($AC_MARKER) ...22
2.3.5 Parameters ($AC_PARAM) ...23
2.3.6 R parameters ($R) ...24
2.3.7 Machine and setting data ($$M, $$S)..25
2.3.8 Timer ($AC_TIMER) ..26
2.3.9 FIFO variables ($AC_FIFO) ...27
2.3.10 Path tangent angle ($AC_TANEB)...30
2.3.11 Override ($A...OVR)...31
2.3.12 Capacity evaluation ($AN_IPO ... , $AN/AC_SYNC ... , $AN_SERVO).......................................33
2.3.13 Working-area limitation ($SA_WORKAREA_ ...) ..35
2.3.14 SW cam positions and times ($$SN_SW_CAM_ ...)..36
2.3.15 Path length evaluation / machine maintenance ($AA_TRAVEL ... , $AA_JERK ...)...................37
2.3.16 Polynomial coefficients, parameters ($AC_FCT ...)...38
2.3.17 Overlaid movements ($AA_OFF)...40
2.3.18 Online tool length compensation ($AA_TOFF) ..43
2.3.19 Current block in the interpolator ($AC_BLOCKTYPE, $AC_BLOCKTYPEINFO,

$AC_SPLITBLOCK)...47
2.3.20 Initialization of array variables (SET, REP)..49

2.4 User-defined variables for synchronized actions ...50

2.5 Language elements for synchronized actions and technology cycles...52

2.6 Language elements for technology cycles only ...59

2.7 Actions in synchronized actions...60
2.7.1 Output of M, S and H auxiliary functions to the PLC ...60
2.7.2 Reading and writing of system variables ...61
2.7.3 Polynomial evaluation (SYNFCT) ..61
2.7.4 Online tool offset (FTOC)...67
2.7.5 Programmed read-in disable (RDISABLE) ..69

Contents

 Synchronized actions
6 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.7.6 Cancel preprocessing stop (STOPREOF) .. 70
2.7.7 Delete distance-to-go (DELDTG).. 71
2.7.8 Traversing command axes (POS)... 73
2.7.9 Setting the measuring system (G70, G71, G700, G710).. 76
2.7.10 Position in specified reference range (POSRANGE).. 78
2.7.11 Starting/stopping axes (MOV)... 79
2.7.12 Axial feedrate (FA) .. 80
2.7.13 Axis replacement (GET, RELEASE, AXTOCHAN)... 81
2.7.14 Traversing spindles (M, S, SPOS) .. 86
2.7.15 Withdrawing the enable for the axis container rotation (AXCTSWEC)....................................... 88
2.7.16 Set actual value (PRESETON) ... 91
2.7.17 Couplings (CP..., LEAD..., TRAIL..., CTAB...) .. 92
2.7.18 Measurement (MEAWA, MEAC)... 97
2.7.19 Travel to fixed stop (FXS, FXST, FXSW, FOCON, FOCOF, FOC) .. 100
2.7.20 Channel synchronization (SETM, CLEARM) .. 102
2.7.21 User-specific error reactions (SETAL) .. 103

2.8 Technology cycles... 104
2.8.1 General.. 104
2.8.2 Processing mode (ICYCON, ICYCOF) ... 106
2.8.3 Definitions (DEF, DEFINE).. 107
2.8.4 Parameter transfer .. 107
2.8.5 Context variable ($P_TECCYCLE) ... 108

2.9 Protected synchronized actions .. 109

2.10 Coordination via part program and synchronized action (LOCK, UNLOCK, RESET,
CANCEL)... 110

2.11 Coordination via PLC .. 111

2.12 Configuration... 112

2.13 Control behavior in specific operating states .. 114
2.13.1 Power On .. 114
2.13.2 NC reset .. 114
2.13.3 NC stop ... 115
2.13.4 Operating mode change.. 115
2.13.5 End of program ... 116
2.13.6 Block search.. 116
2.13.7 Program interruption by ASUB.. 116
2.13.8 REPOS.. 117
2.13.9 Response to alarms .. 117

2.14 Diagnostics (HMI Advanced only)... 118
2.14.1 Displaying the status of synchronized actions .. 119
2.14.2 Displaying main run variables ... 119
2.14.3 Logging main run variables... 120

3 Examples... 123

3.1 Examples of conditions in synchronized actions... 123

3.2 Reading and writing of SD/MD from synchronized actions... 123

 Contents

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 7

3.3 Examples of adaptive control...125
3.3.1 Clearance control with variable upper limit ..125
3.3.2 Feedrate control ...126
3.3.3 Control velocity as a function of normalized path ..128

3.4 Monitoring a safety clearance between two axes..129

3.5 Store execution times in R parameters..129

3.6 "Centering" with continuous measurement..130

3.7 Axis couplings via synchronized actions..132
3.7.1 Coupling to leading axis...132
3.7.2 Non-circular grinding via master value coupling..134
3.7.3 On-the-fly parting ...137

3.8 Technology cycles position spindle..139

3.9 Synchronized actions in the TC/MC area ..140

4 Data lists.. 145

4.1 Machine data..145
4.1.1 General machine data..145
4.1.2 Channelspecific machine data ...145
4.1.3 Axis-specific machine data ..146

4.2 Setting data ..146
4.2.1 Axis/spindle-specific setting data...146

4.3 Signals ...147
4.3.1 Signals to channel..147
4.3.2 Signals from channel ...147

A Appendix.. 149

A.1 Overview ..149

 Index.. 151

Contents

 Synchronized actions
8 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 9

Brief description 1
General

A synchronized action consists of a series of related statements within a part program that is
called cyclically in the interpolation cycle synchronously to the machining blocks.

A synchronized action is essentially divided into two parts, the optional condition and the
obligatory action part. The time at which the actions are executed can be made dependent
on a specific system state using the condition part. The conditions are evaluated cyclically in
the interpolation cycle. The actions are then a reaction to user-definable system states. Their
execution is not bound to block limits.

Furthermore, the validity of the synchronized action (non-modal, modal or static) and the
frequency of the execution of the actions (once, repeatedly) can be defined.

Examples of permissible actions
● Output of auxiliary functions to PLC

● Writing and reading of main run variables

● Traversing of positioning axes

● Activation of synchronous procedures, such as:

– Read-in disable

– Delete distance-to-go

– End preprocessing stop

● Activation of technology cycles

● Calculation of function values

● Tool offsets

● Activating/deactivating couplings

● Measuring

● Enabling/disabling of synchronized actions

Examples of non-permissible actions
● Traversing of path axes

Brief description

 Synchronized actions
10 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Schematic diagram of synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 11

Detailed description 2
2.1 Definition of a synchronized action

A synchronized action is defined in a block of a part program. Any further commands that are
not part of the synchronized action, must not be programmed within this block.

Components of a synchronized action
A synchronized action consists of the following components:

Condition part

Optional
Action part

Optional
Validity, ID

no.
(Page 12)

Frequency
(Page 13)

Optional
G function
(Page 14)

Condition (Page 15) Keyword Optional:
G function
(Page 16)

Actions (Page 16)

--- 1) --- 1)
ID=<no.> WHENEVER

FROM
WHEN

IDS=<no.>

EVERY

G... Logical
expression

DO G... Action 1
...

Action n

1) Not programmed

Syntax
Examples:

1. DO <action 1...n>

2. <frequency> [<G function>] <condition> DO <action 1...n>

3. ID=<no.> <frequency> [<G function>] <condition> DO <action 1...n>

4. IDS=<no.> <frequency> [<G function>] <condition> DO <action 1...n>

Detailed description
2.2 Components of synchronized actions

 Synchronized actions
12 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.2 Components of synchronized actions

2.2.1 Validity, identification number (ID, IDS)

Validity
The validity defines when and where the synchronized action will be processed:

Validity Meaning
"No specification" Non-modal synchronized action

A non-modal synchronized action applies:
 As long as the main run block following the synchronized action is active
 Only in the AUTOMATIC mode
Example:
The synchronized action from N10 is effective as long as N20 is active.
N10 WHEN $A_IN[1]==TRUE DO $A_OUTA[1]=10
N20 G90 F1000 X100

ID=<ID number> Modal synchronized action
A modal synchronized action applies:
 Until the part program has been completed
 Only in the AUTOMATIC mode
Range of values: 1 ... 255
Example:
N20 ID=1 EVERY $A_IN[1]==TRUE DO $A_OUTA[1]=10

IDS=<ID number> Static synchronized action
A static synchronized action applies:
 In all operating modes for an unlimited period of time
Range of values: 1 ... 255
Example:
N30 IDS=1 EVERY $A_IN[1]==TRUE DO $A_OUTA[1]=10

 Note
Static synchronized actions

Static synchronized actions (IDS) can be defined in an ASUB and activated at any time by
activation of the ASUB via the PLC user program.

 Detailed description
 2.2 Components of synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 13

Identification numbers
If several synchronized actions are to be active in parallel in a channel, their identification
numbers ID/IDS must be different. Synchronized actions with the same identification number
replace each other within a channel.

Sequence of execution

Modal and static synchronized actions are executed in the order of their identification
numbers ID/IDS.

Non-modal synchronized actions are executed after execution of the modal synchronized
actions in the order of their programming.

Coordination via part programs and synchronized actions

Synchronized actions can be coordinated via part programs and synchronized actions based
on the identification numbers ID/IDS (see Section "Coordination via part program and
synchronized action (LOCK, UNLOCK, RESET, CANCEL) (Page 110)").

Coordination via PLC

Synchronized actions with identification numbers ID/IDS in the range from 1 to 64 can be
coordinated via the NC/PLC interface from the PLC user program (see Section "Coordination
via PLC (Page 111)").

2.2.2 Frequency (WHENEVER, FROM, WHEN, EVERY)
The frequency specifies how often the condition is queried and, when the condition is
fulfilled, how often the action should be executed. The frequency is part of the condition.

Frequency Meaning
"No specification" If no frequency is specified, the action is executed cyclically in every interpolation cycle.
WHENEVER If the condition is fulfilled, the action is executed cyclically in every interpolation cycle.
FROM After the condition has been fulfilled once, the action is executed cyclically in every interpolation clock

cycle for as long as the synchronized action is active.
WHEN If the condition is fulfilled, the action is executed once and then the condition is no longer checked.
EVERY At every state change of the condition from FALSE to TRUE (rising edge), the action is executed

once.

See also
Technology cycles (Page 104)

Detailed description
2.2 Components of synchronized actions

 Synchronized actions
14 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.2.3 G function (condition)

Defined initial state
With regard to the part program sequence, synchronized actions can be executed at any
time depending on fulfillment of the condition. It is therefore recommended that the
measuring system (inch or metric) be defined in a synchronized action before the condition
and/or in the action part. This generates a defined initial position for the evaluation of the
condition and the execution of the action, irrespective of the current part program state.

G functions
The following G functions are permitted:

● G70 (Inch dimensions for geometric specifications (lengths))

● G71 (Metric dimensions for geometric specifications (lengths))

● G700 (Inch dimensions for geometric and technological specifications (lengths, feedrate))

● G710 (Metric dimensions for geometric and technological specifications (lengths,
feedrate))

 Note

No other G functions are permitted in synchronized actions except G70, G71, G700 and
G710.

Validity
A G function programmed in the condition part also applies for the action part even if no G
function has been programmed in the action part itself.

A G function programmed in the action part only applies within the action part.

 Detailed description
 2.2 Components of synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 15

2.2.4 Condition
Execution of the action can be made dependent on the fulfillment of a condition. As long as
the synchronized action is active, the condition is checked cyclically in the interpolation
cycle. If no condition is specified, the action is executed cyclically in every interpolation cycle.

All operations that return a truth value (TRUE/FALSE) as the result can be programmed as a
condition:

● Comparisons of system variables with constants

● Comparisons of system variables with system variables

● Comparisons of system variables with results of arithmetic operations

● Linking of comparisons through Boolean expressions

Examples

Comparisons

Program code

ID=1 WHENEVER $AA_IM[X] > $$AA_IM[Y] DO ...

ID=2 WHENEVER $AA_IM[X] > (10.5 * SIN(45)) DO ...

Boolean operations

Program code

ID=1 WHENEVER ($A_IN[1]==1) OR ($A_IN[3]==0) DO ...

See also
Reading and writing (Page 17)

Examples of conditions in synchronized actions (Page 123)

System variables for synchronized actions (Page 17)

Detailed description
2.2 Components of synchronized actions

 Synchronized actions
16 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.2.5 G function (action)

Defined initial state
With regard to the part program sequence, synchronized actions can be executed at any
time depending on fulfillment of the condition. Therefore, it is advisable to define the required
measuring system (inch or metric) in the action part in a synchronized action. This generates
a defined initial position for the execution of the action, irrespective of the current part
program state.

G functions
The following G functions are permitted:

● G70 (Inch dimensions for geometric specifications (lengths))

● G71 (Metric dimensions for geometric specifications (lengths))

● G700 (Inch dimensions for geometric and technological specifications (lengths, feedrate))

● G710 (Metric dimensions for geometric and technological specifications (lengths,
feedrate))

Validity
A G function programmed in the condition part also applies for the action part even if no G
function has been programmed in the action part itself.

A G function programmed in the action part only applies within the action part.

2.2.6 Action (DO)
The action part of a synchronized action is initiated with the keyword DO.

One or more actions can be programmed in the action part. These are executed when the
appropriate condition is fulfilled. If several actions are programmed in one synchronized
action, they are all executed in the same interpolation cycle.

Example:

If the actual value of the Y axis is greater than or equal to 35.7, the auxiliary function M135 is
output on the PLC and, at the same time, digital output 1 = 1 is set.

Program code

WHEN $AA_IM[Y] >= 35.7 DO M135 $A_OUT[1]=1

Technology cycle
A technology cycle can be called as an action. See Section "Technology cycles (Page 104)".

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 17

2.3 System variables for synchronized actions
The system variables of the NCK are listed in the "System Variables" Parameter Manual with
their respective properties. System variables that can be read or written in synchronized
actions, are marked with an "X" in the corresponding line (Read or Write) of the "SA"
(synchronized action) column.

 Note

System variables used in synchronized actions are implicitly read and written synchronous to
the main run.

References
A comprehensive description of the system variables listed in this function manual can be
found in:

● System Variables Parameter Manual

2.3.1 Reading and writing
The reading and writing of variables is performed in the main run in synchronized actions
with a few exceptions. Exceptions are:

● User-defined variables: LUD, GUD

● Machine data: $M...

● Setting data: $S...

● R parameters: R<number> or R[<index>]

These variables are already read and written during the preprocessing.

System variables
Generally, all system variables that can be used in synchronized actions are read/written in
the main run. These system variables are marked with an "X" in the "Read" and/or "Write"
line of the "SA" (synchronized action) column in the "System Variables" Parameter Manual.

References:
System Variables Parameter Manual

System of the identifiers
The identifiers of the system variables that are read/written in the main run have the
following system:

$A... Current main run data
$V... Servo data
$R... R parameters to be read/written in the main run
$$M... Machine data to be read/written in the main run
$$S... Setting data to be read/written in the main run

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
18 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.3.2 Operators and arithmetic functions

Operators
Arithmetic operators

System variables of the REAL and INT type can be linked by the following operators:

Operator Meaning
+ Addition
- Subtraction
* Multiplication
/ Division, caution: INT/INT = REAL
DIV Integer division, caution: INT/INT = INT
MOD Modulo division (only for type INT) supplies remainder of an INT division

Example: 3 MOD 4 = 3

 Note

Only variables of the same type may be linked by these operations.

Relational operators

Operator Meaning
== Equal to
> Not equal to
< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

Boolean operators

Operator Meaning
NOT NOT
AND AND
OR OR
XOR Exclusive OR

Bit logic operators

Operator Meaning
B_OR Bit-by-bit OR
B_AND Bit-by-bit AND
B_XOR Bit-by-bit exclusive OR
B_NOT Bit-by-bit negation

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 19

Priority of the operators
The operators have the following priorities for execution in the synchronized action (highest
priority: 1):

Prio. Operators Meaning
1 NOT, B_NOT Negation, bit-by-bit negation
2 *, /, DIV, MOD Multiplication, division
3 +, - Addition, subtraction
4 B_AND Bit-by-bit AND
5 B_XOR Bit-by-bit exclusive OR
6 B_OR Bit-by-bit OR
7 AND AND
8 XOR Exclusive OR
9 OR OR

10 << Concatenation of strings, result type STRING
11 ==, <>, <, >, >=, <= Relational operators

 Note

It is strongly recommended that the individual operators are clearly prioritized by setting
parentheses "(…)" when several operators are used in an expression.

Example of a condition with an expression with several operators:

Program code

... WHEN ($AA_IM[X] > VALUE) AND ($AA_IM[Y] > VALUE1) DO ...

Arithmetic functions

Operator Meaning
Sin() Sine
COS() Cosine
TAN() Tangent
ASIN() Arc sine
ACOS() Arc cosine
ATAN2() Arc tangent 2
SQRT() Square root
ABS() Absolute value
POT() 2nd power (square)
TRUNC() Integer component

The accuracy for comparison commands can be set using TRUNC
ROUND() Round to an integer
LN() Natural logarithm
EXP() Exponential function

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
20 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

A detailed description of the functions can be found in:
References
Programming Manual, Job Planning; Section "Flexible NC programming" ff.

Indexing
The index of a system variable of type "Array of …" can in turn be a system variable. The
index is also evaluated in the main run in the interpolation cycle.

Example

Program code

... WHEN … DO $AC_PARAM[$AC_MARKER[1]]=3

Restrictions

● It is not permissible to nest indices with further system variables.

● The index must not be formed via preprocessing variables. The following example is
therefore not permitted since $P_EP is a preprocessing variable:
$AC_PARAM[1] = $P_EP[$AC_MARKER[0]]

2.3.3 Type conversions
An implicit type conversion is performed between the following data types for value
assignments and parameter transfers with different data types:

● REAL

● INT

● BOOL

 Note
Conversion REAL to INT

For the conversion from REAL to INT, a decimal place value ≧ 0.5 rounded up to the next
higher integer. For a decimal place value < 0.5, rounding is to the next lower integer.
Behavior in accordance with the ROUND function.

If the REAL value is outside the INT value range, an alarm is displayed and a conversion
is not performed.
Conversion from REAL or INT to BOOL
 Value <> 0 → TRUE
 Value == 0 → FALSE

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 21

Examples

Conversion: INT $AC_MARKER → REAL $AC_PARAM

Program code

$AC_MARKER[1]=561

ID=1 WHEN TRUE DO $AC_PARAM[1] = $AC_MARKER[1]

Conversion: REAL $AC_PARAM → INT $AC_MARKER

Program code

$AC_PARAM[1]=561.0

ID=1 WHEN TRUE DO $AC_MARKER[1] = $AC_PARAM[1]

Conversion: INT $AC_MARKER → BOOL $A_OUT

Program code

$AC_MARKER[1]=561

ID=1 WHEN $A_IN[1] == TRUE DO $A_OUT[0]=$AC_MARKER[1]

Conversion: REAL $R401 → BOOL $A_OUT

Program code

R401 = 100.542

WHEN $A_IN[0] == TRUE DO $A_OUT[2]=$R401

Conversion: BOOL $A_OUT → INT $AC_MARKER

Program code

ID=1 WHEN $A_IN[2] == TRUE DO $AC_MARKER[4] = $A_OUT[1]

Conversion: BOOL $A_OUT → REAL $R10

Program code

WHEN $A_IN[3] == TRUE DO $R10 = $A_OUT[3]

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
22 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.3.4 Marker/counter ($AC_MARKER)
The $AC_MARKER[<index>] variables are channel-specific arrays of system variables for
use as markers or counters.

Data type: INT (integer)
<Index>: Array index: 0, 1, 2, ... (max. number - 1)

Number per channel
The maximum number of $AC_MARKER variables per channel can be set via the machine
data:

MD28256 $MC_MM_NUM_AC_MARKER = <maximum number>

Storage location
The storage location of the $AC_MARKER variables can be defined channel-specifically via
the machine data:

MD28257 $MC_MM_BUFFERED_AC_MARKER = <value>

Value Storage location
0 Dynamic memory (default setting)
1 Static memory

 Note
Data backup and memory space
 The $AC_MARKER variables created in the static memory can be saved channel-

specifically via the data backup. Data block: _N_CH<channel number>_ACM
 Please ensure that sufficient memory is available in the selected memory area. An array

element requires 4 bytes of memory space.

Reset behavior
The reset behavior depends on the storage location of the $AC_PARAM variables:

● Dynamic memory: Initialization with the value "0"

Static memory: Retention of the current value

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 23

2.3.5 Parameters ($AC_PARAM)
The $AC_PARAM[<index>] variables are channel-specific arrays of system variables for use
as general buffers.

Data type: REAL
<Index>: Array index: 0, 1, 2, ... (max. number - 1)

Number per channel
The maximum number of $AC_PARAM variables per channel can be set via the machine
data:

MD28254 $MC_MM_NUM_AC_PARAM = <maximum number>

Storage location
The storage location of the $AC_PARAM variables can be defined channel-specifically via
the machine data:

MD28255 $MC_MM_BUFFERED_AC_PARAM = <value>

Value Storage location
0 Dynamic memory (default setting)
1 Static memory

 Note
Data backup and memory space
 The $AC_PARAM variables created in the static memory can be saved channel-

specifically via the data backup. Data block: _N_CH<channel number>_ACP
 Please ensure that sufficient memory is available in the selected memory area. An array

element requires 4 bytes of memory space.

Reset behavior
The reset behavior depends on the storage location of the $AC_PARAM variables:

● Dynamic memory: Initialization with the value "0"

● Static memory: Retention of the current value

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
24 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.3.6 R parameters ($R)
Whether R-parameters are treated as preprocessing or main run variables depends on
whether they are written with or without $ characters. In principle, the notation is freely
selectable. For use in synchronized actions, R parameters should be used as main run
variables, i.e. with $ characters:

● $R[<index>]

● $R<number>

Data type: REAL
<Index>: Array index: 0, 1, 2, ...
<Number>: Number of the R parameter: 0, 1, 2, ...
The notations with index or number are equivalent.

Parameterizable number per channel
The maximum number of R parameters per channel can be set via the machine data:

MD28254 $MC_MM_NUM_AC_PARAM = <maximum number>

Reset behavior
R parameters are saved persistently in the static memory of the NC. Therefore, R
parameters retain their values with all reset types:

● Power on reset

● NC reset

● End of part program reset

Example
Value assignment to R10 in the action part of the synchronized action and subsequent
evaluation in the part program

Program code Comment

WHEN $A_IN[1]==1 DO $R[10]=$AA_IM[Y] ; Assignment

G1 X100 F150

STOPRE

IF R[10] > 50 ... ; Evaluation in the part program

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 25

2.3.7 Machine and setting data ($$M, $$S)

Reading and writing MD and SD
When machine and setting data is used in synchronized actions, a distinction must be made
as to whether this remains unchanged during the execution of the synchronized action, or is
changed through parallel processes.

Data that remains unchanged can already be read or written by the NC during
preprocessing.

Data that is changed can only be read or written by the NC during the main run.

Data access during preprocessing
Machine and setting data that can already be read and written in synchronized actions
during preprocessing, is programmed with the same identifiers as in the part program: $M ...
or $S ...

Program code

; The reversal position of the Z axis $SA_OSCILL_REVERSE_POS2[Z]

; remains unchanged over the entire machining period

ID=2 WHENEVER $AA_IM[z]<$SA_OSCILL_REVERSE_POS2[Z]–6 DO $AA_OVR[X]=0

Data access during the main run
An additional "$" is added as prefix for machine and setting data that may only be read or
written in synchronized actions during the main run: $$M… or $$S…

Program code

; The reversal position of the Z axis $SA_OSCILL_REVERSE_POS2[Z]

; can be changed by operator input at any time

ID=1 WHENEVER $AA_IM[z] < $$SA_OSCILL_REVERSE_POS2[Z] DO $AA_OVR[X] = 0

Writing during the main run

The following requirements must be satisfied for writing during the main run:

● The access authorization at the time of writing must be sufficient for writing.

● The machine or setting data must have the property "Effective immediately".

Program code

; The switching position of the SW cam $SN_SW_CAM_ ... must,

; depending on the current setpoint of the X axis in WCS $AA_IW[X],

; only be written during the main run

ID=2 WHEN $AA_IW[X] > 10 DO $$SN_SW_CAM_PLUS_POS_TAB_1[0] = 20

 $$SN_SW_CAM_MINUS_POS_TAB_1[0]=20

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
26 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

A complete overview of the properties of the machine and setting data can be found in:

References

● Parameter Manual: Lists (Book 1)

● Parameter Manual: Detailed Machine Data Description

2.3.8 Timer ($AC_TIMER)
The $AC_TIMER[<index>] variables are channel-specific arrays of system variables.

Data type: REAL
<Index>: Array index: 0, 1, 2, ... (max. number - 1)
Unit: Seconds

Number per channel
The maximum number of $AC_TIMER variables per channel can be set via the machine
data:

MD28258 $MC_MM_NUM_AC_TIMER = <maximum number>

Function

Starting

A timer is started by assigning a value ≥ 0:

$AC_TIMER[<index>] = <starting value>; with starting value ≥ 0

Incrementing

The value of the timer is incremented by the duration of the set interpolation cycle (MD10071
IPO_CYCLE_TIME) each interpolation cycle.

$AC_TIMER[<index>] += <interpolation cycle>

Stopping

A timer is stopped by assigning a value < 0:

$AC_TIMER[<index>] = <stopping value>; with stopping value < 0

When a stopping value is assigned, only the further incrementing of the timer is stopped. The
stopping value is not assigned. After the timer is stopped, the last valid value is retained and
can still be read.

 Note

The current value of a timer can be be read when the timer is running or stopped.

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 27

Example
Output the actual value of the X axis as voltage value via analog output $A_OUTA[3], 500
ms after the detection of digital input $A_IN[1]:

Program code Comment

WHEN $A_IN[1] == 1 DO $AC_TIMER[1]=0 ; Start time, starting value 0

WHEN $AC_TIMER[1]>=0.5 DO $A_OUTA[3]=$AA_IM[X] $AC_TIMER[1]=-1

2.3.9 FIFO variables ($AC_FIFO)
Special data structures managed by the NC are provided via $AC_FIFO variables within the
R parameters. These are organized as ring buffers that work according to the FIFO principle
(First In, First Out).

Syntax
$AC_FIFO<number>[<index>]
$AC_FIFO[<number>, <index>]

Data type: Corresponds to R parameter: REAL
<Number>: Number of the $AC_FIFO variable: 1, 2, 3, ... max. number
<Index>: Array index: 0, 1, 2, ... (max. number - 1)

Meaning of the array indices

In addition to the array elements for the user data, a $AC_FIFO variable also contains
several array elements to manage the data. Each individual array element can be accessed
via the index.

The array elements with the indices 0 … 5 are used to manage the $AC_FIFO variable:

Index Meaning

0 Index 0 has the following special meaning:
Array element 0 is not accessed with index 0.
Write: The "most recent" value is stored in the variable
Read: The "oldest" value is read from the variable

1 Write/read: The "oldest" array element is addressed
2 Write/read: The "most recent" array element is addressed
3 Read: Returns the sum of the values of all user data

Requirement: See paragraph below "Summation of all user data"
4 Read: Returns the number of the existing data items

A $AC_FIFO variable is reset to its initial state with:
$AC_FIFO<number>[4] = 0

5 Read: Returns the current write index, relative to the beginning of the $AC_FIFO variable

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
28 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

The array elements as of index 6 contain the user data:

Index Meaning

6 Write/read: The 1st array element for user data is addressed
7 Write/read: The 2nd array element for user data is addressed
n Write/read: The nth array element for user data is addressed

 Note
Overwriting of user data

Because of the ring buffer structure, the oldest user data is overwritten as soon as all free
array elements of a $AC_FIFO variable have been assigned.

Configuration

Number per channel

Number of array elements

The maximum number of array elements per $AC_FIFO variable can be set via the machine
data:

MD28264 $MC_LEN_AC_FIFO = <maximum number of array elements>

Start of $AC_FIFO variable range

The R parameter as of which the $AC_FIFO variable range is to start, can be set via the
machine data:

MD28262 $MC_START_AC_FIFO = <number of the start R parameter>

R parameters above the start R parameter cannot be written in the part program.

Total number of R parameters in the channel

The total number of R parameters in the channel can be set via the machine data:

MD28050 $MC_MM_NUM_R_PARAM = <maximum number>

The number of R parameters in the channel set in the machine data must be at least as
large as the number of R parameters required for the $AC_FIFO variables:

<Maximum number> ≥ MD28262 $MC_START_AC_FIFO + MD28260

$MC_NUM_AC_FIFO * (MD28264 $MC_LEN_AC_FIFO + 6)

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 29

Summation of all user data

The sum of the values of all user data is only provided via the index [4] when the function
has been activated via the machine data:

MD28266 MODE_AC_FIFO, bit 0 = <value>

Value Meaning
0 The sum of the values of all user data is not provided
1 The sum of the values of all user data is provided

Storage location and reset behavior
The $AC_FIFO variables are based on the R parameters. The statements made there are
therefore also valid for the $AC_FIFO variables. See Section "R parameters ($R) (Page 24)".

Example
Serial determination of the length of workpieces that move past an automatic measuring
station on a conveyor belt.

The measurement results are written to or read from the $AC_FIFO1 system variable via
synchronized actions.

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
30 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.3.10 Path tangent angle ($AC_TANEB)
The angle between the tangent at the end point of the current block and the tangent at the
start point of the following block can be read via the channel-specific system variable
$AC_TANEB (Tangent ANgle at End of Block).

Data type: REAL

The tangent angle is always specified positive in the range 0.0 to 180.0°.

If the tangent angle cannot be determined, the value -180.0° is output.

Used only with programmed blocks
It is recommended that the tangent angle only be read for programmed blocks, not for
intermediate blocks generated by the system. A distinction can be made via the system
variable $AC_BLOCKTYPE:

$AC_BLOCKTYPE == 0 (programmed block)

Example:

Program code

ID=2 EVERY $AC_BLOCKTYPE==0 DO $R1=$AC_TANEB

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 31

2.3.11 Override ($A...OVR)

Current override

Channel-specific override

The path feedrate can be changed via the channel-specific system variable $AC_OVR.

Data type: REAL
Unit: %
Range of
values:

0.0 to machine data
 For binary-coded override switch

MD12100 $MN_OVR_FACTOR_LIMIT_BIN
 For gray-coded override switch

MD12030 $MN_OVR_FACTOR_FEEDRATE[30]

The system variable $AC_OVR must be written in every interpolation cycle, otherwise the
value "100%" is effective.

Channel-specific rapid traverse override

With G0 blocks (rapid traverse), the rapid traverse feedrate can also be influenced via the
setting data SD42122 $SC_OVR_RAPID_FACTOR in addition to the system variable
$AC_OVR.

Requirement: Release of the rapid traverse override via the user interface.

Axis-specific override

The axial feedrate can be changed via the axis-specific system variable $AA_OVR:

Data type: REAL
Unit: %
Range of
values:

0.0 to machine data
 For binary-coded override switch

MD12100 $MN_OVR_FACTOR_LIMIT_BIN
 For gray-coded override switch

MD12030 $MN_OVR_FACTOR_FEEDRATE[30]

The system variable $AA_OVR must be written in every interpolation cycle, otherwise the
value "100%" is effective.

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
32 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

PLC override

Channel-specific override

The channel-specific override (DB21, ... DBB4) set via the machine control panel can be
read via the channel-specific system variable $AC_PLC_OVR:

Data type: REAL
Unit: %
Range of
values:

0.0 to maximum value

Axis-specific override

The axis-specific override (DB31, ... DBB0) set via the machine control panel can be read via
the axis-specific system variable $AA_PLC_OVR:

Data type: REAL
Unit: %
Range of
values:

0.0 to maximum value

Effective override

Effective channel-specific override

The effective channel-specific override can be read via the channel-specific system variable
$AC_TOTAL_OVR:

Data type: REAL
Unit: %
Range of
values:

0.0 to maximum value

Effective axis-specific override

The effective axis-specific override can be read via the axis-specific system variable
$AA_TOTAL_OVR:

Data type: REAL
Unit: %
Range of
values:

0.0 to maximum value

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 33

2.3.12 Capacity evaluation ($AN_IPO ... , $AN/AC_SYNC ... , $AN_SERVO)
The values of the current, maximum and average system utilization due to synchronized
actions can be read via the following system variables:

NC-specific system variable Meaning
$AN_IPO_ACT_LOAD Current computing time of the interpolator level (incl.

synchronized actions of all channels)
$AN_IPO_MAX_LOAD Longest computing time of the interpolator level (incl.

synchronized actions of all channels)
$AN_IPO_MIN_LOAD Shortest computing time of the interpolator level (incl.

synchronized actions of all channels)
$AN_IPO_LOAD_PERCENT Current computing time of the interpolator level in relation to the

interpolator cycle (%)
$AN_SYNC_ACT_LOAD Current computing time for synchronized actions over all

channels
$AN_SYNC_MAX_LOAD Longest computing time for synchronized actions over all

channels
$AN_SYNC_TO_IPO Percentage share that the synchronized actions have of the

total computing time (over all channels)
$AN_SERVO_ACT_LOAD Current computing time of the position controller
$AN_SERVO_MAX_LOAD Longest computing time of the position controller
$AN_SERVO_MIN_LOAD Shortest computing time of the position controller

Channel-specific system variable Meaning
$AC_SYNC_ACT_LOAD Current computing time for synchronized actions in the channel
$AC_SYNC_MAX_LOAD Longest computing time for synchronized actions in the channel
$AC_SYNC_AVERAGE_LOAD Average computing time for synchronized actions in the

channel

Figure 2-1 Computing time shares of the synchronized actions on the interpolator cycle

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
34 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Activation
The system variables contain only valid values when the following applies:

MD11510 $MN_IPO_MAX_LOAD > 0 (maximum permissible interpolator utilization)

 Note

The variables always contain the values of the previous interpolator cycle.

Overload limit
An overload limit can be set via the following machine data:

MD11510 $MN_IPO_MAX_LOAD = <maximum permissible utilization in %>

If the value set in the machine data is exceeded, the system variable is set:

$AN_IPO_LOAD_LIMIT = TRUE

If the value falls below the set value again, the system variable is reset:

$AN_IPO_LOAD_LIMIT = FALSE

Application

A user-specific strategy to avoid a level overflow can be implemented via the system variable
$AN_IPO_LOAD_LIMIT.

Resetting of min./max. values
The following system variables for min./max. values are reset by writing arbitrary values:

System variables Meaning
$AN_SERVO_MAX_LOAD Longest computing time of the position controller
$AN_SERVO_MIN_LOAD Shortest computing time of the position controller
$AN_IPO_MAX_LOAD Longest computing time of the interpolator level

(incl. synchronized actions of all channels)
$AN_IPO_MIN_LOAD Shortest computing time of the interpolator level

(incl. synchronized actions of all channels)
$AN_SYNC_MAX_LOAD Longest computing time for synchronized actions

over all channels
$AC_SYNC_MAX_LOAD Longest computing time for synchronized actions

in the channel

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 35

Example

Program code Comment

$MN_IPO_MAX_LOAD=80 ; Overload limit

;

; Initialization of the min./max. values

N01 $AN_SERVO_MAX_LOAD=0

N02 $AN_SERVO_MIN_LOAD=0

N03 $AN_IPO_MAX_LOAD=0

N04 $AN_IPO_MIN_LOAD=0

N05 $AN_SYNC_MAX_LOAD=0

N06 $AC_SYNC_MAX_LOAD=0

;

; Alarm 63111 when the overload limit is exceeded

N10 IDS=1 WHENEVER $AN_IPO_LOAD_LIMIT == TRUE DO M4711 SETAL(63111)

;

; Alarm 63222 when the computing time share of the

; synchronized actions over all channels exceeds 30% of the interpolator cycle

N20 IDS=2 WHENEVER $AN_SYNC_TO_IPO > 30 DO SETAL(63222)

;

N30 G0 X0 Y0 Z0

...

N999 M30

2.3.13 Working-area limitation ($SA_WORKAREA_ ...)
Only the activation via the setting data is effective for the traversable command axes in
synchronized actions with regard to the programmable working-area limitation G25/G26:

● $SA_WORKAREA_PLUS_ENABLE

● $SA_WORKAREA_MINUS_ENABLE

Switching the working-area limitation on and off via the commands WALIMON/WALIMOF in the
part program has no effect on the command axes traversable via synchronized actions.

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
36 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.3.14 SW cam positions and times ($$SN_SW_CAM_ ...)
The values of the SW cam positions and times can be read and written via the following
setting data:

NC-specific setting data Meaning
$SN_SW_CAM_MINUS_POS_TAB_1[0..7] Minus cam positions
$SN_SW_CAM_MINUS_POS_TAB_2[0..7] Minus cam positions
$SN_SW_CAM_PLUS_POS_TAB_1[0..7] Plus cam positions
$SN_SW_CAM_PLUS_POS_TAB_2[0..7] Plus cam positions
$SN_SW_CAM_MINUS_TIME_TAB_1[0..7] Minus cam lead or delay time
$SN_SW_CAM_MINUS_TIME_TAB_2[0..7] Minus cam lead or delay time
$SN_SW_CAM_PLUS_TIME_TAB_1[0..7] Plus cam lead or delay time
$SN_SW_CAM_PLUS_TIME_TAB_2[0..7] Plus cam lead or delay time

 Note

The setting of a software cam via synchronized actions must not be performed immediately
before the cam is reached. At least three interpolation cycles must be available before the
cam is reached.

A detailed description of the "Software cam" function can be found in:

References

Function Manual for Extended Functions, Software Cams, Position-Switching Signals (N3)

Examples

Program code

; Changing a cam position:

ID=1 WHEN $AA_IW[x] > 0 DO $$SN_SW_CAM_MINUS_POS_TAB_1[0] = 50.0

...

; Changing a lead time

ID=1 WHEN $AA_IW[x] > 0 DO $$SN_SW_CAM_MINUS_TIME_TAB_1[0] = 1.0

See also
Machine and setting data ($$M, $$S) (Page 25)

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 37

2.3.15 Path length evaluation / machine maintenance ($AA_TRAVEL ... ,
$AA_JERK ...)

The data of the path length evaluation, e.g. for machine maintenance, can be read via the
system variables listed below.

Activation
The activation for the recording of the path length evaluation data is performed via:

MD18860 $MN_MM_MAINTENANCE_MON = 1

The data to be recorded for the specific axis can be selected via the following axis-specific
machine data:

MD33060 $MA_MAINTENANCE_DATA[<axis>], bit n = 1

Bit Meaning
0 Recording of total traversing distance, total traversing time and number of traversing

operations of the axis.
1 Recording of total traversing distance, total traversing time and number of traversing

operations of the axis at high speed.
2 Recording of total number of axis jerks, the time during which the axis is traversed with jerk

and the number of traversing operations with jerk.

System variable

System variable Meaning n
$AA_TRAVEL_DIST Total travel distance:

Sum of all set position changes in MCS in [mm] or [deg.]
$AA_TRAVEL_TIME Total travel time:

Sum of IPO cycles of set position changes in MCS in [s] (resolution: 1 IPO
cycle)

$AA_TRAVEL_COUNT Total travel count:
A complete machine axis trip is defined by the following succession of states,
as based on set position: standstill > traversing > standstill

0

$AA_TRAVEL_DIST_HS Total traversing distance at high axis velocities 1)
$AA_TRAVEL_TIME_HS Total traversing time at high axis velocities 1)
$AA_TRAVEL_COUNT_HS Total number of traversing operations at high axis velocities 3)

1

$AA_JERK_TOT Total sum of axis jerks:
Sum of all jerk setpoints in [m/s3] or [deg./ s3]

$AA_JERK_TIME Total travel time with jerk:
Sum of IPO cycles from jerk setpoint changes in [s] (solution: 1 IPO cycle)

$AA_JERK_COUNT Total number of traversing operations with jerk

2

1) Actual machine axis velocity ≥ 80% of the maximum parameterized axis velocity (MD32000 MAX_AX_VELO)

References
For a detailed description of the function, refer to:

Function Manual, Special Functions, Section "Path length evaluation (W6)"

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
38 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.3.16 Polynomial coefficients, parameters ($AC_FCT ...)

Function
Polynomials up to the 3rd degree can be defined via the FCTDEF function:

f(x) = a0 + a1*x + a2*x2 + a3*x3

 Note

The definition must be made in a part program.

Syntax
FCTDEF(<Poly_No>,<Lo_Limit>,<Up_Limit>,a0,a1,a2,a3)

Meaning

Parameter Meaning
<Poly_No>: Number of the polynomial function
<Lo_Limit>: Lower limit of the function values
<Up_Limit>: Upper limit of the function values
a0, a1, a2, a3: Polynomial coefficient

 Note

Polynomial coefficients (a2, a3) that are not required can be omitted when programming the
FCTDEF(...) function.

System variable
Read and write access to polynomial coefficients and parameters is also possible from
synchronized actions via the following system variables:

System variable Meaning
$AC_FCTLL[<Poly_No>]: Lower limit for function value
$AC_FCTUL[<Poly_No>]: Upper limit for function value
$AC_FCT0[<Poly_No>]: a0
$AC_FCT1[<Poly_No>]: a1
$AC_FCT2[<Poly_No>]: a2
$AC_FCT3[<Poly_No>]: a3
<Poly_No>: The number specified during the definition of the

polynomial function (see above: Syntax)

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 39

Part program

When writing system variables in the part program, preprocessing stop STOPRE must be
programmed explicitly for block-synchronous writing.

 Note
Block-synchronous writing in the part program

So that the system variables can be written block-synchronously in the part program, the
STOPRE command (preprocessing stop) must be used after writing the system variables.

Synchronized action

When writing system variables in synchronized actions, they take effect immediately.

Use
The function value f(x) of the polynomial can be used as input value in synchronized actions,
e.g. for the following functions:

● "Polynomial evaluation (SYNFCT) (Page 61)"

● "Online tool offset (FTOC) (Page 67)"

Example: Linear dependency

Figure 2-2 Example of linear dependency

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
40 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Parameter Meaning
<Poly_No>: Number of the polynomial, e.g. = 1
<Lo_Limit>: Lower limit of the function values = -100
<Up_Limit>: Upper limit of the function values = 100
a0: Axis section on the ordinate (feedrate):

(5 - 4) / 100 = 5 / a0
a0 = 100 * 5 / (5 - 4) = 500

a1: Gradient of the straight line:
a1 = 100 / (4 - 5) = -100

a2: = 0 (no square component)
a3: = 0 (no cubic component)

Program code

FCTDEF(1, -100, 100, 500, -100, 0, 0)

; Or in abbreviated notation without parameters a2 and a3

FCTDEF(1, -100, 100, 500, -100)

2.3.17 Overlaid movements ($AA_OFF)

Overlaid movements
The system variable $AA_OFF can be used to specify a position offset in a channel axis
which is traversed immediately:

$AA_OFF[<channel axis>] = <position offset>

The following machine data can be used to set whether the position offset of the system
variable is to be assigned or summed up (integrated):

MD36750 $MA_AA_OFF_MODE, bit 0 = <value>

<value> Meaning
0 Assignment: $AA_OFF = <position offset>
1 Sum (integration): $AA_OFF += <position offset>

 Note
Limitation of the overlay velocity

The maximum permissible velocity with which the position offset can be traversed can be set
via the machine data:

MD32070 $MA_CORR_VELO (axis velocity for overlay)

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 41

Limitation
The value of $AA_OFF can be limited via the following setting data:

SD43350 $SA_AA_OFF_LIMIT (upper limit of the offset value $AA_OFF in case of clearance
control)

The status of the limitation can be read via the following system variable:

$AA_OFF_LIMIT[<axis>] == <value>

Value Meaning
-1 Offset value is limited in the negative direction
1 Offset value is limited in the positive direction
0 No limitation of the offset value

Reset behavior
With static synchronized actions (IDS = <number> DO $AA_OFF = <value>), deselection of the
position offset effective in $AA_OFF results in an immediate new overlaid movement. The
reset behavior with regard to $AA_OFF can therefore be set via the following machine data:

MD36750 $MA_AA_OFF_MODE, bit 1 = <value>

<value> Meaning
0 The position offset in $AA_OFF is deselected with RESET
1 The position offset in $AA_OFF is retained after RESET

JOG mode
Execution of an overlaid movement because of $AA_OFF can also be enabled for JOG
mode:

MD36750 $MA_AA_OFF_MODE, bit 2 = <value>

<value> Meaning
0 JOG mode: Overlaid movement because of $AA_OFF disabled
1 JOG mode: Overlaid movement because of $AA_OFF enabled

A mode change to JOG mode is only possible when the current position offset has been
traversed. Otherwise the following alarm is displayed:

Alarm "16907 Action ... only possible in stop state"

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
42 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Supplementary conditions
● Interrupt routines and ASUB

When an interrupt routine is activated, modal motion-synchronous actions are retained
and are also effective in the ASUB. If the subprogram return is not made with REPOS, the
modal synchronized actions changed in the asynchronous subprogram continue to be
effective in the main program.

● REPOS
In the remainder of the block, the synchronized actions are treated in the same way as in
an interruption block. Modifications to modal synchronized actions in the ASUB are not
effective in the interrupted program. Polynomial coefficients programmed with FCTDEF are
not affected by ASUB and REPOS.
The polynomial coefficients from the calling program are active in the ASUB. The
polynomial coefficients from the ASUB continue to be active in the calling program.

● End of program
Polynomial coefficients programmed with FCTDEF remain active after the end of program.

● Block search: Collection of the polynomial coefficients
During block search with calculation, the polynomial coefficients are collected in the
system variables.

● Block search: Deselection of active overlaid movements
During block search, the CORROF and DRFOF commands are collected and output in an
action block. All the deselected DRF offsets are collected in the last block that contains
CORROF or DRFOF.
The commands for the deselection of overlaid movements CORROF(<axis>, "AA_OFF") are
not collected during a block search. If a user wishes to continue to use this search run,
this is possible by means of block search via "SERUPRO" program testing.
Reference:
Function Manual Basic Functions; Mode Group, Channel, Program Operation (K1)

● Deselection of the position offset in case of synchronized actions
Alarm 21660 is displayed if a synchronized action is active when the position offset is
deselected via the CORROF(<axis>,"AA_OFF") command. $AA_OFF is deselected
simultaneously and not set again. If the synchronized action becomes active later in the
block after CORROF, $AA_OFF remains set and a position offset is interpolated.

References:

Programming Manual, Fundamentals

 Note

The coordinate system (BCS or WCS) in which a main run variable is defined determines
whether frames will or will not be included.

Distances are always calculated in the set basic system (metric or inch). A change with G70
or G71 has no effect.

DRF offsets, zero offsets external, etc., are only taken into consideration in the case of main
run variables that are defined in the MCS.

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 43

2.3.18 Online tool length compensation ($AA_TOFF)

Function
In conjunction with an active orientation transformer or an active tool carrier, tool length
compensations can be applied during processing/machining in real time. Changing the
effective tool length using online tool length compensation produces changes in the
compensatory movements of the axes involved in the transformation in the event of changes
in orientation. The resulting velocities can be higher or lower depending on machine
kinematics and the current axis position.

Velocity and acceleration with which specified tool length compensations can be traversed
via the system variable $AA_TOFF, can be specified via the following machine data:

● MD21194 $MC_TOFF_VELO (velocity, online offset in tool direction)

● MD21196 $MC_TOFF_ACCEL (acceleration, online offset in tool direction)

For further information regarding the activation of the function, see:

References:

Programming Manual, Job Planning; Section "Transformations "TOFFON, TOFFOF""

Applications in synchronized actions
In synchronized actions, tool length compensations can be applied in all three dimensions
via the system variable $AA_TOFF. The three geometry axis names X, Y, Z are used as
index. All three offset directions can be active at the same time.

For an active orientation transformation or for an active tool carrier that can be oriented, the
offsets are effective in the respective tool axes. An overlaid motion must be switched off with
TOFFOF() before switching a transformation on or off.

After deselection of the tool length compensation in one dimension, the value of the system
variable $AA_TOFF in this dimension is equal to 0.

Mode of operation of the offset in the tool direction
The tool length compensations do not change the tool parameters, but are taken into
account within the transformation or the tool carrier that can be orientated, so that offsets are
obtained in the tool coordinate system.

For each dimension, it is possible to define whether the tool length compensation specified in
$AA_TOFF should be calculated as an absolute or incremental (integrating) value via the
following machine data:

MD21190 $MC_TOFF_MODE (operation of tool offset in tool direction)

The current value of the tool length compensation can be read via the system variable
$AA_TOFF_VAL.

 Note

An evaluation of the variables $AA_TOFF_VAL is only useful in conjunction with an active
orientation transformation or an active tool carrier.

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
44 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Examples

Selecting the online tool length compensation

Machine data for online tool length compensation:

● MD21190 $MC_TOFF_MODE = 1

● MD21194 $MC_TOFF_VEL[0] = 10000

● MD21194 $MC_TOFF_VEL[1] = 10000

● MD21194 $MC_TOFF_VEL[2] = 10000

● MD21196 $MC_TOFF_ACC[0] = 1

● MD21196 $MC_TOFF_ACC[1] = 1

● MD21196 $MC_TOFF_ACC[2] = 1

Activate online tool length compensation in the part program:

Program code

N5 DEF REAL XOFFSET

; Activate orientation transformation

N10 TRAORI

; Activate tool length compensation in the Z direction

N20 TOFFON(Z)

; Tool length compensation in the Z direction: 10 mm

N30 WHEN TRUE DO $AA_TOFF[Z] = 10

G4 F5

...

; Static synchronized action: Tool length compensation in the X direction

; corresponds to the position of the X2 axis in the WCS

N50 ID=1 DO $AA_TOFF[X] = $AA_IW[X2]

G4 F5

...

; Note: Current total tool length compensation in the X direction

N100 XOFFSET = $AA_TOFF_VAL[X]

; Retract the tool length compensation in the X direction to 0

N120 TOFFON(X, -XOFFSET)

G4 F5

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 45

Deselecting the online tool length compensation

Program code

; Activate orientation transformation

N10 TRAORI

; Activate tool length compensation in the X direction

N20 TOFFON(X)

; Tool length compensation in the X direction: 10 mm

N30 WHEN TRUE DO $AA_TOFF[X] = 10

G4 F5

...

; Delete tool length compensation in the X direction

; No axis is traversed. To the current position in the WCS,

; the position offset in accordance with the current orientation

; is added.

N80 TOFFOF(X)

N90 TRAFOOF

Activating and deactivating in the part program
The online tool length compensation is activated in the part program with TOFFON and
deactivated with TOFFOF. When activating for the respective offset direction, an offset value
can be specified, e.g. TOFFON(Z,25), which is then immediately traversed. The status of the
online tool length compensation is activated at the NC/PLC interface via the following
signals:

● DB21, ... DBX318.2 (TOFF active)

● DB21, ... DBX318.3 (TOFF movement active)

 Note

The online tool length compensation remains inactive until it is reselected using via
TOFFON in the part program.

Behavior at reset and power on
The behavior at reset can be set via the machine data:

MD21190 $MC_TOFF_MODE, bit 0 = <value> (operation of tool offset in tool direction)

Value Meaning
0 The tool length offset $AA_TOFF is deselected at reset
1 The tool length offset $AA_TOFF is retained at reset

This is always necessary in case of synchronized actions IDS=<number> DO
$AA_TOFF[n]=<value>, as otherwise there would be an immediate tool length compensation.

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
46 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Similarly, a transformation or a tool carrier that can be oriented, can be deselected after
reset via the following machine data:

MD20110 $MC_RESET_MODE_MASK (initial setting after reset)

The tool length compensation must also be deleted in this case.

If a tool length offset is to remain active extending beyond a reset, and a transformation
change or a change of the tool carrier that can be oriented takes place, then alarm 21665
"Channel %1 $AA_TOFF[] reset" is output. The tool length compensation is set to 0.

After power on, all tool length offsets are set to 0.

The function is deactivated after POWER ON.

Behavior at change of operating mode
The tool length compensation remains active after a change of operating mode. The offset is
executed in all operating modes except JOG and REF.

If a tool length compensation is traversed because of $AA_TOFF[] at a change of operating
mode, the operating mode changeover is only carried out after the traversal of the tool length
compensation. Alarm 16907 "Channel %1 action %2 <ALNX> possible only in stop state" is
displayed.

Behavior with REPOS
The tool length compensation is active in REPOS mode.

Supplementary conditions
With an existing tool length offset, the following supplementary conditions must be taken into
account:

● A transformation must be switched off with TRAFOOF.

● Before activating a transformation in the part program, an active tool length offset must
be deleted with TOFFOF.

● A transformation is switched off when changing over from CP to PTP. A tool length offset
must be deleted before the changeover. If a tool length compensation is active when
changing to axis-specific manual travel in JOG mode, the change to PTP is not performed.
CP remains active until the tool length compensation has been deleted via TOFFOF.

● Before a geometry axis interchange, an active tool length offset in the direction of the
geometry axis must be deleted via TOFFOF.

● Before a change of plane, an active tool length offset must be deleted via TOFFOF.

● The TOFFON and TOFFOF are not collected during a block search and not output in the
action block.

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 47

2.3.19 Current block in the interpolator ($AC_BLOCKTYPE, $AC_BLOCKTYPEINFO,
$AC_SPLITBLOCK)

Information on the block currently being processed in the main run can be read in
synchronized actions via the following system variables.

$AC_BLOCKTYPE and $AC_BLOCKTYPEINFO
The system variable $AC_BLOCKTYPE contains the block type or the ID for the function that
generated the block.

The system variable $AC_BLOCKTYPEINFO contains, in addition to the block type
(thousands position), the function-specific cause for the generation of the intermediate block.

$AC_BLOCKTYPE $AC_BLOCKTYPEINFO
Value Meaning: Current block has been

generated because of ...
Value Meaning

0 Programmed block! - -
1 NC as intermediate block 1000 Contains no further information

2001 Straight line 2 Chamfer/rounding
2002 Circle
3001 Approach with straight line
3002 Approach with quadrant

3 Smooth approach/retraction (SAR)

3003 Approach with semicircle
4001 Approach block after STOPRE
4002 Connection blocks if intersection point not found
4003 Point-type circle on inner corners

(on TRACYL only)
4004 Bypass circle (or conical cut) at outer corners
4005 Approach blocks for offset suppression
4006 Approach blocks on repeated TRC activation
4007 Block split due to excessive curvature

4 Tool offset

4008 Compensation blocks for 3D front milling (tool vector
parallel to plane vector)

5001 Rounding contour through G641
5002 Rounding contour through G642
5003 Rounding contour through G643

5 Corner rounding

5004 Rounding contour through G644
6001 Linear movement of the tangential axis without lift

movement
6002 Non-linear movement of the tangential axis (polynomial)

without lift movement
6003 Lift movement: Tangential axis and lift movement start

simultaneously

6 Tangential tracking (TLIFT)

6004 Lift movement: Tangential axis does not start until a certain
lift position is reached

Detailed description
2.3 System variables for synchronized actions

 Synchronized actions
48 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

$AC_BLOCKTYPE $AC_BLOCKTYPEINFO
Value Meaning: Current block has been

generated because of ...
Value Meaning

7001 Programmed path segmentation is active without punching
or nibbling

7002 Programmed path segmentation with active punching or
nibbling

7 Path segmentation

7003 Automatically, internally generated path segmentation
8 Compile cycle x x: ID of the compile cycle application that generated the

block
9000 Interpolation of the tool orientation with ORIPATH 9 Path-relative orientation interpolation

(ORIPATH/ORIROTC) 9001 Interpolation of the rotation of the tool with ORIROTC
10000 Look-ahead positioning of the pole axis 10 Pole handling with orientation

transformation 10001 Traversal of the pole taper

$AC_SPLITBLOCK
The system variable $AC_SPLITBLOCK can be used to determine whether an internally
generated block or a programmed block shortened by the NC is present.

$AC_SPLITBLOCK
Value Meaning:

0 Programmed block. A block generated by the compressor is also treated as a programmed
block.

1 Internally generated block or a shortened original block
3 Last block in a chain of internally generated blocks or shortened original blocks

Example
Synchronized actions for counting smoothing blocks.

The query of the system variable $AC_TIMEC == 0 (interpolation cycles since start of the
block) ensures that the block type is determined only once at the start of the block.

Program code Comment

$AC_MARKER[0]=0 ; Counter for all smoothing blocks

$AC_MARKER[1]=0 ; Counter for G641 smoothing blocks

$AC_MARKER[2]=0 ; Counter for G642 smoothing blocks

...

; Synchronized action for counting all smoothing blocks

ID=1 WHENEVER ($AC_TIMEC==0) AND ($AC_BLOCKTYPE==5) DO

 $AC_MARKER[0] = $AC_MARKER[0] + 1

...

 Detailed description
 2.3 System variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 49

Program code Comment

; Synchronized action for counting the G641 smoothing blocks

ID=2 WHENEVER ($AC_TIMEC==0) AND ($AC_BLOCKTYPEINFO==5001) DO

 $AC_MARKER[1] = $AC_MARKER[1]+1

...

; Synchronized action for counting the G642 smoothing blocks

ID=3 WHENEVER ($AC_TIMEC==0) AND ($AC_BLOCKTYPEINFO==5002) DO

 $AC_MARKER[2] = $AC_MARKER[2] + 1

...

2.3.20 Initialization of array variables (SET, REP)

Function
Array variables can also be initialized in synchronized actions via the SET and REP
commands.

For a detailed description of the commands, refer to:

References

Programming Manual, Job Planning; Section "Flexible NC programming" > "Variables" >
"Definition and initialization of array variables (DEF, SET, REP)"

Example

Program code

PROC MAIN

N10 DEF REAL SYG_IS[3,2]

...

WHEN TRUE DO SYG_IS[0,0]=REP(0.0,3)

WHEN TRUE DO SYG_IS[1,1]=SET(3,4,5)

...

Supplementary conditions
● Only array variables that can be written in synchronized actions are initialized.

Detailed description
2.4 User-defined variables for synchronized actions

 Synchronized actions
50 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.4 User-defined variables for synchronized actions

GUD variables capable of synchronized actions
As well as specific system variables, predefined global synchronized-action user variables
(synchronized action GUD) can also be used in synchronized actions. The number of
synchronized action GUD items available to the user is parameterized for each specific data
type and access using the following machine data:

● MD18660 $MM_NUM_SYNACT_GUD_REAL[<x>] = <number>

● MD18661 $MM_NUM_SYNACT_GUD_INT[<x>] = <number>

● MD18662 $MM_NUM_SYNACT_GUD_BOOL[<x>] = <number>

● MD18663 $MM_NUM_SYNACT_GUD_AXIS[<x>] = <number>

● MD18664 $MM_NUM_SYNACT_GUD_CHAR[<x>] = <number>

● MD18665 $MM_NUM_SYNACT_GUD_STRING[<x>] = <number>

The index <x> is used to specify the data block (access rights) and the value <number> to
specify the number of synchronized-action GUDs for each data type (REAL, INT, etc.). A 1-
dimensional array variable with the following naming scheme is then created in the relevant
data block for each data type.: SYG_<data type><access right>[<index>]:

Index
<x>

 Data type
(MD18660 to MD18665)

 Block REAL INT BOOL AXIS CHAR STRING
0 SGUD SYG_RS[i] SYG_IS[i] SYG_BS[i] SYG_AS[i] SYG_CS[i] SYG_SS[i]
1 MGUD SYG_RM[i] SYG_IM[i] SYG_BM[i] SYG_AM[i] SYG_CM[i] SYG_SM[i]
2 UGUD SYG_RU[i] SYG_IU[i] SYG_BU[i] SYG_AU[i] SYG_CU[i] SYG_SU[i]
3 GUD4 SYG_R4[i] SYG_I4[i] SYG_B4[i] SYG_A4[i] SYG_C4[i] SYG_S4[i]
4 GUD5 SYG_R5[i] SYG_I5[i] SYG_B5[i] SYG_A5[i] SYG_C5[i] SYG_S5[i]
5 GUD6 SYG_R6[i] SYG_I6[i] SYG_B6[i] SYG_A6[i] SYG_C6[i] SYG_S6[i]
6 GUD7 SYG_R7[i] SYG_I7[i] SYG_B7[i] SYG_A7[i] SYG_C7[i] SYG_S7[i]
7 GUD8 SYG_R8[i] SYG_I8[i] SYG_B8[i] SYG_A8[i] SYG_C8[i] SYG_S8[i]
8 GUD9 SYG_R9[i] SYG_I9[i] SYG_B9[i] SYG_A9[i] SYG_C9[i] SYG_S9[i]

Where i = 0 to (<number> - 1)
Block: _N_DEF_DIR/_N_ ... _DEF, e.g for SGUD ⇒ _N_DEF_DIR/_N_SGUD_DEF

 Detailed description
 2.4 User-defined variables for synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 51

Properties
Synchronized-action GUD have the following properties:

● Synchronized-action GUD can be read and written in synchronized actions and part
programs/cycles.

● Synchronized-action GUD can be accessed via the OPI.

● Synchronized-action GUD is displayed on the HMI user interface in the "Parameters"
operating area.

● Synchronized-action GUD can be used on the HMI in the Wizard, in the variables view
and in the variables log.

● The array size for STRING type synchronized action GUD is set to a fixed value of 32 (31
characters + \0).

● Even if no definition files have been created manually for global user data (GUD),
synchronized-action GUD defined using machine data can be read in the corresponding
GUD block from the HMI.

 Note

User variables (GUD, PUD, LUD) can only be defined with the same name as
synchronized-action GUD (DEF ... SYG_xy) if no synchronized-action GUD has been
parameterized with the same name (MD18660 - MD18665). These user-defined items of
GUD cannot be used in synchronized actions.

Access rights
The access rights defined in a GUD definition file remain valid and refer only to the GUD
variables defined in this GUD definition file.

Deletion behavior
If the content of a particular GUD definition file is reactivated, the old GUD data block in the
active file system is deleted first. The configured synchronized-action GUD is also reset at
this point. This process is also possible using the HMI in the operator area "Services" >
"Define and activated user data (GUD)".

Detailed description
2.5 Language elements for synchronized actions and technology cycles

 Synchronized actions
52 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.5 Language elements for synchronized actions and technology cycles
The following language elements can be used in synchronized actions and technology
cycles:

Fixed addresses
L Subprogram number
F Feed
S 1) 2) Spindle
M 1) 2) M function
H1) H function
1) Section: "Output of M, S and H auxiliary functions to the PLC (Page 60)"
2) Section: "Traversing spindles (M, S, SPOS) (Page 86)"

Fixed addresses with axis extension Miscellaneous
POS Positioning axis

Section: "Traversing command axes (POS) (Page 73)"
POSA Modal positioning axis
SPOS Spindle positioning

Section: "Traversing spindles (M, S, SPOS) (Page 86)"
MOV 1) Positioning axis

Section: "Starting/stopping axes (MOV) (Page 79)"
FA Axial feed

Section: "Axial feedrate (FA) (Page 80)"
OVRA Axial override
ACC Axial acceleration
MEASA Axial measurement with deletion of distance-to-go
MEAWA Axial measurement without deletion of distance-to-go

Section: "Measurement (MEAWA, MEAC) (Page 97)"
MEAC Cyclic measuring

Section: "Measurement (MEAWA, MEAC) (Page 97)"
SCPARA Parameter set changeover
VELOLIMA Axial velocity/speed limitation
ACCLIMA Axial acceleration limitation
JERKLIMA Axial jerk limitation
1) Not permitted in technology cycles

 Detailed description
 2.5 Language elements for synchronized actions and technology cycles

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 53

Settable addresses: Travel to fixed stop 1)
FXS Activate travel to fixed stop
FXST Torque limit for travel to fixed stop
FXSW Monitoring window for travel to fixed stop
FOCON Activate travel with limited torque/force
FOCOF Deactivate travel with limited torque/force
1) Section: "Travel to fixed stop (FXS, FXST, FXSW, FOCON, FOCOF, FOC) (Page 100)"

Settable addresses: Couplings > Generic coupling 1)
CPBC Block change criterion with active coupling
CPDEF Create coupling module
CPDEL Delete coupling module
CPFMOF Behavior of the following axis when switching off the coupling
CPFMON Behavior of the following axis when switching on the coupling
CPFMSON Synchronization mode during coupling
CPFPOS Synchronized position of the following axis when switching on
CPFRS Reference system for the coupling module of the following axis
CPLCTID Number of the curve table for the coupling of the following axis
CPLDEF Definition of the reference: Leading axis to following axis
CPLDEL Cancellation of the reference: Leading axis to following axis
CPLDEN Coupling factor: Numerator
CPLNUM Coupling factor: Denominator
CPLDYPRIO Priority of the leading axis for the dynamic limitation
CPLDYVLL Limitation of the overlaid motion of the leading axis: Lower limit
CPLDYVLU Limitation of the overlaid motion of the leading axis: Upper limit
CPLINSC Scaling factor for the input value of the leading axis
CPLINTR Offset value for the input value of the leading axis
CPLOF Coupling of leading axis to following axis: Switch off
CPLON Coupling of leading axis to following axis: Switch on
CPLOUTSC Scaling of the output value
CPLOUTTR Offset of the output value
CPLPOS Synchronized position of the leading axis when switching on
CPLSETVAL Coupling type of the following axis to the leading axis
CPMALARM Define alarm behavior
CPMPRT Define start behavior for program test
CPMRESET Define reset behavior
CPMSTART Define start behavior
CPMPVDI Define behavior regarding NC/PLC interface signals
CPOF Deactivation of the coupling to all defined leading axes
CPON Activation of the coupling to all defined leading axes
CPSETTYPE Define basic coupling properties
CPSYNCOP Position synchronism "coarse"

Detailed description
2.5 Language elements for synchronized actions and technology cycles

 Synchronized actions
54 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Settable addresses: Couplings > Generic coupling 1)
CPSYNCOP2 Position synchronism 2 "coarse"
CPSYNFIP Position synchronism "fine"
CPSYNFIP2 Position synchronism 2 "fine"
CPSYNCOV Velocity synchronism "coarse"
CPSYNFIV Velocity synchronism "fine"
1) Section: "Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 92)"

G functions: Set measuring system 1)
G70 Inch measuring system
G71 Metric measuring system
G700 Inch measuring system
G710 Metric measuring system
1) Section: "Setting the measuring system (G70, G71, G700, G710) (Page 76)"

Predefined subprograms: Miscellaneous
POLFA Axial retraction position for single axis
POLFC Axial retraction position for channel axes
STOPREOF Revoke preprocessing stop

Section: "Cancel preprocessing stop (STOPREOF) (Page 70)"
RDISABLE Read-in disable

 Programmed read-in disable (RDISABLE) (Page 69)"
DELDTG Delete distance-to-go

Section: "Delete distance-to-go (DELDTG) (Page 71)"
LOCK Lock synchronized action
UNLOCK Unlock synchronized action
RESET Reset technology cycle
ICYCON Technology cycle: One block per interpolation cycle
ICYCOF Technology cycle: All blocks in one interpolation cycle
SYNFCT Evaluate polynomial function

Section: "Polynomial evaluation (SYNFCT) (Page 61)"
FTOC Tool fine compensation

Section: "Online tool offset (FTOC) (Page 67)"
SOFTENDSA Software limit switch
PROTA Change status of a protection zone
SETM Set marker of the channel coordination

Section: "Channel synchronization (SETM, CLEARM) (Page 102)"
CLEARM Delete marker of the channel coordination

Section: "Channel synchronization (SETM, CLEARM) (Page 102)"
RET Subprogram return

 Detailed description
 2.5 Language elements for synchronized actions and technology cycles

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 55

Predefined subprograms: Miscellaneous
GET Request axis

Section: "Axis replacement (GET, RELEASE, AXTOCHAN)
(Page 81)"

RELEASE Release axis
Section: "Axis replacement (GET, RELEASE, AXTOCHAN)
(Page 81)"

AXTOCHAN Transfer axis to another channel
Section: "Axis replacement (GET, RELEASE, AXTOCHAN)
(Page 81)"

AXCTSWEC Withdrawing axis container rotation enable
Section: "Withdrawing the enable for the axis container rotation
(AXCTSWEC) (Page 88)"

SETAL Display user-specific alarm
Section: "User-specific error reactions (SETAL) (Page 103)"

IPOBRKA Block change criterion: Deceleration ramp
ADISPOSA Tolerance window for end-of-motion criterion

Predefined subprograms: Coupling > Coupled motion 1)
TRAILON Coupled motion on
TRAILOF Coupled motion off
1) Section: "Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 92)"

Predefined subprograms: Couplings > Master value coupling 1)
LEADON Master value coupling on
LEADOF Master value coupling off
1) Section: "Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 92)"

Predefined subprograms: Couplings > Torque coupling (master/slave)
MASLON Coupling on
MASLOF Coupling off
MASLDEF Define coupling
MASLDEL Delete coupling
MASLOFS Coupling with slave spindle off

Detailed description
2.5 Language elements for synchronized actions and technology cycles

 Synchronized actions
56 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Predefined functions: Coupling > Curve tables 1)
CTAB Calculates the following axis position based on the leading axis

position using the curve table
CTABINV Calculates the leading axis position based on the following axis

position using the curve table
CTABID Determines the table number of the curve table
CTABLOCK Disable curve table
CTABUNLOCK Enable curve table
CTABISLOCK Determines the lock status of the curve table
CTABEXISTS Checks whether the curve table exists
CTABMEMTYP Determines the storage location of the curve table (static/dynamic

memory)
CTABPERIOD Determines the periodicity of the curve table
CTABNO Determines the number of curve tables
CTABNOMEM Determines the number of existing curve tables in a specific storage

location
CTABSEG Determines the number of already used curve segments in a specific

storage location
CTABSEGID Determines the number of already used curve segments in a specific

table
CTABFSEG Determines the number of curve segments that are still possible in a

specific table
CTABMSEG Determines the maximum possible number of curve segments in a

specific storage location
CTABPOL Determines the number of already used polynomials in a specific

storage location
CTABPOLID Determines the number of already used polynomials in a specific

table
CTABFPOL Determines the number of polynomials that are still possible in a

specific table
CTABMPOL Determines the maximum possible number of polynomials in a

specific storage location
CTABTSV Determines the following value at the start of the table
CTABTEV Determines the following value at the end of the table
CTABTSP Determines the leading value at the start of the table
CTABTEP Determines the leading value at the end of the table
CTABTMIN Determines the minimum following value of the table
CTABTMAX Determines the minimum following value of the table
CTABFNO Determines the number of curve tables that are still possible in a

specific storage location
CTABSSV Determines the starting value of a table segment for the following

axes
CTABSEV Determines the end value of a table segment for the following axes
1) Section: "Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 92)"

 Detailed description
 2.5 Language elements for synchronized actions and technology cycles

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 57

Predefined functions: Arithmetic
SIN Sine
ASIN Arc sine
COS Cosine
ACOS Arc cosine
TAN Tangent
ATAN2 Arc tangent 2
SQRT Square root
POT 2. 2nd power (square)
TRUNC Integer component
ROUND Round to next integer
ROUNDUP Rounding up of an input value to the next integer
ABS Absolute value
LN Natural logarithm
EXP Exponential function
MINVAL Smaller of two values
MAXVAL Larger of two values
BOUND Check for defined value range

Predefined functions: Current machine data values
GETMDACT Determines the current value of the machine data
GETMDPEAK Determines the maximum value that has occurred in the machine

data since the last RESETPEAK
GETMDLIM Determines the maximum or minimum limit value of the machine data
RESETPEAK Resets the maximum value again for GETMDPEAK

Predefined functions: Format conversions
ITOR INT → REAL
RTOI REAL → INT
RTOB REAL → BOOL
BTOR BOOL → REAL
ITOB INT → BOOL
BTOI BOOL → INT

Detailed description
2.5 Language elements for synchronized actions and technology cycles

 Synchronized actions
58 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Predefined functions: Safety Integrated
SIRELAY Activation of the safety functions parameterized with SIRELIN,

SIRELOUT and SIRELTIME

Predefined functions: Miscellaneous
POSRANGE Axis position within the tolerance range around the reference position

Section: "Position in specified reference range (POSRANGE)
(Page 78)"

PRESETON Set actual value for an axis
Section: "Set actual value (PRESETON) (Page 91)"

References
For detailed descriptions of the language elements not described in this manual, refer to:

● Programming Manual, Fundamentals

● Programming Manual, Job Planning

 Detailed description
 2.6 Language elements for technology cycles only

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 59

2.6 Language elements for technology cycles only
The following language elements may only be used in technology cycles:

Jump statements
IF Branch
GOTO Jump to label, search direction forward, then backward
GOTOF Jump to label, search direction forward
GOTOB Jump to label, search direction backward

End of program
M02 End of program
M17 End of program
M30 End of program
RET End of program

References
For detailed descriptions of the statements not described in this manual, refer to:

● Programming Manual, Fundamentals

● Programming Manual, Job Planning

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
60 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.7 Actions in synchronized actions

2.7.1 Output of M, S and H auxiliary functions to the PLC

Output timing
Auxiliary functions of the M, S and H type can be output from synchronized actions. The
output to the PLC is immediate, i.e. directly in the interpolation cycle in which the action is
executed.

Any output times set via the machine data for auxiliary functions have no effect when output
from synchronized actions:

● MD11110 $MN_AUXFU_GROUP_SPEC (auxiliary function group specification)

● MD22200 $MC_AUXFU_M_SYNC_TYPE (output time of M functions)

● MD22210 $MC_AUXFU_S_SYNC_TYPE (output time of the S functions)

● MD22230 $MC_AUXFU_H_SYNC_TYPE (output time of the H functions)

Maximum number

General

A maximum of 10 auxiliary functions can be output simultaneously from the part program
and the active synchronized actions of a channel, i.e. in one OB40 cycle of the PLC.

Synchronized-action-specific

The maximum permissible number of auxiliary functions in the action part of a synchronized
action is:

● M functions: 5

● S functions 3

● H functions: 3

Non-modal synchronized actions
In non-modal synchronized actions (without specification of ID or IDS), auxiliary functions can
only be output in conjunction with the scanning frequency WHEN or EVERY.

Predefined M functions
Predefined M functions generally must not be output in synchronized actions.

Exceptions: M3, M4, M5, M40, M41, M42, M43, M44, M45, M70 and M17

See also
Frequency (WHENEVER, FROM, WHEN, EVERY) (Page 13)

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 61

2.7.2 Reading and writing of system variables
The system variables of the NCK are listed in the "System Variables" Parameter Manual with
their respective properties. System variables that can be read or written in the action part of
synchronized actions are marked with an "X" in the corresponding line (Read or Write) of the
"SA" (synchronized action) column.

 Note

System variables used in synchronized actions are implicitly read and written synchronous to
the main run.

References:
System Variables Parameter Manual

2.7.3 Polynomial evaluation (SYNFCT)

Application
A variable that is evaluated via a polynomial can be read with the SYNFCT function in the
main run and the result written to another variable. Application examples:

● Feedrate as a function of drive load

● Position as a function of a sensor signal

● Laser power as a function of path velocity

Syntax
SYNFCT(<Poly_No>,<SysVar_Out>,<SysVar_In>)

Meaning

Parameter Meaning
<Poly_No>: Number of the polynomial defined with FCTDEF:

f(x) = a0 + a1*x + a2*x2 + a3*x3
<SysVar_Out>: System variable, output:

<SysVar_Out> = f(x)
<SysVar_In>: System variable, input:

x = <SysVar_In>
For information on FCTDEF, see Section "Polynomial coefficients, parameters ($AC_FCT ...)
(Page 38)"

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
62 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Example: Additive override of the path feedrate
An override value is added to the programmed feedrate (F word):

Factive = Fprogrammed + FAC

<SysVar_Out> Meaning
$AC_VC Additive path feedrate override
$AA_VC[axis] Additive axial feedrate override

Input value is the actual current value $AA_CURR of the X axis.

The operating point is set to 5 A.

The feedrate may be altered by ±100 mm/min whereby the axial current deviation may be
±1 A.

Figure 2-3 Example: Additive control of path feed

Determining the parameters of the FCTDEF function:

FCTDEF(<Poly_No>,<Lo_Limit>,<Up_Limit>,a0,a1,a2,a3)
<Poly_No>: = 1 (example)
<Lo_Limit>: = -100
<Up_Limit>: = 100
 Polynomial: f(x) = a0 + a1x +a2x2 + a3x3
a0: 1 / 100 = 5 / a0 ⇒ a0 = 500
a1 = 100 mm/min / -1 A = -100 [mm/min / A]
a2 = 0 (no square component)
a3 = 0 (no cubic component)

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 63

Calculation of the override value:

SYNFCT(<Poly_No>,<SysVar_Out>,<SysVar_In>)
<Poly_No>: = 1
<SysVar_Out>: $AC_VC (additive path feedrate override)
<SysVar_In>: $AA_CURR (drive actual current value)

Programming:

Program code

N100 FCTDEF(1, -100, 100, 500, -100)

N110 ID=1 DO SYNFCT(1, $AC_VC[X], $AA_CURR[X])

Example: Multiplicative override of the path feedrate
The programmed feedrate is multiplied by a percentage factor (additional override):

Factive = Fprogrammed * FactorAC

<SysVar_Out> Meaning
$AC_OVR Path override can be specified via synchronized action

Input value is the percentage drive load $AA_LOAD of the X axis.

The operating point is set to 100% at 30% drive load.

The axis must stop at 80% load.

An excessive velocity corresponding to the programmed value +20% is permissible.

Figure 2-4 Example: Multiplicative control

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
64 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Determining the parameters of the FCTDEF function:

FCTDEF(<Poly_No>,<Lo_Limit>,<Up_Limit>,a0,a1,a2,a3)
<Poly_No>: = 2 (example)
<Lo_Limit>: = 0
<Up_Limit>: = 120
 Polynomial: f(x) = a0 + a1x +a2x2 + a3x3
a0: 50 / 100 = 80 / a0 ⇒ a0 = 160
a1 = 100 % / -50 % = -2
a2 = 0 (no square component)
a3 = 0 (no cubic component)

Calculation of the override value:

SYNFCT(<Poly_No>,<SysVar_Out>,<SysVar_In>)
<Poly_No>: = 2
<SysVar_Out>: $AC_OVR (path override can be specified via synchronized action)
<SysVar_In>: $AA_LOAD (drive load)

Programming:

Program code

N100 FCTDEF(2, 0, 120, 160, -2)

N110 ID=1 DO SYNFCT(2, $AC_OVR[X], $AA_LOAD[X])

Example: Clearance control

Figure 2-5 Clearance control: Principle

The clearance control of the infeed axis Z is performed via the FCTDEF and SYNFCT functions
as well as by the system variables $AA_OFF and $A_INA.

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 65

Supplementary conditions:

● The analog voltage of the clearance sensor is connected via the analog input $A_INA[3].

● The position deviations are summed up in $AA_OFF (integrated):
MD36750 $MA_AA_OFF_MODE, bit 0 = 1

● If the upper limit of the Z axis is exceeded by 1 mm, the X axis is stopped:
SD43350 $SA_AA_OFF_LIMIT[Z] = 1
See also Section "Overlaid movements ($AA_OFF) (Page 40)".

 Note
$AA_OFF is effective in the basic coordinate system (BCS)

The offset is effective before the kinematic transformation in the basic coordinate system
(BCS). The example therefore cannot be used for a clearance control in the orientation
direction of the tool (workpiece coordinate system WCS).

For clearance control system with high dynamic response or 3D clearance control, see:

References:

Function Manual Special Functions; Clearance Control (TE1)
Customized responses

When the limit value SD43350 $SA_AA_OFF_LIMIT is reached, customized responses
can be triggered, for example:
 Section "Override ($A...OVR) (Page 31)"
 Section "User-specific error reactions (SETAL) (Page 103)"

Figure 2-6 Clearance control

Determining the parameters of the FCTDEF function:

FCTDEF(<Poly_No>,<Lo_Limit>,<Up_Limit>,a0,a1,a2,a3)
<Poly_No>: = 1 (example)
<Lo_Limit>: = 0.2
<Up_Limit>: = 0.5
 Polynomial: f(x) = a0 + a1x +a2x2 + a3x3

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
66 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

a0: 10 / x = 20 / 0.3 ⇒ a0 = x + 0.2 = 0.15 + 0.2 = 0.35
a1 = 0.15 mm / 10 V = 1.5 * 10-2 mm/V
a2 = 0 (no square component)
a3 = 0 (no cubic component)

Calculation of the override value:

SYNFCT(<Poly_No>,<SysVar_Out>,<SysVar_In>)
<Poly_No>: = 1
<SysVar_Out>: $AA_OFF (overlaid movement of an axis)
<SysVar_In>: $A_INA (analog input)

Programming:

Program code: %_N_AON_SPF Comment

PROC AON ; Clearance control "ON"

 FCTDEF(1, 0.2, 0.5, 0.35, 1.5 EX-2) ; Polynomial definition

 ID=1 DO SYNFCT(1,$AA_OFF[Z],$A_INA[3]) ; Clearance control

 ID=2 WHENEVER $AA_OFF_LIMIT[Z]<>0 DO $AA_OVR[X] = 0 ; Limit value test

 RET

ENDPROC

Program code: %_N_AOFF_SPF Comment

PROC AOFF ; Clearance control "OFF"

 CANCEL(1) ; Delete clearance control

 CANCEL(2) ; Delete limit value check

 RET

ENDPROC

Program code: %_N_MAIN_MPF Comment

N100 $SA_AA_OFF_LIMIT[Z]=1

N110 AON ; Clearance control "ON"

...

N200 G1 X100 F1000

N210 AOFF ; Clearance control "OFF"

M30

See also
Online tool offset (FTOC) (Page 67)

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 67

2.7.4 Online tool offset (FTOC)
The FTOC function enables the overlaid movement of a geometry axis for the online tool
offset, depending on a reference value, e.g. the actual value of an arbitrary axis. The offset
value is calculated on the basis of a polynomial defined with FCTDEF (see Section "Polynomial
coefficients, parameters ($AC_FCT ...) (Page 38)"). The coefficient a0 specified in the
polynomial definition is also evaluated by FTOC.

Example: Machining and dressing in the "Grinding" technology

Figure 2-7 Dressing during machining using a dressing roller

References:

Function Manual, Extended Functions; Grinding (W4)

Syntax
FTOC(<Poly_No>,<Systemvar>,<Wear>[,<Channel_No>,<Spindle_No>])

Meaning

Parameter Meaning
<Poly_No>: Number of the polynomial defined with FCTDEF:
<Systemvar>: Arbitrary system variable of the REAL type that can be used in

synchronized actions.
<Wear>: Wear parameter (length 1, 2 or 3) in which the offset value is added.

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
68 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Parameter Meaning
<Channel_No>: Target channel in which the offset must be applied. This enables

simultaneous dressing from a parallel channel. In the target channel
of the offset, the online offset must be switched on with FTOCON.
If no channel number is programmed, the offset acts in the active
channel.

<Spindle_No>: The spindle number is programmed if a non-active grinding wheel
needs to be dressed.
Requirement: One of the following functions is active
 "Constant grinding wheel peripheral speed"
 "Tool monitoring"
If no spindle number is programmed, the active tool is compensated.

Example
Compensate length of an active grinding wheel

Program code Comment

FCTDEF(1, -1000, 1000, -$AA_IW[V], 1)

; FTOC:

; Polynomial no.: 1

; System variable: $AA_IW[V] (axial actual value of the V axis)

; Wear parameter: Length 3

; Target channel: Channel 1

ID=1 DO FTOC(1, $AA_IW[V], 3, 1)

WAITM (1,1,2) ; Synchronization with the machining channel

G1 V-0.05 F0.01 G91 ; Traversing motion of the V axis

...

CANCEL(1) ; Deselect online offset

...

 Note

Because no frequency and no condition has been specified in the synchronized action, the
action part is executed in every interpolation cycle.

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 69

2.7.5 Programmed read-in disable (RDISABLE)

Function
The RDISABLE command in the active section causes block processing to be stopped when
the relevant condition is fulfilled. Processing of programmed motion-synchronous actions still
continues. The read-in disable is canceled again as soon as the condition for the RDISABLE is
no longer fulfilled.

An exact stop is initiated at the end of the block containing RDISABLE irrespective of whether
or not the read-in disable is still active. The exact stop is also triggered if the control is in the
continuous-path mode (G64, G641 ... G645).

RDISABLE can be programmed with reference to the block or also modal (ID=, IDS=)!

Application
Using RDISABLE, for example, the program can be started in the interpolation cycle as a
function of external inputs.

Example

Program code Comment

WHENEVER $A_INA[2]<7000 DO RDISABLE ; Program processing is stopped if the
voltage at input 2 drops to below 7 V
(assuming that the value 1000 corresponds
to 1 V).

...

N10 G01 X10 ; RDISABLE acts at the end of N10, if the
condition is fulfilled during its
processing.

N20 Y20

...

Supplementary conditions

Read-in disable RDISABLE in conjunction with axis exchange

Acts via the synchronized actions RDISABLE read-in disable and axis exchange (e.g. path axis
→ positioning axes) together in one block, RDISABLE does not act on the action block, but the
re-approach block REPOSA implicitly generated as a result of the axis exchange:

Program code Comment

N100 G0 G60 X300 Y300

N105 WHEN TRUE DO POS[X]=20 FA[X]=20000 ;

;

Synchronized action → REORG →

REPOSA

N110 WHENEVER $AA_IM[X]<>20 DO RDISABLE ; RDISABLE acts on REPOSA

N115 G0 Y20 ; 1st X axis, 2nd Y axis

N120 Y-20

N125 M30

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
70 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Path axis X becomes a positioning axis as a result of the synchronized action in the block
N105. REORG is therefore executed in the channel with REPOSA. Therefore, RDISABLE in N110
does not act on block N115 – but instead on the internal REPOSA block. As a consequence, to
start, positioning axis X is traversed to its programmed position and then in block N115, the
Y axis to its programmed position.

An explicit release of path axis X before traversing as positioning axis (synchronized action
in N105) with RELEASE(X) avoids the REORG operation, and the X and Y axes traverse together
in block N115.

Program code Comment

N100 G0 G60 X300 Y300 ;

N101 RELEASE(X) ; Explicit release

N105 WHEN TRUE DO POS[X]=20 FA[X]=20000 ;

... ;

2.7.6 Cancel preprocessing stop (STOPREOF)
With the STOPREOF command, an existing preprocessing stop can be cancelled from a
synchronized action.

 Note

The STOPREOF command can only be programmed in non-modal synchronized actions
(without specification of ID or IDS) and only in conjunction with the scanning frequency WHEN.

Example
● N10: Non-modal synchronized action.

If the path distance-to-go $AC_DTEB is less than 5 mm, the existing preprocessing stop
due to the reading of the analog input $A_INA is cancelled.

● N20: Traversing block whose path distance-to-go is evaluated via $AC_DTEB.

● N30: Branch that triggers the preprocessing stop due to the reading of $A_INA.

Due to the synchronized action, input $A_INA is not evaluated at the end of the N20 block,
but already 5 mm before the end of the block. If the voltage is then greater than 5 V at input
$A_INA, there is a branch to "MARKE_1".

Program code

N10 WHEN $AC_DTEB < 5 DO STOPREOF

N20 G01 X100

N30 IF $A_INA[7] > 5000 GOTOF MARKE_1

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 71

2.7.7 Delete distance-to-go (DELDTG)
The path distance-to-go can be deleted with the DELDTG command and axial distances-to-go
can be deleted with the DELDTG (...) function in synchronized actions.

After deletion of the distance-to-go, the value of the deleted distance-to-go can be read via a
system variable:

● Path distance-to-go: $AC_DELT

● Axial distance-to-go: $AA_DELT

Syntax
DELDTG

DELDTG(<axis 1>[,<axis 2>, ...])

Meaning

Parameter Meaning
DELDTG Deletion of the path distance-to-go
DELDTG(...) Deletion of the axial distances-to-go of the specified channel axes
<Axis n>: Channel axis

Supplementary conditions

Path-specific and axial delete distance-to-go

Path-specific and axial delete distance-to-go can only be executed in a non-modal
synchronized action (without specification of ID or IDS).

Path-specific delete distance-to-go

● The deletion of the path distance-to-go can only be executed in a non-modal
synchronized action (without specification of ID or IDS).

● The deletion of the path distance-to-go must not be used with active tool radius
compensation.

Axial delete distance-to-go

Delete distance-to-go for indexing axes:

● Without Hirth tooth system: The axis is braked immediately

● With Hirth tooth system: The axis traverses to the next indexing position

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
72 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Examples

Delete path distance-to-go

If the input $A_IN is set during the traversing block N20, the path distance-to-go is deleted.

Program code

N10 WHEN $A_IN[1]==1 DO DELDTG

N20 G01 X100 Y100 F1000

Delete axial distances-to-go

N10: If input 1 is set at any time within the part program, the V axis is started as a positioning
axis in the positive traversing direction.

N100: Non-modal synchronized action to delete distance-to-go of the V axis, depending on
digital input 2.

N110: Non-modal synchronized action to delete distance-to-go of the X1 axis, depending on
digital input 3.

N120: The X1 axis is positioned modally. The Y and Z axes are traversed as path axes. The
non-modal synchronized actions from N100 and N110 are executed together with N120. The
non-modal synchronized actions are also terminated with the end of block N120.

For this reason, the distances-to-go of the X1 and V axes can only be deleted as long as
N120 is active.

Program code

N10 ID=1 WHEN $A_IN[1]==1 DO MOV[V]=1 FA[V]=700

...

N100 WHEN $A_IN[2]==1 DO DELDTG(V)

N110 WHEN $A_IN[3]==1 DO DELDTG(X1)

N120 POSA[X1]=100 FA[X1]=10 G1 Y100 Z100 F1000

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 73

2.7.8 Traversing command axes (POS)
Axes can be traversed as command axes via synchronized actions with the POS command.
Alternate traversing of the axis via the part program and the synchronized action is thus
possible. If a command axis traversed via synchronized actions is subsequently traversed
via the part program, a preprocessing stop with reorganization (STOPRE) is executed in the
channel of the part program.

Examples:

Example 1: Alternate traversing via part program and synchronized action

Program code Comment

N10 G01 X100 Y200 F1000 ; Traversing via part program

...

; Traversing via static synchronized action when input 1 is set

N20 ID=1 WHEN $A_IN[1]==1 DO POS[X]=150 FA[X]=200

...

CANCEL(1) ; Select synchronized action

...

; Traversing again via part program => implicit preprocessing stop

; with reorganization, if the X axis in the meantime has been

; traversed via synchronized action

N100 G01 X240 Y200 F1000

Example 2: Alternate traversing of the X-axis via two synchronized actions

If the traversing motion of one synchronized action is still active when the traversing motion
of the other synchronized action is started, the second traversing motion replaces the first.

Program code

; 1. ; 1st traversing motion

ID=1 EVERY $A_IN[1]>=1 DO POS[V]=100 FA[V]=560

; 2. ; 2nd traversing motion

ID=2 EVERY $A_IN[2]>=1 DO POS[V]=$AA_IM[V] FA[V]=790

Dimensions: Absolute/incremental
The commands G90/G91 to specify the dimensions (absolute/incremental) cannot be
programmed in synchronized actions. Therefore by default, the dimensions that were active
in the part program at the time of execution of the synchronized action is also effective in the
synchronized action.

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
74 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

The following commands can be programmed in the action part to specify the dimensions
within a synchronized action:

Command Meaning
IC(…) Incremental
AC(…) Absolute
DC(...) Direct, i.e. position rotary axis via shortest route
ACN(...) Position modulo rotary axis absolutely in negative direction of motion
ACP(...) Position modulo rotary axis absolutely in positive direction of motion
CAC(...) Traverse axis to coded position absolutely
CIC(...) Traverse axis to coded position incrementally
CDC(...) Traverse rotary axis to coded position via shortest route
CACN(...) Traverse modulo rotary axis to coded position in negative direction
CACP(...) Traverse modulo rotary axis to coded position in positive direction

Examples:

Program code

; Incremental traversing by 10 mm

ID=1 EVERY G710 $AA_IM[B]>75 DO POS[X]=IC(10)

...

; Absolute traversing

ID=1 EVERY G710 $AA_IM[B]>75 DO POS[X]=AC($AA_MW[V]-$AA_IM[W]+13.5)

Behavior with active axial frames
If programmable and settable frames and tool length compensations are not explicitly
deactivated for inclusion in the calculation for synchronized actions via the following machine
data, the frame and/or tool length compensation active in the part program at the time the
synchronized action is executed in parallel, takes effect:

MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED, bit 9 = 1

Examples

Example 1: Traversing with active frames / tool length compensations (bit 9 == 0):

Program code Comment

N100 TRANS X20 ; Zero offset in X: 20 mm.

; Synchronized action: The X axis traverses to position 60 mm

IDS=1 EVERY G710 $A_IN==1 DO POS[X]=40

...

; Zero offset in X: -10 mm. =>

; Synchronized action: The X axis now traverses to position 30 mm

N130 TRANS X-10

...

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 75

Example 2: Traversing with deactivated frames / tool length compensations (bit 9 == 1):

Program code Comment

N100 TRANS X=0.001 ; Zero offset in X: 0.001 degrees

N120 POS[X]=270 ; X traverses to position 270.001 degrees

...

; With $A_IN=1, X traverses to position 180.000 degrees.

IDS=1 EVERY G710 $A_IN==1 DO POS[X]=180

...

; X traverses to position 90.001 degrees

N130 POS[X]=90

...

; Coded position 1 = 100 degrees => X traverses to 100.001 degrees

N140 POS[X]=CAC(1)

...

; Coded position 2 = 200 degrees => X traverses to 200.000 degrees

N150 POS[X]=CIC(1)

 Note

If a command axis travels to indexing positions incrementally, the axial frames have no effect
on this command axis.

Takeover of the control of a command axis by the PLC
The control of a command axis that has been started via a static synchronized action (IDS) is
taken over by the PLC irrespective of the status of the part program containing the
synchronized action:

DB31, ... DBX28.7 == 1 (PLC controls axis)

You can find detailed information about PLC command axis control in:

References:
/FB2/ Function Manual, Extended Functions; Positioning Axes (P2)

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
76 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Parameterizable axis status
The behavior with regard to the axis status after the end of the part program and NC Reset
can be parameterized via the following machine data:

MD30450 $MA_IS_CONCURRENT_POS_AX[<axis>] = <value>

<value> Axis status before PP end / NC RESET 1) Axis status after PP end / NC RESET 1)

0 Channel axis Channel axis
0 Command axis Channel axis
1 Channel axis Command axis
1 Command axis Command axis

1) PP end: Part program end

See also
Technology cycles (Page 104)

2.7.9 Setting the measuring system (G70, G71, G700, G710)
If a specific measuring system (inch/metric) is not explicitly defined in a synchronized action
with G70, G71, G700, G710, the measuring system active in the part program at the time the
synchronized action is executed takes effect:

● G70/G71 active in the part program:

– All the programmed position values are interpreted in the programmed measuring
system.

– All the read position data is interpreted in the parameterized basic system.

● G700/G710 active in the part program:

– All the programmed position values are interpreted in the programmed measuring
system.

– All the read position data is interpreted in the parameterized basic system.

The following rules apply when defining the measuring system in the synchronized action:

● If a measuring system is programmed in the condition part, this also takes effect in the
action part if a measuring system has not been specifically programmed there.

● If there is only a measuring system programmed in the action part, the system which is
currently activated in the part program takes effect in the condition part.

● Different systems of units can be programmed in the condition and action parts.

● The measuring system programmed in the synchronized action has no effect on the part
program.

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 77

Example

Program code Comment

N10 ID=1 EVERY $AA_IM[Z]>200 DO POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

N20 ID=2 EVERY $AA_IM[Z]>200 DO G70 POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

inch

N30 ID=3 EVERY G71 $AA_IM[Z]>200 DO POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

mm
mm

N40 ID=4 EVERY G71 $AA_IM[Z]>200 DO G70 POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

mm
inch

N50 ID=5 EVERY $AA_IM[Z]>200 DO G700 POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

inch

N60 ID=6 EVERY G710 $AA_IM[Z]>200 DO POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

mm
mm
mm

N70 ID=7 EVERY G710 $AA_IM[Z]>200 DO G700 POS[Z2]=10 ;
;
;

$AA_IM:
200:
10:

mm
mm
inch

#: The unit depends on the parameterized basic system (MD10240
$MN_SCALING_SYSTEM_IS_METRIC) and the measuring system programmed in the part
program

 Note
Measuring system and technology cycles

If a technology cycle is being used, the measuring system can also be programmed in the
technology cycle instead of the measuring system having to be assigned in the action part of
the synchronized action.

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
78 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.7.10 Position in specified reference range (POSRANGE)

Function
The POSRANGE function can be used to determine whether the current position of an axis is
within the tolerance range around a specified reference position.

 Note

With modulo axes, the modulo offset is taken into account.

Syntax
<Status> POSRANGE(<axis>, <RefPos>, <tolerance>, [<CoordSys>])

Meaning

<status> Function return value

Type: BOOL
TRUE: The current position of the axis is within the tolerance
range.
FALSE: The current position of the axis is not within the
tolerance range.

<axis> Name of the channel axis
Type: AXIS

<RefPos> Reference position
Type: REAL

<Tolerance> Permissible tolerance around the reference position
Type: REAL
The tolerance is specified as an absolute value. The tolerance
range results from: Reference position +/- tolerance
Optional: Coordinate system
Type: INT
Range of values:

<CoordSys>

 0 = MCS (machine coordinate system)
1 = BCS (basic coordinate system)
2 = SZS (settable zero system)
3 = WCS (workpiece coordinate system)

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 79

2.7.11 Starting/stopping axes (MOV)

Function
An axis can be traversed without specifying an end position via the MOV command. The axis
traverses so long in the specified direction until it is stopped or another traversing direction is
specified by a MOV command.

Application: Endlessly rotating rotary axes

Syntax
MOV[<axis>] = <direction>

Meaning

MOV Start traversing motion
<axis> Channel axis name

Type: AXIS
<Direction> Traversing direction

Type: INT
Range of values:

 <Direction> > 0: Positive traversing direction (default: +1)
 <Direction> < 0: Negative traversing direction (default: -1)
 <Direction> = 0: Stop

 Note
Indexing axis

If an indexing axis is stopped, it stops at the next indexing position.
Technology cycle

The MOV command must not be used in technology cycles.

See also
Axial feedrate (FA) (Page 80)

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
80 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.7.12 Axial feedrate (FA)
An axial feedrate can be specified in a synchronized action via the FA command. The axial
feedrate is modal.

Examples
Constant feedrate value:

Program code

ID=1 EVERY $AA_IM[B]>75 DO POS[U]=100 FA[U]=990

Variable feedrate value:

Program code

ID=1 EVERY $AA_IM[B] > 75 DO POS[U]=100 FA[U]=$AA_VACTM[W]+100

IDS=2 WHENEVER $A_IN[1] == 1 DO POS[X]=100 FA[X]=$R1

Remarks
● The default value for the feedrate of positioning axes is set via axial machine data:

MD32060 $MA_POS_AX_VELO (initial setting for positioning axis velocity)

● The axial feedrate can be specified as a linear or revolutional feedrate.
The feedrate type can be set via the setting data:
SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE (revolutional feedrate for
positioning axes / spindles)

● The feedrate type can be switched synchronous to the part program via the FPRAON and
FPRAOF commands. Refer to:
References:
/FB1/ Function Manual Basic Functions; Feedrates (V1)

 Note

So that technology cycles executed in parallel do not obstruct each other, the axial
feedrate from synchronized actions is not output as an auxiliary function to the NC/PLC
interface.

See also
Starting/stopping axes (MOV) (Page 79)

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 81

2.7.13 Axis replacement (GET, RELEASE, AXTOCHAN)
Command axes can be interchanged between channels via the GET and RELEASE commands.

 Note

The command axis must be assigned to the channel via machine data.

Syntax
GET(<axis 1> [{, <axis n>}])

RELEASE((<axis 1> [{, <axis n> }])

Axis type and axis status regarding axis replacement
The axis type and axis status currently valid at the time of the synchronized action activation,
can be queried via the $AA_AXCHANGE_TYP or $AA_AXCHANGE_STAT system variable.
Depending on the channel that has the current interpolation authorization for this axis and
depending on the status for the permissible axis replacement, a different sequence results
from the synchronized action.

An axis can be requested with GET from a synchronized action, if

● Another channel has the write or interpolation authorization for the axis

● The requested axis is already assigned to the requested channel

● The axis in the neutral axis state is controlled by the PLC

● The axis is a command axis, oscillating axis, or concurrent PLC axis

● The axis is already assigned to the part program of the channel

 Note

Supplementary condition: An "axis controlled exclusively by the PLC" or a "permanently
assigned PLC axis" cannot be assigned to the part program.

An axis can be released from a synchronized action with RELEASE, if the axis:

● Was previously assigned to the part program of the channel.

● Is already in the neutral axis state.

● Already has another channel that has the interpolation authorization of this axis

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
82 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Request axis from another channel
If, when the GET action is activated, another channel has the interpolation authorization for
the axis $AA_AXCHANGE_TYP[axis] == 2, axis replacement is used to fetch the axis from
this channel $AA_AXCHANGE_TYP[axis] == 6 and assign it to the requesting channel as
soon as possible. The axis then becomes the neutral axis
($AA_AXCHANGE_TYP[axis]==3).

The state change to a neutral axis does not result in reorganization in the requesting
channel.

Requested axis was already requested as neutral axis:

$AA_AXCHANGE_TYP[<axis>]==6, the axis is requested for the part program
$AA_AXCHANGE_TYP[axis] == 5 and assigned as soon as possible to the part program of
the channel $AA_AXCHANGE_TYP[axis] == 0.

 Note

This assignment results in a reorganization.

Axis is already assigned to the requested channel
If the requested axis has already been assigned to this channel at the time of activation and
its status is that of a neutral axis not controlled by the PLC $AA_AXCHANGE_TYP[axis]==3,
it is assigned to the part program $AA_AXCHANGE_TYP[axis]==0.

This results in a reorganization procedure.

Axis in the state of the neutral axis is controlled from the PLC
If the axis in neutral axis state is controlled by the PLC $AA_AXCHANGE_TYP[axis]==4), the
axis is requested as a neutral axis $AA_AXCHANGE_TYP[axis] == 8. This disables the axis
for automatic axis replacement between channels (Bit 0 == 0) in accordance with the value
of bit 0 in machine data:

MD10722 $MN_AXCHANGE_MASK (Parametring the axis replacement behavior)

This corresponds to $AA_AXCHANGE_STAT[axis] == 1.

Axis is active as command axis / assigned to the PLC
If the axis is active as a command axis or oscillating axis or a concurrent positioning axis
(PLC axis) ($AA_AXCHANGE_TYP[<axis>] == 1), the axis is requested as a neutral axis
($AA_AXCHANGE_TYP[<axis>] == 8). Depending on the setting in the following machine
data, the axis is blocked for an automatic axis replacement between channels:

MD10722 $MN_AXCHANGE_MASK (Parametring the axis replacement behavior)

This corresponds to $AA_AXCHANGE_STAT[<axis>] == 1.

With a further GET request, the axis is then requested for the part program ⇒
$AA_AXCHANGE_TYP[axis] == 7.

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 83

Axis already assigned to the NC program of the channel
If the axis is already assigned to the part program of the channel
($AA_AXCHANGE_TYP[<axis>] == 0) or if this assignment is requested, e.g. axis
replacement triggered by the part program ($AA_AXCHANGE_TYP[<axis>] == 5 or
$AA_AXCHANGE_TYP[<axis>] == 7), there is no state change.

Release axis for axis replacement
If the axis is assigned to the part program at the time of release
($AA_AXCHANGE_TYP[<axis>] == 0), it is transferred to the neutral axis state
($AA_AXCHANGE_TYP[<axis>] == 3) and if required, released for axis replacement in
another channel.

This results in a reorganization procedure.

Axis to be released is already a neutral axis:

If the axis is already in the neutral axis state ($AA_AXCHANGE_TYP[<axis>] == 3) or active
as command or oscillating axis or assigned to the PLC as concurrent positioning axis
($AA_AXCHANGE_TYP[<axis>] == 1), the axis is released for an automatic axis
replacement between channels.

$AA_AXCHANGE_STAT[<axis>] is reset from 1 to 0 if there is no other reason to link the
axis to the channel. Such a link of the axis is present, for example, with:

● Active axis coupling

● Active fast retraction

● Active transformation

● JOG request

● Rotating frame with PLC, command or oscillating axis motion

Another channel already has the interpolation authorization
If another channel already has the interpolation authorization
($AA_AXCHANGE_TYP[<axis>] == 2), there is no state change. This also means that
waiting for an axis, triggered by part program ($AA_AXCHANGE_TYP[<axis>] == 5) or a
previous GET request from a synchronized action ($AA_AXCHANGE_TYP[<axis>] == 6)
cannot be aborted by a RELEASE from a synchronized action.

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
84 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Supplementary conditions
● If several GET and RELEASE requests are programmed for the same axis, they may mutually

cancel each other under certain circumstances and only the last respective requests are
performed.

Example:

Programming: GET(X,Y) RELEASE(Y,Z) GET(Z)

Execution: GET(X) RELEASE(Y) GET(Z)

● If further commands are programmed in the action part of a synchronized action in
addition to GET/RELEASE, there is no waiting period until the GET/RELEASE request is
completed before these commands are executed. This can lead to an error if, for
example, an axis requested for the positioning motion with GET is not yet available:

GET[<axis>] POS[<axis>]

Example 1: GET and RELEASE as action in synchronized actions in two channels
Requirement: The Z axis must be known in the 1st and 2nd channels

1. Program sequence in the first channel:

Program code Comment

WHEN TRUE DO RELEASE(Z) ; Z axis becomes neutral

; Read-in disable as long as Z axis is program axis

WHENEVER $AA_TYP[Z] == 1 DO RDISABLE

N110 G4 F0.1

...

; Z axis returns to status as NC program axis

WHEN TRUE DO GET(Z)

; Read-in disable until Z axis is program axis

WHENEVER($AA_TYP[Z]<>1) DO RDISABLE

N120 G4 F0.1

...

WHEN TRUE DO RELEASE(Z) ; Z axis becomes neutral

; Read-in disable as long as Z axis is program axis

WHENEVER $AA_TYP[Z] == 1 DO RDISABLE

N130 G4 F0.1

...

N140 START(2) ; 2. Start channel

N150 ; See below: "3. Continuation: Program sequence in the first channel"

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 85

2. Program sequence in the second channel:

Program code Comment

WHEN TRUE DO GET(Z) ; Move Z axis to second channel (neutral)

; Read-in disable as long as Z axis is in other channel

WHENEVER $AA_TYP[Z] == 0 DO RDISABLE

N210 G4 F0.1

...

WHEN TRUE DO GET(Z) ; Z axis becomes NC program axis

; Read-in disable until Z axis is program axis

WHENEVER($AA_TYP[Z]<>1) DO RDISABLE

N220 G4 F0.1

...

WHEN TRUE DO RELEASE(Z) ; Z axis in second channel is neutral axis

; Read-in disable as long as Z axis is program axis

WHENEVER $AA_TYP[Z] == 1 DO RDISABLE

N230 G4 F0.1

...

N250 WAITM(10,1,2) ; Synchronize with channel 1

N999 M30

3. Continuation: Program sequence in the first channel:

Program code Comment

N150 WAITM(10,1,2) ; Synchronize with channel 2

...

WHEN TRUE DO GET(Z) ; Move Z axis to this channel

; Read-in disable as long as Z axis is in other channel

WHENEVER $AA_TYP[Z] == 0 DO RDISABLE

N160 G4 F0.1

...

N199 WAITE(2) ; Wait for end of program in channel 2

N999 M30

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
86 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Transfer axis to another channel (AXTOCHAN)
An axis can be requested for a channel from a synchronized action with the AXTOCHAN
command. This does not have to be its own channel that currently has the interpolation
authorization for the axis. This means that it is possible to shift an axis into another channel.

If the axis is already assigned to the part program of the channel
($AA_AXCHANGE_TYP[<axis>] == 0), there is no state change.

If an axis is requested for the same channel from a synchronized action, AXTOCHAN is mapped
on the GET command.

● With the first request for the same channel, the axis becomes a neutral axis.

● With the second request, the axis is assigned to the part program.

Supplementary condition

A "PLC-controlled axis" corresponds to a "concurrent positioning axis" where special
supplementary conditions must be carefully observed. See also:

References:

/FB2/ Function Manual, Extended Functions; Positioning Axes (P2)

 Note

A PLC axis cannot replace the channel.

An axis controlled exclusively by the PLC cannot be assigned to the NC program.

2.7.14 Traversing spindles (M, S, SPOS)
Spindles can be started, positioned and stopped via synchronized actions. The programming
is performed in the action part of the synchronized action with the same syntax as in the part
program. Without numeric extension the commands for the master spindle apply. By
specifying a numeric extension, it is possible to program each spindle individually:

Program code Comment

ID = 1 EVERY $A_IN[1]==1 DO M3 S1000 ; Master spindle

ID = 2 EVERY $A_IN[2]==1 DO SPOS=270 ; Master spindle

ID = 1 EVERY $A_IN[1]==1 DO M1=3 S1=1000 SPOS[2]=90

If concurrent commands are specified for a spindle through synchronized actions that are
active in parallel, the chronological sequence decides the activation.

User-specific spindle enable
The start of spindle motions at defined times can be achieved via synchronized actions by
blocking the motion programmed in the part program.

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 87

Example:

The spindle is programmed within a part program and should not start at the beginning of the
block, but only when input 1 is set. The synchronized action holds the spindle override at 0%
until the enable via input 1. See Section "Override ($A...OVR) (Page 31)".

Program code

; As long as input 1 is not set => spindle override = 0%

ID=1 WHENEVER $A_IN[1]==0 DO $AA_OVR[S1]=0

...

; The start of the spindle is triggered

; The spindle is enabled when input 1 is set

G01 X100 F1000 M3 S1=1000

Transition between command axis and spindle
Since several synchronized actions can be active simultaneously, the situation may arise
where a spindle motion is started when the spindle is already active. In this case, the most
recently activated motion is applicable. At a reversal in the direction of motion, the spindle is
first braked and then traversed in the opposite direction.

Direction of rotation, speed and position can also be changed during the motion.

Examples

Program code Comment

ID=1 EVERY $AC_TIMER[1] >= 5 DO M3 S300 ; Speed and direction of rotation

ID=2 EVERY $AC_TIMER[1] >= 7 DO M4 S500 ; Speed and direction of rotation

ID=3 EVERY $A_IN[1]==1 DO S1000 ; Speed

ID=4 EVERY ($A_IN[4]==1) AND ($A_IN[1]==0) DO SPOS=0 ; Spindle positioning

Transitions between axis and spindle

In state ↓ To → POS MOV<>0 MOV=0 SPOS M3/M4 M5 LEADON TRAIL ON
during traversing

Axis x x x x x x x x
Position-controlled spindle x x x x x x - -

Speed-controlled spindle - - - x x x - -
in motion

Axis x x x - - - x x
Position-controlled spindle - - - - - - - -

Speed-controlled spindle - - - x x x - -
Transitions marked with x are permitted:
The transitions marked with - are rejected with an alarm.

See also
Couplings (CP..., LEAD..., TRAIL..., CTAB...) (Page 92)

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
88 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.7.15 Withdrawing the enable for the axis container rotation (AXCTSWEC)

Function
Using the command AXCTSWEC an already issued enable signal to rotate the axis container
can be withdrawn again. The command triggers a preprocessing stop with reorganization
(STOPRE).

The following conditions must be fulfilled so that in the channel, the enable signal to rotate
the axis container is withdrawn again:

● In the channel, the axis container rotation must already have been enabled:

– AXCTSWE(<container>)

– $AC_AXCTSWA[<container>] == 1

● Axis container rotation was still not started:

– $AN_AXCTSWA[<container>] == 0

As feedback signal for the successful withdrawal of the enable signal, the following channel-
specific system variable is reset:

$AC_AXCTSWA[<container>] == 0

For a detailed description of the system variables, refer to:

References:
Parameter Manual System Variables

Syntax
DO AXCTSWEC(<container>)

Meaning

AXCTSWEC: Withdrawing the enable for the axis container rotation for the channel
<Container>: Name of axis container:

Possible data include:
 CT<container number>:

The number of the axis container is attached to the CT letter
combination. Example: CT3

 <container name>:
Individual name of the axis container set using
MD12750 $MN_AXCT_NAME_TAB. Example: A_CONT3

 <Axis name>:
Axis name of a container axis known in the channel.

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 89

Example

Program code Comment

; Initialization of the global counter for the technology cycle CTSWEC

N100 $AC_MARKER[0]=0

N110 ID=1 DO CTSWEC ; For technology cycle CTSWEC, see below.

NEXT:

 N200 G0 X30 Z1

 N210 G95 F.5

 N220 M3 S1000

 N230 G0 X25

 N240 G1 Z-10

 N250 G0 X30

 N260 M5

; Enable of the axis container rotation for container spindle S1.

 N270 AXCTSWE(S1)

N200 GOTO NEXT

Program code Comment

PROC CTSWEC(STRING _ex_CT="CT1"

 INT _ex_CTsl_BITmask=1H

 INT _ex_CT_SL_Number=1

 INT _ex_WAIT_number_of_IPOs=1000

) DISPLOF ICYCOF

DEFINE _ex_number_of_IPOs AS $AC_MARKER[0]

 IF ($AC_STOP_COND[0] + $AC_STOP_COND[1] + $AC_STOP_COND[2] + $AC_STOP_COND[3] +

 $AC_STOP_COND[4] + $AC_STOP_COND[5] + $AC_STOP_COND[6] + $AC_STOP_COND[7] +

 $AC_STOP_COND[8] + $AC_STOP_COND[9] + $AC_STOP_COND[10]) > 0)

 ; Increment IPO cycle counter

 _ex_number_of_IPOs = _ex_number_of_IPOs + 1

 ; If a stop condition for longer than "_ex_WAIT_number_of_IPOs"

 ; IPO cycles is present AND its own slot has not been enabled

 IF (_ex_number_of_IPOs >= _ex_WAIT_number_of_IPOs) AND

 ($AN_AXCTSWEC[_ex_CT] == _ex_CTsl_BITmask)

 AXCTSWEC ; Cancel the enable of the axis container rotation.

 ENDIF

 ELSE

 ; Reset IPO cycle counter

 _ex_number_of_IPOs = 0

 ENDIF

RET

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
90 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Supplementary condition

Time of execution of synchronized actions

Program code

; Enable of the axis container rotation.

N10 AXCTSWE(CT3)

; Traversing of the container axis AX_A => before the axis is traversed, there

; is a waiting period for the end of the axis container rotation:
$AN_AXCTSWA[CT3]==0

N20 AX_A = 10

; Cancellation of the enable. No effect!

WHEN <condition> DO AXCTSWEC(AX_A)

N30 G4 F1

Because after the enable of the axis container rotation in block N10, an axis of the axis
container (AX_A) is used in block N20 and this use leads to the system waiting for the end of
the axis container rotation, the synchronized action only comes together with the program
block N30 in the main run and has therefore no effect.

Remedy:

Program code Comment

; Enable of the axis container rotation.

N11 AXCTSWE(CT3)

; Cancellation of the enable.

WHEN <condition> DO AXCTSWEC(AX_A)

N21 ... ; Executable NC block

; Traversing of the container axis AX_A => before the axis is traversed, there

; is a waiting period for the end of the axis container rotation:
$AN_AXCTSWA[CT3]==0

N31 AX_A = 10

 Note

Without the executable block N21, the synchronized action would only be implemented after
the end of the axis container rotation with the next executable program block N31 in the main
run and would therefore have no effect, just the same as in the example above.

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 91

2.7.16 Set actual value (PRESETON)

Function
The actual value can be redefined in the machine coordinate system (MCS) for machine
axes with PRESETON. In this mode, the axes are not traversed.

PRESETON is possible in synchronized actions for the following axis types:

● Modulo rotary axes that were started from the part program

● Command axes that were started from synchronized actions

CAUTION
Loss of machine coordination

By setting a new actual value in the machine coordinate system, the reference point of the
machine axis becomes invalid. For this reason it is recommended that PRESETON only be
used for axes that do not require a reference point.

To restore the original machine coordinate system, the measuring system of the machine
axis must be referenced again, e.g. through active referencing from the part program (G74).

Syntax
WHEN | EVERY ... DO PRESETON(<axis>,<value>)

Meaning

PRESETON: Preset actual-value memory

Machine axis name <axis>:
Range of values: Machine axis names defined in the channel

<value>: New actual value of the machine axis in the machine coordinate system
(MCS)

Example

Program code

...

N10 G1 X=10 Y=12 F5000

N20 WHEN TRUE DO G71 POS[X]=200

; IF setpoint position (MCS) of the X axis (command axis) >= 80 mm

; THEN actual-value offset by +70 mm => axis traverses to 270 mm

N22 WHEN G71 $AA_IM[X] >= 80 DO PRESETON(X, $AA_IM[X]+70)

N24 G4 F3

...

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
92 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Supplementary conditions
● PRESETON must not be applied to axes involved in a transformation.

● PRESETON must only be used in conjunction with WHEN or EVERY.

● In contrast to the programming in the part program, PRESETON can only be programmed for
one axis in each synchronized action.

Operating modes

● JOG mode: PRESETON is only possible for stationary axes.

● JOGREF mode: PRESETON is not possible.

Axis replacement (only 840D sl)

PRESETON must only be executed in a channel that has the interpolation authorization for this
axis. The axis is not requested from another channel via axis replacement.

See also
On-the-fly parting (Page 137)

2.7.17 Couplings (CP..., LEAD..., TRAIL..., CTAB...)
The commands listed in Section "Language elements for synchronized actions and
technology cycles (Page 52)" can be programmed in synchronized actions for the functions
coupled motion (TRAIL...), curve tables (CTAB...), master value coupling (LEAD...) and
generic coupling (CP...):

 Note
Generic coupling

Note that the "generic coupling" CP ... commands are always executed in synchronized
actions in the sequence of the programming from left to right. This means that in contrast to
the programming in the part program, the effect of the various commands depends on their
sequence in the synchronized action.
Curve tables

The CTAB and CTABINV commands can be used in the condition and in the action.

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 93

References
Detailed information on coupling commands can be found in:

● Coupled motion, curve tables, master value coupling:

Programming Manual, Job Planning; Section "Axis couplings"

● Generic coupling

Description of Functions, Special Functions, Section "Axis couplings (M3)" > "Generic
coupling"

Coupled motion
When the coupling is activated from the synchronized action, the leading axis can be in
motion. In this case the following axis is accelerated up to the set velocity. The position of
the leading axis at the time of synchronization of the velocity is the starting position for
coupled-axis motion.

Master value coupling

Syntax
... DO LEADON(<FA>, <LA>, <NO>, <OVW>)

Meaning

<FA>: Name of the following axis

Type: AXIS
<LA>: Name of the leading axis

Type: AXIS
<NO>: Number of the curve table

Type: INT
<OVW>: Status of the overwrite permission

Type: BOOL
0: Overwriting of the table is not permitted
1: Overwriting of the table is permitted

● Synchronized actions can be used to change the basic curve table without a
resynchronization even during an active master value coupling.

The following axis attempts as fast as possible to follow the position values specified by
the new curve table.

● In order to be able to program an axis to be coupled via synchronized actions, the axis
must first be released with the RELEASE command.

Example:

Program code

...

N60 RELEASE(X)

N50 ID=1 EVERY SR1==1 DO LEADON(C, X, 1)

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
94 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Example: On-the-fly parting
An extruded material which passes continuously through the operating area of a cutting tool
must be cut into parts of equal length.

● X axis: Axis in which the extruded material moves (WCS)

● X1 axis: Machine axis of the extruded material (MCS)

● Y axis: Axis in which the cutting tool "tracks" the extruded material

It is assumed that the infeed and control of the cutting tool are controlled via the PLC user
program. The signals at the PLC interface can be evaluated to determine whether the
extruded material and cutting tool are synchronized.

Program code Comment

N100 R3=1500 ; Length of a part to be cut off

N200 R2=100000 R13=R2/300

N300 R4=100000

N400 R6=30 ; Start position Y axis

N500 R1=1 ; Start condition for conveyor axis

N600 LEADOF(Y,X) ; Delete coupling

N700 CTABDEF(Y,X,1,0) ; Table definition

N800 X=30 Y=30 ; Value pairs

N900 X=R13 Y=R13

N1000 X=2*R13 Y=30

N1100 CTABEND ; End of table definition

N1200 PRESETON(X1,0) ; PRESET at beginning

N1300 Y=R6 G0 ; Start position Y axis, axis is linear

; PRESET after length R3, new start after parting

N1400 ID=1 WHENEVER $AA_IW[X]>$R3 DO PESETON(X1,0)

N1500 RELEASE(Y)

; Couple Y to X via table 1, for X < 10

N1800 ID=6 EVERY $AA_IM[X]<10 DO LEADON(Y,X,1)

; > 30 before traversed parting distance, deactivate coupling

N1900 ID=10 EVERY $AA_IM[X]>$R3-30 DO LEADOF(Y,X)

N2000 WAITP(X)

; Set extruded material axis continuously in motion

N2100 ID=7 WHEN $R1==1 DO MOV[X]=1 FA[X]=$R4

N2200 M30

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 95

Generic coupling
● When a coupling module is activated in a synchronized action, the following axis must

already be active in the channel and be in the state “neutral axis ” or “axis already
assigned to the part program of the channel”. The corresponding axis state can be
generated, if necessary, in the synchronized action by programming GET[<following
axis>].

● The commands of the generic coupling CP ... are processed directly in synchronized
actions by the coupling module. The command therefore takes effect immediately.

● With the programming of a coupling factor (CPLNUM, CPLDEN) or table number (CPLCTID), a
previously activated non-linear coupling relationship, e.g. a curve table, is deactivated.

Generic coupling: Using the TRAIL, LEAD, EG or COUP coupling type.

If in the framework of the generic coupling, a behavior corresponding to one of the known
coupling types "Coupled motion", "Master value coupling", "Electronic gear" or "Synchronous
spindle" is required, the command CPSETTYPE is also possible in synchronized actions when
creating or defining the coupling module:

CPSETTYPE[FAx] = <coupling type>

<Coupling type> Meaning
CP Freely programmable
TRAIL "Coupled motion" coupling type
LEAD "Master value coupling" coupling type
EG "Electronic gearbox" coupling type
COUP "Synchronous spindle" coupling type

Supplementary conditions

Synchronism status of a following axis

The system variable $AA_SYNC[<axis>] can be used to read the synchronism status of a
following axis in the part program or synchronized action.

Axis replacement with cross-channel coupling

For axis replacement, the following and leading axes must be known to the calling channel.
Axis replacement of leading axes can be performed independently of the state of the
coupling. A defined or active coupling does not produce any other supplementary conditions.

 Note

With the activation of the coupling, the following axis becomes the main run axis and is not
available for an axis replacement. The following axis is thus logged out of the channel. With
this type of coupling, an overlaid movement is therefore not possible.

See also Section "Axis replacement (GET, RELEASE, AXTOCHAN) (Page 81)"

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
96 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Conflict prevention when changing from following axis to channel axis

In order to be able to traverse a following axis traversed via synchronized actions as a
channel axis again, you must ensure that the coupling is deactivated before the channel
requests the relevant axis.

The following example shows an error case:

Program code

...

N50 WHEN TRUE DO TRAILOF(Y, X)

N60 Y100

The Y axis is not released early enough in N50 because TRAILOF only becomes active with
N60 through the non-modal synchronized action.

Corrected example:

Program code Comment

...

N50 WHEN TRUE DO TRAILOF(Y, X)

N55 WAITP(Y) ; Wait for end of travel of the positioning axis

N60 Y100

Examples
Define coupling: Y = following axis, X = leading axis

Program code

... DO CPLDEF[Y]=X CPLNUM[Y,X]=1.5

Activate coupling and define coupling relationship.

● N10 with the correct sequence: First CPLON then CPLNUM
● N20 with incorrect sequence: First CPLNUM then CPLON

Program code

N10 ... DO CPLON[Y]=X CPLNUM[X,Y]=1.5

N20 ... DO CPLNUM[X,Y]=2 CPLON[Y]=X ; Error

Activate coupling, deactivation/activation with implicit resynchronization

Program code

N10 ... DO CPLON[X]=Y CPLNUM[X,Y]=3

N20 Y100 F100

N30 ... DO CPLOF=X CPLON[X]=Y CPLNUM[X,Y]=3

Activate coupling, deactivate and traverse as a command axis

Program code

N10 ... DO CPLON[X]=Y CPLNUM[X,Y]=3

N20 Y100 F100

N30 ... DO CPLOF=X MOV[X]=10

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 97

2.7.18 Measurement (MEAWA, MEAC)
The following commands can be used in synchronized actions for measurement:

● MEAWA (measurement without delete distance-to-go)

● MEAC (continuous measurement without delete distance-to-go)

While the measuring function in the part program is limited to one motion block, the
measuring function can be switched on and off any number of times from synchronized
actions.

 Note

Measurement can also be performed in JOG mode via static synchronized actions IDS

References
Detailed information on measuring commands can be found in:

● Coupled motion, curve tables, master value coupling:

Programming Manual, Job Planning; Section "Axis couplings"

● Generic coupling

Description of Functions, Special Functions, Section "Axis couplings (M3)" > "Generic
coupling"

Measurement tasks and state changes
When a measurement task has been executed from a synchronized action, the control
system responds in the following way:

State Response
Operating mode change A measurement task activated by a modal synchronized action is not

affected by a change in operating mode. It remains active beyond block
limits.

RESET The measurement task is aborted.
Block search Measurement tasks are collected, but not activated until the programmed

condition is fulfilled.
REPOS Activated measurement tasks are not affected.
End of program Measurement tasks started from static synchronized actions remain active.

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
98 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Remarks

System variables

The following system variables can be used in conjunction with synchronous actions:

● $AA_MEAACT (axial measuring active)

● $A_PROBE (probe state)

● $AA_MM1 ... 4 (probe position 1st to 4th trigger (MCS))

The following system variable cannot be used in conjunction with synchronized actions:

● $AC_MEA (probe has responded)

Measurement job

Only one measurement job at a time may be active for an axis.

Priority with more than one measurement

A new measurement task for the same axis has the effect that the trigger events are
reactivated and the measurement results reset.

Measurement jobs started from the part program cannot be influenced from synchronized
actions. If a measurement task is started from a synchronized action for an axis for which a
measurement task is already active from the part program, an alarm is displayed.

If a measurement task is already active from a synchronized action, measurement can no
longer be started from the part program.

Saving measurement results

A FIFO memory is set up in the $AC_FIFO system variables to save the measurement
results. See Section "FIFO variables ($AC_FIFO) (Page 27)".

Examples
In the following examples, two FIFO memories are set up via machine data:

● MD28050 $MC_MM_NUM_R_PARAM = 300

● MD28258 $MC_MM_NUM_AC_TIMER = 1

● MD28260 $MC_NUM_AC_FIFO = 1 (set up FIFO memory)

● MD28262 $MC_START_AC_FIFO = 100 (FIFO memory starts from R100)

● MD28264 $MC_LEN_AC_FIFO = 28 (22 variables + 6 management data)

● MD28266 $MC_MODE_AC_FIFO = 0 (no summation)

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 99

Example 1

All rising edges of probe 1 are to be recorded between 0 and 100 mm for the X axis. It is
assumed that no more than 22 measuring edges occur.

Program code Comment

DEF INT NUMBER ; Number of current measured values

DEF INT INDEX_R ; Loop index

N10 G0 X0 ; Approach starting point for the
measurement

;Measurement: Mode = 1 (simultaneously), FIFO memory = 1,

; trigger event = 1 (rising edge of probe 1)

N20 MEAC[X]=(1, 1, 1) POS[X]=100

N30 STOPRE ; Stop preprocessing

N40 MEAC[X]=(0) ; Cancel measuring job

N50 ANZAHL=$AC_FIFO1[4] ; Number of saved measured values

N60 ANZAHL = ANZAHL - 1

N70 FOR INDEX_R=0 TO ANZAHL

N80 R[INDEX_R]=$AC_FIFO1[0] ; Save measured value in R parameter

N90 ENDFOR

Example 2

All rising and falling edges of probe 1 are to be recorded between 0 and 100 mm for the X
axis. The number of measurements is not known. Therefore, the measured values must be
fetched parallel to the measurement and stored in ascending order as of $R1. The number of
stored measured values is entered in $R0.

Program code

$AC_MARKER[1]=1 ; Initialize index for R parameter index

N10 G0 X0 ; Approach starting point for the measurement

; If measured values are available in the FIFO memory, the oldest value is read and

; stored in the current R parameter[$AC_MARKER[1]].

; The R parameter index is then incremented.

N20 ID=1 WHENEVER $AC_FIFO1[4] >= 1 DO $R[$AC_MARKER[1]] = $AC_FIFO1[0]

 $AC_MARKER[1] = $AC_MARKER[1] + 1

; Continuous measurement: Mode = 1 (simultaneously), FIFO memory = 1,

; trigger event 1 = 1 (rising edge of probe 1),

; trigger event 2 = -1 (falling edge of probe 1)

N30 MEAC[X]=(1, 1, 1, -1) POS[X]=100

N40 MEAC[X]=(0) ; Turn measurement off

N50 STOPRE ; Stop preprocessing

N60 R0 = $AC_MARKER[1] ; Number of recorded measured values

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
100 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Example 3

Rising and falling edges of probe 1 are to be recorded between 0 and 500 mm for the X axis.
The number of measurements is limited to 10.

The distance-to-go of the X axis is then deleted.

Program code

N10 G0 X0 ; Approach starting point for the measurement

; Abort condition: Deselect continuous measurement after 10 or more measurements

; and perform "delete distance-to-go"

N10 WHEN $AC_FIFO1[4] >= 10 DO MEAC[X]=(0) DELDTG(X)

; Continuous measurement: Mode = 1 (simultaneously), FIFO memory = 1,

; trigger event 1 = 1 (rising edge of probe 1),

; trigger event 2 = -1 (falling edge of probe 1)

N20 MEAC[X]=(1, 1, 1, -1) G01 X100 F500

N30 MEAC [X]=(0) ; Turn measurement off

N40 R0 = $AC_FIFO1[4] ; Number of recorded measured values

2.7.19 Travel to fixed stop (FXS, FXST, FXSW, FOCON, FOCOF, FOC)

Function

Travel to fixed stop

The function "Travel to fixed stop" can be controlled via synchronized actions with the FXS,
FXST and FXSW commands.

The activation can also be performed without traversing motion of the relevant axis. The
torque is immediately limited. The fixed stop is monitored as soon as the axis is traversed.

Travel with limited torque/force

Travel with limited torque/force can be controlled via synchronized actions with the FOCON,
FOCOF and FOC commands.

Syntax
FXS[<axis>]=<request>
FXST[<axis>]=<clamping torque>
FXSW[<axis>] = <window width>
FOCON[<axis>]
FOCOF[<axis>]
FOC[<axis>]

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 101

Meaning

Parameter Meaning
FXS: Travel to fixed stop
<Request>: Request to the "Travel to fixed stop" function:

0 = switch off
1 = switch on

FXST: Set clamping torque
<Clamping torque>: Clamping torque as % of the maximum drive torque
FXSW: Set monitoring window
<Window width>: Width of the tolerance window around the fixed stop

Unit: mm, inch or degrees
FOCON: Switch on modal torque/force limitation
FOCOF: Switch off modal torque/force limitation
FOC: Non-modal torque/force limitation
<axis>: Name of the channel axis on which the command will be applied

Remarks

Avoidance of multiple selection

The "Travel to fixed stop" function must only be switched on once per axis. In the event of an
error, alarm 20092 is displayed and the corresponding alarm response takes effect.

To avoid multiple selections, it is recommended that a selection marker be used in the
synchronized action.

Example:

Program code Comment
N10 R1=0 ; Initialize selection marker
...
N20 IDS=1 WHENEVER ($R1==0 AND $AA_IW[AX3] > 7) DO $R1=1 FXS[AX1]=1

Switching on during the approach motion

"Travel to fixed stop" can also be switched on during the approach motion through a non-
modal synchronized action.

Example:

Program code Comment

N10 G0 G90 X0 Y0 ; Approach initial setting

...

; "Travel to fixed stop" is switched on for the X axis,

; as soon as the position setpoint in the WCS is > 20 mm

; Execution of the non-modal synchronized action: With N30

N20 WHEN G71 $AA_IW[X] > 20 DO FXS[X]=1

N30 G1 F200 X100 ; Traversing block of the X axis

Detailed description
2.7 Actions in synchronized actions

 Synchronized actions
102 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Example: Travel to fixed stop completely via synchronized actions

Program code Comment

; IF selection request $R1==1 AND state of the Y axis == "not to fixed stop"

; THEN: For the Y axis:

; - Switch on FXS

; - Traverse to position 150 mm

; - Reduce drive torque to 10%

IDS=1 WHENEVER G71 (($R1==1) AND $AA_FXS[y]==0)) DO $R1=0 FXS[Y]=1 FXST[Y]=10

 FA[Y]=200 POS[Y]=150

...

; IF state of the Y-Axis == "Fixed stop has been detected"

; THEN: Increase drive torque to 30%

IDS=2 WHENEVER ($AA_FXS[Y]==4) DO FXST[Y]=30

...

; IF state of the Y axis == "Successful travel to fixed stop"

; THEN: Set drive torque in accordance with setting $R0

IDS=3 WHENEVER ($AA_FXS[Y]==1) DO FXST[Y]=$R0

...

; Deselection depending on R3 and retract.

IDS=4 WHENEVER (($R3==1) AND $AA_FXS[Y]==1)) DO FXS[Y]=0 FA[Y]=1000 POS[Y]=0

...

N10 R1=0 FXS[Y]=0 G0 G90 Y0 ; Initialization

N30 RELEASE(Y) ; Enable Y axis for traversing in synchronized actions

N50 ...

N60 GET(Y) ; Include Y axis in the path group again

2.7.20 Channel synchronization (SETM, CLEARM)
Synchronization markers can be set and deleted in the channel in which the synchronized
action runs with the SETM and CLEARM commands.

Syntax
SETM(<No_marker 1> [,<No_marker 2> {, ... < No_marker n>}])

CLEARM(<No_marker 1> [,<No_marker 2> {, ... < No_marker n>}])

Meaning
A detailed description of the SETM and CLEARM commands can be found in:

References

Programming Manual, Job Planning; Section "Flexible NC programming" > "Program
coordination (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)"

 Detailed description
 2.7 Actions in synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 103

2.7.21 User-specific error reactions (SETAL)
Synchronized actions can be used to react user-specifically to application-specific error
states. Possible reactions are:

● Axis with stop via override = 0%

● Display user-specific alarm

● Set digital output

Display alarm

Syntax
SETAL(<Alarm_no>[,"Alarm text"])

Meaning

Parameter Meaning
<Alarm_no>: Alarm number from the range: 65000 - 69999

A complete description of the configuration of user alarms can be found in:

References

Base Software and HMI Advanced Commissioning Manual,
Section "HMI Advanced" > "Configuring the HMI system" > "Configuring user alarms"

Examples

; If the distance between axes X1 and X2 is less than 5 mm =>

; stop axis X2

ID=1 WHENEVER G71 ($AA_IM[X1]-$AA_IM[X2])<5.0 DO $AA_OVR[X2]=0

; If the distance between axes X1 and X2 is less than 5 mm =>

; display alarm 65000

ID=1 WHENEVER G71 ($AA_IM[X1]-$AA_IM[X2])<5.0 DO SETAL(65000)

Detailed description
2.8 Technology cycles

 Synchronized actions
104 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.8 Technology cycles

2.8.1 General

Definition
A technology cycle is a subprogram that is called in the action part of a synchronized action.
All language elements and system variables that are also used in the action part of a
synchronized action can be used in a technology cycle. In addition, there are also the
following language elements that may only be used within a technology cycle:

● Section "System variables for synchronized actions (Page 17)"

● Section "User-defined variables for synchronized actions (Page 50)"

● Section "Language elements for synchronized actions and technology cycles (Page 52)"

● Section "Language elements for technology cycles only (Page 59)"

● Section "Actions in synchronized actions (Page 60)"

End of program
The following commands are permitted as end of program: M02, M17, M30, RET

Search path
When calling a technology cycle, the same search path is used as for subprograms and
cycles.

References
Programming Manual, Job Preparation, Section "Flexible NC programming" > "Subprogram
technique" > "General" > "Search path"

Multiple calls
If a condition is fulfilled again while the technology cycle is being executed, the technology
cycle is not restarted.

If a technology cycle is started because of a fulfilled WHENEVER condition and the condition is
still fulfilled after completion of the technology cycle, then the technology cycle is started
again.

Behavior with non-modal synchronized actions
A non-modal synchronized action is always linked to the next main run block. If the execution
time of the technology cycle is longer than the processing time of the associated main run
block, the technology cycle is aborted with the block change.

 Detailed description
 2.8 Technology cycles

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 105

Execution sequence of technology cycles
If several technology cycles are programmed in the action part of a synchronized action, they
are executed in the sequence from left to right.

Example:

Call of three technology cycles in the action part of a synchronized action

Program code

ID=1 <condition part> DO AXIS_X AXIS_Y AXIS_Z

Execution sequence of the technology cycle blocks: N10, N11, N12, N20, N21, N22, N30, N31, N32

 Note
Supplementary conditions
 A maximum of eight technology cycles may be called in the action part of a synchronized

action.
 Except for the call of further technology cycles, no other action may be programmed in

the action part of a synchronized action in which a technology cycle is called.

See also
Processing mode (ICYCON, ICYCOF) (Page 106)

Detailed description
2.8 Technology cycles

 Synchronized actions
106 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.8.2 Processing mode (ICYCON, ICYCOF)

Function
The ICYCOF and ICYCON commands can be used to control the processing mode of the actions
within technology cycles.

Per default, the processing mode ICYCON is active.

Processing mode: ICYCON

A non-modal technology cycle is executed in the ICYCON processing mode. The execution of
all actions programmed in a block is initiated in the same interpolation cycle. As soon as all
initiated actions are completed, the next block is processed in the following interpolation
cycle.

A distinction is made between single-cycle and multi-cycle actions. Examples are:

● Single-cycle actions: Auxiliary function output, value assignments

● Multi-cycle actions: Traversing motions of axes and spindles

Each block of a technology cycle requires at least one interpolation cycle.

Processing mode: ICYCOF

All actions of all blocks of a technology cycle are initiated in parallel in the ICYCOF processing
mode.

Subprogram as part program

If a subprogram is executed as a part program, the ICYCOF and ICYCON commands have no
effect.

Syntax

In the action part of a synchronized action
ID=1 <condition part> DO [ICYCOF] <technology cycle 1> [ICYCOF |
ICYCON] <technology cycle 2> ...

As a property of a subprogram
PROC <name> [ICYCOF | ICYCON]

Within a subprogram
PROC <name>
 N10 ...
 N20 [ICYCOF | ICYCON]
 N90 ...
 N100 [ICYCOF | ICYCON]
 N110 ...
RET

 Detailed description
 2.8 Technology cycles

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 107

Example

Program code Effective processing mode Interpolation cycle
PROC TECHNOCYC ICYCON
 $R1=1 ICYCON 1
 POS[X]=100 ICYCON 2 ... 25
 ICYCOF ICYCOF 26
 $R1=2 ICYCOF 26
 $R2=$R1+1 ICYCOF 26
 POS[X]=110 ICYCOF 26
 $R3=3 ICYCOF 26
RET ICYCOF 26

2.8.3 Definitions (DEF, DEFINE)
If a subprogram is used as a technology cycle that contains commands for the (DEF)
variables and/or (DEFINE) macro definition, these have no effect when executing the
technology cycle.

Although variables and macro definitions have no effect within a technology cycle, they must
nevertheless have the correct syntax. In the event of an error, the execution of the
technology cycle is aborted and an alarm displayed.

As the variables and macros are not available in the technology cycle, special measures
may have to be taken in the program code. See Section "Context variable ($P_TECCYCLE)
(Page 108)".

2.8.4 Parameter transfer
All types of parameter transfer and parameter definition that are possible in subprograms
can also be used when the subprogram is used as a technology cycle:

● Call-by-value

● Call-by-reference

● Default parameters

References
A detailed description of the parameter transfer and parameter definition in subprograms can
be found in:

Programming Manual, Job Planning, Section "Flexible NC programming" > "Subprogram
technique" > "Definition of a subprogram" or "Call of a subprogram"

Detailed description
2.8 Technology cycles

 Synchronized actions
108 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.8.5 Context variable ($P_TECCYCLE)

Function
The $P_TECCYCLE system variable can be used to determine within a subprogram whether
the subprogram is currently being executed as a part program or technology cycle:

● $P_TECCYCLE == TRUE: Execution as a technology cycle

● $P_TECCYCLE == FALSE: Execution as a part program

If a subprogram is used as a part program and also as a technology cycle, it is therefore
possible to determine which program sections are executed as a part program and which as
a technology cycle.

Application
The (DEF) variables and (DEFINE) macro definitions have no effect in technology cycles. If a
subprogram is used as a technology cycle that contains the appropriate definitions, a
differentiation of cases is required in the program code because the variables and macros
are then not available.

Example:
Travel parameters via user variables in the part program and R parameters in the technology
cycle

Program code Comment: Use in

PROC UP_1

 DEF REAL POS_X=100.0 Part program

 DEF REAL F_X=250.0 Part program

 IF $P_TECCYCLE==TRUE

 $R1=100.0 Technology cycle

 $R2=250.0 Technology cycle

 ENDIF

 IF $P_TECCYCLE==TRUE

 N100 POS[X]=$R1 FA[X]=$R2 Technology cycle

 ELSE

 N200 POS[X]=POS_X FA[X]=F_X Part program

 ENDIF

RET

See also
Definitions (DEF, DEFINE) (Page 107)

 Detailed description
 2.9 Protected synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 109

2.9 Protected synchronized actions
Each synchronized action is clearly identified via its ID.

The following machine data can be used to define an NC global or channel-specific range of
identification numbers with which a synchronized action can be protected against
overwriting, deletion (CANCEL(ID)) and locking (LOCK(ID)):

● NC global:
MD11500 $MN_PREVENT_SYNACT_LOCK (protected synchronized actions)

● Channel-specific:
MD21240 $MN_PREVENT_SYNACT_LOCK (protected synchronized actions)

Behavior is the same in both cases.

Protected synchronized actions cannot be locked via the NC/PLC interface or are displayed
as non-lockable:

● DB21, ... DBB300 ... 307 (lock synchronized actions)
● DB21, ... DBB308 ... 315 (synchronized actions that can be disabled locked)

Application
The synchronized actions defined by the machine manufacturer to react to certain machine
states should not be changed after commissioning.

 Note

It is recommended that the protection of synchronized actions should not be activated during
the commissioning phase as otherwise a Power on reset is required at each change to the
synchronized action.

Example
In a system with two channels, the synchronized actions of the following identification
number areas should be protected:

Channel 1: 20 ... 30

Channel 2: 25 ... 35

Machine data configuration

NC-global protection area:

● MD11500 $MN_PREVENT_SYNACT_LOCK[0] = 25
● MD11500 $MN_PREVENT_SYNACT_LOCK[1] = 35

Channel-specific protection area for channel 1:

● MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN[0] = 20
● MD21240 $MC_PREVENT_SYNACT_LOCK_CHAN1] = 30

Channel-specific protection area for channel 2:

● MD21241 $MC_PREVENT_SYNACT_LOCK_CHAN[0] = -1
● MD21241 $MC_PREVENT_SYNACT_LOCK_CHAN[1] = -1

A separate protection was not defined in channel 2 and therefore the NC-global protection
area applies.

Detailed description
2.10 Coordination via part program and synchronized action (LOCK, UNLOCK, RESET, CANCEL)

 Synchronized actions
110 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.10 Coordination via part program and synchronized action (LOCK,
UNLOCK, RESET, CANCEL)

Each modal and static synchronized action must be assigned a unique identification number
during the definition:

Program code

ID=<number> condition part DO action part

IDS=<number> condition part DO action part

By specifying the identification number, synchronized actions from part programs and from
synchronized actions can be coordinated via the following commands:

Keyword Meaning TP1) SA2)

LOCK(<number>): Lock synchronized action
An active positioning action is interrupted.

- x

UNLOCK(<number>): Continue interrupted synchronized action
An interrupted positioning operation is continued.

- x

RESET(<number>): Cancel synchronized action
An active positioning action is cancelled.
If a technology cycle is restarted, then it is processed from the
1st block in the technology cycle.
Depending on the type of the condition, the actions are
performed again when the condition is fulfilled again. Already
executed synchronized actions with condition WHEN are not
processed again after RESET.

- x

CANCEL(<number>): Delete synchronized action
An active positioning action is terminated.

x -

1) Can be programmed in the part program
2) Can be programmed in a synchronized action / technology cycle

 Detailed description
 2.11 Coordination via PLC

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 111

2.11 Coordination via PLC
With regard to their execution by the NC, synchronized actions that are not protected can be
locked. Either all synchronized actions in the channel can be locked together or individually
in the ID/IDS 1 - 64 area.

All, channel-specific
Lock all synchronized actions in the channel:

DB21, … DBX1.2 = 1 (synchronized action off)

Individually, channel-specific

Synchronized actions that can be locked

The synchronized actions that can be locked are displayed via:

DB21, … DBX308.0 - 315.7 == 1 (synchronized actions ID/IDS can be locked)

The update of the display must be triggered actively via the following signal from the PLC
user program:

DB21, … DBX281.1 = 1 (request: Update synchronized actions that can be locked)

The NC then updates the display of the synchronized actions that can be locked and
acknowledges the update by resetting the trigger signal:

DB21, … DBX281.1 = 0 (acknowledgement: Synchronized actions that can be locked
updated)

Lock synchronized actions

The corresponding lock bit must be set by the PLC user program for each synchronized
action that is to be locked in the channel:

DB21, … DBX300.0 - 307.7 = 1 (lock synchronized action ID/IDS 1 - 64)

The following trigger signal must be set by the PLC user program as a request to the
channel to accept the current lock bits:

DB21, … DBX280.1 = 1 (request: Accept synchronized actions to be locked)

The NC then accepts the synchronized actions to be locked in the channel and
acknowledges this by resetting the trigger signal:

DB21, … DBX280.1 = 0 (acknowledgement: Synchronized actions to be locked accepted)

See also
Protected synchronized actions (Page 109)

Detailed description
2.12 Configuration

 Synchronized actions
112 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.12 Configuration

Number of synchronized action elements
The number of synchronized action elements that can be provided per channel is set via the
machine data:

MD28250 $MC_MM_NUM_SYNC_ELEMENTS (number of elements for expressions in
synchronized actions)

At least four synchronized action elements are required per synchronized action. Further
synchronized action elements are required for:

Operation Number of required elements
Operator in the condition 1
Action >= 1
Assignment 2
Further operands in complex expressions 1

The number of programmable synchronized actions therefore depends on the number of
available synchronized action elements and the complexity of the synchronized actions.

Memory utilization

The status display for synchronized actions can be used to track the memory utilization of
the synchronized action memory (see Section "Diagnostics (HMI Advanced only)
(Page 118)").

The number of free synchronized action elements can also be read via the system variable
$AC_SYNA_MEM.

If more synchronized action elements are required during operation than are available, alarm
"14751 Resources for motion synchronous actions not sufficient" is displayed.

Number of FCTDEF elements
The number of FCTDEF elements per channel is set via the machine data:

MD28252 $MC_MM_NUM_FCTDEF_ELEMENTS (number of FCTDEF elements)

 Detailed description
 2.12 Configuration

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 113

Synchronized actions and interpolation cycle
If there are a large number of simultaneously active synchronized actions, the interpolation
cycle may have to be increased:

MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO

Time required by individual operations

Time required 1) Synchronized action commands

Total Text in bold print
Basic load for a synchronized action if condition is not fulfilled:
WHENEVER FALSE DO $AC_MARKER[0]=0

10 µs

10 µs

Read variable:
WHENEVER $AA_IM[Y]>10 DO $AC_MARKER[0]=1

11 µs

1 µs

Write variable:
DO $R2=1

11-12 µs

1-2 µs

Read/write setting data:
DO$$SN_SW_CAM_MINUS_POS_TAB_1[0]=20

24 µs

14 µs

Basic arithmetic operations, e.g. multiplication:
DO $R2=$R2*2

22 µs

12 µs

Trigonometric functions (e.g. cos):
DO $R2=COS($R2)

23 µs

13 µs

Start positioning axis:
WHEN TRUE DO POS[z]=10

83 µs

73 µs

1) Measured with SINUMERIK 840D with NCU 573.x

Detailed description
2.13 Control behavior in specific operating states

 Synchronized actions
114 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.13 Control behavior in specific operating states

2.13.1 Power On
No synchronized actions are active during ramp-up of the NC (Power On).

Synchronized actions that are to be active immediately after the ramp-up of the NC (Power
On), must be event-driven as static synchronized actions within an ASUB or activated via the
PLC user program.

References
Detailed information on the activation of synchronized actions after ramp-up of the NC
(Power On) can be found in:

PLC user program

Function Manual, Basic Functions; PLC Basic Program for SINUMERIK 840D sl
Section "Structure and functions of the basic program" > "Functions of the basic program
with call from the user program"

Event-driven

Function Manual, Basic Functions; Mode Group, Channel, Program Operation (K1)
Section "Program operation" > "Event-controlled program calls"

2.13.2 NC reset
State after NC reset:

From: Modal and non-modal synchronized action (ID) Static synchronized action (IDS)
Synchronized action Aborted or inactive Active
Traversing motion The traversing motions are aborted
Speed-controlled
spindle

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET = <value>
TRUE ⇒ The spindle remains active

FALSE ⇒ The spindle is stopped
Master value
coupling

MD20110 $MC_RESET_MODE_MASK, bit 13 = <value>
1 ⇒ The coupling remains active

0 ⇒ The coupling is released
Measuring Aborted

 Detailed description
 2.13 Control behavior in specific operating states

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 115

2.13.3 NC stop

Non-modal and modal synchronized actions (ID)

Traversing motions from non-modal and modal synchronized actions are stopped by NC
stop.

A non-modal or modal synchronized action also remains active while the channel is in the
"interrupted" state:

DB21, ... DBX35.6 == 1 (channel state "interrupted")

If the condition is fulfilled during this time, the actions are executed except for traversing
motions.

Stopped traversing motions are continued with NC start.

Static synchronized actions (IDS)

Traversing motions from static synchronized actions are not stopped by NC stop.

2.13.4 Operating mode change
Status after operating mode change:

From: Modal and non-modal synchronized action (ID) Static synchronized action (IDS)
Synchronized action Aborted or inactive 1) Active
Traversing motion Aborted 2) Active
Speed-controlled
spindle

Active Active

Master value
coupling

MD20110 $MC_RESET_MODE_MASK, bit 13 = <value>
1 ⇒ The coupling remains active

0 ⇒ The coupling is released

Active

Measuring Aborted Active
1) The synchronized actions become active again after changing back to the AUTOMATIC mode.
2) End of program M30 is delayed until the axis is at standstill.

Detailed description
2.13 Control behavior in specific operating states

 Synchronized actions
116 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.13.5 End of program
State after end of program:

From: Modal and non-modal synchronized action (ID) Static synchronized action (IDS)
Synchronized action Aborted or inactive Active
Traversing motion Aborted 1) Active
Speed-controlled
spindle

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET = <value>
TRUE ⇒ The spindle remains active

FALSE ⇒ The spindle is stopped

Active

Master value
coupling

MD20110 $MC_RESET_MODE_MASK, bit 13 = <value>
1 ⇒ The coupling remains active

0 ⇒ The coupling is released

Active

Measuring Aborted Active
1) End of program M30 is delayed until the axis is at standstill.

2.13.6 Block search

Non-modal and modal synchronized actions (ID)

Synchronized actions are collected during the block search but not activated. I.e. the
conditions are not evaluated, the actions are not executed.

The synchronized actions only become active with NC start. I.e. the conditions are evaluated
and the actions executed if necessary.

Static synchronized actions (IDS)

Static synchronized actions that are already active remain effective during the block search.

2.13.7 Program interruption by ASUB

Non-modal and modal synchronized actions (ID)

Active modal synchronized actions also remain active during the ASUB.

Traversing motions started from non-modal and modal synchronized actions are interrupted.
If at the end of the ASUB, positioning is at the interruption point of the part program (REPOS),
then the interrupted traversing motions are continued.

Static synchronized actions (IDS)

Static synchronized actions also remain active during the ASUB.

Traversing motions started from static synchronized actions are not interrupted by the ASUB.

Synchronized actions of the ASUB
If the ASUB is not continued with REPOS, the modal and static synchronized actions from
the ASUB remain effective in the part program.

 Detailed description
 2.13 Control behavior in specific operating states

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 117

2.13.8 REPOS
In the remainder of the block, the synchronized actions are treated in the same way as in an
interruption block.

Modifications to modal synchronized actions in the asynchronous subprogram are not
effective in the interrupted program.

Polynomial coefficients programmed with FCTDEF are not affected by ASUB and REPOS.

The coefficients from the calling program are applied in the asynchronous subprogram. The
coefficients from the asynchronous subprogram continue to be applied in the calling
program.

If positioning motions started from synchronized actions are interrupted by the operating
mode change or start of the interrupt routine, then they are continued with REPOS.

2.13.9 Response to alarms
● If an action of a synchronized action triggers an alarm, this action will be aborted. Other

actions of the synchronized action are processed.

● If a modal synchronized action triggers an alarm, it will be inactive after the interrupt time.

● If a technology cycle generates an alarm with motion stop, it will then be aborted and no
longer processed.

● If an alarm is triggered with motion stop, all axis/spindle motions, which were started by
synchronized actions, will be stopped. Actions without traversing motion are still
executed.

● If an alarm is triggered with interpreter stop, it will only have an effect on synchronized
actions after complete execution of the predecoded blocks.

Detailed description
2.14 Diagnostics (HMI Advanced only)

 Synchronized actions
118 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

2.14 Diagnostics (HMI Advanced only)

Diagnostic functionality
The following special test tools are provided for diagnosing synchronized actions:

● Status display of synchronized actions in the machine operator area

● System variables display parameters in the operating range

The current values of all synchronized action variables can be displayed (displaying main
run variables)

● System variables log parameters in the operating range

Characteristics of variables can be recorded in the interpolation cycle grid (logging main
run variables)

This functionality is structured in the operator interface in the following way:

Figure 2-8 Functionality of test tools for synchronized actions

For a description of how to use these functions, please see:

References:

/BAD/ Operator's Guide HMI Advanced.

 Detailed description
 2.14 Diagnostics (HMI Advanced only)

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 119

2.14.1 Displaying the status of synchronized actions
The following information is shown on the status display of the synchronized actions:

● Overview of the programmed synchronized actions

● Validity and identification number (only for modal synchronized actions)
See Section "Validity, identification number (ID, IDS) (Page 12)"

● Status of the synchronized action

Status

Status Meaning
No status The condition is being checked in the interpolation cycle
Locked The synchronized action is locked. See Section:

 Coordination via part program and synchronized action (LOCK, UNLOCK,
RESET, CANCEL) (Page 110)

 Coordination via PLC (Page 111)

Active The action part of the synchronized action is being executed. If the action
consists of a technology cycle, the current block number in this is displayed.

References
Operating Manual, HMI Advanced, Section "Machine operating area" > "General functions
and displays" > "Status of the synchronized actions"

2.14.2 Displaying main run variables

Description
System variables can be monitored for the purpose of monitoring synchronized actions.
Variables, which may be used in this way are listed for selection by the user.

A complete list of individual system variables with ID code W for write access and R for read
access for synchronized actions can be found in:

References:

/PGA1/ Parameter Manual, System Variables

Views
"Views" are provided to allow the user to define the values, which are relevant for a specific
machining situation and to determine how (in lines and columns, with what text) these values
must be displayed. Several views can be arranged in groups and stored in correspondingly
named files.

Detailed description
2.14 Diagnostics (HMI Advanced only)

 Synchronized actions
120 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Managing views
A view defined by the user can be stored under a name of his choice and then called again.
Variables included in a view can still be modified (Edit View).

Displaying main run variable of a view
The values assigned to a view are displayed by calling the corresponding user-defined view.

2.14.3 Logging main run variables

Starting point
To be able to trace events exactly in synchronized actions, it is necessary to monitor the
action status in the interpolation cycle.

Method
The values defined in a log definition are written to a log file of defined size in the specified
cycle. Special functions for displaying the contents of log files are provided.

Figure 2-9 Schematic representation of Log main run variables process

 Detailed description
 2.14 Diagnostics (HMI Advanced only)

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 121

Operation
For information about operating the logging function, please see:

References:

/BAD/ Operator's Guide HMI Advanced.

Log definition
The log definition can contain up to 6 specified variables. The values of these variables are
written to the log file in the specified cycle. A list of variables, which may be selected for
logging purposes, is displayed. The cycle can be selected in multiples of the interpolation
cycle. The file size can be selected in Kbytes. A log definition must be initialized before it can
be activated on the NCK for the purpose of acquiring the necessary values.

Log file size
Values between 3 KB (minimum) and 50 KB (maximum) can be selected as the log file size.

Storage method
When the effective log file size has been exceeded, the oldest entries are overwritten, i.e.
the file works on the circular buffer principle.

Starting logging
Logging according to one of the initialized log definitions is started by:

● Operation

● Setting system variable $A_PROTO=1 from the part program

The starting instant must be selected such that the variables to be logged are not altered
until operations on the machine have been activated. The start point refers to the last log
definition to be initialized.

Stopping logging
This function terminates the acquisition of log data in the NCK. The file containing the logged
values is made available on the HMI for storage and evaluation (graphic log). Logging can
be stopped by:

● Operation

● Setting system variable $A_PROTO=0 from the part program

Detailed description
2.14 Diagnostics (HMI Advanced only)

 Synchronized actions
122 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Graphic log function
The measured values (up to 6) of a log are represented graphically as a function of the
sampling time. The names of variables are specified in descending sequence according to
the characteristics of their values. The screen display is arranged automatically. Selected
areas of the graphic can be zoomed.

 Note

Graphic log representations are also available as text files on the HMI Advanced. An editor
can be used to read the exact values of a sampling instant (values with identical count index)
numerically.

Managing logs
Several log definitions can be stored under user-defined names. They can be called later for
initialization and start of recording or for modification and deletion.

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 123

Examples 3
3.1 Examples of conditions in synchronized actions

Condition Programming
Path distance-to-go ≤ 10 mm (WCS) ... WHEN $AC_DTEW <= 10 DO ...

Distance-to-go of the X axis ≤ 10 mm (WCS) ... WHEN $AA_DTEW[X]<= 10 DO ...

Path distance to start of block ≥ 20 mm (BCS) ...WHEN $AC_PLTBB >= 20 DO ...

Actual value of the Y axis (MCS) > 10 * SIN(R10) ... WHEN $AA_IM[y] > 10*SIN (R10) DO...

Input 1 changes from 0 to 1 ... EVERY $A_IN[1]==1 DO ...

Input 1 == 1 ... WHENEVER $A_IN[1]==0 DO ...

3.2 Reading and writing of SD/MD from synchronized actions

Infeed and oscillation for grinding operations
Setting data, whose values remain unchanged during machining, are addressed by name as
in the part program.

Example: Oscillation from synchronized actions

Program code

N610 ID=1 WHENEVER $AA_IM[Z] > $SA_OSCILL_REVERSE_POS1[Z] DO $AC_MARKER[1]=0

...

; ALWAYS WHEN current position of the oscillating axis in the MCS < start of reversal area 2,

; THEN override of the infeed axis = 0%

N620 ID=2 WHENEVER $AA_IM[Z] < $SA_OSCILL_REVERSE_POS2[Z] - 6 DO

 $AA_OVR[X]=0 $AC_MARKER[0]=0

...

; ALWAYS WHEN current position of the oscillating axis in the MCS == reversal position 1,

; THEN override of the oscillation axis = 0%, override of the infeed axis = 100%

; This cancels the previous synchronized action!

N630 ID=3 WHENEVER $AA_IM[Z] == $SA_OSCILL_REVERSE_POS1[Z] DO

 $AA_OVR[Z]=0 $AA_OVR[X]=100

...

; ALWAYS WHEN distance-to-go of the partial infeed == 0,

; THEN override of the oscillation axis = 100%

; This cancels the previous synchronized action!

N640 ID=4 WHENEVER $AA_DTEPW[X]==0 DO $AA_OVR[Z]=100 $AC_MARKER[0]=1 $AC_MARKER[1]=1

Examples
3.2 Reading and writing of SD/MD from synchronized actions

 Synchronized actions
124 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Program code

N650 ID=5 WHENEVER $AC_MARKER[0]==1 DO $AA_OVR[X]=0

N660 ID=6 WHENEVER $AC_MARKER[1]==1 DO $AA_OVR[X]=0

...

; WHEN current position of the oscillating axis in the WCS == reversal position 1,

; THEN override of the oscillation axis = 100%, override of the infeed axis = 0%

; This cancels the second synchronized action once!

N670 ID=7 WHEN $AA_IM[Z] == $SA_OSCILL_REVERSE_POS1[Z] DO $AA_OVR[Z]=100 $AA_OVR[X]=0

...

; Setting data whose value changes during machining (e.g. by means of

; operator input or synchronized action) must be programmed with $$S...:

; Example: Oscillation from synchronized actions with change of the oscillation

; position via the user interface

N610 ID=1 WHENEVER $AA_IM[Z] > $$SA_OSCILL_REVERSE_POS1[Z] DO $AC_MARKER[1]=0

...

; ALWAYS WHEN current position of the oscillating axis in the MCS < start of reversal area 2,

; THEN override of the infeed axis = 0%

N620 ID=2 WHENEVER $AA_IM[Z] < $$SA_OSCILL_REVERSE_POS2[Z]-6 DO

 $AA_OVR[X]=0 $AC_MARKER[0]=0

...

; ALWAYS WHEN current position of the oscillating axis in the MCS == reversal position 1,

; THEN override of the oscillation axis = 0%, override of the infeed axis = 100%

; This cancels the previous synchronized action!

N630 ID=3 WHENEVER $AA_IM[Z]==$$SA_OSCILL_REVERSE_POS1[Z] DO

 $AA_OVR[Z]=0 $AA_OVR[X]=100

...

; ALWAYS WHEN distance-to-go of the partial infeed == 0,

; THEN override of the oscillation axis = 100%

; This cancels the previous synchronized action!

N640 ID=4 WHENEVER $AA_DTEPW[X]==0 DO $AA_OVR[Z]=100 $AC_MARKER[0]=1 $AC_MARKER[1]=1

N650 ID=5 WHENEVER $AC_MARKER[0]==1 DO $AA_OVR[X]=0

N660 ID=6 WHENEVER $AC_MARKER[1]==1 DO $AA_OVR[X]=0

...

; WHEN current position of the oscillating axis in the WCS == reversal position 1,

; THEN override of the oscillation axis = 100%, override of the infeed axis = 0%

; This cancels the second synchronized action once!

N670 ID=7 WHEN $AA_IM[Z]==$$SA_OSCILL_REVERSE_POS1[Z]

DO $AA_OVR[Z]=100 $AA_OVR[X]=0

 Examples
 3.3 Examples of adaptive control

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 125

3.3 Examples of adaptive control

General procedure
The following examples use the polynomial evaluation function SYNFCT().

1. Representation of relationship between input value and output value (main run variables
in each case)

2. Definition of this relationship as polynomial with limitations

3. With position offset: Setting the MD and SD

– MD36750 $MA_AA_OFF_MODE (Effect of value assignment for axial override in case
of synchronized actions)

– SD43350 $SA_AA_OFF_LIMIT (optional) (Upper limit of the offset value $AA_OFF in
case of clearance control)

4. Activation of the control in a synchronized action

3.3.1 Clearance control with variable upper limit

Example of polynomial with dynamic upper limit
For the purpose of clearance control, the upper limit of the output ($AA_OFF, override value
in axis V) is varied as a function of the spindle override (analog input 1). The upper limit for
polynomial 1 is varied dynamically as a function of analog input 2.

Polynomial 1 is defined directly via system variables:

Figure 3-1 Clearance control with variable upper limit

Examples
3.3 Examples of adaptive control

 Synchronized actions
126 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

$AC_FCTLL[1]=0.2 ; Lower limit

$AC_FCTUL[1]=0.5 ; Request Value of upper limit

$AC_FCT0[1]=0.35 ; Zero passage a0

$AC_FCT1[1]=1.5 EX-5 ; Pitch a1

STOPRE ; see following note

...

STOPRE ; see following note

ID=1 DO $AC_FCTUL[1]=$A_INA[2]*0.1+0.35 ;
;
;

Adjust upper limit dynamically via
analog input 2,
no condition

ID=2 DO SYNFCT(1, $AA_OFF[V], $A_INA[1]) ;
;

Clearance control by override of no
condition

...

 Note

When system variables are used in the part program, STOPRE must be programmed to
ensure block-synchronous writing. The following is an equivalent notation for polynomial
definition:

FCTDEF(1,0.2, 0.5, 0.35, 1.5EX-5).

3.3.2 Feedrate control

Example of adaptive control with an analog input voltage
A process quantity (measured via $A_INA[1]) must be regulated to 2 V through an additive
control factor implemented by a path (or axial) feedrate override. Feedrate override shall be
performed within the range of +100 [mm/min].

Figure 3-2 Diagram illustrating adaptive control

 Examples
 3.3 Examples of adaptive control

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 127

Determination of coefficients:

y = f(x) = a0 + a1x +a2x2 + a3x3

a1 = - 100mm / (1min * 1V)

a1 = - 100% regulation constants, pitch

a0 = - (-100) * 2 = 200

a2 = 0 (not a square component)

a3 = 0 (not a square component)

Upper limit = 100

Lower limit = -100

FCTDEF(Polynomial No.

 LLIMIT

 ULIMIT

 a0 ; y for x = 0

 a1 ; Lead

 a2 ; square component

 a3) ; cubic component

With the values determined above, the polynomial is defined as follows:

FCTDEF(1, -100, -100, 100, 200, 0, 0)

The following synchronized actions can be used to activate the adaptive control function

for the axis feedrate:

ID = 1 DO SYNFCT (1, $AA_VC[X], $A_INA[1])

or for the path feedrate:

ID = 2 DO SYNFCT(1, $AC_VC, $A_INA[1])

Examples
3.3 Examples of adaptive control

 Synchronized actions
128 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

3.3.3 Control velocity as a function of normalized path

Multiplicative adaptation
The normalized path is applied as an input quantity: $AC_PATHN.

0: At block start

1: at block end

Variation quantity $AC_OVR must be controlled as a function of $AC_PATHN according to a
3rd order polynomial. The override must be reduced from 100 to 1% during the motion.

Figure 3-3 Regulate velocity continuously

Polynomial 2:

Lower limit: 1

Hi limit: 100

a0: 100

a1: -100

a2: -100

a3: not used

With these values, the polynomial definition is as follows:

FCTDEF(2, 1, 100, 100, -100, -100)

; Activation of the variable override as a function of the path:

ID= 1 DO SYNFCT (2, $AC_OVR, $AC_PATHN)

G01 X100 Y100 F1000

 Examples
 3.4 Monitoring a safety clearance between two axes

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 129

3.4 Monitoring a safety clearance between two axes

Task
The axes X1 and X2 operate two independently controlled transport devices used to load
and unload workpieces.

To prevent the axes from colliding, a safety clearance must be maintained between them.

If the safety clearance is violated, then axis X2 is decelerated. This interlock is applied until
axis X1 leaves the safety clearance area again.

If axis X1 continues to move towards axis X2, thereby crossing a closer safety barrier, then it
is traversed into a safe position.

NC language Comment

ID=1 WHENEVER $AA_IM[X2] -
$AA_IM[X1] < 30 DO $AA_OVR[X2]=0

; Safety barrier

ID=2 EVERY $AA_IM[X2] - $AA_IM[X1]
< 15 DO POS[X1]=0

; Safe position

3.5 Store execution times in R parameters

Task
Store the execution time for part program blocks starting at R parameter 10.

Program Comment

 ;
;

The example is
as follows without symbolic programming:

IDS=1 EVERY $AC_TIMEC==0 DO
$AC_MARKER[0] = $AC_MARKER[0] + 1

;
;

Advance R parameter
pointer on block change

IDS=2 DO $R[10+$AC_MARKER[0]] =
$AC_TIME

;
;

Write current time
of block start in each case to R parameter

 ;
;

The example is
as follows with symbolic programming:

DEFINE INDEX AS $AC_MARKER[0] ;
;

Agreements for symbolic
programming

IDS=1 EVERY $AC_TIMEC==0 DO INDEX =
INDEX + 1

;
;

Advance R parameter
pointer on block change

IDS=2 DO $R[10+INDEX] = $AC_TIME ;
;

Write current time
of block start in each case to R parameter

Examples
3.6 "Centering" with continuous measurement

 Synchronized actions
130 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

3.6 "Centering" with continuous measurement

Introduction
The gaps between gear teeth are measured sequentially. The gap dimension is calculated
from the sum of all gaps and the number of teeth. The center position sought for continuation
of machining is the position of the first measuring point plus 1/2 the average gap size. The
speed for measurement is selected in order to enable one measured value to be reliably
acquired in each interpolation cycle.

Figure 3-4 Diagrammatic representation of measurement of gaps between gear teeth

%_N_MEAC_MITTEN_MPF

;Measure using rotary axis B (BACH) with display of difference
;between measured values

;*** Define local user-defined variables ***

N1 DEF INT ZAEHNEZAHL ; Input number of gear teeth

N5 DEF REAL HYS_POS_FLANKE ; Hysteresis positive edge probe

N6 DEF REAL HYS_NEG_FLANKE ; Hysteresis negative edge probe

;*** Define short names for synchronized action markers ***

define M_ZAEHNE as $AC_MARKER[1] ; ID marker for calculation: neg/pos edge per
tooth

define Z_MW as $AC_MARKER[2] ; Read ID counter MW FIFO

define Z_RW as $AC_MARKER[3] ; Calculate ID Counter MW tooth gaps

;*** Input values for ZAHNRADMESSEN ***

N50 ZAEHNEZAHL=26 ; Enter number of gear teeth to be measured

N70 HYS_POS_FLANKE = 0.160 ; Hysteresis positive edge probe

N80 HYS_NEG_FLANKE = 0.140 ; Hysteresis negative edge probe

 Examples
 3.6 "Centering" with continuous measurement

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 131

Start: ; *** Assign variables ***

R1=0 ; ID2 calculation result for gap dimension

R2=0 ; ID2 calculation result addition of all gaps

R3=0 ; Contents of the first element read

R4=0 ; R4 corresponds to a tooth distance

R5=0 ; Gap position calculated, final result

R6=1 ; Switch-on ID 3 BACH with MOV

R7=1 ; Switch-on ID 5 MEAC

M_ZAEHNE=ZAEHNEZAHL*2 ; Calculate ID neg./pos. edge of each teeth

Z_MW=0 ; Read ID counter MW FIFO till the number of
teeth

Z_RW=2 ; Calculate ID counter difference of tooth gap

R13=HYS_POS_FLANKE ; Hysteresis in calculation register

R14=HYS_NEG_FLANKE ; Hysteresis in calculation register

;*** Travel, measure, calculate axis ***

N100 MEAC[BACH]=(0) ; Reset measurement job

;Resetting the FIFO[4] variables and ensuring a defined measurement trace

N105 $AC_FIFO1[4]=0 ; Reset FIFO1

STOPRE

; *** Read FIFO till tooth number reached ***

; if FIFO1 is not empty and all teeth are still not measured, save measured value
from FIFO variable in

; synchronization parameter and increment counter of measured values

ID=1 WHENEVER ($AC_FIFO1[4]>=1) AND (Z_MW<M_ZAEHNE)

 DO $AC_PARAM[0+Z_MW]=$AC_FIFO1[0] Z_MW=Z_MW+1

;if 2 measured values are present, start calculation, calculate ONLY gap dimension
; and gap sum, increment calculation value counter by 2

ID=2 WHENEVER (Z_MW>=Z_RW) AND (Z_RW<M_ZAEHNE)

 DO $R1=($AC_PARAM[-1+Z_RW]-$R13)-($AC_PARAM[-2+Z_RW]-$R14) Z_RW=Z_RW+2
$R2=$R2+$R1

;*** Switch-on the axis BACH as endless rotating rotary axis with MOV ***

WAITP(BACH)

ID=3 EVERY $R6==1 DO MOV[BACH]=1
FA[BACH]=1000

; Activate

ID=4 EVERY $R6==0 und
($AA_STAT[BACH]==1) DO MOV[BACH]=0

; Deactivate

; Measure sequentially, store in FIFO 1, MT2 neg, MT2 pos edge
;the distance between two teeth is measured
;falling edge-...-rising edge, probe 2

N310 ID=5 WHEN $R7==1 DO MEAC[BACH]=(2, 1, -2, 2)

N320 ID=6 WHEN (Z_MW>=M_ZAEHNE) DO
MEAC[BACH]=(0)

; Cancel measuring job

M00

STOPRE

Examples
3.7 Axis couplings via synchronized actions

 Synchronized actions
132 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

;*** FIFO Fetch and save values ***

N400 R3=$AC_PARAM[0] ;
;
;

Contents of the first element read
;Reset the FIFO1[4] variable
;and ensure a defined measuring trace
;for the next measurement job

N500 $AC_FIFO1[4]=0

;*** Calculate difference between the individual teeth ***

N510 R4=R2/(ZAEHNEZAHL)/1000 ;
;
;

R4 corresponds to an average
tooth distance
Division "/1000" removed in later SW
versions

;*** Calculate center position ***

N520 R3=R3/1000 ; First measurement position converted to
degree

N530 R3=R3 MOD 360 ; first measurement point modulo

N540 R5=(R3-R14)+(R4/2) ; calculate gap position

M00

stopre

R6=0 ; Disable axis rotation from BACH

gotob start

M30

3.7 Axis couplings via synchronized actions

3.7.1 Coupling to leading axis

Task assignment
A cyclic curve table is defined by means of polynomial segments. Controlled by means of
arithmetic variables, the movement of the master axis and the coupling process between
master and slave (following) axes is activated/deactivated.

%_N_KOP_SINUS_MPF

N5 R1=1 ; ID 1, 2 activate/deactivate coupling: LEADON

(CACB, BACH)

N6 R2=1 ; ID 3, 4 Move leading axis on/off: MOV BACH

N7 R5=36000 ; BACH Feedrate/min

N8 STOPRE

 Examples
 3.7 Axis couplings via synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 133

;*** Define periodic table No. 4 through polynomial segments ***

N10 CTABDEF (YGEO,XGEO,4,1)

N16 G1 F1200 XGEO=0.000 YGEO=0.000 ; Go to basic position

N17 POLY PO[XGEO]=(79,944.30.420,00.210) PO[YGEO]=(24,634.00.871,-9,670)

N18 PO[XGEO]=(116.059,0.749,-0.656) PO[YGEO]=(22.429,-5.201,0.345)

N19 PO[XGEO]=(243.941,-17.234,11.489) PO[YGEO]=(-22.429,-58.844,39.229)

N20 PO[XGEO]=(280.056,1.220,-0.656) PO[YGEO]=(-24.634,4.165,0.345)

N21 PO[XGEO]=(360.000,-4.050,0.210) PO[YGEO]=(0.000,28.139,-9.670)

N22 CTABEND ; *** End of table definition ***

; Travel axis leading axis and coupled axis in quick motion in basic position

N80 G0 BACH=0 CACH=0 ; Channel axis names

N50 LEADOF(CACH,BACH) ; existing coupling OFF

N235 ;*** Switch-on the coupling movement for the axis CACH ***

N240 WAITP(CACH) ; Synchronize axis to channel

N245 ID=1 EVERY $R1==1 DO
LEADON(CACH, BACH, 4)

; Coupling via table 4

N250 ID=2 EVERY $R1==0 DO
LEADOF(CACH, BACH)

; Deactivate coupling

N265 WAITP(BACH)

N270 ID=3 EVERY $R2==1 DO
MOV[BACH]=1 FA[BACH]=R5

; Rotate leading axis with feedrate endlessly
in R5

N275 ID=4 EVERY $R2==0 DO
MOV[BACH]=0

; Stop leading axis

N280 M00

N285 STOPRE

N290 R1=0 ; Disable coupling condition

N295 R2=0 ; Disable condition for rotating leading axis

N300 R5=180 ; New feedrate for BACH

N305 M30

Examples
3.7 Axis couplings via synchronized actions

 Synchronized actions
134 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

3.7.2 Non-circular grinding via master value coupling

Task assignment
A non-circular workpiece that is rotating on axis CACH must be machined by grinding. The
distance between the grinding wheel and workpiece is controlled by axis XACH and depends
on the angle of rotation of the workpiece. The interrelationship between angles of rotation
and assigned movements is defined in curve table 2. The workpiece must move at velocities
that are determined by the workpiece contour defined in curve table 1.

Solution
CACH is designated as the leading axis in a master value coupling. It controls:

● via table 2 the compensatory movement of the axis XACH

● via table 1 the "software axis" CASW.

The axis override of axis CACH is determined by the actual values of axis CASW, thus
providing the required contour-dependent velocity of axis CACH.

Figure 3-5 Diagrammatic representation of non-circular contour grinding

%_N_CURV_TABS_SPF
PROC CURV_TABS
N160 ; *** Define table 1 override ***
N165 CTABDEF(CASW,CACH,1.1) ; Table 1 periodic
N170 CACH=0 CASW=10
N175 CACH=90 CASW=10
N180 CACH=180 CASW=100

 Examples
 3.7 Axis couplings via synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 135

N185 CACH=350 CASW=10
N190 CACH=359.999 CASW=10
N195 CTABEND

N160 ; *** Define table 2 linear compensatory movement of XACH ***
CTABDEF(YGEO,XGEO,2.1) ; Table 2 periodic
N16 XGEO=0.000 YGEO=0.000
N16 XGEO=0.001 YGEO=0.000
N17 POLY PO[XGEO]=(116.000,0.024,0.012) PO[YGEO]=(4.251,0.067,-0.828)
N18 PO[XGEO]=(244.000,0.072,-0.048) PO[YGEO]=(4.251,-2.937)
N19 PO[XGEO]=(359.999,-0.060,0.012) PO[YGEO]=(0.000,-2.415,0.828)
N16 XGEO=360.000 YGEO=0.000
N20 CTABEND
M17

%_N_UNRUND_MPF

; Coupling group for a non-circular machining

; XACH is the infeed axis of the grinding disk

; CACH is the workpiece axis as rotary axis and master value axis

; Application: Grind non-circular contours

; Table 1 maps the override for axis CACH as function of the position of CACH

; Overlay of the XGEO axis with handwheel infeed for scratching

N100 DRFOF ; deselect handwheel overlay
N200 MSG(Select "DRF, (Handwheel 1 active) and Select INKREMENT.== Handwheel overlay
AKTIV")
N300 M00
N500 MSG() ; Reset message
N600 R2=1 ; LEADON Table 2, Activate with ID=3/4 CACH to

XACH
N700 R3=1 ; LEADON Table 1, Activate with ID=5/6 CACH to

CASW, override
N800 R4=1 ; Endless rotating axis CACH, start with ID=7/8
N900 R5=36000 ; FA[CACH] Endless rotating rotary axis speed

Examples
3.7 Axis couplings via synchronized actions

 Synchronized actions
136 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

N1100 STOPRE
N1200 ; *** Set axis and leading axis to FA ***
 ;

;
Move Axis, master axis and following axis
to the initial position

N1300 G0 XGEO=0 CASW=10 CACH=0
N1400 LEADOF(XACH,CACH) ; Coupling AUS XACH compensatory movement
N1500 LEADOF(CASW,CACH) ; Coupling AUS CASW override table
N1600 CURV_TABS ; Sub-program with definition of the tables

N1700 ; *** On-off switch of the LEADON compensatory

movement XACH ***
N1800 WAITP(XGEO) ; Synchronize axis to channel
N1900 ID=3 EVERY $R2==1 DO
LEADON(XACH,CACH,2)
N2000 ID=4 EVERY $R2==0 DO
LEADOF(XACH,CACH)

N2100 ;

;
*** On-off switch of the LEADON CASW
override table ***

N2200 WAITP(CASW)
N2300 ID=5 EVERY $R3==1 DO
LEADON(CASW,CACH,1)

; CTAB Coupling ON leading axis CACH

N2400 ID=6 EVERY $R3==0 DO
LEADOF(CASW,CACH)

; CTAB Coupling OFF leading axis CACH

N2500 ;

;
*** Control override of the CACH from position
CASW with ID 10 ***

N2700 ID=11 DO
$$AA_OVR[CACH]=$AA_IM[CASW]

; Assign "axis position" CASW to OVR CACH

N2900 WAITP(CACH)
N3000 ID=7 EVERY $R4==1 DO
MOV[CACH]=1 FA[CACH]=R5

; Start as endless rotating rotary axis

N3100 ID=8 EVERY $R4==0 DO
MOV[CACH]=0

; Stop as endless rotating rotary axis

 Examples
 3.7 Axis couplings via synchronized actions

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 137

N3200 STOPRE
N3300 R90=$AA_COUP_ACT[CASW] ; State of the coupling for CASW for checking
N3400 MSG("Override table CASW activated with LEADON "<<R90<<", further ENDE with NC-
START")

N3500 M00 ; *** NC HALT ***
N3600 MSG()
N3700 STOPRE ; Preprocessing stop
N3800 R1=0 ;

;
Stop with ID=2 CASW axis as
endless rotating rotary axis

N3900 R2=0 ;
;

LEADOF with ID=6 FA XACH
and leading axis CACH

N4000 R3=0 ;
;

LEADOF TAB1 CASW with ID=7/8 CACH
to CASW override table

N4100 R4=0 ;
;

Stop axis as endless rotating rotary axis
, ID=4 CACH

N4200 M30

Expansion options
The example above can be expanded by the following components:

● Introduction of a Z axis to move the grinding wheel or workpiece from one non-circular
operation to the next on the same shaft (cam shaft).

● Table switchovers, if the cams for inlet and outlet have diferent contours.

ID = ... <Condition> DO LEADOF(XACH, CACH) LEADON(XACH, CACH, <new table number>)

● Dressing of grinding wheel by means of online tool offset acc. to Subsection "Online tool
offset FTOC".

3.7.3 On-the-fly parting

Task assignment
An extruded material which passes continuously through the operating area of a cutting tool
must be cut into parts of equal length.

X axis: Axis in which the extruded material moves, WKS

X1 axis: Machine axis of the extruded material, MKS

Y axis: Axis in which the cutting tool "tracks" the extruded material

It is assumed that the infeed and control of the cutting tool are controlled via the PLC. The
signals at the PLC interface can be evaluated to determine whether the extruded material
and cutting tool are synchronized.

Examples
3.7 Axis couplings via synchronized actions

 Synchronized actions
138 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Actions
Activate coupling, LEADON

Deactivate coupling, LEADOF

Set actual values, PRESETON

Program code Comment

%_N_SCHERE1_MPF

;$PATH=/_N_WKS_DIR/_N_DEMOFBE_WPD

N100 R3=1500 ; Length of a part to be cut off

N200 R2=100000 R13=R2/300

N300 R4=100000

N400 R6=30 ; Start position Y axis

N500 R1=1 ; Start condition for conveyor axis

N600 LEADOF(Y,X) ; Delete any existing coupling

N700 CTABDEF(Y,X,1,0) ; Table definition

N800 X=30 Y=30 ; Value pairs

N900 X=R13 Y=R13

N1000 X=2*R13 Y=30

N1100 CTABEND ; End of table definition

N1200 PRESETON(X1,0) ; Preset offset at the beginning

N1300 Y=R6 G0 ; Start position Y axis

 ; The axis is a linear axis

N1400 ID=1 EVERY $AA_IW[X]>$R3 DO PRESETON(X1,0) ; Preset offset after length R3,
PRESETON must only be executed with
WHEN and EVERY

 ; New start after parting

N1500 WAITP(Y)

N1800 ID=6 EVERY $AA_IM[X]<10 DO LEADON(Y,X,1) ; For X < 10, couple Y to X via table 1

N1900 ID=10 EVERY $AA_IM[X]>$R3-30 DO LEADOF(Y,X) ; > 30 before traversed parting
distance, deactivate coupling

N2000 WAITP(X)

N2100 ID=7 WHEN $R1==1 DO MOV[X]=1 FA[X]=$R4 ; Set extruded material axis
continuously in motion

N2200 M30

 Examples
 3.8 Technology cycles position spindle

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 139

3.8 Technology cycles position spindle

Application
Interacting with the PLC program, the spindle which initiates a tool change should be:

● Traversed to an initial position,

● Positioned at a specific point at which the tool to be inserted is also located.

See chapter "Starting of command axes" and chapter "Control via PLC".

Coordination
The PLC and NCK are coordinated by means of the common data that are provided in SW
version 4 and later (see chapter "List of the system variables relevant for synchronized
actions")

● $A_DBB[0]: Take up basic position 1,

● $A_DBB[1]: Take up target position 1,

● $A_DBW[1]: value to be positioned +/- , PLC calculates the shortest route.

Synchronized actions
%_N_MAIN_MPF

...

IDS=1 EVERY $A_DBB[0]==1 DO NULL_POS ;
;
when $A_DBB[0] set by PLC,
take up basic position

IDS=2 EVERY $A_DBB[1]==1 DO ZIEL_POS ;
;
;

when $A_DBB[1] set by PLC,
position spindle to the value stored in
$A_DBW[1]

...

Technology cycle NULL_POS
%_N_NULL_POS_SPF

PROC NULL_POS

SPOS=0 ; Bring drive for the tool change in basic position

$A_DLB[0]=0 ; Basic position executed in NCK

Technology cycle ZIEL_POS
%_N_ZIEL_POS_SPF

PROC TARGET_POS

; Position spindle to the value, stored in $A_DBW[1] SPOS=IC($A_DBW[1])

; stored by PLC, incremental dimension

$A_DBB[1]=0 ; Target position executed in NCK

Examples
3.9 Synchronized actions in the TC/MC area

 Synchronized actions
140 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

3.9 Synchronized actions in the TC/MC area

Introduction
The following figure shows the schematic structure of a tool-changing cycle.

Figure 3-6 Schematic sequence for tool-changing cycle

 Examples
 3.9 Synchronized actions in the TC/MC area

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 141

Flow chart

Figure 3-7 Flowchart for tool-changing cycle

Examples
3.9 Synchronized actions in the TC/MC area

 Synchronized actions
142 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

NC program Comment

%_N_WZW_SPF

;$PATH=/_N_SPF_DIR

N10 DEF INT WZPreselection,WZSpindle

N15 WHEN $AC_PATHN<10 DO $AC_MARKER[0]=0 $AC_MARKER[1]=0
$AC_MARKER[2]=0

N20 ID=3 WHENEVER $A_IN[9]==TRUE DO $AC_MARKER[1]=1

; Marker on = 1 when MagAxis traversed

N25 ID=4 WHENEVER $A_IN[10]==TRUE DO $AC_MARKER[2]=1 ; Marker on = 1 when MagAxis traversed

N30 IF $P_SEARCH GOTOF wzw_vorlauf

N35 SPOSA=0 D0

; Block search active ? ->

N40 GETSELT(WZPreselection) ; Read preselected T no.

N45 WZSpindle=$TC_MPP6[9998,1]

N50 M06

N55 IF WZSpindle==WZPreselection GOTOF wz_in_spindle IF
WZPreselection==0 GOTOF store1 IF WZSpindle==0 GOTOF fetch1

; Read WZ in spindle

;*** Fetch and store tool***

store1fetch1:

N65 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[1]=1

N70 G01 G40 G53 G64 G90 X=Magazin1VPX Y=Magazin1VPY
Z=Magazin1ZGespannt F70000 M=QU(120) M=QU(123) M=QU(9)

; when MagAxis travels Marker = 1

N75 WHENEVER $AA_STAT[S1]<>4 DO $AC_OVR=0 ; Spindle in position

N80 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[1]=1 ; Query MagAxis travel

N85 WHENEVER $AC_MARKER[1]==0 DO $AC_OVR=0 ; Override=0 when axis not traversed

N90 WHENEVER $AA_STAT[C2]<>4 DO $AC_OVR=0 ;
;

Override=0 when MagAxis
not in position fine

N95 WHENEVER $AA_DTEB[C2]>0 DO $AC_OVR=0

N100 G53 G64 X=Magazin1ZP1X Y=Magazin1ZP1Y F60000

N105 G53 G64 X=Magazin1WPX Y=Magazin1WPY F60000

; Override=0 when distance-to-go
MagAxis > 0

N110 M20

N115 G53 G64 Z=MR_Magazin1ZGeloest F40000

N120 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[2]=1;

N125 WHENEVER $AC_MARKER[2]==0 DO $AC_OVR=0

N130 WHENEVER $AA_STAT[C2]<>4 DO $AC_OVR=0

N135 WHENEVER $AA_DTEB[C2]>0 DO $AC_OVR=0

N140 G53 G64 Z=Magazin1ZGespannt F40000

; Release WZ

N145 M18 ; Clamp tool

N150 WHEN $AC_PATHN<10 DO M=QU(150) M=QU(121)

N155 G53 G64 X=Magazin1VPX Y=Magazin1VPY F60000 D1 M17

; Condition always fulfilled

;*** Store tool***

store1:

N160 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[1]=1

N165 G01 G40 G53 G64 G90 X=Magazin1VPX Y=Magazin1VPY
Z=Magazin1ZGespannt F70000 M=QU(120) M=QU(123) M=QU(9)

N170 WHENEVER $AA_STAT[S1]<>4 DO $AC_OVR=0

N175 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[1]=1

 Examples
 3.9 Synchronized actions in the TC/MC area

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 143

NC program Comment

N180 WHENEVER $AC_MARKER[1]==0 DO $AC_OVR=0

N185 WHENEVER $AA_STAT[C2]<>4 DO $AC_OVR=0

N190 WHENEVER $AA_DTEB[C2]>0 DO $AC_OVR=0

N195 G53 G64 X=Magazin1ZP1X Y=Magazin1ZP1Y F60000

N200 G53 G64 X=Magazin1WPX Y=Magazin1WPY F60000

N205 M20

N210 G53 G64 Z=Magazin1ZGeloest F40000

N215 G53 G64 X=Magazin1VPX Y=Magazin1VPY F60000 M=QU(150)
M=QU(121) D0 M17

; Release tool

;*** Fetch tool***

fetch1:

N220 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[2]=1

N225 G01 G40 G53 G64 G90 X=Magazin1VPX Y=Magazin1VPY
Z=Magazin1ZGeloest F70000 M=QU(120) M=QU(123) M=QU(9)

N230 G53 G64 X=Magazin1WPX Y=Magazin1WPY F60000

N235 WHENEVER $AA_STAT[S1]<>4 DO $AC_OVR=0

N240 WHENEVER $AA_VACTM[C2]<>0 DO $AC_MARKER[2]=1

N245 WHENEVER $AC_MARKER[2]==0 DO $AC_OVR=0

N250 WHENEVER $AA_STAT[C2]<>4 DO $AC_OVR=0

N255 WHENEVER $AA_DTEB[C2]>0 DO $AC_OVR=0

N260 G53 G64 Z=Magazin1ZGespannt F40000

N265 M18

N270 G53 G64 X=Magazin1VPX Y=Magazin1VPY F60000 M=QU(150)
M=QU(121) D1 M17

; Clamp tool

;***Tool in spindle***

wz_in_spindle:

N275 M=QU(121) D1 M17

;***Block search***

wzw_feed:

N280 STOPRE

N285 D0

N290 M06

N295 D1 M17

Examples
3.9 Synchronized actions in the TC/MC area

 Synchronized actions
144 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 145

Data lists 4
4.1 Machine data

4.1.1 General machine data

Number Identifier: $MN_ Description
11110 AUXFU_GROUP_SPEC Auxiliary function group specification
11500 PREVENT_SYNACT_LOCK Protected synchronized actions
18860 MM_MAINTENANCE_MON Activate recording of maintenance data

4.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
21240 PREVENT_SYNACT_LOCK_CHAN Protected synchronized actions for channel
28250 MM_NUM_SYNC_ELEMENTS Number of elements for expressions in synchronized

actions
28252 MM_NUM_FCTDEF_ELEMENTS Number of FCTDEF elements
28254 MM_NUM_AC_PARAM Number of $AC_PARAM parameters
28255 MM_BUFFERED_AC_PARAM Memory location of $AC_PARAM
28256 MM_NUM_AC_MARKER Number of $AC_MARKER markers
28257 MM_BUFFERED_AC_MARKER Memory location of $AC_MARKER
28258 MM_NUM_AC_TIMER Number of $AC_TIMER time variables
28260 NUM_AC_FIFO Number of $AC_FIFO1, $AC_FIFO2, ... variables
28262 START_AC_FIFO Store FIFO variables from R parameter
28264 LEN_AC_FIFO Length of $AC_FIFO ... FIFO variables
28266 MODE_AC_FIFO FIFO processing mode

Data lists
4.2 Setting data

 Synchronized actions
146 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

4.1.3 Axis-specific machine data

Number Identifier: $MA_ Description
30450 IS_CONCURRENT_POS_AX Concurrent positioning axis
32060 POS_AX_VELO Initial setting for positioning axis velocity
32070 CORR_VELO Axial velocity for handwheel, ext. WO (work offset),

cont. dressing, clearance control
32074 FRAME_OR_CORRPOS_NOTALLOWED Effectiveness of frames and tool length offset
32920 AC_FILTER_TIME Filter smoothing time constant for Adaptive Control
33060 MAINTENANCE_DATA Configuration, recording maintenance data
36750 AA_OFF_MODE Effect of value assignment for axial override with

synchronized actions
37200 COUPLE_POS_TOL_COARSE Threshold value for "Coarse synchronism"
37210 COUPLE_POS_TOL_FINE Threshold value for "Fine synchronism"

4.2 Setting data

4.2.1 Axis/spindle-specific setting data

Number Identifier: $SA_ Description
43300 ASSIGN_FEED_PER_REV_SOURCE Rotational feedrate for positioning axes/spindles
43350 AA_OFF_LIMIT Upper limit of offset value for $AA_OFF clearance

control
43400 WORKAREA_PLUS_ENABLE Working area limitation in pos. direction

 Data lists
 4.3 Signals

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 147

4.3 Signals

4.3.1 Signals to channel

DB number Byte.Bit Description
21, ... 21.2 Disable all synchronized actions
21, … 280.1 Disable synchronized actions ID/IDS 1 - 64 (general request)
21, … 300.0 - 307.7 Disable synchronized action ID/IDS 1 - 64

4.3.2 Signals from channel

DB number Byte.Bit Description
21, … 281.1 Synchronized actions ID/IDS 1 - 64 disabled (general feedback signal)
21, … 308.0 - 315.7 Synchronized action ID/IDS 1 - 64 can be disabled

Data lists
4.3 Signals

 Synchronized actions
148 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 149

Appendix A
A.1 Overview

Appendix
A.1 Overview

 Synchronized actions
150 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 151

Index

$
$A_INA, 64
$A_PROBE, 98
$AA_AXCHANGE_STAT, 82
$AA_AXCHANGE_TYP, 86
$AA_JERK_COUNT, 37
$AA_JERK_TIME, 37
$AA_JERK_TOT, 37
$AA_MEAACT, 98
$AA_MM1 ... 4, 98
$AA_OFF, 40
$AA_OFF_LIMIT, 41
$AA_OVR, 31
$AA_PLC_OVR, 32
$AA_TOFF, 43
$AA_TOFF_VAL, 43
$AA_TOTAL_OVR, 32
$AA_TRAVEL_COUNT, 37
$AA_TRAVEL_COUNT_HS, 37
$AA_TRAVEL_DIST, 37
$AA_TRAVEL_DIST_HS, 37
$AA_TRAVEL_TIME, 37
$AA_TRAVEL_TIME_HS, 37
$AC_AXCTSWA, 88
$AC_BLOCKTYPE, 47
$AC_BLOCKTYPEINFO, 47
$AC_DTEB, 70
$AC_FCT0, 38
$AC_FCT1, 38
$AC_FCT2, 38
$AC_FCT3, 38
$AC_FCTLL, 38
$AC_FCTUL, 38
$AC_FIFO, 27
$AC_MARKER, 22
$AC_MEA, 98
$AC_OVR, 31
$AC_PARAM, 23
$AC_PLC_OVR, 32
$AC_SPLITBLOCK, 48
$AC_SYNC_ACT_LOAD, 33
$AC_SYNC_AVERAGE_LOAD, 33
$AC_SYNC_MAX_LOAD, 34
$AC_TANEB, 30

$AC_TIMER, 26
$AC_TOTAL_OVR, 32
$AN_AXCTSWA, 88
$AN_IPO_ACT_LOAD, 33
$AN_IPO_LOAD_LIMIT, 34
$AN_IPO_LOAD_PERCENT, 33
$AN_IPO_MAX_LOAD, 34
$AN_IPO_MIN_LOAD, 34
$AN_SERVO_ACT_LOAD, 33
$AN_SERVO_MAX_LOAD, 34
$AN_SERVO_MIN_LOAD, 34
$AN_SYNC_ACT_LOAD, 33
$AN_SYNC_MAX_LOAD, 34
$AN_SYNC_TO_IPO, 33
$P_TECCYCLE, 108
$SA_WORKAREA_MINUS_ENABLE, 35
$SA_WORKAREA_PLUS_ENABLE, 35
$SN_SW_CAM_MINUS_POS_TAB_1, 36
$SN_SW_CAM_MINUS_POS_TAB_2, 36
$SN_SW_CAM_MINUS_TIME_TAB_1, 36
$SN_SW_CAM_MINUS_TIME_TAB_2, 36
$SN_SW_CAM_PLUS_POS_TAB_1, 36
$SN_SW_CAM_PLUS_POS_TAB_2, 36
$SN_SW_CAM_PLUS_TIME_TAB_1, 36
$SN_SW_CAM_PLUS_TIME_TAB_2, 36

A
Adaptive control, 125

Example, 126
AXCTSWEC, 88
AXTOCHAN, 86

B
Boolean operations, 15

C
CLEARM, 102
Coordination

Via part program and synchronized actions, 13
Via PLC, 13

CP..., 92
CTAB..., 92

Index

 Synchronized actions
152 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

D
DB21

DBX1.2, 111
DBX280.1, 111
DBX281.1, 111
DBX300.0 - 307.7, 111
DBX308.0 - 315.7, 111

DB21, ...
DBX35.6, 115

DB31, ...
DBX28.7, 75

DELDTG, 71
Diagnostics data, 118
DO, 16

E
EVERY, 13

F
FA, 80
FCTDEF, 38
FOC, 100
FOCOF, 100
FOCON, 100
FROM, 13
FTOC, 67
FXS, 100
FXST, 100
FXSW, 100

G
G functions

Action, 16
Condition, 14

G25, 35
G26, 35
G70, 76
G700, 76
G71, 76
G710, 76
GET, 81
GUD, 50

I
ICYCOF, 106
ICYCON, 106

ID, 12
Identification number, 13
IDS, 12

L
LEAD..., 92

M
M, 86
Main run variables

Log, 120
MD10070, 113
MD10722,
MD11110, 60
MD11510,
MD18660, 50
MD18661, 50
MD18662, 50
MD18663, 50
MD18664, 50
MD18665, 50
MD20110, 116
MD21190, 43
MD21194, 43
MD21196, 43
MD22200, 60
MD22210, 60
MD22230, 60
MD28050, 98
MD28250, 112
MD28252, 112
MD28254, 24
MD28255, 23
MD28256, 22
MD28257, 22
MD28258, 98
MD28260, 98
MD28262, 98
MD28264, 98
MD28266, 98
MD30450, 76
MD32060, 80
MD32074, 74
MD35040, 116
MD36750, 125
MEAC, 97
MEAWA, 97
Modal synchronized action, 12
MOV, 79

 Index

Synchronized actions
Function Manual, 03/2013, 6FC5397-5BP40-3BA1 153

N
NC reset, 114
NC stop, 115
Non-modal synchronized action, 12

P
POS, 73
POSRANGE, 78
Power On, 114
PRESETON, 91

R
RDISABLE, 69
Real-time variables

Advertisements, 119
RELEASE, 81
REP, 49
REPOS, 117

S
S, 86
SD42122, 31
SD43300, 80
SD43350, 125
Sequence of execution, 13
SET, 49
SETAL, 103
SETM, 102
SPOS, 86
Static synchronized action, 12
STOPRE, 73
STOPREOF, 70
Synchronized actions

Additive adjustment via SYNFCT, 62
Example Adaptive control, 125
Example Control via dyn. override, 128
Example Path feedrate control, 126
Example Presses, coupled axes, 132

SYNFCT, 61
Examples, 125

T
Technology cycle, 16
Technology cycles, 104
TRAIL..., 92

W
WHEN, 13
WHENEVER, 13

Index

 Synchronized actions
154 Function Manual, 03/2013, 6FC5397-5BP40-3BA1

	Function Manual Synchronized Actions
	Legal information
	Preface
	Contents
	1 Brief description
	2 Detailed description
	2.1 Definition of a synchronized action
	2.2 Components of synchronized actions
	2.2.1 Validity, identification number (ID, IDS)
	2.2.2 Frequency (WHENEVER, FROM, WHEN, EVERY)
	2.2.3 G function (condition)
	2.2.4 Condition
	2.2.5 G function (action)
	2.2.6 Action (DO)

	2.3 System variables for synchronized actions
	2.3.1 Reading and writing
	2.3.2 Operators and arithmetic functions
	2.3.3 Type conversions
	2.3.4 Marker/counter ($AC_MARKER)
	2.3.5 Parameters ($AC_PARAM)
	2.3.6 R parameters ($R)
	2.3.7 Machine and setting data ($$M, $$S)
	2.3.8 Timer ($AC_TIMER)
	2.3.9 FIFO variables ($AC_FIFO)
	2.3.10 Path tangent angle ($AC_TANEB)
	2.3.11 Override ($A...OVR)
	2.3.12 Capacity evaluation ($AN_IPO ... , $AN/AC_SYNC ... , $AN_SERVO)
	2.3.13 Working-area limitation ($SA_WORKAREA_ ...)
	2.3.14 SW cam positions and times ($$SN_SW_CAM_ ...)
	2.3.15 Path length evaluation / machine maintenance ($AA_TRAVEL ... ,$AA_JERK ...)
	2.3.16 Polynomial coefficients, parameters ($AC_FCT ...)
	2.3.17 Overlaid movements ($AA_OFF)
	2.3.18 Online tool length compensation ($AA_TOFF)
	2.3.19 Current block in the interpolator ($AC_BLOCKTYPE, $AC_BLOCKTYPEINFO, $AC_SPLITBLOCK)
	2.3.20 Initialization of array variables (SET, REP)

	2.4 User-defined variables for synchronized actions
	2.5 Language elements for synchronized actions and technology cycles
	2.6 Language elements for technology cycles only
	2.7 Actions in synchronized actions
	2.7.1 Output of M, S and H auxiliary functions to the PLC
	2.7.2 Reading and writing of system variables
	2.7.3 Polynomial evaluation (SYNFCT)
	2.7.4 Online tool offset (FTOC)
	2.7.5 Programmed read-in disable (RDISABLE)
	2.7.6 Cancel preprocessing stop (STOPREOF)
	2.7.7 Delete distance-to-go (DELDTG)
	2.7.8 Traversing command axes (POS)
	2.7.9 Setting the measuring system (G70, G71, G700, G710)
	2.7.10 Position in specified reference range (POSRANGE)
	2.7.11 Starting/stopping axes (MOV)
	2.7.12 Axial feedrate (FA)
	2.7.13 Axis replacement (GET, RELEASE, AXTOCHAN)
	2.7.14 Traversing spindles (M, S, SPOS)
	2.7.15 Withdrawing the enable for the axis container rotation (AXCTSWEC)
	2.7.16 Set actual value (PRESETON)
	2.7.17 Couplings (CP..., LEAD..., TRAIL..., CTAB...)
	2.7.18 Measurement (MEAWA, MEAC)
	2.7.19 Travel to fixed stop (FXS, FXST, FXSW, FOCON, FOCOF, FOC)
	2.7.20 Channel synchronization (SETM, CLEARM)
	2.7.21 User-specific error reactions (SETAL)

	2.8 Technology cycles
	2.8.1 General
	2.8.2 Processing mode (ICYCON, ICYCOF)
	2.8.3 Definitions (DEF, DEFINE)
	2.8.4 Parameter transfer
	2.8.5 Context variable ($P_TECCYCLE)

	2.9 Protected synchronized actions
	2.10 Coordination via part program and synchronized action (LOCK, UNLOCK, RESET, CANCEL)
	2.11 Coordination via PLC
	2.12 Configuration
	2.13 Control behavior in specific operating states
	2.13.1 Power On
	2.13.2 NC reset
	2.13.3 NC stop
	2.13.4 Operating mode change
	2.13.5 End of program
	2.13.6 Block search
	2.13.7 Program interruption by ASUB
	2.13.8 REPOS
	2.13.9 Response to alarms

	2.14 Diagnostics (HMI Advanced only)
	2.14.1 Displaying the status of synchronized actions
	2.14.2 Displaying main run variables
	2.14.3 Logging main run variables

	3 Examples
	3.1 Examples of conditions in synchronized actions
	3.2 Reading and writing of SD/MD from synchronized actions
	3.3 Examples of adaptive control
	3.3.1 Clearance control with variable upper limit
	3.3.2 Feedrate control
	3.3.3 Control velocity as a function of normalized path

	3.4 Monitoring a safety clearance between two axes
	3.5 Store execution times in R parameters
	3.6 "Centering" with continuous measurement
	3.7 Axis couplings via synchronized actions
	3.7.1 Coupling to leading axis
	3.7.2 Non-circular grinding via master value coupling
	3.7.3 On-the-fly parting

	3.8 Technology cycles position spindle
	3.9 Synchronized actions in the TC/MC area

	4 Data lists
	4.1 Machine data
	4.1.1 General machine data
	4.1.2 Channelspecific machine data
	4.1.3 Axis-specific machine data

	4.2 Setting data
	4.2.1 Axis/spindle-specific setting data

	4.3 Signals
	4.3.1 Signals to channel
	4.3.2 Signals from channel

	A.1 Overview

	Index

