
� �Basic Functions

SINUMERIK

SINUMERIK 840D sl / 828D
Basic Functions

Function Manual

Valid for

SINUMERIK 840D sl / 840DE sl
SINUMERIK 828D Controls

Software CNC
software version 4.5 SP2

03/2013
6FC5397-0BP40-3BA1

Preface

A2: Various NC/PLC
interface signals and
functions

1
A3: Axis Monitoring,
Protection Zones

 2
B1: Continuous-path mode,
Exact stop, Look Ahead

 3

B2: Acceleration
 4

F1: Travel to fixed stop
 5

G2: Velocities, setpoint /
actual value systems,
closed-loop control

6
H2: Auxiliary function outputs
to PLC

 7
K1: Mode group, channel,
program operation, reset
response

8
K2: Axis Types, Coordinate
Systems, Frames

 9

N2: Emergency stop
 10

P1: Transverse axes
 11

P3: Basic PLC program for
SINUMERIK 840D sl

 12
P4: PLC for SINUMERIK
828D

 13

R1: Referencing
 14

S1: Spindles
 15

V1: Feedrates
 16

W1: Tool offset
 17

Z1: NC/PLC interface signals
 18

Appendix
 A

 Siemens AG
Industry Sector
Postfach 48 48
90026 NÜRNBERG
GERMANY

Order number: 6FC5397-0BP40-3BA1
Ⓟ 04/2013 Technical data subject to change

Copyright © Siemens AG 1994 - 2013.
All rights reserved

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions.
Qualified personnel are those who, based on their training and experience, are capable of identifying risks and
avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 3

Preface

SINUMERIK documentation
The SINUMERIK documentation is organized in the following categories:

● General documentation

● User documentation

● Manufacturer/service documentation

Additional information
You can find information on the following topics at www.siemens.com/motioncontrol/docu:

● Ordering documentation/overview of documentation

● Additional links to download documents

● Using documentation online (find and search in manuals/information)

Please send any questions about the technical documentation (e.g. suggestions for
improvement, corrections) to the following address:

docu.motioncontrol@siemens.com

My Documentation Manager (MDM)
Under the following link you will find information to individually compile OEM-specific
machine documentation based on the Siemens content:

www.siemens.com/mdm

Training
For information about the range of training courses, refer under:

● www.siemens.com/sitrain

SITRAIN - Siemens training for products, systems and solutions in automation technology

● www.siemens.com/sinutrain

SinuTrain - training software for SINUMERIK

FAQs
You can find Frequently Asked Questions in the Service&Support pages under Product
Support. http://support.automation.siemens.com

http://www.siemens.com/motioncontrol/docu:
mailto:docu.motioncontrol@siemens.com
http://www.siemens.com/mdm
http://www.siemens.com/sitrain
http://www.siemens.com/sinutrain
http://support.automation.siemens.com

Preface

 Basic Functions
4 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

SINUMERIK
You can find information on SINUMERIK under the following link:

www.siemens.com/sinumerik

Target group
This publication is intended for:

● Project engineers

● Technologists (from machine manufacturers)

● System startup engineers (Systems/Machines)

● Programmers

Benefits
The function manual describes the functions so that the target group knows them and can
select them. It provides the target group with the information required to implement the
functions.

Standard version
This documentation only describes the functionality of the standard version. Extensions or
changes made by the machine tool manufacturer are documented by the machine tool
manufacturer.

Other functions not described in this documentation might be executable in the control. This
does not, however, represent an obligation to supply such functions with a new control or
when servicing.

Further, for the sake of simplicity, this documentation does not contain all detailed
information about all types of the product and cannot cover every conceivable case of
installation, operation or maintenance.

Technical Support
You will find telephone numbers for other countries for technical support in the Internet under
http://www.siemens.com/automation/service&support

http://www.siemens.com/automation/service&support
http://www.siemens.com/sinumerik

 Preface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 5

Information on the structure and contents

Installation
Structure of this Function Manual:

● Inner title (page 3) with the title of the Function Manual, the SINUMERIK controls as well
as the software and the version for which this version of the Function Manual is
applicable and the overview of the individual functional descriptions.

● Description of the functions in alphabetical order (e.g. A2, A3, B1, etc.)

● Appendix with:

– List of abbreviations

– Documentation overview

● Index of terms

 Note

For detailed descriptions of data and alarms see:
• For machine and setting data:

Detailed description of machine data (only electronically on DOConCD or DOConWEB)
• For NC/PLC interface signals:

– Function Manual, Basic Functions; NC/PLC Interface Signals (Z1)
– Function Manual, Basic Functions; NC/PLC Interface Signals (Z2)
– Function Manual, Special Functions; NC/PLC Interface Signals (Z3)

• For alarms:
Diagnostics Manual

Notation of system data
The following notation is applicable for system data in this documentation:

Signal/Data Notation Example
NC/PLC interface
signals

... NC/PLC interface signal:
<signal address> (<signal name>)

When the new gear stage is engaged, the following NC/PLC
interface signals are set by the PLC program:
DB31, ... DBX16.0-2 (actual gear stage A to C)
DB31, ... DBX16.3 (gear is changed)

Machine data ... machine data:
<Type><Number> <Complete
Designator> (<Meaning>)

Master spindle is the spindle stored in the machine data:
MD20090 $MC_SPIND_DEF_MASTER_SPIND (position of
deletion of the master spindle in the channel)

Setting data ... setting data:
<Type><Number> <Complete
Designator> (<Meaning>)

The logical master spindle is contained in the setting data:
SD42800 $SC_SPIND_ASSIGN_TAB[0] (spindle number
converter)

Preface

 Basic Functions
6 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note
Signal address

The description of functions include as <signal address> of an NC/PLC interface signal, only
the address valid for SINUMERIK 840D sl. The signal address for SINUMERIK 828D should
be taken from the data lists "Signals to/from ..." at the end of the particular description of
functions.

Quantity structure
Explanations concerning the NC/PLC interface are based on the absolute maximum number
of sequential components:

● Mode groups (DB11)

● Channels (DB21, etc.)

● Axes/spindles (DB31, etc.)

Data types
The control provides the following data types that can be used for programming in part
programs:

Type Meaning Range of values
INT Signed integers -2.147.483.648 ... +2.147.483.647
REAL Numbers with decimal point ≈ ±5,0*10-324 … ≈ ±1,7*10+308
BOOL Boolean values TRUE (≠0) , FALSE (0)
CHAR ASCII characters and bytes 0 ... 255 or -128 ... 127
STRING Character string, null-terminated Maximum of 400 characters + /0

(no special characters)
AXIS Axis names All axis names available in the control

system
FRAME Geometrical parameters for moving, rotating, scaling, and

mirroring

Note
Arrays can only be formed from similar elementary data types. Up to 3-dimensional arrays are possible.

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 7

Table of Contents

 Preface .. 3

1 A2: Various NC/PLC interface signals and functions ... 33

1.1 Brief description ...33

1.2 NC/PLC interface signals - only 840D sl..33
1.2.1 General ..33
1.2.2 Ready signal to PLC ..35
1.2.3 Status signals to PLC...35
1.2.4 Signals to/from the operator panel front ..36
1.2.5 Signals to channel..38
1.2.6 Signals to axis/spindle ...38
1.2.7 Signals from axis/spindle ...48
1.2.8 Signals to axis/spindle (digital drives)..49
1.2.9 Signals from axis/spindle (digital drives)..51

1.3 Functions..53
1.3.1 Screen settings ..53
1.3.2 Settings for involute interpolation - only 840D sl..55
1.3.3 Activate DEFAULT memory - only 840D sl..58
1.3.4 Read and write PLC variable - only 840D sl ..58
1.3.5 Access protection via password and keyswitch...62
1.3.5.1 Password ...63
1.3.5.2 Keyswitch positions (DB10, DBX56.4 to 7)..64
1.3.5.3 Parameterizable protection levels..65
1.3.6 "Parking" of a machine axis ...66
1.3.7 Switchover of motor/drive data sets...67
1.3.7.1 General Information ...67
1.3.7.2 Validity and format of the request/display interfaces ...68
1.3.7.3 Request for a new motor data set and/or drive data set..68
1.3.7.4 Display of the active motor and/or drive data set...69
1.3.7.5 Example ...69
1.3.7.6 Overview of the interfaces ...70
1.3.7.7 Supplementary conditions..71

1.4 Examples ...71

1.5 Data lists ..73
1.5.1 Machine data..73
1.5.1.1 Display machine data...73
1.5.1.2 NC-specific machine data ..73
1.5.1.3 Channelspecific machine data ...73
1.5.1.4 Axis/spindlespecific machine data ...74
1.5.2 System variables..74
1.5.3 Signals ...74
1.5.3.1 Signals to NC ...74
1.5.3.2 Signals from NC...74
1.5.3.3 Signals to operator panel front...75

Table of Contents

 Basic Functions
8 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

1.5.3.4 Signals from operator panel front.. 75
1.5.3.5 Signals to channel... 76
1.5.3.6 Signals from channel... 76
1.5.3.7 Signals to axis/spindle... 76
1.5.3.8 Signals from axis/spindle .. 77

2 A3: Axis Monitoring, Protection Zones ... 79

2.1 Brief description .. 79
2.1.1 Axis monitoring functions .. 79
2.1.2 Protection zones ... 79

2.2 Axis monitoring functions .. 80
2.2.1 Contour monitoring.. 80
2.2.1.1 Contour error... 80
2.2.1.2 Following-error monitoring .. 81
2.2.2 Positioning, zero speed and clamping monitoring .. 83
2.2.2.1 Correlation between positioning, zero-speed and clamping monitoring 83
2.2.2.2 Positioning monitoring... 83
2.2.2.3 Zero-speed monitoring .. 85
2.2.2.4 Parameter set-dependent exact stop and standstill tolerance.. 85
2.2.2.5 Clamping monitoring ... 86
2.2.3 Speed-setpoint monitoring .. 93
2.2.4 Actual-velocity monitoring ... 94
2.2.5 Measuring system monitoring ... 95
2.2.5.1 Encoder-limit-frequency monitoring .. 97
2.2.5.2 Plausibility check for absolute encoders ... 98
2.2.5.3 Customized error reactions... 100
2.2.6 Limit-switch monitoring.. 103
2.2.6.1 Hardware limit switch .. 103
2.2.6.2 Software limit switch.. 104
2.2.7 Monitoring of the working area limitation .. 106
2.2.7.1 General.. 106
2.2.7.2 Working area limitation in BKS.. 108
2.2.7.3 Working area limitation in WCS/SZS .. 110
2.2.8 Deactivating all monitoring functions: "Parking".. 113

2.3 Protection zones ... 114
2.3.1 General.. 114
2.3.2 Types of protection zone... 115
2.3.3 Definition via part program instruction .. 118
2.3.4 Definition as per system variable .. 121
2.3.5 Activating and deactivating protection zones.. 123
2.3.6 Protection zone violation and temporary enabling of individual protection zones 128
2.3.7 Restrictions in protection zones .. 132
2.3.8 Checking for protection zone violation, working area limitation and software limit switches

(CALCPOSI).. 133

2.4 Supplementary conditions... 143
2.4.1 Axis monitoring functions .. 143

2.5 Examples... 143
2.5.1 Axis monitoring functions .. 143
2.5.1.1 Working area limitation in WCS/SZS .. 143
2.5.2 Protection zones ... 146

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 9

2.5.2.1 Definition and activation of protection zones ...146

2.6 Data lists ..155
2.6.1 Machine data..155
2.6.1.1 NC-specific machine data ..155
2.6.1.2 Channelspecific machine data ...156
2.6.1.3 Axis/spindlespecific machine data ...157
2.6.2 Setting data ..158
2.6.2.1 Axis/spindlespecific setting data ..158
2.6.3 Signals ...159
2.6.3.1 Signals to channel..159
2.6.3.2 Signals from channel ...159
2.6.3.3 Signals to axis/spindle ...160

3 B1: Continuous-path mode, Exact stop, Look Ahead... 161

3.1 Brief Description...161

3.2 Exact stop mode ..164

3.3 Continuous-path mode...168
3.3.1 General functionality ..168
3.3.2 Velocity reduction according to overload factor ...170
3.3.3 Rounding..172
3.3.3.1 Rounding according to a path criterion (G641)..174
3.3.3.2 Rounding in compliance with defined tolerances (G642/G643) ..176
3.3.3.3 Rounding with maximum possible axial dynamic response (G644) ..180
3.3.3.4 Rounding of tangential block transitions (G645)..183
3.3.3.5 Rounding and repositioning (REPOS) ...185
3.3.4 LookAhead...186
3.3.4.1 Standard functionality ..186
3.3.4.2 Free-form surface mode: Extension function...191

3.4 Dynamic adaptations ...195
3.4.1 Smoothing of the path velocity...195
3.4.2 Adaptation of the dynamic path response ...200
3.4.3 Determination of the dynamic response limiting values ..204
3.4.4 Interaction between the "smoothing of the path velocity" and "adaptation of the path

dynamic response" functions ...205
3.4.5 Dynamic response mode for path interpolation ...209
3.4.6 Free-form surface mode: Basic functions ..211

3.5 Compressor functions ..215
3.5.1 NC block compression ...215
3.5.2 Combine short spline blocks ..218

3.6 Contour/Orientation tolerance..220

3.7 Tolerance and compression of G0 blocks ...223

3.8 RESET behavior ..226

3.9 Supplementary conditions..226
3.9.1 Block change and positioning axes ...226
3.9.2 Block change delay..226

3.10 Data lists ..227
3.10.1 Machine data..227

Table of Contents

 Basic Functions
10 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.10.1.1 General machine data... 227
3.10.1.2 Channelspecific machine data .. 227
3.10.1.3 Axis/spindlespecific machine data .. 228
3.10.2 Setting data ... 229
3.10.2.1 Channelspecific setting data ... 229
3.10.3 Signals... 229
3.10.3.1 Signals from channel... 229
3.10.3.2 Signals from axis/spindle .. 229

4 B2: Acceleration... 231

4.1 Brief description .. 231
4.1.1 General.. 231
4.1.2 Features .. 231

4.2 Functions... 233
4.2.1 Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-specific) 233
4.2.1.1 General Information .. 233
4.2.1.2 Parameterization ... 234
4.2.1.3 Programming... 235
4.2.2 Constant travel time (channel-specific)... 237
4.2.2.1 General Information .. 237
4.2.2.2 Parameterization ... 238
4.2.3 Acceleration matching (ACC) (axis-specific)... 238
4.2.3.1 General Information .. 238
4.2.3.2 Programming... 238
4.2.4 Acceleration margin (channel-specific) ... 239
4.2.4.1 General Information .. 239
4.2.4.2 Parameterization ... 239
4.2.5 Path-acceleration limitation (channel-specific).. 240
4.2.5.1 General Information .. 240
4.2.5.2 Parameterization ... 240
4.2.5.3 Programming... 240
4.2.6 Path acceleration for real-time events (channel-specific) ... 241
4.2.6.1 General Information .. 241
4.2.6.2 Programming... 242
4.2.7 Acceleration with programmed rapid traverse (G00) (axis-specific) ... 243
4.2.7.1 General Information .. 243
4.2.7.2 Parameterization ... 243
4.2.8 Acceleration with active jerk limitation (SOFT/SOFTA) (axis-specific) 243
4.2.8.1 General Information .. 243
4.2.8.2 Parameterization ... 244
4.2.9 Excessive acceleration for non-tangential block transitions (axis-specific) 244
4.2.9.1 General Information .. 244
4.2.9.2 Parameterization ... 244
4.2.10 Acceleration margin for radial acceleration (channel-specific) ... 245
4.2.10.1 General Information .. 245
4.2.10.2 Parameterization ... 246
4.2.11 Jerk limitation with path interpolation (SOFT) (channel-specific).. 246
4.2.11.1 General Information .. 246
4.2.11.2 Parameterization ... 248
4.2.11.3 Programming... 249
4.2.12 Jerk limitation with single-axis interpolation (SOFTA) (axis-specific) 249
4.2.12.1 Parameterization ... 249

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 11

4.2.12.2 Programming..250
4.2.13 Path-jerk limitation (channel-specific) ..251
4.2.13.1 General Information ...251
4.2.13.2 Parameterization..251
4.2.13.3 Programming..251
4.2.14 Path jerk for real-time events (channel-specific)..252
4.2.14.1 General Information ...252
4.2.14.2 Programming..253
4.2.15 Jerk with programmed rapid traverse (G00) (axis-specific)...254
4.2.15.1 General Information ...254
4.2.15.2 Parameterization..254
4.2.16 Excessive jerk for block transitions without constant curvature (axis-specific)255
4.2.16.1 General Information ...255
4.2.16.2 Parameterization..255
4.2.17 Velocity-dependent jerk adaptation (axis-specific) ..255
4.2.18 Jerk filter (axis-specific) ...258
4.2.18.1 General Information ...258
4.2.18.2 Parameterization..260
4.2.19 Kneeshaped acceleration characteristic curve ..261
4.2.19.1 Adaptation to the motor characteristic curve ...261
4.2.19.2 Effects on path acceleration...263
4.2.19.3 Substitute characteristic curve...264
4.2.19.4 Parameterization..266
4.2.19.5 Programming..267
4.2.19.6 Boundary conditions ..268
4.2.20 Acceleration and jerk for JOG motions ..269
4.2.20.1 Parameterization..269
4.2.20.2 Supplementary conditions..271

4.3 Examples ...272
4.3.1 Acceleration ...272
4.3.1.1 Path velocity characteristic ..272
4.3.2 Jerk ..274
4.3.2.1 Path velocity characteristic ..274
4.3.3 Acceleration and jerk ...275
4.3.4 Knee-shaped acceleration characteristic curve ...277
4.3.4.1 Activation..277

4.4 Data lists ..278
4.4.1 Machine data..278
4.4.1.1 NC-specific machine data ..278
4.4.1.2 Channel-specific machine data..278
4.4.1.3 Axis/spindlespecific machine data ...279
4.4.2 Setting data ..280
4.4.2.1 Channelspecific setting data ..280
4.4.3 System variables..280

5 F1: Travel to fixed stop .. 281

5.1 Brief description ...281

5.2 Detailed description ...281
5.2.1 Programming..281
5.2.2 Functional sequence..285
5.2.2.1 Selection ..285

Table of Contents

 Basic Functions
12 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

5.2.2.2 Fixed stop is reached .. 286
5.2.2.3 Fixed stop is not reached.. 288
5.2.2.4 Deselection ... 289
5.2.3 Behavior during block search.. 291
5.2.4 Behavior for reset and function abort.. 294
5.2.5 Behavior with regard to other functions .. 295
5.2.6 Setting data ... 296
5.2.7 System variable... 297
5.2.8 Fixed stop alarms.. 298
5.2.9 Travel with limited torque/force FOC .. 299

5.3 Examples... 303

5.4 Data lists.. 304
5.4.1 Machine data... 304
5.4.1.1 Axis/spindlespecific machine data .. 304
5.4.2 Setting data ... 305
5.4.2.1 Axis/spindle-specific setting data .. 305
5.4.3 Signals... 305
5.4.3.1 Signals to axis/spindle... 305
5.4.3.2 Signals from axis/spindle .. 305

6 G2: Velocities, setpoint / actual value systems, closed-loop control .. 307

6.1 Brief description .. 307

6.2 Velocities, traversing ranges, accuracies.. 307
6.2.1 Velocities ... 307
6.2.2 Traversing ranges ... 309
6.2.3 Positioning accuracy of the control system... 310
6.2.4 Input/display resolution, computational resolution .. 311
6.2.5 Scaling of physical quantities of machine and setting data .. 312

6.3 Metric/inch measuring system .. 316
6.3.1 Conversion of basic system by part program.. 316
6.3.2 Manual switchover of the basic system .. 320
6.3.3 FGROUP and FGREF... 325

6.4 Setpoint/actual-value system .. 328
6.4.1 General.. 328
6.4.2 Setpoint and encoder assignment .. 331
6.4.3 Adapting the motor/load ratios .. 334
6.4.4 Speed setpoint output ... 337
6.4.5 Actual-value processing .. 339
6.4.6 Actual-value resolution.. 341
6.4.6.1 Description of the function... 341
6.4.6.2 Example: Linear axis with linear scale .. 343
6.4.6.3 Example: Linear axis with rotary encoder on motor.. 343
6.4.6.4 Example: Linear axis with rotary encoder on the machine ... 345
6.4.6.5 Example: Rotary axis with rotary encoder on motor ... 346
6.4.6.6 Example: Rotary axis with rotary encoder on the machine... 348
6.4.6.7 Example: Intermediate gear with encoder on the tool .. 349

6.5 Closed-loop control ... 350
6.5.1 General.. 350
6.5.2 Parameter sets of the position controller .. 353

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 13

6.6 Optimization of the control ...355
6.6.1 Position controller, position setpoint filter: Balancing filter...355
6.6.2 Position controller, position setpoint filter: Jerk filter..358
6.6.3 Position controller, position setpoint filter: Phase filter ..360
6.6.4 Position controller: injection of positional deviation ...362
6.6.5 Position control with proportional-plus-integral-action controller ...363

6.7 Data lists ..366
6.7.1 Machine data..366
6.7.1.1 Displaying machine data..366
6.7.1.2 NC-specific machine data ..366
6.7.1.3 Channelspecific machine data ...367
6.7.1.4 Axis/spindlespecific machine data ...367

7 H2: Auxiliary function outputs to PLC... 369

7.1 Brief description ...369
7.1.1 Function ...369
7.1.2 Definition of an auxiliary function ...370
7.1.3 Overview of the auxiliary functions ..371

7.2 Predefined auxiliary functions ..377
7.2.1 Overview: Predefined auxiliary functions...377
7.2.2 Overview: Output behavior ..389
7.2.3 Parameterization..392
7.2.3.1 Group assignment..392
7.2.3.2 Type, address extension and value ...393
7.2.3.3 Output behavior ...394

7.3 Userdefined auxiliary functions..398
7.3.1 Parameterization..400
7.3.1.1 Maximum number of user-defined auxiliary functions ...400
7.3.1.2 Group assignment..400
7.3.1.3 Type, address extension and value ...401
7.3.1.4 Output behavior ...402

7.4 Associated auxiliary functions..402

7.5 Type-specific output behavior ..404

7.6 Priorities of the output behavior for which parameters have been assigned.............................406

7.7 Programming an auxiliary function...407

7.8 Programmable output duration ..408

7.9 Auxiliary function output to the PLC...410

7.10 Auxiliary functions without block change delay..411

7.11 M function with an implicit preprocessing stop ..411

7.12 Response to overstore...412

7.13 Behavior during block search...413
7.13.1 Auxiliary function output during type 1, 2, and 4 block searches...413
7.13.2 Assignment of an auxiliary function to a number of groups...415
7.13.3 Time stamp of the active M auxiliary function..417
7.13.4 Determining the output sequence..417
7.13.5 Output suppression of spindle-specific auxiliary functions ..418

Table of Contents

 Basic Functions
14 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

7.13.6 Auxiliary function output with a type 5 block search (SERUPRO).. 422
7.13.7 ASUB at the end of the SERUPRO .. 426

7.14 Implicitly output auxiliary functions.. 433

7.15 Information options.. 434
7.15.1 Group-specific modal M auxiliary function display.. 434
7.15.2 Querying system variables.. 435

7.16 Supplementary conditions... 437
7.16.1 General constraints ... 437
7.16.2 Output behavior... 438

7.17 Examples... 440
7.17.1 Extension of predefined auxiliary functions... 440
7.17.2 Defining auxiliary functions ... 441

7.18 Data lists.. 446
7.18.1 Machine data... 446
7.18.1.1 NC-specific machine data ... 446
7.18.1.2 Channelspecific machine data .. 446
7.18.2 Signals... 447
7.18.2.1 Signals to channel... 447
7.18.2.2 Signals from channel... 447
7.18.2.3 Signals to axis/spindle... 449
7.18.2.4 Signals from axis/spindle .. 449

8 K1: Mode group, channel, program operation, reset response .. 451

8.1 Product brief.. 451

8.2 Mode group ... 454
8.2.1 Mode group stop ... 457
8.2.2 Mode group reset .. 457

8.3 Mode types and mode type change.. 458
8.3.1 Monitoring functions and interlocks of the individual modes... 463
8.3.2 Mode change .. 463

8.4 Channel ... 465
8.4.1 Global start disable for channel .. 468

8.5 Program test.. 469
8.5.1 Program execution without setpoint outputs ... 469
8.5.2 Program execution in single-block mode .. 471
8.5.3 Program execution with dry run feedrate .. 473
8.5.4 Skip part-program blocks .. 474

8.6 Workpiece simulation .. 475

8.7 Block search.. 476
8.7.1 Sequence for block search of the type 1, 2 and 4 .. 478
8.7.2 Block search in connection with other NCK functions .. 480
8.7.2.1 ASUB after and during block search... 480
8.7.2.2 PLC actions after block search ... 481
8.7.2.3 Spindle functions after block search ... 482
8.7.2.4 Reading system variables for a block search ... 483
8.7.3 Automatic start of an ASUB after a block search.. 483
8.7.4 Cascaded block search... 485

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 15

8.7.5 Examples for block search with calculation ...487

8.8 Block search Type 5 SERUPRO..491
8.8.1 Description of the function ...491
8.8.2 REPOS...495
8.8.2.1 Continue machining at the contour after SERUPRO search target found.................................495
8.8.2.2 Repositioning on contour with controlled REPOS ...503
8.8.3 Acceleration measures via MD ..505
8.8.4 SERUPRO ASUB ..506
8.8.5 Selfacting SERUPRO ..509
8.8.6 Locking a program section for "Continue machining at the contour"...510
8.8.7 Behavior during POWER ON, mode change and RESET...514
8.8.8 Supplementary conditions..514
8.8.8.1 STOPRE in the target block...514
8.8.8.2 SPOS in target block..515
8.8.8.3 Travel to fixed stop (FXS) ..515
8.8.8.4 Travel with limited torque/force (FOC)...516
8.8.8.5 Synchronous spindle..516
8.8.8.6 Couplings and master-slave ..517
8.8.8.7 Axis functions...520
8.8.8.8 Gear stage change ..521
8.8.8.9 Superimposed motion ..522
8.8.8.10 NC/PLC interface signals...522
8.8.8.11 Making the initial settings more flexible ...523
8.8.9 System variable..523

8.9 Program operation ...524
8.9.1 Initial settings ...524
8.9.2 Selection and start of part program or part program block ..527
8.9.3 Part program interruption ...529
8.9.4 RESET command ..531
8.9.5 Program status...532
8.9.6 Channel status ...533
8.9.7 Responses to operator or program actions ...534
8.9.8 Part-Program Start ...535
8.9.9 Example of a timing diagram for a program run ..536
8.9.10 Program jumps...536
8.9.10.1 Jump back to start of program ...536
8.9.11 Program section repetitions ...539
8.9.11.1 Overview ..539
8.9.11.2 Individual part program block...539
8.9.11.3 A part program section after a start label...540
8.9.11.4 A part program section between a start label and end label ...541
8.9.11.5 A part program section between a Start label and the key word: ENDLABEL542
8.9.12 Event-driven program calls ..543
8.9.12.1 Function ...543
8.9.12.2 Parameterization..547
8.9.12.3 Programming..552
8.9.12.4 Boundary conditions ..553
8.9.12.5 Examples ...554
8.9.13 Influencing the Stop events through Stop delay area..555

8.10 Asynchronous subprograms (ASUBs), interrupt routines..559
8.10.1 Function ...559

Table of Contents

 Basic Functions
16 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.10.1.1 General functionality ... 559
8.10.1.2 Sequence of an interrupt routine in program operation .. 561
8.10.1.3 Interrupt routine with REPOSA ... 562
8.10.1.4 NC response ... 563
8.10.2 Parameterization ... 564
8.10.3 Programming... 568
8.10.4 Restrictions ... 570
8.10.5 Examples... 570

8.11 User-specific ASUB for RET and REPOS .. 571
8.11.1 Function... 571
8.11.2 Parameter assignment .. 571
8.11.3 Programming... 572

8.12 Single block... 573
8.12.1 Decoder single block SBL2 with implicit preprocessing stop.. 574
8.12.2 Single-block stop: Suppression using SBLOF .. 575
8.12.3 Single-block stop: Inhibit according to situation.. 577
8.12.4 Single-block behavior in mode group with type A/B ... 579

8.13 Program control... 580
8.13.1 Function selection (via operator panel front or PLC) .. 580
8.13.2 Activation of skip levels ... 581
8.13.3 Adapting the size of the interpolation buffer.. 582
8.13.4 Program display modes via an additional basic block display .. 584
8.13.5 Basic block display for ShopMill/ShopTurn... 585
8.13.6 Structure for a DIN block... 587
8.13.7 Execution from external .. 590
8.13.8 Execution from external subroutines... 592

8.14 System settings for power-up, RESET / part program end and part program start.................. 595
8.14.1 Tool withdrawal after POWER ON with orientation transformation .. 600

8.15 Replacing functions by subprograms.. 602
8.15.1 Overview ... 602
8.15.2 Replacement of M, T/TCA and D/DL functions... 603
8.15.2.1 Replacement of M functions.. 603
8.15.2.2 Replacing T/TCA and D/DL functions ... 606
8.15.2.3 System variable... 608
8.15.2.4 Example: Replacement of an M function .. 610
8.15.2.5 Example: Replacement of a T and D function .. 612
8.15.2.6 Behavior in the event of a conflict ... 614
8.15.3 Replacement of spindle functions ... 615
8.15.3.1 General.. 615
8.15.3.2 Replacement of M40 - M45 (gear stage change) ... 616
8.15.3.3 Replacement of SPOS, SPOSA, M19 (spindle positioning) ... 617
8.15.3.4 System variable... 618
8.15.3.5 Example: Gear stage change.. 619
8.15.3.6 Example: Spindle positioning.. 621
8.15.4 Properties of the subprograms.. 624
8.15.5 Restrictions ... 626

8.16 Program runtime / part counter ... 627
8.16.1 Program runtime ... 627
8.16.2 Workpiece counter .. 634

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 17

8.17 Data lists ..638
8.17.1 Machine data..638
8.17.1.1 General machine data..638
8.17.1.2 Channel-specific machine data..639
8.17.1.3 Axis/spindlespecific machine data ...642
8.17.2 Setting data ..643
8.17.2.1 Channelspecific setting data ..643
8.17.3 Signals ...643
8.17.3.1 Signals to NC ...643
8.17.3.2 Signals to mode group ...643
8.17.3.3 Signals to NC ...644
8.17.3.4 Signals to channel..644
8.17.3.5 Signals from channel ...645
8.17.3.6 Signals to NC ...646
8.17.3.7 Signals from axis/spindle ...646

9 K2: Axis Types, Coordinate Systems, Frames... 647

9.1 Brief description ...647
9.1.1 Axes ...647
9.1.2 Coordinate systems ...649
9.1.3 Frames ...651

9.2 Axes ...655
9.2.1 Overview ..655
9.2.2 Machine axes...656
9.2.3 Channel axes ...657
9.2.4 Geometry axes...657
9.2.5 Replaceable geometry axes ..657
9.2.6 Special axes...662
9.2.7 Path axes ...663
9.2.8 Positioning axes...663
9.2.9 Main axes...664
9.2.10 Synchronized axes...665
9.2.11 Axis configuration...667
9.2.12 Link axes ..669

9.3 Zeros and reference points ..670
9.3.1 Reference points in working space..670
9.3.2 Position of coordinate systems and reference points ..672

9.4 Coordinate systems ...673
9.4.1 Overview ..673
9.4.2 Machine coordinate system (MCS)..676
9.4.3 Basic coordinate system (BCS) ...678
9.4.4 Additive offsets...680
9.4.5 Basic zero system (BZS) ...683
9.4.6 Settable zero system (SZS) ...685
9.4.7 Workpiece coordinate system (WCS)..686

9.5 Frames ...686
9.5.1 Frame types ...686
9.5.2 Frame components ..688
9.5.2.1 Translation ...688
9.5.2.2 Fine offset ..689

Table of Contents

 Basic Functions
18 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.2.3 Rotation Overview (geometry axes only) .. 690
9.5.2.4 Rotation with a Euler angles: ZY'X" convention (RPY angles) ... 691
9.5.2.5 Rotation with a Euler angles: ZX'Z" convention.. 696
9.5.2.6 Rotation in any plane .. 697
9.5.2.7 Scaling... 698
9.5.2.8 Mirroring .. 698
9.5.2.9 Chain operator .. 699
9.5.2.10 Programmable axis name ... 699
9.5.2.11 Coordinate transformation... 700
9.5.3 Frames in data management and active frames... 701
9.5.3.1 Overview ... 701
9.5.3.2 Activating data management frames .. 702
9.5.3.3 NCU global frames.. 704
9.5.4 Frame chain and coordinate systems ... 705
9.5.4.1 Overview ... 705
9.5.4.2 Relative coordinate systems ... 706
9.5.4.3 Configurable SZS.. 707
9.5.4.4 Manual traverse in the SZS coordinate system .. 709
9.5.4.5 Suppression of frames .. 710
9.5.5 Frames of the frame chain .. 712
9.5.5.1 Overview ... 712
9.5.5.2 Settable frames $P_UIFR[n] ... 712
9.5.5.3 Channel basic frames $P_CHBFR[n].. 713
9.5.5.4 NCU global basic frames $P_NCBFR[n]... 714
9.5.5.5 Complete basic frame $P_ACTBFRAME.. 716
9.5.5.6 Programmable frame $P_PFRAME .. 716
9.5.5.7 Channelspecific system frames .. 719
9.5.6 Implicit frame changes .. 722
9.5.6.1 Frames and switchover of geometry axes .. 722
9.5.6.2 Frame for selection and deselection of transformations ... 725
9.5.6.3 Adapting active frames.. 743
9.5.6.4 Mapped Frames .. 744
9.5.7 Predefined frame functions ... 748
9.5.7.1 Inverse frame .. 748
9.5.7.2 Additive frame in frame chain.. 751
9.5.8 Functions... 753
9.5.8.1 Setting zeros, workpiece measuring and tool measuring ... 753
9.5.8.2 Zero offset external via system frames ... 753
9.5.8.3 Toolholder ... 754
9.5.9 Subprograms with SAVE attribute (SAVE) ... 765
9.5.10 Data backup .. 766
9.5.11 Positions in the coordinate system ... 767
9.5.12 Control system response .. 767
9.5.12.1 POWER ON .. 767
9.5.12.2 Mode change .. 768
9.5.12.3 RESET, end of part program .. 768
9.5.12.4 Part program start ... 771
9.5.12.5 Block search.. 772
9.5.12.6 REPOS.. 772

9.6 Workpiece-related actual value system .. 773
9.6.1 Overview ... 773
9.6.2 Use of the workpiece-related actual value system ... 773

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 19

9.6.3 Special reactions..775

9.7 Restrictions ..776

9.8 Examples ...777
9.8.1 Axes ...777
9.8.2 Coordinate systems ...779
9.8.3 Frames ...781

9.9 Data lists ..783
9.9.1 Machine data..783
9.9.1.1 Displaying machine data..783
9.9.1.2 NC-specific machine data ..783
9.9.1.3 Channel-specific machine data..784
9.9.1.4 Axis/spindlespecific machine data ...785
9.9.2 Setting data ..785
9.9.2.1 Channelspecific setting data ..785
9.9.3 System variables..785
9.9.4 Signals ...787
9.9.4.1 Signals from channel ...787
9.9.4.2 Signals to axis/spindle ...787
9.9.4.3 Signals from axis/spindle ...787

10 N2: Emergency stop .. 789

10.1 Brief Description...789

10.2 Relevant standards ..789

10.3 Emergency stop control elements ...791

10.4 Emergency stop sequence ..792

10.5 Emergency stop acknowledgement...794

10.6 Data lists ..796
10.6.1 Machine data..796
10.6.1.1 Axis/spindlespecific machine data ...796
10.6.2 Signals ...796
10.6.2.1 Signals to NC ...796
10.6.2.2 Signals from NC...796
10.6.2.3 Signals to BAG...796

11 P1: Transverse axes.. 797

11.1 Brief description ...797

11.2 Defining a geometry axis as transverse axis ...799

11.3 Dimensional information for transverse axes...801

11.4 Data lists ..808
11.4.1 Machine data..808
11.4.1.1 Channelspecific machine data ...808
11.4.1.2 Axis/spindlespecific machine data ...808

12 P3: Basic PLC program for SINUMERIK 840D sl .. 809

12.1 Brief description ...809

12.2 Key data of the PLC CPU ..811

Table of Contents

 Basic Functions
20 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.3 PLC operating system version .. 812

12.4 PLC mode selector.. 812

12.5 Reserve resources (timers, counters, FC, FB, DB, I/O) ... 813

12.6 Commissioning hardware configuration of the PLC CPU... 813

12.7 Starting up the PLC program .. 814
12.7.1 Installation of the basic program ... 814
12.7.2 Application of the basic program... 814
12.7.3 Version codes ... 815
12.7.4 Machine program .. 815
12.7.5 Data backup .. 816
12.7.6 PLC series startup, PLC archive... 816
12.7.7 Software upgrade.. 819
12.7.8 I/O modules (FM, CP modules)... 820
12.7.9 Troubleshooting .. 821

12.8 Coupling of the PLC CPU ... 822
12.8.1 General.. 822
12.8.2 Properties of the PLC CPU ... 822
12.8.3 Interface with integrated PLC.. 822
12.8.4 Diagnostic buffer on PLC .. 825

12.9 Interface structure ... 825
12.9.1 PLC/NCK interface.. 825
12.9.2 Interface PLC/HMI... 831
12.9.3 PLC/MCP/HHU interface... 835

12.10 Structure and functions of the basic program ... 837
12.10.1 Startup and synchronization of NCK PLC... 838
12.10.2 Cyclic operation (OB 1) ... 839
12.10.3 Time-interrupt processing (OB 35).. 841
12.10.4 Process interrupt processing (OB 40)... 841
12.10.5 Diagnostic interrupt, module failure processing (OB 82, OB 86) .. 842
12.10.6 Response to NCK failure... 842
12.10.7 Functions of the basic program called from the user program ... 843
12.10.8 Symbolic programming of user program with interface DB .. 846
12.10.9 M decoding acc. to list... 847
12.10.10 PLC machine data... 851
12.10.11 Configuration machine control panel, handheld unit, direct keys ... 855
12.10.12 Switchover of machine control panel, handheld unit .. 864

12.11 SPL for Safety Integrated.. 866

12.12 Assignment overview .. 866
12.12.1 Assignment: NCK/PLC interface... 866
12.12.2 Assignment: FB/FC ... 866
12.12.3 Assignment: DB .. 867
12.12.4 Assignment: Timers .. 868

12.13 PLC functions for HMI ... 868
12.13.1 Program selection from the PLC... 868
12.13.2 Activating the key lock... 870
12.13.3 HMI monitor... 871

12.14 Memory requirements of the basic PLC program ... 872

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 21

12.15 Basic conditions and NC VAR selector..875
12.15.1 Supplementary conditions..875
12.15.1.1 Programming and parameterizing tools..875
12.15.1.2 SIMATIC documentation required ..877
12.15.1.3 Relevant SINUMERIK documents ..877
12.15.2 NC VAR selector..877
12.15.2.1 Overview ...877
12.15.2.2 Description of functions ..880
12.15.2.3 Startup, installation ...888

12.16 Block descriptions ..889
12.16.1 FB 1: RUN_UP Basic program, startup section ...889
12.16.2 FB 2: Read GET NC variable...897
12.16.3 FB 3: PUT write NC variables ..904
12.16.4 PI services..911
12.16.4.1 FB 4: PI_SERV PI service request ...911
12.16.4.2 List of available Pl services...913
12.16.4.3 PI service: ASUB ..914
12.16.4.4 PI service: CANCEL..915
12.16.4.5 PI service: CONFIG ..916
12.16.4.6 PI service: DIGION ...916
12.16.4.7 PI service: DIGIOF..916
12.16.4.8 PI service: FINDBL ...917
12.16.4.9 PI service: LOGIN...917
12.16.4.10 PI service: LOGOUT...917
12.16.4.11 PI service: NCRES..918
12.16.4.12 PI service: SELECT ..918
12.16.4.13 PI service: SETUDT..919
12.16.4.14 PI service: SETUFR..919
12.16.4.15 PI service: RETRAC ...919
12.16.4.16 PI service: CRCEDN...920
12.16.4.17 PI service: CREACE ...921
12.16.4.18 PI service: CREATO ...921
12.16.4.19 PI service: DELECE..922
12.16.4.20 PI service: DELETO..922
12.16.4.21 PI service: MMCSEM..923
12.16.4.22 PI service: TMCRTO...924
12.16.4.23 PI service: TMFDPL..925
12.16.4.24 PI service: TMFPBP..926
12.16.4.25 PI service: TMGETT ...927
12.16.4.26 PI service: TMMVTL ...928
12.16.4.27 PI service: TMPOSM ..929
12.16.4.28 PI service: TMPCIT...930
12.16.4.29 PI service: TMRASS ...931
12.16.4.30 PI service: TRESMO...931
12.16.4.31 PI service: TSEARC..932
12.16.4.32 PI service: TMCRMT...935
12.16.4.33 PI service: TMDLMT ...935
12.16.4.34 PI service: POSMT ...936
12.16.4.35 PI service: FDPLMT..937
12.16.5 FB 5: GETGUD read GUD variable ...939
12.16.6 FB 7: PI_SERV2 (PI service request) ..947
12.16.7 FB 9: MtoN Control unit switchover ...948

Table of Contents

 Basic Functions
22 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.8 FB 10: Safety relay (SI relay) .. 953
12.16.9 FB 11: Brake test .. 956
12.16.10 FB 29: Signal recorder and data trigger diagnostics... 961
12.16.11 FC 2: GP_HP Basic program, cyclic section... 965
12.16.12 FC 3: GP_PRAL Basic program, interruptdriven section .. 966
12.16.13 FC 5: GP_DIAG Basic program, diagnostic alarm, and module failure 969
12.16.14 FC 6: TM_TRANS2 transfer block for tool management and multitool..................................... 970
12.16.15 FC 7: TM_REV Transfer block for tool change with revolver.. 972
12.16.16 FC 8: TM_TRANS transfer block for tool management .. 975
12.16.17 FC 9: ASUB startup of asynchronous subprograms... 981
12.16.18 FC 10: AL_MSG error and operating messages... 984
12.16.19 FC 12: AUXFU call interface for user with auxiliary functions .. 986
12.16.20 FC 13: BHGDisp Display control for handheld unit... 987
12.16.21 FC 17: YDelta Star-Delta changeover .. 991
12.16.22 FC 18: SpinCtrl Spindle control... 994
12.16.23 FC 19: MCP_IFM transmission of MCP signals to interface... 1005
12.16.24 FC 21: transfer PLC NCK data exchange... 1011
12.16.25 FC 22: TM_DIR Direction selection for tool management .. 1019
12.16.26 FC 24: MCP_IFM2 transmission of MCP signals to interface... 1021
12.16.27 FC 25: MCP_IFT transfer of MCP/OP signals to interface ... 1024
12.16.28 FC 26: HPU_MCP transmission of HT8 signals to interface... 1027
12.16.28.1 Overview of the NC/PLC interface signals of HT 8.. 1032
12.16.28.2 Overview of the NC/PLC interface signals of HT 8.. 1033
12.16.29 FC 19, FC 24, FC 25, FC 26 source code description.. 1034
12.16.30 FC 1005: AG_SEND transfers data to Ethernet CP ... 1036
12.16.31 FC 1006: AG_RECV receives data from the Ethernet CP.. 1037

12.17 Signal/data descriptions .. 1038
12.17.1 Interface signals NCK/PLC, HMI/PLC, MCP/PLC .. 1038
12.17.2 Decoded M signals.. 1038
12.17.3 G Functions... 1039
12.17.4 Message signals in DB 2... 1041

12.18 Programming tips with STEP 7 ... 1041
12.18.1 Copying data ... 1041
12.18.2 ANY and POINTER... 1042
12.18.2.1 Use of POINTER and ANY in FC... 1042
12.18.2.2 Use of POINTER and ANY in FB... 1043
12.18.2.3 POINTER or ANY variable for transfer to FC or FB... 1045
12.18.3 Multiinstance DB ... 1047
12.18.4 Strings ... 1048
12.18.5 Determining offset addresses for data block structures.. 1049
12.18.6 FB calls.. 1049

12.19 Data lists.. 1051
12.19.1 Machine data... 1051
12.19.1.1 Display machine data... 1051
12.19.1.2 NC-specific machine data .. 1051
12.19.1.3 Channelspecific machine data ... 1052

13 P4: PLC for SINUMERIK 828D.. 1053

13.1 Overview ... 1053
13.1.1 PLC firmware .. 1053
13.1.2 PLC user interface .. 1053

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 23

13.1.2.1 Data that are cyclically exchanged ..1055
13.1.2.2 Alarms and messages ...1055
13.1.2.3 Retentive data..1055
13.1.2.4 Non-retentive data ...1056
13.1.2.5 PLC machine data ...1056
13.1.3 PLC key data..1056
13.1.4 PLC I/O, fast onboard inputs/outputs...1057
13.1.5 PLC Toolbox ..1057
13.1.5.1 Star/delta changeover..1057

13.2 PLC Programming Tool ...1057

13.3 Programming..1058
13.3.1 Introduction ..1058
13.3.1.1 Important terms..1058
13.3.1.2 Create/open a project ..1061
13.3.1.3 Program organization using the the Programming Tool ..1062
13.3.1.4 Fast on-board inputs and outputs ..1064
13.3.2 Target system memory ..1065
13.3.2.1 Type of memory ...1065
13.3.2.2 Addressing range of the target system ..1066
13.3.2.3 Addressing ...1068
13.3.2.4 Data types..1070
13.3.2.5 Constants ...1073
13.3.2.6 Data blocks ..1074
13.3.2.7 Special bit memories and their functions ...1086
13.3.2.8 Editing NC variables in the PLC Programming Tool..1086
13.3.3 Operation set..1089
13.3.4 Data classes...1089
13.3.4.1 Defining data classes...1089
13.3.4.2 Assigning a block to a data class...1092
13.3.4.3 Load data class(es) into the CPU ..1093
13.3.4.4 Load data class(es) from CPU...1095
13.3.4.5 Comparison between online and offline projects ...1096
13.3.4.6 Delete in the target system ..1097
13.3.5 Rewire addresses ..1097

13.4 Test and diagnostic functions ..1100
13.4.1 Program status...1100
13.4.1.1 Status definition ...1101
13.4.1.2 Preconditions of the status update ..1102
13.4.1.3 Influence of the operating state on the target system..1102
13.4.1.4 Communication and cycle..1102
13.4.1.5 Status update...1103
13.4.1.6 Simulating process conditions ...1103
13.4.1.7 Checking cross references and the elements used...1103
13.4.2 Program status in the LAD program editor ..1104
13.4.2.1 Display program status ..1104
13.4.2.2 Pause Program Status...1105
13.4.2.3 Display properties ..1106
13.4.2.4 Execution status...1107
13.4.2.5 Cycle-end status ..1108
13.4.2.6 Display types of the status values ...1110
13.4.2.7 Adapting the program status display ...1111

Table of Contents

 Basic Functions
24 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.4.3 Displaying the status in a status chart .. 1112
13.4.3.1 Properties of a status chart ... 1112
13.4.3.2 Open status chart.. 1114
13.4.3.3 Working with several status charts ... 1114
13.4.3.4 Creating a status chart .. 1115
13.4.3.5 Editing the status chart.. 1116
13.4.3.6 Data formats.. 1117
13.4.3.7 Enabling the status table... 1118
13.4.3.8 Working with test functions in the status chart.. 1118
13.4.4 Execute cycles .. 1119

13.5 Data interface.. 1120
13.5.1 PLC-NCK interface.. 1120
13.5.1.1 Mode signals ... 1120
13.5.1.2 NC channel signals ... 1121
13.5.1.3 Axis and spindle signals.. 1122
13.5.1.4 General NCK signals... 1123
13.5.1.5 Fast data exchange PLC-NCK.. 1124
13.5.2 PLC-HMI interface... 1124

13.6 Function interface.. 1125
13.6.1 Read/write NC variables ... 1125
13.6.1.1 User interface.. 1125
13.6.1.2 Job specification.. 1125
13.6.1.3 Job management: Start job... 1127
13.6.1.4 Job management: Waiting for end of job .. 1127
13.6.1.5 Job management: Job completion .. 1128
13.6.1.6 Job management: Flow diagram... 1128
13.6.1.7 Job evaluation ... 1129
13.6.1.8 Operable variables .. 1131
13.6.1.9 Specifying selected NC variables ... 1138
13.6.2 Program instance services (PI services)... 1139
13.6.2.1 User interface.. 1139
13.6.2.2 PI services... 1141
13.6.3 PLC user alarms ... 1144
13.6.3.1 User interface.. 1144
13.6.4 PLC axis control .. 1148
13.6.4.1 Overview ... 1148
13.6.4.2 User interface: Preparing the NC axis as PLC axis .. 1149
13.6.4.3 User interface: Functionality.. 1150
13.6.4.4 Spindle positioning .. 1152
13.6.4.5 Rotate spindle ... 1153
13.6.4.6 Oscillate spindle .. 1155
13.6.4.7 Indexing axis ... 1156
13.6.4.8 Positioning axis metric .. 1158
13.6.4.9 Positioning axis inch.. 1159
13.6.4.10 Positioning axis metric with handwheel override ... 1161
13.6.4.11 Positioning axis inch with handwheel override .. 1162
13.6.4.12 Rotate spindle with automatic gear stage selection... 1164
13.6.4.13 Rotate spindle with constant cutting rate [m/min] .. 1165
13.6.4.14 Rotate spindle with constant cutting rate [feet/min] ... 1167
13.6.4.15 Error messages.. 1168
13.6.5 Starting ASUBs ... 1170

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 25

13.6.5.1 General ..1170
13.6.5.2 Job start ...1170
13.6.5.3 Job result..1171
13.6.5.4 Signal flow..1172

14 R1: Referencing... 1173

14.1 Brief Description...1173

14.2 Axisspecific referencing ...1174

14.3 Channelspecific referencing...1176

14.4 Reference point appraoch from part program (G74) ...1178

14.5 Referencing with incremental measurement systems ...1179
14.5.1 Hardware signals ...1179
14.5.2 Zero mark selection with BERO...1180
14.5.3 Time sequence...1181
14.5.4 Phase 1: Traversing to the reference cam...1182
14.5.5 Phase 2: Synchronization with the zero mark..1184
14.5.6 Phase 3: Traversing to the reference point..1189

14.6 Referencing with distance-coded reference marks..1191
14.6.1 General overview ...1191
14.6.2 Basic parameter assignment ...1192
14.6.3 Time sequence...1194
14.6.4 Phase 1: Travel across the reference marks with synchronization ...1194
14.6.5 Phase 2: Traversing to the target point..1196

14.7 Referencing by means of actual value adjustment ..1198
14.7.1 Actual value adjustment to the referencing measurement system..1198
14.7.2 Actual value adjustment for measuring systems with distance-coded reference marks1199

14.8 Referencing in follow-up mode ..1200

14.9 Referencing with absolute encoders..1203
14.9.1 Information about the adjustment ..1203
14.9.2 Calibration by entering a reference point offset ...1205
14.9.3 Adjustment by entering a reference point value ..1206
14.9.4 Automatic calibration with probe..1208
14.9.5 Adjustment with BERO ..1209
14.9.6 Reference point approach with absolute encoders ...1210
14.9.7 Reference point approach in rotary absolute encoders with external zero mark1211
14.9.8 Automatic encoder replacement detection ..1213
14.9.9 Enabling the measurement system ...1214
14.9.10 Referencing variants not supported...1216

14.10 Automatic restoration of the machine reference..1216
14.10.1 Automatic referencing ..1217
14.10.2 Restoration of the actual position...1218

14.11 Supplementary conditions..1220
14.11.1 Large traverse range..1220

14.12 Data lists ..1221
14.12.1 Machine data..1221
14.12.1.1 NC-specific machine data...1221
14.12.1.2 Channelspecific machine data..1221

Table of Contents

 Basic Functions
26 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.12.1.3 Axis/spindlespecific machine data ... 1222
14.12.2 Signals... 1223
14.12.2.1 Signals to BAG... 1223
14.12.2.2 Signals from BAG .. 1223
14.12.2.3 Signals to channel.. 1223
14.12.2.4 Signals from channel ... 1223
14.12.2.5 Signals to axis/spindle ... 1224
14.12.2.6 Signals from axis/spindle ... 1224

15 S1: Spindles .. 1225

15.1 Brief Description.. 1225

15.2 Modes.. 1226
15.2.1 Overview ... 1226
15.2.2 Mode change .. 1227
15.2.3 Control mode... 1228
15.2.4 Oscillation mode.. 1231
15.2.5 Positioning mode... 1232
15.2.5.1 General functionality ... 1232
15.2.5.2 Positioning from rotation ... 1239
15.2.5.3 Positioning from standstill ... 1243
15.2.5.4 "Spindle in position" signal for tool change ... 1247
15.2.6 Axis mode.. 1248
15.2.6.1 General functionality ... 1248
15.2.6.2 Implicit transition to axis mode.. 1251
15.2.7 Initial spindle state... 1254

15.3 Reference / synchronize ... 1255

15.4 Configurable gear adaptation.. 1260
15.4.1 Gear stages for spindles and gear change change .. 1260
15.4.2 Spindle gear stage 0 ... 1271
15.4.3 Determining the spindle gear stage .. 1274
15.4.4 Parameter set selection during gear step change .. 1275
15.4.5 Intermediate gear .. 1277
15.4.6 Nonacknowledged gear step change.. 1279
15.4.7 Gear step change with oscillation mode ... 1280
15.4.8 Gear stage change at fixed position ... 1286
15.4.9 Configurable gear step in M70.. 1292
15.4.10 Suppression of the gear stage change for DryRun, program test and SERUPRO 1294

15.5 Additional adaptations to the spindle functionality that can be configured 1296

15.6 Selectable spindles ... 1297

15.7 Programming... 1301
15.7.1 Programming from the part program... 1301
15.7.2 Programming via synchronized actions .. 1305
15.7.3 Programming spindle controls via PLC with FC18 - only 840D sl .. 1305
15.7.4 Special spindle motion via the PLC interface.. 1306
15.7.5 External programming (PLC, HMI).. 1311

15.8 Spindle monitoring .. 1312
15.8.1 Permissible speed ranges... 1312
15.8.2 Axis/spindle stationary .. 1313
15.8.3 Spindle in setpoint range... 1313

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 27

15.8.4 Minimum / maximum speed of the gear stage...1314
15.8.5 Diagnosis of spindle speed limitation...1315
15.8.6 Maximum spindle speed ..1317
15.8.7 Maximum encoder limit frequency ...1318
15.8.8 End point monitoring ..1320
15.8.9 M40: Automatic gear stage selection for speeds outside the configured switching

thresholds...1321

15.9 Spindle with SMI 24 (Weiss spindle) ...1323
15.9.1 General Information ...1323
15.9.2 Sensor data..1324
15.9.3 Clamped state..1325
15.9.4 Additional drive parameters ...1327

15.10 Supplementary conditions..1328
15.10.1 Changing control parameters...1328

15.11 Examples ...1328
15.11.1 Automatic gear step selection (M40) ...1328

15.12 Data lists ..1329
15.12.1 Machine data..1329
15.12.1.1 NC-specific machine data...1329
15.12.1.2 Channelspecific machine data..1329
15.12.1.3 Axis/spindlespecific machine data ..1330
15.12.2 Setting data ..1331
15.12.2.1 Channelspecific setting data...1331
15.12.2.2 Axis/spindle-specific setting data..1332
15.12.3 signals ..1332
15.12.3.1 Signals to axis/spindle ..1332
15.12.3.2 Signals from axis/spindle ..1333

16 V1: Feedrates .. 1335

16.1 Brief description ...1335

16.2 Path feedrate F ..1336
16.2.1 Feedrate type G93, G94, G95 ...1338
16.2.2 Type of feedrate G96, G961, G962, G97, G971..1341
16.2.3 Feedrate for thread cutting (G33, G34, G35, G335, G336)...1345
16.2.3.1 Feedrate with G33 ...1345
16.2.3.2 Programmable run-in and run-out path for G33, G34 and G35...1346
16.2.3.3 Linear increasing/decreasing thread pitch change with G34 and G35....................................1348
16.2.3.4 Fast retraction during thread cutting ..1351
16.2.4 Feedrate for tapping without compensating chuck (G331, G332) ...1354
16.2.5 Feedrate for tapping with compensating chuck (G63)...1356

16.3 Feedrate for positioning axes (FA)...1356

16.4 Feedrate control ...1357
16.4.1 Feedrate disable and feedrate/spindle stop...1357
16.4.2 Feedrate override on machine control panel ...1359
16.4.3 Programmable feedrate override ...1363
16.4.4 Dry run feedrate ...1364
16.4.5 Multiple feedrate values in one block...1366
16.4.6 Fixed feedrate values...1372
16.4.7 Programmable feedrate characteristics ...1373

Table of Contents

 Basic Functions
28 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

16.4.8 Feedrate for chamfer/rounding FRC, FRCM... 1374
16.4.9 Non-modal feedrate FB... 1377
16.4.10 Influencing the single axis dynamic response... 1378

16.5 Supplementary conditions... 1383

16.6 Data lists.. 1384
16.6.1 Machine data... 1384
16.6.1.1 NC-specific machine data ... 1384
16.6.1.2 Channel-specific machine data... 1384
16.6.1.3 Axis/Spindle-specific machine data .. 1385
16.6.2 Setting data ... 1385
16.6.2.1 Channel-specific setting data.. 1385
16.6.2.2 Axis/spindle-specific setting data .. 1386
16.6.3 Signals... 1386
16.6.3.1 Signals to channel... 1386
16.6.3.2 Signals from channel... 1386
16.6.3.3 Signals to axis/spindle... 1387
16.6.3.4 Signals from axis/spindle .. 1387

17 W1: Tool offset... 1389

17.1 Brief description .. 1389

17.2 Tool ... 1392
17.2.1 General.. 1392
17.2.2 Compensation memory structure.. 1394
17.2.3 Calculating the tool compensation .. 1395
17.2.4 Address extension for NC addresses T and M ... 1396
17.2.5 Free assignment of D numbers... 1398
17.2.6 Compensation block in case of error during tool change.. 1404
17.2.7 Definition of the effect of the tool parameters ... 1406

17.3 Flat D number structure .. 1407
17.3.1 General.. 1407
17.3.2 Creating a new D number (compensation block).. 1408
17.3.3 D number programming .. 1409
17.3.4 Programming the T number .. 1411
17.3.5 Programming M6... 1411
17.3.6 Program test.. 1412
17.3.7 Tool management or "Flat D numbers"... 1412

17.4 Tool cutting edge... 1413
17.4.1 General.. 1413
17.4.2 Tool parameter 1: Tool type.. 1415
17.4.3 Tool parameter 2: Cutting edge position... 1418
17.4.4 Tool parameters 3 - 5: Geometry - tool lengths .. 1420
17.4.5 Tool parameters 6 - 11: Geometry - tool shape.. 1422
17.4.6 Tool parameters 12 - 14: Wear - tool lengths ... 1423
17.4.7 Tool parameters 15 - 20: Wear - tool shape ... 1424
17.4.8 Tool parameters 21 - 23: Tool base dimension/adapter dimension.. 1424
17.4.9 Tool parameter 24: Undercut angle .. 1426
17.4.10 Tools with a relevant tool point direction... 1427

17.5 Tool radius compensation 2D (TRC) .. 1428
17.5.1 General.. 1428

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 29

17.5.2 Selecting the TRC (G41/G42)..1429
17.5.3 Approach and retraction behavior (NORM/KONT/KONTC/KONTT)1430
17.5.4 Smooth approach and retraction..1435
17.5.4.1 Function ...1435
17.5.4.2 Parameters...1436
17.5.4.3 Velocities..1443
17.5.4.4 System variables..1445
17.5.4.5 Supplementary conditions..1446
17.5.4.6 Examples ...1447
17.5.5 Deselecting the TRC (G40)..1450
17.5.6 Compensation at outside corners ..1450
17.5.7 Compensation and inner corners...1455
17.5.8 Collision detection and bottleneck detection..1457
17.5.9 Blocks with variable compensation value ..1459
17.5.10 Keep tool radius compensation constant...1461
17.5.11 Alarm behavior ...1464
17.5.12 Intersection procedure for polynomials..1465
17.5.13 G461/G462 Approach/retract strategy expansion ...1465

17.6 Toolholder with orientation capability...1469
17.6.1 General ..1469
17.6.2 Kinematic interaction and machine design ..1476
17.6.3 Inclined surface machining with 3 + 2 axes ...1484
17.6.4 Machine with rotary work table ..1485
17.6.5 Procedure when using toolholders with orientation capability ...1489
17.6.6 Programming..1493
17.6.7 Supplementary conditions and control system response for orientation1494

17.7 Cutting edge data modification for tools that can be rotated ...1497
17.7.1 Function ...1497
17.7.2 Determination of angle of rotation..1497
17.7.3 Cutting edge position, cut direction and angle for rotary tools...1498
17.7.4 Modifications during the rotation of turning tools ...1500
17.7.5 Cutting edge position for milling and tapping tools ..1502
17.7.6 Modifications during rotation of milling and tapping tools ..1503
17.7.7 Parameter assignment...1504
17.7.8 Programming..1505
17.7.9 Example ...1508

17.8 Incrementally programmed compensation values ...1510
17.8.1 G91 extension..1510
17.8.2 Machining in direction of tool orientation ...1511

17.9 Basic tool orientation..1513

17.10 Special handling of tool compensations ..1517
17.10.1 Relevant setting data ...1517
17.10.2 Mirror tool lengths (SD42900 $SC_MIRROR_TOOL_LENGTH) ...1518
17.10.3 Mirror wear lengths (SD42920 $SC_WEAR_SIGN_CUTPOS) ...1519
17.10.4 Tool length and plane change (SD42940 $SC_TOOL_LENGTH_CONST)1520
17.10.5 Tool type (SD42950 $SC_TOOL_LENGTH_TYPE) ..1521
17.10.6 Tool lengths in the WCS, allowing for the orientation..1522
17.10.7 Tool length offsets in tool direction ..1523

17.11 Sum offsets and setup offsets..1528

Table of Contents

 Basic Functions
30 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.11.1 General.. 1528
17.11.2 Description of function... 1529
17.11.3 Activation... 1532
17.11.4 Examples... 1537
17.11.5 Upgrades for Tool Length Determination.. 1538
17.11.5.1 Taking the compensation values into account location-specifically and workpiece-

specifically.. 1538
17.11.5.2 Functionality of the individual wear values .. 1543

17.12 Working with tool environments .. 1546
17.12.1 General.. 1546
17.12.2 Saving with TOOLENV.. 1547
17.12.3 Delete tool environment .. 1549
17.12.4 How many environments and which ones are saved? ... 1550
17.12.5 Read T, D, DL from a tool environment .. 1551
17.12.6 Read tool lengths, tool length components... 1552
17.12.7 Changing tool components ... 1557

17.13 Tool lengths L1, L2, L3 assignment: LENTOAX ... 1563

17.14 Supplementary conditions... 1566
17.14.1 Flat D number structure .. 1566
17.14.2 SD42935 expansions .. 1567

17.15 Examples... 1567
17.15.1 Toolholder with orientation capability.. 1567
17.15.1.1 Example: Toolholder with orientation capability... 1567
17.15.1.2 Example of toolholder with orientation capability with rotary table 1568
17.15.1.3 Basic tool orientation example ... 1571
17.15.1.4 Calculation of compensation values on a location-specific and workpiece-specific

basis... 1571
17.15.2 Examples 3-6: SETTCOR function for tool environments .. 1574

17.16 Data lists.. 1580
17.16.1 Machine data... 1580
17.16.1.1 NC-specific machine data .. 1580
17.16.1.2 Channelspecific machine data ... 1580
17.16.1.3 Axis/spindlespecific machine data ... 1581
17.16.2 Setting data ... 1582
17.16.2.1 Channelspecific setting data .. 1582
17.16.3 Signals... 1582
17.16.3.1 Signals from channel ... 1582

18 Z1: NC/PLC interface signals... 1583

18.1 Various interface signals and functions (A2)... 1583
18.1.1 Signals from PLC to NC (DB10) ... 1583
18.1.2 Selection/Status signals from HMI to PLC (DB10) ... 1583
18.1.3 Signals from the NC to the PLC (DB10) ... 1584
18.1.4 Signals to Operator Panel (DB19) .. 1588
18.1.5 Signals from operator control panel (DB19).. 1594
18.1.6 Signals to channel (DB21, ...) ... 1598
18.1.7 Signals from channel (DB21, ...) ... 1599
18.1.8 Signals to axis/spindle (DB31, ...) ... 1600
18.1.9 Signals from axis/spindle (DB31, ...)... 1612

 Table of Contents

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 31

18.2 Axis monitoring, protection zones (A3) ..1621
18.2.1 Signals to channel (DB21, ...) ..1621
18.2.2 Signals from channel (DB21, ...) ..1623
18.2.3 Signals to axis/spindle (DB31, ...) ..1624
18.2.4 Signals from axis/spindle (DB31, ...)..1626

18.3 Continuous-path mode, exact stop and LookAhead (B1)..1626
18.3.1 Signals from channel (DB21, ...) ..1626
18.3.2 Signals from axis/spindle (DB31, ...)..1627

18.4 Travel to fixed stop (F1) ...1628
18.4.1 Signals to axis/spindle (DB31, ...) ..1628
18.4.2 Signals from axis/spindle (DB31, ...)..1629

18.5 Help function output to PLC (H2) ...1630
18.5.1 Signals to channel (DB21, ...) ..1630
18.5.2 Signals from channel (DB21, ...) ..1630
18.5.3 Signals from axis/spindle (DB31, ...)..1634

18.6 Mode group, channel, program operation, reset response (K1)..1635
18.6.1 Signals to mode group (DB11)...1635
18.6.2 Signals from the mode group (DB11) ..1640
18.6.3 Signals to channel (DB21, ...) ..1644
18.6.4 Signals from channel (DB21, ...) ..1649
18.6.5 Signals to axis/spindle (DB31, ...) ..1663
18.6.6 Signals from axis/spindle (DB31, ...)..1663

18.7 Axis types, coordinate systems, frames (K2)...1665
18.7.1 Signals to axis/spindle (DB31, ...) ..1665

18.8 Emergency stop (N2) ...1666
18.8.1 Signals to NC (DB10)...1666
18.8.2 Signals from NC (DB10) ..1667

18.9 PLC basic program (P3) ..1668

18.10 Reference point approach (R1)..1668
18.10.1 Signals to channel (DB21, ...) ..1668
18.10.2 Signals from channel (DB21, ...) ..1669
18.10.3 Signals to axis/spindle (DB31, ...) ..1670
18.10.4 Signals from axis/spindle (DB31, ...)..1671

18.11 Spindles (S1)..1673
18.11.1 Signals to axis/spindle (DB31, ...) ..1673
18.11.2 Signals from axis/spindle (DB31, ...)..1679

18.12 Feeds (V1) ...1690
18.12.1 Signals to channel (DB21, ...) ..1690
18.12.2 Signals to axis/spindle (DB31, ...) ..1697
18.12.3 Signals from axis/spindle (DB31, ...)..1702

A Appendix.. 1703

A.1 List of abbreviations ...1703

A.2 Documentation overview..1712

 Glossary .. 1713

 Index.. 1735

Table of Contents

 Basic Functions
32 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 33

A2: Various NC/PLC interface signals and functions 1
1.1 Brief description

Contents
The PLC/NCK interface comprises a data interface on one side and a function interface on
the other. The data interface contains status and control signals, auxiliary functions and G
functions, while the function interface is used to transfer jobs from the PLC to the NCK.

This Description describes the functionality of interface signals, which are of general
relevance but are not included in the Descriptions of Functions.

● Asynchronous events

● Status signals

● PLC variable (read and write)

1.2 NC/PLC interface signals - only 840D sl

1.2.1 General

NC/PLC interface
The NC/PLC interface comprises the following parts:

● Data interface

● Function interface

Data interface
The data interface is used for component coordination:

● PLC user program

● NC

● HMI (operator control component)

● MCP (machine control panel)

Data exchange is organized by the basic PLC program.

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
34 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Cyclic signal exchange
The following interface signals are transferred cyclically, i.e. in the clock grid of the OB1, by
the basic PLC program:

● NC and operator-panel-front-specific signals

● Mode group-specific signals

● Channel-specific signals

● Axis/spindle-specific signals

NC and operator-panel-front-specific signals (DB10)
PLC to NC:

● Signals for influencing the CNC inputs and outputs

● Keyswitch signals (and password)

NC to PLC:

● Actual values of CNC inputs

● Setpoints of CNC outputs

● Ready signals from NC and HMI

● NC status signals (alarm signals)

Channel-specific signals (DB21, ...)
PLC to NC:

● Control signal "Delete distance-to-go"

NC to PLC:

● NC status signals (NCK alarm active)

Axis/spindle-specific signals (DB31, etc.)
PLC to NC:

● Control signals to axis/spindle (e.g. follow-up mode, servo enable, etc.)

● Control signals to drive (bytes 20, 21)

NC to PLC:

● Status signals from axis/spindle (e.g. position controller active, current controller active,
etc.)

● Control signals from drive (bytes 93, 94)

Function interface
The function interface is generated by function blocks (FB) and function calls (FC). Function
requests, e.g. to traverse axes, are sent from the PLC to the NC via the function interface.

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 35

References
● Description of the basic PLC program:

→ Function Manual, Basic Functions, Basic PLC Program (P3)

● Description of the event-driven signal exchange (auxiliary and G functions):

→ Function Manual, Basic Functions; Auxiliary Function Output to PLC (H2)

● Overview of all interface signals, functional and data components:

→ List Manual 2

1.2.2 Ready signal to PLC

DB10 DBX104.7 (NCK CPU ready)
The NCK CPU is ready and registers itself cyclically with the PLC.

DB10 DBX108.3 (HMI - CPU at OPI ready)
SINUMERIK Operate is ready and registers itself cyclically with the NC.

DB10 DBX108.5 (drives in cyclic operation)
Requirement: For all machine axes of the NC, the associated drives are in the cyclic
operation, i.e. they cyclically exchange PROFIdrive telegrams with the NC.

DB10 DBX108.6 (drive ready)
Requirement: For all machine axes of the NC, the associated drives and also the third-party
drives are ready via PROFIBUS:

DB31, ... DBX93.5 == 1 (drive ready)

DB10 DBX108.7 (NC ready)
The NC is ready.

1.2.3 Status signals to PLC

DB10 DBX103.0 (remote diagnosis active)
The HMI component reports to the PLC that the remote diagnostics (option) is active, i.e.
controlling is done via an external PC.

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
36 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB10 DBX109.6 (ambient temperature alarm)
The ambient temperature or fan monitoring function has responded.

DB10 DBX109.7 (NCK battery alarm)
The battery voltage has dropped below the lower limit value. The control can still be
operated. A control system shutdown or failure of the supply voltage will lead to loss of data.

DB10 DBX109.0 (NCK alarm pending)
The NC signals that at least one NC alarm is pending. The channel-specific interface can be
scanned to see which channels are involved and whether this will cause a processing stop.

DB21, ... DBX36.6 (channel-specific NCK alarm pending)
The NC sends this signal to the PLC to indicate that at least one NC alarm is pending for the
relevant channel (see also DB21, ... DBX36.7).

DB21, ... DBX36.7 (NCK alarm with processing stop present)
The NC sends this signal to the PLC to indicate that at least one NCK alarm which has
interrupted or aborted the current program run (processing stop) is pending for the affected
channel.

1.2.4 Signals to/from the operator panel front

DB19 DBX0.0 (screen bright)
The screen blanking is disabled.

DB19 DBX0.1 (screen dark)
The operator panel screen is darkened.

If the interface signal is used to actively darken the screen:

● It is no longer possible to switch the screen bright again on the keyboard (see below).

● The first keystroke on the operator panel front already triggers an operator action.

 Note

In order to prevent accidental operator actions when the screen is darkened via the
interface signal, we recommend disabling the keyboard at the same time.

DB19 DBX0.1 = 1 AND DB19 DBX0.2 = 1 (key disable)

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 37

Screen darkening via keyboard/automatic screen saver
If no buttons are pressed on the operator panel front within the assigned time (default = 3
minutes):
MD9006 $MM_DISPLAY_BLACK_TIME
(time for screen darkening), the screen is automatically darkened.

The screen lights up again the first time a button is pressed following darkening. Pressing a
button to lighten the screen will not generate an operator action.

Parameterization:

DB19 DBX0.1 = 0

MD9006 $MM_DISPLAY_BLACK_TIME > 0

DB19 DBX0.2 (key disable)
All inputs via the connected keyboard are inhibited.

DB19 DBX 0.3 / 0.4 (Delete cancel alarms / Delete recall alarms) (HMI Advanced)
Request to delete all currently pending alarms with Cancel or Recall delete criterion. Deletion
of the alarms is acknowledged via the following interface signals.

● DB19 DBX20.3 (cancel alarm deleted)

● DB19 DBX20.4 (recall alarm deleted)

DB19 DBX0.7 (actual values in WCS, 0=MCS)
Switching over of actual-value display between machine and workpiece coordinate system:

● DB19 DBX0.7 = 0: Machine coordinate system (MCS)

● DB19 DBX0.7 = 1: Workpiece coordinate system (WCS)

DB19 DBB13 (control of the file transfer via hard disk) (HMI Advanced only)
Job byte to control file transfer via hard disk. The jobs relate to the user control file in the
interface signals:

DB19 DBB16 (part program handling: Number of the control file for user file names)

DB19 DBB17 (part program handling: Index of the file to be transmitted from the user list)

DB19 DBB16 (control of file transfer via hard disk) (HMI Advanced only)
Control byte for file transfer via hard disk to define the index for the control file (job list). This
file is handled according to the job in the interface signal:

DB19 DBB13

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
38 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB19 DBB17 (part program handling: Index of the file to be transferred from the user list)
Control byte for file transfer via hard disk to indicate the line in the user control file in which
the control file to be transferred is stored

DB19 DBB26 (part program handling: Status)
Status byte for current status of data transfer for "select", "load" or "unload", or if an error
occurred during data transmission.

DB19 DBB27 (error program handling)
Output byte for error values for data transfer via hard disk.

1.2.5 Signals to channel

DB21, ... DBX6.2 (delete distance-to-go)
The rising edge on the interface signal generates a stop on the programmed path in the
corresponding NC channel with the currently active path acceleration. The path distance-to-
go is then deleted and the block change to the next part-program block is enabled.

1.2.6 Signals to axis/spindle

DB31, ... DBX1.0 (drive test travel enable)

NOTICE
Specifications for the drive test

It is the sole responsibility of the machine manufacturer / system startup engineer to take
suitable action / carry out appropriate tests to ensure that the machine axis can be
traversed during the drive test without putting personnel or machinery at risk.

If machine axes are traversed by special test functions such as "function generator", an
explicit drive-test-specific enable is requested for the motion:

DB31, ... DBX61.0 = 1 (drive test travel request)

The motion is carried out once the motion is enabled:

DB31, ... DBX1.0 == 1 (drive test travel enable)

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 39

DB31, ... DBX1.3 (axis/spindle disable)
Axis disable when machine axis is at rest

No traversing request (manual or automatic) is carried out for a machine axis at rest and
NC/PLC interface signal:

DB31, ... DBX1.3 == 1 (axis/spindle disable)

The traversing request is maintained. If the axis disable is canceled when a traversing
request is pending DB31, ... DBX1.3 = 0 the motion is carried out.

Axis disable when machine axis in motion

When the machine axis is in motion and NC/PLC interface signal DB31, ... DBX1.3 == 1, the
motion of the machine axis is decelerated to a standstill via the axis-specific brake
characteristics currently active or, if it is part of an interpolated path motion or coupling, it is
decelerated on a path or coupling-specific basis.

The motion is continued if the axis disable is canceled by another pending traversing
request: DB31, ... DBX1.3 = 0.

Spindle disable

The response is determined by the current spindle mode:

● Control mode: Speed setpoint = 0

● Positioning mode: See above "Axis disable".

DB31, ... DBX1.4 (follow-up mode)
"Follow-up mode" is only effective in conjunction with the NC/PLC interface signal:

DB31, ... DBX2.1 (controller enable)

DB31, ... DBX2.1 DB31, ... DBX1.4 Function
1 Ineffective Normal operation (machine axis in closed-loop control

mode)
0 1 Follow-up
0 0 Hold

Function: Follow-up

During follow-up, the setpoint position of the machine axis is continuously corrected to the
actual position (setpoint position = actual position).

The following interface signals have to be set for the follow-up function:

DB31, ... DBX2.1 = 0 (controller enable)

DB31, ... DBX1.4 = 1 (follow-up mode)

Feedback:

DB31, ... DBX61.3 = 1 (follow-up active)

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
40 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note

When the controller enable is set from follow-up mode, if the part program is active, the last
programmed position is approached again internally in the NC (REPOSA: Approach along line
on all axes). In all other cases, all subsequent motions start at the actual position.

During "follow-up", clamping or zero-speed monitoring are not active.

Function: Hold

The hold function does not correct the setpoint position of the machine axis to the actual
position. If the machine axis moves away from the setpoint position, a following error
(difference between setpoint and actual position) is generated. This error is corrected
"suddenly" when the controller enable is set by the position controller, without observing the
axial acceleration characteristic.

The following interface signals have to be set for the hold function:

DB31, ... DBX2.1 = 0 (controller enable)

DB31, ... DBX1.4 = 0 (follow-up mode)

Feedback:

DB31, ... DBX61.3 = 0 (follow-up active)

During "hold", clamping or zero-speed monitoring are active.

 Note

With the "hold" function, once the controller enable has been set, the setpoint/actual-value
difference is corrected directly by the position controller, i.e. without following the axial
acceleration characteristic.

Application example

Positioning response of machine axis Y following clamping when "controller enable" set.
Clamping pushed the machine axis from the actual position Y1 to the clamping position Yk.

Figure 1-1 Effect of controller enable and follow-up mode

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 41

Figure 1-2 Trajectory for clamping and "hold"

Figure 1-3 Trajectory for clamping and "follow-up"

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
42 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Drives with analog setpoint interface

A drive with an analog setpoint interface is capable of traversing the machine axis with an
external setpoint. If "follow-up mode" is set for the machine axis, the actual position
continues to be acquired. Once follow-up mode has been canceled, referencing is not
required.

The following procedure is recommended:

1. Activate follow-up mode:

DB31, ... DBX2.1 = 0 (controller enable)

DB31, ... DBX1.4 = 1 (follow-up mode) (in the same or preceding OB1 cycle)

→ The axis/spindle is operating in follow-up mode

2. Deactivate external controller enable and external speed setpoint

→ Axis/spindle moves with external setpoint

→ NC continues to detect the actual position and corrects the setpoint position to the
actual position

3. Deactivate external controller enable and cancel external speed setpoint

→ Axis/spindle stops

4. Canceling follow-up mode

DB31, ... DBX2.1 = 1 (controller enable)

DB31, ... DBX1.4 = 0 (follow-up mode)

→ NC synchronizes to actual position. The next traversing motion begins at this position.

 Note

"Follow-up mode" does not have to be canceled because it only has an effect in
combination with "controller enable".

Canceling follow-up mode

Once follow-up mode has been canceled, the machine axis does not have to be referenced
again if the maximum permissible encoder limit frequency of the active measuring system
was not exceeded during follow-up mode. If the encoder limit frequency is exceeded, the
controller will detect this:

● DB31, ... DBX60.4 / 60.5 = 0 (referenced/synchronized 1 / 2)

● Alarm: "21610 Encoder frequency exceeded"

 Note

If "follow-up mode" is deactivated for a machine axis, which is part of an active
transformation (e.g. TRANSMIT), this can generate motions as part of repositioning
(REPOS) other machine axes involved in the transformation.

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 43

Monitoring

If a machine axis is in follow-up mode, the following monitoring mechanisms will not act:

● Zero-speed monitoring

● Clamping monitoring

● Positioning monitoring

Effects on other interface signals:

● DB31, ... DBX60.7 = 0 (position reached with exact stop fine)

● DB31, ... DBX60.6 = 0 (position reached with exact stop coarse)

DB31, ... DBX1.5/1.6 (position measuring system 1/2)
Two measuring systems can be connected to one machine axis, e.g.

● Indirect motor measuring system

● Direct measuring system on load

Only one measuring system can be active at any one time. All closed-loop control,
positioning operations, etc. involving the machine axis always relate to the active measuring
system.

Figure 1-4 Position measuring systems 1 and 2

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
44 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The table below shows the functionality of the interface signals in conjunction with the
"controller enable".

DB31, ... DBX1.5 DB31, ... DBX1.6 DB31, ... DBX2.1 Function
1 0 (or 1) 1 Position measuring system 1 active
0 1 1 Position measuring system 2 active
0 0 0 "Parking" active
0 0 1 Spindle without position measuring system (speed-

controlled)
1 -> 0 0 -> 1 1 Switchover: Position measuring system 1 → 2
0 -> 1 1 -> 0 1 Switchover: Position measuring system 2 → 1

DB31, ... DBX2.1 (controller enable)
Setting the controller enable closes the machine axis position control loop. The machine axis
is in position control mode.

DB31, ... DBX2.1 == 1

Canceling the controller enable opens the machine axis position control loop and, subject to
a delay, the machine axis speed control loop:

DB31, ... DBX2.1 == 0

Activation methods

The closed-loop controller enable for a machine axis is influenced by:

● NC/PLC interface signal:

– DB31, ... DBX2.1 (controller enable)

– DB31, ... DBX21.7 (pulse enable)

– DB31, ... DBX93.5 (drive ready)

– DB10, DBX56.1 (emergency stop)

● NCK-internal

Alarms that trigger cancellation of the controller enable on the machine axes. The alarm
responses are described in:

References:
Diagnostics Manual

Canceling the controller enable when the machine axis is at standstill:

● The machine axis position control loop opens

● DB31, ... DBX61.5 == 0 (position controller active)

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 45

Canceling the controller enable when the machine axis is in motion:

If a machine axis is part of an interpolatory path motion or coupling and the controller enable
for this is canceled, all axes involved are stopped with a fast stop (speed setpoint = 0) and
an alarm is displayed:

Alarm: "21612 Controller enable reset during motion"

● The machine axis is decelerated taking into account the parameterized duration of the
braking ramp for error states with a fast stop (speed setpoint = 0):

MD36610 $MA_AX_EMERGENCY_STOP_TIME (max. time duration of the braking ramp
in event of errors)

An alarm is displayed:

Alarm: "21612 Controller enable reset during motion"

 Note

The controller enable is canceled at the latest when the cutout time expires:

MD36610 $MA_AX_EMERGENCY_STOP_TIME

● The machine axis position control loop opens. Feedback via interface signal:

DB31, ... DBX61.5 == 0 (position controller active).

The time for the parameterized cut-off delay of the controller enable is started by the
machine data:

MD36620 $MA_SERVO_DISABLE_DELAY_TIME (OFF delay of the controller enable)

● As soon as the actual speed has reached the zero speed range, the drive controller
enable is canceled. Feedback via interface signal:

DB31, ... DBX61.6 == 0 (speed controller active)

● The position actual value of the machine axis continues to be acquired by the controller.

● At the end of the braking operation, the machine axis is switched to follow-up mode,
regardless of the corresponding NC/PLC interface signal. Zero-speed and clamping
monitoring are not effective. See the description above for the interface signal:

DB31, ... DBX1.4 (follow-up mode).

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
46 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Synchronizing the actual value (reference point approach)

Once the controller enable has been set, the actual position of the machine axis does not
need to be synchronized again (reference point approach) if the maximum permissible limit
frequency of the measuring system was not exceeded during the time in which the machine
axis was not in position-control mode.

Figure 1-5 Canceling the controller enable when the machine axis is in motion

DB31, ... DBX2.2 (distance-to-go/spindle reset (axis/spindle-specific))
"Delete distance-to-go" is effective in AUTOMATIC and MDA modes only in conjunction with
positioning axes. The positioning axis is decelerated to standstill following the current brake
characteristic. The distance-to-go of the axis is deleted.

Spindle reset

For a detailed description of the spindle reset, see Section "S1: Spindles (Page 1225)".

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 47

DB31, ... DBX9.0 / 9.1 / 9.2 (controller parameter set)
Request for activation of the specified controller parameter set.

Controller parameter set DBX9.2 DBX9.1 DBX9.0

1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Parameter set changeover must be enabled via the machine data (not required for spindles):

MD35590 $MA_PARAMSET_CHANGE_ENABLE = 1 or 2

For detailed information on the parameter set changeover, see Section "Parameter set
selection during gear step change (Page 1275)".

Parameter set changeover when machine axis is in motion

The response to a parameter set changeover depends on the consequential change in the
closed-loop control circuit gain factor Kv:

MD32200 $MA_POSCTRL_GAIN (servo gain factor)

● "Identical servo gain factors" or "position control not active":

The NC responds immediately to the parameter set changeover. The parameter set is
also changed during the motion.

● "Non-identical servo gain factors" or "position control active":

In order to effect a changeover as smoothly as possible, changeover is not activated until
the axis "is stationary", i.e. once the parameterized zero speed has been reached or
undershot:

DB31, ... DBX61.4 = 1 (axis/spindle stationary)

MD36060 $MA_STANDSTILL_VELO_TOL (threshold velocity/speed 'axis/spindle
stationary')

Parameter set changeover from the part program

For parameter set changeover from the part program, the user (machine manufacturer) must
define corresponding user-specific auxiliary functions and evaluate them in the PLC user
program. The PLC user program will then set the changeover request on the corresponding
parameter set.

For detailed information on the auxiliary function output, see Section "H2: Auxiliary function
outputs to PLC (Page 369)".

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
48 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ... DBX9.3 (parameter set specification disabled by NC)
Parameter set changeover request will be ignored.

1.2.7 Signals from axis/spindle

DB31, ... DBX61.0 (drive test travel request)
If machine axes are traversed by special test functions such as "function generator", an
explicit drive-test-specific enable is requested for the movement:

DB31, ... DBX61.0 == 1 (drive test travel request)

The motion is carried out once the motion is enabled:

DB31, ... DBX1.0 == 1 (drive test travel enable)

DB31, ... DBX61.3 (follow-up active)
The machine axis is in follow-up mode.

DB31, ... DBX61.4 (axis/spindle stationary (n < nmin)
"Axis/spindle stationary" is set by the NC if:

● No new setpoints are to be output AND

● The actual speed of the machine axis is lower than the parameterized zero speed:

MD36060 $MA_STANDSTILL_VELO_TOL (threshold velocity axis stationary)

DB31, ... DBX61.5 (position controller active)
The machine axis position control loop is closed and position control is active.

DB31, ... DBX61.6 (speed controller active)
The machine axis speed control loop is closed and speed control is active.

DB31, ... DBX61.7 (current controller active)
The machine axis current control loop is closed and current control is active.

DB31, ... DBX69.0 / 69.1 / 69.2 (parameter set servo)
Active parameter set Coding accordingly:

DB31, ... DBX9.0 / 9.1 / 9.2 (controller parameter set selection)

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 49

DB31, ... DBX76.0 (lubrication pulse)
Following a control POWER ON/RESET, the signal status is 0 (FALSE).

The "lubrication pulse" is inverted (edge change), as soon as the machine axis has covered
the parameterized traversing distance for lubrication:

MD33050 $MA_LUBRICATION_DIST (distance for lubrication by PLC)

1.2.8 Signals to axis/spindle (digital drives)

DB31, ... DBX21.0 / 21.1 / 21.2 (parameter set selection A, B, C)
Request to change over drive parameter set:

DBX 21.2 DBX 21.1 DBX21.0 Parameter set number
0 0 0 1
0 0 1 2
0 1 0 3
0 1 1 4
1 0 0 5
1 0 1 6
1 1 0 7
1 1 1 8

The feedback signal is sent via the interface signals:

DB31, ... DBX93.0,1 / 93.2 (active drive parameter set)

DB31, ... DBX21.3 / 21.4 (Motor selection A, B)
Selection of motor/operating mode.

DBX 21.4 DBX 21.3 Motor number Mode
0 0 1 1
0 1 2 2
1 0 3 3
1 1 4 4

Only operating modes 1 and 2 are valid on main spindle drive:

● Operating modes 1: Star

● Operating modes 2: Delta

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
50 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ... DBX21.5 (Motor selection done)
The PLC user program sends this signal to the drive to indicate successful motor selection.
The pulses are then enabled by the drive.

DB31, ... DBX21.6 (integrator disable, n-controller)
The PLC user program inhibits the integrator of the speed controller for the drive. The speed
controller is thus switched from PI to P controller.

Note

If the speed controller integrator disable is activated, compensations might take place in
certain applications (e.g. if the integrator was already holding a load while stationary).

Feedback via the interface signal:

DB31, ... DBX93.6 = 1 (integrator n-controller disabled)

DB31, ... DBX21.7 (pulse enable)
The pulse enable for the drive module is only requested if all enable signals (hardware and
software) are pending:

● Trigger equipment enable

● Controller and pulse enable

● Pulse enable (safe operating stop)

● Stored hardware input

● Setpoint enable

● "Ready to run state"

– No drive alarm (DClink1 error)

– DC link connected

– Ramp-up completed

See also:
DB31, ... DBX93.7 (pulses enabled)

 A2: Various NC/PLC interface signals and functions
 1.2 NC/PLC interface signals - only 840D sl

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 51

1.2.9 Signals from axis/spindle (digital drives)

DB31, ... DBX92.1 (ramp-function generator disable active)
The drive signals back to the PLC that ramp-function-generator fast stop is active. The drive
is thus brought to a standstill without the ramp function (with speed setpoint 0).

DB31, ... DBX93.0, 1, 2 (active drive parameter set A, B, C)
The drive module sends this checkback signal to the PLC to indicate which drive parameter
set is currently active. With bit combination A, B, C, eight different drive parameter sets can
be selected by the PLC.

DB31, ... DBX93.3, 4 (active motor A, B)
The drive module (MSD) sends this checkback to the PLC to indicate which of the four motor
types or motor operating modes is active.

The following selections can be made on the main spindle drive:

● Star mode (A=0, B=0)

● Delta mode (A=1, B=0)

DB31, ... DBX93.5 (DRIVE ready)
Checkback signal indicating that the drive is ready. The conditions required for traversing the
axis/spindle are fulfilled.

DB31, ... DBX93.6 (integrator n-controller disabled)
The speed-controller integrator is disabled. The speed controller has thus been switched
from PI to P controller.

DB31, ... DBX93.7 (pulses enabled)
The pulse enable for the drive module is available. The axis/spindle can now be traversed.

DB31, ... DBX94.0 (motor temperature prewarning)
The temperature of the motor is higher than the set motor temperature warning threshold
(drive parameter p0604).

See also note below for "DB31, ... DBX94.1 (heat sink temperature prewarning)".

A2: Various NC/PLC interface signals and functions
1.2 NC/PLC interface signals - only 840D sl

 Basic Functions
52 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ... DBX94.1 (heat sink temperature prewarning)
The temperature of the heat sink in the power unit is outside the permissible range. If the
overtemperature remains, the drive switches itself off after approx. 20 s.

 Note
Temperature prewarning DB31, ... DBX94.0 and DBX94.1

The interface signals are derived from the following signals of the cyclic drive telegram:
• Case 1: Temperature warning in the message word

– DB31, ... DBX94.0 = MELDW, bit 6 (no motor overtemperature warning)
– DB31, ... DBX94.1 = MELDW, bit 7 (no thermal overload in power unit warning)

• Case 2: Warning of warning class B (only in interface mode "SIMODRIVE 611U", p2038
= 1)
DB31, ... DBX94.0 == 1 and DBX94.1 == 1, if the following applies:
Cyclic drive telegram, status word 1 (ZSW1), bits 11/12 == 2 (warning class B)

The interface signals are derived from the warning of warning class B if there is no specific
information from the message word.

An alarm is displayed. Alarm number = 200.000 + alarm value (r2124)

For a detailed description of the motor temperature monitoring setting, see:

References:
• S120 Commissioning Manual, Section "Commissioning" > "Temperature sensors for

SINAMICS components"
• S120 Function Manual, Section "Monitoring and protective functions"
• S120 List Manual

– MELDW, bit 6 ≙ BO: r2135.14 → function diagram: 2548, 8016
– MELDW, bit 7 ≙ BO: r2135.15 → function diagram: 2548, 2452, 2456, 8016

DB31, ... DBX94.2 (run-up completed)
The actual speed value is within the parameterized tolerance band again after changing the
speed setpoint. The run-up procedure is now completed.

Any subsequent speed fluctuations, also outside the tolerance band, e.g. due to load
changes, will not affect the interface signal.

DB31, ... DBX94.3 (|Md| < Mdx)
The absolute value of the current torque |Md| is less than the parameterized threshold torque
Mdx (torque threshold value 2, p2194).

The threshold torque is set as a percentage [%] of the current speed-dependent torque
limitation.

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 53

DB31, ... DBX94.4 (|nact| < nmin)
The actual speed value nact is less than nmin (speed threshold value 3, p2161).

DB31, ... DBX94.5 (|nact| < nx)
The actual speed value nact is less than nx (speed threshold value 2, p2155).

DB31, ... DBX94.6 (nact = nset)
The actual speed value is within the tolerance band (p2163) surrounding the speed setpoint.

DB31, ... DBX95.7 (warning of warning class C is pending)
The drive signals that a warning of warning class C is pending.

1.3 Functions

1.3.1 Screen settings
Contrast, monitor type, foreground language and display resolution to take effect after
system startup can be set in the operator panel front machine data.

Contrast
MD9000 $MM_LCD_CONTRAST (contrast)

For slimline operator panel fronts with a monochrome LCD, the contrast to be applied
following system startup can be set.

There are 16 different contrast settings (0: dark, 15: light).

Monitor type
MD9001 $MM_DISPLAY_TYPE (monitor type)

The relevant monitor type must be specified for optimum color matching.

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
54 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Foreground language
MD9003 $MM_FIRST_LANGUAGE (foreground language)

In the case of SINUMERIK 840D sl, two languages are available simultaneously. The
foreground language can be used to set the language to be displayed following control ramp-
up.

The language can be changed in the DIAGNOSTICS operating area on the HMI user
interface. Once the control has ramped up, the foreground language will be restored.

Display resolution
MD9004 $MM_DISPLAY_RESOLUTION (display resolution)

The number of places after the decimal point for the position display of the axes is defined in
the display resolution. The position display consists of max. 12 characters including sign and
decimal point. The number of digits after the decimal point can be set to between 0 and 5.

The default setting for the number of digits after the decimal point is 3, corresponding to a
display resolution of 10–3 [mm] or [degrees].

REFRESH suppression
MD10131 $MN_SUPPRESS_SCREEN_REFRESH (screen refresh in case of overload)

Default setting for screen-refresh strategy with high NC utilization:

● Value 0: Refresh of current values is suppressed in all channels.

● Value 1: Refresh of current values is suppressed in time-critical channels.

● Value 2: Refresh of current values is never suppressed.

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 55

1.3.2 Settings for involute interpolation - only 840D sl

Introduction
The involute of the circle is a curve traced out from the end point on a "piece of string"
unwinding from the curve. Involute interpolation allows trajectories along an involute.

Figure 1-6 Involute (unwound from base circle)

Programming
A general description of how to program involute interpolation can be found in:

References:
Programming Manual, Fundamentals

In addition to the programmed parameters, machine data is relevant in two instances of
involute interpolation; this data may need to be set by the machine manufacturer / end user.

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
56 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Accuracy
If the programmed end point does not lie exactly on the involute defined by the starting point,
interpolation takes place between the two involutes defined by the starting and end points
(see illustration below).

The maximum deviation of the end point is determined by the machine data:

MD21015 $MC_INVOLUTE_RADIUS_DELTA (end point monitoring for involute)

Figure 1-7 MD21015 specifies the max. permissible deviation

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 57

Limit angle
If AR is used to program an involute leading to the base circle with an angle of rotation that is
greater than the maximum possible value, an alarm is output and program execution
aborted.

Figure 1-8 Limited angle of rotation towards base circle

The alarm display can be suppressed using the following parameter settings:

MD21016 $MC_INVOLUTE_AUTO_ANGLE_LIMIT = TRUE (automatic angle limitation for
involute interpolation)

The programmed angle of rotation is then also limited automatically and the interpolated path
ends at the point at which the involute meets the base circle. This, for example, makes it
easier to program an involute which starts at a point outside the base circle and ends directly
on it.

Tool radius compensation
2 1/2 D tool radius compensation is the only tool radius compensation function permitted for
involutes. If 3D tool radius compensation is active (both circumferential and face milling),
when an involute is programmed, machining is interrupted with alarm 10782.

With 2 1/2 D tool radius compensation, the plane of the involute must lie in the compensation
plane. or else alarm 10781 will be generated. It is however permissible to program an
additional helical component for an involute in the compensation plane.

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
58 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Dynamic response
Involutes that begin or end on the base circle have an infinite curvature at this point. To
ensure that the velocity is adequately limited at this point when tool radius compensation is
active, without reducing it too far at other points, the "Velocity limitation profile" function must
be activated:

MD28530 $MC_MM_PATH_VELO_SEGMENTS > 1 (number of memory elements for
limiting the path velocity)

A setting of 5 is recommended. This setting need not be made if only involute sections are
used which have radii of curvature that change over a relatively small area.

1.3.3 Activate DEFAULT memory - only 840D sl

GUD start values
The DEF... / REDEF... NC commands can be used to assign default settings to global user
data (GUD). To make these default values available at the parameterized initialization time,
e.g. with the attribute INIPO, after power on, they must be saved permanently in the system.
The required memory space must be enabled using the following machine data:

MD18150 $MM_GUD_VALUES_MEM (non-volatile memory space for GUD values)

References:

Function Manual, Extended Functions; S7: "Memory Configuration"

Programming Manual, Job Planning

1.3.4 Read and write PLC variable - only 840D sl

High-speed data channel
For high-speed exchange of information between the PLC and NC, a memory area is
reserved in the communications buffer on these modules (dual-port RAM). Variables of any
type (I/O, DB, DW, flags) may be exchanged within this memory area.

The PLC accesses this memory using 'Function Calls' (FC) while the NC uses system
variables.

Organization of memory area
The user's programming engineer (NC and PLC) is responsible for organizing (structuring)
this memory area.

Every storage position in the memory can be addressed provided that the limit is selected
according to the appropriate data format (i.e. a DWORD for a 4-byte limit, a WORD for a 2-
byte limit, etc.).

The memory is accessed via the data type and the position offset within the memory area.

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 59

Access from NC
System variables are available in the NC for fast access to PLC variables from a part
program or synchronized action. The data is read/written directly by the NC. The data type
results from the identifier of the system variables. The position within the memory area is
specified as index in bytes.

System variable Data type Range of values

$A_DBB[<index>] Byte (8 bits) 0 <= x <= 255
$A_DBW[<index>] Word (16 bits) -32768 <= x <= 32767
$A_DBD[<index>] Double word (32 bits) -2147483648 <= x <= 2147483647
$A_DBR[<index>] Floating point (32 bits) ±(1.5·10−45 <= x <= 3.4·1038)

Access from PLC
The PLC uses function calls (FC) to access the memory. The data is read and written
immediately in the DPR with the FC and not just at the beginning of the PLC cycle. Data type
and position in the memory area are transferred as parameters to the FC.

Figure 1-9 Communications buffer (DPR) for NC/PLC communication

Supplementary conditions
● The structuring of the DPR memory area is the sole responsibility of the user. No checks

are made for matching configuration.

● A total of 4096 bytes are available in the input and output directions.

● Single-bit operations are not supported and must be linked back to byte operations by the
user.

● Since the contents of variables are manipulated directly in the communications buffer, the
user must remember that intermediate changes in values occur as a result of multiple
access operations where a variable is evaluated several times or when variables are
linked (i.e. it may be necessary to store values temporarily in local variables or R
parameters or to set up a semaphore).

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
60 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● The user's programming engineer is responsible for coordinating access operations to the
communications buffer from different channels.

● Data consistency can be guaranteed only for access operations up to 16 bits (byte and
word). The user is solely responsible for ensuring consistent transmission of 32-bit
variables (double and real). A simple semaphore mechanism is available in the PLC for
this purpose.

● The PLC stores data in 'Little Endian' format in the DPR.

● Values transferred with $A_DBR are subject to data conversion and hence to loss of
accuracy. The data format for floating-point numbers is DOUBLE (64 bits) in the NC, but
only FLOAT (32 bits) in the PLC. The format used for storage in the dual-port RAM is
FLOAT. Conversion takes place respectively before/after storage in the dual-port RAM.

If a read/write access is made from the NC to a variable in the dual-port RAM, the
conversion is performed twice. It is impossible to prevent differences between read and
written values because the data is stored in both formats.

Example

Bypassing the problem by means of comparison on "EPSILON" (minor deviation)

Program code

N10 DEF REAL DBR

N12 DEF REAL EPSILON = 0.00001

N20 $A_DBR[0]=145.145

N30 G4 F2

N40 STOPRE

N50 DBR=$A_DBR[0]

N60 IF (ABS(DBR/145.145-1.0) < EPSILON) GOTOF ENDE

N70 MSG ("error")

N80 M0

N90 END:

N99 M30

Activation
The maximum number of simultaneously writable output variables is adjustable via:
MD28150 $MC_MM_NUM_VDIVAR_ELEMENTS (number of elements for writing PLC
variables)

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 61

Example
A variable of type WORD is to be transferred from the PLC to the NC.

The position offset within the NC input (PLC output area) should be the fourth byte. The
position offset must be a whole-number multiple of the data width.

Writing from PLC:

Program code Comment

. . .

CALL FC21 (

Enable :=M10.0, ; if TRUE, then FC21 active

Funct :=B#16#4,

S7Var :=P#M 104.0 WORD1,

IVAR1 :=04,

IVAR2 :=-1,

Error :=M10.1,

ErrCode :=MW12);

. . .

)

Reading in part program

Program code Comment

. . .

PLCDATA = $A_DBW[4]; ; Read a word

. . .

Behavior during POWER ON, block search
The DPR communications buffer is initialized during "POWER ON".

During a "block search", the PLC variable outputs are collected and transferred to the DPR
communications buffer with the approach block (analogous to writing of analog and digital
outputs).

Other status transitions have no effect in this respect.

References
A detailed description of the data exchange by the PLC with FC 21 can be found in:

SINUMERIK 840D sl: Section "FC 21: transfer PLC NCK data exchange (Page 1011)"

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
62 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

1.3.5 Access protection via password and keyswitch

Access authorization
Access to functions, programs and data is useroriented and controlled via 8 hierarchical
protection levels. These are subdivided into:

● Password levels for Siemens, machine manufacturer and end user

● Keyswitch positions for end user

Multi-level security concept

A multi-level security concept to regulate access rights is available in the form of password
levels and keyswitch settings.

Protection level Type User Access to (examples)
0 Password Siemens All functions, programs and

data
1 Password Machine manufacturer:

Development
defined functions, programs
and data;
for example: entering options

2 Password Machine manufacturer:
Startup engineer

defined functions, programs
and data;
for example: Bulk of machine
data

3 Password End user: Service Assigned functions,
programs and data

4 Keyswitch position 3 End user: Programmer,
machine setter

less than the protection level
0 to 3; established by the
machine manufacturer or
end user

5 Keyswitch position 2 End user: Skilled operator
without programming
knowledge

less than the protection level
0 to 3; established by the
end user

6 Keyswitch position 1 End user: Trained operator
without programming
knowledge

Example:
Program selection only, tool
wear entry, and work offset
entry

7 Keyswitch position 0 End user: Semi-skilled
operator

Example:
no inputs and program
selection possible,
only machine control panel
operable

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 63

Access features
● Protection level 0 provides the greatest number of access rights, protection level 7 the

least.

● If certain access rights are granted to a protection level, these protection rights
automatically apply to any higher protection levels.

● Conversely, protection rights for a certain protection level can only be altered from a
higher protection level.

● Access rights for protection levels 0 to 3 are permanently assigned by Siemens and
cannot be altered (default).

● Access rights can be set by querying the current keyswitch positions and comparing the
passwords entered. When a password is entered it overwrites the access rights of the
keyswitch position.

● Options can be protected on each protection level. However, option data can only be
entered in protection levels 0 and 1.

● Access rights for protection levels 4 to 7 are only suggestions and can be altered by the
machine tool manufacturer or end user.

1.3.5.1 Password

Set password
The password for a protection level (0 – 3) is entered via the HMI user interface.

Example:

DIAGNOSTIC operating area, softkey: SET PASSWORD

References:

Commissioning Manual SINUMERIK 840D sl base software and HMI sl

Delete password
Access rights assigned by means of setting a password remain effective until they are
explicitly revoked by deleting the password.

Example:

DIAGNOSTIC operating area, softkey: DELETE PASSWORD

References:

Commissioning Manual SINUMERIK 840D sl base software and HMI sl

Note

Access rights and password status (set/deleted) are not affected by POWER OFF/ON!

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
64 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Maximum number of characters
A password may contain up to eight characters. We recommend that you confine yourself to
the characters available on the operator panel front when defining the password. Where a
password consists of less than eight characters, the additional characters are interpreted as
blanks.

Defaults
The following default passwords are defined for protection levels 1 to 3:

● Protection level 1: SUNRISE

● Protection level 2: EVENING

● Protection level 3: CUSTOMER

 Note

Following NC-CPU ramp-up in commissioning mode (NCK commissioning switch:
position 1) the passwords for protection levels 1 – 3 are reset to the default settings. For
reasons of data protection, we strongly recommend that you change the default settings.

1.3.5.2 Keyswitch positions (DB10, DBX56.4 to 7)

Key switch
The keyswitch has four positions, to which protection levels 4 to 7 are assigned. The
keyswitch comprises a number of keys in a variety of colors which can be set to different
switch positions.

Figure 1-10 Switch positions 0 to 3

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 65

Switch positions
Switch position 0 has the most restricted access rights. Switch position 3 has the least
restricted access rights.

DB10, DBX56.4 / .5 / .6 / .7 (switch positions 0 / 1 / 2 / 3)

Machine-specific enables for access to programs, data and functions can be assigned to the
switch positions. For detailed information, please refer to:

References

● CNC Commissioning Manual: NCK, PLC, Drives, Fundamentals,
Section: Basics on the protection levels

● Commissioning Manual SINUMERIK Operate (IM9); General Settings,
Section: Access levels

Default settings via the PLC user program
The keyswitch positions are transferred to the NC/PLC interface via the basic PLC program.
The corresponding interface signals can be modified via the PLC user program. In this
context, from the point of view of the NC, only one switch position should ever be active, i.e.
the corresponding interface signal set to 1. If, from the point of view of the NC, a number of
switch positions are active at the same time, switch position 3, i.e. the keyswitch position
with the least restricted access rights, will be activated internally by the NC.

1.3.5.3 Parameterizable protection levels

Parameterizable protection level
The parameter level can be freely parameterized for a variety of functions and data areas.
The protection level is set via operator-panel machine data, designated as follows:
$MM_USER_CLASS_<Function_DataArea>

Examples:

$MM_USER_CLASS_READ_TOA Read tool offsets
$MM_USER_CLASS_WRITE_TOA Write tool offsets
$MM_USER_CLASS_READ_PROGRAM Read part programs
$MM_USER_CLASS_WRITE_PROGRAM Write/edit part programs

Default values
On delivery or following standard commissioning, with very few exceptions, the default value
for the protection level will be set to 7, i.e. the lowest protection level.

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
66 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

1.3.6 "Parking" of a machine axis
In the "Parking" state, a machine axis can be moved mechanically or maintenance
performed (e.g. encoder replacement), without triggering an alarm. For this purpose, the
axis-specific NC/PLC interface signals for the active position measuring system and the
controller enable of the machine axis must be reset:

● DB31, ... DBX1.5/.6 = 0 (position measuring system 1/2)

● DB31, ... DBX2.1 = 0 (controller enable)

The encoder status of the active measuring system of the axis is then displayed as "Not
referenced":

● DB31, ... DBX60.4/.5 == 0 (referenced/synchronized, encoder 1/2)

Canceling "Parking"
The "Parking" state is canceled by setting the NC/PLC interface signals:

● DB31, ... DBX1.5/.6 = 1 (position measuring system 1/2)

● DB31, ... DBX2.1 = 1 (controller enable)

The position control of the machine axis then becomes active again at the current position.

The encoder state of the measuring system depends on the measuring system type:

● Incremental measuring system: "Not referenced" state

DB31, ... DBX60.4/.5 == 0 (referenced/synchronized, encoder 1/2)

● Absolute measuring system: "Referenced" state
DB31, ... DBX60.4/.5 == 1 (referenced/synchronized, encoder 1/2)

Incremental measuring systems: Encoder state "Referenced"

To reach the encoder state "Referenced", incremental measuring systems must be re-
referenced.

WARNING
Incorrect synchronization of the measuring system caused by displacement of the actual
machine axis position

If changes have been made on the measuring system during parking that require a change
of the parameterized machine data, e.g. mounting of another encoder, the measuring
system must be completely remeasured and referenced (see Section "R1: Referencing
(Page 1173)").

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 67

1.3.7 Switchover of motor/drive data sets

1.3.7.1 General Information

Behavior as of SW 4.5 SP1
Up to and including SW 4.5, the format of the interfaces for the motor and drive data set
switchover in the NC/PLC interface was fixed.

As of SW 4.5 SP1, the quantity structure of the programmable motor data sets and drive
data sets per motor data set and therefore the rigid assignment of the signals to the motor
and drive data set switchover in the NC/PLC interface signals has become more flexible.

Motor and drive data sets
For optimum adaptation to the particular machining situation or because of different machine
configurations, it may be necessary that several different data sets are available in a drive for
motors, drive parameters and encoders. The creation of the basic data sets of the drive
objects is performed during startup with the aid of the "Drive wizard".

 Note
References

Commissioning Manual: CNC: NCK, PLC, Drive, Section "Commissioning NC-controlled
drives"

The following duplication and management of the data sets is performed via the user
interface:

SINUMERIK Operate: Operating area "Start-up" > "Drive system" > "Drives" > "Data sets"

The activation of the motor data set (MDS) or drive data set (DDS) required for a machine
axis in a specific machining situation, must be made from the PLC user program via the
interfaces described below.

Axial NC/PLC interface
The interfaces in the axial NC/PLC interface for switching the motor and drive data sets is
divided into three areas:

● Validity and format of the request/display interfaces (Page 68)

● Request for a new motor data set and/or drive data set (Page 68)

● Display of the active motor and/or drive data set (Page 69)

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
68 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

1.3.7.2 Validity and format of the request/display interfaces

Validity

As soon as the control has received all the required information from the drive and has been
evaluated by the NC, the request and display interfaces are shown as valid:

DB31, ... DBX130.7 == 1 (interface is valid)

If no or incompatible information is transferred from the drive, the request and display
interfaces remain invalid.

 Note

With invalid request and display interfaces, it is the sole responsibility of the user / machine
manufacturer to perform a data set switchover via the request and display interfaces.

Format

The current format of the interfaces, i.e. which of the five bits of the request and display
interfaces are used for the addressing of the motor data set and which for the drive data set,
depends on the number of motor and drive data sets in the drive. The format is specified via:

DB31, ... DBX130.0-4, with bit x = <value>

<value> Meaning

0 Bit position for motor data set switchover (MDS) or invalid bit position
1 Bit position for drive data set switchover (DDS)

See also
Example (Page 69)

Overview of the interfaces (Page 70)

1.3.7.3 Request for a new motor data set and/or drive data set
The request to activate a specific motor and drive data set is performed via:

DB31, ... DBX21.0 - .4 = <MDS/DDS index>

Range of values

The addressing of a data set is performed via the index i, with i = 0, 1, 2, ...

Data set Range of values, index i
MDS[i] 0 ≤ i ≤ 32
DDS[i] 0 ≤ i ≤ 32

 A2: Various NC/PLC interface signals and functions
 1.3 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 69

Formatting

The formatting of the interface, i.e. which bits are available for the motor data set index and
which for the drive data set index is displayed via:

DB31, ... DBX130.0 - .4 (see Section "Validity and format of the request/display interfaces
(Page 68)")

Specific number of data sets

The specific number of motor and drive data sets available in the motor can be determined
via the following drive parameters:
● p0130 (number of motor data sets)
● p0180 (number drive data sets)

1.3.7.4 Display of the active motor and/or drive data set

Display of the active motor and/or drive data set

The index of an active data set can be read via:

DB31, ... DBX93.0 - .4

Value range and formatting are identical to the request interface. See Section "Request for a
new motor data set and/or drive data set (Page 68)"

1.3.7.5 Example
Two motor data sets (MDS) and two drive data sets (DDS) are available in the drive. This
corresponds to "No.": 9 of the possible data set combinations displayed in Figure 1-11
Motor/drive data set switchover (Page 70).

Format

Bit positions for drive data set switchover (DDS):
● DB31, ... DBX130.0 == 1

Bit positions for motor data set switchover (MDS):
● DB31, ... DBX130.1 == 0

Invalid bit positions:
● DB31, ... DBX130.2 == 0
● DB31, ... DBX130.3 == 0
● DB31, ... DBX130.4 == 0

Interfaces of the drive data sets (DDS)

Relevant bit positions of the request and display interfaces:

● DB31, ... DBX21.0 / DBX93.0

– DB31, ... DBX21.0 / DBX93.0 == 0 ⇒ 1st drive data set DDS[0]
– DB31, ... DBX21.0 / DBX93.0 == 1 ⇒ 2nd drive data set DDS[1])

A2: Various NC/PLC interface signals and functions
1.3 Functions

 Basic Functions
70 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Interfaces of the motor data sets (MDS)

Relevant bit positions of the request and display interfaces:

● DB31, ... DBX21.1 / DBX93.1

– DB31, ... DBX21.1 / DBX93.1 == 0 ⇒ 1st motor data set MDS[0]
– DB31, ... DBX21.1 / DBX93.1 == 1 ⇒ 2nd motor data set MDS[1])

Invalid bit positions (MDS/DDS)

Invalid bit positions of the request and display interfaces:

● DB31, ... DBX21.1 / DBX93.2

● DB31, ... DBX21.1 / DBX93.3

● DB31, ... DBX21.1 / DBX93.4

See also
Overview of the interfaces (Page 70)

1.3.7.6 Overview of the interfaces

MDS Number of motor data sets
DDS per MDS Number of drive data sets per motor data set
DB31, ... DBX21.x Request interface of the data sets to be activated
DB31, ... DBX93.x Display interface of the active data sets
DB31, ... DBX130.x Interface for displaying the formatting of the request and display interfaces

Figure 1-11 Motor/drive data set switchover

 A2: Various NC/PLC interface signals and functions
 1.4 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 71

1.3.7.7 Supplementary conditions

Variable number of drive data sets for the "last" motor data set
The "last" motor data set is the motor data set with the highest number or index.

Generally, the same number of drive data sets is created for each motor data set (number of
"DDS per MDS") in the drive. Only the "last" motor data set can differ from this; any number
(a) of drive data sets can be parameterized:

1 ≤ a ≤ (number of "DDS per MDS")

Example

Four motor data sets (MDS) and eight drive data sets (DDS) per motor data set (DDS per
MDS) are to be parameterized. This corresponds to "No.": 22 of the possible data set
combinations displayed in Figure 1-11 Motor/drive data set switchover (Page 70):

● Motor data sets: MDS[0], MDS[1], ... MDS[3] ("last" motor data set)

● Drive data sets per motor data set: DDS[0] ... DDS[7]

The number of drive data sets for the individual motor data sets is therefore:

Motor data set Number of drive data sets per motor data set
MDS[0] ... MDS[2] 8 DDS
MDS[3] 1 - 8 DDS

See also
Overview of the interfaces (Page 70)

1.4 Examples

Parameter set changeover
A parameter-set changeover is performed to change the position-control gain (servo gain
factor) for machine axis X1 from v = 4.0 to Kv = 0.5.

Preconditions
The parameter set changeover must be enabled by the machine data:

MD35590 $MA_PARAMSET_CHANGE_ENABLE [AX1] = 1 or 2 (parameter set change
possible)

The 1st parameter set for machine axis X1 is set, in accordance with machine data with
index "0" NC/PLC interface:

DB31, … DBX9.0 - DBX9.2 = 0 (controller parameter set)

A2: Various NC/PLC interface signals and functions
1.4 Examples

 Basic Functions
72 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameter-set-dependent machine data
Parameter-set-dependent machine data are set as follows:

Machine data Comment
MD32200 $MA_POSCTRL_GAIN [0, AX1] = 4.0 Servo gain setting for parameter set 1
MD32200 $MA_POSCTRL_GAIN [1, AX1] = 2.0 Servo gain setting for parameter set 2
MD32200 $MA_POSCTRL_GAIN [2, AX1] = 1.0 Servo gain setting for parameter set 3
MD32200 $MA_POSCTRL_GAIN [3, AX1] = 0.5 Servo gain setting for parameter set 4
MD32200 $MA_POSCTRL_GAIN [4, AX1] = 0.25 Servo gain setting for parameter set 5
MD32200 $MA_POSCTRL_GAIN [5, AX1] = 0.125 Servo gain setting for parameter set 6
MD31050 $MA_DRIVE_AX_RATIO_DENOM [0, AX1] = 3 Denominator load gearbox for parameter set 1
MD31050 $MA_DRIVE_AX_RATIO_DENOM [1, AX1] = 3 Denominator load gearbox for parameter set 2
MD31050 $MA_DRIVE_AX_RATIO_DENOM [2, AX1] = 3 Denominator load gearbox for parameter set 3
MD31050 $MA_DRIVE_AX_RATIO_DENOM [3, AX1] = 3 Denominator load gearbox for parameter set 4
MD31050 $MA_DRIVE_AX_RATIO_DENOM [4, AX1] = 3 Denominator load gearbox for parameter set 5
MD31050 $MA_DRIVE_AX_RATIO_DENOM [5, AX1] = 3 Denominator load gearbox for parameter set 6
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [0, AX1] = 5 Counter load gearbox for parameter set 1
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [1, AX1] = 5 Counter load gearbox for parameter set 2
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [2, AX1] = 5 Counter load gearbox for parameter set 3
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [3, AX1] = 5 Counter load gearbox for parameter set 4
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [4, AX1] = 5 Counter load gearbox for parameter set 5
MD31060 $MA_DRIVE_AX_RATIO_NUMERA [5, AX1] = 5 Counter load gearbox for parameter set 6
MD35130 $MA_AX_VELO_LIMIT [0...5, AX1] Setting for each parameter set*)
MD32800 $MA_EQUIV_CURRCTRL_TIME [0..5, AX1] Setting for each parameter set*)
MD32810 $MA_EQUIV_SPEEDCTRL_TIME [0..5, AX1] Setting for each parameter set*)
MD32910 $MA_DYN_MATCH_TIME [0...5, AX1] Setting for each parameter set*)
*) The appropriate line must be specified separately for each parameter set according to the applicable syntax rules.

Changeover
In order to switch over the position-control gain, the PLC user program selects the 4th
parameter set for machine axis X1.

● Request by PLC user program:

DB31, … DBX9.0 – DBX9.2 = 3 (parameter set servo)

– A request to change over to the 4th parameter set is sent for machine axis AX1.

– The parameter set is changed over once a delay has elapsed.

– Parameter set 4 is now active, in accordance with machine data with index "3"

● Feedback by NC:

DB31, … DBX69.0 – DBX69.2 = 3 (parameter set servo)

– The NC confirms/acknowledges the parameter-set changeover.

 A2: Various NC/PLC interface signals and functions
 1.5 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 73

1.5 Data lists

1.5.1 Machine data

1.5.1.1 Display machine data

Number

SINUMERIK Operate

Identifier: $MM_ Description

9000 LCD_CONTRAST Contrast
9001 DISPLAY_TYPE Monitor type
9004 DISPLAY_RESOLUTION Display resolution

1.5.1.2 NC-specific machine data

Number Identifier: $MN_ Description
10350 FASTIO_DIG_NUM_INPUTS Number of active digital NCK input bytes
10360 FASTIO_DIG_NUM_OUTPUTS Number of active digital NCK output bytes
10361 FASTIO_DIG_SHORT_CIRCUIT Short-circuit digital inputs and outputs
11120 LUD_EXTENDED_SCOPE Activate programglobal variables (PUD)
11270 DEFAULT_VALUES_MEM_MSK Activ.

Function: Save DEFAULT values of GUD.
18150 MM_GUD_VALUES_MEM Reserve memory space for GUD

1.5.1.3 Channelspecific machine data

Number Identifier: $MC_ Description
21015 INVOLUTE_RADIUS_DELTA NC start disable without reference point
21016 INVOLUTE_AUTO_ANGLE_LIMIT Automatic angle limitation for involute interpolation
27800 TECHNOLOGY_MODE Technology in channel
28150 MM_NUM_VDIVAR_ELEMENTS Number of write elements for PLC variables
28530 MM_PATH_VELO_SEGMENTS Number of storage elements for limiting path velocity

in block

A2: Various NC/PLC interface signals and functions
1.5 Data lists

 Basic Functions
74 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

1.5.1.4 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30350 SIMU_AX_VDI_OUTPUT Output of axis signals for simulation axes
33050 LUBRICATION_DIST Lubrication pulse distance
35590 PARAMSET_CHANGE_ENABLE Parameter set definition possible from PLC
36060 STANDSTILL_VELO_TOL Maximum velocity/speed when axis/spindle stationary
36610 AX_EMERGENCY_STOP_TIME Length of the braking ramp for error states
36620 SERVO_DISABLE_DELAY_TIME Cutout delay servo enable

1.5.2 System variables

Names Description
$P_FUMB Unassigned part program memory (Free User Memory Buffer)
$A_DBB[n] Data on PLC (data type BYTE)
$A_DBW[n] Data on PLC (WORD type data)
$A_DBD[n] Data on PLC (DWORD type data)
$A_DBR[n] Data on PLC (REAL type data)

1.5.3 Signals

1.5.3.1 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Keyswitch setting 0 to 3 DB10.DBX56.4-7 DB2600.DBX0.4-7

1.5.3.2 Signals from NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Remote diagnostics active (HMI alarm is pending) DB10.DBX103.0 -
AT box ready DB10.DBX103.5 -
HMI temperature limit DB10.DBX103.6 -
HMI battery alarm DB10.DBX103.7 -
NCK--Ready DB10.DBX104.7 -
HMI2-CPU-Ready E_MMC2 Ready DB10.DBX108.1 -
HMI CPU1 Ready (HMI to MPI) DB10.DBX108.2 -

 A2: Various NC/PLC interface signals and functions
 1.5 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 75

Signal name SINUMERIK 840D sl SINUMERIK 828D
HMI1-CPU at OPI Ready DB10.DBX108.3 DB2700.DBX2.3
Drives in cyclic operation DB10.DBX108.5 DB2700.DBX2.5
Drives ready DB10.DBX108.6 DB2700.DBX2.6
NC Ready DB10.DBX108.7 DB2700.DBX2.7
NCK alarm is active DB10.DBX109.0 DB2700.DBX3.0
NCU heat sink temperature alarm DB10.DBX109.5 -
Air temperature alarm DB10.DBX109.6 DB2700.DBX3.6
NCK battery alarm DB10.DBX109.7 -

1.5.3.3 Signals to operator panel front

Signal name SINUMERIK 840D sl SINUMERIK 828D
Screen bright DB19.DBX0.0 -
Screen dark DB19.DBX0.1 -
Key disable DB19.DBX0.2 DB1900.DBX5000.2
Delete Cancel alarms (HMI Advanced only) DB19.DBX0.3 -
Delete Recall alarms (HMI Advanced only) DB19.DBX0.4 -
Actual value in WCS DB19.DBX0.7 DB1900.DBX5000.7
Unload part program DB19.DBX13.5 -
Load part program DB19.DBX13.6 -
Part program selection DB19.DBX13.7 DB1700.DBX1000.7
File system active/passive DB19.DBX14.7 -
Part program handling: Number of the control data DB19.DBX16.7 DB1700.DBX1001.7 == 1
Mode change disable DB19.DBX44.0 -

1.5.3.4 Signals from operator panel front

Signal name SINUMERIK 840D sl SINUMERIK 828D
Screen is dark DB19.DBX20.1 -
Switch over MCS/WCS DB19.DBX20.7 DB1900.DBX0.7
Error (Part program handling status) DB19.DBX26.0 DB1700.DBX2000.2
OK (Part program handling status) DB19.DBX26.1 DB1700.DBX2000.1
Active (Part program handling status) DB19.DBX26.3 DB1700.DBX2000.3
Unload (Part program handling status) DB19.DBX26.5 DB1700.DBX2000.5
Load (Part program handling status) DB19.DBX26.6 DB1700.DBX2000.6
Select (Part program handling status) DB19.DBX26.7 DB1700.DBX2000.7
FC9: Start measuring in Jog DB19.DBX42.0 -
FC9 Out: Active DB19.DBX45.0 -

A2: Various NC/PLC interface signals and functions
1.5 Data lists

 Basic Functions
76 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal name SINUMERIK 840D sl SINUMERIK 828D
FC9 Out: Done DB19.DBX45.1 -
FC9 Out: Error DB19.DBX45.2 -
FC9 Out: StartErr DB19.DBX45.3 -

1.5.3.5 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Delete distancetogo (channelspecific) DB21,DBX6.2 DB3200.DBX6.2

1.5.3.6 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Channelspecific NCK alarm is active DB21,DBX36.6 DB3300.DBX4.6
NCK alarm with processing stop present DB21, … .DBX36.7 DB3300.DBX4.7
Overstore active DB21,DBX318.7 -

1.5.3.7 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Axis/spindle disable DB31,DBX1.3 DB380x.DBX1.3
Follow-up mode DB31,DBX1.4 DB380x.DBX1.4
Position measuring system 1 DB31,DBX1.5 DB380x.DBX1.5
Position measuring system 2 DB31,DBX1.6 DB380x.DBX1.6
Controller enable DB31,DBX2.1 DB380x.DBX2.1
Delete distance-to-go (axis-specific) / spindle reset DB31,DBX2.2 DB380x.DBX2.2
Motor/drive data set: Selection DB31,DBX21.0-4 DB380x.DBX4001.0-4
Motor being selected DB31,DBX21.5 -
Speed controller integrator disable DB31,DBX21.6 DB380x.DBX4001.6
Pulse enable DB31,DBX21.7 DB380x.DBX4001.7

 A2: Various NC/PLC interface signals and functions
 1.5 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 77

1.5.3.8 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Referenced/synchronized, encoder 1/2 DB31,DBX60.4/5 DB390x.DBX0.4/5
Traversing command minus/plus DB31,DBX64.6/7 DB390x.DBX4.6/7
Follow up active DB31,DBX61.3 DB390x.DBX1.3
Axis/spindle stationary (n < nmin) DB31,DBX61.4 DB390x.DBX1.4
Position controller active DB31,DBX61.5 DB390x.DBX1.5
Speed controller active DB31,DBX61.6 DB390x.DBX1.6
Current controller active DB31,DBX61.7 DB390x.DBX1.7
Lubrication pulse DB31,DBX76.0 DB390x.DBX1002.0
Active motor/drive data set DB31,DBX93.0-4 DB390x.DBX4001.0-4
Drive ready DB31,DBX93.5 DB390x.DBX4001.5
Speed controller integrator disabled DB31,DBX93.6 DB390x.DBX4001.6
Pulses enabled DB31,DBX93.7 DB390x.DBX4001.7
Motor temperature prewarning DB31,DBX94.0 DB390x.DBX4002.0
Heat sink temperature prewarning DB31,DBX94.1 DB390x.DBX4002.1
Run-up completed DB31,DBX94.2 DB390x.DBX4002.2
|Md| < Mdx DB31,DBX94.3 DB390x.DBX4002.3
|nact| < nmin DB31,DBX94.4 DB390x.DBX4002.4
|nact| < nx DB31,DBX94.5 DB390x.DBX4002.5
nact = nset DB31,DBX94.6 DB390x.DBX4002.6
Motor/drive data set interface: Formatting DB31,DBX130.0-4 DB390x.DBX4008.0-4
Motor/drive data set interface: Valid DB31, ... DBX130.7 DB390x.DBX4008.7

A2: Various NC/PLC interface signals and functions
1.5 Data lists

 Basic Functions
78 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 79

A3: Axis Monitoring, Protection Zones 2
2.1 Brief description

2.1.1 Axis monitoring functions
Comprehensive monitoring functions are present in the controller for protection of people
and machines:

● Contour monitoring

● Positioning monitoring

● Zero-speed monitoring

● Clamping monitoring

● Speed-setpoint monitoring

● Actual-velocity monitoring

● Measuring system monitoring

● Limit-switch monitoring

● Monitoring of the working area limitation

2.1.2 Protection zones
With the help of protection zones, elements of the machine (e.g. spindle chuck, tool changer,
toolholder, tailstock, movable probe, etc.) and the workpiece can be protected against
collisions.

During automatic execution of part programs in the AUTOMATIC or MDA mode, the NC
checks at the start of every part program block whether a collision between protection zones
can occur upon moving along the programmed path.

After manual deactivation of an active protection zone, traversing can be performed in this
zone. After leaving the protection zone, the protection zone automatically becomes active
again.

The definition, activation and deactivation of protection zones takes place via part program
instructions.

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
80 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

2.2 Axis monitoring functions

2.2.1 Contour monitoring

2.2.1.1 Contour error
Contour errors are caused by signal distortions in the position control loop.

Signal distortions can be linear or non-linear.

Linear signal distortions
Linear signal distortions are caused by:

● Speed and position controller not being set optimally

● Different servo gain factors of the feed axes involved in creating the path

With the same servo gain factor for two linear-interpolated axes, the actual position
follows the set position along the same path but with a time delay. With different servo
gain factors, a parallel offset arises between the set and actual path.

● Unequal dynamic response of the feed drives

Unequal drive dynamic responses lead to path deviations especially on contour changes.
Circles are distorted into ellipses by unequal dynamic responses of the two feed drives.

Non-linear signal distortions
Non-linear signal distortions are caused by:

● Activation of the current limitation within the machining area

● Activation of the limitation of the speed setpoint

● Backlash within and/or outside the position control loop

When traversing a circular path, contour errors occur primarily due to the reversal error
and friction.

During motion along straight lines, a contour error arises due to a reversal error outside
the position control loop, e.g. due to a tilting milling spindle. This causes a parallel offset
between the actual and the set contour. The shallower the gradient of the straight line,
the larger the offset.

● Nonlinear friction behavior of slide guides

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 81

2.2.1.2 Following-error monitoring

Function
In control engineering terms, traversing along a machine axis always produces a certain
following error, i.e. a difference between the set and actual position.

The following error that arises depends on:

● Position control loop gain

MD32200 $MA_POSCTRL_GAIN (servo gain factor)

● Maximum acceleration

MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)

● Maximum velocity

MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

● With activated feedforward control:

Precision of the path model and the parameters:

MD32610 $MA_VELO_FFW_WEIGHT (factor for the velocity feedforward control)

MD32800 $MA_EQUIV_CURRCTRL_TIME (equivalent time constant current control loop
for feedforward control)

MD32810 $MA_EQUIV_SPEEDCTRL_TIME (equivalent time constant speed control loop
for feedforward control)

In the acceleration phase, the following error initially increases when traversing along a
machine axis. After a time depending on the parameterization of the position control loop,
the following error then remains constant in the ideal case. Due to external influences, more
or less large fluctuations in the following error always arise during a machining process. To
prevent these fluctuations in the following error from triggering an alarm, a tolerance range
within which the following error may change must be defined for the following-error
monitoring:

MD36400 $MA_CONTOUR_TOL (Contour monitoring tolerance range)

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
82 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 2-1 Following-error monitoring

Effectiveness
The following-error monitoring only operates with active position control and the following
axis types:

● Linear axes with and without feedforward control

● Rotary axes with and without feedforward control

● Position-controlled spindles

Fault
If the configured tolerance limit is exceeded, the following alarm appears:

25050 "Axis <Axis name> Contour monitoring"

The affected axis/spindle is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 83

2.2.2 Positioning, zero speed and clamping monitoring

2.2.2.1 Correlation between positioning, zero-speed and clamping monitoring

Overview
The following overview shows the correlation between the positioning, zero speed and
clamping monitoring functions:

2.2.2.2 Positioning monitoring

Function
At the end of a positioning operation:

● Set velocity = 0 AND

● DB31, ... DBX64.6/7 (motion command minus/plus) = 0

checks the position monitoring to ensure that the following error of every participating
machine axis is smaller than the exact-stop fine tolerance during the delay time.

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
84 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

MD36020 $MA_POSITIONING_TIME (delay time exact stop fine)

After reaching "Exact stop fine", the position monitoring is deactivated.

 Note

The smaller the exact stop fine tolerance is, the longer the positioning operation takes and
the longer the time until block change.

Rules for MD setting

MD36010 $MA_STOP_LIMIT_FINE MD36020 $MA_POSITIONING_TIME
Large Can be selected relatively short
Small Must be selected relatively long

MD32200 $MA_POSCTRL_GAIN
(servo gain factor)

MD36020 $MA_POSITIONING_TIME

Small Must be selected relatively long
Large Can be selected relatively short

Effectiveness
The position monitoring only operates with active position control and the following axis
types:

● Linear axes

● Rotary axes

● Position-controlled spindles

Fault
If the configured position-monitoring time is exceeded, the following alarm appears:

25080 "Axis <Axis name> Position monitoring"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 85

2.2.2.3 Zero-speed monitoring

Function
At the end of a positioning operation:

● Set velocity = 0 AND

● DB31, ... DBX64.6/7 (motion command minus/plus) = 0

checks the zero-speed monitoring to ensure that the following error of every participating
machine axis is smaller than the standstill tolerance during the delay time.

MD36040 $MA_STANDSTILL_DELAY_TIME (zero-speed monitoring delay time)

MD36030 $MA_STANDSTILL_POS_TOL (standstill tolerance)

After reaching the required exact-stop state, the positioning operation is completed:

DB31, ... DBX60.6/7 (position reached with exact stop coarse/fine) = 1

The position-monitoring function is deactivated and is replaced by the zero-speed
monitoring.

Zero-speed monitoring monitors the adherence to the standstill tolerance. If no new travel
request is received, the machine axis must not depart from the standstill tolerance.

Effectiveness
The zero-speed monitoring only operates with active position control and the following axis
types:

● Linear axes

● Rotary axes

● Position-controlled spindles

Fault
If the delay time and/or the standstill tolerance is exceeded, the following alarm appears:

25040 "Axis <Axis name> Zero-speed monitoring"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

2.2.2.4 Parameter set-dependent exact stop and standstill tolerance
For adaptation to different machining situations and/or axis dynamics, e.g.:

● Operating state A: High precision, long machining time

● Operating state B: Lower precision, shorter machining time

● Changing of the mass relationships after gear change

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
86 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

the positioning tolerances:

● MD36000 $MA_STOP_LIMIT_COARSE (exact stop coarse)

● MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

● MD36030 $MA_STANDSTILL_POS_TOL (standstill tolerance)

can be weighted with a common factor depending on the parameter set:

MD36012 $MA_STOP_LIMIT_FACTOR (exact stop coarse/fine and standstill factor)

Because the factor applies in common for all three position tolerances, the relationship
between the values remains constant.

2.2.2.5 Clamping monitoring

Function
For machine axes that are mechanically clamped upon completion of a positioning operation,
larger motions can result from the clamping process (> standstill tolerance). As a result,
zero-speed monitoring is replaced by clamping monitoring during the clamping process.

Clamping monitoring monitors the adherence to the configured clamping tolerance:

MD36050 $MA_CLAMP_POS_TOL (clamping tolerance)

Activation
The clamping monitoring is activated by the following interface signal:

DB31, ... DBX2.3 (clamping in progress)

 Note

The clamping monitoring is not active in "follow-up mode" (DB31, ... DBX1.4 = 1).

Fault
If the clamping tolerance is exceeded, the following alarm appears:

26000 "Clamping monitoring"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

Automatic stop to release the clamping
If a clamped axis must be traversed again in continuous-path mode, the NC stops the path
motion for Look Ahead at the start of the motion block of the clamped axis until the clamped
axis can once again be traversed. If the clamping is released before stopping, the path
motion is not stopped.

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 87

Parameterization:

MD36052 $MA_STOP_ON_CLAMPING = 'H01' (special function for clamped axis)

 Note

The NC detects whether an axis is clamped based on the "servo enable" state of the axis:

DB31, ... DBX2.2 = 0: No servo enable ⇒ axis is clamped

DB31, ... DBX2.2 = 1: Servo enable ⇒ axis is not clamped

Requirements for the PLC user program

● The axis is always removed from the clamp when a travel command is pending.

● The following is always valid for the axis:

DB31, ... DBX2.2 (servo enable) = 0: Axis is clamped.

DB31, ... DBX2.2 (servo enable) = 1: Axis is not clamped.

The following figure shows an example of the interface signals and states upon releasing of
the axis clamp:

Figure 2-2 Release axis clamp if MD36052 $MA_STOP_ON_CLAMPING = 'H01'

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
88 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The part program blocks N310 and N410 refer to the following programming example:

Program code Comment

N100 G0 X0 Y0 Z0 A0 G90 G54 F500

N101 G641 ADIS=.1 ADISPOS=5

N210 G1 X10 ; Machining

N220 G1 X5 Y20

N310 G0 Z50 ; Retraction

N410 G0 A90 ; Turn rotary table

N510 G0 X100 ; Approach

N520 G0 Z2

N610 G1 Z-4 ; Machining

N620 G1 X0 Y-20

Optimized release of the axis clamping via travel command
If a clamped axis is to be traversed in continuous-path mode, a travel command is issued for
the clamped axis in the rapid traverse blocks (G0) immediately before the traversing block of
the clamped axis. This way, the PLC user program can release the axis clamp again in time.

 Note

The travel command is set a maximum of two rapid traverse blocks prior (including
intermediate blocks) to retain the reference to the initiating part program block.

Parameterization:

MD36052 $MA_STOP_ON_CLAMPING = 'H03' (special function for clamped axis)

Requirements for the PLC user program

● The axis is removed from the clamp as soon as a travel command is pending.

● The axis may be removed from the clamping even when only positioning is being
performed (G0).

The following figure shows an example of the interface signals and states upon releasing of
the axis clamp:

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 89

Figure 2-3 Release axis clamp if MD36052 $MA_STOP_ON_CLAMPING = 'H03'

Automatic stop to set the clamping
If an axis is to be clamped in continuous-path mode, the NC stops the path motion before the
next "Non-rapid traverse block" if the axis has not been clamped by then, i.e. the PLC has
set the feedrate override value to zero.

Parameterization:

MD36052 $MA_STOP_ON_CLAMPING = 'H04' (special function for clamped axis)

Requirements for the PLC user program

● The axis is always clamped when no travel command is pending.

● The axis does not have to be clamped during positioning of the other axes.

It can be seen whether the axes are being positioned depending on whether rapid
traverse (G0) is programmed.

The stop command is therefore not set immediately at the beginning of the block
containing the axis, but at the beginning of the next machining block (traversing block that
is not traversed with rapid traverse).

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
90 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● The axis is clamped if the feedrate override of a machining block is not equal to 0.

If the axis is clamped before the next machining block, i.e. the feedrate override is other
than 0 again, no stop is generated.

The following figure shows an example of the interface signals and states upon setting of the
axis clamp. The part program blocks N410, N510, N520 and N610 refer to the schematic
example under supplementary conditions.

Figure 2-4 Set axis clamp if MD36052 $MA_STOP_ON_CLAMPING = 'H04'

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 91

Supplementary conditions
Continuous-path mode

For the above-mentioned functions:

● Automatic stop to release the clamping

● Optimized release of the axis clamping via travel command

● Automatic stop to set the clamping

the "Look Ahead" function must be active.

Part program blocks without path motion (e.g. M82/M83) interrupt continuous-path mode and
thus also the "Look Ahead" function.

Example:

The part program blocks N320 and N420 are inserted in the programming example used.

Program code Comment

N100 G0 X0 Y0 Z0 A0 G90 G54 F500

N101 G641 ADIS=.1 ADISPOS=5

N210 G1 X10 ; Machining

N220 G1 X5 Y20

N310 G0 Z50 ; Retraction

N320 M82 ; No path motion

N410 G0 A90 ; Turn rotary table

N420 M83 ; No path motion

N510 G0 X100 ; Approach

N520 G0 Z2

N610 G1 Z-4 ; Machining

N620 G1 X0 Y-20

The function behaves as follows:

● MD36052 $MA_STOP_ON_CLAMPING = 'H03'

No longer has an effect.

The travel command is set in Look Ahead mode only for blocks with active continuous-
path mode. M82 generates a stop and thus interrupts the continuous-path mode. The
Look Ahead stopping on N410 would not be necessary because stopping occurs anyway.

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
92 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● MD36052 $MA_STOP_ON_CLAMPING = 'H04'

Generates a stop irrespective of M83 which is executed as a function of "feedrate
override 0%". The axis is thus stopped before the first machining block.

 Note
MD36052 $MA_STOP_ON_CLAMPING = 'H01' or 'H04'

Both functions can be used irrespective of the clamping of axes:
• MD36052 $MA_STOP_ON_CLAMPING = 'H01'

Generates a Look Ahead stop for the path motion if no servo enable signal is active
for the relevant axis.

• MD36052 $MA_STOP_ON_CLAMPING = 'H04'
Generates a Look Ahead stop for the path motion if the feedrate override = 0% at the
transition from the part program blocks with rapid traverse to part program blocks
without rapid traverse.

Both functions ensure that the path motion in continuous-path mode is already stopped
before the start of the relevant part program block and not just within the part program
block.

Block change criterion: Clamping tolerance
After activation of clamp monitoring:(DB31, ... DBX2.3 = 1), the block change criterion for
traversing blocks in which the axis stops at the end of the block no longer acts as the
corresponding exact-stop condition, but the configured clamping tolerance:

MD36050 $MA_CLAMP_POS_TOL (clamping tolerance with interface signal "Clamping
active")

Behavior upon releasing of the clamp
If the axis was moved by the clamping process, it is returned by the NC to the position
setpoint after releasing of the clamp and setting of the servo enable state. Repositioning
depends on whether "Follow-up mode" was activated for the axis:

• Without follow-up mode: Repositioning by position controller

• With follow-up mode: Repositioning by interpolator

See also interface signal DB31, ... DBX1.4 (follow-up mode).

 Note

The following interface signals can be evaluated by the PLC user program as the criterion for
activation of the "Follow-up mode":

DB31, ... DBX60.6 / 7 (position reached with exact stop coarse / fine)

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 93

2.2.3 Speed-setpoint monitoring

Function
The speed setpoint comprises:

● Speed setpoint of the position controller

● Speed setpoint portion of the feedforward control (with active feedforward control only)

● Dift compensation (only for drives with analog setpoint interface)

Figure 2-5 Speed setpoint calculation

The speed-setpoint monitoring ensures by limiting the control or output signal (10 V for
analog setpoint interface or rated speed for digital drives) that the physical limitations of the
drives are not exceeded:

MD36210 $MA_CTRLOUT_LIMIT (maximum speed setpoint)

Figure 2-6 Speed setpoint limitation

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
94 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Speed-setpoint monitoring delay
To prevent an error reaction from occurring in every speed-limitation instance, a delay time
can be configured:

MD36220 $MA_CTRLOUT_LIMIT_TIME (speed-setpoint monitoring delay)

Only if the speed limitation is required for longer than the configured time does the
corresponding error reaction occur.

Effectiveness
The speed-setpoint monitoring is only active for closed-loop position-controlled axes and
cannot be deactivated.

Fault
If the configured delay time is exceeded, the following alarm appears:

25060 "Axis <Axis name> Speed-setpoint limitation"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

 Note

Upon reaching the speed-setpoint monitoring, the position feedback loop of the axis
becomes non-linear due to the limitation. Contour errors result if the axis is involved in
generating the contour.

2.2.4 Actual-velocity monitoring

Function
The actual-velocity monitoring checks that the actual velocity of a machine axis/spindle does
not exceed the configured threshold:

MD36200 $MA_AX_VELO_LIMIT (velocity-monitoring threshold)

The threshold should be 10-15% above the configured maximum velocity.

● For axes:

MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

● For spindles:

MD35110 $MA_GEAR_STEP_MAX_VELO_LIMIT[n] (maximum speed of gear stage)

If you use this setting the speed will not normally exceed the velocity-monitoring threshold
(exception: Drive error).

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 95

Activation
The actual-velocity monitoring is activated as soon as the active measuring system returns
valid actual values (encoder limit frequency not exceeded).

Effectiveness
The actual-velocity monitoring only operates with active position control and the following
axis types:

● Linear axes

● Rotary axes

● Open-loop-controlled and position-controlled spindles

Fault
If the threshold is exceeded, the following alarm is displayed:

25030 "Axis <Axis name> Actual-velocity alarm limit"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

2.2.5 Measuring system monitoring
The NC has no direct access to the measuring system hardware, therefore measuring
system monitoring is mainly performed by the drive software.

Monitoring functions in the drive
● Monitoring of hardware faults (e.g. measuring system failure, wire breakage)

● Zero-mark monitoring

References:
Drive Functions SINAMICS S120

Measuring system monitoring functions carried out in the drive are mapped on the NCK
alarms (alarm 25000 and following) or NC reactions (e.g. abort of referencing or on-the-fly
measuring). The exact behavior of the NC depends on the setting in the machine data:

MD36310 $MA_ENC_ZERO_MONITORING

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
96 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Value Meaning

Monitoring of HW faults: ON
If a hardware fault is detected in the active measuring system,
POWER ON alarm 25000 is displayed:
"Axis <Axis name> Hardware fault active encoder"
The affected axis is stopped via the configured braking ramp in
follow-up mode:
MD36610 $MA_AX_EMERGENCY_STOP_TIME (maximum time
for braking ramp when a fault occurs)
If a hardware fault is detected in the passive measuring system,
alarm 25001 is displayed:
"Axis <Axis name> Hardware fault passive encoder"
There is no further alarm response.

= 0

Zero-mark monitoring: OFF
Alarms 25020 and 25021 (see below) are suppressed.

= 100 No zero-mark monitoring as well as hiding of all encoder monitoring functions (i.e. in addition to alarm
25020 (25021)), alarms 25000 (25001) and 25010 (25011) are suppressed.
Monitoring of HW faults: ON (see above) > 0 but < 100
Zero-mark monitoring: ON

If zero-mark monitoring is tripped in the active measuring system,
alarm 25020 is displayed:
"Axis <Axis name> Zero-mark monitoring active encoder"
The affected axis is stopped via the configured braking ramp in
follow-up mode:
MD36610 $MA_AX_EMERGENCY_STOP_TIME (maximum time
for braking ramp when a fault occurs)
If zero-mark monitoring is tripped in the passive measuring
system, alarm 25021 is displayed:
"Axis <Axis name> Zero-mark monitoring passive encoder"
There is no further alarm response.

Monitoring of HW faults: ON with attenuated error message:
The POWER ON alarm 25000 is replaced by the reset alarm
25010 and the reset alarm 25001 replaced by the cancel alarm
25011.

> 100

Zero-mark monitoring: ON (see above)

For details on the alarms, see:

References:
Diagnostics Manual

 Note

For hardware faults, the referencing status of the machine axis is reset:

DB31, ... DBX60.4/5 (referenced/synchronized 1/2) = 0

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 97

Monitoring functions in the NCK
● Encoder-limit-frequency monitoring

● Plausibility check for absolute encoders

2.2.5.1 Encoder-limit-frequency monitoring

Function
The NC encoder-limit-frequency monitoring is based on the configuration and telegram
information of the drive. It monitors that the encoder frequency does not exceed the
configured encoder limit frequency:

MD36300 $MA_ENC_FREQ_LIMIT (encoder limit frequency)

Encoder-limit-frequency monitoring always refers to the active measuring system selected in
the NC/PLC interface:

DB31, ... DBX1.5/1.6 (position measuring system 1/2)

Effectiveness
The encoder limit frequency is operative for:

● Linear axes

● Rotary axes

● Open-loop-controlled and position-controlled spindles

Fault
Upon exceeding of the encoder limit frequency, the following occurs:

● Message to the PLC:

DB31, ... DBX60.2 or 60.3 = 1 (encoder limit frequency exceeded 1 or 2)

● Spindles

Spindles are not stopped but continue to turn with speed control.

If the spindle speed is reduced so much that the encoder frequency passes below the
encoder limit frequency, the actual value system of the spindle is automatically
resynchronized.

● Axes

The following alarm is displayed:

21610 "Channel <Channel number> Axis <Axis name> Encoder <Encoder number >
Frequency exceeded"

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
98 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

 Note

If the encoder limit frequency is exceeded, a position-controlled machine axis must be re-
referenced (see Section "R1: Referencing (Page 1173)").

2.2.5.2 Plausibility check for absolute encoders

Function
With absolute encoders (MD30240 $MA_ENC_TYPE = 4), absolute values supplied by the
measuring system are used to check the plausibility of the actual value.

During the check, the NC compares the cyclic position value held in the position control cycle
clock based on the incremental information from the encoder with a new position value
generated directly from the absolute and incremental information and checks that the
calculated position difference does not exceed the permissible deviation.

MD36310 $MA_ENC_ZERO_MONITORING (permissible deviation in 1/2 coarse increments
between the absolute and the incremental encoder track)

 Note

The plausibility check of absolute encoders specifically detects all deviations caused by dirt
on the absolute track or by faults when transferring the absolute value. However, small
errors in the incremental track (burst interference, impulse errors) are not detected. In such
instances the plausibility check only responds to deviations in the millimeter range. This form
of monitoring should therefore serve as additional monitoring to assist the diagnosis of
absolute-position faults.

 Note
Rotary absolute encoders

If the plausibility check is to be used for a rotary absolute encoder, the SINAMICS parameter
p0979 must be taken into account when setting the modulo range (MD34220
$MA_ENC_ABS_TURNS_MODULO).

 Note
Upgrading the NCK software

If the plausibility check is activated in absolute encoders (MD36310 > 0), the existing
MD36310 settings must be checked and, if necessary, increased during an upgrade of the
NCK software.

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 99

Zero mark diagnostics
With absolute encoders, the permissible deviation must be determined for the plausibility
check during commissioning. This can be performed via the machine data:

MD36312 $MA_ENC_ABS_ZEROMON_WARNING (zero-mark monitoring warning
threshold)

Value Meaning
0 No zero mark diagnostics
> 0 Permissible deviation in 1/2 coarse increments between the absolute and the incremental

encoder track

Procedure when commissioning the system:

1. Deactivate zero-mark monitoring:

MD36310 $MA_ENC_ZERO_MONITORING = 0

2. Activate zero-mark diagnostics:

MD36312 $MA_ENC_ABS_ZEROMON_WARNING = 1

3. Move axis and monitor system variable $VA_ENC_ZERO_MON_ERR_CNT (number of
detected limit value violations).

4. If $VA_ENC_ZERO_MON_ERR_CNT ≠ 0:

Increase MD36312 value and repeat step 3.

5. If $VA_ENC_ZERO_MON_ERR_CNT = 0 (over a longer period of time!):

The correct value for MD36310 is located! Apply the value from MD36312 to MD36310
and then set MD36312 to "0".

 Note

Depending on the rigidity of the machine (minimal load masses / moments of inertia are
optimum) and the controller settings, the control play "oscillates" with varying degrees of
intensity. Account must be taken of this by entering machine-specific limit values in
MD36310.

Fault
Alarm 25020

If the plausibility check is tripped in the active measuring system, alarm 25020 is displayed:

"Axis <Axis name> Zero-mark monitoring active encoder"

The affected axis is stopped via the configured braking ramp in follow-up mode:

MD36610 $MA_AX_EMERGENCY_STOP_TIME
(maximum time for braking ramp when an error occurs)

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
100 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Alarm 25021

If the plausibility check is tripped in the passive measuring system, alarm 25021 is displayed:

"Axis <Axis name> Zero-mark monitoring passive encoder"

There is no further alarm response.

 Note

In the event of a fault, the adjustment of the absolute encoder is lost and the axis is no
longer referenced. The absolute encoder must be readjusted (see Section "Referencing with
absolute encoders (Page 1203)").

 Note

Errors in the incremental track that cannot be detected with amplitude monitoring can cause
position deviations in the millimeter range. The deviation depends on the lattice pitch/line
count and the traversing velocity of the axis when the error occurs.

Complete position monitoring is only possible through redundancy, i.e. through comparison
with an independent second measuring system.

2.2.5.3 Customized error reactions

Customized zero-mark monitoring
The default alarm and reaction behavior of the zero-mark monitoring can be adapted in
absolute measuring systems (MD30240 $MA_ENC_TYPE = 4) with the aid of system
variables. This allows you to perform your own monitoring using a synchronized action or
OEM application and to use all of the reaction options available in this application, e.g.:

● Transmit alarm

● Use cycles (e.g. approach tool-change position)

● ...

Example:

Users can adjust the alarm and reaction behavior so that when machining an expensive
workpiece, which could be damaged if the axis is stopped as a result of an alarm, machining
stops before the machining quality of the workpiece is assessed using appropriate
synchronized action commands.

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 101

Effectiveness
Customized monitoring can be activated in parallel to or as an alternative to standard zero-
mark monitoring, depending on the setting in machine data:

MD36310 $MA_ENC_ZERO_MONITORING

Value Meaning
0 If only user-specific monitoring is to be implemented, the default zero-mark

monitoring must be deactivated:
MD36310 = 0
and
MD36312 = 0

> 0 Customized monitoring and standard zero-mark monitoring operate in parallel.
100 All encoder monitoring functions are deactivated.

If both monitoring functions are active (MD36310 > 0), you can perform cascaded
monitoring.

Example:

If a value falls below the threshold specified in MD36310, customized monitoring triggers a
prewarning; standard zero-marking monitoring will only detect a fault if the threshold is
exceeded and will then deactivate automatically.

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
102 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System variables
You can implement customized error reactions using the following system variables:

System variable Meaning
$VA_ENC_ZERO_MON_ERR_CNT[<n>,<axis>] Number of detected limit value violations.

Contains the current number of detected limit value violations
when comparing the absolute and the incremental encoder
tracks.
The value is reset to 0 at:
• POWER ON
• Selection/deselection of parking
Reset does not cause a reset.

$VA_ABSOLUTE_ENC_DELTA_INIT[<n>,<axis>] Initial difference for absolute encoders.
Contains the initial difference between the last buffered
absolute position in the static NC memory and the current
absolute position.
Format of the difference value: Number of internal increments
(see MD10200 $MN_INT_INCR_PER_MM or MD10210
$MN_INT_INCR_PER_DEG)
The value is updated at:
• POWER ON
• Warm restart
• Deselection of parking
• Return below the encoder limit frequency
There is no reset at reset.

<n>: Encoder number
<axis>: Axis name

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 103

2.2.6 Limit-switch monitoring
Overview of the end stops and possible limit-switch monitoring:

2.2.6.1 Hardware limit switch

Function
A hardware limit switch is normally installed at the end of the traversing range of a machine
axis. It serves to protect against accidental overtravelling of the maximum traversing range of
the machine axis while the machine axis is not yet referenced.

If the hardware limit switch is triggered, the PLC user program created by the machine
manufacturer sets the corresponding interface signal:

DB31, ... DBX12.0/1 = 1 (hardware limit switch minus/plus)

Parameterization
The braking behavior of the machine axis upon reaching the hardware limit switch is
configurable via the machine data:

MD36600 $MA_BRAKE_MODE_CHOICE (braking behavior on hardware limit switch)

Value Meaning
0 Braking with the configured axial acceleration
1 Rapid stop (set velocity = 0)

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
104 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Effectiveness
The hardware limit-switch monitoring is active after the controller has ramped up in all
modes.

Effect
Upon reaching the hardware limit switch, the following occurs:

● Alarm 21614 "Channel <Channel number> Axis <Axis name> Hardware limit switch
<Direction>"

● The machine axis is braked according to the configured braking behavior.

● If the axis/spindle is involved in interpolation with other axes/spindles, these are also
braked according to their configured braking behavior.

● The traversing keys of the affected machine axis are blocked based on the direction.

2.2.6.2 Software limit switch

Function
Software limit switches serve to limit the traversing range of a machine axis. Per machine
axis and per traversing direction, two (1st and 2nd) software limit switches are available:

MD36100 POS_LIMIT_MINUS (1st software limit switch minus)

MD36110 POS_LIMIT_PLUS (1st software limit switch plus)

MD36120 POS_LIMIT_MINUS2 (2nd software limit switch minus)

MD36130 POS_LIMIT_PLUS2 (2nd software limit switch plus)

By default, the 1st software limit switch is active. The 2nd software limit switch can be
activated for a specific direction with the PLC user program:

DB31, ... DBX12.2 / 12.3 (2nd software limit switch minus/plus)

Effectiveness
The software limit switches are active:

● Immediately after the successful referencing of the machine axis.

● In all operating modes.

Boundary conditions
● The software limit switches refer to the machine coordinate system.

● The software limit switches must be inside the range of the hardware limit switches.

● The machine axis can be moved to the position of the active software limit switch.

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 105

● PRESET

After use of the function PRESET, the software limit-switch monitoring is no longer active.
The machine must first be re-referenced.

● Endlessly rotating rotary axes

No software limit-switch monitoring takes place for endlessly rotating rotary axes:

MD30310 $MA_ROT_IS_MODULO == 1 (modulo conversion for rotary axis and spindle)

Exception: Setup-rotary axes

Effects
Automatic operating modes (AUTOMATIC, MDA)

● Without transformation, without overlaid motion, unchanged software limit switch:

A part program block with a programmed traversing motion that would lead to
overrunning of the software limit switch is not started.

● With transformation:

Different reactions occur depending on the transformation type:

– Behavior as above.

or

– The part program block with a programmed traversing motion that would lead to
overrunning of the software limit switch is started. The affected machine axis stops at
the active software limit switch. The other machine axes participating in the traversing
motion are braked. The programmed contour is left during this process.

● With overlaid motion

The part program block with a programmed traversing motion that would lead to
overrunning of the software limit switch is started. Machine axes that are traveling with
overlaid motion or have traveled with overlaid motion stop at the active software limit
switch in question. The other machine axes participating in the traversing motion are
braked. The programmed contour is left during this process.

Manual operating modes

● JOG without transformation

The machine axis stops at the software limit switch position.

● JOG with transformation

The machine axis stops at the software limit switch position. Other machine axes
participating in the traversing motion are braked. The preset path is left during this
process.

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
106 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

General

● Changing of the software limit switch (1st ↔ 2nd software limit switch)

If the actual position of the machine axis after changing lies behind the software limit
switch, it is stopped with the maximum permissible acceleration.

● Overrunning the software limit switch in JOG mode

If the position of the software limit switch is reached and renewed pressing of the
traversing button should cause further travel in this direction, an alarm is displayed and
the axis is not traversed farther:

Alarm 10621 "Channel <Channel number> Axis <Axis name> is at the software limit
switch <Direction>"

2.2.7 Monitoring of the working area limitation

2.2.7.1 General

Function
The "working area limitation" function can be used to limit the traversing range of a channel's
geometry and special axes to a permissible operating range. The function monitors
compliance with working area limits both in AUTOMATIC mode and in JOG mode.

The following versions are available:

● Working area limitation in the Basic Coordinate System (BCS)

The traversing range limits are specified relative to the Basic Coordinate System.

● Working area limitation in the workpiece coordinate system (WCS) or adjustable zero
system (AZS)

The traversing range limits are specified relative to the workpiece coordinate system or to
the adjustable zero system.

The two types of monitoring are independent of each other. If they are both active at the
same time, the traversing range limit which most restricts the access will take effect,
depending on the direction of travel.

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 107

Reference point at the tool
Taking into account the tool data (tool length and tool radius) and therefore the reference
point at the tool when monitoring the working area limitation depends on the status of the
transformation in the channel:

● Transformation inactive

Without transformations during traversing motion with an active tool the position of the
tool tip P is monitored, i.e. during the monitoring the tool length is considered
automatically.

Consideration of the tool radius must be activated separately:

MD21020 $MC_WORKAREA_WITH_TOOL_RADIUS (Consideration of the tool radius in
the working area limitation)

● Transformation active

In the case of certain transformations the monitoring of the working area limitation may
differ from the behavior without transformation:

– The tool length is a component of the transformation
($MC_TRAFO_INCLUDES_TOOL_X = TRUE):

In this case the tool length is not considered, i.e. the monitoring refers to the tool
carrier reference point.

– Transformation with change in orientation:

In the case of transformations with changes in orientation, monitoring is always based
on the tool center point. MD21020 has no influence.

 Note

The machine data $MC_TRAFO_INCLUDES_TOOL_... is analyzed only in certain
transformations. Condition for a possible evaluation is that the orientation of the tool
with respect to the base coordinate system cannot be changed by the transformation.
With standard transformations, the condition is only fulfilled for the "inclined axis" type
of transformation.

Response
Automatic operating modes

● With / without transformation

The parts program block with a programmed traversing motion that would lead to
overrunning of the working area limits is not executed.

● With superimposed motion

The axis, which would violate the working area limitation due to a superimposed motion,
is braked with maximum acceleration and without jerk limits (BRISK), and will come to a
stop in the position of the working area limitation. Other axes involved in the movement
are braked according to current acceleration behavior (e.g. SOFT). The path correlation
may be lost due to different braking accelerations (contour violation).

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
108 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Manual operating modes

● JOG with / without transformation

The axis is positioned at the working area limitation and then stopped.

Powerup response
If an axis moves outside the permissible working area when activating the working area
limits, it will be immediately stopped with the maximum permissible acceleration.

Overrunning of the working area limitation in JOG mode
In JOG mode, an axis is moved to no further than its working area limit by the control
system. When the traverse button is pressed again, an alarm is displayed and the axis does
not traverse any further.

Geo-axis replacement
Through the following machine data it is adjustable, whether during geometry axis change
the active working area limitation is retained or deactivated:

MD10604 $MN_WALIM_GEOAX_CHANGE_MODE = <value>

<value> Meaning
0 The working area limitation is deactivated during the geometry axis change.
1 The working area limitation remains activated during the geometry axis change.

2.2.7.2 Working area limitation in BKS

Application
Using the "working area limitation in BCS", the working area of a machine tool is limited so
that the surrounding devices (e.g. tool revolver, measuring stations) are protected against
damage.

Working area limits
The lower and upper working area limits of each axes are adjusted through setting data or
programmed through part program commands:

Working area limitation through setting data

The adjustments are done through the immediately effective axis-specific setting data:

SD43420 $SA_WORKAREA_LIMIT_PLUS (working area limitation plus)

SD43430 $SA_WORKAREA_LIMIT_MINUS (working area limitation minus)

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 109

Programmed working area limitation

The programming is done using the G commands:

G25 X… Y… Z… lower working area limitation
G26 X… Y… Z… upper working area limitation

Figure 2-7 Programmed working area limitation

The programmed working area limitation has priority and overwrites the values entered in
SD43420 and SD43430.

Activation/Deactivation
Working area limitation through setting data

The activation/deactivation of the working area limitation for each axis takes place in a
direction-specific manner via the immediately effective setting data:

SD43400 $SA_WORKAREA_PLUS_ENABLE (working area limitation active in the positive
direction)

SD43410 $SA_WORKAREA_MINUS_ENABLE (working area limitation active in the negative
direction)

Value Meaning
0 The working area limitation in positive or negative direction is switched off.
1 The working area limitation in positive or negative direction is active.

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
110 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programmed working area limitation

Activation or deactivation of the overall "working area limitation in the BCS" is arranged via
part program commands:

WALIMON Working area limitation ON
or
WALIMOF Working area limitation OFF

Changing the working area limitation
Working area limitation through setting data

HMI user interface: Operating area "Parameter"

● Automatic modes:

– Changes: Possible only in the RESET state

– Effectiveness: Immediately

● Manual operating modes:

– Changes: Always possible

– Effectiveness: At the start of the next traversing motion

Programmed working area limitation

The working area limitation can be changed in the part program via G25or G26 <Axis name>
<value>. The change takes effect immediately.

The new working area limitation value is retained after and NC RESET and POWER ON if
the back-up process has been activated in the NCK's retentive data storage for SD43420
and SD43430:

MD10710 $MN_PROG_SD_RESET_SAVE_TAB[0] = 43420

MD10710 $MN_PROG_SD_RESET_SAVE_TAB[1] = 43430

Reset position
The reset position for the working area limitation (WALIMON or WALIMOF) is configurable via:

MD20150 $MC_GCODE_RESET_VALUES (RESET position of G groups)

2.2.7.3 Working area limitation in WCS/SZS

Application
The working area limitation enables a channel-specific, flexible workpiece-specific limitation
of the traversing range of the channel axes in the workpiece coordinate system (WCS) or
settable zero system (SZS). It is intended mainly for use in conventional lathes.

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 111

Working area limitation group
In order that the axis-specific working area limits do not have to be rewritten for all channel
axes when switching axis assignments, e.g. when switching transformations or the active
frame on/off, working area limitation groups are available.

A working area limitation group comprises the following data:

● Working area limits for all channel axes

● Reference system of the working area limitation

The number of the working area limitation groups is set in the machine data:

MD28600 $MC_MM_NUM_WORKAREA_CS_GROUPS

Set working area limits
The working area limits are set channel-specifically for each channel axis via the following
system variables:

● $P_WORKAREA_CS_LIMIT_PLUS[<group>, <channel axis name>]

● $P_WORKAREA_CS_LIMIT_MINUS[<group>, <channel axis name>]

With <group> = number of the working area limitation group

Enable working area limits
The working area limits are enabled channel-specifically for each channel axis via the
following system variables:

● $P_WORKAREA_CS_PLUS_ENABLE[<group>, <channel axis name>]

● $P_WORKAREA_CS_MINUS_ENABLE[<group>, <channel axis name>]

With <group> = number of the working area limitation group

There is no activation through the enable.

Select reference system
The reference system for a working area limitation group is set via the following system
variable for each specific channel:

$P_WORKAREA_CS_COORD_SYSTEM[<group>] = <value>

<value> Meaning
1 Working area limitation based on the workpiece coordinate system
3 Working area limitation based on the AZS

With <group> = number of the working area limitation group

A3: Axis Monitoring, Protection Zones
2.2 Axis monitoring functions

 Basic Functions
112 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Activation of working area limits
The working area limits of a working area limitation group are activated in the part program
or synchronized action with the command:

WALCSn (activation of the working area limits of group n, where n = 1, 2, ...)

Deactivation of working area limits
The working area limits of a working area limitation group are deactivated in the part
program or synchronized action with the command:

WALCS0 (deactivation of the working area limits active in the channel)

Change working area limits
The working area limits can be changed at any time via the system variables mentioned
above. Changes take effect with the next activation of the working area limitation group
(WALCSn).

Data storage
The system variables of the working area limits are stored retentively in the static memory of
the NC.

 Note

For the storage of the limiting values for the linear axes, the default setting is considered for
the system of units (MD10240 $MN_SCALING_SYSTEM_IS_METRIC).

Data backup
The system variables of the working area limits can be backed up in separate files:

Backup file For the backup of:
_N_CHx_WAL Values of the system variables for the channel x.
_N_COMPLETE_WAL Values of the system variables for all channels.

 Note

The system variables of the working area limits are part of the "_N_INITIAL_INI" file.

 A3: Axis Monitoring, Protection Zones
 2.2 Axis monitoring functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 113

Behavior in JOG mode
Initial situation:
● In the JOG mode, several geometry axes traverse simultaneously (e.g. using several

handwheels)
● A rotating frame is active between the basic coordinate system (BCS) and the reference

coordinate system of the working area limitation (WCS or SZS)

Behavior when a working area limitation responds:
● The traversing motions of the geometry axes that are not affected are continued
● The affected geometry axis is stopped at the working area limit

Set initial setting
The specification of the working area limitation group that is to take effect at power up, reset
or end of the part program and start of the part program is performed channel-specifically via
the machine data:

MD20150 $MC_GCODE_RESET_VALUE[59] = <group>

The working area limitation group that is to take effect is still dependent on the setting in the
machine data:

MD20152 $MC_GCODE_RESET_MODE[59] = <mode>

<Mode> Meaning
0 The working area group takes effect in accordance with MD20150
1 The last active working area group remains active

2.2.8 Deactivating all monitoring functions: "Parking"
If a machine axis is brought into the"Parking" state, then for this particular axis, no encoder
actual values are acquired, and all of the monitoring functions described in the preceding
sections (measuring system, standstill, clamping monitoring, etc.) are deactivated.

Machine axis with measuring system
For a machine axis with measuring system, "parking" is activated by deselecting all
measuring systems:
● DB31, ... DBX1.5 = 0 (position measuring system 1)
● DB31, ... DBX1.6 = 0 (position measuring system 2)

When the measuring systems are deactivated, the axis is no longer designated as being
referenced:
● DB31, ... DBX60.4 = 0 (referenced / synchronized 1)
● DB31, ... DBX60.5 = 0 (referenced/synchronized 2)

 Note

The axis must be re-referenced after the "Park" state has been canceled.

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
114 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Machine axis without measuring system
For a machine axis without a measuring system (speed-controlled spindle), then a state
corresponding to "parking" is activated by withdrawing the controller enable:

● DB31, ... DBX2.1 = 0 (controller enable)

2.3 Protection zones

2.3.1 General

Function
Protection zones are static or moveable in 2- or 3-dimensional ranges within a machine to
protect machine elements against collisions.

The following elements can be protected:

● Permanent parts of the machine and attachments (e.g. toolholding magazine, swiveling
probe). Only the elements that can be reached by possible axis constellations are
relevant.

● Moving parts belonging to the tool (e.g. tool, toolholder)

● Moving parts belonging to the workpiece (e.g. parts of the workpiece, clamping table,
clamping shoe, spindle chuck, tailstock).

Protection zones are defined via part program instructions or system variables so that they
completely surround the element to be protected. The activation and deactivation of
protection zones also takes place via part program instructions.

Protection-zone monitoring by the NC is channelspecific, i.e. all the active protection zones
of a channel monitor one another for collisions.

Definition of a protection zone
It is possible to define 2dimensional or 3dimensional protection zones as polygons with a
maximum of ten corner points. The protection zones can also contain arc contour elements.

Polygons are defined in a previously defined plane.

Expansion in the 3rd dimension can be limited between - ∞ to + ∞.

The following four cases are possible:

● Dimension of the protection zone from -∞ to +∞

● Dimension of the protection zone from -∞ to the upper limit

● Dimension of the protection zone from the lower limit to +∞

● Dimension of protection zone from lower limit to upper limit.

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 115

Coordinate system
The definition of a protection zone takes place with reference to the geometric axis of a
channel in the basic coordinate system.

Reference
● Tool-related protection zones

Coordinates for toolrelated protection zones must be given as absolute values referred to
the tool carrier reference point F.

● Workpiece-related protection zones

Coordinates for workpiecerelated protection zones must be given as absolute values
referred to the zero point of the basic coordinate system.

 Note

If no toolrelated protection zone is active, the tool path is checked against the workpiece-
related protection zones.

If no workpiece-oriented protection zone is active, protection-zone monitoring does not
take place.

Orientation
The orientation of the protection zones is determined by the plane definition
(abscissa/ordinate), in which the contour is described, and the axis perpendicular to the
contour (vertical axis).

The orientation of the protection zones must be the same for the tool and workpiecerelated
protection zones.

2.3.2 Types of protection zone

Machine-defined and channel-defined protection zones
● Machine-defined protection zone

Data for machine-related protection zones are defined once in the control. These
protection zones can be activated by all channels.

● Channel-defined protection zones

Data for channel-related protection zones are defined in a channel. These protection
zones can be activated only by this channel.

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
116 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example: Doubleslide turning machine
● The toolrelated protection zones are assigned to channel 1 or 2.

● The workpiecerelated protection zones are assigned to the machine.

● The coordinate system must be identical for both channels.

Maximum number of protection areas
The maximum definable number of machine- and channel-related protection zones is set via:

MD18190 $MN_MM_NUM_PROTECT_AREA_NCK (Number of files for machine-related
protection zones)

MD28200 $MC_MM_NUM_PROTECT_AREA_CHAN (Number of files for channel-specific
protection zones)

Coordinates
The coordinates of a protection zone must always be programmed as absolute values with
respect to the reference point of the protection zone. When the protection zone is activated
via the part program it is possible to apply a relative offset to the reference point of the
protection zone.

Examples
In the following figures some examples for protection zones have been presented:

Figure 2-8 Example of application on turning machine

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 117

Figure 2-9 Example of a milling machine

Figure 2-10 Example of a turning machine with relative protection zone for tailstock

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
118 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

2.3.3 Definition via part program instruction

General
A protection-zone definition must contain the following information:

● Protection zone type (workpiece- or tool-related)

● Orientation of the protection zone

● Type of limitation in the third dimension

● Upper and lower limits of the protection zone in the third dimension

● Activation type ("Protection zone immediately active": only possible via system variable)

● Contour elements

Definition of protection zones
The following systematics must be maintained in the definition of protection zones:

● Definition of the working plane: G17, G18 or G19

● Definition beginning

– Channel-specific protection zones: CPROTDEF(...)

– Machine or NC-specific protection zone: NPROTDEF(...)

● Contour description for protection zone

● End of definition: EXECUTE(...)

Definition of the working plane
The desired working plane to which the contour description of the protection zone refers
must be selected with G17, G18, G19 before start of the definition. It may not be changed
before the end of the definition. Programming of the applicate is not permitted between start
and end of the definition.

Definition beginning
The definition start is defined by the corresponding subroutine:

● CPROTDEF(n, t, applim, appplus, appminus)

● NPROTDEF(n, t, applim, appplus, appminus)

Parameters Type Description
n INT Number of defined protection zone

Protection zone type
TRUE Tool-oriented protection zone

t BOOL

FALSE Workpiece-related protection zone

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 119

Parameters Type Description
Type of limitation in the third dimension
0 No limitation
1 Limit in plus direction
2 Limit in minus direction

applim INT

3 Limit in positive and negative direction
appminus REAL Value of the limit in the negative direction in the 3rd dimension 1)
appplus REAL Value of the limit in the positive direction in the 3rd dimension 1)
1) The following must be true: appplus > appminus

Contour description for protection zone
The contour of a protection zone is described with traversing motions. These are not
executed and have no connection to previous or subsequent geometry descriptions. They
only define the protection zone.

The contour of a protection zones is specified with up to eleven traversing movements in the
selected working plane. The first traversing movement is the movement to the contour. The
last point in the contour description must always coincide with the first point of the contour
description. In the case of rotationsymmetrical contours (e.g. spindle chuck), the whole
contour must be described (not merely the contour to the turning center).

The valid protection zone is the zone left of the contour:

● Internal protection zone

The contour of an internal protection zone must described in the counterclockwise
direction.

● External protection zones (permitted only for workpiece-related protection zones)

The contour of an external protection zone must be described in the clockwise direction.

Figure 2-11 Examples: External and internal protection zone

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
120 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Toolrelated protection zones must be convex. If a concave protection zone is required, the
protection zone must be divided up into several convex protection zones.

Figure 2-12 Examples: convex and concave tool-related protection zones

Contour elements
The following contour elements are permissible:

● G0, G1 for straight contour elements

● G2 for circle segments in the clockwise direction

Permissible only for workpiece-related protection zones.

Not permissible for tool-related protection zones because they must be convex.

● G3 for circular segments in the counterclockwise direction

A protection zone cannot be described by a complete circle. A complete circle must be
divided into two half circles.

The sequence G2, G3 or G3, G2 is not permitted. A short G1 block must be inserted between
the two circular blocks.

Constraints
During the definition of a protection zone, the following functions must not be active or used:

● Tool radius compensation (cutter radius compensation, tool nose radius compensation)

● Transformation

● Reference point approach (G74)

● Fixed point approach (G75)

● Dwell time (G4)

● Block search stop (STOPRE)

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 121

● End of program (M17, M30)

● M functions: M0, M1, M2

Programmable frames (TRANS, ROT, SCALE, MIRROR) and configurable frames (G54 to G57) are
ineffective.

Inch/metric switchovers with G70/G71 or G700/G710 are effective.

End of definition
The end of definition is defined by the following subroutine:

EXECUTE(NOT_USED)

Parameters Type Description
NOT_USED INT Error variable has no effect in protection zones with EXECUTE.

The definition of a machine-specific or channel-specific protection zone is completed with the
subroutine EXECUTE(n).

2.3.4 Definition as per system variable

General
When the protection zones are defined via part program instructions (see Section "Definition
via part program instruction (Page 118)"), the protection zone data is stored in system
variables. The system variables can also be written directly so that the definition of protection
areas can also be performed directly in the system variables.

The same supplementary conditions apply for the definition of the contour of a protection
zone as for a protection zone definition via part program instructions.

System variables
The protection zone definitions cover following system variables:

System variable Type Meaning

Activation type
The protection zone is active / not active immediately after
the power up of the controller and the referencing of the
axes.
FALSE Not immediately active

$SN_PA_ACTIV_IMMED[n]
$SC_PA_ACTIV_IMMED[n]

BOOL

TRUE Immediately active

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
122 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System variable Type Meaning
Protection zone type
0 Workpiece-related protection zone
1 Reserved
2 Reserved

$SN_PA_T_W[n]
$SC_PA_T_W[n]

INT

3 Tool-related protection zone
Orientation of the protection zone, i.e. polygon definition in
the plane of:
0 1st and 2nd geometry axis
1 3rd and 1st geometry axis

$SN_PA_ORI[n]
$SC_PA_ORI[n]

INT

2 2nd and 3rd geometry axis
Type of limitation in the third dimension
0 No limitation
1 Limit in plus direction
2 Limit in minus direction

$SN_PA_LIM_3DIM[n]
$SC_PA_LIM_3DIM[n]

INT

3 Limit in positive and negative direction
$SN_PA_PLUS_LIM[n]
$SC_PA_PLUS_LIM[n]

REAL Value of the limit in the positive direction in the 3rd
dimension

$SN_PA_MINUS_LIM[n]
$SC_PA_MINUS_LIM[n]

REAL Value of the limit in the negative direction in the 3rd
dimension

$SN_PA_CONT_NUM[n]
$SC_PA_CONT_NUM[n]

INT Number of valid contour elements

$SN_PA_CONT_TYP[n, i]
$SC_PA_CONT_TYP[n, i]

INT Contour type[i], contour type (G1, G2, G3) of the nth contour
element

$SN_PA_CONT_ABS[n, i]
$SC_PA_CONT_ABS[n, i]

REAL End point of the contour[i], abscissa value

$SN_PA_CONT_ORD[n, i]
$SC_PA_CONT_ORD[n, i]

REAL End point of the contour[i], ordinate value

$SN_PA_CENT_ABS[n, i]
$SC_PA_CENT_ABS[n, i]

REAL Center point of the circular contour[i], absolute abscissa
value

$SN_PA_CENT_ORD[n, i]
$SC_PA_CENT_ORD[n, i]

REAL Center point of the circular contour[i], absolute ordinate
value

$SN_... are system variables for NC and machine-specific protection zones.
$SC_... are system variables for channel-specific protection zones.
The index "n" corresponds to the number of the protection zone: 0 = 1. Protection zone
The index "i" corresponds to the number of the contour element: 0 = 1. Contour element
The contour elements must be defined in ascending order.

 Note

The system variables of the protection zone definitions are not restored with REORG.

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 123

Data of the protection zone definitions
Data storage

The protection zone definitions are stored in the following files:

File Blocks
_N_NCK_PRO Data block for NC-specific protection zones
_N_CHAN1_PRO Data block for channel-specific protection zones in channel 1
_N_CHAN2_PRO Data block for channel-specific protection zones in channel 2

Data backup

The protection zone definitions are saved in the following files:

File Blocks
_N_INITIAL_INI All data blocks of the protection zones
_N_COMPLETE_PRO All data blocks of the protection zones
_N_CHAN_PRO All data blocks of the channel-specific protection zones

2.3.5 Activating and deactivating protection zones
The activation state of a protection zone can have the following values:

● Activated

● Preactivated

● Preactivated with conditional stop

● Deactivated

Activation, preactivation and deactivation via part program
The activation status of a protection zone can be changed in the part program at any time via
the following functions:

● Channel-specific protection zone:

CPROT(<n>, <state>[, <xMov>, <yMov>, <zMov>])

● Machine-specific protection zone:

NPROT(<n>, <state>[, <xMov>, <yMov>, <zMov>])

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
124 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameters Type Description
<n>: INT Protection area number

Activation status
0 Deactivated
1 Preactivated
2 Activated

<state>: INT

3 Preactivated with conditional stop
<xMov>,
<yMov>,
<zMov>:

REAL Additive offset values depending on the reference system:
• Workpiece-related protection zone: Machine zero
• Tool-related protection zone: Toolholder reference point

 Note

A protection zone is only taken into account after the referencing of all geometry axes of the
channel in which it has been activated.

Activation via NC/PLC interface signals
Only protection zones that have been preactivated via the part program (see paragraph
below "Preactivation via part program") can be activated in the PLC user program via the
NC/PLC interface signals:

● DB21, ... DBX8.0 - 9.1 = 1 (activate machine-related protection zone 1 - 10)

● DB21, ... DBX10.0 - 11.1 = 1 (activate channel-specific protection zone 1 - 10)

For preactivation, see paragraph below "Preactivation via part program"

The activation of preactivated protection zones must be performed prior to the traversing
motion of the geometry axes. If the activation is performed during the traversing motion,
these protection zones are not taken into account in the current traversing motion. Reaction:

● Alarm "10704 Protection zone monitoring is not guaranteed"

● DB21, ... DBX39.0 = 1 (protection zone monitoring not guaranteed)

 Note

The activation of preactivated protection zones must be performed prior to the traversing
motion of the geometry axes.

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 125

Automatic activation after the NC powers up
Protection zones that are to take effect immediately after the NC powers up can be specified
via the following system variables:

● Channel-specific protection zones:

$SC_PA_ACTIV_IMMED[<protection zone number>]

● Machine-specific protection zones:

$SN_PA_ACTIV_IMMED[<protection zone number>]

 Note

With automatic activation, no relative offset of a protection zone is possible.

 Note

A protection zone is only taken into account after the referencing of all geometry axes of
the channel in which it has been activated.

Preactivation via part program
Protection zones that are to be activated at a later time from the PLC user program must be
preactivated in the part program:

CPROT or NPROT (<protection zone number>, 1)

Preactivated protection zones are displayed via the following NC/PLC interface signals:

● DB21, ... DBX272.0 - 273.1 == 1 (machine-related protection zone 1 - 10 preactivated)

● DB21, ... DBX274.0 - 275.1 == 1 (channel-specific protection zone 1 - 10 preactivated)

Figure 2-13 Example: Turning machine with preactivated protection zone for a sensor.

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
126 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Preactivation with conditional stop

NOTICE
Protection zone violation possible

If a preactivated protection zone with conditional stop is not activated in good time, the NC
may no longer be able to stop before the protection zone in good time because the braking
distance after the activation point has not been taken into account.

The preactivation of protection zones with conditional stop is performed in the part program
via:

CPROT or NPROT (<protection zone number>, 3)

In the case of a preactivated protection zone with conditional stop, a traversing motion is not
stopped before this if the traversing motion goes into the protection zone. A stop is only
performed when the protection zone has been activated. This behavior is to enable
uninterrupted machining controlled by the user when the protection zone is only required
temporarily.

Deactivation via part program
A protection zone that has been activated via the part program or an NC/PLC interface
signal can be deactivated again at any time from the part program with status = 0:

● Channel-specific protection zone:

CPROT(n, 0)

● Machine-specific protection zone:

NPROT(n, 0)

Deactivation via NC/PLC interface signal
Only protection zones that have been preactivated via a part program and activated via the
NC/PLC interface signals, can be deactivated again via the NC/PLC interface signals:

● DB21, ... DBX8.0 to DBX9.1 = 0 (activate machine-related protection zone 1 - 10)

● DB21, ... DBX10.0 to DBX11.1 = 0 (activate channel-specific protection zone 1 - 10)

Protection zones that have been activated directly via a part program cannot be deactivated
from the PLC user program.

 Note

It is recommended that protection zones which are to be activated via the PLC user program,
be configured specially for this. Preactivation in the part program is only useful for these
protection zones.

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 127

Automatic deactivation via machine data parameterization
When executing the Geometry axis change and Transformation change functions, the active
protection zones can be deactivated automatically. The setting is performed NC-specifically
via the machine data:

MD10618 $MN_PROTAREA_GEOAX_CHANGE_MODE

Bit Value Meaning

0 The active protection zones are deactivated during the transformation change. 0
1 The active protection zones remain active during the transformation change.
0 The active protection zones are deactivated during the geometry axis change. 1
1 The active protection zones remain active during the geometry axis change.

Display protection zone violation
Violations of activated protection zones or possible violations of preactivated protection
zones, if they would be activated, are displayed via the following NC/PLC interface signals:

● DB21, ... DBX276.0 - 277.1 == 1 (machine-related protection zone 1 - 10 violated)

● DB21, ... DBX278.0 - 279.1 == 1 (channel-specific protection zone 1 - 10 violated)

Behavior in special system states

Block search with calculation

For block search with calculation, the last programmed activation state of a protection zone
is always taken into account.

Program test

In the AUTOMATIC and MDI modes, activated and preactivated protection zones are also
monitored in the "Program test" state.

NC RESET and end of program

The activation status of a protection zone is retained even after an NC RESET and end of
program.

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
128 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Memory requirements
The memory required for protection zones is parameterized via the following machine data:

● Persistent memory

– MD18190 $MN_MM_NUM_PROTECT_AREA_NCK (number of available machine-
defined protection zones)

– MD28200 $MC_MM_NUM_PROTECT_AREA_CHAN (number of available channel-
defined protection zones)

● Dynamic memory

– MD28210 $MC_MM_NUM_PROTECT_AREA_ACTIVE (maximum number of
protection zones that can be activated simultaneously in the channel)

– MD28212 $MC_MM_NUM_PROTECT_AREA_CONTUR (maximum number of
definable contour elements per protection zone)

See also
Definition via part program instruction (Page 118)

Definition as per system variable (Page 121)

2.3.6 Protection zone violation and temporary enabling of individual protection zones

Temporary enabling of protection zones
If a protection zone violation occurs when starting or during a traversing motion, under
certain circumstances, the protection zone can be enabled, i.e. for temporary traversing. In
AUTOMATIC and MDA mode as well as in JOG mode, the temporary enabling of protection
zones is performed via operator actions.

A temporary enable is only possible for workpiece-related protection zones.

Tool-related protection zones must either be deactivated in the part program or via the
NC/PLC interface in the "Preactivated" state.

Terminating the temporary enabling

Temporary enabling of a protection zone is terminated after the following events:

● NC RESET

● AUTOMATIC or MDA mode: The end of the block is outside the protection zone

● JOG mode: The end of the traversing motion is outside the protection zone

● The protection zone is activated

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 129

Behavior in the AUTOMATIC and MDA modes
In AUTOMATIC and MDA mode, no traversing motion is enabled into or through active
protection zones:

● A traversing motion that would lead from outside into an active protection zone, is
stopped at the end of the last block located outside the protection zone.

● A traversing motion that begins within an active protection zone is not started.

Temporary enabling of protection zones

If a traversing motion is stopped in AUTOMATIC or MDA mode because of a protection zone
violation, this is indicated to the operator by an alarm. If the operator decides that the
traversing motion can be continued, the crossing of protection zones can be enabled.

The enabling is only temporarily and is performed by triggering NC START:

DB21, ... DBX7.1 = 1 (NC START)

An alarm is displayed for each violated protection zone. An NC START signal must be
triggered by the operator for each protection zone to be enabled.

The traversing motion is continued when all protection zones that have resulted in the
stopping of the traversing motion, have been enabled.

Continuation of a traversing motion without temporary enabling

A traversing motion was stopped with an alarm because of a protection zone violation. If the
relevant protection zone is set to the "Preactivated" state via the NC/PLC interface, the
traversing motion can be continued with NC START, without the protection zone being
temporarily enabled.

Increased protection against the enabling of protection zones

If the enabling of a protection zone is to be protected better than just by NC START, this
must be performed by the machine manufacturer or user in the PLC user program.

Behavior in JOG mode

Simultaneous traversing of several geometry axes

In JOG mode, traversing motions can be performed simultaneously in several geometry
axes. The traversing range of every participating geometry axis is limited axis-specifically at
the start of the traversing motion with regard to the traversing range limits (software limit
switches, working area limitation, etc.) and active protection zones. However, safe
monitoring of all active protection zones cannot be guaranteed. The following is provided as
feedback to the user:

● Alarm: "10704 Protection zone monitoring is not guaranteed"

● DB31, ... DBX39.0 = 1 (protection zone monitoring not guaranteed)

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
130 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

After the end of the traversing motion, the alarm is cleared automatically. If the current
position is within an activated or preactivated protection zone, the following is performed:

● Alarm 10702 or 10703 is displayed

● Further traversing motions are disabled

● The NC/PLC interface signal for the relevant protection zone is set
DB21, … DBX276.0 - 277.1 or DBX278.0 - 279.1 (protection zone violated)

To continue, see the paragraph below "Temporary enabling of protection zones" and Section
"Activating and deactivating protection zones (Page 123)".

Example: Three protection zones activated and simultaneous traversing of two geometry
axes

Figure 2-14 Motion range of the geometry axes at the start time

At the start time of the traversing motions of the axes X and Y, the axial traversing range
limits are determined from the start time:

● X axis

– Positive traversing direction: Protection zone 2

– Negative traversing direction: Absolute traversing range limit, e.g. software limit switch

● Y axis

– Positive traversing direction: Protection zone 1

– Negative traversing direction: Absolute traversing range limit, e.g. working area
limitation

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 131

The resulting maximum traversing range at the start time does not take protection zone 3
into account. Therefore, a protection zone violation in protection zone 3 is possible.

 Note

Activated and preactivated protection zones are also monitored in the manual operating
modes JOG, INC and DRF.

Limitation of traversing motion of an axis

If the traversing motion of an axis is limited because it has reached a protection zone, then a
selfresetting alarm "Protection zone reached in JOG" is generated. The alarm text specifies
the violated protection zone and the relevant axis. It is assured that no protection zone will
be violated when an axis is traversing in JOG. (This response is analogous to approaching
software limit switches or a working area limitation.)

The alarm is reset:

● When an axis is traversed along a path that does not lead into the protection zone

● When the protection zone is enabled

● On NC RESET

If an axis starts to move towards a protection zone when it is at a protection zone limit, then
a selfresetting alarm "Protection zone reached in JOG" is output and the motion is not
started.

Temporary enabling of protection zones

If a traversing motion is started within or on the limit of an activated protection zone, alarm
10702 or 10703 is displayed and the traversing motion is not started. The traversing motion
can be performed when the relevant protection zone is temporarily enabled. The following
actions must be performed for this:

● Create a positive edge at the NC/PLC interface signal:
DB21, ... DBX1.1 (enable protection zone)

● Start the same traversing motion again

 Note

The NC/PLC interface signal "Protection zone violated" is still set when the temporarily
enabled protection zone is traversed:

DB21, … DBX276.0 – 277.1 or DBX278.0 – 279.1

The enable is reset if a motion is started that does not lead into the enabled protection zone.

If further protection zones are affected by the traversing motion, additional alarms 10702 or
10703 are displayed for each protection zone. The protection zones displayed in the alarms
can be enabled by creating further positive edges on the NC/PLC interface signal:

DB21, ... DBX1.1 (enable protection zone)

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
132 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Behavior at change of operating mode

The protection zones temporarily enabled in JOG mode are retained after a change to
AUTOMATIC or MDA mode. The temporary enables set the in the AUTOMATIC or MDA
mode are also retained after a change to JOG mode.

Reset of an enable

The enable is reset internally and on the NC/PLC interface at the next standstill of a
geometry axis for which the temporarily enabled protection zone has been completely exited:

DB21, … DBX276.0 - 277.1 or DBX278.0 - 279.1 = 0 (protection zone violated)

Behavior with axis replacement
With regard to the protection zones after an axis replacement, the starting position is the last
position approached in the relinquishing channel. Traversing motions in the channel taking
over are not taken into account. For this reason, you must make sure that an axis
replacement is not performed from a position with protection zone violation.

Behavior for superimposed motions
Superimposed motions that are included in the main run, cannot be taken into account by
the block preparation with regard to the active protection zones.

This results in the following reactions:

● Alarm: "10704 Protection zone monitoring is not guaranteed"

● DB31, ... DBX39.0 = 1 (protection zone monitoring not guaranteed)

2.3.7 Restrictions in protection zones

Restrictions in protection-zone monitoring
No protection-zone monitoring is possible under the following conditions:

● Orientation axes

● Protection-zone monitoring for fixed machine-related protection zones with TRANSMIT or
peripheral surface transformation.

Exception: Protection zones defined with rotation symmetry around the spindle axis.
Here, no DRF offset must be active.

● Mutual monitoring of tool-related protection zones

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 133

Positioning axes
For positioning axes, only the programmed block end point is monitored.

An alarm is displayed during the traversing motion of the positioning axes:

Alarm: "10704 Protection-zone monitoring is not guaranteed".

Axis interchange
If an axis intended for the axis interchange is not active in a channel, the position of the axis
last approached in the channel is taken as the current position. If this axis has not yet been
traversed in the channel, zero is taken as the position.

Machine-related protection zones
A machine-related protection zone or its contour is defined using the geometry axis, i.e. with
reference to the basic coordinate system (BCS) of a channel. In order that correct protection-
zone monitoring can take place in all channels in which the machine-related protection zone
is active, the basic coordinate system (BCS) of all affected channels must be identical
(position of the coordinate point of origin with respect to the machine zero point and
orientation of the coordinate axes).

2.3.8 Checking for protection zone violation, working area limitation and software limit
switches (CALCPOSI)

Function
As of the start position, the CALCPOSI() function checks whether active limits have been
violated along the traversing distance in the workpiece coordinate system (WCS) with regard
to the geometry axes.

If the distance cannot be fully traversed because of limits, a positive, decimal-coded status
value and the maximum possible traversing distance are returned.

Definition
INT CALCPOSI(VAR REAL[3] <Start>, VAR REAL[3] <Dist>, VAR REAL[5]
<Limit>,
VAR REAL[3] <MaxDist>, BOOL <System>, INT <TestLim>)

Syntax
<Status> = CALCPOSI(VAR <Start>, VAR <Dist>, VAR <Limit>, VAR
<MaxDist>, <System>, <TestLim>)

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
134 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Meaning

Test for limit violations with regard to the geometry axes.
Preprocessing
stop:

No
CALCPOSI:

Alone in the block: Yes
Function return value. Negative values indicate error states.
Data type: INT
Range of values: -8 ≤ x ≤ 100000

Values Meaning
0 The distance can be traversed completely.
-1 At least one component is negative in <Limit>.
-2 Error in a transformation calculation.

Example: The traversing distance passes through a singularity
so that the axis positions cannot be defined.

-3 The specified traversing distance <Dist> and the maximum
possible traversing distance <MaxDist> are linearly
dependent.
Note
Can only occur in conjunction with <TestLim>, bit 4 == 1.

-4 The projection of the traversing direction contained in <Dist>
on to the limitation surface is the zero vector, or the traversing
direction is perpendicular to the violated limitation surface.
Note
Can only occur in conjunction with <TestLim>, bit 5 == 1.

-5 In <TestLim>, bit 4 == 1 AND bit 5 == 1
-6 At least one machine axis that has to be considered for

checking the traversing limits has not been homed.
-7 Collision avoidance function: Invalid definition of the kinematic

chain or the protection zones.

<Status>:
(Part 1)

-8 Collision avoidance function: This command cannot be
executed because of insufficient memory.

Units digit
Note
If several limits are violated simultaneously, the limit with the greatest restriction on
the specified traversing distance is signaled.

1 Software limit switches are limiting the traversing distance
2 Working area limits are limiting the traversing distance
3 Protection zones are limiting the traversing distance

Tens digit
1x The initial value violates the limit

<Status>:
(Part 2)

2x The specified straight line violates the limit.
This value is also returned if the end point does not violate
any limit itself, but the path from the starting point to the end
point would cause a limit value to be violated (e.g. by passing
through a protection zone, curved software limit switches in
the WCS for non-linear transformations, e.g. transmit).

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 135

Hundreds digit
AND units digit == 1 or 2:
The positive limit value has been violated.

1xx

AND units digit == 3 1):
An NC-specific protection zone has been violated.
AND units digit == 1 or 2:
The negative limit value has been violated.

<Status>:
(Part 3)

2xx

AND units digit == 3 1):
A channel-specific protection zone has been violated.

Thousands digit <Status>:
(Part 4) 1xxx AND units digit == 1 or 2:

Factor with which the axis number is multiplied that violates
the limit. Numbering of the axes begins with 1.
Reference:
• Software limit switch: Machine axes
• Working area limitation: Geometry axes
AND units digit == 3 1):
Factor with which the number of the violated protection zone
is multiplied.

Hundred thousands digit
0xxxxx Hundred thousands digit == 0: <Dist> remains unchanged

<Status>:
(Part 5)

1xxxxx A direction vector is returned in <Dist> which defines the
further motion direction on the limitation surface.
Can only occur with the following supplementary conditions:
• Software limit switch or working area limit violated (not in

the starting point)
• A transformation is not active
• <TestID>, bit 4 or bit 5 == 1

Reference to a vector with the start positions:
• <Start> [0]: Abscissa
• <Start> [1]: Ordinate
• <Start> [2]: Applicate

Parameter type: Input
Data type: VAR REAL [3]

<Start>:

Range of values: -max. REAL value ≤ x[n] ≤ +max. REAL value
Reference to a vector.
Input: Incremental traversing distance
• <Dist> [0]: Abscissa
• <Dist> [1]: Ordinate
• <Dist> [2]: Applicate

Output (only for set hundred thousands digit in <Status>):

<Dist>:

 <Dist> contains a unit vector v as output value which defines the further
traversing direction in the WCS.

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
136 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Case 1: Formation of vector v for <TestID>, bit 4 == 1
The input vectors <Dist> and <MaxDist> span the motion plane. This plane is
cut by the violated limitation surface. The intersecting line of the two planes
defines the direction of vector v. The orientation (sign) is selected so that the
angle between the input vector <MaxDist> and v is not greater than 90
degrees.
Case 2: Formation of vector v for <TestID>, bit 5 == 1
Vector v is the unit vector in the projection direction of the traversing vector
contained in <Dist> on the limitation surface. If the projection of the traversing
vector on the limitation surface is the zero vector, an error is returned.

Parameter type: Input/output
Data type: VAR REAL [3]
Range of values: -max. REAL value ≤ x[n] ≤ +max. REAL value
Reference to an array of length 5.
• <Limit> [0 - 2]: Minimum clearance of the geometry axes to the limits:

– <Limit> [0]: Abscissa
– <Limit> [1]: Ordinate
– <Limit> [2]: Applicate

The minimum clearances are observed with:
– Working area limitation: No restrictions
– Software limit switch: If no transformation is active, or a transformation is

active in which a clear assignment of the geometry axes to the linear
machine axes is possible, e.g. 5-axis transformations.

• <Limit> [3]: Contains the minimum clearance for linear machine axes which, for
example, cannot be assigned a geometry axis because of a non-linear
transformation. This value is also used as limit value for the monitoring of the
conventional protection zones and the collision avoidance protection zones.

• <Limit> [4]: Contains the minimum clearance for rotary machine axes which, for
example, cannot be assigned a geometry axis because of a non-linear
transformation.
Note
This value is only active for the monitoring of the software limit switches for
special transformations.

Parameter type: Input
Data type: VAR REAL [5]

<Limit>:

Range of values: -max. REAL value ≤ x[n] ≤ +max. REAL value
<MaxDist>: Reference to a vector with the incremental traversing distance in which the

specified minimum clearance of an axis limit is not violated by any of the relevant
machine axes:
• <Dist> [0]: Abscissa
• <Dist> [1]: Ordinate
• <Dist> [2]: Applicate
If the traversing distance is not restricted, the contents of this return parameter are
the same as the contents of <Dist>.

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 137

With <TestID>, bit 4 == 1: <Dist> and <MaxDist>
<MaxDist> and <Dist> must contain vectors as input values that span a motion
plane. The two vectors must be mutually linearly dependent. The absolute value of
<MaxDist> is arbitrary. For the calculation of the motion direction, see the
description for <Dist>.
Parameter type: Output
Data type: VAR REAL [3]
Range of values: -max. REAL value ≤ x[n] ≤ +max. REAL value
Measuring system (inch/metric) for position and distance specifications (optional)
Data type: BOOL
Default value: FALSE

Value Meaning
FALSE Measuring system corresponding to the currently active G

function from G group 13 (G70, G71, G700, G710).
Note
If G70 is active and the basic system is metric (or G71 is
active and the basic system is inch), the system variables
$AA_IW and $AA_MW are provided in the basic system and, if
used, must be converted for CALCPOSI().

<System>:

TRUE Measuring system corresponding to the set basic system:
MD52806 $MN_ISO_SCALING_SYSTEM

Bit-coded selection of the limits to be monitored (optional)
Data type: INT
Default value: Bit 0, 1, 2, 3 == 1 (15)
Bit Decimal Meaning
0 1 Software limit switch
1 2 Working area limitation
2 4 Activated conventional protection zones
3 8 Preactivated conventional protection zones
4 16 With violated software limit switches or working area limits in

<Dist>, return the traversing direction as in Case 1 (see
above).

5 32 With violated software limit switches or working area limits in
<Dist>, return the traversing direction as in Case 2 (see
above).

6 64 Activated collision avoidance protection zones
7 128 Preactivated collision avoidance protection zones

<TestLim>:

8 256 Pairs of activated and preactivated collision avoidance
protection zones

1) If several protection zones are violated, the protection zone with the greatest restriction on the
specified traversing distance is returned.

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
138 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
In the example (see figure), the active software limit switches and working area limits in the
X-Y plane and the following three protection zones are displayed

● C2: Tool-related, channel-specific protection zone, active, circular, radius = 2 mm

● C4: Workpiece-related, channel-specific protection zone, preactivated, square, side
length = 10 mm

● N3: NC-specific protection zone, active, rectangular, side length = 10 mm x 15 mm

The protection zones and working area limits are defined first in the NC program. The
CALCPOSI() function is then called with different parameterizations.

NC program

Program code
N10 DEF REAL _STARTPOS[3]

N20 DEF REAL _MOVDIST[3]

N30 DEF REAL _DLIMIT[5]

N40 DEF REAL _MAXDIST[3]

N50 DEF INT _SB

N60 DEF INT _STATUS

: Toolrelated protection zone C2

N70 CPROTDEF(2, TRUE, 0)

N80 G17 G1 X-2 Y0

N90 G3 I2 X2

N100 I-2 X-2

N110 EXECUTE(_SB)

; Workpiece-related protection zone C4

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 139

Program code
N120 CPROTDEF(4, FALSE, 0)

N130 G17 G1 X0 Y15

N140 X10

N150 Y25

N160 X0

N170 Y15

N180 EXECUTE(_SB)

; Machine-related protection zone N3

N190 NPROTDEF(3, FALSE, 0)

N200 G17 G1 X10 Y5

N210 X25

N220 Y15

N230 X10

N240 Y5

N250 EXECUTE(_SB)

; Activate or preactivate protection zones

N260 CPROT(2, 2, 0, 0, 0)

N270 CPROT(4, 1, 0, 0, 0)

N280 NPROT(3, 2, 0, 0, 0)

; Define working area limits

N290 G25 XX=-10 YY=-10

N300 G26 XX=20 YY=21

N310 _STARTPOS[0] = 0.

N320 _STARTPOS[1] = 0.

N330 _STARTPOS[2] = 0.

N340 _MOVDIST[0] = 35.

N350 _MOVDIST[1] = 20.

N360 _MOVDIST[2] = 0.

N370 _DLIMIT[0] = 0.

N380 _DLIMIT[1] = 0.

N390 _DLIMIT[2] = 0.

N400 _DLIMIT[3] = 0.

N410 _DLIMIT[4] = 0.

N420 _STATUS = CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST)

N430 _STATUS = CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST,,3)

N440 _STATUS = CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST,,1)

N450 _STARTPOS[0] = 5.

N460 _STARTPOS[1] = 17.

N470 _STARTPOS[2] = 0.

N480 _MOVDIST[0] = 0.

N490 _MOVDIST[1] =-27.

N500 _MOVDIST[2] = 0.

N510 _STATUS = CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST,,14)

N520 _STATUS = CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST,, 6)

N530 _DLIMIT[1] = 2.

N540 _STATUS = CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST,, 6)

N550 _STARTPOS[0] = 27.

N560 _STARTPOS[1] = 17.1

N570 _STARTPOS[2] = 0.

N580 _MOVDIST[0] =-27.

N590 _MOVDIST[1] = 0.

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
140 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code
N600 _MOVDIST[2] = 0.

N610 _DLIMIT[3] = 2.

N620 _STATUS = CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST,,12)

N630 _STARTPOS[0] = 0.

N640 _STARTPOS[1] = 0.

N650 _STARTPOS[2] = 0.

N660 _MOVDIST[0] = 0.

N670 _MOVDIST[1] = 30.

N680 _MOVDIST[2] = 0.

N690 TRANS X10

N700 AROT Z45

N710 _STATUS = CALCPOSI(_STARTPOS,_MOVDIST, _DLIMIT, _MAXDIST)

; Delete frames from N690 and N700 again

N720 TRANS

N730 _STARTPOS[0] = 0.

N740 _STARTPOS[1] = 10.

N750 _STARTPOS[2] = 0.

; Vectors _MOVDIST and _MAXDIST define the motion plane

N760 _MOVDIST[0] = 30.

N770 _MOVDIST[1] = 30.

N780 _MOVDIST[2] = 0.

N790 _MAXDIST[0] = 1.

N800 _MAXDIST[1] = 0.

N810 _MAXDIST[2] = 1.

N820 _STATUS = CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST,,17)

N830 M30

Results of CALCPOSI():

N... <status> <MaxDist>[0] ≙ X <MaxDist>[1] ≙ Y Remarks
420 3123 8.040 4.594 N3 is violated.
430 1122 20.000 11.429 No limit is violated.
440 1121 30.000 17.143 Only monitoring of the software limit switches still active.
510 4213 0.000 0.000 Starting point violates C4
520 0000 0.000 -27.000 Preactivated C4 is not monitored. The specified distance

can be traversed completely.
540 2222 0.000 -25.000 Because _DLIMIT[1] = 2, the traversing distance is

restricted by the working area limitation.
620 4223 -13.000 0.000 Clearance to C4 is a total of 4 mm due to C2 and

_DLIMIT[3]. Clearance C2 – N3 of 0.1 mm does not result in
limitation of the traversing distance.

710 1221 0.000 21.213 Frame with translation and rotation active. The permissible
traversing distance in _MOVDIST applies in the shifted and
rotated WCS.

820 102121 18.000 18.000 The software limit switch of the Y axis is violated. The
calculation of a further traversing direction is requested with
_TESTLIM = 17. This direction is in _MOVDIST (0.707, 0.0,
0.707). It is valid because the hundred thousands digit is
set in _STATUS.

 A3: Axis Monitoring, Protection Zones
 2.3 Protection zones

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 141

Supplementary conditions

Axis status

All machine axes considered by CALCPOSI() must be homed.

Circle-related distance specifications

All circle-related distance specifications are always interpreted as radius specifications. This
must be taken into account particularly for transverse axes with activated diameter
programming (DIAMON/DIAM90).

Traversing distance reduction

If the specified traversing distance of an axis is limited, the traversing distance of the other
axes is also reduced proportionally in the <MaxDist> return value. The resulting end point is
therefore still on the specified path.

Rotary axes

Rotary axes are only monitored when they are not modulo rotary axes.

It is permissible that no software limit switches, working area limits or protection zones are
defined for one or more of the relevant axes.

Software limit switch and working area limitation status

Software limit switches and working area limits are only taken into account if they are active
during the execution of CALCPOSI(). The status can be influenced, for example, via:

● Machine data: MD21020 $MC_WORKAREA_WITH_TOOL_RADIUS

● Setting data: $AC_WORKAREA_CS_...

● NC/PLC interface signals DB31, ... DBX12.2 / 3

● Commands: GWALIMON/WALIMOF

Software limit switches and transformations

With CALCPOSI(), the positions of the machine axes (MCS) cannot always be clearly
determined from the positions of the geometry axes (WCS) during various kinematic
transformations (e.g. TRANSMIT) because of ambiguities at certain positions of the traversing
distance. In normal traversing operation, the uniqueness generally results from the history
and the condition that a continuous motion in the WCS must correspond to a continuous
motion in the MCS. Therefore, when monitoring the software limit switches, the machine
position at the time when CALCPOSI() is executed is used to resolve the ambiguity in such
cases.

 Note
Preprocessing stop

When using CALCPOSI() in conjunction with transformations, it is the sole responsibility of the
user to program a preprocessing stop (STOPRE) with the preprocessing before CALCPOSI() for
the synchronization of the machine axis positions.

A3: Axis Monitoring, Protection Zones
2.3 Protection zones

 Basic Functions
142 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Protection zone clearance and conventional protection zones

With conventional protection zones, there is no guarantee that the safety clearance set in
<Limit>[3] is maintained for all protection zones during a traversing movement on the
specified path. It is only guaranteed that no protection zone will be violated when the end
point returned in <Dist> is extended by the safety clearance in the traversing direction.
However, the straight line can pass very close to a protection zone.

Protection zone clearance and collision avoidance protection zones

With collision avoidance protection zones, there is a guarantee that the safety clearance set
in <Limit>[3] is maintained for all protection zones during a traversing movement on the
specified path.

The safety clearance specified in <Limit>[3] only takes effect when the following applies:

<Limit>[3] > (MD10619 $MN_COLLISION_TOLERANCE)

If bit 4 is set in <TestLim> (see above) (value 16) (calculation of the further direction), then
the direction vector received in _MOVDIST is only valid when the hundred thousands digit is
set in the function return value (status). If such a direction cannot be determined because
either protection zones have been violated or a transformation is active, the input value in
_MOVDIST remains unchanged, no further error message is issued.

References
● Further information on working area limitation can be found in:

Programming Manual, Fundamentals
Section "Supplementary commands" > "Working area limitation"

● Further information on software limit switches can be found in:
Function Manual, Basic Functions; (A3) Axis monitoring, protection zones,
Section "Axis monitoring" > "Limit switch monitoring"

 A3: Axis Monitoring, Protection Zones
 2.4 Supplementary conditions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 143

2.4 Supplementary conditions

2.4.1 Axis monitoring functions

Settings
For correct operation of the monitoring, the following settings must be made or checked, in
addition to the machine data mentioned:

General

● MD31030 $MA_LEADSCREW_PITCH (leadscrew pitch)

● MD31050 $MA_DRIVE_AX_RATIO_DENOM (denominator load gearbox)

● MD31060 $MA_DRIVE_AX_RATIO_NUMERA (numerator load gearbox)

● MD31070 $MA_DRIVE_ENC_RATIO_DENOM (denominator measuring gearbox)

● MD31080 $MA_DRIVE_ENC_RATIO_NUMERA (numerator measuring gearbox)

● MD32810 $MA_EQUIV_SPEEDCTRL_TIME (equivalent time constant speed control loop
for feedforward control)

● Encoder resolution

For the appropriate machine data, see Section "G2: Velocities, setpoint / actual value
systems, closed-loop control (Page 307)".

Only drives with analog speed setpoint interface

● MD32260 $MA_RATED_VELO (rated motor speed)

● MD32250 $MA_RATED_OUTVAL (rated output voltage)

2.5 Examples

2.5.1 Axis monitoring functions

2.5.1.1 Working area limitation in WCS/SZS

Available channel axes
Four axes are defined in the channel: X, Y, Z and A

The A-axis is a rotary axis (not modulo).

A3: Axis Monitoring, Protection Zones
2.5 Examples

 Basic Functions
144 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterize the number of working area limitation groups
Three working area limitation groups will be provided:

MD28600 $MC_MM_NUM_WORKAREA_CS_GROUP = 3

Define the working area limitation groups
Additionally two working area limitation groups will be defined:

Working area limitation group 1

In the first working area limitation group the axes in the SZS coordinate system will be
limited:

● X axis in the plus direction: 10 mm

● X axis in the minus direction: No limitation

● Y axis in the plus direction: No limitation

● Y axis in the minus direction: 25 mm

● Z axis in the plus direction: No limitation

● Z axis in the minus direction: No limitation

● A axis in the plus direction: 10 degrees

● A axis in the minus direction: -40 degrees

The system variables are assigned as follows:

Program code Comment

N1 $P_WORKAREA_CS_COORD_SYSTEM[1]=3 ; The working area limitation of the working area

limitation group 1 applies in the SZS.

N10 $P_WORKAREA_CS_PLUS_ENABLE[1,X]=TRUE

N11 $P_WORKAREA_CS_LIMIT_PLUS[1,X]=10

N12 $P_WORKAREA_CS_MINUS_ENABLE[1,X]=FALSE

N20 $P_WORKAREA_CS_PLUS_ENABLE[1,Y]=FALSE

N22 $P_WORKAREA_CS_MINUS_ENABLE[1,Y]=TRUE

N23 $P_WORKAREA_CS_LIMIT_MINUS[1,Y]=25

N30 $P_WORKAREA_CS_PLUS_ENABLE[1,Z]=FALSE

N32 $P_WORKAREA_CS_MINUS_ENABLE[1,Z]=FALSE

N40 $P_WORKAREA_CS_PLUS_ENABLE[1,A]=TRUE

N41 $P_WORKAREA_CS_LIMIT_PLUS[1,A]=10

N42 $P_WORKAREA_CS_MINUS_ENABLE[1,A]=TRUE

N43 $P_WORKAREA_CS_LIMIT_MINUS[1,A]=-40

 A3: Axis Monitoring, Protection Zones
 2.5 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 145

Working area limitation group 2

In the second working area limitation group the axes in the WCS coordinate system can be
limited:

● X axis in the plus direction: 10 mm

● X axis in the minus direction: No limitation

● Y axis in the plus direction: 34 mm

● Y axis in the minus direction: -25 mm

● Z axis in the plus direction: No limitation

● Z axis in the minus direction: -600 mm

● A axis in the plus direction: No limitation

● A axis in the minus direction: No limitation

The system variables are assigned as follows:

Program code Comment

N51 $P_WORKAREA_CS_COORD_SYSTEM[2]=1 ; The working area limitation of working

area limitation group 2 applies in the

WCS.

N60 $P_WORKAREA_CS_PLUS_ENABLE[2,X]=TRUE

N61 $P_WORKAREA_CS_LIMIT_PLUS[2,X]=10

N62

$P_WORKAREA_CS_MINUS_ENABLE[2,X]=FALSE

N70 $P_WORKAREA_CS_PLUS_ENABLE[2,Y]=TRUE

N73 $P_WORKAREA_CS_LIMIT_PLUS[2,Y]=34

N72 $P_WORKAREA_CS_MINUS_ENABLE[2,Y]=TRUE

N73 $P_WORKAREA_CS_LIMIT_MINUS[2,Y]=–25

N80 $P_WORKAREA_CS_PLUS_ENABLE[2,Z]=FALSE

N82 $P_WORKAREA_CS_MINUS_ENABLE[2,Z]=TRUE

N83 $P_WORKAREA_CS_LIMIT_PLUS[2,Z]=–600

N90 $P_WORKAREA_CS_PLUS_ENABLE[2,A]=FALSE

N92

$P_WORKAREA_CS_MINUS_ENABLE[2,A]=FALSE

Activate working area limitation group 2
In order to activate the working area limitation group 2, the following instruction must exist in
the part program:

...

N100 WALCS2 ...

...

A3: Axis Monitoring, Protection Zones
2.5 Examples

 Basic Functions
146 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

2.5.2 Protection zones

2.5.2.1 Definition and activation of protection zones

Requirement
The following internal protection zones are to be defined for a turning machine:

● One machine- and workpiece-related protection zone for the spindle chuck, without
limitation in the third dimension

● One channel-specific protection zone for the workpiece, without limitation in the third
dimension

● One channel-specific, tool-related protection zone for the toolholder, without limitation in
the third dimension

The workpiece zero is placed on the machine zero to define the protection zone for the
workpiece.

When activated, the protection zone is then offset by 100 mm in the Z axis in the positive
direction.

Figure 2-15 Example of protection zones on a turning machine

 A3: Axis Monitoring, Protection Zones
 2.5 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 147

Protection zone definition in the part program

Table 2- 1 Part program excerpt for protection zone definition:

Program code Comment

DEF INT AB

G18 Definition of the working plane

NPROTDEF(1,FALSE,0,0,0) Start of definition: Protection zone for spindle

chuck

G01 X100 Z0 Contour definition: 1. Contour element

G01 X-100 Z0 Contour definition: 2. Contour element

G01 X-100 Z110 Contour definition: 3. Contour element

G01 X100 Z110 Contour definition: 4. Contour element

G01 X100 Z0 Contour definition: 5. Contour element

EXECUTE(AB) End of definition: Protection zone for spindle

chuck

CPROTDEF(1,FALSE,0,0,0) Start of definition: Protection zone for workpiece

G01 X80 Z0 Contour definition: 1. Contour element

G01 X-80 Z0 Contour definition: 2. Contour element

G01 X-80 Z40 Contour definition: 3. Contour element

G01 X80 Z40 Contour definition: 4. Contour element

G01 X80 Z0 Contour definition: 5. Contour element

EXECUTE(AB) End of definition: Protection zone for workpiece

CPROTDEF(2,TRUE,0,0,0) Start of definition: Protection zone for

toolholder

G01 X0 Z-50 Contour definition: 1. Contour element

G01 X-190 Z-50 Contour definition: 2. Contour element

G03 X-210 Z-30 I-20 Contour definition: 3. Contour element

G01 X-210 Z20 Contour definition: 4. Contour element

G01 X0 Z50 Contour definition: 5. Contour element

G01 X0 Z-50 Contour definition: 6. Contour element

EXECUTE(AB) End of definition: Protection zone for toolholder

Protection zone definition with system variables

Table 2- 2 Protection zone: Spindle chuck

System variable Valu
e

Remark

$SN_PA_ACTIV_IMMED[0] 0 ; Protection zone for spindle chuck not immediately active
$SN_PA_T_W[0] " " ; Machine-related protection zone for spindle chuck
$SN_PA_ORI[0] 1 ; Orientation of the protection zone: 1= 3. 1= 3rd and 1st

geometry axis
$SN_PA_LIM_3DIM[0] 0 ; Type of limitation in the third dimension: 0 = No limit
$SN_PA_PLUS_LIM[0] 0 ; Value of the limit in the positive direction in the 3rd

dimension

A3: Axis Monitoring, Protection Zones
2.5 Examples

 Basic Functions
148 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System variable Valu
e

Remark

$SN_PA_MINUS_LIM[0] 0 ; Value of the limitation in the negative direction in the 3rd
dimension

$SN_PA_CONT_NUM[0] 4 ; Number of valid contour elements
$SN_PA_CONT_TYP[0,0] 1 ; Contour type[i] : 1 = G1 for even,

; Protection zone for spindle chuck, contour element 0
$SN_PA_CONT_TYP[0,1] 1 ; Contour type[i] : 1 = G1 for even,

; Protection zone for spindle chuck, contour element 1
$SN_PA_CONT_TYP[0,2] 1 ; Contour type[i] : 1 = G1 for even,

; Protection zone for spindle chuck, contour element 2
$SN_PA_CONT_TYP[0,3] 1 ; Contour type[i] : 1 = G1 for even,

; Protection zone for spindle chuck, contour element 3
$SN_PA_CONT_TYP[0,4] 0 ; Contour type[i] : 0 = not defined,

; Protection zone for spindle chuck, contour element 4
$SN_PA_CONT_TYP[0,5] 0 ; Contour type[i] : 0 = not defined,

; Protection zone for spindle chuck, contour element 5
$SN_PA_CONT_TYP[0,6] 0 ; Contour type[i] : 0 = not defined,

; Protection zone for spindle chuck, contour element 6
$SN_PA_CONT_TYP[0,7] 0 ; Contour type[i] : 0 = not defined,

; Protection zone for spindle chuck, contour element 7
$SN_PA_CONT_TYP[0,8] 0 ; Contour type[i] : 0 = not defined,

; Protection zone for spindle chuck, contour element 8
$SN_PA_CONT_TYP[0,9] 0 ; Contour type[i] : 0 = not defined,

; Protection zone for spindle chuck, contour element 9
$SN_PA_CONT_ORD[0,0] -100 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 0
$SN_PA_CONT_ORD[0,1] -100 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 1
$SN_PA_CONT_ORD[0,2] 100 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 2
$SN_PA_CONT_ORD[0,3] 100 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 3
$SN_PA_CONT_ORD[0,4] 0 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 4
$SN_PA_CONT_ORD[0,5] 0 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 5
$SN_PA_CONT_ORD[0,6] 0 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 6
$SN_PA_CONT_ORD[0,7] 0 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 7
$SN_PA_CONT_ORD[0,8] 0 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 8
$SN_PA_CONT_ORD[0,9] 0 ; Endpoint of contour[i], ordinate value

; Protection zone for spindle chuck, contour element 9
$SN_PA_CONT_ABS[0,0] 0 ; Endpoint of contour[i], abscissa value

; Protection zone for spindle chuck, contour element 0
$SN_PA_CONT_ABS[0,1] 110 ; Endpoint of contour[i], abscissa value

; Protection zone for spindle chuck, contour element 1

 A3: Axis Monitoring, Protection Zones
 2.5 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 149

System variable Valu
e

Remark

$SN_PA_CONT_ABS[0,2] 110 ; Endpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 2

$SN_PA_CONT_ABS[0,3] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 3

$SN_PA_CONT_ABS[0,4] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 4

$SN_PA_CONT_ABS[0,5] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 5

$SN_PA_CONT_ABS[0,6] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 6

$SN_PA_CONT_ABS[0,7] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 7

$SN_PA_CONT_ABS[0,8] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 8

$SN_PA_CONT_ABS[0,9] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 9

$SN_PA_CENT_ORD[0,0] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 0

$SN_PA_CENT_ORD[0.1] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 1

$SN_PA_CENT_ORD[0,2] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 2

$SN_PA_CENT_ORD[0,3] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 3

$SN_PA_CENT_ORD[0,4] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 4

$SN_PA_CENT_ORD[0,5] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 5

$SN_PA_CENT_ORD[0,6] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 6

$SN_PA_CENT_ORD[0,7] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 7

$SN_PA_CENT_ORD[0,8] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 8

$SN_PA_CENT_ORD[0,9] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for spindle chuck, contour element 9

$SN_PA_CENT_ABS[0,0] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 0

$SN_PA_CENT_ABS[0.1] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 1

$SN_PA_CENT_ABS[0,2] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 2

$SN_PA_CENT_ABS[0,3] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 3

$SN_PA_CENT_ABS[0,4] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 4

A3: Axis Monitoring, Protection Zones
2.5 Examples

 Basic Functions
150 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System variable Valu
e

Remark

$SN_PA_CENT_ABS[0,5] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 5

$SN_PA_CENT_ABS[0,6] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 6

$SN_PA_CENT_ABS[0,7] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 7

$SN_PA_CENT_ABS[0,8] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 8

$SN_PA_CENT_ABS[0,9] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for spindle chuck, contour element 9

Table 2- 3 Protection zone: Workpiece and toolholder

System variable Valu
e

Remark

$SN_PA_ACTIV_IMMED[0] 0 ; Protection zone for workpiece not immediately active
$SN_PA_ACTIV_IMMED[1] 0 ; Protection zone for toolholder not immediately active
$SC_PA_TW[0] " " ; Protection zone for workpiece, channel-specific
$SC_PA_TW[1] 'H01' ; Protection zone for toolholder, channel-specific
$SC_PA_ORI[0] 1 ; Orientation of the protection zone: 1= 3. and first geometry

axis
; Protection zone for workpiece

$SC_PA_ORI[1] 1 ; Orientation of the protection zone: 1= 3. and first geometry
axis
; Protection zone for tool holder

$SC_PA_LIM_3DIM[0] 0 ; Type of limitation in the third dimension: 0 = no limitation
; Protection zone for workpiece toolholder 0

$SC_PA_LIM_3DIM[1] 0 ; Type of limitation in the third dimension: 0 = no limitation
; Protection zone for toolholder

$SC_PA_PLUS_LIM[0] 0 ; Value of limitation in positive direction in the third dimension
; Protection zone for workpiece

$SC_PA_PLUS_LIM[1] 0 ; Value of limitation in positive direction in the third dimension
; Protection zone for toolholder

$SC_PA_MINUS_LIM[0] 0 ; Value of limitation in negative direction in the third dimension
; Protection zone for workpiece

$SC_PA_MINUS_LIM[1] 0 ; Value of limitation in negative direction in the third dimension
; Protection zone for toolholder

$SC_PA_CONT_NUM[0] 4 ; Number of valid contour elements
; Protection zone for workpiece

$SC_PA_CONT_NUM[1] 5 ; Number of valid contour elements
; Protection zone for toolholder 1

$SN_PA_CONT_TYP[0,0] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for workpiece, contour element 0

$SN_PA_CONT_TYP[0,1] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for workpiece, contour element 1

 A3: Axis Monitoring, Protection Zones
 2.5 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 151

System variable Valu
e

Remark

$SN_PA_CONT_TYP[0,2] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for workpiece, contour element 2

$SN_PA_CONT_TYP[0,3] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for workpiece, contour element 3

$SN_PA_CONT_TYP[0,4] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for workpiece, contour element 4

$SN_PA_CONT_TYP[0,5] 0 ; Contour type[i] : 0 = not defined
; Protection zone for workpiece, contour element 5

$SN_PA_CONT_TYP[0,6] 0 ; Contour type[i] : 0 = not defined
; Protection zone for workpiece, contour element 6

$SN_PA_CONT_TYP[0,7] 0 ; Contour type[i] : 0 = not defined
; Protection zone for workpiece, contour element 7

$SN_PA_CONT_TYP[0,8] 0 ; Contour type[i] : 0 = not defined
; Protection zone for workpiece, contour element 8

$SN_PA_CONT_TYP[0,9] 0 ; Contour type[i] : 0 = not defined
; Protection zone for workpiece, contour element 9

$SN_PA_CONT_TYP[1,0] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for toolholder, contour element 0

$SN_PA_CONT_TYP[1,1] 3 ; Contour type[i] : 3 = G3 for circuit element, counter-clockwise
; Protection zone for toolholder, contour element 1

$SN_PA_CONT_TYP[1,2] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for toolholder, contour element 2

$SN_PA_CONT_TYP[1,3] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for toolholder, contour element 3

$SN_PA_CONT_TYP[1,4] 1 ; Contour type[i] : 1 = G1 for even
; Protection zone for toolholder, contour element 4

$SN_PA_CONT_TYP[1,5] 0 ; Contour type[i] : 0 = not defined
; Protection zone for toolholder, contour element 5

$SN_PA_CONT_TYP[1,6] 0 ; Contour type[i] : 0 = not defined
; Protection zone for toolholder, contour element 6

$SN_PA_CONT_TYP[1,7] 0 ; Contour type[i] : 0 = not defined
; Protection zone for toolholder, contour element 7

$SN_PA_CONT_TYP[1,8] 0 ; Contour type[i] : 0 = not defined
; Protection zone for toolholder, contour element 8

$SN_PA_CONT_TYP[1,9] 0 ; Contour type[i] : 0 = not defined
; Protection zone for toolholder, contour element 9

$SN_PA_CONT_ORD[0,0] -80 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 0

$SN_PA_CONT_ORD[0,1] -80 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 1

$SN_PA_CONT_ORD[0,2] 80 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 2

$SN_PA_CONT_ORD[0,3] 80 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 3

$SN_PA_CONT_ORD[0,4] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 4

A3: Axis Monitoring, Protection Zones
2.5 Examples

 Basic Functions
152 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System variable Valu
e

Remark

$SN_PA_CONT_ORD[0,5] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 5

$SN_PA_CONT_ORD[0,6] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 6

$SN_PA_CONT_ORD[0,7] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 7

$SN_PA_CONT_ORD[0,8] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 8

$SN_PA_CONT_ORD[0,9] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 9

$SN_PA_CONT_ORD[1,0] -190 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 0

$SN_PA_CONT_ORD[1,1] -210 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 1

$SN_PA_CONT_ORD[1,2] -210 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 2

$SN_PA_CONT_ORD[1,3] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 3

$SN_PA_CONT_ORD[1,4] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 4

$SN_PA_CONT_ORD[1,5] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 5

$SN_PA_CONT_ORD[1,6] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 6

$SN_PA_CONT_ORD[1,7] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 7

$SN_PA_CONT_ORD[1,8] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 8

$SN_PA_CONT_ORD[1,9] 0 ; Endpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 9

$SN_PA_CONT_ABS[0,0] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 0

$SN_PA_CONT_ABS[0,1] 40 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 1

$SN_PA_CONT_ABS[0,2] 40 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 2

$SN_PA_CONT_ABS[0,3] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 3

$SN_PA_CONT_ABS[0,4] -50 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 4

$SN_PA_CONT_ABS[0,5] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 5

$SN_PA_CONT_ABS[0,6] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 6

$SN_PA_CONT_ABS[0,7] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 7

 A3: Axis Monitoring, Protection Zones
 2.5 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 153

System variable Valu
e

Remark

$SN_PA_CONT_ABS[0,8] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 8

$SN_PA_CONT_ABS[0,9] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 9

$SN_PA_CONT_ABS[1,0] -50 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 0

$SN_PA_CONT_ABS[1,1] -30 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 1

$SN_PA_CONT_ABS[1,2] 20 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 2

$SN_PA_CONT_ABS[1,3] 50 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 3

$SN_PA_CONT_ABS[1,4] -50 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 4

$SN_PA_CONT_ABS[1,5] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 5

$SN_PA_CONT_ABS[1,6] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 6

$SN_PA_CONT_ABS[1,7] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 7

$SN_PA_CONT_ABS[1,8] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 8

$SN_PA_CONT_ABS[1,9] 0 ; Endpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 9

$SN_PA_CENT_ORD[0,0] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 0

$SN_PA_CENT_ORD[0.1] -190 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 1

$SN_PA_CENT_ORD[0,2] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 2

$SN_PA_CENT_ORD[0,3] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 3

$SN_PA_CENT_ORD[0,4] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 4

$SN_PA_CENT_ORD[0,5] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 5

$SN_PA_CENT_ORD[0,6] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 6

$SN_PA_CENT_ORD[0,7] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 7

$SN_PA_CENT_ORD[0,8] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for workpiece, contour element 8

$SN_PA_CENT_ORD[0,9] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 9

$SN_PA_CENT_ORD[1.0] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 0

A3: Axis Monitoring, Protection Zones
2.5 Examples

 Basic Functions
154 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System variable Valu
e

Remark

$SN_PA_CENT_ORD[1.1] -190 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 1

$SN_PA_CENT_ORD[1.2] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 2

$SN_PA_CENT_ORD[1.3] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 3

$SN_PA_CENT_ORD[1.4] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 4

$SN_PA_CENT_ORD[1.5] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 5

$SN_PA_CENT_ORD[1.6] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 6

$SN_PA_CENT_ORD[1.7] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 7

$SN_PA_CENT_ORD[1.8] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 8

$SN_PA_CENT_ORD[1.9] 0 ; Midpoint of contour[i], ordinate value
; Protection zone for toolholder, contour element 9

$SN_PA_CENT_ABS[0,0] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 0

$SN_PA_CENT_ABS[0.1] -30 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 1

$SN_PA_CENT_ABS[0,2] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 2

$SN_PA_CENT_ABS[0,3] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 3

$SN_PA_CENT_ABS[0,4] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 4

$SN_PA_CENT_ABS[0,5] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 5

$SN_PA_CENT_ABS[0,6] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 6

$SN_PA_CENT_ABS[0,7] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 7

$SN_PA_CENT_ABS[0,8] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 8

$SN_PA_CENT_ABS[0,9] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for workpiece, contour element 9

$SN_PA_CENT_ABS[1.0] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 0

$SN_PA_CENT_ABS[1.1] -30 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 1

$SN_PA_CENT_ABS[1.2] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 2

$SN_PA_CENT_ABS[1.3] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 3

 A3: Axis Monitoring, Protection Zones
 2.6 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 155

System variable Valu
e

Remark

$SN_PA_CENT_ABS[1.4] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 4

$SN_PA_CENT_ABS[1.5] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 5

$SN_PA_CENT_ABS[1.6] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 6

$SN_PA_CENT_ABS[1.7] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 7

$SN_PA_CENT_ABS[1.8] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 8

$SN_PA_CENT_ABS[1.9] 0 ; Midpoint of contour[i], abscissa value
; Protection zone for toolholder, contour element 9

Activation

Table 2- 4 Part program excerpt for activating the three protection zones for spindle chuck,
workpiece, and toolholder:

Program code Comment

NPROT(1, 2, 0, 0, 0) Protection zone: Spindle chuck

CPROT(1, 2, 0, 0, 100) Protection zone: Workpiece with 100 mm offset

in the Z axis

CPROT(2, 2, 0, 0, 0) Protection zone: Toolholder

2.6 Data lists

2.6.1 Machine data

2.6.1.1 NC-specific machine data

Axis monitoring

Number Identifier: $MN_ Description
10604 WALIM_GEOAX_CHANGE_MODE Working area limitation during switchover of geometry

axes
10710 PROG_SD_RESET_SAVE_TAB Setting data to be updated

A3: Axis Monitoring, Protection Zones
2.6 Data lists

 Basic Functions
156 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Protection zones

Number Identifier: $MN_ Description
10618 PROTAREA_GEOAX_CHANGE_MODE Protection zone for switchover of geo axes
18190 MM_NUM_PROTECT_AREA_NCK Number of files for machinerelated protection zones

2.6.1.2 Channelspecific machine data

Axis monitoring functions

Number Identifier: $MC_ Description
20150 GCODE_RESET_VALUES Initial setting of the G groups
21020 WORKAREA_WITH_TOOL_RADIUS Allowance for tool radius with working area limitation
24130 TRAFO_INCLUDES_TOOL_1 Tool handling with active transformation 1.
24230 TRAFO_INCLUDES_TOOL_2 Tool handling with active transformation 2.
24330 TRAFO_INCLUDES_TOOL_3 Tool handling with active transformation 3.
24426 TRAFO_INCLUDES_TOOL_4 Tool handling with active transformation 4.
24436 TRAFO_INCLUDES_TOOL_5 Tool handling with active transformation 5.
24446 TRAFO_INCLUDES_TOOL_6 Tool handling with active transformation 6.
24456 TRAFO_INCLUDES_TOOL_7 Tool handling with active transformation 7.
24466 TRAFO_INCLUDES_TOOL_8 Tool handling with active transformation 8.
24476 TRAFO_INCLUDES_TOOL_9 Tool handling with active transformation 9.
24486 TRAFO_INCLUDES_TOOL_10 Tool handling with active transformation 10.
25106 TRAFO_INCLUDES_TOOL_11 Tool handling with active transformation 11.
25116 TRAFO_INCLUDES_TOOL_12 Tool handling with active transformation 12.
25126 TRAFO_INCLUDES_TOOL_13 Tool handling with active transformation 13.
25136 TRAFO_INCLUDES_TOOL_14 Tool handling with active transformation 14.
25146 TRAFO_INCLUDES_TOOL_15 Tool handling with active transformation 15.
25156 TRAFO_INCLUDES_TOOL_16 Tool handling with active transformation 16.
25166 TRAFO_INCLUDES_TOOL_17 Tool handling with active transformation 17.
25176 TRAFO_INCLUDES_TOOL_18 Tool handling with active transformation 18.
25186 TRAFO_INCLUDES_TOOL_19 Tool handling with active transformation 19.
25196 TRAFO_INCLUDES_TOOL_20 Tool handling with active transformation 20.
28600 MM_NUM_WORKAREA_CS_GROUPS Number of coordinate system-specific working area

limitations

 A3: Axis Monitoring, Protection Zones
 2.6 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 157

Protection zones

Number Identifier: $MC_ Description
28200 MM_NUM_PROTECT_AREA_CHAN (SRAM) Number of files for channelspecific protection zones
28210 MM_NUM_PROTECT_AREA_ACTIVE Number of simultaneously active protection zones in

one channel
28212 MM_NUM_PROTECT_AREA_CONTUR Elements for active protection zones (DRAM)

2.6.1.3 Axis/spindlespecific machine data

Axis monitoring functions

Number Identifier: $MA_ Description
30240 ENC_TYPE Encoder type of the actual value sensing (position actual value)
30310 ROT_IS_MODULO Modulo conversion for rotary axis / spindle
30800 WORK_AREA_CHECK_TYPE Type of checking of working area limits
32200 POSCTRL_GAIN [n] Servo gain factor
32250 RATED_OUTVAL Rated output voltage
32260 RATED_VELO Rated motor speed
32300 MAX_AX_ACCEL Maximum axis acceleration
32800 EQUIV_CURRCTRL_TIME Equivalent time constant current control loop for feedforward control
32810 EQUIV_SPEEDCTRL_TIME Equivalent time constant speed control loop for feedforward control
32910 DYN_MATCH_TIME [n] Time constant for dynamic response adaptation
35160 SPIND_EXTERN_VELO_LIMIT Spindle speed limitation via PLCC
36000 STOP_LIMIT_COARSE Exact stop coarse
36010 STOP_LIMIT_FINE Exact stop fine
36020 POSITIONING_TIME Delay time exact stop fine
36030 STANDSTILL_POS_TOL Zero speed tolerance
36040 STANDSTILL_DELAY_TIME Delay time zero-speed monitoring
36050 CLAMP_POS_TOL Clamping tolerance with IS "Clamping active"
36052 STOP_ON_CLAMPING Special functions for clamped axis
36060 STANDSTILL_VELO_TOL Maximum velocity/speed "Axis/spindle stationary"
36100 POS_LIMIT_MINUS 1st software limit switch minus
36110 POS_LIMIT_PLUS 1st software limit switch plus
36120 POS_LIMIT_MINUS2 2nd software limit switch minus
36130 POS_LIMIT_PLUS2 2nd software limit switch plus
36200 AX_VELO_LIMIT Threshold value for velocity monitoring
36210 CTRLOUT_LIMIT Maximum speed setpoint
36220 CTRLOUT_LIMIT_TIME Delay time for speed-setpoint monitoring
36300 ENC_FREQ_LIMIT Encoder limit frequency

A3: Axis Monitoring, Protection Zones
2.6 Data lists

 Basic Functions
158 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Number Identifier: $MA_ Description
36302 ENC_FREQ_LIMIT_LOW Encoder limit frequency for encoder resynchronization
36310 ENC_ZERO_MONITORING Zero-mark monitoring
36312 ENC_ABS_ZEROMON_WARNING Zero-mark monitoring warning threshold
36400 CONTOUR_TOL Tolerance band contour monitoring
36500 ENC_CHANGE_TOL Maximum tolerance for position actual value switchover
36510 ENC_DIFF_TOL Measuring system synchronism tolerance
36600 BRAKE_MODE_CHOICE Deceleration behavior on hardware limit switch
36610 AX_EMERGENCY_STOP_TIME Maximum duration of the braking ramp for faults
36620 SERVO_DISABLE_DELAY_TIME Cutout delay controller enable

Protection zones
None

2.6.2 Setting data

2.6.2.1 Axis/spindlespecific setting data

Axis monitoring functions

Number Identifier: $SA_ Description
43400 WORKAREA_PLUS_ENABLE Working-area limitation active in positive direction
43410 WORKAREA_MINUS_ENABLE Working-area limitation active in negative direction
43420 WORKAREA_LIMIT_PLUS Working-area limitation plus
43430 WORKAREA_LIMIT_MINUS Working-area limitation minus

Protection zones
None

 A3: Axis Monitoring, Protection Zones
 2.6 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 159

2.6.3 Signals

2.6.3.1 Signals to channel

Axis monitoring functions
None

Protection zones

Signal name SINUMERIK 840D sl SINUMERIK 828D
Enable protection zones DB21,DBX1.1 DB3200.DBX1.1
Feed disable DB21,DBX6.0 DB3200.DBX6.0
Activate machinerelated protection zones 1-8 DB21,DBX8.0-7 DB3200.DBX8.0-7
Activate machinerelated protection zone 9 DB21,DBX9.0 DB3200.DBX9.0
Activate machinerelated protection zone 10 DB21,DBX9.1 DB3200.DBX9.1
Activate channelspecific protection zone 1-8 DB21,DBX10.0-7 DB3200.DBX10.0-7
Activate channelspecific protection zone 9 DB21,DBX11.0 DB3200.DBX11.0
Activate channelspecific protection zone 10 DB21,DBX11.1 DB3200.DBX11.1

2.6.3.2 Signals from channel

Axis monitoring functions
None

Protection zones

Signal name SINUMERIK 840D sl SINUMERIK 828D
Machinerelated protection zones 1-8 preactivated DB21,DBX272.0-7 DB3300.DBX8.0-7
Machinerelated protection zone 9 preactivated DB21,DBX273.0 DB3300.DBX9.0
Machinerelated protection zone 10 preactivated DB21,DBX273.1 DB3300.DBX9.1
Channelspecific protection zones 1-8 preactivated DB21,DBX274.0-7 DB3300.DBX10.0-7
Channelspecific protection zone 9 preactivated DB21,DBX275.0 DB3300.DBX11.0
Channelspecific protection zone 10 preactivated DB21,DBX275.1 DB3300.DBX11.1
Machinerelated protection zones 1-8 violated DB21,DBX276.0-7 DB3300.DBX12.0-7
Machinerelated protection zone 9 violated DB21,DBX277.0 DB3300.DBX13.0
Machinerelated protection zone 10 violated DB21,DBX277.1 DB3300.DBX13.1
Channelspecific protection zones 1-8 violated DB21,DBX278.0-7 DB3300.DBX14.0-7

A3: Axis Monitoring, Protection Zones
2.6 Data lists

 Basic Functions
160 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal name SINUMERIK 840D sl SINUMERIK 828D
Channelspecific protection zone 9 violated DB21,DBX279.0 DB3300.DBX15.0
Channelspecific protection zone 10 violated DB21,DBX279.1 DB3300.DBX15.1

2.6.3.3 Signals to axis/spindle

Axis monitoring functions

Signal name SINUMERIK 840D sl SINUMERIK 828D
Follow-up mode DB31,DBX1.4 DB380x.DBX1.4
Position measuring system 1 / 2 DB31,DBX1.5/6 DB380x.DBX1.5/6
Controller enable DB31,DBX2.1 DB380x.DBX2.1
Clamping in progress DB31,DBX2.3 DB380x.DBX2.3
Velocity/spindle speed limitation DB31,DBX3.6 DB380x.DBX3.6
Feed stop/spindle stop DB31,DBX4.3 DB380x.DBX4.3
Hardware limit switch minus/Hardware limit switch plus DB31,DBX12.0/1 DB380x.DBX1000.0/1
Software limit switch minus / 2nd software limit switch plus DB31,DBX12.2/3 DB380x.DBX1000.2/3
Encoder limit frequency exceeded 1 / 2 DB31,DBX60.2/3 DB390x.DBX0.2
Referenced/synchronized 1 / 2 DB31,DBX60.4/5 DB390x.DBX0.4/5
Traverse command minus / plus DB31,DBX64.6/7 DB390x.DBX4.6/7

Protection zones
None

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 161

B1: Continuous-path mode, Exact stop, Look Ahead 3
3.1 Brief Description

Exact stop or exact stop mode
In exact stop traversing mode, all axes involved in the traversing motion (except axes of
modal traversing modes) are decelerated at the end of each block until they come to a
standstill. The transition to the next block occurs only when all axes involved in the traversing
motion have reached their programmed target position with subject to the selected exact
stop criterion.

Continuous-path mode
In continuous-path mode, the NC attempts to keep the programmed path velocity as
constant as possible. In particular, deceleration of the path axes at the block limits of the part
program is to be avoided.

LookAhead
LookAhead is a function for optimizing the continuous path mode.

Smooth machining of workpieces is necessary to ensure a high-quality surface finish. For
this reason, path velocity variations should be avoided during machining whenever possible.
Without LookAhead, the NC only takes the traversing block immediately following the current
traversing block into consideration when determining the possible path velocity. If the
following block contains only a short path, the NC must reduce the path velocity (decelerate
in the current block) to be able to stop in time at the end of the next block, if necessary.

When the NC "looks ahead" over a configurable number of traversing blocks following the
current traversing block, a much higher path velocity can be attained under certain
circumstances because the NC now has considerably more traversing blocks and more path
available for calculation.

This results in the following advantages:

● Machining with higher path velocities on average

● Improved surface quality by avoiding deceleration and acceleration processes

Smoothing the path velocity
"Smoothing the path velocity" is a function especially for applications (such as high speed
milling in mold and die production) that require an extremely steady path velocity.
Deceleration and acceleration processes that would cause high-frequency excitations of
machine resonances are avoided with the "Smoothing the path velocity" function.

B1: Continuous-path mode, Exact stop, Look Ahead
3.1 Brief Description

 Basic Functions
162 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

This results in the following advantages:

● Improved surface quality and machining time by avoiding excitation of machine
resonances.

● Constant profile of path velocity and cutting rates by avoiding "unnecessary" acceleration
processes, i.e. acceleration processes that do not greatly improve the program run time.

Adaptation of the dynamic path response
In addition to "smoothing the path velocity", "dynamic path response adaptation" is another
function for avoiding high-frequency excitations of machine resonances while optimizing the
dynamic path response at the same time. To this end, highly frequent changes in path
velocity are automatically executed with lower jerk or acceleration values than the dynamic
response limit value parameters assigned in the machine data.

Thus, with low-frequency changes in path velocity, the full dynamic response limit values
apply, whereas with high-frequency changes, only the reduced dynamic response limit
values act due to the automatic dynamic response adaptation.

Dynamic response mode for path interpolation
Optimizing the path dynamic response also includes the technology-specific dynamic
response settings which are preset for different processing technologies (including tapping,
roughing, smoothing) and can be activated in the part program by calling the respective
dynamic response mode.

Free-form surface mode
Any fluctuation in curvature or torsion leads to a change in path velocity. This generally
results in unnecessary decelerating and accelerating during the processing of free-form
surface workpieces, which may adversely affect the quality of the surfaces of the
workpieces.

The following functions are available for processing free-form surfaces.

● "Free-form surface mode: Basic functions"

This makes the definition of the path velocity profile "less sensitive" to fluctuations in
curvature and torsion.

● "Free-form surface mode: Extension function"

This extension in standard LookAhead functionality is used to calculate the path velocity
profile during the processing of free-form surfaces.

The advantages of free-form surface mode lie in a more homogeneous workpiece surface
and lower machine load.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.1 Brief Description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 163

NC block compression
When a workpiece design is completed with a CAD/CAM system, the CAD/CAM system
generally also compiles the corresponding part program to create the workpiece surface. To
do so, most CAD/CAM systems use linear blocks to describe even curved sections of the
workpiece surface. Many interpolation points are generally necessary to maintain the
required contour accuracy. This results in many linear blocks, typically with very short paths.

The "NC block compressor" function uses polynomial blocks to perform a subsequent
approximation of the contour specified by the linear blocks. During this process, an
assignable number of linear blocks is replaced by a polynomial block. Furthermore, the
number of linear blocks that can be replaced by a polynomial block also depends on the
specified maximum permissible contour deviation and the contour profile.

Use of polynomial blocks provides the following advantages:

● Reduction of the number of required part program blocks for describing the workpiece
contour

● Higher maximum path velocities

Combine short spline blocks
A spline defines a curve which is formed from 2nd or 3rd degree polynomials. With spline
interpolation, the controller can generate a smooth curve characteristic from only a few
specified interpolation points of a set contour.

References:
Programming Manual, Advanced, Special motion commands,
chapter: Spline interpolation

The advantages of the spline interpolation as compared to the linear interpolation are:

● Reduction of the number of required part program blocks for describing a curved contour.

● Soft, mechanical system-limiting curve characteristic also during transition between the
part program blocks.

The disadvantages of the spline interpolation as compared to the linear interpolation are:

● For a spline curve no exact curve characteristic, but only a tolerance band can be
specified, within which the spline curve should lie.

As with linear interpolation, the processing of splines can produce such short blocks that the
path velocity must be reduced to enable interpolation of the spline blocks. This is alao the
case, when the spline actually has a long, smooth curve. The "Combine short spline blocks"
function allows you to combine these spline blocks such that the resulting block length is
sufficient and does not reduce the path velocity.

 Note
NC block compressor

The NC block compressor (COMPON, COMPCURV or COMPCAD) cannot be employed
while compressing spline blocks since it can only be used to compress linear blocks.

B1: Continuous-path mode, Exact stop, Look Ahead
3.2 Exact stop mode

 Basic Functions
164 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.2 Exact stop mode

Exact stop or exact stop mode
In exact stop traversing mode, all path axes and special axes involved in the traversing
motion that are not traversed modally, are decelerated at the end of each block until they
come to a standstill. The transition to the next block occurs only when all axes involved in the
traversing motion have reached their programmed target position with subject to the selected
exact stop criterion.

This results in the following response:

● The program run time is considerably longer compared to continuous path mode due to
the deceleration of the axes and the wait time until "Exact stop" status is reached for all
machine axes involved.

● In exact stop mode, undercuts can occur on the workpiece surface during machining.

Status "Exact stop"
The state of the machine axis based on the position difference relative to its position setpoint
at the end of a traversing motion is also called an exact stop. The machine axis reaches the
"exact stop" state, as soon as its following error is less than the specified position difference
(exact stop criterion).

Application
Exact stop mode should always be used when the programmed contour must be executed
exactly.

Activation
Exact stop mode can be activated on a modal basis or in blocks in the part program:

G command Meaning
G60 Exact stop with modal effect
G9 Exact stop with block-by-block effect

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.2 Exact stop mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 165

Exact stop criteria "Exact stop coarse" and "Exact stop fine".
The exact stop criteria "Exact stop coarse" and "Exact stop fine" are used to specify
tolerance windows for a machine axis reaching the "exact stop" state.

Figure 3-1 Tolerance windows of exact stop criteria

Parameters are assigned to the two exact stop criteria via the machine data:

MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

MD36000 $MA_STOP_LIMIT_COARSE (exact stop coarse)

 Note

The tolerance windows of the exact stop criteria "Exact stop coarse" and "Exact stop fine"
should be assigned in such a way that the following requirement is fulfilled:

"Exact stop coarse" > "Exact stop fine"

Exact stop criterion "Interpolator End"
In the case of the exact stop criterion "interpolator end" the block change to the next
traversing block takes place, as soon as all path axes and special axes involved in the
traversing motion, which do not traverse extending up to block, have reached their position
according to set point programmed in the block. That is, the interpolator has executed the
block.

The actual position and the following error of the relevant machine axes are not taken into
consideration for exact stop criterion "Interpolator end". Thus, depending on the dynamic
response of the machine axes, this can result in a relatively large smoothing of the contour at
the block changes in comparison to the exact stop criteria "Exact stop coarse" and "Exact
stop fine".

B1: Continuous-path mode, Exact stop, Look Ahead
3.2 Exact stop mode

 Basic Functions
166 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Activation of an exact stop criterion
An exact stop criterion is activated in the part program by programming the appropriate G
command:

G command Exact-stop criterion
G601 Exact stop fine
G602 Exact stop coarse
G603 Interpolator end

Block change depending on exact-stop criteria
The figure below illustrates the block change timing in terms of the selected exact stop
criterion.

Figure 3-2 Block change accordance to selected exact stop criterion

Evaluation factor for exact stop criteria
A parameter set-dependent evaluation of the exact stop criteria can be specified via the
following axis-specific machine data:

MD36012 $MA_STOP_LIMIT_FACTOR (exact stop coarse/fine and standstill factor)

Applications:

● Adaptation of the positioning response to different mass ratios, such as after a gearshift

● Reduction in positioning time, depending on various machining states, such as roughing
and finishing

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.2 Exact stop mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 167

Assignable specification of the active exact stop criterion
The active exact stop criterion can be permanently specified for the part program commands
of the first G function group irrespective of the exact stop criterion programmed in the part
program. This specification can be made independently for each of the following part
program commands:

● Rapid traverse: G0

● Machining commands: G1, G2, G3, CIP, ASPLINE, BSPLINE, CSPLINE, POLY, G33, G34, G35, G331,
G332, OEMIPO01, OEMIPO02, CT

The setting is done in a channel-specific manner via the following machine data:

MD20550 $MC_EXACT_POS_MODE (exact stop conditions for G0 and G1)

Coding

Each exact stop criterion is location-coded:

MD20550 $MC_EXACT_POS_MODE = <ZE>

● Ones position E: Rapid traverse

● Tens position Z: all other part program commands in the first G function group

Z or E Active exact stop criterion
0 Programmed exact stop criterion
1 G601 (Exact stop window fine)
2 G602 (Exact stop window coarse)
3 G603 (Interpolator end)

Example

MD20550 $MC_EXACT_POS_MODE = 02

Ones position = 2:

With rapid traverse, exact stop criterion G602 (Exact stop window coarse) is always active,
irrespective of any programming in the parts program.

Tens digit = 0:

For traversing with all other parts program commands of the first G function group, the exact
stop criterion programmed in the parts program is active.

Assignable exact stop criterion for rapid traverse transitions in continuous path mode
The behavior at the block transition of part program blocks before and after rapid traverse
blocks can be parameterized as follows:

MD20552 $MC_EXACT_POS_MODE_G0_TO_G1 = <value>

Value Meaning
0 No additional stop at the block transition.
1 Stop at block transition: Same behavior as in the case of G601 (Exact stop window fine)

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
168 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Value Meaning
2 Stop at block transition: Same behavior as G602 (Exact stop window coarse).
3 Stop at block transition: Same behavior as G603 (Interpolator end).
4 Like 0, in addition, the override of the next non-G0 block is taken into account with

LookAhead in the G0 block during the transition from G0 to non-G0.
5 Like 0; in addition, the override of the next block is taken into account with LookAhead during

the transition from G0 to non-G0 and from non-G0 to G0.

3.3 Continuous-path mode

3.3.1 General functionality

Continuous-path mode
In the continuous-path mode, the path velocity is not decelerated for the block change in
order to permit the fulfillment of an exact stop criterion. The objective of this mode is to avoid
rapid deceleration of the path axes at the block-change point so that the axis velocity
remains as constant as possible when the program moves to the next block. To achieve this
objective, the "LookAhead" function is also activated when the continuous-path mode is
selected.

Continuous-path mode causes the smoothing and tangential shaping of angular block
transitions by local changes in the programmed contour. The extent of the change relative to
the programmed contour can be limited by specifying the overload factor or rounding criteria.

Continuous-path mode:

● Contour rounding.

● Reduces machining times by eliminating braking and acceleration processes that are
required to fulfill the exact-stop criterion.

● Improves cutting conditions because of the more constant velocity.

Continuous-path mode is suitable if:

● A contour must be traversed as quickly as possible (e.g. with rapid traverse).

● The exact contour may deviate from the programmed contour within a specific tolerance
for the purpose of obtaining a continuous contour

Continuous-path mode is not suitable if:

● A contour is to be traversed precisely.

● An absolutely constant velocity is required.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 169

Implicit exact stop
In some cases, an exact stop needs to be generated in continuous-path mode to allow the
execution of subsequent actions. In such situations, the path velocity is reduced to zero.

● If auxiliary functions are output before the traverse motion, the previous block is only
terminated when the selected exact-stop criterion is fulfilled.

● If auxiliary functions are to be output after the traverse motion, they are output after the
interpolator end of the block.

● If an executable block (e.g. starting of a positioning axis) contains no travel information
for the path axes, the previous block is terminated on reaching the selected exact-stop
criterion.

● If a positioning axis is declared to be the geometry axis, the previous block is terminated
at the interpolator end when the geometry axis is programmed.

● If a synchronized axis is programmed that was last programmed as a positioning axis or
spindle (initial setting of the special axis is positioning axis), the previous block is ended
at the interpolator end.

● If the transformation is changed, the block previously processed is terminated with the
active exact-stop criterion.

● A block is terminated on interpolator end if the following block contains the changeover of
the acceleration profile BRISK/SOFT (see Section "B2: Acceleration (Page 231)").

● If the "empty buffer" function is programmed, the previous block is terminated when the
selected exact-stop criterion is reached.

Velocity = 0 in continuous-path mode
Regardless of the implicit exact stop response, the path motion is braked down to zero
velocity at the end of the block in cases where:

● Positioning axes are programmed with the instruction POS, and their traversing time
exceeds that of the path axes. The block change occurs when the "exact stop fine" of the
positioning axes is reached.

● The time taken to position a spindle programmed with the instruction SPOS is longer than
the traversing time of the path axes. The block change is carried out when the "exact stop
fine" of the positioning spindle is reached.

● The current block contains traversing commands for geometry axes and the following
block traversing commands for synchronized axes or, alternatively, the current block
contains traversing commands for synchronized axes and the subsequent block
traversing commands for geometry axes.

● Synchronization is required.

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
170 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.3.2 Velocity reduction according to overload factor

Function
The function lowers the path velocity in continuou-path mode until the non-tangential block
transition can be traversed in one interpolation cycle while respecting the deceleration limit
and taking an overload factor into account.

With the reduced velocity, axial jumps in velocity are produced with a non-tangential contour
at the block transition. These jumps in velocity are also performed by the coupled motion
synchronized axes. The jump in velocity prevents the path velocity dropping to zero. This
jump is performed if the axial velocity was reduced with the axial acceleration to a velocity
from which the new setpoint can be reached with the jump. The magnitude of the setpoint
jump can be limited using an overload factor. Because the magnitude of the jump is axial,
the minimum jump of the path axes which are active during the block change is considered
during block transition.

Figure 3-3 Axial velocity change on block transition

With a practically tangential block transition, the path velocity is not reduced if the
permissible axial accelerations are not exceeded. This means that very small bends in the
contour (e.g. 0.5°) are overtraveled directly.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 171

Overload factor
The overload factor restricts step changes in the machine axis velocity at block ends. To
ensure that the velocity jump does not exceed the maximum load on the axis, the jump is
derived from the acceleration of the axis.

The overload factor indicates the extent by which the acceleration of the machine axis
(MD32300 $MA_MAX_AX_ACCEL) may be exceeded for an IPO-cycle.

The velocity jump results as follows:

Velocity jump = axis acceleration * (overload factor-1) * interpolator cycle.

The overload factor is saved in the machine data:

MD32310 $MA_MAX_ACCEL_OVL_FACTOR (overload factor for axial velocity jumps)

Factor 1.0 means that only tangential transitions with finite velocity can be traversed. For all
other transitions, the velocity is reduced to zero by changing the setpoint. This behavior is
equivalent to the function "Exact stop with interpolator end". This is undesirable for
continuous-path mode, so the factor must be set to greater than 1.0.

 Note

For startup and installation, please note that the factor must be reduced if the machine is
likely to be subject to vibrations during angular block transitions and rounding is not to be
used.

By setting the following machine data, the block transitions are rounded independent of the
set overload factor with G641/G642:

MD20490 $MC_IGNORE_OVL_FACTOR_FOR_ADIS

Activation/deactivation
Continuous-path mode with a reduction in speed according to the overload factor can be
activated in any NC part program block by the modal command G64.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode G64 can be deactivated by selecting:

● Modal exact stop G60

● Rounding G641, G642, G643, G644 or G645

Implicit continuous-path mode
If it is not possible to insert rounding blocks in continuous-path mode with rounding G641
due to the very short block path lengths (e.g. zero-clocked blocks), the mode is switched
over to continuous-path mode G64.

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
172 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.3.3 Rounding

Function
The "Rounding" function adds intermediate blocks (positioning blocks) along a programmed
contour (path axes) at non-continuous (angular) block transitions so that the resulting new
block transition is continuous (tangential).

Synchronized axes

The rounding considers not only the geometry axes but also all synchronous axes. Although
a continuous block transition cannot be created for both axis types concurrently for the
parallel travel of path and synchronous axes. In this case, to favor path axes that always
travel exactly, only an approximately continuous block transition is created for synchronous
axes.

Rounding for G64

Rounding is performed even when to observe the dynamic-response limits at the block
transition, a speed is required that for G64 exceeds the permitted speed at the block
transition (see Section "Velocity reduction according to overload factor (Page 170)"
"Overload factor").

Impact on synchronization conditions
The use of rounding shortens the programmed blocks between which the rounding block(s)
are added. The programmed block boundary disappears and are then no longer available as
criterion for any synchronization conditions (e.g. auxiliary function output parallel to motion,
stop at block end).

 Note

We recommend that when the "Rounding" function is used, synchronization conditions apply
to the end of the block before the rounding location rather than the end of the inserted
rounding block. The following block would then not be started and with a stop at the block
end, the contour of the following block can still be changed manually.

Exceptions
In the following cases, no rounding occurs at the block transition, for example, between the
N10 blocks after N20, i.e. no rounding block is added:

Implicit stopping of the traversing motion

Possible causes:

● Auxiliary function output active before the traversing motion for N20

● N20 does not contain any traversing motion for path axes

● In N20, an axis that was previously a positioning axis traverses as a path axis for the first
time

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 173

● In N20, an axis that was previously a path axis traverses as a positioning axis for the first
time

● Geometry axes traverse in N10 but not in N20

● Geometry axes traverse in N20 but not in N10

● Activation of thread-cutting G33 in N20

● Change from BRISK and SOFT

● Transformation-relevant axes are not completely assigned to the path motion (e.g. for
oscillation axes, positioning axes).

The insertion of the rounding block would slow part program machining overproportionally

Possible causes:

● A program or program section consists of a number of very short traversal blocks (≈ 1
interpolator cycle / traversal block; because each traversal block requires at least one
interpolator cycle, the inserted intermediate block would almost double the machining
time)

● G64 (path control operation without rounding) without speed reduction active for block
change

● The parameterized overload factor (MD32310 $MA_MAX_ACCEL_OVL_FACTOR)
permits the traversal of the programmed contour without the path speed needing to be
reduced. See also: MD20490 $MC_IGNORE_OVL_FACTOR_FOR_ADIS

Path parameters inhibit the rounding

Possible causes:

● G641 (path control operation with rounding in accordance with the path criterion) is active
but rapid traverse is active (G0) AND ADISPOS == 0 (rounding separation for G0)

● G641 (path control operation with rounding in accordance with the path criterion) is active
but rapid traverse is not active AND ADIS == 0 (rounding separation for path functions
G1, G2, G3, ...)

● G642 or G643 (path control operation with rounding while observing defined tolerances) is
active but all tolerances == zero

N10 or N20 does not contain traversing motion (zero block).

Normally no zero blocks are created. Exceptions:

● Active synchronous action

● Program jumps

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
174 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Impact on synchronization conditions
The programmed blocks between which the rounding contour is added are shortened during
rounding. The original programmed block boundary disappears and is then no longer
available for any synchronization conditions (e.g. auxiliary function output parallel to motion,
stop at block end).

 Note

We recommend that when the "Rounding" function is used, synchronization conditions apply
to the end of the block before the rounding location rather than the end of the inserted
rounding block. The following block would then not be started and with a stop at the block
end, the contour of the following block can still be changed.

3.3.3.1 Rounding according to a path criterion (G641)

Function
In continuous-path mode with rounding according to a path criterion, the size of the rounding
area is influenced by the path criteria ADIS and ADISPOS.

The path criteria ADIS and ADISPOS describe the maximum distances which a rounding
block can occupy before and after a block.

 Note

Acute angles produce rounding curves with a large degree of curvature and therefore cause
a corresponding reduction in velocity.

 Note

ADISPOS is programmed in the same way as ADIS, but must be used specifically for
movements in rapid traverse mode G00.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 175

Scope of the path criterion
● ADIS or ADISPOS must be programmed. If the default is "zero", G641 behaves like G64.

● If only one of the blocks involved is rapid traverse G0, the smaller rounding distance
applies.

● If a very small value is used for ADIS, the controller must make sure that every
interpolated block, even an intermediate rounding block, contains at least one
interpolation point. The maximum path velocity is thereby limited to ADIS / interpolation
cycle.

● Irrespective of ADIS and ADISPOS, the rounding area is limited by the block length.

In blocks with short distances (distance < 4* ADIS and < 4 * ADISPOS respectively), the
rounding distance is reduced so that a traversable part of the original block is retained.
The remaining length depends on the axis path and is approximately 60% of the distance
still to be traversed in the block. ADIS or ADISPOS is therefore reduced to the remaining
40% of the distance to be traversed. This algorithm prevents a rounding block being
inserted for a very small change in contour. In this case, switchover to continuous-path
mode G64 is automatic until rounding blocks can be inserted again.

Figure 3-4 Path with limitation of ADIS

Activation/deactivation
Continuous-path mode with rounding based on a path criterion can be activated in any NC
part program block by the modal command G641. Before or on selection, the path criteria
ADIS/ADISPOS must be specified.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
176 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Continuous-path mode with rounding based on a path criterion (G641) can be deactivated by
selecting:

● Modal exact stop (G60)

● Continuous-path mode G64, G642, G643, G644 or G645

Program example

Program code Comment

N1 G641 Y50 F10 ADIS=0.5 ; Continuous-path mode with rounding based on a

path criterion (rounding clearance: 0.5 mm)

N2 X50

N3 X50.7

N4 Y50.7

N5 Y51.4

N6 Y51.0

N7 X52.1

3.3.3.2 Rounding in compliance with defined tolerances (G642/G643)

Function
In continuous-path mode involving rounding in compliance with defined tolerances, the
rounding normally takes place while adhering to the maximum permissible path deviation.
Instead of these axis-specific tolerances, the maintenance of the maximum contour deviation
(contour tolerance) or the maximum angular deviation of the tool orientation (orientation
tolerance) can be configured.

Activation
Continuous-path mode with rounding in compliance with defined tolerances can be activated
in any NC part program block by the modal command G642 or G643.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode with rounding in compliance with defined tolerances (G642/G643)
can be deactivated by selecting:

● Modal exact stop (G60)

● Continuous-path mode G64, G641, G644 or G645

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 177

Differences between G642 - G643
With regard to their rounding behavior, commands G642 and G643 differ as follows:

G642 G643
With G642, the rounding path is determined on
the basis of the shortest distance for rounding all
axes. This value is taken into account when
generating a rounding block.

In the case of G643, each axis may have a
different rounding path. The rounding travels are
taken into account axis-specifically and block-
internally (⇒ no separate rounding block).

With G642, the rounding area results from the
smallest tolerance setting.

Very different specifications for the contour
tolerance and the tolerance of the tool orientation
can only have effect with G643.

Parameterization
Maximum path deviation

The maximum path deviation permitted with G642/G643 is set for each axis in the machine
data:

MD33100 $MA_COMPRESS_POS_TOL

Contour tolerance and orientation tolerance

The contour tolerance and orientation tolerance are set in the channel-specific setting data:

SD42465 $SC_SMOOTH_CONTUR_TOL (maximum contour deviation)

SD42466 $SC_SMOOTH_ORI_TOL (maximum angular deviation of the tool orientation)

The settings data can be programmed in the NC program and can in this way be specified
differently for each block transition.

 Note

The setting data SD42466 $SC_SMOOTH_ORI_TOL is effective only in active orientation
transformation.

Rounding behavior

Rounding behavior with G642 and G643 is configured via the machine data:

MD20480 $MC_SMOOTHING_MODE (rounding behavior with G64x)

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
178 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The units positions (E) define the behavior for G643, the tens positions (Z) the behavior for
G642:

Value E or Z Meaning
0 All axes:

Rounding by maintaining the maximum permitted path deviation:
MD33100 $MA_COMPRESS_POS_TOL

1 Geometry axes:
Rounding by maintaining the contour tolerance:
SD42465 $SC_SMOOTH_CONTUR_TOL
Remaining axes:
Rounding by maintaining the maximum permitted path deviation:
MD33100 $MA_COMPRESS_POS_TOL

2 Geometry axes:
Rounding by maintaining the orientation tolerance:
SD42466 $SC_SMOOTH_ORI_TOL
Remaining axes:
Rounding by maintaining the maximum permitted path deviation:
MD33100 $MA_COMPRESS_POS_TOL

3 Geometry axes:
Rounding by maintaining the contour tolerance and the orientation tolerance:
SD42465 $SC_SMOOTH_CONTUR_TOL
SD42466 $SC_SMOOTH_ORI_TOL
Remaining axes:
Rounding by maintaining the maximum permitted path deviation:
MD33100 $MA_COMPRESS_POS_TOL

4 All axes:
The rounding length programmed with ADIS or with ADISPOS is used (as in case of
G641).
Any axis-specific tolerance or contour and orientation tolerance specifications are
ignored.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 179

Profile for limit velocity

The use of a velocity profile for rounding in compliance with defined tolerances is controlled
via the hundreds position in MD20480:

Value Meaning
< 100: A profile of the limit velocity is calculated within the rounding area, based on the defined

maximum values for acceleration and jerk on the participating axes or path.
This can lead to an increase in the path velocity in the rounding area and therefore to
the acceleration of the participating axes.
A profile of the limit velocity is not calculated for rounding blocks with G641/G642. A
constant velocity limit is specified instead.
This prevents the participating axes being accelerated into the rounding area during
rounding with G641/G642. However, in certain cases, this setting can cause the
rounding blocks to be traversed too slowly, especially in large rounding areas.
1xx: No velocity profile for G641

≥100:

2xx: No velocity profile for G642

 Note

MD28530 $MC_MM_PATH_VELO_SEGMENTS (number of memory elements for limiting
the path velocity)

Supplementary conditions
Restriction for protection zones with active radius compensation and tool orientation:

Although tool radius compensation is applied for a tool orientation, which is not perpendicular
to one of the three datum planes of the basic coordinate system, the protection zones are
not rotated onto the corresponding plane.

For G643 the following must apply:

MD28530 $MC_MM_PATH_VELO_SEGMENTS > 0 (number of memory elements for
limiting the path velocity)

If this condition is met, then it must be applicable for all axes:

MD35240 $MC_ACCEL_TYPE_DRIVE = FALSE (acceleration characteristic DRIVE for axes
on/off)

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
180 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.3.3.3 Rounding with maximum possible axial dynamic response (G644)

Function
Maximizing the dynamic response of the axes is key to this type of continuous-path mode
with rounding.

 Note

Rounding with G644 is only possible if:
• All the axes involved contain only a linear motion in both the observed blocks.
• No kinematic transformation is active

In case an involved axis contains a polynomial (polynomial programmed, spline active,
compressor active) or a kinematic transformation is active, the block transition is rounded
with G642.

Activation
Continuous-path mode with rounding with the maximum possible axial dynamic response
can be activated in any NC part program block by the modal command G644.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode with rounding with the maximum possible axial dynamic response
(G644) can be deactivated by selecting:

● Modal exact stop (G60)

● Continuous-path mode G64, G641, G642, G643 or G645

Parameterization
Rounding behavior with G644 is configured via the thousands and tens of thousands places
in the machine data:

MD20480 $MC_SMOOTHING_MODE (rounding behavior with G64x)

Value Meaning

Thousand's place:
0xxx: When rounding with G644, the maximum deviations for each axis specified by the

following machine data are respected:
MD33100 $MA_COMPRESS_POS_TOL
If the dynamics of the axis permit, then any specified tolerance is not utilized.

1xxx: Input the maximum rounding path by programming ADIS=... or ADISPOS=...(as for G641)

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 181

Value Meaning
2xxx: Input the maximum possible frequencies of each axis in the rounding area using the

machine data:
MD32440 $MA_LOOKAH_FREQUENCY (smoothing frequency for LookAhead)
The rounding area is defined so that no frequencies in excess of the specified maximum
can occur while the rounding motion is in progress.

3xxx: Any axis that has a velocity jump at a corner traverses around the corner with the
maximum possible dynamic response (maximum acceleration and maximum jerk).
SOFT:
If SOFT is active, the maximum acceleration and the maximum jerk of each axis is
maintained.
BRISK:
If BRISK is active, only the maximum acceleration and not the maximum jerk of each axis
is maintained.
With this setting, neither the maximum deviations nor the rounding distance are checked.
The resulting deviations or rounding distances are determined exclusively by the dynamic
limits of the respective axis and the current path velocity.

4xxx: As in case of 0xxx, the maximum deviations of each axis specified with the following
machine data are used:
MD33100 $MA_COMPRESS_POS_TOL
Contrary to 0xxx, the specified tolerance is also utilized, if possible. Therefore, the axis
does not attain its maximum possible dynamics.

5xxx: As in case of 1xxx, the maximum possible rounding path is specified through
programming of ADIS=... or ADISPOS= respectively.
Contrary to 1xxx, the specified rounding path is also utilized, if possible. Therefore, the
axes involved do not attain their maximum possible dynamics.

Ten thousands digit
0xxxx The velocity profiles of the axes in the rounding area are determined without jerk limiting

for BRISK and with jerk limiting for SOFT.
1xxxx The velocity profiles of the axes in the rounding area are always determined with jerk

limiting, regardless of whether BRISK or SOFT is active.

When specifying the maximum axial deviations (MD33100 $MA_COMPRESS_POS_TOL) or
the maximum rounding distance (ADIS / ADISPOS) the available rounding path is normally
not used, if permitted by the dynamics of the axes involved. Through this, the length of the
rounding path depends on the active path feedrate. In case of lower path speeds, one gets
lower deviations from the programmed contours. However, it can be set that in these cases
the specified maximum axial deviation or the specified rounding distance is utilized, if
possible. In this case the deviations depend on the programmed contour independent of the
programmed path feedrate.

 Note

Apart from the ones mentioned, the following limitation can also become active additionally:

The rounding distance cannot exceed half the length of the original participating blocks.

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
182 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Jerk limitation
The smoothing of the velocity jump on each axis and thus the shape of the rounding path
depends on whether an interpolation is performed with or without jerk limitation.

Without jerk limitation the acceleration of each axis reaches its maximum value in the entire
rounding area.

With jerk limitation, the jerk of each axis is limited to its maximum value within the rounding
area. The rounding motion thus generally consists of three phases:

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 183

● Phase 1

During phase 1, each axis builds up its maximum acceleration. The jerk is constant and
equal to the maximum possible jerk on the respective axis.

● Phase 2

During phase 2, the maximum permissible acceleration is applied.

● Phase 3

During phase 3, which is the last phase, the acceleration of each axis is reduced back to
zero with the maximum permissible jerk.

3.3.3.4 Rounding of tangential block transitions (G645)

Function
In continuous-path mode with rounding, rounding blocks are also only generated on
tangential block transitions if the curvature of the original contour exhibits a jump in at least
one axis.

The rounding motion is defined here so that the acceleration of all axes involved remains
smooth (no jumps) and the parameterized maximum deviations from the original contour
(MD33120 $MA_PATH_TRANS_POS_TOL) are not exceeded.

In the case of angular, non-tangential block transitions, the rounding behavior is the same as
with G642 (see Section "Rounding in compliance with defined tolerances (G642/G643)
(Page 176)").

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
184 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Activation/deactivation
Continuous-path mode with rounding of tangential block transitions can be activated in any
NC part program block by the modal command G645.

Selecting the exact stop which works on a block-by-block basis enables rounding to be
interrupted (G9).

Continuous-path mode with rounding of tangential block transitions (G645) can be
deactivated by selecting:

● Modal exact stop (G60)

● Continuous-path mode G64, G641, G642, G643 or G644

Comparison between G642 and G645
When rounding with G642, the only block transitions rounded are those which form a corner,
i.e. the velocity of at least one axis jumps. However, if a block transition is tangential, but
there is a jump in the curvature, no rounding block is inserted with G642. If this block
transition is traversed with finite velocity, the axes experience some degree of jump in
acceleration which (with the jerk limit activated!) may not exceed the parameterized limit
(MD32432 $MA_PATH_TRANS_JERK_LIM). Depending on the level of the limit, the path
velocity at the block transition may be greatly reduced as a result. This constraint is avoided
by using G645 because the rounding motion is defined here in such a way that no jumps
occur in acceleration.

Parameterization
The following machine data indicates the maximum permissible path deviation for each axis
during rounding with G645:

MD33120 $MA_PATH_TRANS_POS_TOL

This value is only of relevance to tangential block transitions with variable acceleration.
When angular, non-tangential block transitions are rounded, (as with G642) the tolerance
from MD33100 $MA_COMPRESS_POS_TOL becomes effective.

See also
Free-form surface mode: Basic functions (Page 211)

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 185

3.3.3.5 Rounding and repositioning (REPOS)
If the machining in the area of the rounding contour is interrupted, a REPOS operation
cannot be used to position again directly on the rounding contour. In this case, positioning
can be made only on the programmed contour.

Example

Programmed: Two traversing blocks N10 and N20 with programmed rounding G641.

The traversing motion is interrupted in the rounding area. The axes, e.g. manually, are then
traversed to the REPOS start point. Depending on the selected REPOS mode, the
repositioning on the contour is made at the points ①, ② or ③.

RMBBL Repositioning at the start of the interrupted traversal block
RMIBL Repositioning at the interruption location
RMEBL Repositioning at the end of the interrupted traversal block
RMNBL Repositioning at the next contour point
① Block start N10
② To the REPOS start point of the next contour point
③ Block end N10 / block start N20

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
186 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.3.4 LookAhead

3.3.4.1 Standard functionality

Function
LookAhead is a function which is active in continuous-path mode (G64, G64x) and
determines a foreseeable velocity control for multiple NC part program blocks over and
beyond the current block.

 Note

LookAhead is only available for path axes, not for spindles and positioning axes.

If a part program contains consecutive blocks with very small paths, only one velocity is
reached per block without LookAhead, enabling deceleration of the axes at the end of the
block while maintaining acceleration limits. This means that the programmed velocity is not
reached at all. With LookAhead, however, it is possible to implement the acceleration and
deceleration phase over multiple blocks with approximately tangential block transitions,
thereby achieving a higher feedrate with shorter distances.

Figure 3-5 Velocity control with short distances and exact stop G60 or continuous-path mode G64

with LookAhead

Deceleration to velocity limits is possible with LookAhead such that violation of the
acceleration and velocity limit is prevented.

LookAhead takes plannable velocity limits into consideration such as:
● Exact stop at block end
● Velocity limit in the block
● Acceleration limit in the block
● Velocity limit on block transition
● Synchronization with block change at block transition.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 187

Mode of operation
LookAhead carries out a block-specific analysis of velocity limits and specifies the required
brake ramp profile based on this information. LookAhead is adapted automatically to block
length, braking capacity and permissible path velocity.

For safety reasons, the velocity at the end of the last prepared block must initially be
assumed to be zero because the next block might be very small or be an exact-stop block,
and the axes must have been stopped by the end of the block.

With a series of blocks with high set velocity and very short paths, the speed can be
increased in each block depending on the velocity value currently calculated by the
LookAhead function in order to achieve the required set velocity. After this it can be reduced
so that the velocity at the end of the last block considered by the LookAhead function can be
zero. This results in a serrated velocity profile (see the following fig.) which can be avoided
by reducing the set velocity or increasing the number of blocks considered by the
LookAhead function.

Figure 3-6 Example for modal velocity control (number of blocks considered by the LookAhead

function = 2)

Activation/deactivation
LookAhead is activated by selecting continuous-path mode G64, G641, G642, G643, G644
or G645.

Selecting the exact stop which works on a non-modal basis enables rounding to be
interrupted (G09).

LookAhead is deactivated by selecting the modal exact stop (G60).

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
188 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterization
Number of blocks

To achieve reliable axis traversal in continuous-path mode, the feedrate must be adapted
over several blocks. The number of blocks considered by the LookAhead function is
calculated automatically and can, if required, be limited by a machine data. The default
setting is "1", which means that LookAhead only considers the following block for velocity
control.

Because LookAhead is especially important for short blocks (relative to the deceleration
path), the number of blocks required is of interest for LookAhead braking. It is sufficient to
consider the path length to be equal to the deceleration path that is required to brake from
maximum velocity to standstill.

For a machine with a low axial acceleration of a = 1 m/s2 and a high feedrate of
vpath = 10 m/min, the following number of nLookAhead blocks are allocated to the controller
where it has has an attainable block cycle time of TB = 10 ms:

nLookAhead = Deceleration path/Block length = (vpath2 / (2a)) / (vpath * TB) = 9

Considering these conditions, it is advisable to adapt the feedrate over 10 blocks. The
number of blocks entered for the LookAhead function forecast does not change the
LookAhead algorithm and memory requirement.

Since the machining velocity is very often set to a lower value than the maximum velocity in
a program, more blocks than are required would be predicted, overloading the processor
unnecessarily. For this reason, the required number of blocks is derived from the velocity
which is calculated from the following multiplication:

● Programmed velocity * MD12100 $MN_OVR_FACTOR_LIMIT_BIN

(when using a binary-coded feedrate override switch)

● Programmed velocity * MD12030 $MN_OVR_FACTOR_FEEDRATE[30]

(when using a gray-coded feedrate override switch)

The value for MD12100 or the 31st override value for MD12030 defines the dynamic
response reserves which the velocity control provides for when the path feed is overshot.

 Note

The 31st override value for MD12030 should correspond to the highest override factor which
is actually used.

 Note

The number of blocks considered by the LookAhead function is limited by the possible
number of NC blocks in the IPO buffer.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 189

Velocity profiles

In addition to the fixed, plannable velocity limitations, LookAhead can also take account of
the programmed velocity. This makes it possible to achieve a lower velocity by applying
LookAhead beyond the current block.

● Determination of the following block velocity

One possible velocity profile contains the determination of the following block velocity.

Using information from the current and the following NC block, a velocity profile is
calculated from which, in turn, the required velocity reduction for the current override is
derived.

The calculated maximum value of the velocity profile is limited by the maximum path
velocity.

With this function it is possible to initiate a speed reduction in the current block taking
override into account such that the lower velocity of the following block can be achieved.
If the reduction in velocity takes longer than the travel time of the current block, the
velocity is further reduced in the following block. Velocity control is only ever considered
for the following block.

The function is activated via the machine data:

MD20400 $MC_LOOKAH_USE_VELO_NEXT_BLOCK

Value Meaning
TRUE Function active
FALSE Function not active

● Definition of override points

If the velocity profile of the following block velocity is not sufficient because, for example,
very high override values (e.g. 200%) are used or a constant cutting rate G96/G961 is
active, with the result that the velocity must be further reduced in the following block,
LookAhead provides a way of reducing the programmed velocity over several NC blocks.

By defining override points, LookAhead calculates a limiting velocity profile for each
value. The required velocity reductions for the current override are derived from these
profiles.

The calculated maximum value of the velocity profile is limited by the maximum path
velocity.

The upper point should cover the velocity range that will be reached by the maximum
value set in the machine data:

MD12030 $MN_OVR_FACTOR_FEEDRATE [n] (evaluation of the path feedrate override
switch)

It can also be reached via the value of the machine data:

MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary coded override switch)

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
190 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

In this way, a reduction of the velocity continuing into the block in which it is programmed
can be avoided.

If velocity reductions across block boundaries are required at a 100% override, a point
should be set in the lower override range as well.

The number of override points used per channel is specified in the machine data:

MD20430 $MC_LOOKAH_NUM_OVR_POINTS (number of override switch points for
LookAhead)

The associated points are stored in the machine data:

MD20440 $MC_LOOKAH_OVR_POINTS (prepared override velocity characteristics with
LookAhead)

Example:

Limiting velocity characteristics, whereby:

– Override = 50%, 100% or 150%

– Number of LookAhead blocks = 4

– MD20430 $MC_LOOKAH_NUM_OVR_POINTS = 2

– MD20440 $MC_LOOKAH_OVR_POINTS = 1.5, 0.5

– MD20400 $MC_LOOKAH_USE_VELO_NEXT_BLOCK = 1

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 191

A combination of both procedures (determination of following block velocity and
determination of override points) can be used to calculate the velocity profiles and is
generally advisable because the preset machine data for these functions already takes the
widest range of override-dependent velocity limits into account.

 Note

If neither of the procedures has been activated, the setpoint velocity is always applied in the
current block.

 Note

Plannable velocity limits restrict override-specific velocity limits.

Relief factor with block cycle problems

Block cycle problems are encountered in cases where the traversing distances of the NC
blocks to be processed are so short that the LookAhead function has to reduce the machine
velocity to provide enough time for block processing. In this situation, constant braking and
acceleration of path motion may occur.

Velocity fluctuations of this type can be dampened by specifying a relief factor:

MD20450 $MC_LOOKAH_RELIEVE_BLOCK_CYCLE (relieving factor for the block cycle
time)

Supplementary conditions
Axis-specific feed stop/axis disable

Axis-specific feed stop and axis-specific axis disable are ignored by LookAhead.

If an axis is to be interpolated that should on the other hand be made stationary by axis-
specific feed stop or axis disable, LookAhead does not stop path motion before the block in
question but decelerates in the block itself.

If this response is not wanted, an axis-specific feed stop can be transferred to a channel via
the PLC to stop the path immediately (see also Section "Clamping monitoring (Page 86)").

3.3.4.2 Free-form surface mode: Extension function

Function
The "Free-form surface mode: Extension function" is an extension of the LookAhead
standard functionality and is used to calculate the path velocity profile during free-form
surface processing (see also Section "Free-form surface mode: Basic functions
(Page 211)").

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
192 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Its use optimizes the continuous-path mode as follows:

● Symmetry between the acceleration and deceleration profiles

● Uniform acceleration process, even with changing jerk or acceleration limits

● Uniform acceleration process of target velocity profiles, irrespective of the degree to
which they can or cannot be started with the specified dynamic response limit

● LookAhead braking to lower setpoint velocities

Uniformity and compliance with the dynamic response limit guarantee that the setpoint
velocity profiles are smoothed to a homogeneous velocity profile on the part. This serves to
minimize the effect of following errors on the quality of the surface.

Therefore, the function offers the following advantages:

● Greater uniformity in the surface of the workpiece

● Lower machine load

Applications
The "Free-form surface mode: Extension function" is used to process workpieces which
primarily comprise free-form surfaces.

 Note

As better results are not achieved for standard processing applications, standard LookAhead
functionality should be used in these cases.

Requirements
● The function is only effective:

– In AUTOMATIC

– In acceleration mode: acceleration with jerk limit (SOFT)

● Activation is only possible if the requisite memory is configured:

MD28533 $MC_MM_LOOKAH_FFORM_UNITS = <value>

Sensible value assignment depends upon the part program, the block lengths, the axial
dynamic response, as well as upon an active kinematic transformation.

The following setting applies as a guideline for processing free-form surfaces: 18

 Note

Due to the additional storage requirements, MD28533 should only be set for the channels
in which free-form surfaces are being processed.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.3 Continuous-path mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 193

Activation/deactivation
The function can be switched on or off independently for every dynamic response mode (see
Section "Dynamic response mode for path interpolation (Page 209)"):

MD20443 $MC_LOOKAH_FFORM[<n>]= <value>

Index <n> Dynamic response mode <value> Free-form surface mode: Extension

function
0 Off 0 Standard dynamic response

settings (DYNNORM) 1 On
0 Off 1 Positioning mode, tapping

(DYNPOS) 1 On
0 Off 2 Roughing (DYNROUGH)
1 On
0 Off 3 Finishing (DYNSEMIFIN)
1 On
0 Off 4 Smooth finishing (DYNFINISH)
1 On

The "Free-form surface mode: Extension function" is typically only active if the "Free-form
surface mode: Basic functions" are also active. Therefore, the settings in
MD20443 $MC_LOOKAH_FFORM[<n>] should correspond to the settings in
MD20606 $MC_PREPDYN_SMOOTHING_ON[<n>].

The standard LookAhead functionality is active in the dynamic response modes in which the
"Free-form surface mode: Extension function" is switched off.

Programming
Generally speaking, the "Free-form surface mode: Extension function" becomes effective as
a result of a change in the dynamic response mode in the part program.

Example
The following parameters are assumed:

MD20443 $MC_LOOKAH_FFORM[0] = 0

MD20443 $MC_LOOKAH_FFORM[1] = 0

MD20443 $MC_LOOKAH_FFORM[2] = 1

MD20443 $MC_LOOKAH_FFORM[3] = 1

MD20443 $MC_LOOKAH_FFORM[4] = 1

B1: Continuous-path mode, Exact stop, Look Ahead
3.3 Continuous-path mode

 Basic Functions
194 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

N10 DYNPOS ; Switch on the DYNPOS dynamic

response mode. Standard LookAhead

functionality is active in the

DYNPOS dynamic response mode.

...

N100 G17 G54 F10000

N101 DYNFINISH ; Switch on the DYNFINISH dynamic

response mode. The "Free-form

surface mode: Extension functions"

are active in the DYNFINISH dynamic

response mode.

N102 SOFT G642

N103 X-0.274 Y149.679 Z100.000 G0

N104 COMPCAD

...

N1009 Z4.994 G01

N10010 X.520 Y149.679 Z5.000

N10011 X10.841 Y149.679 Z5.000

N10012 X11.635 Y149.679 Z5.010

N10013 X12.032 Y149.679 Z5.031

M30

 Note

When switching between the standard LookAhead functionality and the "Free-form surface
mode: Extension function" or vice versa, continuous-path mode is interrupted by an
interpolator stop.

Supplementary conditions
Automatic function switchover

Applying the following functions when the "Free-form surface mode: Extension function"
leads to an automatic switchover to standard LookAhead functionality:

● Thread cutting/tapping (G33, G34, G35, G331, G332, G63)

● Path master-value coupling

● Punching, nibbling

● Cartesian PTP travel

The "Free-form surface mode: Extension function" is then switched on again automatically.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 195

Using the commands of G function group 15 (feed types)

It is not advisable to use the following feed types when the "Free-form surface mode:
Extension function" is active:

● Feedrate per revolution (G95, G96, G97, etc.)

● Inverse-time feedrate (G93)

Time response during feedrate overrides

$ Feedrate overrides (via a machine control panel, $AC_OVR, ...) can extend the traverse
time over standard LookAhead functionality considerably.

Rapid traverse motion (G0)

G0 blocks which are interspersed during free-form surface processing do not switch the
LookAhead functionality over (from the "Free-form surface mode: Extension function" to
standard LookAhead functionality or vice versa).
This means that even though the standard dynamic response setting (DYNNORM) is
effective with G0, the standard LookAhead functionality which is preset for DYNNORM
(→ MD20443 $MC_LOOKAH_FFORM[0]) does not automatically become effective as well as
a result.

By retaining the LookAhead functionality which is currently active, a more homogeneous
velocity profile is achieved, particularly since G0 and polynomial blocks are usually
smoothed and connected by rounding.

Number of NC blocks in the IPO buffer

It is generally advisable to significantly increase the configured number of NC blocks in the
interpolation buffer when using the "Free-form surface mode: Extension function":

MD28060 $MC_MM_IPO_BUFFER_SIZE > 100

If the block memory capacity is too low, this may diminish the uniformity of the path-velocity
profile.

3.4 Dynamic adaptations

3.4.1 Smoothing of the path velocity

Introduction
The velocity control function utilizes the specified axial dynamic response. If the programmed
feedrate cannot be achieved, the path velocity is brought to the parameterized axial limit
values and the limit values of the path (velocity, acceleration, jerk). This can lead to repeated
braking and acceleration on the path.

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
196 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

If a short acceleration takes place during a machining function with high path velocity, and is
thus followed almost immediately by braking, the reduction in the machining time is only
minimal. Acceleration of this kind can, however, have undesirable effects if, for example, it
results in machine resonance.

In some applications in mold making, especially in the case of high-speed cutting, it is
desirable to achieve a constant path velocity. In these cases, it can therefore be reasonable
to sacrifice transient acceleration processes in favor of a smoother tool path velocity.

Function
If the "smoothing the path velocity" function is active, a smoothing factor, which determines
the maximum permissible productivity loss, takes effect with a view to achieving smoother
path velocity control: Acceleration processes which contribute less than this factor to a
shorter program runtime are not performed. Account is only taken of acceleration processes
whose frequencies lie above the configurable limit frequencies of of the axes involved.

Benefits:

● Avoidance of excitations of possible machine resonance due to continuous, transient
braking and acceleration processes (in the area of less IPO cycles).

● Avoidance of constantly varying cutting rates due to acceleration which brings no
significant shortening of the program running time.

 Note

The smoothing of the path velocity does not lead to contour errors.

Variations in axis velocity due to curvatures in the contour at constant path velocity may
continue to occur and are not reduced with this function.

Variations in path velocity due to the input of a new feedrate are not changed either. This
remains the responsibility of the programmer of the subprogram.

Requirements
● The smoothing of the path velocity is only effective in continuous-path mode with

LookAhead over multiple blocks with SOFT and BRISK. Smoothing is not effective with
G0.

● The controller's cycle times must be configured in such a way that preprocessing can
prepare sufficient blocks to enable an acceleration process to be analyzed.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 197

Activation/deactivation
The "smoothing of the path velocity" function is activated/deactivated with the machine data:

MD20460 $MC_LOOKAH_SMOOTH_FACTOR (smoothing factor for LookAhead)

Value Meaning
0.0 Smoothing of the path velocity not active (default)
> 0 Smoothing of the path velocity active

A change in the MD setting is only made effective through NEW CONF.

Parameterization
Smoothing factor

The smoothing factor is set via the channel-specific machine data:

MD20460 $MC_LOOKAH_SMOOTH_FACTOR (smoothing factor for LookAhead)

The percentage value defines how much longer a processing step without
accelerations/decelerations may be than the corresponding step with
accelerations/decelerations.

This would be a "worst-case" value, if all accelerations within the part program, except the
initial approach motion, were smoothed. The actual extension will always be smaller, and
may even be 0, if the criterion is not met by any of the accelerations. Values between 50 and
100% may also be entered without significantly increasing the machining time.

Consideration of the programmed feed

The path velocity can be smoothed with or without taking the programmed feedrate into
consideration. The selection is made via the machine data:

MD20462 $MC_LOOKAH_SMOOTH_WITH_FEED (path smoothing with programmed
feedrate)

Value Meaning
0 Programmed feedrate is not taken into consideration.
1 Programmed feedrate is considered (default setting).

When considering the programmed feedrate, the specified smoothing factor (see MD20460)
is maintained better when the override is 100%.

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
198 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Axis-specific limit frequencies

The axis-specific limit frequencies are defined via the machine data:

MD32440 $MA_LOOKAH_FREQUENCY (smoothing frequency for LookAhead)

Acceleration and deceleration processes, which run with a high frequency, are smoothed
depending upon the parameterization of the following machine data or else are reduced in
dynamics:

MD20460 $MC_LOOKAH_SMOOTH_FACTOR (smoothing factor for LookAhead)

MD20465 $MC_ADAPT_PATH_DYNAMIC (adaptation of the dynamic path response)

For further information on MD20465, see Section "Adaptation of the dynamic path response
(Page 200)".

 Note

If vibrations are generated in the mechanical system of an axis and if the corresponding
frequency is known, MD32440 should be set to a value smaller than this frequency.

The needed resonance frequencies can be calculated using the built-in measuring functions.

Mode of operation
The minimum value for MD32440 is calculated as fpath on the basis of the axes involved in
the path. For the smoothing only those acceleration processes are taken into consideration,
in which the start and the end velocity of this motion are reached within the time given below:

t = t2 - t1 = 2 / fpath

These acceleration processes are dispensed with if the resulting extension in the processing
time does not exceed the limit specified in excess of the smoothing factor (MD20460).

Example
The following parameters are assumed:

MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 10%

MD32440 $MA_LOOKAH_FREQUENCY[AX1] = 20 Hz

MD32440 $MA_LOOKAH_FREQUENCY[AX2] = 20 Hz

MD32440 $MA_LOOKAH_FREQUENCY[AX3] = 10 Hz

The path involves the three axes X = AX1, Y = AX2, Z = AX3.

The minimum value of MD32440 for these three axes is thus 10 Hz. This means that any
acceleration, which is completed within a period of t2 - t1 = 2/10 Hz = 200 ms, is examined.
The time t2 is the time it takes to reach velocity v1 again following an acceleration process
starting from velocity v1. The extending of the execution time is also only considered within
this range.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 199

If the time t2 - t1 is greater than 200 ms or if the additional program execution time t3 - t2 is
more than 10% (= MD20460) of t2 - t1, the following time characteristic applies:

Figure 3-7 Characteristic of time-optimum path velocity (without smoothing)

If, however, the time t2 - t1 is less than 200 ms or if the additional program execution time t3 -
 t2 is no more than 10% of t2 - t1, the following time characteristic applies:

Figure 3-8 Characteristic of the smoothed path velocity

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
200 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.4.2 Adaptation of the dynamic path response

Function
Highly dynamic acceleration and deceleration processes during machining can cause
excitation of mechanical vibrations of machine elements and consequently a reduction of the
surface quality of the workpiece.

The dynamic response of the acceleration and deceleration processes can be adapted to the
machine conditions using the "adaptation of the dynamic path response" function.

 Note

The "adaptation of the dynamic path response" function only concerns the resulting path and
not the deceleration and acceleration processes of the individual axes involved in the path.
For this reason, critical deceleration and acceleration processes of the axes with respect to
the excitation of mechanical vibrations can occur due to discontinuous contour profiles or
kinematic transformations, even with a constant path velocity profile.

Effectiveness
The "adaptation of the dynamic path response" function is only effective during path motions:

● Continuous-path mode (G64, G64x)

In continuous-path mode, the optimal effect of the dynamic response adaptation is
attained with an active 100% override. Considerable deviations from this value or
functions that cause the path axes to decelerate (e.g. auxiliary function outputs to the
PLC) greatly reduce the desired action.

● Exact stop (G60)

In addition, the "adaptation of the dynamic path response" function is not active during path
motions:

● Programmed rapid traverse (G0)

● Changes in the override value

● Stop requests during motion (e.g. NC Stop, NC Reset)

● "Velocity-dependent path acceleration" function (DRIVE) is active

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 201

Activation/deactivation
The function is activated/deactivated with the machine data:

MD20465 $MC_ADAPT_PATH_DYNAMIC (adaptation of the dynamic path response)

Value Meaning
= 1.0 Dynamic adaptation not active (default setting)
> 1.0 Dynamic adaptation active

When activation takes place, the "smoothing the path velocity" function is always activated
internally in continuous-path mode as well (see Section "Smoothing of the path velocity
(Page 195)").

If the smoothing factor (MD20460 $MC_LOOKAH_SMOOTH_FACTOR) is set to 0%
(= function deactivated; default!), a smoothing factor of 100% is used as a substitute. For a
smoothing factor other than 0%, the set value takes effect.

Parameterization
Adaptation factor of the dynamic path response

Via the adaptation factor of the dynamic path response, temporary changes in the path
velocity are executed with smaller dynamic response limit values.

The adaptation factor is to be set on a channel-specific basis:

● For traversing motions with acceleration without jerk limitation (BRISK) via:

MD20465 $MC_ADAPT_PATH_DYNAMIC[0]

→ The adaptation factor acts on the acceleration.

● For traversing motions with acceleration with jerk limitation (SOFT) via:

MD20465 $MC_ADAPT_PATH_DYNAMIC[1]

→ The adaptation factor acts on the jerk.

Axis-specific limit frequencies

The dynamic response limiting should only be active during deceleration and acceleration
processes that trigger mechanical vibrations larger than a specific limiting frequency, thus
causing excitation of machine resonances.

This limit frequency from which the dynamic response limiting activates, is specified on an
axis-specific basis via the machine data:

MD32440 $MA_LOOKAH_FREQUENCY (smoothing frequency for LookAhead)

For further information, see Section "Smoothing of the path velocity (Page 195)".

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
202 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Mode of operation
During processing and via all the axes involved in the path, the controller cyclically
establishes the minimum of all the limit frequencies to be the limit frequency (f) for the
adaptation of the dynamic response and calculates the relevant time window (tadapt) from this:

tadapt = 1 / f

The size of the relevant time window tadapt determines the further behavior:

1. The time needed to change the velocity is less than tadapt:

The acceleration rates are reduced by a factor > 1 and ≤ the value written in machine
data:

MD20465 ADAPT_PATH_DYNAMIC (adaptation of the path dynamics)

The reduction in acceleration rate increases the time taken to change the velocity.

The following cases are different:

– The acceleration rate is reduced with a value less than MD20465 so that the process
lasts for tadapt [s]. The permitted reduction does not need to be fully utilized.

– The acceleration time is reduced with the value written in MD20465. The process lasts
less than tadapt despite the reduced acceleration. The permitted reduction was fully
utilized.

2. The time needed to change the velocity is greater than tadapt:

No dynamic response adaptation is required.

Example
The following example is intended to show the effect of the "adaptation of the dynamic path
response" function on traversing motions with acceleration and without jerk limitation
(BRISK).

The following parameters are assumed:

MD20465 $MC_ADAPT_PATH_DYNAMIC[0] = 1.5
MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 1.0
MD32440 $MA_LOOKAH_FREQUENCY[AX1] = 20 Hz TAX1 = 1/20 Hz = 50 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX2] = 10 Hz TAX2 = 1/10 Hz = 100 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX3] = 20 Hz TAX3 = 1/20 Hz = 50 ms

 Note

To illustrate the effect of dynamic response adaptation, the value for the smoothing factor
(MD20460) is set to "1", whereby the "smoothing of the path velocity" function is practically
deactivated.

The path involves the three axes X = AX1, Y = AX2, Z = AX3.

For path motions in which axis AX2 is involved, all deceleration and acceleration processes
that would last less than TAX2 are adapted.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 203

If only axes AX1 and/or AX3 are involved in path motions, all deceleration and acceleration
processes that would last less than TAX1 = TAX3 are adapted.

The relevant time window is marked tadapt... in the figures below.

Figure 3-9 Path velocity profile optimized for time without smoothing or dynamic adaptation

response

Figure 3-10 Path velocity profile with adaptation of dynamic path response

Intervals t0 - t1 and t2 - t3: The acceleration process between t0 - t1 and the deceleration

process between t2 - t3 are extended in terms of time to
tadapt01 or tadapt23 as a result of the acceleration being adapted.

Interval t4 - t5: The acceleration process between t4 - t5 is executed with an
acceleration reduced by the maximum adaptation factor of
1.5. However, the acceleration process is completed before
time tadapt45.

Interval t6 - t7: The deceleration process between t6 - t7 remains unchanged
as it lasts longer than tadapt67.

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
204 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.4.3 Determination of the dynamic response limiting values
In addition to determining the natural frequency of the path axes for assigning parameters to
the axis-specific limit frequencies (MD32440 $MA_LOOKAH_FREQUENCY), the
implementation of the "adaptation of the dynamic path response" function also requires
dynamic response limits to be determined for velocity, acceleration and jerk.

Procedure
The determination of the dynamic response limits for the traversing of path axes by means of
acceleration with jerk limiting (SOFT) is described below. This procedure can be applied by
analogy to the case of acceleration without jerk limiting (BRISK).

1. Deactivate the "adaptation of the dynamic path response" function:

MD20465 $MC_ADAPT_PATH_DYNAMIC[1] = 1

2. Observe the positioning behavior of each path axis at different traversing velocities.
When doing so, set the jerk such that the desired positioning tolerance is maintained.

 Note

The higher the traversing velocity from which the positioning process is started, the
higher in general the jerk can be set.

3. Use the maximum permissible jerk determined for the least critical traversing velocity:

MD32431 $MA_MAX_AX_JERK (maximum jerk)

4. Determine the FAPD factor for all of the path axes using:

FAPD = (largest determined jerk) / (smallest determined jerk)

 Note

The smallest determined jerk is the value for the jerk during the most critical traversing
velocity.

5. Enter the largest FAPD factor that was determined via all the path axes as the value for the
adaptation factor for the path dynamic response:

MD20465 $MC_ADAPT_PATH_DYNAMIC[1] = FAPD

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 205

3.4.4 Interaction between the "smoothing of the path velocity" and "adaptation of the
path dynamic response" functions

The following examples serve to illustrate the interaction between the "smoothing of the path
velocity" and "adaptation of the path dynamic response" functions in continuous-path mode.

Example 1
Acceleration mode: BRISK

The path involves the 3 axes X = AX1, Y = AX2, Z = AX3.

The following parameters are assumed:

MD20465 $MC_ADAPT_PATH_DYNAMIC[0] = 3
MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 80.0
MD32440 $MA_LOOKAH_FREQUENCY[AX1] = 20 TAX1 = 1/20 Hz = 50 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX2] = 20 TAX2 = 1/20 Hz = 50 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX3] = 20 TAX3 = 1/20 Hz = 50 ms

Figure 3-11 Path velocity profile optimized for time without smoothing or dynamic adaptation

response

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
206 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 3-12 Path velocity profile with smoothing of the path velocity and adaptation of dynamic path

response

Effects of smoothing on path velocity:

Interval t1 - t2: The acceleration and deceleration process between t1 and t2 does not

take place because the lengthening of the machining time without the
acceleration process to v12 is less than the resulting time if a smoothing
factor of 80 % is applied.

Interval t3 - t5: The acceleration and braking profile between t3 and t5 does not fulfill
this condition or takes longer than the parameterized smoothing time
TAxn = 2/20 Hz = 100 ms.

Effects of the dynamic response adaptation:

Interval t3 - t4: The acceleration process between t3 and t4 is shorter than

MIN(TAXn) = 1/20 Hz = 50 ms and is, therefore, executed with an
acceleration reduced by an adaptation factor of 3.

Interval up to t1: The acceleration up to t1 left over after path smoothing is stretched to
the time period up to t1' by the dynamic response adaptation.

 Note

The example shows that those acceleration or deceleration processes that are not
eliminated by the smoothing of the path velocity can be subsequently optimized by adapting
the dynamic path response. For this reason, both functions should always be activated, if
possible.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 207

Example 2
Acceleration mode: SOFT

The path involves the 3 axes X = AX1, Y = AX2, Z = AX3.

The following parameters are assumed:

MD20465 $MC_ADAPT_PATH_DYNAMIC[1] = 1
MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 0.0
MD32440 $MA_LOOKAH_FREQUENCY[AX1] = 10 TAX1 = 1/20 Hz = 100 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX2] = 10 TAX2 = 1/20 Hz = 100 ms
MD32440 $MA_LOOKAH_FREQUENCY[AX3] = 20 TAX3 = 1/20 Hz = 50 ms

This leads to a path velocity profile which is optimized in terms of time without smoothing the
path velocity or adapting the dynamic path response:

The parameter assignment is changed as follows:

MD20465 $MC_ADAPT_PATH_DYNAMIC[1] = 4
MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 1.0

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
208 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

This results in a path velocity profile with adaptation of the dynamic path response and with
minimum, and thus virtually deactivated, smoothing of the path velocity:

The smoothing factor is set to 0% instead of 1% (in accordance with the default!):

MD20460 $MC_LOOKAH_SMOOTH_FACTOR = 0.0

A smoothing factor of 100% comes into effect with this parameter assignment.

This gives rise to a path velocity profile with smoothing of the path velocity and adaptation of
dynamic path response:

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 209

3.4.5 Dynamic response mode for path interpolation

Function
Technology-specific, dynamic response settings can be saved in machine data and can be
activated in the part program via the commands from G function group 59 (dynamic
response mode for path interpolation).

Command Activates the dynamic response settings for:
DYNNORM Standard dynamic response settings
DYNPOS Positioning mode, tapping
DYNROUGH Roughing
DYNSEMIFIN Finishing
DYNFINISH Smooth finishing

 Note

The dynamic response of the path axes alone is determined by the commands from G
function group 59 (dynamic response mode for path interpolation). They have no effect on:
• Positioning axes
• PLC axes
• Command axes
• Motions based on axis coupling
• Overlaid motions with handwheel
• JOG motions
• Reference point approach (G74)
• Fixed-point approach (G75)
• Rapid traverse motion (G0)

The standard dynamic response setting (DYNNORM) always takes effect for these axis
motions.

Application

By switching the dynamic response settings, roughing can be optimized in terms of time and
smoothing can be optimized in terms of the surface, for example.

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
210 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterization

Axial machine data

Number Identifier: $MA_ Description
Axis-specific dynamic response settings
MD32300 MAX_AX_ACCEL[<n>] Axis acceleration
MD32431 MAX_AX_JERK[<n>] Max. axial jerk for path motion
MD32432 PATH_TRANS_JERK_LIM[<n>] Max. axial jerk at the block transition in

continuous-path mode
MD32310 MAX_ACCEL_OVL_FACTOR[<n>] Overload factor for axial velocity jumps
MD32433 SOFT_ACCEL_FACTOR[<n>] Scaling of acceleration limitation for SOFT
Path-related dynamic response settings
MD20600 MAX_PATH_JERK[<n>] Path-related maximum jerk

Channel-specific machine data

Number Identifier: $MC_ Description
Path-related dynamic response settings
MD20602 CURV_EFFECT_ON_PATH_ACCEL[<n>] Influence of path curvature on the path

acceleration
MD20603 CURV_EFFECT_ON_PATH_JERK[<n>] Influence of path curvature on the path

jerk

Range of values for index n:

Index <n> Meaning

0 Value for DYNNORM
1 Value for DYNPOS
2 Value for DYNROUGH
3 Value for DYNSEMIFIN
4 Value for DYNFINISH

 Note

Writing the machine data without an index places the same value in all field elements of the
relevant machine data.

Reading the machine data without an index always supplies the value of the field with
index 0.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 211

Suppressing G commands
It is recommended that G commands from G function group 59 (dynamic response mode for
path interpolation) which are not intended for use should be suppressed via the following
machine data:

MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[<n>] (list of reconfigured NC
commands)

When using a suppressed G command, an alarm is displayed in order to ensure that no non-
parameterized machine data takes effect.

Example

The G commands DYNPOS and DYNSEMIFIN can be suppressed with the following settings:

● MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[0]="DYNPOS"

● MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[1]=" "

● MD10712 $MN_NC_USER_CODE_CONF_NAME_TAB[2]="DYNSEMIFIN"

● MD10712 $MN_ NC_USER_CODE_CONF_NAME_TAB[3]=" "

References
You can find further information about programming the G commands from G function group
59 (dynamic response mode for path interpolation) in:
References:
Programming Manual, Fundamentals; Section: Path action

3.4.6 Free-form surface mode: Basic functions

Introduction
In applications in tool and mold making, it is important that the surfaces on the workpiece are
as uniform as possible. This requirement is generally more important than the precision of
the surface of the workpiece.

Workpiece surfaces which lack uniformity can be attributable to the following causes, for
example:

● The part program for manufacturing the workpiece contains a non-uniform geometry.
This, most notably, affects the profile of the curvature and torsion.

 Note

The curvature k of a contour is the inverse of radius r of the nestling circle in a contour
point (k = 1/r). The torsion is the change in curvature (first derivative).

As a result of the lack of uniformity in geometry, the machine's dynamic response limits
are reached during processing of the part program, and needless deceleration and
acceleration processes occur. Depending on the extent of the effective over-travel of the
axes, this leads to different deviations in contours.

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
212 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Needless deceleration and acceleration processes can trigger machine vibrations which
result in unwanted marks on the workpiece.

There are various options available for eliminating these causes:

● The part programs generated by the CAD/CAM system contain a very uniform curvature
and torsion profile, preventing needless reductions in path velocity.

● The maximum path velocity is determined in such a way that unwanted geometric
fluctuations in the curvature and torsion profile have no effect.

Function
"Free-form surface mode: Basic functions" can be used to make the definition of path
velocity limits insensitive to small geometric fluctuations in curvature and torsion without
exceeding the machine's dynamic limits in terms of the acceleration and jerk of the axes.

This has the following advantages:

● Greater uniformity in the profile of the path velocity

● Greater uniformity in the surface of the workpiece

● Reduction in the processing time (if the dynamic response of the machine permits it)

Applications
The function is used to process workpieces which primarily comprise free-form surfaces.

Requirements
The function can only be activated if the requisite memory capacity is reserved during
memory configuration:

MD28610 $MC_MM_PREPDYN_BLOCKS = 10

The value entered prescribes the number of blocks which have to be taken into
consideration in the determination of the path velocity (velocity preparation).
A sensible value is "10".

If MD28610 has a value of "0", only the motions of the axes in a particular block are taken
into consideration when determining the maximum velocity of the path for that block. If the
geometry of neighboring blocks is also taken into consideration when determining the
velocity of the path (value > 0), a more uniform profile in path velocity is achieved.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.4 Dynamic adaptations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 213

Activation/deactivation
The function can be switched on or off independently for every dynamic response mode (see
Section "Dynamic response mode for path interpolation (Page 209)"):

MD20606 $MC_PREPDYN_SMOOTHING_ON[<n>] = <value>

Index <n> Dynamic response mode <value> Free-form surface mode: Basic

functions
0 Off 0 Standard dynamic response

settings (DYNNORM) 1 On
0 Off 1 Positioning mode, tapping

(DYNPOS) 1 On
0 Off 2 Roughing (DYNROUGH)
1 On
0 Off 3 Finishing (DYNSEMIFIN)
1 On
0 Off 4 Smooth finishing (DYNFINISH)
1 On

 Note

Due to the additional storage requirements, the function should only be activated in the
relevant processing channels.

Parameterization
Change in the contour sampling factor

The secant error which occurs during the interpolation of curved contours is dependent on
the following factors:

● Curvature

● Interpolation cycle (display in the MD10071 $MN_IPO_CYCLE_TIME)

● Velocity with which the relevant contour is traversed

The maximum possible secant error is defined for each axis in the machine data:

MD33100 $MA_COMPRESS_POS_TOL (maximum tolerance with compression)

If the set interpolation cycle is not sufficiently small, the max. path velocity may be reduced in
the case of contours with greater curvature. This is necessary for ensuring that the surface of
the workpiece is also produced with an adequate degree of precision in this case.

By changing the contour sampling factor, the time interval with which a curved contour is
sampled in the interpolator (contour sampling time) can be set at variance with the
interpolation cycle. A contour sampling time which is shorter than the interpolation cycle can
prevent a reduction in path velocity in the case of contours with greater curvature.

B1: Continuous-path mode, Exact stop, Look Ahead
3.4 Dynamic adaptations

 Basic Functions
214 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The contour sampling factor is set with the machine data:

MD10682 $MN_CONTOUR_SAMPLING_FACTOR

The effective contour sampling time is calculated as follows:

Ts = f * T1

Ts = Effective contour sampling time
T1 = Interpolation cycle time

where:

f = Contour sampling factor (value from MD10682)

The default contour sampling factor is "1", i.e. the contour sampling time equals the
interpolation cycle.

The contour sampling factor can be both greater or less than "1".

If a value less than "1" is set, monitoring of contour sampling precision is disabled.

The set sampling time must not be below the configured minimum contour sampling time:

MD10680 $MN_MIN_CONTOUR_SAMPLING_TIME

 Note

MD10680 is specifically set for every controller model and cannot be changed.

Programming
Depending on the setting in machine data MD20606 $MC_PREPDYN_SMOOTHING_ON,
"Free-form surface mode: Basic functions" can be switched on and off in the part program by
changing the active dynamic response mode.

Example:

By assigning the parameters MD20606 $MC_PREPDYN_SMOOTHING_ON[2-4] = 1 and
MD20606 $MC_PREPDYN_SMOOTHING_ON[0-1] = 0, the function can be switched on via
the commands DYNROUGH, DYNSEMIFIN, and DYNFINISH and switched off via the commands
DYNNORM and DYNPOS.

See also
Rounding of tangential block transitions (G645) (Page 183)

Velocity-dependent jerk adaptation (axis-specific) (Page 255)

Free-form surface mode: Extension function (Page 191)

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.5 Compressor functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 215

3.5 Compressor functions

3.5.1 NC block compression

Function

COMPON, COMPCURV

The compressor functions COMPON and COMPCURV generate one polynomial block from up to ten
consecutive linear blocks of the form: "G01 X... Y... Z... F...". The polynomial blocks of
the compressor functions have the following properties:

● COMPON: Continuous velocity block transitions.

● COMPCURV: Continuous velocity and acceleration block transitions

COMPCAD

The compressor function COMPCAD can generate one polynomial block from theoretically any
number of linear and circular blocks. The polynomial blocks have constant velocity and
acceleration at the block transitions. Corners that are desirable are identified as such and
taken into account.

The maximum tolerable deviation of the calculated path to the programmed points can be
specified using machine data for all compressor functions. In contrast to COMPON and
COMPCURV, the specified tolerances are not used in different directions in neighboring paths
with COMPCAD. In fact, COMPCAD attempts to achieve - under similar conditions - also similar
deviations from the programmed points.

The common objective of compressor functions is to optimize the surface quality and
machining speed by achieving continuous block transitions and increasing the path length for
each block.

COMPCAD is very CPU time and memory-intensive. It is recommended that COMPCAD is only
used there where surface improvements were not successful using measures in the
CAD/CAM program.

General

● The position data in the blocks to be compressed can be realized as required, e.g. X100,
X=AC(100), X=R1*(R2+R3)

● The compression operation is then interrupted by every other command, e.g. auxiliary
function output, in and between the blocks to be compressed.

Availability
For SINUMERIK 828D, NC block compression is only available for the milling versions.

B1: Continuous-path mode, Exact stop, Look Ahead
3.5 Compressor functions

 Basic Functions
216 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Orientation transformation (TRAORI)
When orientation transformation (TRAORI) is active, and under certain conditions, the
compressor functions COMPON, COMPCURV and COMPCAD can also compress motion blocks for tool
orientation and tool rotation. A detailed description can be found in:

References:
Function Manual Special Functions; 3- to 5-Axis Transformation (F2),
Section: "Compression of the orientation (COMPON, COMPCURV and COMPCAD)"

Parameterization
The following machine and setting data must be set for the parameterization of the NC block
compression:

Channel-specific machine data

Number Identifier $MC_ Meaning
MD20170 COMPRESS_BLOCK_PATH_LIMIT Maximum traversing length of NC block for compression
MD20172 COMPRESS_VELO_TOL Maximum permissible deviation from path feed for compression
MD20482 COMPRESSOR_MODE Setting the mode of operation of the compressor

See also:
References:
Function Manual, Special Functions; Multi-Axis Transformations
(F2),
Section: "Orientation" > "Compression of the orientation"

Channel-specific setting data

Number Identifier $SC_ Meaning
SD42470 CRIT_SPLINE_ANGLE Corner limit angle for COMPCAD
SD42475 COMPRESS_CONTUR_TOL Maximum permissible contour deviation with compression

 Note
Corner limit angle and compressor function COMPCAD

The corner limit angle for COMPCAD set via the setting data SD42470
$SC_CRIT_SPLINE_ANGLE is only used as an approximate measure for corner detection.
By evaluating the plausibility, the compressor can also identify flatter block transitions as
corners and larger angles as outliers.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.5 Compressor functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 217

Axial machine data

Number Identifier $MA_ Meaning
MD33100 COMPRESS_POS_TOL Maximum permissible path deviation with compression

Recommended settings for retroactive machine data

When using the compressor function, the following settings are recommended for the
retroactive machine data on the compressor function:

Number Identifier Recommended value
MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE

(FIFO buffer size for execution from external source)
100

MD20490 $MC_IGNORE_OVL_FACTOR_FOR_ADIS
(G641/G642 irrespective of the overload factor)

1

MD28520 $MC_MM_MAX_AXISPOLY_PER_BLOCK
(maximum number of axis polynomials per block)

3

MD28530 $MC_MM_PATH_VELO_SEGMENTS
(number of memory elements for limiting the path velocity)

5

MD28540 $MC_MM_ARCLENGTH_SEGMENTS
(number of memory elements for displaying the arc length function)

10

MD28060 $MC_MM_IPO_BUFFER_SIZE
(number of NC blocks for the block preparation)

100

MD28070 $MC_MM_NUM_BLOCKS_IN_PREP
(number of blocks for the block preparation)

60

MD32310 $MA_MAX_ACCEL_OVL_FACTOR
(overload factor for axial velocity jumps)

<Value for G64
operation>

Programming

Switch on

Compressor functions are activated using the modal G commands COMPON, COMPCURV or
COMPCAD.

To further improve the surface quality, the functions G642 (rounding function) and SOFT (jerk
limitation) can be used. The commands must be written together at the beginning of the
program.

Example:

Program code Comment

PROC ...

N10 COMPCAD SOFT G642 ; Activating the COMPCAD compressor

N20 G01 X... Y... Z... F... ; Traversing blocks 1 ... n

...

N1000 COMPOF ; Deactivation of the compressor

N1010 RET

B1: Continuous-path mode, Exact stop, Look Ahead
3.5 Compressor functions

 Basic Functions
218 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Deactivation

All compressor functions are deactivated using the COMPOF command.

References
The programming of the compressor functions is described in:
Programming Manual Work Preparation

The use of the compressor function with active orientation transformation is described in:
Function Manual Special Functions; Multi-Axis Transformations (F2),
Section: Compression of the orientation

See also
Tolerance and compression of G0 blocks (Page 223)

3.5.2 Combine short spline blocks

Function
During the preparation of spline blocks, blocks with short lengths can always occur between
blocks with long lengths. This can mean that the path velocity must always be significantly
reduced before these short blocks.

With the "Combine short spline blocks" function, the spline blocks are prepared in such a
way that blocks with short lengths are avoided and therefore traversing can be performed
smoothly with a high path velocity.

 Note
NC block compressor

The NC block compressor (COMPON, COMPCURV or COMPCAD) cannot be employed while
compressing spline blocks, since with this only linear blocks can be compressed.

Availability

System Availability
SINUMERIK 840D sl Standard (basic scope)
SINUMERIK 828D Option

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.5 Compressor functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 219

Activation
The "Combine short spline blocks" function can be activated for the following spline types:

● BSPLINE

● BSPLINE/ORICURVE

● CSPLINE

The activation is done using machine data:

MD20488 $MC_SPLINE_MODE, bit <n> = <value> (setting for spline interpolation)

Bit <value> Meaning: "Combine short spline blocks" function ...

0 For BSPLINE not active 0
1 For BSPLINE active
0 For BSPLINE/ORICURVE not active 1
1 For BSPLINE/ORICURVE active
0 For CSPLINE not active 2
1 For CSPLINE active

Supplementary conditions
● Spline blocks can only be combined if no other functions are programmed except

traversing motions and feedrate. With, for example, auxiliary functions that are output on
the PLC, the spline blocks cannot be combined.

● The maximum number of blocks that can be combined into a program section in
succession, depends on the size of the memory available for blocks in the block
preparation.

MD28070 $MC_MM_NUM_BLOCKS_IN_PREP (number of blocks for block preparation)

Example
In order to attain a higher path velocity when executing the following program, the "Combine
short spline blocks" function is activated for BSPLINE interpolation:

MD20488 $MC_SPLINE_MODE, Bit 0 = 1

Program code Comment

PROC P1

N10 G1 G64 X0 Y0 Z0 F1000

N20 G91 F10000 BSPLINE

; BSPLINE interpolation with Combine short spline blocks from this point

N30 X0.001 Y0.001 Z0.001

N40 X0.001 Y0.001 Z0.001

N50 X0.001 Y0.001 Z0.001

N60 X0.001 Y0.001 Z0.001

N70 X0.001 Y0.001 Z0.001

B1: Continuous-path mode, Exact stop, Look Ahead
3.6 Contour/Orientation tolerance

 Basic Functions
220 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

N80 X0.001 Y0.001 Z0.001

...

N1000 M30

3.6 Contour/Orientation tolerance

Parameterization for the contour/orientation tolerance
The maximum permissible contour deviation (contour tolerance) and the maximum
permissible angular deviation for the tool orientation (orientation tolerance) are defined in the
machine data for every axis:

MD33100 $MA_COMPRESS_POS_TOL (maximum tolerance with compression)

The value set is valid both for the compressor functions and for the rounding functions with
the exception of G641 (in this case, the distance to the block transition programmed with
ADIS/ADISPOS applies).

Tolerance values from the following setting data may also be effective instead of MD33100:

SD42465 $SC_SMOOTH_CONTUR_TOL (maximum contour deviation)

SD42466 $SC_SMOOTH_ORI_TOL (maximum angular deviation of the tool orientation)

The manner in which the tolerance values from MD33100 and from the SD42645 and
SD42466 setting data are to be taken into consideration is set as follows:

● For the rounding functions - via the decimal places in the machine data:

MD20480 $MC_SMOOTHING_MODE (rounding behavior with G64x)

● For the compressor functions - via the ones position in the machine data:

MD20482 $MC_COMPRESSOR_MODE (mode of compression)

Further machine and setting data which are of relevance in contour and orientation tolerance
settings are:

● MD33120 $MA_PATH_TRANS_POS_TOL (max. deviation when rounding with G645)

The value from MD33120 is effective when rounding block transitions with uniform
tangents and non-uniform curvature (e.g. circle/straight line transition) with G645.

● SD42676 $SC_ORI_SMOOTH_TOL

This setting data determines the tolerance when rounding the surface with OST.

● SD42678 $SC_ORISON_TOL

This setting data determines the tolerance when smoothing the orientation with ORISON.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.6 Contour/Orientation tolerance

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 221

Programming the contour/orientation tolerance
The machine and setting data described here take effect when the program is started and
determine the tolerances for all compressor functions, the rounding functions G642, G643,
G645, OST, and the ORISON orientation smoothing.

However, the NC program can overwrite these configured tolerances. The NC programmer
has the following commands at his/her disposal for this purpose:

Command Syntax Meaning
CTOL CTOL=<value> Contour tolerance
OTOL OTOL=<value> Orientation tolerance
ATOL[<axis>] ATOL[<axis>]=<value> Axis-specific tolerance

CTOL and OTOL have priority over ATOL.

Programming does not trigger a preprocessing stop. If possible, it does not interrupt NC
block compression either.

The programmed values are valid until they are reprogrammed or deleted by being written
with a negative value. They are also deleted at the end of a program, in the event of a
channel reset, a mode group reset, an NCK reset (warm restart), and POWER ON (cold
restart). On deletion of these values, the values from the machine and setting data are
restored.

New values can be programmed and become effective in any block.

 Note

The programmed tolerance also acts upon functions which are only implicitly dependent
upon the tolerance. These are currently:
• Limiting the chord error in the setpoint value calculation
• The basic functions of the free-form surface mode

 Note

The following rounding functions are not affected by the programming of CTOL, OTOL, and
ATOL:
• Rounding orientation with OSD

Reason: OSD does not use a tolerance, it uses a distance from the block transition.
• Rounding with G644

Reason: G644 is not used for processing, it is used for optimizing tool changes and other
movements in air.

• Rounding block transitions with uniform tangents and non-uniform curvature with G645
G645 virtually always behaves like G642 and, thus, uses the programmed tolerances.
The tolerance value from machine data MD33120 $MA_PATH_TRANS_POS_TOL is only
used in uniformly tangential block transitions with a jump in curvature, e.g. a tangential
circle/straight line transition. The rounding path at these points may also be located
outside the programmed contour, where many applications are less tolerant.
Furthermore, it generally takes a small, fixed tolerance to compensate for the sort of
changes in curvature which need not concern the NC programmer.

B1: Continuous-path mode, Exact stop, Look Ahead
3.6 Contour/Orientation tolerance

 Basic Functions
222 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Read tolerance values
For more advanced applications or for diagnostics, the currently valid tolerances for the
compressor functions (COMPON, COMPCURV, COMPCAD), the smoothing types G642,
G643, G645, OST, and the orientation smoothing ORISON can be read via system variables
irrespective of how they might have come about.

● For the display in the user interface, in synchronized actions or with a preprocessing stop
in the part program via the system variables:

 $AC_CTOL Contour tolerance effective when the current main run

record was preprocessed.
If no contour tolerance is effective, $AC_CTOL will
return the root from the sum of the squares of the
tolerances of the geometry axes.

 $AC_OTOL Orientation tolerance effective when the current main
run record was preprocessed.
If no orientation tolerance is effective, $AC_OTOL will
return the root from the sum of the squares of the
tolerances of the orientation axes during active
orientation transformation. Otherwise, it will return the
value "-1".

 $AA_ATOL[<axis>] Axis tolerance effective when the current main run
record was preprocessed.
If no contour tolerance is active,
$AA_ATOL[<geometry axis>] returns the contour
tolerance divided by the root of the number of
geometry axes.
If an orientation tolerance and an orientation
transformation are active $AA_ATOL[<orientation
axis>] will return the orientation tolerance divided by
the root of the number of orientation axes.

 Note

If no tolerance values have been programmed, the $A variables will not be differentiated
sufficiently to distinguish potential differences in the tolerances of the individual functions,
since they can only declare one value.

Circumstances like this can occur if the machine data and the setting data set different
tolerances for compressor functions, smoothing and orientation smoothing. The variables
then return the greatest value prevailing with regard to the currently active functions.

If, for example, a compressor function is active with an orientation tolerance of 0.1° and
ORISON orientation smoothing with 1°, the $AC_OTOL variable will return the value "1". If
orientation smoothing is deactivated, only the value "0.1" will remain to be read.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.7 Tolerance and compression of G0 blocks

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 223

● Without preprocessing stop in the part program via system variables:

 $P_CTOL Programmed contour tolerance
 $P_OTOL Programmed orientation tolerance
 $PA_ATOL Programmed axis tolerance

 Note

If no tolerance values have been programmed, the $P variables return the value "-1".

3.7 Tolerance and compression of G0 blocks

Function
The function "Tolerance and compression of G0 blocks" allows rapid traverse motion to be
executed faster.

It consists of the following components:

1. Configuring/programming an independent tolerance factor for G0 motion

Using this factor, the tolerances for G0 motion can be set differently to the workpiece
machining tolerances.

2. Compressing G0 blocks

If this functionality is selected, for active NC block compression, in addition to traversing
blocks with G1 (straight line interpolation), traversing blocks with G0 (rapid traverse) are
compressed.

Effectiveness
1. The G0 tolerance factor is only effective, if:

● One of the following functions is active:

– Compressor functions: COMPON, COMPCURV and COMPCAD

– Smoothing functions: G642 and G645

– Orientation smoothing: OST

– Orientation smoothing: ORISON

– Smoothing for path-relevant orientation: ORIPATH

● Several (≥ 2) consecutive G0 blocks in the part program.

For a single G0 block, the G0 tolerance factor is not effective, as at the transition from a
non G0 motion to a G0 motion (and vice versa), the "lower tolerance" always applies
(workpiece machining tolerance)!

2. The compression of G0 blocks becomes effective:

● For NC block compression (COMPON, COMPCURV or COMPCAD).

B1: Continuous-path mode, Exact stop, Look Ahead
3.7 Tolerance and compression of G0 blocks

 Basic Functions
224 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Configuration
G0 tolerance factor

The G0 tolerance factor is set channel-specific with the machine data:

MD20560 $MC_G0_TOLERANCE_FACTOR (tolerance factor for G0)

The G0 tolerance factor can be both greater or less than 1.0. If the factor equals 1.0 (default
value), then the same tolerances for G0 blocks are effective as for non-G0 blocks. Normally,
the G0 tolerance factor is set to ≥ 1.0.

Compressing G0 blocks

The compression of G0 blocks is set for specific channels using the hundreds position in the
machine data:

MD20482 $MC_COMPRESSOR_MODE (mode of compression)

Value Meaning
0xx Circular blocks and G0 blocks are not compressed.
1xx Circular blocks are compressed. Only COMPCAD.
2xx G0 blocks are compressed.

See also MD20560 $MC_G0_TOLERANCE_FACTOR or NC command STOLF
3xx Circular blocks and G0 blocks are compressed.

A more detailed description of MD20482 can be found in:
References:
Function Manual Special Functions; Multi-Axis Transformations (F2),
Section: Compression of the orientation

Programming
The tolerance factor set using MD20560 $MC_G0_TOLERANCE_FACTOR can be
temporarily overwritten by programming STOLF in the part program:

Syntax: STOLF=<…>

Example:

Program code Comment

COMPCAD G645 G1 F10000 ; Compressor function COMPCAD

X... Y... Z... ; The machine and setting data apply here.

X... Y... Z...

X... Y... Z...

G0 X... Y... Z...

G0 X... Y... Z... ; Machine data $MC_G0_TOLERANCE_FACTOR (e.g. =3), is

effective here, i.e. a smoothing tolerance of

$MC_G0_TOLERANCE_FACTOR*$MA_COMPRESS_POS_TOL.

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.7 Tolerance and compression of G0 blocks

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 225

Program code Comment

CTOL=0.02

STOLF=4

G1 X... Y... Z... ; A contour tolerance of 0.02 mm is applied starting

from here.

X... Y... Z...

X... Y... Z...

G0 X... Y... Z...

X... Y... Z... ; From here, a G0 tolerance factor of 4 applies, i.e. a

contour tolerance of 0.08 mm.

The value in MD20560 is not changed by programming the tolerance factor. After a reset or
end of part program, the value set using MD20560 is effective again.

Reading the tolerance factor
The G0 tolerance factor, effective in the part program or in the actual IPO block, can be read
using system variables.

● For the display in the user interface, in synchronized actions or with a preprocessing stop
in the part program via the system variable:

 $AC_STOLF Active G0 tolerance factor

G0 tolerance factor, which was effective when processing the
actual main run block.

● Without preprocessing stop in the part program via the system variable:

 $P_STOLF Programmed G0 tolerance factor

If no value with STOLF is programmed in the active part program, then these two system
variables supply the value set using MD20560 $MC_G0_TOLERANCE_FACTOR.

If no rapid traverse (G0) is active in a block, then these system variables always supply a
value of 1.

B1: Continuous-path mode, Exact stop, Look Ahead
3.8 RESET behavior

 Basic Functions
226 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3.8 RESET behavior

MD20150
The channel-specific initial state is activated via a RESET for G function groups:

MD20150 $MC_GCODE_RESET_VALUES (initial setting of the G groups)

The following G function groups are of relevance to "continuous-path mode, exact stop,
LookAhead":

● Group 10: Exact stop - continuous-path mode

● Group 12: Block-change criterion for exact stop

● Group 21: Acceleration profile

● Group 30: NC block compression

● Group 59: Dynamic response mode for path interpolation

For detailed information on setting initial states, see Section "K1: Mode group, channel,
program operation, reset response (Page 451)".

3.9 Supplementary conditions

3.9.1 Block change and positioning axes
If path axes are traversed in continuous path mode in a part program, traversing positioning
axes can also simultaneously affect both the response of the path axes and the block
change.

A detailed description of the positioning axes can be found in:
References:
Function Manual, Extended Functions; Positioning axes (P2)

3.9.2 Block change delay
Even if all path axes and special axes traversing in the part program block have satisfied
their specific block transition criteria, the block change can still be delayed due to other
unsatisfied conditions and/or active functions:

Examples:

● Missing auxiliary function acknowledgement by the PLC

● Non-existent following blocks

● Active function "Empty buffer"

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.10 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 227

Effects

If a block change cannot be executed in continuous path mode, all axes programmed in this
part program block (except cross-block traversing special axes) are stopped. In this case,
contour errors do not occur.

The stopping of path axes during machining can cause undercuts on the workpiece surface.

3.10 Data lists

3.10.1 Machine data

3.10.1.1 General machine data

Number Identifier: $MN_ Description
10110 PLC_CYCLE_TIME_AVERAGE Average PLC acknowledgment time
10680 MIN_CONTOUR_SAMPLING_TIME Minimum contour sampling time
10682 CONTOUR_SAMPLING_FACTOR Contour sampling factor
10712 NC_USER_CODE_CONF_NAME_TAB List of reconfigured NC commands
12030 OVR_FACTOR_FEEDRATE Evaluation of the path feed override switch
12100 OVR_FACTOR_LIMIT_BIN Limit for binarycoded override switch
18360 MM_EXT_PROG_BUFFER_SIZE FIFO buffer size for execution from external source

(DRAM)

3.10.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20150 GCODE_RESET_VALUES Initial setting of the groups
20170 COMPRESS_BLOCK_PATH_LIMIT Maximum traversing length of NC block for

compression
20172 COMPRESS_VELO_TOL Maximum permissible deviation from path feed for

compression
20400 LOOKAH_USE_VELO_NEXT_BLOCK LookAhead following block velocity
20430 LOOKAH_NUM_OVR_POINTS Number of override switch points for LookAhead
20440 LOOKAH_OVR_POINTS Override switch points for LookAhead
20443 LOOKAH_FFORM Activating the extended LookAhead
20450 LOOKAH_RELIEVE_BLOCK_CYCLE Relief factor for the block cycle time
20460 LOOKAH_SMOOTH_FACTOR Smoothing factor for LookAhead
20462 LOOKAH_SMOOTH_WITH_FEED Smoothing with programmed feed

B1: Continuous-path mode, Exact stop, Look Ahead
3.10 Data lists

 Basic Functions
228 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Number Identifier: $MC_ Description
20465 ADAPT_PATH_DYNAMIC Adaptation of path dynamic response
20480 SMOOTHING_MODE Rounding behavior with G64x
20482 COMPRESSOR_MODE Compressor mode
20488 SPLINE_MODE Setting for spline interpolation
20490 IGNORE_OVL_FACTOR_FOR_ADIS G641/G642 independent of the overload factor
20550 EXACT_POS_MODE Exact-stop conditions with G0/G1
20560 G0_TOLERANCE_FACTOR G0 tolerance factor
20600 MAX_PATH_JERK Pathrelated maximum jerk
20602 CURV_EFFECT_ON_PATH_ACCEL Influence of path curvature on path dynamic response
20603 CURV_EFFECT_ON_PATH_JERK Influence of path curvature on path jerk
20606 PREPDYN_SMOOTHING_ON Activation of the curvature smoothing
28060 MM_IPO_BUFFER_SIZE Number of NC blocks in IPO buffer (DRAM)
28070 MM_NUM_BLOCKS_IN_PREP Number of NC blocks for block preparation (DRAM)
28520 MM_MAX_AXISPOLY_PER_BLOCK Maximum number of axis polynomials per block
28530 MM_PATH_VELO_SEGMENTS Number of storage elements for limiting path velocity

in block
28533 MM_LOOKAH_FFORM_UNITS Storage for the extended LookAhead
28540 MM_ARCLENGTH_SEGMENTS Number of storage elements for arc length function

representation per block
28610 MM_PREPDYN_BLOCKS Number of blocks for velocity preparation

3.10.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
32310 MAX_ACCEL_OVL_FACTOR Overload factor for axial velocity jumps
32431 MAX_AX_JERK Maximum axial jerk when traversing along the path
32432 PATH_TRANS_JERK_LIM Maximum axial jerk at the block transition in

continuous-path mode
32433 SOFT_ACCEL_FACTOR Scaling of acceleration limitation for SOFT
32434 G00_ACCEL_FACTOR Scaling of acceleration limitation for G00
32435 G00_JERK_FACTOR Scaling of axial jerk limitation for G00
32440 LOOKAH_FREQUENCY Smoothing limit frequency for LookAhead
33100 COMPRESS_POS_TOL Maximum deviation with compensation
33120 PATH_TRANS_POS_TOL Maximum deviation when rounding with G645
35240 ACCEL_TYPE_DRIVE DRIVE acceleration characteristic for axes on/off
36000 STOP_LIMIT_COARSE Exact stop coarse
36010 STOP_LIMIT_FINE Exact stop fine
36012 STOP_LIMIT_FACTOR Exact stop coarse/fine factor and zero speed

monitoring
36020 POSITIONING_TIME Delay time exact stop fine

 B1: Continuous-path mode, Exact stop, Look Ahead
 3.10 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 229

3.10.2 Setting data

3.10.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42465 SMOOTH_CONTUR_TOL Max. contour deviation during rounding
42466 SMOOTH_ORI_TOL Max. deviation of the tool orientation during rounding
42470 CRIT_SPLINE_ANGLE Core limit angle, compressor
42475 COMPRESS_CONTUR_TOL Maximum contour deviation in the compressor

3.10.3 Signals

3.10.3.1 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
All axes stationary DB21,DBX36.3 DB3300.DBX4.3

3.10.3.2 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Position reached with exact stop coarse DB31,DBX60.6 DB390x.DBX0.6
Position reached with exact stop fine DB31, … .DBX60.7 DB390x.DBX0.7

B1: Continuous-path mode, Exact stop, Look Ahead
3.10 Data lists

 Basic Functions
230 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 231

B2: Acceleration 4
4.1 Brief description

4.1.1 General

Scope of functions
The Description of Functions covers the following sub-functions:

● Acceleration

● Jerk

● Kneeshaped acceleration characteristic

Acceleration and jerk

The effective acceleration and jerk can be optimally matched to the machine and machining
situation concerned using axis- and channel-specific programmable maximum values,
programmable acceleration profiles in part programs and synchronized actions, and dynamic
adaptations and limitations.

Kneeshaped acceleration characteristic

The knee-shaped acceleration characteristic means that, in the case of machine axes
featuring a motor (in particular stepper motors) with a torque characteristic that is highly
dependent upon speed, acceleration can be set at the level required to ensure optimum
utilization of the motor whilst at the same time protecting it against overload.

4.1.2 Features

Acceleration
Axis-specific functions:

● Programmable maximum acceleration value

● Acceleration profile that can be selected via part-program instruction:

Acceleration without jerk limitation (BRISKA)

● Setting of maximum value using part-program instruction (ACC)

● Specific maximum value for programmed rapid traverse (G00).

● Specific maximum value for traverse with active jerk limitation

● Excessive acceleration for non-tangential block transitions

B2: Acceleration
4.1 Brief description

 Basic Functions
232 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Channel-specific functions:

● Acceleration profile that can be selected via part-program instruction:

Acceleration without jerk limitation (BRISK)

● Programmable constant travel time for the purpose of avoiding extreme sudden
acceleration

● Programmable acceleration margin for overlaid traversing

● Adjustable acceleration limitation

● Adjustable acceleration for specific real-time events

● Programmable acceleration margin for radial acceleration

Jerk
Axis-specific functions:

● Acceleration profile that can be selected via part-program instruction:

Acceleration with jerk limitation (SOFTA)

● Programmable maximum jerk value for single-axis interpolation

● Programmable maximum jerk value for path interpolation

Channel-specific functions:

● Acceleration profile that can be selected via part-program instruction:

Acceleration with jerk limitation (SOFT)

● Adjustable jerk limitation

● Adjustable path jerk for specific real-time events

● Specific maximum value for programmed rapid traverse (G00)

● Excessive jerk for block transitions without constant curvature

Kneeshaped acceleration characteristic
A knee-shaped acceleration characteristic is parameterized using the following characteristic
data:

● Maximum velocity vmax

● Maximum acceleration amax

● Creep velocity vred

● Creep acceleration ared

● Nature of the acceleration reduction (constant, hyperbolic, linear)

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 233

4.2 Functions

4.2.1 Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-specific)

4.2.1.1 General Information

General Information
In the case of acceleration without jerk limitation (jerk = infinite) the maximum value is
applied for acceleration immediately. As regard to acceleration with jerk limitation, it differs in
the following respects:

● Advantages

Shorter processing times with the same maximum values for velocity and acceleration.

● Disadvantages

Increased load on the machine's mechanical components and risk of inducing high-
frequency and difficult-to-control mechanical vibrations.

Acceleration profile

amax: Maximum acceleration value
vmax: Maximum velocity value
t: Time

Figure 4-1 Velocity and acceleration schematic for stepped acceleration profile

B2: Acceleration
4.2 Functions

 Basic Functions
234 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following features of the acceleration profile can be identified from the figure above:

● Time: t0

Sudden acceleration from 0 to +amax

● Interval: t0 - t1

Constant acceleration with +amax; linear increase in velocity

● Time: t1

Sudden acceleration from 2 * amax with immediate switchover from acceleration to braking

 Note

The sudden acceleration can normally be avoided by specifying a constant velocity time
(see Section "Constant travel time (channel-specific) (Page 237)").

● Interval: t1 - t2

Constant acceleration with -amax; linear decrease in velocity

4.2.1.2 Parameterization

Maximum axial acceleration for path motions
The maximum axial acceleration for path motions can be set for the specific technology for
each machine axis via the following machine data:

MD32300 $MA_MAX_AX_ACCEL[<parameter set index>]

With <parameter set index> = 0, 1, 2 ... (max. parameter set number - 1)

For the technology-specific parameter sets, see Section "Dynamic response mode for path
interpolation (Page 209)".

The path parameters are calculated by the path planning of the preprocessing so that the
parameterized maximum values of the machine axes involved in the path are not exceeded.

 Note

It is possible for the maximum value to be exceeded in connection with specific machining
situations (see Section "Acceleration matching (ACC) (axis-specific) (Page 238)" and "Path
acceleration for real-time events (channel-specific) (Page 241)").

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 235

Maximum axial acceleration for positioning axis motions
With positioning axis motions, one of the two following maximum values is effective
depending on the set positioning axis dynamic response mode:

● MD32300 $MA_MAX_AX_ACCEL [0] (maximum axial acceleration for path motions in the
dynamic response mode DYNNORM)

● MD32300 $MA_MAX_AX_ACCEL [1] (maximum axial acceleration for path motions in the
dynamic response mode DYNPOS)

The positioning axis dynamic response mode is set in the NC-specific machine data:

MD18960 $MN_POS_DYN_MODE = <mode>

<mode> Meaning

0 Effective maximum axial acceleration: MD32300 $MA_MAX_AX_ACCEL[0]
1 Effective maximum axial acceleration: MD32300 $MA_MAX_AX_ACCEL[1]

Maximum axial acceleration for JOG motions
For JOG mode, a JOG-specific maximum acceleration value can be configured for each
machine axis (see Section "Acceleration and jerk for JOG motions (Page 269)").

4.2.1.3 Programming

Path acceleration without jerk limitation (BRISK)

Syntax
BRISK

Functionality
The BRISK part-program instruction is used to select the "without jerk limitation" acceleration
profile for the purpose of path acceleration.

G group: 21

Effective: Modal

Reset response
The channel-specific initial setting is activated via a reset:

MD20150 $MC_GCODE_RESET_VALUES[20]

B2: Acceleration
4.2 Functions

 Basic Functions
236 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Supplementary conditions
If the acceleration profile is changed in a part program during machining (BRISK/SOFT) an
exact stop is performed at the end of the block.

Single-axis acceleration without jerk limitation (BRISKA)

Syntax
BRISKA (axis{,axis})

Function
The BRISKA part-program command is used to select the "without jerk limitation" acceleration
profile for single-axis movements (JOG, JOG/INC, positioning axis, reciprocating axis, etc.).

G group: -

Effectiveness: Modal

Axis:
● Value range: Axis name of the channel axes

Axis-specific initial setting
Acceleration without jerk limitation can be set as the axis-specific initial setting for single-axis
movements:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE = FALSE

Reset behavior
The axis-specific initial setting is activated via a reset:

MD32420 $MA_JOG_AND_POS_ENABLE

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 237

4.2.2 Constant travel time (channel-specific)

4.2.2.1 General Information

Overview
In the case of acceleration without jerk limitation, sudden acceleration of 2 * amax occurs on
switchover between acceleration and braking. In order to avoid this sudden acceleration, a
channel-specific constant travel time can be programmed. The constant travel time defines
the time taken to traverse between the acceleration and braking phases at constant velocity:

MD20500 $MC_CONST_VELO_MIN_TIME (minimum time with constant velocity)

 Note

The constant travel time is ineffective:
• Active function: Look Ahead
• In traversing blocks with a travel time that is less or equal to the interpolation cycle time.

1: Characteristic with constant travel time
2: Characteristic without constant travel time
amax: Maximum acceleration value
vmax: Maximum velocity value
t: Time

Figure 4-2 Schematic for abrupt acceleration

B2: Acceleration
4.2 Functions

 Basic Functions
238 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The effect of the constant travel time can be seen from the figure above:
● Time: t1

End of acceleration phase with sudden acceleration 1 * amax
● Interval: t1 - t2

Acceleration 0; constant velocity using the parameterized constant travel time
● Time: t2

Start of braking phase with sudden acceleration 1 * amax

The times t0, t1' and t2' indicate the characteristic that would have been produced had no
constant travel time been defined.

4.2.2.2 Parameterization
The constant travel time is parameterized for specific channels using machine data:

MD20500 $MC_CONST_VELO_MIN_TIME
(minimum time with constant velocity)

4.2.3 Acceleration matching (ACC) (axis-specific)

4.2.3.1 General Information

Function
A part-program command (ACC) can be used to match the acceleration of specific axes to the
current machining situation. The range used for this purpose is anywhere between greater
than 0% and less than or equal to 200% of the maximum value programmed in the machine
data.

Effectiveness

Effective Acceleration matching is effective for all types of interpolation in AUTOMATIC and

MDA operating modes as well as with dry-run feed.
Ineffective Acceleration matching is ineffective in JOG and JOG/REF (reference point

approach) operating modes.
Acceleration matching is also ineffective if the machine axes have been brought to a
standstill via a quick stop due to the detection of a fault (setpoint = 0).

4.2.3.2 Programming

Syntax
ACC[axis] = adjustment factor

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 239

Functionality
The ACC part-program command is used to adjust the maximum acceleration value of a
machine axis.

Axis:

● Value range: Axis name for the channel's machine axes

Adjustment factor:

● Value range: 0 < adjustment factor ≤ 200

● Unit: Percent

Deactivate: ACC[axis] = 100

Effectiveness: Modal

Reset behavior
The behavior during channel RESET or M30 can be controlled via MD32320
$MA_DYN_LIMIT_RESET_MASK :

Bit 0: 0 The programmed ACC value is reduced to 100% with channel RESET/M30.

Bit 0: 1 The programmed ACC value is retained beyond channel RESET/M30.

4.2.4 Acceleration margin (channel-specific)

4.2.4.1 General Information

General information
Under normal circumstances, preprocessing makes maximum use of the parameterized
maximum values of the machine axes for the purpose of path acceleration. In order that an
acceleration margin may be set aside for overlaid movements, e.g., within the context of the
"Rapid lift away from the contour" function, path acceleration can be reduced by a
programmable factor. When, for example, a factor of 0.2 is applied, preprocessing will only
use 80% of the maximum possible path acceleration. 20% is set aside as an acceleration
margin for overlaid movements.

4.2.4.2 Parameterization
Parameters for the acceleration margin are assigned for each channel by means of machine
datum:
MD20610 $MC_ADD_MOVE_ACCEL_RESERVE
(acceleration margin for overlaid motions)

B2: Acceleration
4.2 Functions

 Basic Functions
240 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4.2.5 Path-acceleration limitation (channel-specific)

4.2.5.1 General Information

General Information
To enable a flexible response to the machining situations concerned, setting data can be
used to limit the path acceleration calculated during preprocessing for specific channels:

SD42500 $SC_SD_MAX_PATH_ACCEL (maximum path acceleration)

The value specified in the setting data is only taken into account if it is smaller than the path
acceleration calculated during preprocessing.

The limitation must be activated for specific channels using setting data:

SD42502 $SC_IS_SD_MAX_PATH_ACCEL = TRUE

4.2.5.2 Parameterization
Parameterization is carried out for specific channels using setting data:

SD42500 $SC_SD_MAX_PATH_ACCEL (maximum path acceleration)

SD42502 $SC_IS_SD_MAX_PATH_ACCEL (activation of path-acceleration limitation)

4.2.5.3 Programming

Limit value

Syntax
$SC_SD_MAX_PATH_ACCEL = limit value

Functionality
The path-acceleration limitation can be adjusted for the situation by programming the setting
data.

Limit value:
● Value range: ≥ 0
● Unit: m/s2

Application:
● Part program
● Static synchronized action

Switch ON/OFF

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 241

Syntax
$SC_IS_SD_MAX_PATH_ACCEL = value

Functionality
The path-acceleration limitation can be activated/deactivated by programming the setting
data.

Parameter: Value
● Value range: TRUE, FALSE

Application:
● Part program
● Static synchronized action

4.2.6 Path acceleration for real-time events (channel-specific)

4.2.6.1 General Information

General Information
So that no compromise has to be made between machining-optimized acceleration on the
one hand and time-optimized acceleration in connection with the following real-time events
on the other:
● NC Stop / NC Start
● Changing the feedrate override
● Changing the velocity default for "safely reduced velocity" within the context of the "Safety

Integrated" function

For the real-time events mentioned above, the path acceleration can be specified using a
channel-specific system variable:

$AC_PATHACC = path acceleration

Real-time event acceleration will only be active for the duration of the change in velocity in
respect of one of the real-time events specified above.

Limitation
If the specified path acceleration exceeds the capabilities of the machine axes that are of
relevance for the path, a limit will be imposed on the path acceleration within the controller
so that the resulting axial acceleration (ares) is restricted to less than 2x the parameterized
maximum axial value (amax).

ares = 2 * amax, with amax = MD32300 $MA_MAX_AX_ACCEL

 Note

Path acceleration for real-time events is enabled, irrespective of the radial acceleration.

B2: Acceleration
4.2 Functions

 Basic Functions
242 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Effectiveness

Effective Real-time event acceleration is only enabled in AUTOMATIC and MDA operating

modes in conjunction with the following real-time events:
• NC Stop / NC Start
• Override changes
• Changing the velocity default for "safely reduced velocity" within the context of the

"Safety Integrated" function

Not effective Path acceleration for real-time events is ineffective for changes in path velocity that
are attributable to path planning during preprocessing for the channel, such as
contour curvatures, corners, kinematic transformation limitations, etc.
Real-time-event path acceleration is ineffective if the programmed value is smaller
than the path acceleration calculated during preprocessing for the path section
concerned.

Programming
For information about programming system variables in the part program or synchronized
actions, see Section "Programming (Page 242)".

4.2.6.2 Programming

Syntax
$AC_PATHACC = path acceleration

Functionality
Real-time-event path acceleration is set via the channel-specific system variables.

Parameter: Path acceleration

● Value range: Path acceleration ≥ 0

● Unit: m/s2

Deactivation: $AC_PATHACC = 0

Application:

● Part program

● Static synchronized action

Reset response
Real-time-event path acceleration is deactivated on reset.

Supplementary conditions
Programming $AC_PATHACC in the part program automatically triggers a preprocessing stop
with REORG (STOPRE).

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 243

4.2.7 Acceleration with programmed rapid traverse (G00) (axis-specific)

4.2.7.1 General Information
Frequently, the acceleration for the machine axes involved in the machining process must be
set lower than the machine's performance capability officially allows because of the
supplementary conditions associated with the specific process concerned.

For time-optimized traversing of the machine axes with programmed rapid traverse (part-
program instruction G00), a specific maximum value can be programmed for the axis-specific
acceleration.

JOG setup mode
This function does not affect acceleration in respect of a rapid traverse override in JOG
setup mode.

4.2.7.2 Parameterization
The maximum value for axis-specific acceleration with programmed rapid traverse is
parameterized (G00) using the axis-specific machine data:

MD32434 $MA_G00_ACCEL_FACTOR
(scaling of the acceleration limitation with G00)

This is used to generate the maximum value for axis-specific acceleration with programmed
rapid traverse (G00) that is taken into account by the path planning component during
preprocessing:

Acceleration[axis] =
MD32300 $MA_MAX_AX_ACCEL * MD32434 $MA_G00_ACCEL_FACTOR

4.2.8 Acceleration with active jerk limitation (SOFT/SOFTA) (axis-specific)

4.2.8.1 General Information

Function
Compared with acceleration without jerk limitation, acceleration with jerk limitation results in
a certain degree of time loss, even when the same maximum acceleration value is used. To
compensate for this time loss, a specific maximum value can be programmed for the axis-
specific acceleration as far as traversing of the machine axes with active jerk limitation
(SOFT/SOFTA) is concerned.

B2: Acceleration
4.2 Functions

 Basic Functions
244 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The maximum value for acceleration with active jerk limitation is parameterized using a
factor calculated in relation to the axis-specific maximum value. This is used to generate the
maximum value for axis-specific acceleration with active jerk limitation that is taken into
account by the path planning component during preprocessing:

Acceleration[axis] =
MD32300 $MA_MAX_AX_ACCEL * MD32433 $MA_SOFT_ACCEL_FACTOR

4.2.8.2 Parameterization
The maximum value for acceleration with active jerk limitation (SOFT/SOFTA) is parameterized
using the axis-specific machine data:

MD32434 $MA_SOFT_ACCEL_FACTOR
(scaling of the acceleration limitation with SOFT)

4.2.9 Excessive acceleration for non-tangential block transitions (axis-specific)

4.2.9.1 General Information

Function
In the case of non-tangential block transitions (corners), the programmable controller may
have to decelerate the geometry axes significantly in order to ensure compliance with the
parameterized axis dynamics. For the purpose of reducing/avoiding deceleration in
connection with non-tangential block transitions, a higher level of axis-specific acceleration
can be enabled.

Excessive acceleration is parameterized using a factor calculated in relation to the axis-
specific maximum value. This is used to generate the maximum value for axis-specific
acceleration with non-tangential block transitions that is taken into account by the path
planning component during preprocessing:

Acceleration[axis] =
MD32300 $MA_MAX_AX_ACCEL * MD32310 $MA_MAX_ACCEL_OVL_FACTOR

4.2.9.2 Parameterization
Excessive acceleration for non-tangential block transitions is parameterized using the axis-
specific machine data:
MD32310 $MA_MAX_ACCEL_OVL_FACTOR
(overload factor for velocity jumps)

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 245

4.2.10 Acceleration margin for radial acceleration (channel-specific)

4.2.10.1 General Information

Overview
In addition to the path acceleration (tangential acceleration), radial acceleration also has an
effect on curved contours. If this is not taken into account during parameterization of the path
parameters, the effective axial acceleration during acceleration and deceleration on the
curved contour can, for a short time, reach 2x the maximum value.

Effective axial acceleration =
Path acceleration + radial acceleration =
2 * (MD32300 $MA_MAX_AX_ACCEL)

Figure 4-3 Radial and path acceleration on curved contours

The channel-specific machine data:
MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL
(influence of path curvature on dynamic path response)
can be used to set the proportion of the axis-specific acceleration that is to be taken into
account for radial acceleration.

When, for example, a value of 0.75 is applied, 75% of the axis-specific acceleration will be
made available for radial acceleration and 25% for path acceleration.

The corresponding maximum values are generally calculated as follows:

Radial acceleration =
MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL * MD32300 $MA_MAX_AX_ACCEL

Path acceleration =
(1 - MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL) * MD32300
$MA_MAX_AX_ACCEL

B2: Acceleration
4.2 Functions

 Basic Functions
246 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
The following machine parameters apply:

● MD32300 $MA_MAX_AX_ACCEL for all geometry axes: 3 m/s

● Maximum path velocity with a path radius of 10 mm due to mechanical constraints of the
machine: 5 m/min.

The radial acceleration is calculated as follows:

The acceleration margin is set as follows:

Linear motions
The acceleration margin referred to above is ineffective in the case of linear motions (linear
interpolation) without active kinematic transformation.

4.2.10.2 Parameterization
The proportion of maximum available axis acceleration to be taken into account as an
acceleration margin for radial acceleration on curved contours is parameterized using the
channel-specific machine data:

MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL
(influence of path curvature on dynamic path response)

4.2.11 Jerk limitation with path interpolation (SOFT) (channel-specific)

4.2.11.1 General Information

Overview
As far as the functionality described in the rest of this document is concerned, constant
acceleration, i.e., acceleration with jerk limitation (jerk = infinite value), is the assumed
acceleration profile. In the case of acceleration with jerk limitation, linear interpolation is
applied in respect of acceleration from 0 to the maximum value.

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 247

Advantages
Minimal load on the machine's mechanical components and low risk of high-frequency and
difficult-to-control mechanical vibrations thanks to constant excessive acceleration.

Disadvantages
Longer machining times compared with stepped acceleration profile when the same
maximum velocity and acceleration values are used.

Acceleration profile

rmax: Maximum jerk value
amax: Maximum acceleration value
vmax: Maximum velocity value
t: Time

Figure 4-4 Jerk, acceleration and velocity schematic with jerk limitation acceleration profile

The following features of the acceleration profile can be identified from the figure above:

● Interval: t0 - t1

Constant jerk with +rmax; linear increase in acceleration; quadratic increase in velocity

● Interval: t1 - t2

Constant acceleration with +amax; linear increase in velocity

B2: Acceleration
4.2 Functions

 Basic Functions
248 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Interval: t2 - t3

Constant jerk with -rmax; linear decrease in acceleration; quadratic decrease in excessive
velocity until maximum value +vmax is reached

● Interval: t3 - t4

Constant jerk with +rmax; linear increase in braking acceleration; quadratic decrease in
velocity

● Interval: t4 - t5

Constant braking acceleration with -amax; linear decrease in velocity

● Interval: t5 - t6

Constant jerk with -rmax; linear decrease in braking acceleration; quadratic decrease in
velocity reduction until zero velocity is reached v = 0

4.2.11.2 Parameterization

Maximum jerk value for path motions (axis-specific)
The maximum axial jerk for path motions can be set for the specific technology for each
machine axis via the following machine data:

MD32431 $MA_MAX_AX_JERK[<parameter set index>]

With <parameter set index> = 0, 1, 2 ... (max. parameter set number - 1)

For the technology-specific parameter sets, see Section "Dynamic response mode for path
interpolation (Page 209)".

The path parameters are calculated by the path planning of the preprocessing so that the
parameterized maximum values of the machine axes involved in the path are not exceeded.

 Note

It is possible for the maximum value to be exceeded in connection with specific machining
situations (see Section "Path jerk for real-time events (channel-specific) (Page 252)").

Maximum jerk value for path motions (channel-specific)
In addition to the axis-specific setting, the maximum jerk value can also be specified as
channel-specific path parameter via the following machine data:

MD20600 $MC_MAX_PATH_JERK (path-related maximum jerk)

In order to exclude the mutual influencing of axis and channel-specific maximum jerk values,
the channel-specific maximum value must be set to a value greater than the axial maximum
values.

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 249

4.2.11.3 Programming

Syntax
SOFT

Functionality
The SOFT part-program instruction is used to select the acceleration profile with jerk
limitation for the traversing operations of geometry axes in the channel.

G group: 21

Effective: Modal

Reset response
The channel-specific initial setting is activated via a reset:

MD20150 $MC_GCODE_RESET_VALUES[20]

Boundary conditions
If the acceleration mode is changed in a part program during machining (BRISK ↔ SOFT), a
block change is performed at the point of transition with an exact stop at the end of the block,
even in continuous-path mode.

4.2.12 Jerk limitation with single-axis interpolation (SOFTA) (axis-specific)

4.2.12.1 Parameterization

Initial setting for axial jerk limitation
Acceleration with jerk limitation can be set as the axial initial setting:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE== TRUE

Maximum axial jerk for positioning axis motions
When traversing positioning axes with active jerk limitation, the value from one of the
following machine data takes effect as maximum axial jerk:

● MD32430 $MA_JOG_AND_POS_MAX_JERK (maximum axial jerk for positioning axis
motions)

● MD32431 $MA_MAX_AX_JERK [0] (maximum axial jerk for path motions in the dynamic
response mode DYNNORM)

● MD32431 $MA_MAX_AX_JERK [1] (maximum axial jerk for path motions in the dynamic
response mode DYNPOS)

B2: Acceleration
4.2 Functions

 Basic Functions
250 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The machine data to be used is determined by the set positioning axis dynamic response
mode:

MD18960 $MN_POS_DYN_MODE = <mode>

<mode> Meaning

 The following is effective as maximum axial jerk for positioning axis motions:
0 MD32430 $MA_JOG_AND_POS_MAX_JERK

With active G75 (fixed-point approach): MD32431 $MA_MAX_AX_JERK[0]
1 MD32431 $MA_MAX_AX_JERK[1]

Maximum axial jerk for JOG motions
For JOG mode, a JOG-specific maximum jerk value can be configured for each machine
axis (see Section "Acceleration and jerk for JOG motions (Page 269)").

4.2.12.2 Programming

Syntax
SOFTA (Axis {Axis})

Functionality
The SOFTA part-program command is used to select acceleration with jerk limitation for single-
axis movements (positioning axis, reciprocating axis, etc.)

G group: -

Effectiveness: Modal

Axis:

● Value range: Axis name of the channel axes

Axis-specific initial setting
Acceleration with jerk limitation can be set as the axis-specific initial setting for single-axis
movements:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE = TRUE

Reset behavior
The axis-specific initial setting is activated via a reset:

MD32420 $MA_JOG_AND_POS_ENABLE

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 251

4.2.13 Path-jerk limitation (channel-specific)

4.2.13.1 General Information

Overview
To enable a flexible response to the machining situations concerned, setting data can be
used to limit the path jerk calculated during preprocessing for specific channels:

SD42510 $SC_SD_MAX_PATH_JERK (maximum path jerk)

The value specified in the setting data is only taken into account in the channel if it is smaller
than the path jerk calculated during preprocessing.

The limitation must be activated for specific channels using setting data:

SD42512 $SC_IS_SD_MAX_PATH_JERK = TRUE

4.2.13.2 Parameterization
Parameterization is carried out for specific channels using setting data:

SD42510 $SC_SD_MAX_PATH_JERK (maximum path jerk)

SD42512 $SC_IS_SD_MAX_PATH_JERK
(activation of path-jerk limitation)

4.2.13.3 Programming

Maximum path jerk

Syntax
$SC_SD_MAX_PATH_JERK = jerk value

Functionality
The path-jerk limitation can be adjusted for the situation by programming the setting data.

Jerk value:

● Value range: ≥ 0

● Unit: m/s3

Application:

● Part program

● Static synchronized action

B2: Acceleration
4.2 Functions

 Basic Functions
252 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Switch ON/OFF

Syntax
$SC_IS_SD_MAX_PATH_JERK = value

Functionality
The path-jerk limitation can be activated/deactivated by programming the setting data.

Parameter: Value

● Value range: TRUE, FALSE

Application:

● Part program

● Static synchronized action

4.2.14 Path jerk for real-time events (channel-specific)

4.2.14.1 General Information

Overview
So that no compromise has to be made between machining-optimized jerk on the one hand
and time-optimized jerk in connection with the following real-time events on the other:

● NC Stop / NC Start

● Changing the feedrate override

● Changing the velocity default for "safely reduced velocity" within the context of the "Safety
Integrated" function

for the real-time events mentioned, the path jerk can be specified using a channel-specific
system variable:

$AC_PATHJERK = path jerk

Path jerk for real-time events will only be active for the duration of the change in velocity in
respect of one of the real-time events specified above.

Limitation
As the jerk is not a physical variable of any relevance to the drive, no limit is imposed on the
jerk set.

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 253

Effectiveness

Effective Path jerk for real-time events is only enabled in AUTOMATIC and MDA operating

modes in conjunction with the following real-time events:
• NC Stop / NC Start
• Override changes
• Changing the velocity default for "safely reduced velocity" within the context of

the "Safety Integrated" function

Not effective Path jerk for real-time events is ineffective for changes in the path velocity that are
attributable to path planning during preprocessing for the channel, such as contour
curvatures, corners, kinematic transformation limitations, etc.
Path jerk for real-time events is ineffective if the programmed value is smaller than
the path jerk calculated during preprocessing for the path section concerned.

Programming
For the purpose of setting the jerk for real-time events in accordance with the acceleration,
the system variables can be set as follows:

$AC_PATHJERK = $AC_PATHACC/smoothing time

● $AC_PATHACC: Path acceleration [m/s2]

Smoothing time: Freely selectable, e.g. 0.02 s

For information about programming system variables in the part program or synchronized
actions, see Section "Programming (Page 253)".

4.2.14.2 Programming

Syntax
$AC_PATHJERK = path jerk

Functionality
The path jerk for real-time events is set via the channel-specific system variables.

Jerk value:

● Value range: Path jerk ≥ 0

● Unit: m/s3

Application:

● Part program

● Static synchronized action

B2: Acceleration
4.2 Functions

 Basic Functions
254 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Reset behavior
The function is deactivated on reset.

Boundary conditions
Programming $AC_PATHJERK in the part program automatically triggers a preprocessing
stop with REORG (STOPRE).

4.2.15 Jerk with programmed rapid traverse (G00) (axis-specific)

4.2.15.1 General Information

Overview
Frequently, the maximum jerk for the machine axes involved in the machining process must
be set lower than the machine's performance capability officially allows because of the
supplementary conditions associated with the specific process concerned.

For time-optimized traversing of the machine axes with programmed rapid traverse (part-
program instruction G00), a specific maximum value can be programmed for the axis-
specific jerk.

JOG setup mode
This function does not affect jerk in respect of a rapid traverse override in JOG setup mode.

4.2.15.2 Parameterization
The maximum value for axis-specific jerk with programmed rapid traverse is parameterized
(G00) using the axis-specific machine data:

MD32434 $MA_G00_ACCEL_FACTOR
(scaling of the acceleration limitation with G00)

This is used to generate the maximum value for axis-specific jerk with programmed rapid
traverse (G00) that is taken into account by the path planning component during
preprocessing:

Jerk[axis] =
MD32431 $MA_MAX_AX_JERK * MD32435 $MA_G00_JERK_FACTOR

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 255

4.2.16 Excessive jerk for block transitions without constant curvature (axis-specific)

4.2.16.1 General Information

Overview
In the case of block transitions without constant curvature (e.g. straight line > circle), the
programmable controller has to decelerate movement of the geometry axes significantly in
order to ensure compliance with the parameterized axis dynamics. For the purpose of
reducing/avoiding deceleration in connection with block transitions without constant
curvature, a higher level of axis-specific jerk can be enabled.

The excessive jerk is parameterized using a dedicated axis-specific maximum value.

4.2.16.2 Parameterization
The excessive jerk for block transitions without constant curvature is parameterized using
the axis-specific machine data:

MD32432 $MA_PATH_TRANS_JERK_LIM
(excessive jerk for block transitions without constant curvature)

4.2.17 Velocity-dependent jerk adaptation (axis-specific)

Function
The dynamic path response results from the parameterized, constant axial maximum values
for velocity, acceleration and jerk of the axes involved in the path:

● MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

● MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)

● MD32431 $MA_MAX_AX_JERK (max. axial jerk for path motion)

For contours with non-constant curvature (torsion), as for example in connection with free-
form surfaces, fluctuations in the path velocity, particularly in the upper velocity range, can
result mainly due to the axial jerk. The fluctuations of the path velocity lead to adverse
affects in the surface quality.

The influence of the axial jerk on the path velocity is decreased for contours with non-
constant curvature through a velocity-dependent increase of the permissible axial jerk.
Fluctuations in the path velocity can be avoided with the appropriate parameterization.

The velocity-dependent increase of the permissible axial jerk has no effect on the maximum
possible path acceleration and path jerk. These result from the constant axial maximum
values parameterized in the in the machine data even when jerk adaptation is active.

As both curvature and torsion are zero in the case of linear motion, the velocity-dependent
jerk adaptation has no effect with linear motions.

B2: Acceleration
4.2 Functions

 Basic Functions
256 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Availability

The "velocity-dependent jerk adaptation" function is available independent of the function
"Free-form surface mode: Basic functions (Page 211)".

Parameterization
The "Velocity-dependent jerk adaptation" function is parameterized with the following
machine data:

● MD32437 $MA_AX_JERK_VEL0[<n>] = <threshold valuelower>

Lower velocity threshold of the jerk adaptation. Velocity-dependent jerk adaptation takes
effective as of this velocity.

The lower velocity threshold can be set separately via index n for each dynamic response
mode (see Section "Dynamic response mode for path interpolation (Page 209)"):

● MD32438 $MA_AX_JERK_VEL1[<n>] = <threshold valueupper>

Upper velocity threshold of the jerk adaptation. The velocity-dependent jerk reaches its
maximum value jmax parameterized with MD32439 $MA_MAX_AX_JERK_FACTOR at this
velocity.

The upper velocity threshold can be set separately via index n for each dynamic
response mode (see Section "Dynamic response mode for path interpolation
(Page 209)"):

● MD32439 $MA_MAX_AX_JERK_FACTOR = <factor>

Factor for the parameterization of the maximum velocity-dependent jerk jmax on reaching
the upper velocity threshold MD32438 $MA_AX_JERK_VEL1[<n>]:

jmax = (MD32431 $MA_MAX_AX_JERK) * (MD32439 $MA_MAX_AX_JERK_FACTOR)

The velocity-dependent jerk adaptation is active at a value > 1.0.

The velocity-dependent jerk adaptation is inactive at a value = 1.0.

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 257

v0: MD32437 $MA_AX_JERK_VEL0
v1: MD32438 $MA_AX_JERK_VEL1
j0: MD32431 $MA_MAX_AX_JERK
j1: MD32439 $MA_MAX_AX_JERK_FACTOR * MD32431 $MA_MAX_AX_JERK

Figure 4-5 Axial jerk as a function of the axis velocity

 Note

The velocity-dependent jerk adaptation is only active, if:

MD32439 $MA_MAX_AX_JERK_FACTOR > 1.0

Example
Example of parameter assignment:

● MD32437 $MA_AX_JERK_VEL0 = 3000 mm/min

● MD32438 $MA_AX_JERK_VEL1 = 6000 mm/min

● MD32439 $MA_MAX_AX_JERK_FACTOR[AX1] = 2.0

● MD32439 $MA_MAX_AX_JERK_FACTOR[AX2] = 3.0

● MD32439 $MA_MAX_AX_JERK_FACTOR[AX3] = 1.0

Effect

● The velocity-dependent jerk adaptation becomes active for the 1st and 2nd axis, while the
function for the 3rd axis is not active.

● The parameterized jerk is effective at axis velocities in the range of 0 to 3000 mm/min.

● The maximum jerk is linearly increased for axis velocities in the range 3000 mm/min to
6000 mm/min.

● The maximum permitted jerk of the 1st axis is, for axis velocities greater than
6000 mm/min, increased by a factor of 2 - for the 2nd axis, by factor of 3.

● The parameterized values apply in each dynamic response mode.

B2: Acceleration
4.2 Functions

 Basic Functions
258 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4.2.18 Jerk filter (axis-specific)

4.2.18.1 General Information

Overview
In certain application scenarios, e.g. when milling free-form surfaces, it may be beneficial to
smooth the position setpoint characteristics of the machine axes. This enables surface
quality to be improved by reducing the mechanical vibrations generated in the machine.

For the purpose of smoothing the position setpoint characteristic of a machine axis, a jerk
filter can be activated at position controller level, independently of the channel- and axis-
specific jerk limitations taken into account at interpolator level.

The effect of the jerk filter must be as strong as possible without having an unacceptable
impact on contour accuracy. The filter should also have as "balanced" a smoothing effect as
possible, i.e. if the same contour is traversed forwards and backwards, the contour
smoothed by the filter should be as similar as possible in both directions.

To enable the jerk filter to be optimally matched to the machine conditions, various filter
modes are available:

● 2nd-order filter (PT2)

● Sliding mean value generation

● Bandstop filter

Mode: 2nd-order filter
Owing to the fact that it is a simple low-pass filter, "2nd-order filter" mode can only meet the
requirements specified above where relatively small filter time constants (around 10 ms) are
concerned. When used in conjunction with larger time constants, impermissible contour
deviations are soon manifest. The effect of the filter is relatively limited.

This filter mode offers advantages if very large filter time constants are needed and contour
accuracy is only of secondary importance (e.g. positioning axes).

For historical reasons, this filter mode is set as the default.

Mode: Sliding mean value generation
Where minimal contour deviations are required, filter time constants within the range of 20-
40 ms can be set using the "sliding mean value generation" filter mode. The smoothing effect
is largely symmetrical.

The display of the calculated servo gain factor (KV factor) in the user interface, shows
smaller values than would normally be expected for the filter. The contour accuracy is in fact
higher than the displayed KV filter appears to suggest.

When changing from "2nd-order filter" to "sliding mean value generation" filter mode, the
displayed KV factor may, therefore, drop (with identical filter time constant), even though
there is an improvement in contour accuracy.

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 259

Mode: Bandstop filter
The bandstop filter is a 2nd-order filter in terms of numerator and denominator:

where:
fZ: Numerator natural freq.
fN: Denominator natural freq.
DZ: Numerator damping
DN: Denominator damping

Since a vibration-capable filter setting is not expected to yield useful results in any case, as
with the jerk filter's "2nd-order filter" (PT2) low-pass filter (PT2) mode there is no setting
option for the denominator damping DN. The denominator damping DN is permanently set to
1.

The bandstop filter can be parameterized in two different ways:

● Real bandstop filter

● Bandstop filter with additional amplitude response increase/decrease at high frequencies

Real bandstop filter

The real bandstop filter is applied when identical numerator and denominator natural
frequencies are selected:

fZ = fN = fblock (blocking frequency)

If numerator damping setting = 0 is selected, the blocking frequency is equivalent to
complete attenuation. In this case the 3 dB bandwidth is calculated as follows:

f3 dB bandwidth = 2 * fblock

If instead of complete attenuation, a reduction by a factor of k is all that is required, then
numerator damping should be selected in accordance with k. In this case the above formula
for calculating the 3 dB bandwidth no longer applies.

Bandstop filter with additional amplitude response increase/decrease at high frequencies

In this case, the numerator and denominator natural frequencies are set to different values.
The numerator natural frequency determines the blocking frequency.

By selecting a lower/higher denominator natural frequency than the numerator natural
frequency, you can increase/decrease the amplitude response at high frequencies. An
amplitude response increase at high frequencies can be justified in most cases, as the
controlled system generally possesses a lowpass characteristic itself, i.e. the amplitude
response drops at high frequencies anyway.

B2: Acceleration
4.2 Functions

 Basic Functions
260 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Supplementary conditions

If too high a numerator natural frequency is selected, the filter is disabled. In this case the
limiting frequency fZmax depends on the position-control cycle:

4.2.18.2 Parameterization

Activation
The jerk filter is activated using the machine data:

MD32400 $MA_AX_JERK_ENABLE (axial jerk limitation)

The jerk filter is active in all operating modes and with all types of interpolation.

Filter mode
The filter mode is selected via the machine data:

MD32402 $MA_AX_JERK_MODE

Value Filter mode
1 2nd-order filter
2 Sliding mean value generation
3 Bandstop filter

Time constant
The time constant for the axial jerk filter is set with the machine data:

MD32410 $MA_AX_JERK_TIME

The jerk filter is only effective when the time constant is greater than a position-control cycle.

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 261

4.2.19 Kneeshaped acceleration characteristic curve

4.2.19.1 Adaptation to the motor characteristic curve

Function
Various types of motor, particularly stepper motors, have a torque characteristic that is highly
dependent upon speed and shows a steep decrease in torque in the upper speed range. To
ensure optimum utilization of the motor characteristic curve, it is necessary to reduce the
acceleration once a certain speed is reached.

1: Torque decrease zone
nred: Speed above which reduced torque has to be assumed
nmax: Maximum speed
Mmax: Max. torque
Mred: Torque at nmax (corresponds to creep acceleration)

Figure 4-6 Torque characteristic curve of a motor with torque characteristic that is highly dependent
upon speed

Simulation of torque characteristic
For the purpose of simulating the torque characteristic of the motor characteristic curve, the
machine data:
MD35242 $MA_ACCEL_REDUCTION_TYPE = characteristic
 can be used to select various types of characteristic curve:

0 = Constant characteristic
1 = Hyperbolic characteristic
2 = Linear characteristic

B2: Acceleration
4.2 Functions

 Basic Functions
262 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following figures show typical velocity and acceleration characteristic curves for the
respective types of characteristic:

Constant characteristic

Figure 4-7 Acceleration and velocity characteristic with acceleration reduction: 0 = constant

Hyperbolic characteristic

Figure 4-8 Acceleration and velocity characteristic with acceleration reduction: 1 = hyperbolic

Linear characteristic

Figure 4-9 Acceleration and velocity characteristic with acceleration reduction: 2 = linear

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 263

The key data for the characteristic curves equate to:

vmax = $MA_MAX_AX_VELO
vred = $MA_ACCEL_REDUCTION_SPEED_POINT * $MA_MAX_AX_VELO
amax = $MA_MAX_AX_ACCEL
ared = (1 - $MA_ACCEL_REDUCTION_FACTOR) * $MA_MAX_AX_ACCEL

4.2.19.2 Effects on path acceleration

Function
The path acceleration characteristic curve is generated on the basis of the types of
characteristic for the axes that are of relevance for the path. If axes with different types of
characteristic curve are interpolated together, the acceleration profile for the path
acceleration will be determined on the basis of the reduction type that is most restrictive.

The following order of priorities applies, whereby 1 = top priority:

1. Acceleration reduction: 0 = constant characteristic

2. Acceleration reduction: 1 = hyperbolic characteristic

3. Acceleration reduction: 2 = linear characteristic

4. No acceleration reduction effective

A situation, whereby no acceleration reduction is active, arises for example when:

MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT = 1

and/or

MD35230 $MA_ACCEL_REDUCTION_FACTOR = 0

 Note

Machine axes featuring stepper motor and DC drive can be interpolated together.

B2: Acceleration
4.2 Functions

 Basic Functions
264 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4.2.19.3 Substitute characteristic curve

Function
If the programmed path cannot be traversed using the parameterized acceleration
characteristic curve (e.g., active kinematic transformation), a substitute characteristic curve
is generated by reducing the dynamic limit values. The dynamic limit values are calculated to
ensure that the substitute characteristic curve provides the best possible compromise
between maximum velocity and constant acceleration.

Substitute characteristic curve with linear path sections
Limitation to this value is applied if the programmed path velocity is greater than that at
which 15 % of the maximum acceleration capacity is still available (v15%a). Consequently, 15
% of the maximum acceleration capacity/motor torque always remains available, whatever
the machining situation.

aers: Substitute characteristic curve constant acceleration
a15%: Minimal constant acceleration

a15% = 0.15 * (amax - ared) + ared
vers: Substitute characteristic curve velocity
vprog: Programmed velocity
v15%a: Velocity at a15%

Figure 4-10 Substitute path characteristic curve: Linear path

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 265

Substitute characteristic curve with curved path sections
In the case of curved path sections, normal and tangential acceleration are considered
together. The path velocity is reduced so that only up to 25 % of the speed-dependent
acceleration capacity of the axes is required for normal acceleration. The remaining 75 % of
the acceleration capacity is set aside for the tangential acceleration, i.e.,
deceleration/acceleration on the path.

aN: Normal acceleration
aers: Substitute characteristic curve constant acceleration
vers: Substitute characteristic curve velocity
r: Path radius

Figure 4-11 Substitute path characteristic curve: Curved path

Block transitions with continuous-path mode
If continuous-path mode is active, non-tangential block transitions result in axial velocity
jumps when the programmed path velocity is used for traversing.

As a result, the path velocity is controlled in such a way that prevents any axial velocity
proportion from exceeding the creep velocity vred at the time of the block transition.

Deceleration ramp with continuous-path mode and LookAhead
In the case of consecutive part program blocks with short paths, an acceleration or
deceleration operation may be spread over several part program blocks.

In such a situation LookAhead also takes into account the parameterized speed-dependent
acceleration characteristic.

B2: Acceleration
4.2 Functions

 Basic Functions
266 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

1: Brake application point
2: Torque decrease zone
3: Maximum torque zone
vred: Creep velocity
vmax: Maximum velocity
Nxy: Part program block with block number Nxy

Figure 4-12 Deceleration with LookAhead

4.2.19.4 Parameterization
The knee-shaped acceleration characteristics can be activated specific to the machine axis
via the machine data:

MD35240 $MA_ACCEL_TYPE_DRIVE = TRUE

The knee-shaped acceleration characteristic curve is parameterized for specific axes using
machine data:

MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT
(speed for reduced acceleration)

MD35230 $MA_ACCEL_REDUCTION_FACTOR (reduced acceleration)

MD32300 $MA_MAX_AX_ACCEL (Maximum axis acceleration)

MD35242 $MA_ACCEL_REDUCTION_TYPE
(type of acceleration reduction: 0 = constant, 1 = hyperbolic, 2 = linear)

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 267

4.2.19.5 Programming

Channel-specific activation (DRIVE)

Syntax
DRIVE

Functionality
The knee-shaped characteristic curve is activated for path acceleration using the DRIVE
part-program instruction.

G group: 21

Effective: Modal

Reset response
The channel-specific default setting is activated via a reset:

MD20150 $MC_GCODE_RESET_VALUES[20]

Dependencies
If the knee-shaped acceleration characteristic curve is parameterized for a machine axis,
then this becomes the default acceleration profile for all traversing operations.

If the effective acceleration profile is changed for a specific path section using the SOFT or
BRISK part-program instructions, then an appropriate substitute characteristic curve with
lower dynamic limit values is used in place of the knee-shaped acceleration characteristic
curve.

The knee-shaped acceleration characteristic curve can be reactivated by reprogramming
DRIVE.

Axis-specific activation (DRIVEA)

Syntax
DRIVEA (Axis {Axis})

Functionality
The knee-shaped characteristic curve is activated for all single-axis interpolations
(positioning axis, reciprocating axis, etc.) for specific axes using the part-program command.

G group: -

Effectiveness: Modal

Axis:

● Value range: Axis name of the channel axes

B2: Acceleration
4.2 Functions

 Basic Functions
268 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Reset behavior
The channel-specific default setting is activated via a reset:

MD20150 $MC_GCODE_RESET_VALUES[20]

Dependencies
If the knee-shaped acceleration characteristic curve is parameterized for a machine axis,
then this becomes the default acceleration profile for all traversing operations.

If the effective acceleration profile is changed for a specific axis using the SOFTA or BRISKA
part-program commands, then an appropriate substitute characteristic curve is used in place
of the knee-shaped acceleration characteristic curve.

It is possible to switch back to the knee-shaped acceleration characteristic curve for a
specific axis by programming DRIVEA.

4.2.19.6 Boundary conditions

Single axis interpolation
After activating the knee-shaped acceleration characteristics in case of single-axis
interpolations (positioning axis, oscillating axis, manual motion, etc.), the machine axis is
traversed exclusively in the mode DRIVEA .

It is not possible to switch over the acceleration profile via the following part program
instructions:

● Abrupt acceleration changes (BRISKA)

● Acceleration with jerk limitation (SOFTA)

Path interpolation
If for a machine axis involved in a programmed path the knee-shaped acceleration
characteristic parameterized without the part program instruction DRIVE is active, then a
substitute characteristic curve with reduced dynamic limiting values is determined for the
path.

Kinematic transformation
The knee-shaped acceleration characteristic is not considered in an active kinematic
transformation. With internal control, a switchover is done to acceleration without jerk
limitation (BRISK) and a substitute characteristic curve becomes active for the path
acceleration.

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 269

4.2.20 Acceleration and jerk for JOG motions
In order to avoid unwanted machine motions in JOG mode, separate axial acceleration and
jerk limit values can be specified for JOG motion.

It is also possible to limit acceleration and jerk channel-specifically for manual traversing of
geometry and orientation axes. This enables better handling of the kinematics that generate
Cartesian motions entirely via rotary axes (robots).

4.2.20.1 Parameterization

Axial limitation of acceleration and jerk

Maximum axial acceleration for JOG motions

The maximum axial acceleration for JOG motion can be specified for each machine axis via
the machine data:

MD32301 $MA_JOG_MAX_ACCEL

With MD32301 = 0, the value from MD32300 $MA_MAX_AX_ACCEL is effective instead of
the JOG-specific maximum value.

Maximum axial jerk for JOG motions

The maximum axial jerk for JOG motion can be specified for each machine axis via the
machine data:

MD32436 $MA_JOG_MAX_JERK

With MD32436 = 0, the value from MD32430 $MA_JOG_AND_POS_MAX_JERK is effective
instead of the JOG-specific maximum value.

 Note

MD32436 $MA_JOG_MAX_JERK is only effective when the axial jerk limitation in JOG mode
has been enabled for the machine axes to be traversed:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE [<axis>] == TRUE

This is also possible by programming SOFTA(<Axis1>,<Axis2>, ...) in the part program.

Channel-specific limitation of acceleration and jerk

Maximum acceleration when manually traversing geometry axes

The maximum acceleration when manually traversing geometry axes can be specified for
each channel via the machine data:

MD21166 $MC_JOG_ACCEL_GEO [<geometry axis>]

With <geometry axis> = 0, 1, 2

B2: Acceleration
4.2 Functions

 Basic Functions
270 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

With MD21166 = 0, the axis-specific limit value from MD32301 $MA_JOG_MAX_ACCEL is
effective instead of the channel-specific acceleration limitation.

 Note

With MD21166 $MC_JOG_ACCEL_GEO [<geometry axis>], there is no direct limitation to
MD32300 $MA_MAX_AX_ACCEL.

 Note

When a transformation is active, MD32300 $MA_MAX_AX_ACCEL determines the maximum
possible axial acceleration.

Maximum jerk when manually traversing geometry axes

The maximum jerk when manually traversing geometry axes in the SOFT acceleration mode
(acceleration with jerk limitation) can be specified for each channel via the machine data:

MD21168 $MC_JOG_JERK_GEO [<geometry axis>]

With <geometry axis> = 0, 1, 2

With MD21168 = 0, the axis-specific limit value from MD32436 $MA_JOG_MAX_JERK is
effective instead of the channel-specific jerk limitation.

 Note

MD21168 $MC_JOG_JERK_GEO is only effective when the axial jerk limitation in JOG
mode has been enabled for the basic machine axes:

MD32420 $MA_JOG_AND_POS_JERK_ENABLE [<axis>] == TRUE

Maximum jerk when manually traversing orientation axes

The maximum jerk when manually traversing orientation axes can be specified for each
channel via the machine data:

MD21158 $MC_JOG_JERK_ORI [<orientation axis>]

For MD21158 to take effect, the channel-specific jerk limitation for the manual traversing of
orientation axes must be enabled via the following machine data:

MD21159 $MC_JOG_JERK_ORI_ENABLE == TRUE

 Note

Orientation axes are not affected by the machine data MD32301 $MA_JOG_MAX_ACCEL
and MD32436 $MA_JOG_MAX_JERK.

 B2: Acceleration
 4.2 Functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 271

4.2.20.2 Supplementary conditions

Path override / overlaid motion
With path override / overlaid motion (e.g. DRF), the JOG-specific maximum values for
acceleration and jerk (MD32301 $MA_JOG_MAX_ACCEL and MD32436
$MA_JOG_MAX_JERK) are not effective. Instead, the values for positioning axis motions are
effective:

● Acceleration:

– MD32300 $MA_MAX_AX_ACCEL [0] (maximum axial acceleration for path motions in
the dynamic response mode DYNNORM)

See also Section "Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-
specific) (Page 233)".

● Jerk

– MD32430 $MA_JOG_AND_POS_MAX_JERK (maximum axial jerk for positioning axis
motions)

or (with G75/751):

– MD32431 $MA_MAX_AX_JERK [0] (maximum axial jerk for path motions in the
dynamic response mode DYNNORM)

See also Section "Jerk limitation with single-axis interpolation (SOFTA) (axis-specific)
(Page 249)".

 Note

Only the dynamic response mode DYNNORM is always effective for JOG mode.

Behavior for manual traversing of geometry axes with active rotation
When manually traversing geometry axes in the SOFT acceleration mode (acceleration with
jerk limitation), the value from MD32436 $MA_JOG_MAX_JERK or MD32430
$MA_JOG_AND_POS_MAX_JERK is also used with active rotation or active orientable
toolholder.

Part program instruction SOFTA/BRISKA/DRIVEA
The part program instruction SOFTA(<Axis1>,<Axis2>, ...) is also effective in JOG mode,
i.e. the maximum axial jerk from MD32436 $MA_JOG_MAX_JERK is effective for the
specified axes when traversing in JOG mode (exactly as when setting MD32420
$MA_JOG_AND_POS_JERK_ENABLE [<axis>] == TRUE).

 Note

On the other hand the SOFT part program instruction has no effect on the JOG mode.

B2: Acceleration
4.3 Examples

 Basic Functions
272 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

As with SOFTA, the part program instructions BRISKA and DRIVEA are also effective in JOG
mode, i.e. the acceleration is without jerk limitation, even when MD32420
$MA_JOG_AND_POS_JERK_ENABLE is set to "TRUE" for the relevant machine axes.

 Note

The manual traversing of orientation axes is not affected by BRISKA/SOFTA/DRIVEA.

4.3 Examples

4.3.1 Acceleration

4.3.1.1 Path velocity characteristic

Key statement
An excerpt from a part program is provided below, together with the associated acceleration
characteristic, by way of an example. These are used to illustrate how the path velocity can
be adapted to take account of various events and the resulting change in acceleration.

Part program (excerpt, schematic)

Program code

; Acceleration selection in accordance with fast input 1 ($A_IN[1]):

N53 ID=1 WHEN $A_IN[1] == 1 DO $AC_PATHACC = 2.*$MA_MAX_AX_ACCEL[X]

; Test override profile (simulates external intervention):

N54 ID=2 WHENEVER ($AC_TIMEC > 16) DO $AC_OVR=10

N55 ID=3 WHENEVER ($AC_TIMEC > 30) DO $AC_OVR=100

;Approach

N1000 G0 X0 Y0 BRISK

N1100 TRANS Y=-50

N1200 AROT Z=30 G642

; Contour

N2100 X0 Y0

N2200 X = 70 G1 F10000 RNDM=10 ACC[X]=30 ACC[Y]=30

N2300 Y = 70

N2400 X0

N2500 Y0

M30

 B2: Acceleration
 4.3 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 273

 Acceleration profile: BRISK
1: Accelerate to 100% of path velocity (F10000) in accordance with acceleration default: ACC (N2200...)
2: Brake to 10% of path velocity as a result of override modification ($AC_OVR) in accordance with real-time

acceleration $AC_PATHACC (N53/N54...)
3: Accelerate to 100% of path velocity as a result of override modification ($AC_OVR) in accordance with real-time

acceleration $AC_PATHACC (N53/N55...)
4: Brake to block end velocity for intermediate smoothing block in accordance with acceleration default: ACC

(N2200...)
5: Speed limitation as a result of smoothing (see 9)
6: Accelerate to 100% of path velocity ($AC_OVR) in accordance with acceleration default: ACC (N2300...)
7: Decelerate as a result of override modification at a rate of acceleration that is in accordance with real-time

acceleration $AC_PATHACC (N53/N54...)
8: Accelerate to 100% of path velocity as a result of override modification ($AC_OVR) in accordance with real-time

acceleration $AC_PATHACC (N53/N55...)
9: Intermediate block inserted within the control as a result of the programmed smoothing (RNDM) (N2200...)

Figure 4-13 Switching between path acceleration specified during preprocessing and real-time acceleration

B2: Acceleration
4.3 Examples

 Basic Functions
274 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4.3.2 Jerk

4.3.2.1 Path velocity characteristic

Key statement
An excerpt from a part program is provided below, together with the associated acceleration
characteristic, by way of an example. These are used to illustrate how the path velocity can
be adapted to take account of various events and the resulting change in jerk.

Part program (excerpt, schematic)

Program code

; Setting of path acceleration and path jerk in the event of external intervention:

N0100 $AC_PATHACC = 0.

N0200 $AC_PATHJERK = 4. * ($MA_MAX_AX_JERK[X] + $MA_MAX_AX_JERK[Y]) / 2.

; Synchronized actions for the purpose of varying the override (simulates external

intervention):

N53 ID=1 WHENEVER ($AC_TIMEC > 16) DO $AC_OVR=10

N54 ID=2 WHENEVER ($AC_TIMEC > 30) DO $AC_OVR=100

;Approach

N1000 G0 X0 Y0 SOFT

N1100 TRANS Y=-50

N1200 AROT Z=30 G642

; Contour

N2100 X0 Y0

N2200 X = 70 G1 F10000 RNDM=10

N2300 Y = 70

N2400 X0

N2500 Y0

M30

 B2: Acceleration
 4.3 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 275

 Acceleration profile: SOFT
1: Jerk according to $MA_MAX_AX_JERK[..]
2: Jerk according to $AC_PATHJERK
3: Jerk according to $MA_MAX_AX_JERK[..] (approach block end velocity)
4: Velocity limit due to arc
5: Jerk according to $AC_PATHJERK

Figure 4-14 Switching between path jerk specified during preprocessing and $AC_PATHJERK

4.3.3 Acceleration and jerk

Key statement
In the following example a short part program is used to illustrate the velocity and
acceleration characteristic for the X-axis. It also shows the connection between specific
velocity and acceleration-related machine data and the contour sections they influence.

Part program

Program code Comment

N90 F5000 SOFT G64 ; Continuous-path mode, jerk-limited acceleration

N100 G0 X0 Y0 Z0 ; Rapid traverse

N110 G1 X10 ; Straight line

N120 G3 CR=5 X15 Y5 ; Circular arc, radius 5 mm, block transition: Tangential

N130 G3 CR=10 X5 Y15 ; Circular arc, radius 10 mm, block transition: Tangential

N140 G1 X-5 Y17.679 ; Straight line, 15° bend

N200 M30

B2: Acceleration
4.3 Examples

 Basic Functions
276 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 4-15 Part program contour

Figure 4-16 X axis: Velocity and acceleration characteristic

 B2: Acceleration
 4.3 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 277

4.3.4 Knee-shaped acceleration characteristic curve

4.3.4.1 Activation

Key statement
The example given illustrates how the knee-shaped acceleration characteristic curve is
activated on the basis of:

● Machine data

● Part program instruction

Machine data
● Parameterizing the characteristic curve (example only)

Program code

X axis

MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT[X] = 0.4

MD35230 $MA_ACCEL_REDUCTION_FACTOR[X] = 0.85

MD35242 $MA_ACCEL_REDUCTION_TYPE[X] = 2

MD35240 $MA_ACCEL_TYPE_DRIVE[X] = TRUE

Y axis

MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT[Y] = 0.0

MD35230 $MA_ACCEL_REDUCTION_FACTOR[Y] = 0.6

MD35242 $MA_ACCEL_REDUCTION_TYPE[Y] = 1

MD35240 $MA_ACCEL_TYPE_DRIVE[Y] = TRUE

Z axis

MD35220 $MA_ACCEL_REDUCTION_SPEED_POINT[Z] = 0.6

MD35230 $MA_ACCEL_REDUCTION_FACTOR[Z] = 0.4

MD35242 $MA_ACCEL_REDUCTION_TYPE[Z] = 0

MD35240 $MA_ACCEL_TYPE_DRIVE[Z] = FALSE

● Activation by setting as the channel-specific default setting

MC_GCODE_RESET_VALUE[20] = 3 (DRIVE)

B2: Acceleration
4.4 Data lists

 Basic Functions
278 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Part program (excerpt)

Program code Comment

N10 G1 X100 Y50 Z50 F700 ; Path motion (X,Y, Z) with DRIVE

N15 Z20 ; Path motion (Z) with DRIVE

N20 BRISK ; Switchover to BRISK

N25 G1 X120 Y70 ; Path motion (Y, Z) with substitute

characteristic curve

N30 Z100 ; Path motion (Z) with BRISK

N35 POS[X] = 200 FA[X] = 500 ; Positioning motion (X) with DRIVEA

N40 BRISKA(Z) ; Activate BRISKA for Z

N40 POS[Z] = 50 FA[Z] = 200 ; Positioning motion (Z) with BRISKA

N45 DRIVEA(Z) ; Activate DRIVEA for Z

N50 POS[Z] = 100 ; Positioning motion (Z) with DRIVE

N55 BRISKA(X) ; results in error message

...

4.4 Data lists

4.4.1 Machine data

4.4.1.1 NC-specific machine data

Number Identifier: $MN_ Description
18960 POS_DYN_MODE Type of positioning axis dynamic response

4.4.1.2 Channel-specific machine data

Number Identifier: $MC_ Description
20150 GCODE_RESET_VALUES Initial setting of the G groups
20500 CONST_VELO_MIN_TIME Minimum time with constant velocity
20600 MAX_PATH_JERK Path-related maximum jerk
20602 CURV_EFFECT_ON_PATH_ACCEL Influence of path curvature on path dynamic response
20610 ADD_MOVE_ACCEL_RESERVE Acceleration reserve for overlaid motions
21158 JOG_JERK_ORI Maximum jerk of the orientation axes when traversing in

JOG

 B2: Acceleration
 4.4 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 279

Number Identifier: $MC_ Description
21159 JOG_JERK_ORI_ENABLE Initial setting of the channel-specific jerk limitation of

orientation axes for traversing in JOG mode
21166 JOG_ACCEL_GEO Maximum acceleration rate of the geometry axes when

traversing in JOG
21168 JOG_JERK_GEO Maximum jerk of the geometry axes when traversing in

JOG

4.4.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
32000 MAX_AX_VELO Maximum axis velocity
32300 MAX_AX_ACCEL Maximum axis acceleration
32301 JOG_MAX_ACCEL Maximum acceleration in JOG mode
32310 MAX_ACCEL_OVL_FACTOR Overload factor for velocity jump
32320 DYN_LIMIT_RESET_MASK Reset behavior of dynamic limits
32400 AX_JERK_ENABLE Axial jerk limitation
32402 AX_JERK_MODE Filter type for axial jerk limitation
32410 AX_JERK_TIME Time constant for axial jerk filter
32420 JOG_AND_POS_JERK_ENABLE Initial setting for axial jerk limitation
32430 JOG_AND_POS_MAX_JERK Axial jerk for single axis motion
32431 MAX_AX_JERK Maximum axial jerk at the block transition in

continuous-path mode
32432 PATH_TRANS_JERK_LIM Max. axial jerk of a geometry axis at block boundary
32433 SOFT_ACCEL_FACTOR Scaling of acceleration limitation for SOFT
32434 G00_ACCEL_FACTOR Scaling of acceleration limitation for G00
32435 G00_JERK_FACTOR Scaling of axial jerk limitation for G00
32436 JOG_MAX_JERK Maximum axial jerk for JOG motion
32437 AX_JERK_VEL0 First velocity threshold for velocity-dependent jerk

adaptation
32438 AX_JERK_VEL1 Second velocity threshold for the velocity-dependent

jerk adaptation
32439 MAX_AX_JERK_FACTOR Factor to set the maximum jerk for higher velocities

(velocity-dependent jerk adaptation)
35220 ACCEL_REDUCTION_SPEED_POINT Speed for reduced acceleration
35230 ACCEL_REDUCTION_FACTOR Reduced acceleration
35240 ACCEL_TYPE_DRIVE DRIVE acceleration characteristic for axes on/off
35242 ACCEL_REDUCTION_TYPE Type of acceleration reduction

B2: Acceleration
4.4 Data lists

 Basic Functions
280 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4.4.2 Setting data

4.4.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42500 SD_MAX_PATH_ACCEL Max. path acceleration
42502 IS_SD_MAX_PATH_ACCEL Analysis of SD 42500: ON/OFF
42510 SD_MAX_PATH_JERK Max. path-related jerk
42512 IS_SD_MAX_PATH_JERK Analysis of SD 42510: ON/OFF

4.4.3 System variables

Identifier Description
$AC_PATHACC Path acceleration for real-time events
$AC_PATHJERK Path jerk for real-time events

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 281

F1: Travel to fixed stop 5
5.1 Brief description

Function
With the "Travel to fixed stop" function, moving machine parts, e.g. tailstock or sleeve, can
be traversed with a defined torque against other machine parts.

Characteristics
● The clamping torque and a fixed stop monitoring window can be programmed in the part

program and can also be altered via setting data once the fixed stop has been reached.

● Travel to fixed stop is possible for axes and spindles.

● Travel to fixed stop is possible simultaneously for several axes and parallel to the
traversing of other axes.

● The reduction of the clamping torque or clamping force can be switched on and off in
synchronized actions.

● The "Travel to fixed stop" functions can also be activated via synchronized actions.

● A multi-channel block search can be performed with calculation of all the required
additional data (SERUPRO).

● The axes can be simulated with FXS and FOC.

● "Vertical" axes can also be moved with FXS to a fixed stop.

5.2 Detailed description

5.2.1 Programming

Function

Travel to fixed stop

The "Travel to fixed stop" function is controlled via the FXS, FXST and FXSW commands.

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
282 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The activation can also be performed without traversing motion of the relevant axis. The
torque is immediately limited. The fixed stop is monitored as soon as the axis is traversed.

 Note
Synchronized actions

The "Travel to fixed stop" function can also be controlled via synchronized actions.

References:
Function Manual, Synchronized Actions

Travel with limited torque/force

Travel with limited torque/force can be controlled via the FOCON, FOCOF and FOC commands
(see Section "Travel with limited torque/force FOC (Page 299)").

Syntax
FXS[<axis>]=<request>
FXST[<axis>]=<clamping torque>
FXSW[<axis>] = <window width>
FOCON[<axis>]
FOCOF[<axis>]
FOC[<axis>]

Meaning

Parameters Meaning
FXS: Travel to fixed stop

Effectiveness: Modal
<Request>: Request to the "Travel to fixed stop" function:

0 = switch off
1 = switch on

FXST: Set clamping torque
<Clamping torque>: Clamping torque in % of the maximum drive torque.

SINAMICS S120: p2003
FXSW: Set monitoring window
<Window width>: Width of the tolerance window around the fixed stop

Unit: mm, inch or degrees
FOCON: Torque/force limitation: Switch on
FOCOF: Torque/force limitation: Switch off
FOC: Non-modal torque/force limitation
<axis>: Name of the channel axis

Type: AXIS

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 283

Axis name

Instead of a machine axis name, the names of geometry or special axes can be used if they
are assigned precisely to a machine axis and one of the following functions is not active for
the machine axis:

● Transformation

● Coupling

● Frame

Change clamping torque
The clamping torque can be changed with the FXST command. The change takes effect
before the traversing motions of the block. The torque limitation acts in addition to the
acceleration limitation (ACC).

Ramp-shaped change

A time within which the clamping torque should be changed can be set via the following
machine data. The change of the clamping torque is then no longer sudden, but ramp-
shaped.

MD37012 $MA_FIXED_STOP_TORQUE_RAMP_TIME (time until the new torque limit is
reached)

Change monitoring window
The monitoring window can be changed with the FXSW command. The changes take effect
before the traversing motions of the block.

If a new monitoring window is programmed, not only the window width changes. If the axis
has moved before the change, the reference point for the window center point also changes
to the current actual position of the axis.

Function application for active continuous-path mode G64
The following machine data can be used to set that with the selection of the (FXS) function
during active continuous-path mode (G64), no exact stop is triggered at the block change
(G60):

MD37060 $MA_FIXED_STOP_ACKN_MASK (monitoring PLC acknowledgements for travel
to fixed stop)

Bit Value Meaning

0 Start of the traversing motion without acknowledgement by the PLC 0
1 Start of the traversing motion after acknowledgement by the PLC

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
284 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Boundary conditions
● The traversing motion to the fixed stop can be programmed as a path- or block-related or

modal positioning axis motion.

● Travel to fixed stop can be be selected for several machine axes simultaneously.

● The travel path and the activation of the function must be programmed in one block in the
part program.

● If "Travel to fixed stop" is activated via synchronized actions, the travel path and the
activation of the function can be programmed in separate blocks.

Example
Requirement: Mapping of channel axis X on machine axis X1

Programming with a channel axis name

Program code Comment

FXS[X] = 1 ; Selecting X ->X1

FXST[X] = 12.3 ; New torque X ->X1

FXSW[X] = 2000 ; New window for X -> X1

Programming with a machine axis name

Program code Comment

FXS[X1] = 1 ; Selecting X1

FXST[X1] = 12.3 ; New torque for X1

FXSW[X1] = 2000 ; New window for X1

References:
Programming Manual, Fundamentals

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 285

5.2.2 Functional sequence

5.2.2.1 Selection

Figure 5-1 Example of travel to fixed stop

Procedure
The NC detects that the function "Travel to fixed stop" is selected via the command FXS[x]=1
and signals the PLC using the IS DB31, ... DBX62.4 ("Activate travel to fixed stop") that the
function has been selected.

If the machine data:

MD37060 $MA_FIXED_STOP_ACKN_MASK (monitoring PLC acknowledgements for travel
to fixed stop)

is set correspondingly, the system waits for the acknowledgement of the PLC using the IS
DB31, ... DBX3.1 ("Enable travel to fixed stop").

The programmed target position is then approached from the start position at the
programmed velocity. The fixed stop must be located between the start and target positions
of the axis/spindle. A programmed torque limit (clamping torque specified via FXST[<axis>])
is effective from the start of the block, i.e. the fixed stop is also approached with reduced
torque. Allowance for this limitation is made in the NC through an automatic reduction in the
acceleration rate.

If no torque has been programmed in the block or since the start of the program, then the
value is valid in the axis-specific machine data:

MD37010 $MA_FIXED_STOP_TORQUE_DEF (default for fixed stop clamping torque)

is entered.

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
286 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

5.2.2.2 Fixed stop is reached

Procedure
When the axis has reached the fixed stop, the torque in the drive is increased up to the
programmed clamping torque. How the control detects that the fixed stop has been reached,
can be set via the following machine data:

MD37040 $MA_FIXED_STOP_BY_SENSOR = <value> (fixed stop detection via sensor)

<value> Meaning

0 The fixed stop has been reached when the axial contour deviation (difference between
actual and expected following error) has exceeded the set value in the machine data:
MD37030 $MA_FIXED_STOP_THRESHOLD (threshold for fixed stop detection)

1 An external sensor detects when the fixed stop has been reached and informs the control
via the following axial NC/PLC interface signal:
DB31, ... DBX1.2 == 1 (sensor for fixed stop)

2 The fixed stop has been reached when the condition according to value == 0 or value == 1
applies.

Ineffective NC/PLC interface signals

When the axis is in the "Fixed stop reached" state, the following NC/PLC interface signals
have no effect:

● DB31, ... DBX1.3 (axis/spindle disable)

● DB31, ... DBX2.1 (controller enable)

Internal processes
Once the NC has detected the "Fixed stop reached" state, it deletes the distance-to-go and
the position setpoint is corrected. The controller enable remains active.

The PLC is then informed of the state using IS DB31, ... DBX62.5 ("Fixed stop reached").

If the machine data:

MD37060 $MA_FIXED_STOP_ACKN_MASK

is set correspondingly, then the system waits for the acknowledgement of the PLC using the
IS DB31, ... DBX1.1 ("Acknowledge fixed stop reached").

The NC then executes a block change or considers the positioning motion to be completed,
but still leaves a setpoint applied to allow the clamping torque to take effect.

The fixed stop monitoring function is activated as soon as the stop position is reached.

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 287

Monitoring window
If no fixed stop monitoring window was programmed in the block or from program start, then
the value set in the machine data:

MD37020 $MA_FIXED_STOP_WINDOW_DEF

(default for fixed stop-monitoring window)

is entered.

If the axis leaves the position it was in when the fixed stop was detected, then alarm 20093
"Fixed stop monitoring has responded" is displayed and the "Travel to fixed stop" function
deselected.

The window must be selected by the user such that the alarm is activated only when the axis
leaves the fixed stop position.

Figure 5-2 Fixed stop is reached

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
288 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

5.2.2.3 Fixed stop is not reached

Procedure
If the programmed end position is reached, without detecting the state "fixed stop reached",
then depending on the state of the machine data:

MD37050 $MA_FIXED_STOP_ALARM_MASK = 0 (release of fixed stop alarms)

the alarm 20091 "Fixed stop not reached" is output.

Abort without alarm
The travel to fixed stop can be aborted by the PLC in the approach block without triggering
an alarm (for example, when the operator actuates a key), if in the machine data:

MD37050 $MA_FIXED_STOP_ALARM_MASK = 2

the alarm 20094 is suppressed.

The Travel to fixed stop function is deselected in response to both "Fixed stop not reached"
and "Fixed stop aborted".

Function abort
If the "Travel to fixed stop" function is aborted owing to a pulse disable, cancelation of PLC
acknowledgements or a Reset in the approach block, the display or suppression of alarm
20094 can be controlled via machine data:

MD37050 $MA_FIXED_STOP_ALARM_MASK = 3

All other values ≤ 7 do not suppress any alarms.

Using the part program command NEWCONF a new setting can be activated.

Sequence in case of a fault or abnormal termination
Reset of the axial NC/PLC interface signal:

DB31, ... DBX62.4 = 0 (activate travel to fixed stop)

Depending on the setting in machine data:

MD37060 $MA_FIXED_STOP_ACKN_MASK

wait for the acknowledgement:

DB31, ... DBX3.1 == 0 (enable travel to fixed stop).

The torque limitation is then canceled and a block change executed.

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 289

Figure 5-3 Fixed stop is not reached

5.2.2.4 Deselection

Procedure
With the deselection of the function FXS[<axis>]=0, a preprocessing stop (STOPRE) is
triggered.

The torque limitation and monitoring of the fixed stop monitoring window are canceled.

The NC/PLC interface signals are reset:

DB31, ... DBX62.4 = 0 (activate travel to fixed stop)

DB31, ... DBX62.5 = 0 (fixed stop reached)

Depending on the machine data:

MD37060 $MA_FIXED_STOP_ACKN_MASK

wait for the acknowledgement:

DB31, ... DBX3.1 == 0 (enable travel to fixed stop)

DB31, ... DBX1.1 == 0 (acknowledge fixed stop reached)

The axis will then change to position control. The correction of the position setpoint is
terminated and a synchronization to the new actual position is carried out. The axis can be
traversed again.

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
290 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Response when pulse enable is canceled
The pulse enable or pulse inhibit can be canceled via:

● Drive: Via terminal EP (enable pulses)

● NC/PLC interface signal: DB31, ... DBX21.7 ("pulse enable")

The behavior at the fixed stop can be set via the following machine data:

MD37002 $MA_FIXED_STOP_CONTROL (sequence control for travel to fixed stop)

Bit Value Meaning

Behavior for pulse disable at the stop
0 Travel to fixed stop is aborted

0

1 Travel to fixed stop is interrupted, i.e. the drive is without power. Once the pulse
disable is canceled again, the drive presses with the stop torque again. For control
of the torque injection, see bit 1.

Behavior for pulse enable at the stop
0 The torque is injected suddenly.

1

1 The torque is ramped up.
See also: MD37012 $MA_FIXED_STOP_TORQUE_RAMP_TIME

If the pulse enable is removed during an active deselection of the function (state: "Waiting for
PLC acknowledgements"), the torque limit is reduced to zero. During this phase, torque is no
longer built up if the pulse enable is set again. Once the deselection has been completed,
you can continue traversing as normally.

Figure 5-4 Fixed stop deselection

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 291

5.2.3 Behavior during block search

Block search with calculation
● If the target block is located in a program section in which the axis must stop at a fixed

limit, then the fixed stop is approached if it has not yet been reached.

● If the target block is located in the program section in which the axis must not stop at a
fixed limit, then the axis leaves the fixed stop if it is still positioned there.

● If the axis is in the "Fixed stop reached" state, message 10208 "Press NC start to
continue the program" is displayed. The program can be continued with NC start.

● Clamping torque FXST and monitoring window FXSW have the value that they have for
normal program processing at the start of the target block.

Block search without calculation
The commands FXS, FXST and FXSW are ignored during the block search.

Effectiveness of FOCON/FOCOF
The state of the modal-acting torque/force reduction FOCON/FOCOF is maintained during the
search and is effective in the approach block.

Block search with FXS or FOC
The user selects FXS or FOC in a program area of the target block in order to acquire all states
and functions of the machining last valid. The NC starts the selected program in Program
test mode automatically. After the target block has been found, the NC stops at the
beginning of the target block, deselects Program test internally again and displays the Stop
condition "Search target found" in its block display.

CAUTION
SERUPRO approach does not really take the FXS command into account.

The approach to the programmed end position of the FXS block is only simulated without
torque limitation.

If FXS is located between the beginning of the program and the search target, the command
is not executed by the NC. The motion is only simulated up to the programmed end point.

The user can log the turning on and turning off of FXS in the part program. If necessary, the
user can start an ASUB in order to activate or deactivate FXS in this SERUPRO-ASUP.

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
292 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System variable
The state of the function can be read via the following system variable:

● $AA_FXS (desired state)

● $VA_FXS (actual state)

Value Description

0 Axis not at fixed stop
1 Fixed stop successfully approached
2 Approach to fixed stop failed
3 Travel to fixed stop selection active
4 Fixed stop detected
5 Travel to fixed stop deselection active

SERUPRO: $AA_FXS

During SERUPRO, $AA_FXS supplies the following values depending on the activation
status of the "Travel to fixed stop" function:

FXS[<axis>]=<status>

<status> $AA_FXS
0 (switch off) 0 (axis not at fixed stop)
1 (switch on) 3 (travel to fixed stop selection active)

Outside of SERUPRO, both system variables always supply the same value.

 Note

During SERUPRO, the system variable $AA_FXS only supplies the values 0 and 3. As a
result, based on $AA_FXS, the program sequence can be changed with SERUPRO
compared to the normal program execution for program branches.

SERUPRO: $VA_FXS

During SERUPRO, the variable $VA_FXS always supplies the real state of axis on the
machine.

SERUPRO ASUB Desired/actual state comparison
The current state of the "Travel to fixed stop" function can be determined in the SERUPRO
ASUB via the system variables $AA_FXS and $VA_FXS, and the appropriate response
initiated:

FXS_SERUPRO_ASUP.MPF

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 293

Program code

N100 WHEN ($AA_FXS[X]==3) AND ($VA_FXS[X]==0) DO FXS[X]=1

N200 WHEN ($AA_FXS[X]==0) AND ($VA_FXS[X]==1) DO FXS[X]=0

N1020 REPOSA

Displaying the REPOS offset
Once the search target has been found, the FXS state active on the machine is displayed for
each axis via the following axial NC/PLC interface signals:

● DB31, ... DBX62.4 (activate travel to fixed stop)

● DB31, ... DBX62.5 (fixed stop reached)

Example:

If the axis is at the fixed stop and the target block is available after deselection of FXS, the
new target position is displayed via DB31, ... DBX62.5 (fixed stop reached) as the REPOS
offset.

REPOS and FXS
With REPOS, the functionality of FXS is repeated automatically and called FXS-REPOS in the
following. This sequence is comparable to the FXS_SERUPRO_ASUP.MPF program.
Whereby every axis is taken into account and the last torque programmed before the search
target is used.

The user can treat FXS separately in a SERUPRO ASUB.

The following then applies:

Every FXS action executed in the SERUPRO ASUB automatically takes care of

$AA_FXS[<axis>] = $VA_FXS[<axis>].

This deactivates FXS-REPOS for axis X.

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
294 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Deactivating FXS-REPOS
FXS-REPOS is deactivated by:

● An FXS synchronized action which refers to REPOSA

● $AA_FXS[X] = $VA_FXS[X] in the SERUPRO_ASUB

 Note

A SERUPRO ASUB without FXS treatment or no SERUPRO ASUB results automatically
in FXS-REPOS.

CAUTION

Speed too high for FXS-REPOS

FXS-REPOS traverse all path axes together to the target position. Axes with and without
FXS treatment thus traverse together with the G code and feedrate valid in the target
block. As a result, the fixed stop may be approached in rapid traverse(G0) or higher
velocity.

FOC in the REPOS
FOC-REPOS behaves in the same way as FXS-REPOS.

A changing torque characteristic during the program preprocessing cannot be implemented
with FOC-REPOS.

Example

Axis X is traversed from position 0 to 100. FOC is switched on every 20 millimeters for 10
millimeters. The resulting torque characteristic is generated with non-modal FOC and cannot
be traced by FOC-REPOS. Axis X is traversed by FOC-REPOS with or without FOC in
accordance with the last programming before the target block.

For programming examples of FXS "Travel to fixed stop", see Section "Program test
(Page 469)".

5.2.4 Behavior for reset and function abort

NC reset
As long as the function is still not in the "Successful travel to fixed stop" state, the travel to
fixed stop can be aborted with NC reset.

Even when the fixed stop has already has been approached, but the specified stop torque
not yet fully reached, then the function can still be aborted with NC reset. The position
setpoint of the axis is synchronized with the current actual position.

As soon as the function is in the "Successful travel to fixed stop" state, the function also
remains active after the NC reset.

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 295

Function abort
A function abort can be triggered by the following events:

● Emergency stop

CAUTION

Dangerous machine situations possible for travel to limit stop

It must be ensured that no dangerous machine situations occur while travel to fixed stop
is active when an "Emergency stop" is triggered or reset.

For example, behavior when setting and canceling the pulse enable:
MD37002 $MA_FIXED_STOP_CONTROL, bit 0 (behavior for pulse disable at the stop)
• Bit 0 = 0: Travel to fixed stop is aborted
• Bit 0 = 1: Travel to fixed stop is interrupted, i.e. the drive is without power

Once the pulse disable is canceled again, the drive presses with the stop torque
again.

 Note

NC and drive have no power during "Emergency stop", i.e. the PLC must react.

● Functional state: "Fixed stop not reached"

● Functional state: "Fixed stop aborted"

● Aborted by the PLC user program:
DB31, ... DBX62.4 = 0 ("Activate travel to fixed stop")

● Cancellation of the pulse enable and machine data parameterization:
MD37002 $MA_FIXED_STOP_CONTROL, bit 0 = 0 (see above)

5.2.5 Behavior with regard to other functions

Measurement with delete distance-to-go

"Travel to fixed stop" (FXS) cannot be programmed in a block with "Measurement with delete
distance-to-go" (MEAS). Except when on function acts on a path axis while the other acts on a
positioning axis or both functions act on positioning axes.

Contour monitoring

The axis contour monitoring function is inoperative while "Travel to fixed stop" is active.

Positioning axes

For "Travel to fixed stop" with positioning axes POSA, the block change is executed even
when the positioning axis has not yet reached the fixed stop by this time.

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
296 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Vertical axes

The "Travel to fixed stop" function can be used for vertical axes even when alarms are
active.

If a function-specific alarm occurs for a vertical axis when traveling to fixed stop, the NC/PLC
interface signal DB11, DBX6.3 (mode group ready) is not reset: This means that the
corresponding drive is not de-energized.

This corresponds to an electronic weight compensation for the vertical axis and can be
configured via the following machine data:

MD37052 $MA_FIXED_STOP_ALARM_REACTION

References
Further information on vertical axes can be found in:

● SINAMICS S120 Function Manual

● Function Manual, Extended Functions; Compensation (K3),
Section: Electronic counterweight

5.2.6 Setting data
The values programmed via the function-specific FXS, FXST and FXSW commands are written
block-synchronously to the following, immediately effective, axis-specific setting data:

Switching the function on/off

SD43500 $SA_FIXED_STOP_SWITCH (selection/deselection of travel to fixed stop)

Clamping torque

SD43510 $SA_FIXED_STOP_TORQUE (clamping torque)

 Note
Clamping torque greater than 100%

A value for the clamping torque in SD43510 greater than 100% of the maximum motor
torque is only advisable for a short time. In addition, the maximum motor torque is limited by
the drive. For example, the following drive parameters have a limiting effect:
• p1520/p1521 upper torque limit/force limit / lower torque limit/force limit
• p1522/p1523 upper torque limit/force limit / lower torque limit/force limit
• p1530/p1531 power limit, motoring / power limit, regenerating
• p0640 current limit
• p0326 motor stall force correction factor

Detailed information on the drive parameters and the functions can be found in:

References
• SINAMICS S120/S150 List Manual
• SINAMICS S120 Function Manual

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 297

Monitoring window

SD43520 $SA_FIXED_STOP_WINDOW (monitoring window)

Default setting
The defaults for the setting data are set via the following machine data:

● Clamping torque:
 MD37010 $MA_FIXED_STOP_TORQUE_DEF (default clamping torque)

● Monitoring window:
 MD37020 $MA_FIXED_STOP_WINDOW_DEF (default monitoring window)

Effectiveness
The setting data for the clamping torque and monitoring window takes effect immediately. In
this way, the clamping state can be adapted to the machining situation at any time by the
operator or via the PLC user program.

References
Further detailed information on the machine and setting data can be found in:

List Manual, Detailed Machine Data Description

See also
Z1: NC/PLC interface signals (Page 1583)

5.2.7 System variable
Information on the status of the function can be read via the following system variables in
part programs and synchronized actions:

● $AA_FXS (status, "Travel to fixed stop" desired state)

● $VA_FXS (status, "Travel to fixed stop" actual state)

● $VA_FXS_INFO (additional information for "Travel to fixed stop")
The system variable contains additional information for the case that the travel to fixed
stop has failed: $VA_FXS == 2

 Note
Actual position at fixed stop

After reaching the fixed stop, the actual position of the machine axis can be read, for
example, for evaluation or measuring purposes via the $AA_IM system variables.

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
298 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Application example for $AA_FXS
In order that a block change is executed, no alarm should be triggered when a fault occurs.
The cause can then be determined via the system variable and a specific reaction
performed.

Requirement: MD37050 $MA_FIXED_STOP_ALARM_MASK = 0 (do not trigger an alarm)

Program code

X300 Y500 F200 FXS[X1]=1 FXST[X1]=25 FXSW[X1]=5

; IF fixed stop == reached => normal case

IF $AA_FXS[X1]==2 GOTOF FXS_ERROR

 ; Normal case

 G01 X400 Y200

 ...

 GOTOF PROG_END

; ELSE error handling

 FXS_ERROR: ...

PROG_END: M30

5.2.8 Fixed stop alarms

Alarm 20091 "Fixed stop not reached"

If the fixed stop position is not reached during travel to fixed stop, alarm 20091 "Fixed stop
not reached" is displayed and a block change executed.

Alarm 20092 "Travel to fixed stop is still active"

If there is a travel request or renewed function selection for the axis after the fixed stop has
been reached, alarm 20092 "Travel to fixed stop is still active" is displayed.

Alarm 20093 "Standstill monitoring at fixed stop has triggered"

If an axis has reached the fixed stop and is then moved out of this position by more than the
value specified in the setting data

SD43520 FIXED_STOP_WINDOW (fixed stop monitoring window)

alarm 20093 "Standstill monitoring at fixed stop has triggered" is displayed, travel to fixed
stop for this axis is deselected and the following system variable set:
$AA_FXS[x] = 2

Alarm 20094 "Function has been aborted"

The travel to fixed stop is aborted if the clamping torque can no longer be applied due to the
cancellation of the pulse enable, or the requested acknowledgement signal at the NC/PLC
interface has been reset:

● Acknowledgement signal required: MD37060 $MA_FIXED _STOP_ACKN_MASK,
bit 0 = 1

● Acknowledgement signal: DB31, ... DBX3.1 == 0 (enable travel to fixed stop)

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 299

Enabling the fixed stop alarms
The following machine data can be use to set whether the fixed stop alarms

● Alarm 20091 "Fixed stop not reached",

● Alarm 20094 "Fixed stop aborted"

are displayed:

MD37050 $MA_FIXED_STOP_ALARM_MASK (enable of the fixed stop alarms)

Settable functional behavior for fixed stop alarms
The following machine data can be used to set that the function is not aborted when
function-specific alarms occur:

● Alarm 20090 Travel to fixed stop not possible

● Alarm 20091 Fixed stop not reached

● Alarm 20092 Travel to fixed stop is still active

● Alarm 20093 Standstill monitoring at fixed stop has triggered

● Alarm 20094 Travel to fixed stop aborted

MD37052 $MA_FIXED_STOP_ALARM_REACTION (reaction to fixed stop alarms)

Alarm suppression after new programming
Travel to fixed stop can be used for simple measuring processes.

For example, it is possible to carry out a check for tool breakage by measuring the tool
length by traversing onto a defined obstacle. To do so, the fixed stop alarm must be
suppressed. When the function for clamping workpieces is then used "normally," the alarm
can be activated using part program commands.

5.2.9 Travel with limited torque/force FOC

Function
For applications in which torque or force are to be changed dynamically depending on the
travel or on the time or on other parameters (e.g. pressing), the functionality FOC (Force
Control) is provided.

Force/travel or force/time profiles are thus possible in the resolution for the interpolation
cycle.

The function allows torque/force to be modified at any time using synchronized actions.

The function can be activated modally or non-modally.

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
300 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Availability

System Availability
SINUMERIK 840D sl Standard (basic scope)
SINUMERIK 828D Option

Modal activation (FOCON/FOCOF)
The activation of the function after POWER ON and RESET is determined by the machine
data:

MD37080 $MA_FOC_ACTIVATION_MODE (controlling the initial setting of the modal
limitation of torque/force)

Bit Meaning

Effective after POWER ON:
= 0 FOCOF

0

= 1 FOCON
Effective after RESET:
= 0 FOCOF

1

= 1 FOCON

FOCON: Activation of the modally effective torque/force limitation
FOCOF: Disables the torque/force limitation

The modal activation acts beyond the program end.

If already programmed, the torque/force set with FXST is effective.

FXST can be programmed irrespectively of FOCON; it comes into effect, however, only after
the function has been activated.

Programming
The programming of the axis is carried out in square brackets.

The following are permissible:

● Geometry axis name

● Channel axis name

● Machine axis name

Example:

Program code Comment

N10 FOCON[X] ; Modal activation of the torque limit

N20 X100 Y200 FXST[X]=15 ; X travels with reduced torque (15%)

N30 FXST[X]=75 X20 ; Changing the torque to 75%.

 ; X travels with this reduced torque.

N40 FOCOF[X] ; Disable torque limit

 F1: Travel to fixed stop
 5.2 Detailed description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 301

Block-related limit (FOC)
The part program command FOC activates the torque limit for a block.

An activation from a synchronized action takes effect up to the end of the current part
program block.

Priority FXS/FOC
An activation of FXS with FOC active has priority, i.e. FXS is executed.

A deselection of FXS will cancel the clamping.

A modal torque/force limitation remains active.

After POWER ON the activation takes effect with the machine data:

MD37010 $MA_FIXED_STOP_TORQUE_DEF

This torque can be changed at any time by programming FXST.

Synchronized actions
The language commands FOC, FOCON, FOCOF can also be programmed in synchronized actions
as the commands for "Travel to fixed stop".

Determine FOC status
The activation status can be read at any time via the status variable $AA_FOC.

If FXS is also activated, the status is not changed.

Value Meaning
0 FOC not active
1 FOC modal active
2 FOC non-modal active

Determine torque limit status
The system variables $VA_TORQUE_AT_LIMIT can be used at any time to read in systems
whether the currently active torque corresponds to the specified torque limit.

Value Meaning
0 Effective torque < torque limit value
1 Effective torque has reached the torque limit value

F1: Travel to fixed stop
5.2 Detailed description

 Basic Functions
302 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Restrictions
The FOC function is subject to the following restrictions:

● The change of the torque/force limitation represented as an acceleration limitation is
taken into account in the traversing motion only at the block limits (see command ACC).

● Only FOC:

No monitoring is possible from the NC/PLC interface to check that the active torque limit
has been reached.

● If the acceleration limitation is not adapted accordingly, an increase in the following error
occurs during the traversing motion.

● If the acceleration limitation is not adapted accordingly, the end-of-block position is
possibly reached later than specified in:
MD36040 $MA_STANDSTILL_DELAY_TIME
.

The machine data:
MD36042 $MA_FOC_STANDSTILL_DELAY_TIME
is introduced for this and monitored in this status.

Possible application for link and container axes
All axes that can be traversed in a channel, i.e. also link axes and container axes, can be
traversed to fixed stop.

References:
Function Manual, Extended Functions; Several Operator Panels on Multiple NCUs,
Distributed Systems (B3)

The status of the machine axis is kept in the case of a container rotation, i.e. a clamped
machine axis remains at the stop.

If a modal torque limitation has been activated with FOCON, this is kept for the machine axis
even after a container rotation.

 F1: Travel to fixed stop
 5.3 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 303

5.3 Examples

Static synchronized actions
Travel to limit stop (FXS) is initiated on request using an R parameter ($R1) in a static
synchronized action.

Program code Comment

N10 IDS=1 WHENEVER ; Static synchronized action 1:

(($R1==1) AND ; R1==1 (FXS for Y requested) AND

($AA_FXS[Y]==0)) DO ; Avoidance of multiple selection

; $AA_FXS[Y]==0 (axis not at limit): =>

$R1=0 FXS[Y]=1 ; Reset $R1, activate FXS for Y

FXST[Y]=10 ; Limit torque: 10%

FA[Y]=200 ; Axial feedrate Y: 200

POS[Y]=150 ; Positioning movement Y

N11 IDS=2 WHENEVER ; Static synchronized action 2:

($AA_FXS[Y]==4) DO ; $AA_FXS[Y]==4 (limit detected): =>

FXST[Y]=30 ; Limit torque: 30%

N12 IDS=3 WHENEVER ; Static synchronized action 3:

($AA_FXS[Y]==1) DO ; $AA_FXS[Y]==1 (limit reached successfully): =>

FXST[Y]=$R0 ; Limit torque: Value from R parameter $R0

N13 IDS=4 WHENEVER ; Static synchronized action 4:

(($R3==1) AND ; R3==1: Deselection of FXS for Y requested

($AA_FXS[Y]==1)) DO ; $AA_FXS[Y]==1 (limit reached successfully): =>

FXS[Y]=0 ; Deselect FXS

FA[Y]=1000 POS[Y]=0 ; Positioning movement Y

N20 FXS[Y]=0 G0 G90 X0 Y0 ; Set initial settings: FXS deselected,

X and Y at initial position

N30 RELEASE(Y) ; Release Y for movements in synchronized actions

...

N60 GET(Y) Include axis Y back into the path group

...

 Note
Avoidance of multiple selection for FXS

To avoid a multiple selection, we recommend that prior to activating FXS, query either the
$AA_FXS==0 system variable or a user-specific flag. See above, program example N10

F1: Travel to fixed stop
5.4 Data lists

 Basic Functions
304 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Block-related synchronized actions
Travel to limit stop is activated above a specific position of the traversing motion of the
following block

Program code Comment

N10 G0 G90 X0 ; Starting position

N20 WHEN $AA_IW[X]>17 DO FXS[X]=1 ; Above X > 17: Activate FXS for X

N30 G1 F200 X100 ; Traversing motion for X

 Note

A block-related synchronized action is machined together with the next main program block.

5.4 Data lists

5.4.1 Machine data

5.4.1.1 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
36042 FOC_STANDSTILL_DELAY_TIME Delay time, standstill monitoring for active

torque/force limiting
37000 FIXED_STOP_MODE Travel to fixed stop mode
37002 FIXED_STOP_CONTROL Sequence monitoring for travel to fixed stop
37010 FIXED_STOP_TORQUE_DEF Fixed stop clamping torque default setting
37012 FIXED_STOP_TORQUE_RAMP_TIME Time until the modified torque limit is reached
37020 FIXED_STOP_WINDOW_DEF Default for fixed stop monitoring window
37030 FIXED_STOP_THRESHOLD Threshold for fixed stop detection
37040 FIXED_STOP_BY_SENSOR Fixed stop detection via sensor
37050 FIXED_STOP_ALARM_MASK Enabling the fixed stop alarms
37052 FIXED_STOP_ALARM_REACTION Reaction to fixed stop alarms
37060 FIXED_STOP_ACKN_MASK Monitoring of PLC acknowledgments for travel to fixed

stop
37070 FIXED_STOP_ANA_TORQUE Torque limit on fixed stop approach for analog drives
37080 FOC_ACTIVATION_MODE. Initial setting of the modal torque/force limiting

 F1: Travel to fixed stop
 5.4 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 305

5.4.2 Setting data

5.4.2.1 Axis/spindle-specific setting data

Number Identifier: $SA_ Description
43500 FIXED_STOP_SWITCH Selection of travel to fixed stop
43510 FIXED_STOP_WINDOW Fixed stop clamping torque
43520 FIXED_STOP_TORQUE Fixed stop monitoring window

5.4.3 Signals

5.4.3.1 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Acknowledge fixed stop reached DB31,DBX1.1 DB380x.DBX1.1
Sensor for fixed stop DB31,DBX1.2 DB380x.DBX1.2
Axis/spindle disable DB31,DBX1.3 DB380x.DBX1.3
Controller enable DB31, … .DBX2.1 DB380x.DBX2.1
Enable travel to fixed stop DB31, … .DBX3.1 DB380x.DBX3.1

5.4.3.2 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate travel to fixed stop DB31,DBX62.4 DB390x.DBX2.4
Fixed stop reached DB31,DBX62.5 DB390x.DBX2.5

F1: Travel to fixed stop
5.4 Data lists

 Basic Functions
306 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 307

G2: Velocities, setpoint / actual value systems,
closed-loop control 6
6.1 Brief description

The description of functions explains how to parameterize a machine axis in relation to:

● Actual-value/measuring systems

● Setpoint system

● Operating accuracy

● Travel ranges

● Axis velocities

● Control parameters

6.2 Velocities, traversing ranges, accuracies

6.2.1 Velocities

Maximum path and axis velocities and spindle speed
The maximum path and axis velocities and spindle speed are influenced by the machine
design, the dynamic response of the drive and the limit frequency of the actual-value
acquisition (encoder limit frequency).

The maximum axis velocity is defined in machine data:

MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

The maximum permissible spindle speed is specified using machine data:

MD35100 $MA_SPIND_VELO_LIMIT (maximum spindle speed)

For explanations, see Section "S1: Spindles (Page 1225)".

With a high feedrate (resulting from programmed feedrates and feedrate override), the
maximum path velocity is limited to Vmax.

This automatic feedrate limiting can lead to a drop in velocity over several blocks with
programs generated by CAD systems with extremely short blocks.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.2 Velocities, traversing ranges, accuracies

 Basic Functions
308 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example:
Interpolation cycle = 12 ms

N10 G0 X0 Y0; [mm]

N20 G0 X100 Y100; [mm]

⇒ Path length programmed in block = 141.42 mm

⇒ Vmax = (141.42 mm/12 ms) * 0.9 = 10606.6 mm/s = 636.39 m/min

Minimum path, axis velocity
The following restriction applies to the minimum path or axis velocity:

The computational resolution is defined using machine data:
MD10200 $MN_INT_INCR_PER_MM (computational resolution for linear positions)

or
MD10210 $MN_INT_INCR_PER_DEG (computational resolution for angular positions)

If Vmin is not reached, no traversing is carried out.

Example:
MD10200 $MN_INT_INCR_PER_MM = 1000 [incr. /mm];

Interpolation cycle = 12 ms;

⇒ Vmin = 10 -3/(1000 incr/mm x 12 ms) = 0.005 mm/min;

The value range of the feedrates depends on the computational resolution selected.

For the standard assignment of machine data:

MD10200 $MN_INT_INCR_PER_MM
(computational resolution for linear positions) (1000 incr./mm)

or

MD10210 $MN_INT_INCR_PER_DEG

(computational resolution for angular positions) (1000 incr./deg.)

The following value range can be programmed with the specified resolution:

Range of values for path feed F and geometry axes:
Metric system: Inch system:
0.001 ≤ F ≤ 999,999.999
[mm/min, mm/rev, degrees/min, degrees/rev]

0.001 ≤ F ≤ 399,999.999 [inch/min, inch/rev]

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.2 Velocities, traversing ranges, accuracies

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 309

Range of values for feedrate for positioning axes:
Metric system: Inch system:
 0.001 ≤ FA ≤ 999,999.999
[mm/min, mm/rev, degrees/min, degrees/rev]

 0.001 ≤ FA ≤ 399,999.999
[inch/min, inch/rev]

Range of values for spindle speed S:
0.001 ≤ S ≤ 999,999.999 [rpm]

If the computational resolution is increased/decreased by a factor, then the value ranges
change accordingly.

6.2.2 Traversing ranges

Range of values of the traversing ranges
The range of values of the traversing range depends on the computational resolution
selected.

For the standard assignment of machine data:

MD10200 $MN_INT_INCR_PER_MM

(computational resolution for linear positions) (1000 incr./mm)

or

MD10210 $MN_INT_INCR_PER_DEG

(computational resolution for angular positions) (1000 incr./deg.)

The following value range can be programmed with the specified resolution:

Table 6- 1 Traversing ranges of axes

G71 [mm, degrees] G70 [inch, degrees]

Range Range
Linear axes X, Y, Z, etc. ∓ 999,999.999 ∓ 399,999.999
Rotary axes A, B, C, etc. ∓ 999,999.999 ∓ 999,999.999
Interpolation parameters I, J, K ∓ 999,999.999 ∓ 399,999.999

The unit of measurement of rotary axes is always degrees.

If the computational resolution is increased/decreased by a factor of 10, the ranges of values
change accordingly.

The traversing range can be limited by software limit switches and working areas (see
Section "A3: Axis Monitoring, Protection Zones (Page 79)").

For special features for a large traversing range for linear and rotary axes, see Section "R1:
Referencing (Page 1173)".

G2: Velocities, setpoint / actual value systems, closed-loop control
6.2 Velocities, traversing ranges, accuracies

 Basic Functions
310 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The traversing range for rotary axes can be limited via machine data.

References:

Function Manual, Extended Functions; Rotary Axes (R2)

6.2.3 Positioning accuracy of the control system

Actual-value resolution and computational resolution
The positioning accuracy of the control depends on the actual-value resolution (=encoder
increments/(mm or degrees)) and the computational resolution (=internal increments/(mm or
degrees)).

The coarse resolution of these two values determines the positioning accuracy of the control.

The input resolution, interpolator and position-control cycle selections have no effect on this
accuracy.

As well as limiting using MD32000, the control limits the maximum path velocity in relation to
the situation and according to the following formula:

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.2 Velocities, traversing ranges, accuracies

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 311

6.2.4 Input/display resolution, computational resolution

Resolutions: Differences
Resolutions, e.g. resolutions of linear and angular positions, velocities, accelerations and
jerk, must be differentiated as follows:

● Input resolution

Data is input via the control panel or part programs.

● Display resolution

Data is displayed via the control panel.

● Computational resolution

Data input via the control panel or part program is displayed internally.

The input and display resolution is determined by the specified operator panel front used,
whereby the display resolution for position values with the machine data:

MD9004 $MM_DISPLAY_RESOLUTION (display resolution)

can be changed.

The machine data:

MD9011 $MM_DISPLAY_RESOLUTION_INCH (display resolution for INCH measuring
system)

can be used to configure the display resolution for position values with inch setting.

This allows you to display up to six decimal places with the inch setting.

For the programming of part programs, the input resolutions listed in the Programming Guide
apply.

The desired computational resolution is defined using the machine data:

MD10200 $MN_INT_INCR_PER_MM (computational resolution for linear positions)

and

MD10210 $MN_INT_INCR_PER_ DEG (computational resolution for angular positions).

It is independent of the input/display resolution but should have at least the same resolution.

The maximum number of places after the decimal point for position values, velocities, etc., in
the part program and the number of places after the decimal point for tool offsets, zero
offsets, etc. (and therefore also for the maximum possible accuracy) is defined by the
computational resolution.

The accuracy of angle and linear positions is limited to the computational resolution by
rounding the product of the programmed value with the computational resolution to an
integer number.

To make the rounding clear, powers of 10 should be used for the calculation resolution.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.2 Velocities, traversing ranges, accuracies

 Basic Functions
312 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example of rounding:
Computational resolution: 1000 incr./mm

Programmed path: 97.3786 mm

Effective value: 97.379 mm

Example of programming in the 1/10 μm range:
All the linear axes of a machine are to be programmed and traversed within the range of
values 0.1 to 1000 μm.

⇒ In order to position accurately to 0.1 μm, the computational resolution must be set to ≥ 104

incr./mm.

⇒ MD10200 $MN_INT_INCR_PER_MM = 10000 [incr./mm]:

⇒ Example of related part program:

Program code Comment

N20 G0 X 1.0000 Y 1.0000 ; Axes travel to the position

X=1.0000 mm, Y=1.0000 mm;

N25 G0 X 5.0002 Y 2.0003 ; Axes travel to the position

X=5.0002 mm, Y=2.0003 mm

6.2.5 Scaling of physical quantities of machine and setting data

Input/output units
Machine and setting data that possess a physical quantity are interpreted in the input/output
units below depending on whether the metric or inch system is selected:

Physical quantity: Input/output units for standard basic system:
 Metric Inch
Linear position 1 mm 1 inch
Angular position 1 degree 1 degree
Linear velocity 1 mm/min 1 inch/min
Angular velocity 1 rpm 1 rpm
Linear acceleration 1 m/s2 1 inch/s2
Angular acceleration 1 rev./s2 1 rev./s2
Linear jerk 1 m/s3 1 inch/s3
Angular jerk 1 rev./s3 1 rev./s3
Time 1 s 1 s
Position controller servo gain 1/s 1/s
Rev. feedrate 1 mm/rev inch/rev

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.2 Velocities, traversing ranges, accuracies

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 313

Physical quantity: Input/output units for standard basic system:
 Metric Inch
Compensation value linear
position

1 mm 1 inch

Compensation value angular
position

1 degree 1 degree

The units listed below are used for storage. The control always uses these units internally
irrespective of the basic system selected.

Physical quantity: Internal unit:
Linear position 1 mm
Angular position 1 degree
Linear velocity 1 mm/s
Angular velocity 1 deg./s
Linear acceleration 1 mm/s2
Angular acceleration 1 degree/s2
Linear jerk 1 mm/s3
Angular jerk 1 degree/s3
Time 1 s
Position controller servo gain 1/s
Rev. feedrate 1 mm/degree
Compensation value linear position 1 mm
Compensation value angular position 1 degree

The user can define different input/output units for machine and setting data.

For this, the machine data:

MD10220 $MN_SCALING_USER_DEF_MASK

(activation of scaling factors)

and

MD10230 $MN_SCALING_FACTORS_USER_DEF[n]

(Scaling factors of physical quantities)

allow you to set the adaptation between the newly selected input/output units and the
internal units.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.2 Velocities, traversing ranges, accuracies

 Basic Functions
314 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following applies:

Selected input/output unit = MD10230 * internal unit

In the machine data:

MD10230 $MN_SCALING_FACTORS_USER_DEF[n]

the selected input/output unit printed in each case in the internal units 1mm, 1 degree and 1
s must be input.

Example 1:
Machine data input/output of the linear velocities is to be in m/min instead of mm/min (initial
state).

(The internal unit is mm/s)

⇒ The scaling factor for the linear velocities is to differ from the standard setting. For this

in the machine data:
MD10220 $MN_SCALING_USER_DEF_MASK
the bit number 2 must be set.

 ⇒ MD10220 $MN_SCALING_USER_DEF_MASK = 'H4'; (bit no. 2 as hex value)

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.2 Velocities, traversing ranges, accuracies

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 315

⇒ The scaling factor for the linear velocities is to differ from the standard setting. For this

in the machine data:
MD10220 $MN_SCALING_USER_DEF_MASK
the bit number 2 must be set.

 ⇒ MD10220 $MN_SCALING_USER_DEF_MASK = 'H4'; (bit no. 2 as hex value)

⇒ The scaling factor is calculated using the following formula:

Index n defines the "linear velocity" in the "Scaling factors of physical quantities" list.

Example 2:
In addition to the change in Example 1, the machine data input/output of linear accelerations
must be in ft/s2 instead of m/s2 (initial state).
(The internal unit is mm/s2.)

Index 4 defines the "linear acceleration" in the "Scaling factors of physical quantities" list.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.3 Metric/inch measuring system

 Basic Functions
316 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

6.3 Metric/inch measuring system

6.3.1 Conversion of basic system by part program

Programmable switchover in the measuring system
The basic system can be switched over within a part program via the G functions
G70/G71/G700/G710 (G group 13). The programmed measuring system (G70/G71/G700/G710) and
the basic system may be identical or different at any time. When the measuring system is
switched over within a particular section of the part program, this would enable an inch
thread to be processed on a workpiece within a metric basic system, for example.

The following section of the part program is executed in "metric" in the basic system:
MD10240 $MN_SCALING_SYSTEM_IS_METRIC = 1

Program code Comment

N100 G71 ;

;

;

Switchover to metric processing

The conversion factor does not come into effect because the

programmed

measuring system does not differ from the basic system

.... ; Metric processing

N200 G70 ;

;

Switchover to processing in inches

The conversion factor comes into effect

... ; Processing in inches

N300 ; Switchover to metric processing

... ; Metric processing

Initial state of the G functions
The initial state for the G functions can be set via the following machine data on a channel-
specific basis:
MD20150 $MC_GCODE_RESET_VALUES[12] (reset position for G group 13)

When changing the measuring system via the HMI user interface, the reset position is
automatically preconfigured for compatibility with the new measuring system via G700 or G710.

Displaying length-related data on the HMI
Length-related data is displayed on the HMI in the configured basic system
MD10240 $MN_SCALING_SYSTEM_IS_METRIC (metric basic system).

The following length-related data is displayed in the configured basic system:
● Machine data
● Data in the machine coordinate system
● Tool data
● Zero offsets

The following length-related data is displayed in the programmed measuring system:
● Data in the workpiece coordinate system

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.3 Metric/inch measuring system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 317

Reading in part programs from external sources
If part programs, including data sets (zero offsets, tool offsets, etc.), programmed in a
different measuring system from the basic system are read in from an external source, the
initial state must first be changed via machine data MD10240.

NC/PLC interface signals
In the case of NC/PLC interface signals containing dimension information, e.g. feedrate for
path and positioning axes, data exchange is carried out with the PLC in the configured basic
system.

G functions G700/G710
The G functions G700/G710 extend the functionality of G70/G71 as follows:

1. The feedrate is interpreted in the programmed measuring system:

– G700: length parameters [inch]; feedrates [inch/min]

– G710: length parameters [mm]; feedrates [mm/min]

The programmed feedrate is modal and therefore remains active after subsequent
G70/G71/G700/G710 commands. If the feedrate is to apply in the new G70/G71/G700/G710
context, it must be re-programmed.

2. System variables and machine data specifying lengths in the part program are read and
written in the programmed measuring system.

Differences during the reading and writing of machine data and system variables
The following differences exist between G70/G71 and G700/G710 in terms of reading and writing
machine data and system variables in the part program:

● G70/G71: Reading and writing takes place in the configured basic system.

● G700/G710: Reading and writing takes place in the configured measuring system.

Example
The following part program is executed with an initial metric state:
MD10240 $MN_SCALING_SYSTEM_IS_METRIC = 1

Program code Comment

N100 R1=0 R2=0 ;

N120 G01 G70 X1 F1000 ; Prog. meas. system: inch

N130 $MA_LUBRICATION_DIST[X]=10 ; MD = 10 [mm] (basic system)

N150 IF ($AA_IW[X]>$MA_LUBRICATION_DIST[X]) ; SYS [mm] > MD [mm] (both basic system)

N160 R1=1 ;

N170 ENDIF ;

N180 IF ($AA_IW[X]>10) ;

;

SYS [mm] (basic system) > 10 [inch]

(prog. meas. system)

G2: Velocities, setpoint / actual value systems, closed-loop control
6.3 Metric/inch measuring system

 Basic Functions
318 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

N190 R2=1 ;

N200 ENDIF ;

N210 IF ((R1+R2) = 1) ;

;

Alarm if only one of the two

conditions (N150, N180) is TRUE

N220 SETAL(61000) ;

N230 ENDIF ;

N240 M30 ;

N120: if G70 is replaced by G700, alarm 61000 (N220) does not occur.

Synchronized actions
To ensure in the case of synchronized actions that the current part program context does not
determine the measuring system used in the condition and/or action part, the measuring
system must be defined within the synchronized action (condition and/or action parts). This
is the only way of achieving defined, reproducible behavior in the use of length-related data
within a synchronized action.

Example 1
The measuring system is not specified within the synchronized action. Therefore, the
traversing motion of the X axis takes place in the measuring system of the configured initial
state:

Program code Comment

N100 R1=0 ;

N110 G0 X0 Z0 ;

N120 WAITP(X) ;

N130 ID=1 WHENEVER $R1==1 DO POS[X]=10 ;

;

X = 10 inch or mm, depending on the

rest of the part program

N140 R1=1 ;

N150 G71 Z10 F10 ; Z = 10 mm X = 10 mm

N160 G70 Z10 F10 ; Z = 10 inch X = 10 inch

N170 G71 Z10 F10 ; Z = 10 mm X = 10 mm

N180 M30 ;

Example 2
The "metric" measuring system is explicitly programmed with G71 within the synchronized
action. This means the traversing motion of the X axis takes place in the metric measuring
system:

Program code Comment

N100 R1=0 ;

N110 G0 X0 Z0 ;

N120 WAITP(X) ;

N130 ID=1 WHENEVER $R1==1 DO G71 POS[X]=10 ;

;

X = 10 mm, independent of the

rest of the part program

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.3 Metric/inch measuring system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 319

Program code Comment

N140 R1=1 ;

N150 G71 Z10 F10 ; Z = 10 mm X = 10 mm

N160 G70 Z10 F10 ; Z = 10 inch X = 10 mm

N170 G71 Z10 F10 ; Z = 10 mm X = 10 mm

N180 M30 ;

Reading and writing of data in the case of G70/G71 and G700/G710 in the part program

Data area G70/G71 G700/G710
 Read Write Read Write
Display, decimal places (WCS) P P P P
Display, decimal places (MCS) G G G G
Feedrates G G P P
Positional data X, Y, Z P P P P
Interpolation parameters I, J, K P P P P
Circle radius (CR) P P P P
Polar radius (RP) P P P P
Thread pitch P P P P
Programmable FRAME P P P P
Settable FRAMES G G P P
Basic frames G G P P
External zero offsets G G P P
Axial preset offset G G P P
Operating range limit (G25/G26) G G P P
Protection zones P P P P
Tool offsets G G P P
Length-related machine data G G P P
Length-related setting data G G P P
Length-related system variables G G P P
GUD G G G G
LUD G G G G
PUD G G G G
R parameters G G G G
Siemens cycles P P P P
Jog/handwheel increment factor G G G G
P: Data is read/written in the programmed measuring system
G: Writing/reading takes place in the configured basic system.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.3 Metric/inch measuring system

 Basic Functions
320 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note
Read position data in synchronized actions

If a measuring system has not been explicitly programmed in the synchronized action
(condition component and/or action component) length-related position data in the
synchronized action are always read in the parameterized basic system.

References:
Programming Manual, Fundamentals; List of Addresses

NC-specific conversion factor
The default conversion factor in the machine data:

MD10250 $MN_SCALING_VALUE_INCH (conversion factor for switchover to inch system)

is set to 25.4 for converting from the metric to the inch measuring system. By changing the
conversion factor, the control system can also be adapted to customer-specific measuring
systems.

Axis-specific conversion factor
The default conversion factor in the axis-specific machine data:

MD31200 $MA_SCALING_FACTOR_G70_G71 (conversion factor when G70/G71 is active)

is set to 25.4 for converting from the metric to the inch measuring system. By changing the
conversion factor, the control system can also be adapted to customer-specific measuring
systems on an axis-specific basis.

6.3.2 Manual switchover of the basic system

General
The control system can operate with the metric or inch measuring system. The initial setting
of the measuring system (basic system) is defined using the following machine data:

MD10240 $MN_SCALING_SYSTEM_IS_METRIC (basic system metric).

Depending on the basic system, all length-related data is interpreted either as metric or inch
measurements.

The relevant softkey on the HMI in the "Machine" operating area is used to change the
measuring system of the controller.

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.3 Metric/inch measuring system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 321

The change in the measuring system occurs only under the following supplementary
conditions:

● MD10260 $MN_CONVERT_SCALING_SYSTEM=1

● Bit 0 of MD20110 $MC_RESET_MODE_MASK is set in every channel.

● All channels are in the Reset state.

● Axes do not traverse with JOG, DRF or PLC.

● Constant grinding wheel peripheral speed (GWPS) is not active.

Actions such as part program start or mode change are disabled for the duration of the
measuring system changeover.

If the measuring system cannot be changed, this is indicated by a message to that effect on
the user interface. These measures ensure that a consistent set of data is always used for a
running program with reference to the measuring system.

The actual change in the measuring system is made by writing all the necessary machine
data and subsequently activating them with a RESET.

The machine data:

MD10240 $MN_SCALING_SYSTEM_IS_METRIC

and the corresponding G70/G71/G700/G710 settings in the machine data:

MD20150 $MN_GCODE_RESET_VALUES

are automatically switched over consistently for all configured channels.

During this process, the value in machine data:

MD20150 $MC_GCODE_RESET_VALUES[12]

changes between G700 and G710.

This process takes place independently of the protection level currently set.

 Note

The availability of the softkey and, therefore, its functionality, can be configured using the
compatibility machine data:

MD10260 $MN_CONVERT_SCALING_SYSTEM

If several NCUs are linked by NCU-link, the switchover has the same effect on all linked
NCUs. If the requirements for a switchover are not fulfilled on one of the connected NCUs,
no switchover will take place on any of the NCUs. It is assumed that interpolations between
several NCUs will take place on the existing NCUs, whereby the interpolations can provide
correct results only if the same unit systems are used.

References:

Function Manual, Extended Functions; Several Control Panels on Multiple NCUs, Distributed
Systems (B3)

G2: Velocities, setpoint / actual value systems, closed-loop control
6.3 Metric/inch measuring system

 Basic Functions
322 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System data
When changing over the measuring system, from the view of the user, all length-related
specifications are converted to the new measuring system automatically.

This includes:

● Positions

● Feedrates

● Accelerations

● Jerk

● Tool offsets

● Programmable, settable and external zero offsets and DRF offsets

● Compensation values

● Protection zones

● Machine data

● Jog and handwheel factors

After the changeover, all of the above data is available in physical quantities.

Data, for which no unique physical units are defined, is not converted automatically.

This includes:

● R parameters

● GUDs (Global User Data)

● LUDs (Local User Data)

● PUDs (Program global User Data)

● Analog inputs/outputs

● Data exchange via FC21

In this case, the user is requested to take into account the currently valid system of units:

MD10240 $MN_SCALING_SYSTEM_IS_METRIC

The current system of units setting can be read using the signal:

DB10 DBX107.7 (inch measuring system)

Using the signal:

DB10 DBB71 (change counter, system of units inch/metric)

the "system of units change counter" can be read out

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.3 Metric/inch measuring system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 323

● The system of units for sag compensation is configured using:

MD32711 $MA_CEC_SCALING_SYSTEM_METRIC

References:
Function Manual Extended Functions; Compensations (K3)

● The measuring system for positional data of the indexing axis tables and switching points
for software cams is configured in machine data element:
MD10270 $MN_POS_TAB_SCALING_SYSTEM.

References:
Function Manual, Extended Functions; Software Cams, Limit Switching Signals (N3) /
Indexing Axes (T1)

User tool data
For user-defined tool data:

MD18094 $MN_MM_NUM_CC_TDA_PARAM

and tool cutting edge data:

MD18096 $MN_MM_NUM_CC_TOA_PARAM

additional machine data sets are introduced:

MD10290 $MN_CC_TDA_PARAM_UNIT [MM_NUM_CC_TDA_PARAM]

MD10292 $MN_CC_TOA_PARAM_UNIT [MM_NUM_CC_TOA_PARAM]

A physical unit can be configured using these machine data. All length-related user-defined
tool data is automatically converted to the new measuring system according to the input on
switchover.

Reference point
The reference point is retained. It is not necessary to repeat referencing.

Input resolution and computational resolution
The input/computational resolution is set in the controller using machine data:

MD10200 $MN_INT_INCR_PER_MM

Default settings:

Metric system Inch system
1000 (0.001 mm) 0.0001

Example:

1 inch = 25.4 mm ⇒ 0.0001 inch = 0.00254 mm = 2.54 μm

To be able to program and display the last 40 mm, MD10200 must be assigned a value of
100000.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.3 Metric/inch measuring system

 Basic Functions
324 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Only with this identical setting for both measuring systems is it possible to change the
measuring system without a significant loss of accuracy. Once MD10200 has been set to this
value, it will not need to be changed each time the measuring system is switched over.

JOG and handwheel factor
The machine data:

MD31090 $MA_JOG_INCR_WEIGHT

consists of two values containing axis-specific increment weighting factors for each of the
two measuring systems.

Depending on the actual setting in machine data:

MD10240 $MN_SCALING_SYSTEM_IS_METRIC

the controller automatically sets the appropriate value.

The user defines the two increment factors, e.g. for the first axis, during the installation and
startup phase:

● Metric:

MD31090 $MA_JOG_INCR_WEIGHT[0;AX1]=0.001 mm

● Inch:

MD31090 $MA_JOG_INCR_WEIGHT[1;AX1]=0.00254 mm ≙ 0.0001 inch

In this way, MD31090 does not have to be written on every inch/metric switchover.

Remaining distances are not accumulated during incremental traversing with JOG when the
measuring system is changed, since all internal positions always refer to mm.

Data backup
Data sets which can be separately read out of the controller and have data where the system
of units is relevant, receive - when reading - as a function of machine data:

MD10260 $MN_CONVERT_SCALING_SYSTEM

an INCH or METRIC identification corresponding to machine data:

MD10240 $MN_SCALING_SYSTEM_IS_METRIC

This specifies the measuring system in which the data were originally read out.

This information is intended to prevent data sets from being read into the control system with
a measuring system, which is different from the active system. In this case, alarm 15030 is
triggered and the write process is interrupted.

Since the language instruction is also evaluated in part programs, these can also be
"protected" against operator errors as described above. You can, therefore, prevent part
programs containing only metric data, for example, from running on an inch measuring
system.

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.3 Metric/inch measuring system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 325

Archive and machine data sets are downwards compatible for a setting:

MD11220 $MN_INI_FILE_MODE = 2

 Note

The INCH/METRIC operation is only generated if the compatibility machine data:

MD10260 $MN_CONVERT_SCALING_SYSTEM

is set.

Rounding machine data
All length-related machine data is rounded to the nearest 1 pm when writing in the inch
measuring system (MD10240 $MN_SCALING_SYSTEM_IS_METRIC=0 and MD10260
$MN_CONVERT_SCALING_SYSTEM=1), in order to avoid rounding problems.

The disturbing loss of accuracy which occurs as a result of conversion to ASCII when
reading out a data backup in the inch system of measurement, is corrected by this procedure
when the data is read back into the system.

6.3.3 FGROUP and FGREF

Programming
It should be possible to program the effective machining feedrate in the usual way as a path
feedrate via the F value in processing procedures where the tool, the workpiece or both are
moved by a rotary axis (e.g. laser machining of rotating tubes).

In order to achieve this, it is necessary to specify an effective radius (reference radius) for
each of the rotary axes involved. You can do this by programming the modal NC address:
FGREF[<rotary axis>]=<reference radius>

The unit of the reference radius depends on the G70/G71/G700/G710 setting.

In order to include the axes in the calculation of the path feedrate, they must all be specified
in the FGROUP command.

In order to ensure compatibility with the behavior with no FGREF programming, the evaluation
1 degree = 1 mm is activated on system powerup and RESET.

This corresponds to a reference radius of:

FGREF = 360 mm / (2π) = 57.296 mm

This default is independent of the active basic system
(MD10240 $MN_SCALING_SYSTEM_IS_METRIC) and the currently active
G70/G71/G700/G710 setting.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.3 Metric/inch measuring system

 Basic Functions
326 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Special features of the feedrate weighting for rotary axes in FGROUP:

Program code

N100 FGROUP(X,Y,Z,A)

N110 G1 G91 A10 F100

N120 G1 G91 A10 X0.0001 F100

The programmed F value in block N110 is evaluated as a rotary axis feedrate in degrees/min,
while the feedrate weighting in block N120 is either 100 inch/min or 100 mm/min, depending
on the current inch/metric setting.

NOTICE
Different systems of units

The FGREF factor also works if only rotary axes are programmed in the block. The normal F
value interpretation as degree/min applies in this case only if the radius reference
corresponds to the FGREF default:
• For G71/G710: FGREF[A]=57.296
• For G70/G700: FGREF[A]=57.296/25.4

Example

The following example is intended to demonstrate the effect of FGROUP on the path and path
feedrate. The variable $AC_TIME contains the time of the block start in seconds. It can only be
used in synchronized actions.

Program code Comment

N100 G0 X0 A0

N110 FGROUP(X,A)

N120 G91 G1 G710 F100 ; Feedrate = 100 mm/min or 100 degrees/min

N130 DO $R1=$AC_TIME

N140 X10 ; Feedrate = 100 mm/min, path = 10 mm, R1 = approx. 6

s

N150 DO $R2=$AC_TIME

N160 X10 A10 ; Feedrate = 100 mm/min, path = 14.14 mm, R2 = approx.

8 s

N170 DO $R3=$AC_TIME

N180 A10 ; Feedrate = 100 degrees/min, path = 10 degrees, R3

= approx. 6 s

N190 DO $R4=$AC_TIME

N200 X0.001 A10 ; Feedrate = 100 mm/min, path = 10 mm, R4 = approx. 6

s

N210 G700 F100 ; Feedrate = 2540 mm/min or 100 degrees/min

N220 DO $R5=$AC_TIME

N230 X10 ; Feedrate = 2540 mm/min, path = 254 mm, R5 = approx.

6 s

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.3 Metric/inch measuring system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 327

Program code Comment

N240 DO $R6=$AC_TIME

N250 X10 A10 ; Feedrate = 2540 mm/min, path = 254.2 mm, R6

= approx. 6 s

N260 DO $R7=$AC_TIME

N270 A10 ; Feedrate = 100 degrees/min, path = 10 degrees, R7

= approx. 6 s

N280 DO $R8=$AC_TIME

N290 X0.001 A10 ; Feedrate = 2540 mm/min, path = 10 mm, R8 = approx.

0.288 s

N300 FGREF[A]=360/(2*$PI) ; Set 1 degree = 1 inch via the effective radius

N310 DO $R9=$AC_TIME

N320 X0.001 A10 ; Feedrate = 2540 mm/min, path = 254 mm, R9 = approx.

6 s

N330 M30

Diagnostics
Read reference radius

The value of the reference radius of a rotary axis can be read using system variables:

● For the display in the user interface, in synchronized actions or with a preprocessing stop
in the part program via the system variable:

 $AA_FGREF[<axis>] Current main run value

● Without preprocessing stop in the part program via the system variable:

 $PA_FGREF[<axis>] Programmed value

If no values are programmed, the default 360 mm / (2π) = 57.296 mm (corresponding to
1 mm per degree) will be read in both variables.

For linear axes, the value in both variables is always 1 mm.

Read path axes affecting velocity

The axes involved in path interpolation can be read using system variables:

● For the display in the user interface, in synchronized actions or with a preprocessing stop
in the part program via the system variables:

 $AA_FGROUP[<axis>] Returns the value "1" if the specified axis affects the path

velocity in the current main run record by means of the
basic setting or through FGROUP programming. Otherwise,
the variable returns the value "0".

 $AC_FGROUP_MASK Returns a bit key of the channel axes programmed with
FGROUP which are to affect the path velocity.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
328 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Without preprocessing stop in the part program via system variables:

 $PA_FGROUP[<axis>] Returns the value "1" if the specified axis affects the path

velocity by means of the basic setting or through FGROUP
programming. Otherwise, the variable returns the value
"0".

 $P_FGROUP_MASK Returns a bit key of the channel axes programmed with
FGROUP which are to affect the path velocity.

6.4 Setpoint/actual-value system

6.4.1 General

Control loop
A control loop with the following structure can be configured for every closed-loop controlled
axis/spindle:

Figure 6-1 Block diagram of a control loop

Setpoint output
A setpoint telegram can be output for each axis/spindle. The setpoint output to the actuator
is realized from the SINUMERIK 840D sl.

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 329

Actual-value acquisition
A maximum of two measuring systems can be connected for each axis/spindle, e.g. a direct
measuring system for machining processes with high accuracy requirements and an indirect
measuring system for high-speed positioning tasks.

The number of encoders used is recorded in the machine data:

MD30200 $MA_NUM_ENCS (number of encoders)

In the case of two actual-value branches, the actual value is acquired for both branches.

The active measuring system is always used for position control, absolute value calculation
and display. If both measuring systems are activated at the same time by the PLC interface,
positioning measuring system 1 is chosen internally by the controller.

Reference point approach is executed by the selected measuring system.

Each position measuring system must be referenced separately.

For an explanation of encoder monitoring, see Section "A3: Axis Monitoring, Protection
Zones (Page 79)".

For an explanation of actual-value acquisition compensation functions, see:
References:
Function Manual, Extended Functions; Compensations (K3)

Switching between measuring systems
One can switch between the two measuring systems through the following NC/PLC interface
signals:

DB31, ... DBX1.5 (position measuring system 1)

DB31, ... DBX1.6 (position measuring system 2)

For further information, see Section "A2: Various NC/PLC interface signals and functions
(Page 33)".

It is possible to switch over measuring systems at any time, the axes do not have to be
stationary to do this. Switchover only takes place if a permissible deviation between the
actual values and the two measuring systems has not been violated.

The associated tolerance is entered in the machine data:

MD36500 $MA_ENC_CHANGE_TOL (max. tolerance on position actual value switchover)

On switchover, the current difference between position measuring system 1 and 2 is
traversed immediately.

Monitoring
The permissible deviation between the actual values of the two measuring systems is to be
entered in the machine data:

MD36510 $MA_ENC_DIFF_TOL

For the cyclic comparison of the two measuring systems used, this difference must not be
exceeded, as otherwise Alarm 25105 "Measuring systems deviate" is generated.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
330 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

If the axis is not referenced (at least in the current control measuring system), then the
related monitoring is not active if MD36510 = 0 or if neither of the two measuring systems in
the axis is active/available.

Types of actual-value acquisition
The used encoder type must be defined through the following machine data:

MD30240 $MA_ENC_TYPE (type of actual-value acquisition (actual position value))

Simulation axes
The speed control loop of an axis can be simulated for test purposes.

The axis "traverses" with a following error, similar to a real axis.

A simulation axis is defined by setting the two following machine data to "0":

MD30130 $MA_CTRLOUT_TYPE[n] (output value of setpoint)

MD30240 $MA_ENC_TYPE[n] (type of actual-value acquisition)

As soon as the standard machine data has been loaded, the axes become simulation axes.

The setpoint and actual value can be set to the reference point value with reference point
approach.

The machine data:

MD30350 $MA_SIMU_AX_VDI_OUTPUT (output of axis signals with simulation axes)

can be used to define whether the axis-specific interface signals are to be output on the PLC
during the simulation.

Actual-value correction
If actual-value corrections performed by the NC on the encoder selected for position control
do not influence the actual value of another encoder defined in the same axis, then this
encoder is to be declared as "independent" via the following machine data:

MD30242 $MA_ENC_IS_INDEPENDENT

Actual-value corrections include the following:

● Modulo treatment

● Reference point approach

● Measuring system comparison

● PRESET

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 331

6.4.2 Setpoint and encoder assignment

Setpoint marshalling
The following machine data are relevant for the setpoint assignment of a machine axis.

MD30100 $MA_CTRLOUT_SEGMENT_NR[n]
Setpoint assignment, bus segment
System Value Meaning
840D sl 5 PROFIBUS-DP / PROFINET (default)

MD30110 $MA_CTRLOUT_MODULE_NR[n]
Setpoint assignment: Drive number / module number
System Value Meaning
840D sl x Index x of MD13050 $MN_DRIVE_LOGIC_ADDRESS[x] should be entered,

which refers to the connected drive.
MD30110 $MA_CTRLOUT_MODULE_NR[n] = x, refers to:
MD13050 $MN_DRIVE_LOGIC_ADDRESS[x]
Note
The machine data is of no significance if the drive is simulated (MD30130
$MA_CTRLOUT_TYPE[n] = 0).

MD30120 $MA_CTRLOUT_NR[n]
Setpoint assignment: Setpoint output on drive module/module
System Value Meaning
840D sl 1 Modular drive at PROFIBUS / PROFINET with PROFIdrive profile (default)

MD30130 $MA_CTRLOUT_TYPE[n]
Setpoint output type
System Value Meaning

0 Simulation (operation without drive) 840D sl
1 Setpoint output active

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
332 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Encoder assignment
The following machine data are relevant for assigning the encoder information of the drive -
transferred in the PROFIdrive telegram - to the encoder inputs of the machine axis:

MD30210 $MA_ENC_SEGMENT_NR[n]
Actual value assignment, bus segment
System Value Meaning
840D sl 5 PROFIBUS-DP / PROFINET

MD30220 $MA_ENC_MODULE_NR[n]
Actual value assignment: Drive module number/measuring circuit number
System Value Meaning
840D sl x The number of the drive assigned using MD13050

$MN_DRIVE_LOGIC_ADDRESS[x] should be entered.
MD30220 $MA_ENC_MODULE_NR[n] = x, refers to:
MD13050 $MN_DRIVE_LOGIC_ADDRESS[x]

MD30230 $MA_ENC_INPUT_NR[n]
Actual value assignment: Input on drive module/measuring circuit module
System Value Meaning
840D sl x Number of the encoder interface within the PROFIdrive telegram

Examples
PROFIdrive telegram 103
x = 1 → 1st encoder interface (G1_ZSW, G1_XIST1, G1_XIST2)
x = 2 → 2nd encoder interface (G2_ZSW, G2_XIST1, G2_XIST2)
PROFIdrive telegram 118
x = 1 → 1st encoder interface (G2_ZSW, G2_XIST1, G2_XIST2)
x = 2 → 2nd encoder interface (G3_ZSW, G3_XIST1, G3_XIST2)
Note
For SINAMICS S120:
 - encoder 1 (G1_...): Motor encoder
 - encoder 2 (G2_...): Direct measuring system
 - encoder 3 (G3_...): Additional measuring system

MD30240 $MA_ENC_TYPE[n]
Encoder type of the actual value sensing (position actual value)
System Value Meaning

0 Simulation (operation without encoder)
1 Incremental encoder

840D sl

4 Absolute encoder
Note
Corresponds with PROFIdrive parameter p979

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 333

MD30242 $MA_ENC_IS_INDEPENDENT[n, axis]
Encoder is independent
System Value Meaning

0 The encoder is not independent.
1 The encoder is independent.

If the actual-value corrections, which are made for the encoder selected for the
position control, are not to influence the actual value of the second encoder
defined in the same axis, then this should be declared as independent.
Actual value corrections are:
• - Modulo handling
• - Reference point approach
• - Measuring system alignment
• - PRESET

Example: One axis, 2 encoders, the 2nd encoder is independent
MD30200 $MA_NUM_ENCS[AX1] = 2
MD30242 $MA_ENC_IS_INDEPENDENT[0, AX1] = 0
MD30242 $MA_ENC_IS_INDEPENDENT[1, AX1] = 1
Selection, position measuring system 1 / 2: DB31.DBX1.5 / 1.6
If encoder 1 is selected for closed-loop position control, then the actual value
corrections are only performed on this encoder, as encoder 2 is independent.
If encoder 2 is selected for position control, then the actual value corrections
are performed on both encoders, as encoder 1 is not independent.
This means that the machine data only has an effect on the passive encoder
of a machine axis.

2 The passive encoder is dependent.
The encoder actual value is changed by the active encoder. In combination
with MD35102 $MA_REFP_SYNC_ENCS = 1, for reference point approach,
the passive encoder is aligned to the active encoder - but is NOT referenced.
In the referencing mode MD34200 $MA_ENC_REFP_MODE = 3 (distance-
coded reference marks) the passive encoder is automatically referenced with
the next traversing motion after passing the zero mark distance. This is done
independent of the actual operating mode setting.

840D sl

3 The encoder is independent.
For modulo rotary axes, modulo actual value corrections are also performed in
the passive encoder.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
334 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note
Machine data index [n]

The machine data index [n] for encoder assignment has the following meaning:
• n = 0: The first encoder assigned to the machine axis
• n = 1: Second encoder assigned to the machine axis

The assignment is made using machine data:
• MD30220$MA_ENC_MODULE_NR[n]
• MD30230$MA_ENC_INPUT_NR[n]

6.4.3 Adapting the motor/load ratios

Gear types
The following gear types are available for adapting the mechanical ratios:

Gear type Activation Adaptation Installation location
Motor/load gear Parameter set Fixed configuration Gear unit
Measuring gear encoder Power ON Sensor-dependent Sensor-side
Load intermediate gear unit NewConfig Load-dependent Tool-side

Local position of gear unit/encoder

=

=

Figure 6-2 Gear unit types and encoder locations

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 335

Motor/load gear
The motor/load gear supported by SINUMERIK is configured via the following machine data:

MD31060 $MA_DRIVE_AX_RATIO_NUMERA (numerator load gearbox)

MD31050 $MA_DRIVE_AX_RATIO_DENOM (denominator load gearbox)

The transmission ratio is obtained from the numerator/denominator ratio of both machine
data. The associated parameter sets are used automatically as default by the controller to
synchronize the position controller with the relevant transmission ratios.

Since a gear stage change is not always carried out automatically, and there are also
several ways to request a gear stage change, the position controller is not always
incorporated via parameter sets.

 Note

For further information about the parameter sets for gear stage change, see Section "S1:
Spindles (Page 1225)".

Intermediate gear
Additional, configurable load intermediate gears are also supported by the controller:

MD31066 $MA_DRIVE_AX_RATIO2_NUMERA (intermediate gear numerator)

MD31064 $MA_DRIVE_AX_RATIO2_DENOM (intermediate gear denominator)

Power tools generally have their "own" intermediate gear. Such variable mechanics can be
configured by multiplying the active intermediate gearbox and the motor/load gearbox.

CAUTION
Different gearbox transmission ratios for switching

Unlike the motor/load gear, there is no parameter set for the intermediate gear and,
therefore, no way of controlling the time-synchronized switchover to the part program or
PLC (NC/PLC interface). Part programming during gear change is, therefore, ruled out. It
remains the task of the user to match the synchronization of the relevant changed machine
data to the corresponding mechanical switchover and activate it. On switchover during a
motion, compensations cannot be ruled out due to jumps in the scaling factors. These are
not monitored for violation of the maximum acceleration.

Encoder directly at the tool

Another connection option is possible for a "tool-side encoder" on the intermediate gear, by
configuring machine data:

MD31044 $MA_ENC_IS_DIRECT2

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
336 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Encoder not directly at the tool

The following supplementary conditions apply to a gear change of the intermediate gear in
position-control mode:

● The gear ratio to be changed is incorporated in a re-scaling of the encoder information in
this case.

In this case, the following applies to axes/spindles in positioning mode:

● A non-abrupt gear change is only possible at zero speed.

To do this, the tool-side position before and after a gear change are set equal for a
change in the ratio, since the mechanical position does not (or hardly) change during a
gear stage change.

Recommendation:

To avoid 21612 "Controller enable reset during motion", changeover should be carried
out "only at zero speed". It is still permissible and expedient to switch the axis or spindle
to speed-control or follow-up mode before or during a gear change.

Boundary conditions
If the encoder to be used for position control is connected directly at the tool, the gear stage
change only affects the physical quantities at the speed interface between the NC and the
drive of the motor/load gear. The internal parameter sets are not changed.

Reference point and position reference

CAUTION
Loss of the position reference

The controller cannot detect all possible situations that can lead to loss of the machine
position reference. Therefore, it is the responsibility of the commissioning engineer or user
to initiate explicit referencing of zero marker synchronization in such cases.

In the case of gear changes, it is not possible to make a statement about the effect of the
reference point or machine position reference on the encoder scaling. In such cases, the
controller partially cancels the status "Axis referenced/synchronized".

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 337

If the position reference to the machine, tool, etc., has been lost, it must first be restored
through appropriate adjustment or referencing of the lost reference point. This is especially
important for the functions Travel to fixed stop, Referencing to Bero, Cam and Zero marker.

 Note

In order to permit new referencing without an interrupting RESET,

machine data:

MD34080 $MA_REFP_MOVE_DIST

and

MD34090 $MA_REFP_MOVE_DIST_CORR

are changed over to NewConfig effectiveness.

For further explanations, see Section "R1: Referencing (Page 1173)".

6.4.4 Speed setpoint output

Control direction and travel direction of the feed axes
You must determine the travel direction of the feed axis before starting work.

Control direction

Before the position control is started up, the speed controller and current controller of the
drive must be started up and optimized.

Travel direction

With the machine data:

MD32100 $MA_AX_MOTION_DIR (travel direction),

the direction of motion of the axis can be reversed,

without affecting the control direction of the position control.

Speed setpoint adjustment
SINUMERIK 840D sl

In the case of speed setpoint comparison, the NC is informed which speed setpoint
corresponds to which motor speed in the drive, for parameterizing the axial control and
monitoring. This comparison is carried out automatically.

For PROFIBUS DP drives, alternatively, the manual speed setpoint comparison is also
possible.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
338 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Manual comparison

In the machine data:

MD32250 $MA_RATED_OUTVAL

a value not equal to zero is entered.

 Note

Velocity adjustment and maximum speed setpoint

Owing to the automatic speed setpoint comparison a velocity adjustment is not necessary
for SINUMERIK 840D sl!

Maximum speed setpoint
For SINUMERIK 840D sl, the maximum speed setpoint is defined as a percentage. 100%
means maximum speed setpoint or maximum speed for PROFIdrive drives (manufacturer-
specific setting parameters in the drive, e.g. p1082 for SINAMICS).

The output of the spindle speed is implemented in the NC for SINUMERIK 840D sl.

Data for five gear stages are realized in the controller.

These stages are defined by a minimum and maximum speed for the stage itself and by a
minimum and maximum speed for the automatic gear stage changeover. A new set gear
stage is output only if the new programmed speed cannot be traversed in the current gear
stage.

With the machine data:

MD36210 $MA_CTRLOUT_LIMIT[n] (maximum speed setpoint)

the speed setpoint is restricted percentage-wise

Values up to 200% are possible.

When the speed is exceeded, an alarm is generated.

Figure 6-3 Maximum speed setpoint

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 339

However, due to control processes, the axes should not reach their maximum velocity
(MD32000 $MA_MAX_AX_VELO) at 100% of the speed setpoint, but at 80% to 95%.

In case of axes, whose maximum speed is attained at around 80% of the speed setpoint
range, the default value (80%) of the machine data:

MD32000 $MA_MAX_AX_VELO (maximum axis velocity)

can be taken over.

6.4.5 Actual-value processing

Actual-value resolution
In order to be able to create a correctly closed position control loop, the control system must
be informed of the valid actual-value resolution. The following axis-specific machine data is
used for this purpose, which is partially specified from the drive (MD31000, 31010, 31020,
31025).

The controller calculates the actual-value resolution based on the machine data. The control
parameter sets of the position control are identified as servo parameter sets.

The machining process of the machine forms the basis of the position actual-value
acquisition.

Direct measuring system (DM) is on machine directly: Load-side encoder
Indirect measuring system (IM) is on motor indirectly: Motor-side encoder

Depending on the type of axis (linear axis, rotary axis) and the type of actual-value
acquisition (directly at the machine, indirectly at the motor), the following machine data must
be parameterized to calculate the actual-value resolution:

Machine data Linear axis Linear axis Rotary axis
 Linear scale/

or as direct
measuring
system

Encoder
on
motor

Encoder
on
machine
and/or tool

Encoder
on
motor

Encoder
on
machine
and/or tool

MD30300 $MA_IS_ROT_AX 0 0 0 1 1
MD31000 $MA_ENC_IS_LINEAR[n]
MD31010 $MA_ENC_GRID_POINT_DIST[n]
MD34320 $MA_ENC_INVERS[n]

1
Spacing
◆

0
-
-

0
-
-

0
-
-

0
-
-

MD31040 $MA_ENC_IS_DIRECT[n] - / 1 0 1 0 1
MD31044 $MA_ENC_IS_DIRECT2[n] - / 1 0 1 0 1
MD31020 $MA_ENC_RESOL[n] - Pulses/

rev
Pulses/
rev

Pulses/r
ev

Pulses/
rev

MD31025 $MA_ENC_PULSE_MULT[n] Encoder multiplication
MD31030 $MA_LEADSCREW_PITCH - mm/rev. mm/rev. - -

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
340 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Machine data Linear axis Linear axis Rotary axis
 Linear scale/

or as direct
measuring
system

Encoder
on
motor

Encoder
on
machine
and/or tool

Encoder
on
motor

Encoder
on
machine
and/or tool

MD31050 $MA_DRIVE_AX_RATIO_DENOM[n] - Load
rev.

-/1 Load
rev.

●

MD31060 $MA_DRIVE_AX_RATIO_NUMERA[n] - Motor
rev. if
infeed
gear
available

-/1 Motor
rev.

●

MD31070 $MA_DRIVE_ENC_RATIO_DENOM[n] - Encoder
rev.

Encoder
rev.

Encoder
rev.

Encoder
rev.

MD31080 $MA_DRIVE_ENC_RATIO_NUMERA[n] - Motor-
side
encoder*

Motor
rev.

Motor
rev.

Load
rev.

- = Does not apply to this combination
* The encoder on the motor side is a built-in encoder and, therefore, does not have a

measuring gear unit.
The transmission ratio is always 1:1.

◆ For distance-coded measuring systems
● These machine data are not required for encoder matching (path evaluation).

However, they must be entered correctly for the setpoint calculation! Otherwise the
required servo gain factor (KV) will not be set. The load revolutions are entered into
machine data MD31050 $MA_DRIVE_AX_RATIO_DENOM and the motor revolutions
in machine data MD31060 $MA_DRIVE_AX_RATIO_NUMERA.

Machine data

Encoder-dependent machine data Meaning
MD31000 $MA_ENC_IS_LINEAR[n] Direct measuring system linear scale
MD31044 $MA_ENC_IS_DIRECT2[n] Encoder on intermediate gear
MD31070 $MA_DRIVE_ENC_RATIO_DENOM[n] Measuring gear denominator
MD31080 $MA_DRIVE_ENC_RATIO_NUMERA[n] Measuring gear numerator
MD31010 $MA_ENC_GRID_POINT_DIST[n] Distance between reference marks on linear scales
MD31020 $MA_ENC_RESOL[n] Encoder pulses per revolution

for rotary encoder
MD31040 $MA_ENC_IS_DIRECT[n] Encoder is connected directly at the machine
MD34080 $MA_REFP_MOVE_DIST [n] Reference point approach distance
MD34090 $MA_REFP_MOVE_DIST_CORR[n] Reference point offset
MD34320 $MA_ENC_INVERS[n] Length measuring system is in the opposite sense
n: Encoder index, with n = 0, 1, ... (1st encoder, 2nd encoder, etc.)

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 341

Parameter-set-dependent machine data Meaning
MD31050 $MA_DRIVE_AX_RATIO_DENOM[m] Denominator load gearbox
MD31060 $MA_DRIVE_AX_RATIO_NUMERA[m] Numerator load gearbox
m: Parameter set index, with m = 0, 1, ... (1st parameter set, 2nd parameter set, etc.)

Encoder and parameter set-independent machine data Meaning
MD30200 $MA_NUM_ENCS Number of encoders
MD30300 $MA_IS_ROT_AX Rotary axis
MD31030 $MA_LEADSCREW_PITCH Leadscrew pitch
MD31064 $MA_DRIVE_AX_RATIO2_DENOM Intermediate gear denominator
MD31066 $MA_DRIVE_AX_RATIO2_NUMERA Intermediate gear numerator
MD32000 $MA_MAX_AX_VELO Maximum axis velocity

 Note

Machine data with NEWCONFIG effectiveness criterion can be activated either in the part
program with the command NEWCONF or via the user interface by pressing a softkey.

6.4.6 Actual-value resolution

6.4.6.1 Description of the function
The ratio of control-internal computational resolution to the actual-value resolution is an
indication of how exactly the values calculated by the control system can be implemented on
the machine.

Linear axes

Rotary axes

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
342 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Relevant machine data for the actual-value resolution
The actual-value resolution results from the design of the machine, whether gearboxes are
available and their gear ratio, the leadscrew pitch for linear axes and the resolution of the
encoder being used. The following machine data must be set for this on the control system:

Number Identifier $MA_ Meaning
30300 IS_ROT_AX Axis is a rotary axis / spindle
31000 ENC_IS_LINEAR[n] Measuring system is a linear scale
31010 ENC_GRID_POINT_DIST Distance between reference marks of the linear

scale
31020 ENC_RESOL[n] Encoder pulses per revolution
31025 ENC_PULSE_MULT[n] Encoder multiplication (high resolution)
31030 LEADSCREW_PITCH Leadscrew pitch
31040 ENC_IS_DIRECT[n] Direct or indirect measuring system
31044 ENC_IS_DIRECT2[n] Encoders installed at the attached gearbox
31050 DRIVE_AX_RATIO_DENOM[m] Denominator load gearbox
31060 DRIVE_AX_RATIO_NUMERA[m] Numerator load gearbox
31064 DRIVE_AX_RATIO2_DENOM Denominator of attached gearbox
31066 DRIVE_AX_RATIO2_NUMERA Numerator of attached gearbox
31070 DRIVE_ENC_RATIO_DENOM[n] Measuring gearbox denominator
31080 DRIVE_ENC_RATIO_NUMERA[n] Measuring gearbox numerator
n: Encoder index, with n = 0, 1, ... (1st encoder, 2nd encoder, etc.)
m: Parameter set index, with m = 0, 1, ... (1st parameter set, 2nd parameter set, etc.)

Relevant machine data for the computational resolution
The computational resolution, i.e. the resolution with which all the path-related data is
calculated in the control system, must be set separately for linear and rotary axes via the
following machine data:

Number Identifier $MA_ Meaning
10200 INT_INCR_PER_MM Computational resolution for linear positions
10210 INT_INCR_PER_DEG Computational resolution for angular positions

Recommended setting
The above components and settings that are responsible for the actual-value resolution,
should be selected so that the actual-value resolution is higher than the parameterized
computational resolution.

Actual-value resolution

Computational resolution
≤ 1

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 343

6.4.6.2 Example: Linear axis with linear scale

Figure 6-4 Linear axis with linear scale

The ratio of the internal increments to the encoder increments per mm is calculated as
follows:

Encoder increments /mm

Internal increments / mm
=

ENC_GRID_POINT_DIST [n] * INT_INCR_PER_MM

ENC_PULSE_MULT[n]

6.4.6.3 Example: Linear axis with rotary encoder on motor

=

=

n

n
n

Figure 6-5 Linear axis with rotary encoder on motor

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
344 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The ratio of the internal increments to the encoder increments per mm is calculated as
follows:

Example
Assumptions:

● Rotary encoder on the motor: 2048 pulses/revolution

● Internal pulse multiplication: 2048

● Gearbox, motor / ball screw: 5:1

● Leadscrew pitch: 10 mm/revolution

● Computational resolution: 10000 increments per mm

Machine data Value
MD30300 $MA_IS_ROT_AX 0
MD31000 $MA_ENC_IS_LINEAR[0] 0
MD31040 $MA_ENC_IS_DIRECT[0] 0
MD31020 $MA_ENC_RESOL[0] 2048
MD31025 $MA_ENC_PULSE_MULT 2048
MD31030 $MA_LEADSCREW_PITCH 10
MD31080 $MA_DRIVE_ENC_RATIO_NUMERA[0] 1
MD31070 $MA_DRIVE_ENC_RATIO_DENOM[0] 1
MD31060 $MA_DRIVE_AX_RATIO_NUMERA[0] 5
MD31050 $MA_DRIVE_AX_RATIO_DENOM[0] 1
MD10210 $MN_INT_INCR_PER_DEG 10000

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 345

An encoder increment corresponds to 0.004768 internal increments or 209.731543 encoder
increments correspond to an internal increment.

6.4.6.4 Example: Linear axis with rotary encoder on the machine

Figure 6-6 Linear axis with rotary encoder on the machine

The ratio of the internal increments to the encoder increments per mm is calculated as
follows:

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
346 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

6.4.6.5 Example: Rotary axis with rotary encoder on motor

Figure 6-7 Rotary axis with rotary encoder on motor

The ratio of the internal increments to the encoder increments per degree is calculated as
follows:

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 347

Example
Assumptions:

● Rotary encoder on the motor: 2048 pulses/revolution

● Internal pulse multiplication: 2048

● Gearbox, motor / rotary axis: 5:1

● Computational resolution: 1000 increments per degree

Machine data Value
MD30300 $MA_IS_ROT_AX 1
MD31000 $MA_ENC_IS_LINEAR[0] 0
MD31040 $MA_ENC_IS_DIRECT[0] 0
MD31020 $MA_ENC_RESOL[0] 2048
MD31025 $MA_ENC_PULSE_MULT 2048
MD31080 $MA_DRIVE_ENC_RATIO_NUMERA[0] 1
MD31070 $MA_DRIVE_ENC_RATIO_DENOM[0] 1
MD31060 $MA_DRIVE_AX_RATIO_NUMERA[0] 5
MD31050 $MA_DRIVE_AX_RATIO_DENOM[0] 1
MD10210 $MN_INT_INCR_PER_DEG 1000

An encoder increment corresponds to 0.017166 internal increments or 58.254689 encoder
increments correspond to an internal increment.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.4 Setpoint/actual-value system

 Basic Functions
348 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

6.4.6.6 Example: Rotary axis with rotary encoder on the machine

Figure 6-8 Rotary axis with rotary encoder on the machine

The ratio of the internal increments to the encoder increments per degree is calculated as
follows:

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.4 Setpoint/actual-value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 349

6.4.6.7 Example: Intermediate gear with encoder on the tool

Figure 6-9 Intermediate gear with encoder directly on the rotating tool

The ratio of the internal increments to the encoder increments per degree is calculated as
follows:

G2: Velocities, setpoint / actual value systems, closed-loop control
6.5 Closed-loop control

 Basic Functions
350 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

6.5 Closed-loop control

6.5.1 General

Position control of an axis/spindle
The closed-loop control of an axis consists of the current and speed control loop of the drive
plus a higher-level position control loop in the NC.

The basic structure of an axis/spindle position control is illustrated below:

Figure 6-10 Principle representation of the setpoint processing and closed-loop control

For information on the jerk limitation, see Section "B2: Acceleration (Page 231)".

For a description of the feedforward control, backlash, friction compensation, and leadscrew
error compensation.

References:
Function Manual Extended Functions; Compensations (K3)

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.5 Closed-loop control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 351

Fine interpolation
Using the fine interpolator (FIPO), the contour precision can be further increased by reducing
the staircase effect in the speed setpoint. You can set three different types of fine
interpolation:

MD33000 $MA_FIPO_TYPE = <FIPO mode>

<FIPO mode> Meaning

1 Differential fine interpolation with mean value generation (smoothing) over an IPO
cycle

2 Cubic fine interpolation
3 Cubic fine interpolation optimized for use with the pre-control for the highest

contour precision

Servo gain factor
In order that few contour deviations occur in the continuous-path mode, a high servo gain
factor (Kv) is necessary:

MD32200 $MA_POSCTRL_GAIN[n]

However, if the servo gain factor (Kv) is too high, instability, overshoot and possibly
impermissible high loads on the machine will result.

The maximum permissible servo gain factor (Kv) depends on the following:

● Design and dynamics of the drive

(rise time, acceleration and braking capacity)

● Machine quality

(elasticity, oscillation damping)

● Position control cycle or speed control cycle for active DSC

The servo gain factor (Kv) is defined as follows:

Dynamic response adaptation
Axes that interpolate with one another, but with different Kv factors can be set to the same
following error using the dynamic adaptation function. This allows an optimum contour
accuracy to be achieved without loss of control quality by reducing the Kv factors to the
dynamically weakest axis.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.5 Closed-loop control

 Basic Functions
352 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The function is activated via:

MD32900 $MA_DYN_MATCH_ENABLE = 1 (dynamic response adaptation)

The dynamic response adaptation is realized by entering a new equivalent time constant. It
is calculated from the difference in the equivalent time constant of the dynamically weakest
axis and the axis to be adapted:

MD32910 $MA_DYN_MATCH_TIME [n] = <difference in the equivalent time constant>

Figure 6-11 Dynamic response adaptation

Example of a dynamic response adaptation of three axes without speed feedforward control

The equivalent time constant of the position control loop is:
Axis 1: 30 ms
Axis 2: 20 ms
Axis 3: 24 ms

With an equivalent time constant of 30 ms, axis 1 is the dynamically weakest axis.

This results in the following new equivalent time constants for the axes:

Axis 1: MD32910 $MA_DYN_MATCH_TIME = 0 ms
Axis 2: MD32910 $MA_DYN_MATCH_TIME = 30 ms - 20 ms = 10 ms
Axis 3: MD32910 $MA_DYN_MATCH_TIME = 30 ms - 24 ms = 6 ms

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.5 Closed-loop control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 353

Approximation formulas for the equivalent time constant of the position control loop of an axis
The equivalent time constant Tequiv of the position control loop of an axis is approximately
calculated depending on the type of feedforward control:

● Without feedforward control:

● With speed feedforward control:

● For combined torque/speed feedforward control

 Note

If dynamic response adaptation is realized for a geometry axis, then all other geometry axes
must be set to the same dynamic response.

References:
Commissioning Manual CNC: NCK, PLC, Drives

6.5.2 Parameter sets of the position controller
Six parameter sets per machine axis are available to quickly adapt the position control to the
changed machine properties during operation, e.g. a gear change of the spindle, or to adjust
the dynamic response to another axis, e.g. during tapping.

Machine data
A parameter set comprises the following machine data:

Number Identifier $MA_ Meaning
31050 DRIVE_AX_RATIO_DENOM Denominator load gearbox
31060 DRIVE_AX_RATIO_NUMERA Numerator load gearbox

G2: Velocities, setpoint / actual value systems, closed-loop control
6.5 Closed-loop control

 Basic Functions
354 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Number Identifier $MA_ Meaning
32200 POSCTRL_GAIN Servo gain factor
32452 BACKLASH_FACTOR Backlash compensation
32610 VELO_FFW_WEIGHT Feedforward control factor
36012 STOP_LIMIT_FACTOR Exact stop coarse/fine factor and zero speed
32800 EQUIV_CURRCTRL_TIME Equivalent time constant, current control loop for

feedforward control
32810 EQUIV_SPEEDCTRL_TIME Equivalent time constant, speed control loop for feed

forward control
32910 DYN_MATCH_TIME Time constant for dynamic response adaptation
36200 AX_VELO_LIMIT Threshold value for velocity monitoring

Tapping, thread cutting
For tapping or thread cutting, the following applies with regard to the parameter sets of axes:

● For machine axes that are not involved in tapping or thread cutting, parameter set 1
(index = 0) is active. The other parameter sets do not have to be taken into account.

● For machine axes that are involved in tapping or thread cutting, the same parameter set
number as that of the current gear stage of the spindle is active.

All parameter sets correspond to the gear stages and must therefore be parameterized.

The current parameter set is displayed on the user interface at:

"Operating area switchover" > "Diagnostics" > "Service axis"

Parameter sets during gear stage change
Each gear stage of a spindle is assigned a separate parameter set. The gear stage is
selected via the following NC/PLC interface signal:

DB31, ... DBX16.0 - 16.2 = <actual gear stage>

Actual gear stage DB31, ... DBX16.0 - 16.2 Parameter set

1. Gear stage 000 2 (Index=1)
1. Gear stage 001 2 (Index=1)
2. Gear stage 010 3 (Index=2)
3. Gear stage 011 4 (Index=3)
4. Gear stage 100 5 (Index=4)
5. Gear stage 101

110
111

6 (Index=5)

For further information on gear stages for spindles, see Section "S1: Spindles (Page 1225)".

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.6 Optimization of the control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 355

6.6 Optimization of the control

6.6.1 Position controller, position setpoint filter: Balancing filter

Function
With feedforward control active, the position setpoint is sent through a socalled balancing
filter before it reaches the controller itself. It is thus possible to control the speed setpoint to
100% in advance, without resulting in overshoots when positioning.

Activation
The feedforward control variant is selected and so also the filter activated using the axis-
specific machine data:

MD32620 $MA_FFW_MODE (feedforward control mode)

Value Meaning

3 Speed precontrol
4 Combined torque/speed precontrol

Activating and deactivating via the part program
Part programs can be used to activate and deactivate the feedforward control for all axes,
using commands FFWON and FFWOF.

If the feedforward control of the individual axes should not be influenced by FFWON/FFWOF, the
setting in the following machine data must be changed for these axes:

MD32630 $MA_FFW_ACTIVATION_MODE (activate feedforward control from program)

Parameterization

Recommended setting in case of recommissioning

If recommissioning, or if default values have been loaded (switch position 1 on
commissioning switch and POWER ON), the following machine data default values apply:

MD32620 $MA_FFW_MODE = 3

MD32610 $MA_VELO_FFW_WEIGHT (feedforward control factor for the velocity
feedforward control) = 1

The balancing time for the speed feedforward control then just has to be adjusted in the
following machine data:

MD32810 $MA_EQUIV_SPEEDCTRL_TIME (equivalent time constant speed control loop for
feedforward control)

G2: Velocities, setpoint / actual value systems, closed-loop control
6.6 Optimization of the control

 Basic Functions
356 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Setting the equivalent time constant of the speed control loop (MD32810)

We recommend that the axis be allowed to move in and out in "AUTOMATIC" mode with a
part program and that travel-in to the target position, i.e. the actual position value of the
active measuring system, be monitored with the servo trace.

The initial value for setting is the time constant of the speed control loop. This can be read
from the reference frequency characteristic of the speed control loop. In the frequent case of
a PI controller with speed setpoint smoothing, an approximate equivalent time can be read
from drive machine data p1414, p1415, p1416 and p1421.

This start value (e.g. 1.5 ms) is now entered:

MD32810 $MA_EQUIV_SPEEDCTRL_TIME = 0.0015

The axis then travels forward and backward and the operator monitors a greatly-magnified
characteristic of the actual position value at the target position.

The following rules apply to making manual fine adjustments:

Overshoot monitored: → Increase MD32810.
Excessively slow approach
monitored:

→ Reduce MD32810.

Increasing MD32810

Increasing the value of MD32810 slows the axis down and increases the geometric contour
error on curves to some degree.

It has a similar effect to reducing the position controller gain:

MD32200 $MA_POSCTRL_GAIN

This can also be observed in the Diagnostics area in the "Axis Service" screen form based
on the servo gain value calculated.

Reducing MD32810

Reducing the value of MD32810 accelerates the axis.

Therefore, MD32810 should be assigned as small a value as possible, with the overshoot
setting the limit during positioning.

MD32810 fine adjustment
Experience has shown that the initial value is only modified slightly during fine adjustment,
typically by adding or deducting 0.25 ms.

For example, if the initial value is 1.5 ms, the optimum value calculated manually is usually
within the range 1.25 ms to 1.75 ms.

In the case of axes equipped with direct measuring systems (load encoders) and strong
elasticity, you may possibly accept small overshoots of some micrometers.

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.6 Optimization of the control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 357

These can be reduced with the help of the position setpoint filter for dynamic response
adaptation (MD32910 $MA_DYN_MATCH_TIME) and for jerk (MD32410
$MA_AX_JERK_TIME), which also reduces the axis speed.

Identical axis data within an interpolation group

All the axes within an interpolation group should have identical settings in the following data:

MD32200 $MA_POSCTRL_GAIN (adapted using MD32910)

MD32620 $MA_FFW_MODE

MD32610 $MA_VELO_FFW_WEIGHT

MD32810 $MA_EQUIV_SPEEDCTRL_TIME (or MD32800 $MA_EQUIV_CURRCTRL_TIME)
(dependent on the mechanical system and drive)

MD32400 $MA_AX_JERK_ENABLE

MD32402 $MA_AX_JERK_MODE

MD32410 $MA_AX_JERK_TIME

The servo gain display (KV) in the "Axis service" screen form is used for checking.

Non-identical axis data within an interpolation group

If identical values are not possible for the above data, the following machine data can be
used to make an adjustment:

MD32910 $MA_DYN_MATCH_TIME (time constant of dynamic response adaptation)

This allows the same servo gain value (KV) to be displayed.

Different servo gain display values (KV) usually point to the following:

● The gear ratios do not match in one or several axes.

● The feedforward control setting data does not match.

Setting the equivalent time constant of the current control loop (MD32800)

The activation of the torque feedforward control filter is performed with:

MD32620 $MA_FFW_MODE = 4

The same rules and recommendations apply to setting the time constant of the current
control loop MD32800 $MA_EQUIV_CURRCTRL_TIME as to the speed feedforward control.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.6 Optimization of the control

 Basic Functions
358 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Limitation to stiff machines

Experience has shown that this expenditure is only worthwhile in the case of very stiff
machines, and requires appropriate experience. The elasticities of the machine are often
excited due to the injection of the torque so strongly that the existing vibrations neutralize the
gain in contour accuracy.

In this case, it would be worth trying Dynamic Stiffness Control (DSC) as an alternative:

MD32640 $MA_STIFFNESS_CONTROL_ENABLE = 1

 Note

If DSC is to be activated (MD32640 = 1), no parameters may be assigned for actual-value
inversion in the NC (MD32110 $MA_ENC_FEEDBACK_POL = -1). Otherwise, error 26017
occurs.

In DSC mode, actual-value inversion may only be undertaken in the drive (SINAMICS
parameter p0410).

Control response with POWER ON, RESET, REPOS, etc.
In the case of POWER ON and RESET, as well as with "Enable machine data", the setting
data of the feedforward control is read in again (see the appropriate values of the machine
data).

Mode change, block search and repositioning have no influence on the feedforward control.

6.6.2 Position controller, position setpoint filter: Jerk filter

Function
In some applications, such as when milling sculptured surfaces, it can be advantageous to
smooth the position setpoint curves using the jerk filter to obtain better surfaces by reducing
the excitations of machine vibrations. The filter effect of the position setpoints must be as
strong as possible without impermissibly affecting contour accuracy. The smoothing behavior
of the filter must also be as "symmetrical" as possible, i.e. if the same contour was to be
traversed both forward and backward, the characteristic rounded by the filter should be as
similar as possible in both directions.

The effect of the filter can be monitored by means of the effective servo gain factor (KV),
which is displayed on the "Axis service" screen form. The filtering effect rounds the position
setpoints slightly, thus reducing the path accuracy so that with increasing filter time a smaller
effective servo gain factor (KV) is displayed.

 Note

The jerk filter creates a dependent phase offset for each amplitude setting. Only the
additional use of the phase filter (see "Position controller, position setpoint filter: Phase filter
(Page 360)") permits a transparent setting of the axis dynamic response.

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.6 Optimization of the control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 359

Activation
To activate the axial jerk filter setpoint, the following machine data must be set to "TRUE":

MD32400 $MA_AX_JERK_ENABLE (axial jerk limitation)

Parameterization
The axial jerk filter is parameterized via the machine data:

MD32402 $MA_AX_JERK_MODE (filter type for axial jerk limitation)

MD32410 $MA_AX_JERK_TIME (time constant for the axial jerk filter)

Example:

MD32400
$MA_AX_JERK_ENABLE

= 1 Enable filter calculation

MD32402
$MA_AX_JERK_MODE

= 2 Filter mode, moving average value

MD32410
$MA_AX_JERK_TIME

= 0.02 Set the filter time in seconds (e.g. 20 ms)

If filter mode:MD32402 $MA_AX_JERK_MODE = 2 was not activated previously, "Power On"
must be initiated once.

Otherwise, "Enable machine data" or "Reset" at the machine control panel are sufficient.

 Note

Generally, the filter is set using:MD32402 $MA_AX_JERK_MODE = 2.

Fine adjustment

The fine adjustment of the jerk filter is carried out as follows:

1. Assess the traversing response of the axis
(e.g. based on positioning processes with servo trace).

2. Modify the filter time in MD32410 $MA_AX_JERK_TIME.

3. Activate the modified time via "Enable machine data" or RESET on the machine control
panel.

Deactivation
Disabling the jerk filter:

1. Block the filter calculation:

MD32400 $MA_AX_JERK_ENABLE = 0

2. Activate the interlock via "Enable machine data" or RESET on the machine control panel.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.6 Optimization of the control

 Basic Functions
360 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Boundary conditions

Filter times

The jerk filter is only effective when the time constant (MD32410) is greater than one position
control cycle.

Filter effect

● The display of the calculated servo gain factor (KV) in the "Axis service" screen form
displays smaller values than would be appropriate based on the filter effect.

● Path accuracy is better than the displayed servo gain (KV) suggests.

Therefore, on resetting MD32400 = 1 to MD32400 = 2, the displayed servo gain (KV) can
be reduced while retaining the same filter time, although the path accuracy improves.

Axes that are interpolating axes with one another

● Must be set identically.

● Once an optimum value has been identified for these axes, the one with the longest filter
time should be used as the setting for all axes within the interpolation group.

References
For further information on jerk limitation at the interpolator level, see Sections "Jerk limitation
with single-axis interpolation (SOFTA) (axis-specific) (Page 249)" and "Axis/spindlespecific
machine data (Page 279)".

6.6.3 Position controller, position setpoint filter: Phase filter

Function
The axial setpoint phase filter implements a pure phase shift (broken dead time) with which
the setpoint phase response can be set independent of the amplitude response. Together
with the axial setpoint jerk filter "Floating average value formation"
(MD32402_$MA_AX_JERK_MODE = 2; see "Position controller, position setpoint filter: Jerk
filter (Page 358)") it makes it possible for the commissioning engineer to adapt the amplitude
response and the phase response to the weakest axis independent of each other and so
optimize the dynamically different axes for creating a shared contour.

Activation
To activate the axial phase filter setpoint, the following machine data must be set to "TRUE":

MD32890 $MA_DESVAL_DELAY_ENABLE (axial phase filter setpoint)

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.6 Optimization of the control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 361

Parameterization
The time constant for the axial phase filter setpoint (dead time / delay) is set in the machine
data:

MD32895 $MA_DESVAL_DELAY_TIME

Time constants can be set in the range of 0 to 64 position control cycles. This means, the
phase filter, for example, can delay the setpoints by 0 to 128 ms for 2 ms position control
cycle.

 Note

For system reasons, because delays in the setpoint machining chain can slow the response
for tapping, safety retractions, exact stop / block change, etc, time constants should be set
as small as possible.

Delay values larger than 64 position control cycles will be limited to 64 without any alarm
message. The limitation of the maximum value applies to the internal representation of the
delay time and not to the machine data itself.

A negative value cannot be set.

MD32895 $MA_DESVAL_DELAY_TIME acts only when MD32890
$MA_DESVAL_DELAY_ENABLE = TRUE.

Examples:

For the following parameterization examples: Position control cycle = 2 ms

1. MD32890 $MA_DESVAL_DELAY_ENABLE = FALSE

MD32895 $MA_DESVAL_DELAY_TIME = <non-negative value>

The activation data item is set to "FALSE". The filter is correspondingly inactive,
independent of MD32895.

2. MD32890 $MA_DESVAL_DELAY_ENABLE = TRUE

MD32895 $MA_DESVAL_DELAY_TIME = 0.002

The filter is active and the input values are delayed by one position control cycle.

3. MD32890 $MA_DESVAL_DELAY_ENABLE = TRUE

MD32895 $MA_DESVAL_DELAY_TIME = 0.256

The filter is active. The set delay corresponds to 128 position control cycles although the
maximum delay is 64 position control cycles. Accordingly, the internal delay time is limited
to 64 position control cycles. The machine data MD32895 remains unchanged.

Boundary conditions

Safety

The function delays the setpoints; this causes, for example, safety retraction movements
(Stop E) also to be delayed (with maximum 64 position control cycles). This has no impact
on safety shutdown actions, however.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.6 Optimization of the control

 Basic Functions
362 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

6.6.4 Position controller: injection of positional deviation

Preconditions
● The function can only be used on axes with two encoders:

MD30200 $MA_NUM_ENCS = 2

One of the encoders must be parameterized as an indirect measuring system and the
other as a direct measuring system:

– Direct measuring system:

MD31040 $MA_ENC_IS_DIRECT[1]=1

The encoder for position actual-value acquisition is connected directly to the machine
(load encoder).

– Indirect measuring system:

MD31040 $MA_ENC_IS_DIRECT[0]=0

The encoder for position actual-value acquisition is located on the motor (motor
encoder).

● Telegram type 136 or 138 must be configured as standard telegram type for PROFIdrive
both in the drive and also in the NC (MD13060 $MN_DRIVE_TELEGRAM_TYPE).

Function
For active injected positional deviation, the difference position between the direct and the
indirect measuring system of an axis is determined and in accordance with the weighting-
factor setting is applied as additional current setpoint for the feedforward control in the
position control cycle. The resulting oscillation damping improves the stability and positioning
behavior of the axis.

Application
The function is used for axes with strong tendency to vibrate.

Effectiveness
The function acts only for axes with small natural frequency (to approximately 20 Hz).

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.6 Optimization of the control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 363

Activation/parameterization
The function is activated by specifying the weighting factor:

MD32950 $MA_POSCTRL_DAMPING (damping of the speed control loop) = <value>

Value range: -100% ... +100%

An input value "100%" means: A supplementary torque in accordance with SINAMICS
parameter p2003 is applied when the determined position difference between the two
measuring systems reaches the following value:

● With linear motors: 1 mm

● With linear axis with rotary motor: MD31030 $MA_LEADSCREW_PITCH (leadscrew
pitch)

● For rotary axis/spindle: 360 degrees

Standard setting is 0. In this case, the injection of positional deviation is inactive.

 Note

The weighting factor MD32950 $MA_POSCTRL_DAMPING can be set on the basis of step
responses, for example.

If the control approaches the stability limit (vibration inclination increases), the parameter is
too large or the value has the incorrect sign.

6.6.5 Position control with proportional-plus-integral-action controller

Function
As standard, the core of the position controller is a P controller. It is possible to switch-in an
integral component for special applications (such as an electronic gear). The resulting
proportional-plus-integral-action controller then corrects the error between setpoint and
actual positions down to zero in a finite, settable time period when the appropriate machine
data is set accordingly.

CAUTION
Overshootings of the actual position for activated PI controller

In this instance, you must decide whether this effect is admissible for the application in
question. Knowledge of the control technology and measurements with servo trace are an
absolute prerequisite for using the function. If the appropriate machine data is incorrectly
set, then machines could be damaged due to instability.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.6 Optimization of the control

 Basic Functions
364 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Procedure
1. First optimize the position control loop as a proportional-action controller using the tools

described in the previous subsections.

2. Increase the tolerances of the following machine data while measurements are being
taken to determine the quality of the position control with proportional-plus-integral-action
controller:

– MD36020 $MA_POSITIONING_TIME

– MD36030 $MA_STANDSTILL_POS_TOL

– MD36040 $MA_STANDSTILL_DELAY_TIME

– MD36400 $MA_CONTOUR_TOL

3. Activate the position control loop as a proportional-plus-integral-action controller by
setting the following machine data:

MD32220 $MA_POSCTRL_INTEGR_ENABLE ; set value 1

MD32210 $MA_POSCTRL_INTEGR_TIME ; integral time [sec.]

Effect of integral time:

– Tn → 0:

The control error is corrected quickly; however, the control loop can become instable.

– Tn → ∞:

Effectiveness of the integral component is almost 0. Behavior of the controller like a
pure proportional controller.

4. Find the right compromise for Tn between these two extreme cases for the application.

Tn must not be chosen too near the stability limit because the occurrence of an instability
can cause machine damage.

5. Use servo trace to trace the travel-in of an automatic program traveling to and from a
target position.

6. Set the servo trace to display the following:

– Following error

– Actual velocity

– Actual position

– Reference position

7. Reset the tolerance values in the following machine data to the required values, once the
optimum value for Tn has been identified:

– MD36020 $MA_POSITIONING_TIME

– MD36030 $MA_STANDSTILL_POS_TOL

– MD36040 $MA_STANDSTILL_DELAY_TIME

– MD36400 $MA_CONTOUR_TOL

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.6 Optimization of the control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 365

Example

Setting result after several iterative processes for KR and Tn.

Machine data settings:

MD32220 $MA_POSCTRL_INTEGR_ENABLE = 1

MD32210 $MA_POSCTRL_INTEGR_TIME = 0.003

MD32200 $MA_POSCTRL_GAIN[1] = 5.0

Parameter set selection 0

Each of the following quantities - following error, actual velocity, actual position, and position
setpoint - has been recorded by servo trace. When traversing in JOG mode, the
characteristic of the individual data shown in the following figure was then drawn.

G2: Velocities, setpoint / actual value systems, closed-loop control
6.7 Data lists

 Basic Functions
366 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

6.7 Data lists

6.7.1 Machine data

6.7.1.1 Displaying machine data

Number Identifier: $MM_ Description
9004 DISPLAY_RESOLUTION Display resolution
9010 SPIND_DISPLAY_RESOLUTION Display resolution for spindles
9011 DISPLAY_RESOLUTION_INCH Display resolution for INCH system of measurement

6.7.1.2 NC-specific machine data

Number Identifier: $MN_ Description
10000 AXCONF_MACHAX_NAME_TAB Machine axis name
10050 SYSCLOCK_CYCLE_TIME System basic cycle
10070 IPO_SYSCLOCK_TIME_RATIO Factor for interpolator cycle
10060 POSCTRL_SYSCLOCK_TIME_RATIO Factor for position-control cycle
10200 INT_INCR_PER_MM Computational resolution for linear positions
10210 INT_INCR_PER_DEG Computational resolution for angular positions
10220 SCALING_USER_DEF_MASK Activation of scaling factors
10230 SCALING_FACTORS_USER_DEF Scaling factors of physical quantities
10240 SCALING_SYSTEM_IS_METRIC Basic system metric
10250 SCALING_VALUE_INCH Conversion factor for switchover to

inch system
10260 CONVERT_SCALING_SYSTEM Basic system switchover active
10270 POS_TAB_SCALING_SYSTEM Measuring system of position tables
10290 CC_TDA_PARAM_UNIT Physical units of the tool data for CC
10292 CC_TOA_PARAM_UNIT Physical units of the tool edge data for CC
13050 DRIVE_LOGIC_ADDRESS Logical drive addresses
13060 DRIVE_TELEGRAM_TYPE Standard message frame type for PROFIBUS DP
13070 DRIVE_FUNCTION_MASK DP function used
13080 DRIVE_TYPE_DP Drive type PROFIBUS DP

 G2: Velocities, setpoint / actual value systems, closed-loop control
 6.7 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 367

6.7.1.3 Channelspecific machine data

Number Identifier: $MC_ Description
20150 GCODE_RESET_VALUES Initial setting of the G groups

6.7.1.4 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30110 CTRLOUT_MODULE_NR Setpoint assignment: Drive number
30120 CTRLOUT_NR Setpoint assignment: Setpoint output on drive module
30130 CTRLOUT_TYPE Output type of setpoint
30200 NUM_ENCS Number of encoders
30220 ENC_MODULE_NR Actual value assignment: Drive module number
30230 ENC_INPUT_NR Actual value assignment: Input on the drive module
30240 ENC_TYPE Type of actual-value acquisition (position actual value)
30242 ENC_IS_INDEPENDENT Encoder is independent
30300 IS_ROT_AX Rotary axis
31000 ENC_IS_LINEAR Direct measuring system (linear scale)
31010 ENC_GRID_POINT_DIST Distance between reference marks on linear scales
31020 ENC_RESOL Encoder pulses per revolution
31030 LEADSCREW_PITCH Leadscrew pitch
31040 ENC_IS_DIRECT Encoder is connected directly to the machine
31044 ENC_IS_DIRECT2 Encoder on intermediate gear
31050 DRIVE_AX_RATIO_DENOM Denominator load gearbox
31060 DRIVE_AX_RATIO_NUMERA Numerator load gearbox
31064 DRIVE_AX_RATIO2_DENOM Intermediate gear denominator
31066 DRIVE_AX_RATIO2_NUMERA Intermediate gear numerator
31070 DRIVE_ENC_RATIO_DENOM Measuring gear denominator
31080 DRIVE_ENC_RATIO_NUMERA Measuring gear numerator
31090 JOG_INCR_WEIGHT Weighting of increment for INC/handwheel
31200 SCALING_FACTOR_G70_G71 Factor for converting values when G70/G71 is active
32000 MAX_AX_VELO Maximum axis velocity
32100 AX_MOTION_DIR Travel direction
32110 ENC_FEEDBACK_POL Sign actual value (feedback polarity)
32200 POSCTRL_GAIN Servo gain factor
32210 POSCTRL_INTEGR_TIME Integrator time position controller
32220 POSCTRL_INTEGR_ENABLE Activation of integral component of position controller
32250 RATED_OUTVAL Rated output voltage
32260 RATED_VELO Rated motor speed
32450 BACKLASH Backlash

G2: Velocities, setpoint / actual value systems, closed-loop control
6.7 Data lists

 Basic Functions
368 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Number Identifier: $MA_ Description
32500 FRICT_COMP_ENABLE Friction compensation active
32610 VELO_FFW_WEIGHT Feedforward control factor for speed feedforward

control
32620 FFW_MODE Feedforward control mode
32630 FFW_ACTIVATION_MODE Activate feedforward control from program
32650 AX_INERTIA Moment of inertia for torque feedforward control
32652 AX_MASS Axis mass for torque precontrol
32711 CEC_SCALING_SYSTEM_METRIC System of measurement of sag compensation
32800 EQUIV_CURRCTRL_TIME Equivalent time constant current control loop for

feedforward control
32810 EQUIV_SPEEDCTRL_TIME Equivalent time constant speed control loop for

feedforward control
32890 DESVAL_DELAY_ENABLE Axial phase filter setpoint
32895 DESVAL_DELAY_TIME Time constant for the axial phase filter setpoint
32900 DYN_MATCH_ENABLE Dynamics matching
32910 DYN_MATCH_TIME [n] Time constant for dynamic response adaptation
32930 POSCTRL_OUT_FILTER_ENABLE Activation of low-pass filter at position controller

output
32950 POSCTRL_DAMPING Damping of the speed control loop
33000 FIPO_TYPE Fine interpolator type
34320 ENC_INVERS[n] Length measuring system is inverse
35100 SPIND_VELO_LIMIT Maximum spindle speed
36200 AX_VELO_LIMIT [n] Threshold value for velocity monitoring
36210 CTRLOUT_LIMIT[n] Maximum speed setpoint
36400 AX_JERK_ENABLE Axial jerk limitation
36410 AX_JERK_TIME Time constant for axial jerk filter
36500 ENC_CHANGE_TOL Max. tolerance for position actual-value switchover
36510 ENC_DIFF_TOL Measuring system synchronism tolerance
36700 ENC_COMP_ENABLE[n] Interpolatory compensation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 369

H2: Auxiliary function outputs to PLC 7
7.1 Brief description

7.1.1 Function
Auxiliary functions permit activation of the system functions of the NCK and PLC user
functions. Auxiliary functions can be programmed in:

● Part programs

● Synchronized actions

● User cycles

For detailed information on the use of auxiliary function outputs in synchronized actions, see:

References:
Function Manual, Synchronized Actions

Predefined auxiliary functions
Predefined auxiliary functions activate system functions. The auxiliary function is also output
to the NC/PLC interface.

The following auxiliary functions are predefined:

Type Function Example Meaning
M Additional function M30 End of program
S Spindle function S100 Spindle speed 100 (e.g. rpm)
T Tool number T3 Tool number 3
D, DL Tool offset D1 Tool cutting edge number 1
F Feedrate F1000 Feedrate 1000 (e.g. mm/min)

Userdefined auxiliary functions
User-defined auxiliary functions are either extended predefined auxiliary functions or user-
specific auxiliary functions.

Extension of predefined auxiliary functions

Extension of predefined auxiliary functions refers to the "address extensions" parameter. The
address extension defines the number of the spindle to which the auxiliary function applies.
The spindle function M3 (spindle right) is predefined for the master spindle of a channel. If a
2nd spindle is assigned to a channel, a corresponding user-defined auxiliary function must
be defined that extends the predefined auxiliary function.

H2: Auxiliary function outputs to PLC
7.1 Brief description

 Basic Functions
370 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Type Function Example Meaning
M Additional function M2=3 2nd spindle: Spindle right
S Spindle function S2=100 2nd spindle: Spindle speed = 100 (e.g. rpm)
T Tool number T2=3

User-specific auxiliary functions

User-specific auxiliary functions do not activate system functions. User-specific auxiliary
functions are output to the NC/PLC interface only. The functionality of the auxiliary functions
must be implemented by the machine manufacturer / user in the PLC user program.

Type Function Example Meaning
H1) Auxiliary function H2=5 User-specific function

1) Recommendation

7.1.2 Definition of an auxiliary function
An auxiliary function is defined by the following parameters:

● Type, address extension and value

The three parameters are output to the NC/PLC interface.

● Output behavior

The auxiliary function-specific output behavior defines for how long an auxiliary function is
output to the NC/PLC interface and when it is output relative to the traversing motion
programmed in the same part program block.

● Group assignment

An auxiliary function can be assigned to a particular auxiliary function group. The output
behavior can be defined separately for each auxiliary function group. This becomes
active if no auxiliary function-specific output behavior has been defined. Group
membership also affects output of an auxiliary function after block search.

For more detailed information on auxiliary function output to the NC/PLC interface, see
Section "P3: Basic PLC program for SINUMERIK 840D sl (Page 809)".

 H2: Auxiliary function outputs to PLC
 7.1 Brief description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 371

7.1.3 Overview of the auxiliary functions

M functions

M (special function)
Address extension Value

Range of values Meaning Range of values Type Meaning Number 8)
0 (implicit) - - - 0 ... 99 INT Function 5
Remarks:
The address extension is 0 for the range between 0 and 99.
Mandatory without address extension: M0, M1, M2, M17, M30

Range of values Meaning Range of values Type Meaning Number 8)
1 ... 20 Spindle number 1 ... 99 INT Function 5
Remarks:
M3, M4, M5, M19, M70 with address extension as the spindle number. (e.g. M2=5; spindle stop for spindle 2).
Without an address extension, the function influences the master spindle.

Range of values Meaning Range of values Type Meaning Number 8)
0 ... 99 Any 100 ... 2147483647 INT Function 5
Remarks:
User-specific M functions.

8) See "Meaning of footnotes" at the end of the overview.

Use

Controlling machine functions in synchronism with the part program.

Further information

● The following M functions have a predefined meaning: M0, M1, M2, M17, M30

M3, M4, M5, M6, M19, M70, M40, M41, M42, M43, M44, M45.

● For each M function (M0 - M99), there is a dynamic signal at the NC/PLC interface that
indicates the validity (new output) of the M function. In addition, 64 further signals can be
assigned for user M functions (see Section "P3: Basic PLC program for SINUMERIK
840D sl (Page 809)").

● For subprograms, machine data can be used to set whether an output of the M function
should be undertaken for the end of the part program M17, M2 and M30 to the PLC:

MD20800 $MC_SPF_END_TO_VDI (subprogram end to PLC)

● For the predefined M function M40 – M45, only limited redefinition of the output
specification is possible.

H2: Auxiliary function outputs to PLC
7.1 Brief description

 Basic Functions
372 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● The predefined auxiliary functions M0, M1, M17, M30, M6, M4, M5 cannot be redefined.

● M function-specific machine data:

MD10800 $MN_EXTERN_CHAN_SYNC_M_NO_MIN

MD10802 $MN_EXTERN_CHAN_SYNC_M_NO_MAX

MD10804 $MN_EXTERN_M_NO_SET_INT

MD10806 $MN_EXTERN_M_NO_DISABLE_INT

MD10814 $MN_EXTERN_M_NO_MAC_CYCLE

MD10815 $MN_EXTERN_M_NO_MAC_CYCLE_NAME

MD20094 $MC_SPIND_RIGID_TAPPING_M_NR

MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO

MD22200 $MC_AUXFU_M_SYNC_TYPE

MD22530 $MC_TOCARR_CHANGE_M_CODE

MD22532 $MC_GEOAX_CHANGE_M_CODE

MD22534 $MC_TRAFO_CHANGE_M_CODE

MD22560 $MC_TOOL_CHANGE_M_CODE

S functions

S (spindle function)
Address extension Value

Range of values Meaning Range of values Type Meaning Number 8)
0 ... 20 Spindle number 5) 0 ... ± 3.4028 exp38 3) REAL Spindle speed 3
Remarks:
The master spindle of the channel is addressed if no address extension is specified.

3) , 5), 8)See "Meaning of footnotes" at the end of the overview.

Use

Spindle speed.

Further information

● S functions are assigned to auxiliary function group 3 by default.

● Without an address extension, the S functions refer to the master spindle of the channel.

● S function-specific machine data:

MD22210 $MC_AUXFU_S_SYNC_TYPE (output time of the S functions)

 H2: Auxiliary function outputs to PLC
 7.1 Brief description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 373

H functions

H (aux. function)
Address extension Value

Range of values Meaning Range of values Type Meaning Number 8)

- 2147483648 ...
+ 2147483647

INT 0 ... 99 Any

0 ... ± 3.4028 exp38 2) 3) 4) REAL

Any 3

Remarks:
The functionality must be implemented by the user in the PLC user program.

2) 3) 4) 8) See "Meaning of footnotes" at the end of the overview.

Use

User-specific auxiliary functions.

Further information

● H function-specific machine data:

MD22110 $MC_AUXFU_H_TYPE_INT (type of H-auxiliary function is an integer)

MD22230 $MC_AUXFU_H_SYNC_TYPE (output time of the H functions)

T functions

T (tool number) 5) 6)
Address extension Value

Range of values Meaning Range of values Type Meaning Number 8)
1 ... 12 Spindle number

(with active tool
management)

0 ... 32000
(also symbolic tool names for
active tool management)

INT Selection of the tool 1

Remarks:
Tool names are not output to the PLC. 1)

1) 5) 6) 8) See "Meaning of footnotes" at the end of the overview.

Use

Tool selection.

H2: Auxiliary function outputs to PLC
7.1 Brief description

 Basic Functions
374 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Further information

● Identification of the tools, optionally via tool number or location number (see Section "W1:
Tool offset (Page 1389)").

References:
Function Manual Tool Management

● When T0 is selected, the current tool is removed from the toolholder but not replaced by
a new tool (default setting).

● T function-specific machine data:

MD22220 $MC_AUXFU_T_SYNC_TYPE (output time of the T functions)

D functions

D (tool offset)
Address extension Value

Range of values Meaning Range of values Type Meaning Number 8)
- - - - - - 0 ... 9 INT Selection of the tool

offset
1

Remarks:
Clearing the tool offset with D0. Default is D1.

8) See "Meaning of footnotes" at the end of the overview.

Use

Selection of the tool offset.

Further information

● Initial setting: D1

● After a tool change, the default tool cutting edge can be parameterized via:

MD20270 $MC_CUTTING_EDGE_DEFAULT (basic position of the tool cutting edge
without programming)

● Deselection of the tool offset: D0

● D function-specific machine data:

MD22250 $MC_AUXFU_D_SYNC_TYPE (output time of the D functions)

 H2: Auxiliary function outputs to PLC
 7.1 Brief description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 375

DL functions

DL (additive tool offset)
Address extension Value

Range of values Meaning Range of values Type Meaning Number 8)
- - - - - - 0 ... 6 INT Selection of the

additive tool offset
1

Remarks:
The additive tool offset selected with DL refers to the active D number.

8) See "Meaning of footnotes" at the end of the overview.

Use

Selection of the additive tool offset with reference to an active tool offset.

Further information

● Initial setting: DL = 0

● DL values cannot be output to the PLC via synchronized actions.

● Default setting of the additive tool offset without an active DL function:

MD20272 $MC_SUMCORR_DEFAULT (basic setting of the additive offset without a
program)

● Deselection of the additive tool offset: DL = 0

● DL function-specific machine data:

MD22252 $MC_AUXFU_DL_SYNC_TYPE (output time DL functions)

F functions

F (feedrate)
Address extension Value

Range of values Meaning Range of values Type Meaning Number 8)
- - - - - - 0.001 ... 999 999.999 REAL Path feedrate 6
Remarks:
- - -

8) See "Meaning of footnotes" at the end of the overview.

Use

Path velocity.

Further information

● F function-specific machine data:

MD22240 $MC_AUXFU_F_SYNC_TYPE (output time of F functions)

H2: Auxiliary function outputs to PLC
7.1 Brief description

 Basic Functions
376 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

FA functions

FA (axial feedrate)
Address extension Value

Range of values Meaning Range of values Type Meaning Number 8)
1 - 31 Axis number 0.001 ... 999 999.999 REAL Axial feedrate 6
Remarks:
- - -

8) See "Meaning of footnotes" at the end of the overview.

Use

Axial velocity.

Further information

● F function-specific machine data:

MD22240 $MC_AUXFU_F_SYNC_TYPE (output time of F functions)

Meaning of footnotes

1) If tool management is active, neither a T change signal nor a T word is output to the interface
(channel).

2) The type for the values can be selected by the user via MD22110 $MC_AUXFU_H_TYPE_INT.
3) Because of the limited display options on the operator panel screens, the REAL type values

displayed are restricted to:
–999 999 999.9999 to 999 999 999.9999
The NC calculates internally but with complete accuracy.

4) The REAL values are rounded and output to the PLC when setting the machine data:
MD22110 $MC_AUXFU_H_TYPE_INT = 1 (type of H-auxiliary functions is an integer)
The PLC user program must interpret the value transferred according to the machine data setting.

5) If the tool management is active, the meaning of the address extension can be parameterized.
Address extension = 0 means the value must be replaced by that of the master spindle number,
i.e. it is equivalent to not programming the address extension.
Auxiliary functions M19 "Position spindle" collected during a block search are not output to the
PLC.

6) M6: Range of values of the address extension:
- without tool management: 0 ... 99
- with tool management: 0 ... maximum spindle number
0: to be replaced by the value of the master spindle number or master toolholder

7) If tool management is active, the auxiliary function M6 "Tool change" can only be programmed
once in a part program block, irrespective the address extensions that are programmed.

8) Maximum number of auxiliary functions per part program block.

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 377

7.2 Predefined auxiliary functions

Function
Every pre-defined auxiliary function is assigned to a system function and cannot be changed.
If a pre-defined auxiliary function is programmed in a part program/cycle, then this is output
to the PLC via the NC/PLC interface and the corresponding system function is executed in
the NCK.

Definition of a predefined auxiliary function
The parameters of the predefined auxiliary function are stored in machine data and can be
changed in some cases. All machine data, which are assigned to an auxiliary function, have
the same index <n>.

● MD22040 $MC_AUXFU_PREDEF_GROUP[<n>] (group assignment of predefined
auxiliary functions)

● MD22050 $MC_AUXFU_PREDEF_TYPE[<n>] (type of predefined auxiliary functions)

● MD22060 $MC_AUXFU_PREDEF_EXTENSION[<n>] (address extension for predefined
auxiliary functions)

● MD22070 $MC_AUXFU_PREDEF_VALUE[<n>] (value of predefined auxiliary functions)

● MD22080 $MC_AUXFU_PREDEF_SPEC[<n>] (output behavior of predefined auxiliary
functions)

7.2.1 Overview: Predefined auxiliary functions
Significance of the parameters listed in the following tables:

Parameter Meaning
Index <n> Machine data index of the parameters of an auxiliary function
Type MD22050 $MC_AUXFU_PREDEF_TYPE[<n>]
Address extension MD22060 $MC_AUXFU_PREDEF_EXTENSION[<n>]
Value MD22070 $MC_AUXFU_PREDEF_VALUE[<n>]
Group MD22040 $MC_AUXFU_PREDEF_GROUP[<n>]

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
378 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Predefined auxiliary functions

General auxiliary functions, Part 1
System function Index <n> Type Address

extension
Value Group

Stop 0 M 0 0 1
Conditional stop 1 M 0 1 1

2 M 0 2 1
3 M 0 17 1

End of subprogram

4 M 0 30 1
Tool change 5 M (0) 6 1) (1)

Spindle-specific auxiliary functions, spindle 1
System function Index <n> Type Address

extension
Value Group

Spindle right 6 M 1 3 (2)
Spindle left 7 M 1 4 (2)
Spindle stop 8 M 1 5 (2)
Position spindle 9 M 1 19 (2)
Axis mode 10 M 1 70 2) (2)
Automatic gear stage 11 M 1 40 (4)
Gear stage 1 12 M 1 41 (4)
Gear stage 2 13 M 1 42 (4)
Gear stage 3 14 M 1 43 (4)
Gear stage 4 15 M 1 44 (4)
Gear stage 5 16 M 1 45 (4)
Spindle speed 17 S 1 -1 (3)

General auxiliary functions, Part 2
System function Index <n> Type Address

extension
Value Group

Feedrate 18 F 0 -1 (1)
Cutting edge selection 19 D 0 -1 (1)
DL 20 L 0 -1 (1)
Tool selection 21 T (0) -1 (1)
Stop (associated) 22 M 0 -1 3) 1
Conditional stop (associated) 23 M 0 -1 4) 1
End of subprogram 24 M 0 -1 5) 1
Nibbling 25 M 0 20 6) (10)
Nibbling 26 M 0 23 6) (10)
Nibbling 27 M 0 22 6) (11)

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 379

General auxiliary functions, Part 2
System function Index <n> Type Address

extension
Value Group

Nibbling 28 M 0 25 6) (11)
Nibbling 29 M 0 26 6) (12)
Nibbling 30 M 0 122 6) (11)
Nibbling 31 M 0 125 6) (11)
Nibbling 32 M 0 27 6) (12)

Spindle-specific auxiliary functions, spindle 2
System function Index <n> Type Address

extension
Value Group

Spindle right 33 M 2 3 (72)
Spindle left 34 M 2 4 (72)
Spindle stop 35 M 2 5 (72)
Position spindle 36 M 2 19 (72)
Axis mode 37 M 2 70 2) (72)
Automatic gear stage 38 M 2 40 (74)
Gear stage 1 39 M 2 41 (74)
Gear stage 2 40 M 2 42 (74)
Gear stage 3 41 M 2 43 (74)
Gear stage 4 42 M 2 44 (74)
Gear stage 5 43 M 2 45 (74)
Spindle speed 44 S 2 -1 (73)

Spindle-specific auxiliary functions, spindle 3
System function Index <n> Type Address

extension
Value Group

Spindle right 45 M 3 3 (75)
Spindle left 46 M 3 4 (75)
Spindle stop 47 M 3 5 (75)
Position spindle 48 M 3 19 (75)
Axis mode 49 M 3 70 2) (75)
Automatic gear stage 50 M 3 40 (77)
Gear stage 1 51 M 3 41 (77)
Gear stage 2 52 M 3 42 (77)
Gear stage 3 53 M 3 43 (77)
Gear stage 4 54 M 3 44 (77)
Gear stage 5 55 M 3 45 (77)
Spindle speed 56 S 3 -1 (76)

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
380 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Spindle-specific auxiliary functions, spindle 4
System function Index <n> Type Address

extension
Value Group

Spindle right 57 M 4 3 (78)
Spindle left 58 M 4 4 (78)
Spindle stop 59 M 4 5 (78)
Position spindle 60 M 4 19 (78)
Axis mode 61 M 4 70 2) (78)
Automatic gear stage 62 M 4 40 (80)
Gear stage 1 63 M 4 41 (80)
Gear stage 2 64 M 4 42 (80)
Gear stage 3 65 M 4 43 (80)
Gear stage 4 66 M 4 44 (80)
Gear stage 5 67 M 4 45 (80)
Spindle speed 68 S 4 -1 (79)

Spindle-specific auxiliary functions, spindle 5
System function Index <n> Type Address

extension
Value Group

Spindle right 69 M 5 3 (81)
Spindle left 70 M 5 4 (81)
Spindle stop 71 M 5 5 (81)
Position spindle 72 M 5 19 (81)
Axis mode 73 M 5 70 2) (81)
Automatic gear stage 74 M 5 40 (83)
Gear stage 1 75 M 5 41 (83)
Gear stage 2 76 M 5 42 (83)
Gear stage 3 77 M 5 43 (83)
Gear stage 4 78 M 5 44 (83)
Gear stage 5 79 M 5 45 (83)
Spindle speed 80 S 5 -1 (82)

Spindle-specific auxiliary functions, spindle 6
System function Index <n> Type Address

extension
Value Group

Spindle right 81 M 6 3 (84)
Spindle left 82 M 6 4 (84)
Spindle stop 83 M 6 5 (84)
Position spindle 84 M 6 19 (84)
Axis mode 85 M 6 70 2) (84)
Automatic gear stage 86 M 6 40 (86)
Gear stage 1 87 M 6 41 (86)

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 381

Spindle-specific auxiliary functions, spindle 6
System function Index <n> Type Address

extension
Value Group

Gear stage 2 88 M 6 42 (86)
Gear stage 3 89 M 6 43 (86)
Gear stage 4 90 M 6 44 (86)
Gear stage 5 91 M 6 45 (86)
Spindle speed 92 S 6 -1 (85)

Spindle-specific auxiliary functions, spindle 7
System function Index <n> Type Address

extension
Value Group

Spindle right 93 M 7 3 (87)
Spindle left 94 M 7 4 (87)
Spindle stop 95 M 7 5 (87)
Position spindle 96 M 7 19 (87)
Axis mode 97 M 7 70 2) (87)
Automatic gear stage 98 M 7 40 (89)
Gear stage 1 99 M 7 41 (89)
Gear stage 2 100 M 7 42 (89)
Gear stage 3 101 M 7 43 (89)
Gear stage 4 102 M 7 44 (89)
Gear stage 5 103 M 7 45 (89)
Spindle speed 104 S 7 -1 (88)

Spindle-specific auxiliary functions, spindle 8
System function Index <n> Type Address

extension
Value Group

Spindle right 105 M 8 3 (90)
Spindle left 106 M 8 4 (90)
Spindle stop 107 M 8 5 (90)
Position spindle 108 M 8 19 (90)
Axis mode 109 M 8 70 2) (90)
Automatic gear stage 110 M 8 40 (92)
Gear stage 1 111 M 8 41 (92)
Gear stage 2 112 M 8 42 (92)
Gear stage 3 113 M 8 43 (92)
Gear stage 4 114 M 8 44 (92)
Gear stage 5 115 M 8 45 (92)
Spindle speed 116 S 8 -1 (91)

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
382 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Spindle-specific auxiliary functions, spindle 9
System function Index <n> Type Address

extension
Value Group

Spindle right 117 M 9 3 (93)
Spindle left 118 M 9 4 (93)
Spindle stop 119 M 9 5 (93)
Position spindle 120 M 9 19 (93)
Axis mode 121 M 9 70 2) (93)
Automatic gear stage 122 M 9 40 (95)
Gear stage 1 123 M 9 41 (95)
Gear stage 2 124 M 9 42 (95)
Gear stage 3 125 M 9 43 (95)
Gear stage 4 126 M 9 44 (95)
Gear stage 5 127 M 9 45 (95)
Spindle speed 128 S 9 -1 (94)

Spindle-specific auxiliary functions, spindle 10
System function Index <n> Type Address

extension
Value Group

Spindle right 129 M 10 3 (96)
Spindle left 130 M 10 4 (96)
Spindle stop 131 M 10 5 (96)
Position spindle 132 M 10 19 (96)
Axis mode 133 M 10 70 2) (96)
Automatic gear stage 134 M 10 40 (98)
Gear stage 1 135 M 10 41 (98)
Gear stage 2 136 M 10 42 (98)
Gear stage 3 137 M 10 43 (98)
Gear stage 4 138 M 10 44 (98)
Gear stage 5 139 M 10 45 (98)
Spindle speed 140 S 10 -1 (97)

Spindle-specific auxiliary functions, spindle 11
System function Index <n> Type Address

extension
Value Group

Spindle right 141 M 11 3 (99)
Spindle left 142 M 11 4 (99)
Spindle stop 143 M 11 5 (99)
Position spindle 144 M 11 19 (99)
Axis mode 145 M 11 70 2) (99)
Automatic gear stage 146 M 11 40 (101)
Gear stage 1 147 M 11 41 (101)

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 383

Spindle-specific auxiliary functions, spindle 11
System function Index <n> Type Address

extension
Value Group

Gear stage 2 148 M 11 42 (101)
Gear stage 3 149 M 11 43 (101)
Gear stage 4 150 M 11 44 (101)
Gear stage 5 151 M 11 45 (101)
Spindle speed 152 S 11 -1 (100)

Spindle-specific auxiliary functions, spindle 12
System function Index <n> Type Address

extension
Value Group

Spindle right 153 M 11 3 (102)
Spindle left 154 M 12 4 (102)
Spindle stop 155 M 12 5 (102)
Position spindle 156 M 12 19 (102)
Axis mode 157 M 12 70 2) (102)
Automatic gear stage 158 M 12 40 (104)
Gear stage 1 159 M 12 41 (104)
Gear stage 2 160 M 12 42 (104)
Gear stage 3 161 M 12 43 (104)
Gear stage 4 162 M 12 44 (104)
Gear stage 5 163 M 12 45 (104)
Spindle speed 164 S 12 -1 (103)

Spindle-specific auxiliary functions, spindle 13
System function Index <n> Type Address

extension
Value Group

Spindle right 165 M 13 3 (105)
Spindle left 166 M 13 4 (105)
Spindle stop 167 M 13 5 (105)
Position spindle 168 M 13 19 (105)
Axis mode 169 M 13 70 2) (105)
Automatic gear stage 170 M 13 40 (107)
Gear stage 1 171 M 13 41 (107)
Gear stage 2 172 M 13 42 (107)
Gear stage 3 173 M 13 43 (107)
Gear stage 4 174 M 13 44 (107)
Gear stage 5 175 M 13 45 (107)
Spindle speed 176 S 13 -1 (106)

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
384 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Spindle-specific auxiliary functions, spindle 14
System function Index <n> Type Address

extension
Value Group

Spindle right 177 M 14 3 (108)
Spindle left 178 M 14 4 (108)
Spindle stop 179 M 14 5 (108)
Position spindle 180 M 14 19 (108)
Axis mode 181 M 14 70 2) (108)
Automatic gear stage 182 M 14 40 (110)
Gear stage 1 183 M 14 41 (110)
Gear stage 2 184 M 14 42 (110)
Gear stage 3 185 M 14 43 (110)
Gear stage 4 186 M 14 44 (110)
Gear stage 5 187 M 14 45 (110)
Spindle speed 188 S 14 -1 (109)

Spindle-specific auxiliary functions, spindle 15
System function Index <n> Type Address

extension
Value Group

Spindle right 189 M 15 3 (111)
Spindle left 190 M 15 4 (111)
Spindle stop 191 M 15 5 (111)
Position spindle 192 M 15 19 (111)
Axis mode 193 M 15 70 2) (111)
Automatic gear stage 194 M 15 40 (113)
Gear stage 1 195 M 15 41 (113)
Gear stage 2 196 M 15 42 (113)
Gear stage 3 197 M 15 43 (113)
Gear stage 4 198 M 15 44 (113)
Gear stage 5 199 M 15 45 (113)
Spindle speed 200 S 15 -1 (112)

Spindle-specific auxiliary functions, spindle 16
System function Index <n> Type Address

extension
Value Group

Spindle right 201 M 16 3 (114)
Spindle left 202 M 16 4 (114)
Spindle stop 203 M 16 5 (114)
Position spindle 204 M 16 19 (114)
Axis mode 205 M 16 70 2) (114)
Automatic gear stage 206 M 16 40 (116)
Gear stage 1 207 M 16 41 (116)

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 385

Spindle-specific auxiliary functions, spindle 16
System function Index <n> Type Address

extension
Value Group

Gear stage 2 208 M 16 42 (116)
Gear stage 3 209 M 16 43 (116)
Gear stage 4 210 M 16 44 (116)
Gear stage 5 211 M 16 45 (116)
Spindle speed 212 S 16 -1 (115)

Spindle-specific auxiliary functions, spindle 17
System function Index <n> Type Address

extension
Value Group

Spindle right 213 M 17 3 (117)
Spindle left 214 M 17 4 (117)
Spindle stop 215 M 17 5 (117)
Position spindle 216 M 17 19 (117)
Axis mode 217 M 17 70 2) (117)
Automatic gear stage 218 M 17 40 (119)
Gear stage 1 219 M 17 41 (119)
Gear stage 2 220 M 17 42 (119)
Gear stage 3 221 M 17 43 (119)
Gear stage 4 222 M 17 44 (119)
Gear stage 5 223 M 17 45 (119)
Spindle speed 224 S 17 -1 (118)

Spindle-specific auxiliary functions, spindle 18
System function Index <n> Type Address

extension
Value Group

Spindle right 225 M 18 3 (120)
Spindle left 226 M 18 4 (120)
Spindle stop 227 M 18 5 (120)
Position spindle 228 M 18 19 (120)
Axis mode 229 M 18 70 2) (120)
Automatic gear stage 230 M 18 40 (122)
Gear stage 1 231 M 18 41 (122)
Gear stage 2 232 M 18 42 (122)
Gear stage 3 233 M 18 43 (122)
Gear stage 4 234 M 18 44 (122)
Gear stage 5 235 M 18 45 (122)
Spindle speed 236 S 18 -1 (121)

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
386 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Spindle-specific auxiliary functions, spindle 19
System function Index <n> Type Address

extension
Value Group

Spindle right 237 M 19 3 (123)
Spindle left 238 M 19 4 (123)
Spindle stop 239 M 19 5 (123)
Position spindle 240 M 19 19 (123)
Axis mode 241 M 19 70 2) (123)
Automatic gear stage 242 M 19 40 (125)
Gear stage 1 243 M 19 41 (125)
Gear stage 2 244 M 19 42 (125)
Gear stage 3 245 M 19 43 (125)
Gear stage 4 246 M 19 44 (125)
Gear stage 5 247 M 19 45 (125)
Spindle speed 248 S 19 -1 (124)

Spindle-specific auxiliary functions, spindle 20
System function Index <n> Type Address

extension
Value Group

Spindle right 249 M 20 3 (126)
Spindle left 250 M 20 4 (126)
Spindle stop 251 M 20 5 (126)
Position spindle 252 M 20 19 (126)
Axis mode 253 M 20 70 2) (126)
Automatic gear stage 254 M 20 40 (128)
Gear stage 1 255 M 20 41 (128)
Gear stage 2 256 M 20 42 (128)
Gear stage 3 257 M 20 43 (128)
Gear stage 4 258 M 20 44 (128)
Gear stage 5 259 M 20 45 (128)
Spindle speed 260 S 20 -1 (127)

Toolholder-specific auxiliary functions, T auxiliary functions
System function Index <n> Type Address

extension
Value Group

Tool selection 261 T 1 -1 129
Tool selection 262 T 2 -1 130
Tool selection 263 T 3 -1 131
Tool selection 264 T 4 -1 132
Tool selection 265 T 5 -1 133
Tool selection 266 T 6 -1 134
Tool selection 267 T 7 -1 135

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 387

Toolholder-specific auxiliary functions, T auxiliary functions
System function Index <n> Type Address

extension
Value Group

Tool selection 268 T 8 -1 136
Tool selection 269 T 9 -1 137
Tool selection 270 T 10 -1 138
Tool selection 271 T 11 -1 139
Tool selection 272 T 12 -1 140
Tool selection 273 T 13 -1 141
Tool selection 274 T 14 -1 142
Tool selection 275 T 15 -1 143
Tool selection 276 T 16 -1 144
Tool selection 277 T 17 -1 145
Tool selection 278 T 18 -1 146
Tool selection 279 T 19 -1 147
Tool selection 280 T 20 -1 148

Toolholder-specific auxiliary functions, M6 auxiliary functions
System function Index <n> Type Address

extension
Value Group

Tool change 281 M 1 6 1) 149
Tool change 282 M 2 6 1) 150
Tool change 283 M 3 6 1) 151
Tool change 284 M 4 6 1) 152
Tool change 285 M 5 6 1) 153
Tool change 286 M 6 6 1) 154
Tool change 287 M 7 6 1) 155
Tool change 288 M 8 6 1) 156
Tool change 289 M 9 6 1) 157
Tool change 290 M 10 6 1) 158
Tool change 291 M 11 6 1) 159
Tool change 292 M 12 6 1) 160
Tool change 293 M 13 6 1) 161
Tool change 294 M 14 6 1) 162
Tool change 295 M 15 6 1) 163
Tool change 296 M 16 6 1) 164
Tool change 297 M 17 6 1) 165
Tool change 298 M 18 6 1) 166
Tool change 299 M 19 6 1) 167
Tool change 300 M 20 6 1) 168

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
388 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 () The value can be changed.
1) The value is depends on the machine data:

MD22560 $MC_TOOL_CHANGE_M_MODE (M function for tool change)
2) The value can be preset with a different value using the following machine data:

MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR (M function for switching over to
controlled axis mode (ext. mode))
MD20094 $MC_SPIND_RIGID_TAPPING_M_NR (M function for switching over to
controlled axis mode)
Note
The value 70 is always output to the PLC.

3) The value is set using machine data:
MD22254 $MC_AUXFU_ASSOC_M0_VALUE (additional M function for program stop)

4) The value is set using machine data:
MD22256 $MC_AUXFU_ASSOC_M1_VALUE (additional M function for conditional stop)

5) The value is set using machine data:
MD10714 $MN_M_NO_FCT_EOP (M function for spindle active after reset)

6) The value is set using machine data:
MD26008 $MC_NIBBLE_PUNCH_CODE (definition of M functions)

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 389

7.2.2 Overview: Output behavior
Significance of the parameters listed in the following table:

Parameter Meaning
Index <n> Machine data index of the parameters of an auxiliary function
Output behavior MD22080 $MC_AUXFU_PREDEF_SPEC[<n>], Bits 0 ... 18

Bits 19 ... 31: Reserved

Output behavior of the predefined auxiliary functions

Index <n>
Output behavior, bit

System function

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Stop 0 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
Conditional stop 1 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)

2 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
3 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)

End of subroutine

4 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
Tool change 5 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Spindle right 6 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Spindle left 7 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Spindle stop 8 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Spindle positioning 9 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Axis mode 10 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0) (1)
Automatic gear stage 11 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 1 12 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 2 13 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 3 14 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 4 15 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Gear stage 5 16 0 0 0 (0) 0 0 0 (0) (0) (0) (0) 0 0 1 (0) (0) (0) (0) (1)
Spindle speed 17 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (1) (0) (0) (0) 0 (0) (1)
Feed 18 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (1) (0) 0 (1) 0 (0) (1)
Cutting edge selection 19 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (0) (1) 0 (0) 0 (0) (1)
DL 20 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (0) (1) 0 (0) 0 (0) (1)
Tool selection 21 0 0 0 (0) 0 0 0 (0) (0) (0) 0 (0) (0) (1) 0 (0) 0 (0) (1)
Stop (associated) 22 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
Conditional stop
(associated)

23 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)

End of subroutine 24 0 0 0 (0) 0 0 0 0 (0) 0 0 1 0 0 0 0 0 (0) (1)
Nibbling 25 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 26 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
390 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Index <n>
Output behavior, bit

System function

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Nibbling 27 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 28 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 29 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 30 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 31 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)
Nibbling 32 0 0 0 (0) 0 0 0 (0) (0) (0) (0) (0) (1) (0) 0 (0) (0) (0) (1)

() The value can be changed.

Significance of the bits

Bit Meaning

Acknowledgement "normal" after an OB1 cycle 0
An auxiliary function with normal acknowledgment is output to the NC/PLC interface at the beginning of the OB1
cycle. The auxiliary function-specific change signal indicates to the PLC user program that the auxiliary function is
valid.
The auxiliary function is acknowledged as soon as organization block OB1 has run once. This corresponds to a
complete PLC user cycle.
The auxiliary function with normal acknowledgment is output in synchronism with the part program block in which it
is programmed. If execution of the parts program block, e.g. path and/or positioning axis movements, is completed
before acknowledgment of the auxiliary function, the block change is delayed until after acknowledgment by the
PLC.
In continuous-path mode, a constant path velocity can be maintained in conjunction with an auxiliary function with
normal acknowledgment, if the auxiliary function is output by the PLC during the traversing motion and before
reaching the end of the block.
Acknowledgement "quick" with OB40 1
An auxiliary function with quick acknowledgment is output to the NC/PLC interface before the next OB1 cycle. The
auxiliary function-specific change signal indicates to the PLC user program that the auxiliary function is valid.
The auxiliary function is acknowledged immediately by the PLC basic program in the next OB40 cycle.
Acknowledgment of the auxiliary function is not confirmation that the corresponding PLC user function has been
executed. The auxiliary function is still executed in the OB1 cycle. Next output of the auxiliary functions to the PLC
is therefore not possible until after this OB1 cycle has run completely. This is noticeable in continuous-path mode
(drop in path velocity) especially if auxiliary functions with quick acknowledgment are output in several consecutive
part program blocks.
With auxiliary functions with quick acknowledgment, it cannot be guaranteed that the PLC user program will
respond in synchronism with the block.
Note
Parameterization of the output behavior of auxiliary functions as "quick auxiliary functions" is only possible in
conjunction with user-defined auxiliary functions.

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 391

Bit Meaning
No predefined auxiliary function 2
A predefined auxiliary function is treated like a user-defined auxiliary function with this setting. The auxiliary function
then no longer triggers the corresponding system function but is only output to the PLC.
Example:
Reconfiguration of the "Position spindle" auxiliary function (index 9) to a user-defined auxiliary function with normal
acknowledgment and output prior to the traversing motion.
MD22080 $MC_AUXFU_PREDEF_SPEC [9] = 'H25' (100101B)
No output to the PLC 3
The auxiliary function is not output to the PLC.
Spindle response after acknowledgement by the PLC 4
The associated system function is only executed after acknowledgment by the PLC.
Output prior to motion 5
The auxiliary function is output to the PLC before the traversing motions programmed in the part program block
(path and/or block-related positioning axis movements).
Output during motion 6
The auxiliary function is output to the PLC during the traversing motions programmed in the part program block
(path and/or block-related positioning axis movements).
Output at block end 7
The auxiliary function is output to the PLC after the traversing motions programmed in the part program block have
been completed (path and/or block-related positioning axis movements).
Not output after block search, types 1, 2, 4 8
Block search, types 1, 2, 4: The auxiliary function collected during the block search is not output.
Collection during block search with program test (type 5, SERUPRO) 9
For a block search with program test, the auxiliary function is collected group-specific in the following system
variables:
• $AC_AUXFU_M_VALUE[<n>]
• $AC_AUXFU_M_EXT[<n>]
• $AC_AUXFU_M_STATE[<n>]

No output during block search with program test (type 5, SERUPRO) 10
For block search with program test, the auxiliary function is not output to the PLC.
Cross-channel auxiliary function (SERUPRO) 11
For block search with program test (SERUPRO), the help function is collected on a cross-channel basis in the
global list of the auxiliary functions.
Note
For each auxiliary function group, only the last auxiliary function of the group is always collected.
Output performed via synchronized action (read only) 12
The bit is set if the auxiliary function was output to the PLC via a synchronized action.
Implicit auxiliary function (read-only) 13
The bit is set if the auxiliary function was implicitly output to the PLC.
Active M01 (read only) 14
The bit is set if the auxiliary function, for active M01, was output to the PLC.
No output during positioning test run 15
During the run-in test, the auxiliary function is not output to the PLC.

16 Nibbling off

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
392 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Bit Meaning
17 Nibbling on
18 Nibbling

 Note

In the case of auxiliary functions for which no output behavior has been defined, the
following default output behavior is active:
• Bit 0 = 1: Output duration one OB1 cycle
• Bit 7 = 1: Output at block end

7.2.3 Parameterization

7.2.3.1 Group assignment
The handling of the auxiliary functions for a block search is defined using the group
assignment of an auxiliary function. The 168 auxiliary function groups available are
subdivided into predefined and user-definable groups:

Predefined groups: 1 ... 4 10 ... 12 72 ... 168
User-defined groups: 5 ... 9 13 ... 71

Each predefined auxiliary function is assigned, as standard, to an auxiliary function group.
For most pre-defined auxiliary functions, this assignment can be changed using the following
machine data:

MD22040 $MC_AUXFU_PREDEF_GROUP[<n>] (group assignment of predefined auxiliary
functions)

If an auxiliary function is not assigned to any group, then a value of "0" should be entered
into the machine data.

For the pre-defined auxiliary functions with the following indices <n>, the group assignment
cannot be changed: 0, 1, 2, 3, 4, 22, 23, 24

 Note
1. Auxiliary function group and block search

Auxiliary functions of the 1st auxiliary function group are, for a block search, only collected,
but not output.

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 393

7.2.3.2 Type, address extension and value
An auxiliary function is programmed via the type, address extension and value parameters
(see Section "Programming an auxiliary function (Page 407)").

Type
The identifier of an auxiliary function is defined via the "type," e.g.:

"M" For additional function
"S" For spindle function
"F" For feed

The setting is made via the following machine data:

MD22050 $MC_AUXFU_PREDEF_TYPE[<n>] (type of predefined auxiliary functions)

 Note

The "type" cannot be changed for predefined auxiliary functions.

Address extension
The "address extension" of an auxiliary function is for addressing different components of the
same type. In the case of predefined auxiliary functions, the value of the "address extension"
is the spindle number to which the auxiliary function applies.

The setting is made via the following machine data:

MD22060 $MC_AUXFU_PREDEF_EXTENSION[<n>] (address extension for predefined
auxiliary functions)

Grouping together auxiliary functions

To assign an auxiliary function for all spindles of a channel to the same auxiliary function
group, the value "-1" is entered for the "address extension" parameter.

Example:

The auxiliary function M3 (machine data index = 6) is assigned to the second auxiliary
function group for all the channel's spindles.

MD22040 $MC_AUXFU_PREDEF_GROUP[6] = 2
MD22050 $MC_AUXFU_PREDEF_TYPE[6] = "M"
MD22060 $MC_AUXFU_PREDEF_EXTENSION[6] = -1
MD22070 $MC_AUXFU_PREDEF_VALUE[6] = 3

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
394 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Value
The parameters "value" and "type" define the meaning of an auxiliary function, i.e. the
system function that is activated on the basis of this auxiliary function.

The "value" of an auxiliary function is defined in the machine data:

MD22070 $MC_AUXFU_PREDEF_VALUE[<n>] (value of predefined auxiliary functions)

 Note

The "value" cannot be changed for a predefined auxiliary function. For some predefined
auxiliary functions, the "value" can be reconfigured via additional machine data (see Section
"Associated auxiliary functions (Page 402)").

7.2.3.3 Output behavior
Parameter "Output behavior" defines when the predefined auxiliary function is output to the
NC/PLC interface and when it is acknowledged by the PLC.

The setting is done via the following machine data:

MD22080 $MC_AUXFU_PREDEF_SPEC[<n>] (output behavior of predefined auxiliary
functions)

Output behavior relative to motion
Output prior to motion

● The traversing motions (path and/or block-related positioning axis movements) of the
previous part program block end with an exact stop.

● The auxiliary functions are output at the beginning of the current parts program block.

● The traversing motion of the actual part program block (path and/or positioning axis
motion) is only started after acknowledgment of the auxiliary functions by the PLC:

– Output duration one OB1 cycle (normal acknowledgment): after one OB1 cycle

– Output duration one OB40 cycle (quick acknowledgment): after one OB40 cycle

Output during motion

● The auxiliary functions are output at the beginning of the traversing motions (path and/or
positioning axis movements).

● The path velocity of the current parts program block is reduced so that the time to the end
of the block is greater than the time to acknowledgment of the auxiliary functions by the
PLC.

– Output duration one OB1 cycle (normal acknowledgment): one OB1 cycle

– Output duration one OB40 cycle (quick acknowledgment): one OB40 cycle

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 395

Output after motion

● The traversing motions (path and/or block-related positioning axis movements) of the
current part program block end with an exact stop.

● The auxiliary functions are output after completion of the traversing motions.

● The block change is performed after acknowledgment of the auxiliary functions by the
PLC:

– Output duration one OB1 cycle (normal acknowledgment): after one OB1 cycle

– Output duration one OB40 cycle (quick acknowledgment): after one OB40 cycle

Examples of different output behavior
The following figures illustrate the differing behavior regarding:

● Output and acknowledgment of the auxiliary function

● Spindle response (speed change)

● Traverse movement (velocity change)

The binary values specified in the diagrams under "Output behavior" refer to the
parameterized output behavior (MD22080).

H2: Auxiliary function outputs to PLC
7.2 Predefined auxiliary functions

 Basic Functions
396 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 H2: Auxiliary function outputs to PLC
 7.2 Predefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 397

H2: Auxiliary function outputs to PLC
7.3 Userdefined auxiliary functions

 Basic Functions
398 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

7.3 Userdefined auxiliary functions
There are two uses for user-defined auxiliary functions:

● Extension of predefined auxiliary functions

● User-specific auxiliary functions

Extension of predefined auxiliary functions
Because there is only one set of machine data for the predefined auxiliary functions, they
can only ever be used to address one spindle of the channel. To address further spindles,
user-defined auxiliary functions must be parameterized to supplement the predefined
auxiliary functions.

Extension of predefined auxiliary functions refers to the "address extensions" parameter. The
number of the spindle that the auxiliary function refers to is entered in the "address
extension" parameter.

 H2: Auxiliary function outputs to PLC
 7.3 Userdefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 399

The relevant predefined auxiliary functions can be extended for the following system
functions:

Type

Address extension 1)
System function

 Value

Tool change M 1 6
Spindle right M 1 3
Spindle left M 1 4
Spindle stop M 1 5
Position spindle M 1 19
Axis mode M 1 70
Automatic gear stage M 1 40
Gear stage 1 M 1 41
Gear stage 2 M 1 42
Gear stage 3 M 1 43
Gear stage 4 M 1 44
Gear stage 5 M 1 45
Spindle speed S 1 -1
Tool selection T 1 -1

1) Address extension = 1 is the default value used in the auxiliary functions predefined in the
machine data

Example:

Extension of the predefined auxiliary function for the system function "spindle right" for the
second and third spindle of the channel.

Auxiliary function "spindle right" for the second spindle of the channel:
MD22010 $MC_AUXFU_ASSIGN_TYPE[n] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[n] = 2
MD22030 $MC_AUXFU_ ASSIGN_VALUE[n] = 3

Auxiliary function "spindle right" for the third spindle of the channel:
MD22010 $MC_AUXFU_ ASSIGN_TYPE[m] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[m] = 3
MD22030 $MC_AUXFU_ ASSIGN_VALUE[m] = 3

H2: Auxiliary function outputs to PLC
7.3 Userdefined auxiliary functions

 Basic Functions
400 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

User-specific auxiliary functions
User-specific auxiliary functions have the following characteristics:

● User-specific auxiliary functions only activate user functions.

● No system functions can be activated by user-specific auxiliary functions.

● A user-specific auxiliary function is output to the PLC according to the parameterized
output behavior.

● The functionality of a user-specific auxiliary function is implemented by the machine
manufacturer/user in the PLC user program.

7.3.1 Parameterization

7.3.1.1 Maximum number of user-defined auxiliary functions
The maximum number of user-defined auxiliary function per channel can be parameterized
via the machine data:

MD11100 $MN_AUXFU_MAXNUM_GROUP_ASSIGN (maximum number of user-defined
auxiliary functions)

7.3.1.2 Group assignment
The handling of the auxiliary functions for a block search is defined using the group
assignment of an auxiliary function. The 168 auxiliary function groups available are
subdivided into predefined and user-definable groups:

Predefined groups: 1 ... 4 10 ... 12 72 ... 168
User-defined groups: 5 ... 9 13 ... 71

Every user-defined auxiliary function is assigned as standard to the 1st auxiliary function
group. The assignment can be changed using the following machine data:

MD22000 $MC_AUXFU_ASSIGN_GROUP[<n>] (group assignment of user-defined auxiliary
functions)

If an auxiliary function is not assigned to any group, then a value of "0" should be entered
into the machine data.

 Note
1. Auxiliary function group and block search

Auxiliary functions of the 1st auxiliary function group are, for a block search, only collected,
but not output.

 H2: Auxiliary function outputs to PLC
 7.3 Userdefined auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 401

7.3.1.3 Type, address extension and value
An auxiliary function is programmed via the type, address extension and value parameters
(see Section "Programming an auxiliary function (Page 407)").

Type
The name of an auxiliary function is defined via the "type".

The identifiers for user-defined auxiliary functions are:

Type Identifier Meaning
"H" Auxiliary function User-specific auxiliary functions
"M" Special function
"S" Spindle function
"T" Tool number

Extension of predefined auxiliary
functions

The setting is made via the following machine data:

MD22010 $MC_AUXFU_ASSIGN_TYPE[<n>] (type of user-defined auxiliary functions)

Address extension
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[<n>] (address extension user-defined
auxiliary functions)

The functionality of the address extension is not defined in user-specific auxiliary functions. It
is generally used to distinguish between auxiliary functions with the same "value".

Grouping together auxiliary functions

If all the auxiliary functions of the same type and value are assigned to the same auxiliary
function group, a value of "-1" must be entered for the "address extension" parameter.

Example:

All user-specific auxiliary functions with the value "= 8" are assigned to the tenth auxiliary
function group.

MD22000 $MC_AUXFU_ASSIGN_GROUP [1] = 10
MD22010 $MC_AUXFU_ ASSIGN_TYPE [1] = "H"
MD22020 $MC_AUXFU_ ASSIGN_EXTENSION [1] = -1
MD22030 $MC_AUXFU_ ASSIGN_VALUE [1] = 8

Value
MD22030 $MC_AUXFU_ASSIGN_VALUE[<n>] (value of user-defined auxiliary functions)

The functionality of the "value" parameter is not defined in user-specific auxiliary functions.
The value is generally used to activate the corresponding PLC user function.

H2: Auxiliary function outputs to PLC
7.4 Associated auxiliary functions

 Basic Functions
402 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Grouping together auxiliary functions

If all the auxiliary functions of the same type and address extension are assigned to the
same auxiliary function group, a value of "-1" must be entered for the "value" parameter.

Example:

All user-specific auxiliary functions with the address extension "= 2" are assigned to the
eleventh auxiliary function group.

MD22000 $MC_AUXFU_ASSIGN_GROUP [2] = 11
MD22010 $MC_AUXFU_ ASSIGN_TYPE [2] = "H"
MD22020 $MC_AUXFU_ ASSIGN_EXTENSION [2] = 2
MD22030 $MC_AUXFU_ ASSIGN_VALUE [2] = -1

7.3.1.4 Output behavior
The "output behavior" of user-defined auxiliary functions can be parameterized via the
machine data:

MD22035 $MC_AUXFU_ASSIGN_SPEC[<n>] (output behavior of user-defined auxiliary
functions)

For a description of the individual output parameters, see the "Output behavior (Page 394)"
section of the predefined auxiliary functions. The information given there can be applied
analogously to the output behavior of user-defined auxiliary functions.

7.4 Associated auxiliary functions

Function
Associated auxiliary functions are user-defined auxiliary functions that have the same effect
as the corresponding predefined auxiliary functions. User-defined auxiliary functions can be
associated for the following predefined auxiliary functions:

● M0 (stop)

● M1 (conditional stop)

Requirements
The precondition for association of a user-defined auxiliary function with one of the
predefined auxiliary functions mentioned is parameterization of a user-defined auxiliary
function. Only "M" is allowed as a "type" parameter of the user-defined auxiliary function.

 H2: Auxiliary function outputs to PLC
 7.4 Associated auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 403

Parameter assignment
Association of a user-defined auxiliary function with one of the predefined auxiliary functions
mentioned is set in the machine data:

MD22254 $MC_AUXFU_ASSOC_M0_VALUE (additional M function for program stop)

MD22256 $MC_AUXFU_ASSOC_M1_VALUE (additional M function for conditional stop)

Group assignment
The group assignment of an associated user-defined auxiliary function is always the group
assignment of the corresponding predefined auxiliary function.

Application
Associated auxiliary functions can be used in:

● Main program

● Subroutine

● Cycle

 Note

Associated auxiliary functions may not be used in synchronized actions.

NC/PLC interface signals
In the case of an associated user-defined auxiliary function, the same signals are output to
the NC/PLC interface as for the corresponding predefined auxiliary function. To distinguish
which auxiliary function has actually been programmed, the value of the user-defined
auxiliary function ("value" parameter) is output as the value of the auxiliary function. This
means it is possible to distinguish between predefined and user-defined auxiliary functions in
the PLC user program.

 Note

A change in machine data MD22254 and/or MD22256 may require corresponding
adjustment of the PLC user program:

Specific NC/PLC interface signals

The following specific NC/PLC interface signals are available:

● DB21, ... DBX318.5 (associated M00/M01 active) feedback signal

● DB21, ... DBX30.5 (activate associated M01) activation signal

H2: Auxiliary function outputs to PLC
7.5 Type-specific output behavior

 Basic Functions
404 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Boundary conditions
Please note the following boundary conditions:

● A user-defined auxiliary function may not be multiply associated.

● Predefined auxiliary functions (e.g. M3, M4, M5 etc.) may not be associated.

Example
Associating the user-defined auxiliary function M123 with M0:

MD22254 $MC_AUXFU_ASSOC_M0_VALUE = 123

The user-defined auxiliary function M123 thus has the same functionality as M0.

7.5 Type-specific output behavior

Function
The output behavior of auxiliary functions relative to a traversing motions programmed in the
parts program block can be defined type-specifically.

Parameter assignment
Parameters are assigned to type-specific output behavior via the machine data:

MD22200 $MC_AUXFU_M_SYNC_TYPE (output time for M functions)

MD22210 $MC_AUXFU_S_SYNC_TYPE (output time for S functions)

MD22220 $MC_AUXFU_T_SYNC_TYPE (output time for T functions)

MD22230 $MC_AUXFU_H_SYNC_TYPE (output time for H functions)

MD22240 $MC_AUXFU_F_SYNC_TYPE (output time for F functions)

MD22250 $MC_AUXFU_D_SYNC_TYPE (output time for D functions)

MD22252 $MC_AUXFU_DL_SYNC_TYPE (output time for DL functions)

The following output behaviors can be parameterized:

MD $MC_AUXFU_xx_SYNC_TYPE = <value>

Value Output behavior
0 Output prior to motion
1 Output during motion
2 Output at block end
3 No output to the PLC
4 Output according to the output behavior defined with MD22080

 H2: Auxiliary function outputs to PLC
 7.5 Type-specific output behavior

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 405

For a description of the various output behaviors, see the section titled "Output behavior
(Page 394)".

 Note

For the output behavior that can be set for each type of auxiliary function, please refer to the
"Detailed Description of Machine Data" Parameter Manual.

Example
Output of auxiliary functions with different output behaviors in a part program block with
traverse movement.

Output behavior for which parameters have been assigned:

MD22200 $MC_AUXFU_M_SYNC_TYPE = 1 ⇒ M function:

Output during motion
MD22220 $MC_AUXFU_T_SYNC_TYPE = 0 ⇒ T function:

Output prior to motion
MD22230 $MC_AUXFU_H_SYNC_TYPE = 2 ⇒ H function:

Output at the end of the block

Parts program block:

Program code

...

N10 G01 X100 M07 H5 T5

...

Time sequence for auxiliary function output:

H2: Auxiliary function outputs to PLC
7.6 Priorities of the output behavior for which parameters have been assigned

 Basic Functions
406 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

7.6 Priorities of the output behavior for which parameters have been
assigned

The following priorities must be observed for the following areas in connection with the
parameterized output behavior of an auxiliary function:

● Output duration (normal / quick acknowledgement)

● Output relative to motion (prior to / during / after the motion)

As a general rule, the parameterized output behavior with lower priority becomes active if no
output behavior with higher priority has been parameterized.

Output duration
The following priorities apply to the output duration:

Priority Output behavior Defined via:
Highest Auxiliary function-specific Part program instruction: QU(…)

(see Section "Programmable output duration (Page 408)")
↓

Auxiliary function-specific MD22035 $MC_AUXFU_ASSIGN_SYNC[<n>]
MD22080 $MC_AUXFU_PREDEF_SYNC[<n>]

↓ Group-specific MD11110 $MC_AUXFU_GROUP_SPEC[<n>]
Lowest Not defined Default output behavior: Output duration one OB1 cycle

Output relative to motion
The following rules apply to output relative to motion:

Priority Output behavior Defined via:
Highest

Auxiliary function-specific MD22035 $MC_AUXFU_ASSIGN_SYNC[<n>]
MD22080 $MC_AUXFU_PREDEF_SYNC[<n>]

↓ Group-specific MD11110 $MC_AUXFU_GROUP_SPEC[<n>]
↓ Type-specific MD22200 $MC_AUXFU_M_SYNC_TYPE

MD22210 $MC_AUXFU_S_SYNC_TYPE
MD22220 $MC_AUXFU_T_SYNC_TYPE
MD22230 $MC_AUXFU_H_SYNC_TYPE
MD22240 $MC_AUXFU_F_SYNC_TYPE
MD22250 $MC_AUXFU_D_SYNC_TYPE
MD22252 $MC_AUXFU_DL_SYNC_TYPE

Lowest Not defined Default output behavior: Output at block end

 Note
Part program blocks without path motion

In a part program block without a path motion (even those with positioning axes and
spindles), the auxiliary functions are all output immediately in a block.

 H2: Auxiliary function outputs to PLC
 7.7 Programming an auxiliary function

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 407

7.7 Programming an auxiliary function

Syntax
An auxiliary function is programmed in a part program block with the following syntax:
<Type>[<Address extension>=]<Value>

 Note

If no address extension is programmed, the address extension is implicitly set = 0.

Predefined auxiliary functions with the address extension = 0 always refer to the master
spindle of the channel.

Symbolic addressing
The values for the "address extension" and "value" parameters can also be specified
symbolically. The symbolic name for the address extension must then be stated in brackets.

Example:

Symbolic programming of the auxiliary function M3 (spindle right) for the first spindle:

Program code Comment

DEF SPINDEL_NR=1 ; First spindle in the channel

DEF DREHRICHTUNG=3 ; Clockwise direction of rotation

N100 M[SPINDEL_NR] = DREHRICHTUNG ; corresponding to: M1=3

 Note

If you use symbolic names to program an auxiliary function, the symbolic name is not
transferred when the auxiliary function is output to the PLC. The corresponding numerical
value is transferred instead.

Examples
Example 1: Programming of predefined auxiliary functions

Program code Comment

N10 M3 ; "Spindle right" for the master spindle of the channel.

N20 M0=3 ; "Spindle right" for the master spindle of the channel.

N30 M1=3 ; "Spindle right" for the 1st spindle of the channel.

N40 M2=3 ; "Spindle right" for the 2nd spindle of the channel.

H2: Auxiliary function outputs to PLC
7.8 Programmable output duration

 Basic Functions
408 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example 2: Programming examples of auxiliary functions with the corresponding values for
output to the PLC

Program code Comment

DEF Coolant=12 ; Output to PLC: - - -

DEF Lubricant=130 ; Output to PLC: - - -

H[coolant]=lubricant ; Output to PLC: H12=130

H=coolant ; Output to PLC: H0=12

H5 ; Output to PLC: H0=5

H=5.379 ; Output to PLC: H0=5.379

H17=3.5 ; Output to PLC: H17=3.5

H[coolant]=13.8 ; Output to PLC: H12=13.8

H='HFF13' ; Output to PLC: H0=65299

H='B1110' ; Output to PLC: H0=14

H5.3=21 ; Error

7.8 Programmable output duration

Function
User-specific auxiliary functions, for which the output behavior "Output duration of an OB1
cycle (slow acknowledgement)" was parameterized, can be defined for individual outputs via
the parts program guide QU (Quick) for auxiliary functions with quick acknowledgement.

Syntax
An auxiliary function with quick acknowledgment is defined in a part program block with the
following syntax:
<Type>[<Address extension>]=QU(<Value>)

Example
Different behavior for the output of the auxiliary functions M100 and M200 in a parts
program. The output behavior of the auxiliary functions is parameterized as follows:

● M100

– Output duration one OB1 cycle (slow acknowledgment)

– Output during motion

● M200

– Output duration one OB1 cycle (slow acknowledgment)

– Output prior to motion

 H2: Auxiliary function outputs to PLC
 7.8 Programmable output duration

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 409

Program code Comment

N10 G94 G01 X50 M100 ;

;

Output of M100: during the motion

Acknowledgment: slow

N20 Y5 M100 M200 ;

;

;

Output of M200: prior to the motion

Output of M100: during the motion

Acknowledgment: slow

N30 Y0 M=QU(100) M=QU(200) ;

;

;

Output of M200: prior to the motion

Output of M100: during the motion

Acknowledgement: quick

N40 X0

N50 M100 M200 ;

;

;

Output of M200: immediate 1)

Output of M100: immediate 1)

Acknowledgment: slow

M17

1) Without a traverse movement, auxiliary functions are always output to the PLC immediately.

The following figure shows the time sequence of the part program. Please note the time
difference during the processing of parts program blocks N20 and N30.

H2: Auxiliary function outputs to PLC
7.9 Auxiliary function output to the PLC

 Basic Functions
410 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

7.9 Auxiliary function output to the PLC

Function
On output of an auxiliary function to the PLC, the following signals and values are transferred
to the NC/PLC interface:

● Change signals

● "Address extension" parameter

● "Value" parameter

Data areas in the NC/PLC interface
The change signals and values of the auxiliary functions are within the following data areas
in the NC/PLC interface:

● Change signals for auxiliary function transfer from NC channel:

DB21, ... DBB58 - DBB67

● Transferred M and S functions:

DB21, ... DBB68 - DBB112

● Transferred T, D and DL functions:

DB21, ... DBB116 - DBB136

● Transferred H and F functions:

DB21, ... DBB140 - DBB190

● Decoded M signals (M0 - M99):

DB21, ... DBB194 - DBB206 (dynamic M functions)

For information on the access procedure to the NC/PLC interface, see Section "P3: Basic
PLC program for SINUMERIK 840D sl (Page 809)".

A detailed description of the above data areas in the NC/PLC interface can be found in:

References:
List Manual, Lists, Book 2; PLC User Interfaces,
Section: Channel-specific signals (DB 21 - DB 30)"

 H2: Auxiliary function outputs to PLC
 7.10 Auxiliary functions without block change delay

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 411

7.10 Auxiliary functions without block change delay

Function
For auxiliary functions with parameterized and/or programmed output behavior, too:

● "Output duration one OB40 cycle (quick acknowledgment)"

● "Output before the motion" or "Output during the motion"

there may be drops in velocity in continuos-path mode (short traverse paths and high
velocities). This the system has to wait for acknowledgment of the auxiliary function by the
PLC toward the end of the block. To avoid these velocity drops, the block change can be
made irrespective of whether such auxiliary functions have been acknowledged:

Parameter assignment
Suppression of the block change delay with quick auxiliary functions is set via the machine
data:

MD22100 $MC_AUXFU_QUICK_BLOCKCHANGE (block change delay with quick auxiliary
functions)

Value Meaning
0 In the case of quick auxiliary function output to the PLC, the block change is delayed until

acknowledgment by the PLC (OB40).
1 In the case of quick auxiliary function output to the PLC, the block change is not delayed.

Boundary conditions
Synchronism of auxiliary functions that are output without a block change delay is no longer
ensured for the part program block in which they are programmed. In the worst case
scenario, acknowledgment comes one OB40 cycle and execution of the auxiliary function
comes one OB1 cycle after the change to the next part program block.

7.11 M function with an implicit preprocessing stop

Function
Triggering a preprocessing stop in conjunction with an auxiliary function can be programmed
explicitly via the STOPRE part program command. Always triggering a preprocessing stop in M
function programming can be parameterized for each M function via the following machine
data:

MD10713 $MN_M_NO_FCT_STOPRE[<n>] (M function with preprocessing stop)

H2: Auxiliary function outputs to PLC
7.12 Response to overstore

 Basic Functions
412 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
The user-defined M function M88 is intended to trigger a preprocessing stop.

Parameter assignment:

MD10713 $MN_M_NO_FCT_STOPRE [0] = 88

Application:

Parts program (extract)

Program code Comment

...

N100 G0 X10 M88 ; Traversing motion and implicit preprocessing stop via M88

N110 Y=R1 ; N110 is only interpreted after the traversing motion has

been completed and the M function has been acknowledged.

...

Boundary conditions
If a subroutine called indirectly via an M function in a part program in one of the following
ways, no preprocessing stop is performed:

● MD10715 $MN_M_NO_FCT_CYCLE (M function to be replaced by subroutine)

● M98 (ISO dialect T / ISO dialect M)

7.12 Response to overstore

Overstore
On the SINUMERIK operator interface, before starting the following functions:

● NC START of a part program

● NC START to resume an interrupted part program

the auxiliary functions that are output at the start can be changed by the "Overstore"
function.

Possible applications include:

● Addition of auxiliary functions after block search

● Restoring the initial state to position a part program

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 413

Types of auxiliary functions that can be overstored
The following types of auxiliary functions can be overstored:

● M (special function)

● S (spindle speed)

● T (tool number)

● H (aux. function)

● D (tool offset number)

● DL (additive tool offset)

● F (feed)

Duration of validity
An overstored auxiliary function, e.g. M3 (spindle right), is valid until it is overwritten by
another auxiliary function from the same auxiliary function group, by additional overstoring or
by programming in a part program block.

7.13 Behavior during block search

7.13.1 Auxiliary function output during type 1, 2, and 4 block searches

Output behavior
In the case of type 1, 2, and 4 block searches, the auxiliary functions are collected on the
basis of specific groups. The last auxiliary function in each auxiliary function group is output
after NC-START in a separate part program block before the actual reentry block, and has
the following output behavior:

● Output duration of one OB1 cycle (normal acknowledgement)

● Output prior to motion

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
414 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Output control
Whether or not the auxiliary function is output to the PLC after a block search can be
configured via bit 8 of the machine data:

● MD22080 $MC_AUXFU_PREDEF_SPEC[<n>]

(output behavior of predefined auxiliary functions)

where <n> = system function index (0 ... 32)

● MD22035 $MC_AUXFU_ASSIGN_SPEC[<n>]

(output behavior of user-defined auxiliary functions)

where <n> = auxiliary function index (0 ... 254)

● MD11110 $MN_AUXFU_GROUP_SPEC[<n>]

(output behavior of the auxiliary functions in a group)

where <n> = group index (0 ... 63)

Bit Value Meaning

0 Output during type 1, 2, and 4 block searches 10
1 No output during type 1, 2, and 4 block searches

This behavior does not affect the display and does not affect variables
$AC_AUXFU_STATE[<n>], $AC_AUXFU_VALUE[<n>], and $AC_AUXFU_EXT[<n>].
The auxiliary functions are always regarded as collected after a block search, even though
they are not output to the PLC.

During collection, an auxiliary function that is not output after a block search also overwrites
an auxiliary function whose bit 8 is not set.

The user can scan the collected auxiliary functions after a block search and, under certain
circumstances, output them again by means of the subprogram or synchronized actions.

 Note

The following auxiliary functions are not collected:
• Auxiliary functions which are not assigned to any auxiliary function group.
• Auxiliary functions which are assigned to the first auxiliary function group.

Overstorage of auxiliary functions
After completion of a block search, the collected auxiliary functions are ouput on the next
NC-START. If it is necessary to output additional auxiliary functions, they can be added via
the "Overstore" function (see Section "Response to overstore (Page 412)").

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 415

M19 behavior (position spindle)
After a block search, the last spindle positioning command programmed with M19 is always
carried out, even if other spindle-specific auxiliary functions are programmed between the
part program with M19 and the target block. Setting the necessary spindle enables must
therefore be derived from the interface signals of the traverse commands in the PLC user
program:

DB31, ... DBX64.6/64.7 (traversing command minus/plus)

In this case, the spindle-specific auxiliary functions M3, M4, and M5 are not suitable because
they might not be output to the PLC until after the spindle positioning.

For detailed information on the block search, see Section "K1: Mode group, channel,
program operation, reset response (Page 451)".

7.13.2 Assignment of an auxiliary function to a number of groups

Function
User-defined auxiliary functions can also be assigned to multiple groups via the group
assignment (MD22000 $MC_AUXFU_ASSIGN_GROUP). During the block search these
auxiliary functions are collected for all the configured groups.

 Note

Predefined auxiliary functions can only be assigned to one group.

Example
The DIN includes the following M-commands for coolant output:

● M7: Coolant 2 ON

● M8: Coolant 1 ON

● M9: Coolants 1 and 2 OFF

Consequently, both coolants can also be active together:

● If M7 and M8 are collected in two separate groups (e.g. groups 5 and 6)

● If M9 has to be assigned to these two groups, e.g.

– Group 5: M7, M9

– Group 6: M8, M9

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
416 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterization:

MD11100 $MN_AUXFU_MAXNUM_GROUP_ASSIGN = 4

MD22000 $MC_AUXFU_ASSIGN_GROUP [0] = 5

MD22000 $MC_AUXFU_ASSIGN_GROUP [1] = 5

MD22000 $MC_AUXFU_ASSIGN_GROUP [2] = 6

MD22000 $MC_AUXFU_ASSIGN_GROUP [3] = 6

MD22010 $MC_AUXFU_ASSIGN_TYPE [0] = M

MD22010 $MC_AUXFU_ASSIGN_TYPE [1] = M

MD22010 $MC_AUXFU_ASSIGN_TYPE [2] = M

MD22010 $MC_AUXFU_ASSIGN_TYPE [3] = M

MD22020 $MC_AUXFU_ASSIGN_EXTENSION [0] = 0

MD22020 $MC_AUXFU_ASSIGN_EXTENSION [1] = 0

MD22020 $MC_AUXFU_ASSIGN_EXTENSION [2] = 0

MD22020 $MC_AUXFU_ASSIGN_EXTENSION [3] = 0

MD22030 $MC_AUXFU_ASSIGN_VALUE [0] = 7

MD22030 $MC_AUXFU_ASSIGN_VALUE [1] = 9

MD22030 $MC_AUXFU_ASSIGN_VALUE [2] = 8

MD22030 $MC_AUXFU_ASSIGN_VALUE [3] = 9

MD22035 $MC_AUXFU_ASSIGN_SPEC [0] = 'H121'

MD22035 $MC_AUXFU_ASSIGN_SPEC [1] = 'H121'

MD22035 $MC_AUXFU_ASSIGN_SPEC [2] = 'H121'

MD22035 $MC_AUXFU_ASSIGN_SPEC [3] = 'H121'

Part program (section):

Program code

...

N10 ... M8

N20 ... M9

N30 ... M7

...

During the block search, the auxiliary function M9 is collected for groups 5 and 6.

Scan of the collected M auxiliary functions:

M function of the fifth group: $AC_AUXFU_M_VALUE [4] = 7

M function of the sixth group: $AC_AUXFU_M_VALUE [5] = 9

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 417

7.13.3 Time stamp of the active M auxiliary function
When outputting collected auxiliary functions following a block search, attention must be paid
to the sequence during collecting. For this reason, each group is assigned a time stamp
which can be queried on a group-specific basis by way of the system variable below:

$AC_AUXFU_M_TICK[<n>] (time stamp of the active M auxiliary function)

7.13.4 Determining the output sequence

Function
The following predefined procedure is provided to simplify the process of determining the
output sequence of M auxiliary functions for the programmer:
AUXFUMSEQ(VAR INT _NUM_IN, VAR INT _M_IN[], VAR INT _EXT_IN[], VAR
INT _NUM_OUT, VAR INT _M_OUT[], VAR INT _EXT_OUT[])

Input parameters:
VAR INT _NUM_IN: Number of relevant M commands
VAR INT _M_IN[]: Field of relevant M codes
VAR INT _EXT_IN[]: Field of relevant M address extensions

Output parameters:
VAR INT _NUM_OUT: Number of determined M codes
VAR INT _M_OUT[]: Field of determined M codes
VAR INT _EXT_OUT[]: Field of determined M address extensions

The function determines the sequence in which the M auxiliary functions, which have been
collected on a group-specific basis, are output for the predefined M codes. The sequence is
determined from the collection times $AC_AUXFU_M_TICK[<n>] (see Section "Time stamp
of the active M auxiliary function (Page 417)").

A particular M code is only taken into account once, even if it belongs to more than one
group. If the number of relevant M commands is less than or equal to 0, all the collected M
codes are output. The number of relevant M commands is limited to 64.

Example
M commands for coolant output:

● M7: Coolant 2 ON

● M8: Coolant 1 ON

● M9: Coolants 1 and 2 OFF

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
418 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Group assignment:

● Group 5: M7, M9

● Group 6: M8, M9

Part program (section):

Program code

...

N10 ... M8

N20 ... M9

N30 ... M7

...

During block searches, the auxiliary functions are collected on the basis of specific groups.
The last auxiliary function in an auxiliary function group is output to the PLC following a block
search:

● Group 5: M7

● Group 6: M9

If they are output in the sequence M7 → M9, no coolant is then active. However, coolant 2
would be active during the execution of the program. Therefore, the correct output sequence
for the M auxiliary functions is determined with an ASUP which contains the predefined
procedure AUXFUMSEQ(…):

Program code

DEF INT _I, _M_IN[3], _EXT_IN[3], _NUM_OUT, _M_OUT[2], _EXT_OUT[2]

_M_IN[0]=7 _EXT_IN[0]=0

_M_IN[1]=8 _EXT_IN[1]=0

_M_IN[2]=9 _EXT_IN[2]=0

AUXFUMSEQ(3,_M_IN,_EXT_IN,_NUM_OUT,_M_OUT,_EXT_OUT)

FOR _I = 0 TO _NUM_OUT-1

 M[_EXT_OUT[_I]]=_M_OUT[_I]

ENDFOR

7.13.5 Output suppression of spindle-specific auxiliary functions

Function
In certain situations, such as a tool change, it may be necessary not to output the spindle-
specific auxiliary functions collected during the block search in action blocks, but to delay
output, for example, until after a tool change. The automatic output of the spindle-specific
auxiliary functions after a block search may be suppressed for this purpose. Output can then
be performed manually later by overstoring or by an ASUB.

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 419

Parameterization
Suppression of the automatic output of the spindle-specific auxiliary functions after a block
search is set via machine data:

MD11450 $MN_SEARCH_RUN_MODE (behavior after a block search)

Bit Value Meaning

0 The output of the spindle-specific auxiliary functions is performed in the action
blocks.

2

1 Output of the auxiliary functions is suppressed in the action blocks.

System variables
The spindle-specific auxiliary functions are always stored in the following system variables
during block searches, irrespective of the parameter assignment described above:

System variable Description

Accumulated spindle speed $P_SEARCH_S [<n>]
Range of values: 0 ... Smax
Accumulated spindle direction of rotation $P_SEARCH_SDIR [<n>]
Range of values: 3, 4, 5, -5, -19, 70
Accumulated spindle gear stage M function $P_SEARCH_SGEAR [<n>]
Range of values: 40 ... 45
Accumulated spindle position
Range of values: 0 ... MD30330 $MA_MODULO_RANGE

(size of the module range)
or
Accumulated traversing path

$P_SEARCH_SPOS [<n>]

Range of values: -100.000.000 ... 100.000.000
Accumulated position approach mode $P_SEARCH_SPOSMODE [<n>]
Range of values: 0 ... 5

For later output of the spindle-specific auxiliary functions, the system variables can be read
in an ASUB, for example, and output after the action blocks are output:

DB21, ... DBX32.6 = 1 (last action block active)

 Note

The contents of the system variables $P_S, $P_DIR and $P_SGEAR may be lost after block
search due to synchronization operations.

For more detailed information on ASUB, block search and action blocks, see Section "K1:
Mode group, channel, program operation, reset response (Page 451)".

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
420 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
Block search for contour with suppression of output of the spindle-specific auxiliary functions
and start of an ASUB after output of action blocks.

Parameterization: MD11450 $MN_SEARCH_RUN_MODE, bit 2 = 1

After the block search on N55, the ASUB is started.

Part program:

Program code Comment

N05 M3 S200 ; Spindle 1

N10 G4 F3

N15 SPOS=111 ; Spindle 1 is positioned to 111 degrees in the ASUB

N20 M2=4 S2=300 ; Spindle 2

N25 G4 F3

N30 SPOS[2]=IC(77) ; Spindle 2 traverses incrementally by 77 degrees

N55 X10 G0 ; Target block

N60 G4 F10

N99 M30

ASUB:

Program code Comment

PROC ASUP_SAVE

MSG ("Output of the spindle functions")

DEF INT SNR=1

AUSG_SPI:

M[SNR]=$P_SEARCH_SGEAR[SNR] ; Output gear stage

S[SNR]=$P_SEARCH_S[SNR] ; Output speed (for M40, a suitable

gear stage is determined)

M[SNR]=$P_SEARCH_SDIR[SNR] ; Output direction of rotation,

positioning or axis mode

SNR=SNR+1 ; Next spindle

REPEAT AUSG_SPI P=$P_NUM_SPINDLES-1 ; For all spindles

MSG("")

REPOSA

RET

Explanation of example

If the number of spindles is known, outputs of the same type can be written in one part
program block to reduce program runtime.

Output of $P_SEARCH_SDIR should be made in a separate part program block because
spindle positioning or switchover to axis mode in conjunction with the gear change can
cause an alarm.

If the ASUB which has been started is ended with REPOSA, spindle 1 remains at position 111
degrees, while spindle 2 is repositioned at position 77 degrees.

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 421

If a different response is required, the program sequence for block search (for example) "N05
M3 S..." and "N30 SPOS[2] = IC(...)" requires special treatment.

Whether block search is active can be ascertained in the ASUB via the system variable
$P_SEARCH.
$P_SEARCH==1 ; Block search active

In the case of incremental positioning after speed control operation, the path to be traversed
is defined but, in some cases, the final position reached only becomes known during
positioning. This is the case, for example, during position calibration on crossing the zero
mark when switching on position control. For this reason, the distance programmed after the
zero position is accepted as the REPOS position (REPOSA in the ASUB).

Supplementary conditions
Collected S values

The meaning of an S value in the part program depends on the feed type that is currently
active:

G93, G94, G95, G97, G971: The S value is interpreted as the speed
G96, G961: The S value is interpreted as a constant cutting rate

If the feed operation is changed (e.g. for a tool change) before output of the system variable
$P_SEARCH_S, the original setting from the target block in the part program must be
restored to avoid use of the wrong type of feed.

Collected direction of rotation

For output of the direction of rotation, the system variable $P_SEARCH_SDIR is assigned
default value "-5" at the start of the block search. This value has no effect on output.

This ensures that the last spindle operating mode is retained for a block search across
program sections in which spindles are not programmed with a direction of rotation,
positioning or axis mode.

The programming of M19, SPOS, and SPOSA is collected as "M-19" (internal M19) in the
system variables $P_SEARCH_SDIR as an alternative to M3, M4, M5, and M70.

For the output of "M-19", the positioning data is read internally from the system variables
$P_SEARCH_SPOS and $P_SEARCH_SPOSMODE. Both system variables can also be
written to, in order, for example, to make corrections.

 Note

Because of the assignments described above (e.g. M[<n>] = $P_SEARCH_SDIR[<n>]), the
values "–5" and "–19" generally remain hidden from the user and only have to be observed in
the case of special evaluation of the system variables in the ASUB.

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
422 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

7.13.6 Auxiliary function output with a type 5 block search (SERUPRO)

Output behavior
In the case of type 5 block searches (SERUPRO), an auxiliary function can be output to the
PLC during the block search and/or collected on a group-specific basis in the following
system variables:

● $AC_AUXFU_PREDEF_INDEX[<n>] (index of a predefined auxiliary function)

● $AC_AUXFU_TYPE[<n>] (type of auxiliary function)

● $AC_AUXFU_STATE[<n>] (output state of the auxiliary function)

● $AC_AUXFU_EXT[<n>] (address extension of the auxiliary function)

● $AC_AUXFU_VALUE[<n>] (value of the auxiliary function)

For a description of the system variables, see Section "Querying system variables
(Page 435)".

Output control
Whether an auxiliary function is output to the PLC during a type 5 block search (SERUPRO)
and/or collected on a group-specific basis in the following system variables can be
configured via bits 9 and 10 of the machine data:

● MD22080 $MC_AUXFU_PREDEF_SPEC[<n>]

(output behavior of predefined auxiliary functions)

where <n> = system function index (0 ... 32)

● MD22035 $MC_AUXFU_ASSIGN_SPEC[<n>]

(output behavior of user-defined auxiliary functions)

where <n> = auxiliary function index (0 ... 254)

● MD11110 $MN_AUXFU_GROUP_SPEC[<n>]

(output behavior of the auxiliary functions in a group)

where <n> = group index (0 ... 63)

Bit Value Meaning

0 No collection during type 5 block searches (SERUPRO) 9
1 Collection during type 5 block searches (SERUPRO)
0 Output during type 5 block searches (SERUPRO) 10
1 No output during type 5 block searches (SERUPRO)

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 423

Output counter
The user can output the collected auxiliary functions to the PLC on a channel-by-channel
basis in the block search ASUB. For the purposes of serialized output via multiple channels,
the three output counters are changed across all the channels each time an auxiliary
function is output:

System variable Meaning

Output counter of the active auxiliary function
Index Meaning
<n> Group index (0 to 63)

Output counter (0 ... 2)
Value Meaning

0 Output sequence counter (all outputs within an
IPO cycle)

1 Package counter within an output sequence in
the IPO cycle

$AC_AUXFU_TICK[<n>,<m>]

<m>

2 Auxiliary function counter within a package

Explanation
● An auxiliary function package comprises a maximum of ten auxiliary functions.
● Two packages can be processed per IPO cycle in each channel during SERUPRO

because synchronized actions are processed in this cycle.
● An output sequence of up to a maximum of 20 packages (2 packages per channel * 10

channels) can be processed within an IPO cycle across all channels.

The encoding indicates how many auxiliary function packages and, within these, how many
auxiliary functions have been processed during the same IPO cycle:
● Auxiliary functions which have been collected in one IPO cycle have the same sequence

counter.
● Auxiliary functions which have been collected in one package (block or synchronized

action) all have the same package counter.

The total on the auxiliary function counter increases every time an auxiliary function is
collected.

Global list of auxiliary functions
At the end of SERUPRO, the auxiliary functions collected on a group-specific basis in the
individual channels are entered in a cross-channel list with the channel number and group
index according to their counter state.

System variable 1) Meaning
$AC_AUXFU_TICK[<n>,<m>] Counter value
$AN_AUXFU_LIST_CHANNO[<n>] 2) Channel number
$AN_AUXFU_LIST_GROUPINDEX[<n>] 2) Group index
1) Value range index <n>: 0 ... MAXNUM_GROUPS * MAXNUM_CHANNELS - 1
2) The system variables can be read and written.

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
424 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The global list is structured on the basis of the sequence in which the search target was
found. It is intended to be used as a system proposal for auxiliary functions to be output in
the following ASUB at the end of SERUPRO. If an auxiliary function is not to be output, the
corresponding group index is to be set to "0".

Behavior regarding spindle auxiliary functions
Following the start of the search, all the channels collect the auxiliary functions in the
channel variables on a group-specific basis. In order to perform a far-reaching restoration of
the spindle state in the SERUPRO target block using the collected auxiliary functions, the
last active auxiliary function in any group of spindle auxiliary functions must characterize the
state of the spindle in the target block. In the case of transitions in spindle states, obsolete
auxiliary functions are deleted or, if necessary, implicit auxiliary functions are entered.

All the spindle auxiliary functions from the global auxiliary function list must correspond to the
spindle states achieved in the target block to enable the auxiliary functions to be processed
when the list is output and to ensure that no alarms or unintended spindle states are
requested which could prevent the continuation of the part program.

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 425

This affects the groups of auxiliary functions for any spindle configured in the system,
whereby the spindle number corresponds to an auxiliary function's address extension.

Group a: M3, M4, M5, M19, M70
Group b: M40, M41, M42, M43, M44, M45
Group c: S

Deleting obsolete auxiliary functions

In the functions below, the auxiliary functions from group a are deleted for the spindle
concerned:

● For the following spindle when a generic coupling, such as COUPON, TRAILON, EGON,
etc. is switched on

Generating implicit auxiliary functions from group a

In the functions below, the auxiliary functions from group a are generated implicitly for the
spindle concerned:

● For the following spindle when the synchronous spindle coupling is switched off

– COUPOF generates M3, M4 and S or M5 in the main run depending on the coupling
situation.

– COUPOF(S<n>, S<m>, POS) and COUPOFS(S<n>, S<m>, POS, POS) generate M3,
M4 and S.

– COUPOFS generates M5 in the main run.

– COUPOFS(S<n>, S<m>, POS) generates M19 in the main run.

The implicit M19 ("SPOS[<address extension>] = IC(0)" in the ASUB) activates the
positioning mode without a traversing motion.

● M70 is generated during a traversing motion as an axis or during the transition to axis
mode by selecting a transformation during which the spindle enters as an axis.

● M5 is generated during SPCOF.

 Note

Within the context of the "axis interchange" and "axis container rotation" functions, the
auxiliary functions for programming the spindle must always be specified in a way which
ensures compatibility with the actual (motor) state during interchange/rotation. A distinction is
made here between the axis interchange and axis container mechanisms.

Example of axis container rotation:

An axis container has four spindles, each assigned to a separate channel (1 - 4). M3 S1000
is always programmed in channel 1, and an axis container rotation is then executed. The
other channels do not perform any spindle programming. Following the third axis container
rotation and the fourth spindle programming, M3, all four spindles rotate clockwise at a
speed of 1,000 rpm. If the end of the SERUPRO now lies within this range, every ASUB for a
channel is expected to contain an M3 S1000 for the local spindle.

During interchange however, the collected auxiliary functions may only be assigned to the
channel where the spindle is currently located.

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
426 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Cross-channel auxiliary function
An auxiliary function can also be collected on a cross-channel basis in the global auxiliary
function list in the case of type 5 block searches (SERUPRO). Only the last auxiliary function
collected from this group (highest counter state) is entered in the global list.

The appropriate configuring is performed with the following machine data:

● MD22080 $MC_AUXFU_PREDEF_SPEC[<n>], Bit 11

(output behavior of predefined auxiliary functions)

where <n> = system function index

● MD22035 $MC_AUXFU_ASSIGN_SPEC[<n>], Bit 11

(output behavior of user-defined auxiliary functions)

where <n> = auxiliary function index

● MD11110 $MN_AUXFU_GROUP_SPEC[<n>], Bit 11

(output behavior of the auxiliary functions in a group)

where <n> = group index

Bit Value Meaning

0 Channel-specific collection 11
1 Cross-channel collection

The spindle auxiliary functions are filtered out beforehand at the end of the search
depending on the spindle state. The channel data is updated accordingly. The global
auxiliary function list can be processed sequentially in the ASUBs at the end of the
SERUPRO, and the sorted auxiliary functions can be output with channel synchronization.

Querying the last auxiliary function collected
The index of the last auxiliary function collected in the global list can be queried using the
system variable $AN_AUXFU_LIST_ENDINDEX.

7.13.7 ASUB at the end of the SERUPRO

Function
After completing the block search with the program test (SERUPRO), before starting the
subsequent processing, the auxiliary functions collected during the search must be output.
For this purpose, during the block search, the auxiliary functions are collected in a global list.
The SERUPRO end ASUBs generate the corresponding part program blocks channel-
specific from this list. This ensures that the collected auxiliary functions can be output both
channel-specific as well as cross-channel in the correct sequence. A fully functional
SERUPRO end ASUB is a component of the NCK software.

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 427

Users/machinery construction OEMs can change the SERUPRO end ASUB. The
subsequently described functions support processing the global list of auxiliary functions and
generating the part program blocks required for synchronized auxiliary function output.

Function AUXFUSYNC(...)
Function:

The function AUXFUSYNC generates a complete part program block as string from the global list
of auxiliary functions at each call. The part program block either contains auxiliary functions
or commands to synchronize auxiliary function outputs (WAITM, G4, etc.).

The function triggers a preprocessing stop.

Syntax:
PROC AUXFUSYNC(VAR INT <NUM>, VAR INT <GROUPINDEX>[10], VAR
STRING[400] <ASSEMBLED>)

Parameters:

<NUM>: Contains information about the part program block, supplied in

parameter <ASSEMBLED> or the auxiliary functions contained in it.
Value range: -1, 0, 1 ... 10

 Value Meaning
 ≥1 Number of auxiliary functions contained in the part program

block
 0 Part program block without auxiliary functions, e.g. WAITM, G4
 -1 End identifier. The global list of auxiliary functions has been

completely processed for the actual channel.
<GROUP INDEX>: Contains the indices of the auxiliary function groups contained in the

part program block. With index = number of the auxiliary function
group - 1

<ASSEMBLED>: Contains the complete part program block for the channel-specific
SERUPRO end ASUB as string.

Further information:

If auxiliary functions were collected via a synchronized action, two NC blocks are generated.
One NC block to output the auxiliary functions. An executable NC block via which the NC
block is transported to the main run to output the auxiliary functions:

1. Output of the auxiliary functions via synchronized action, e.g.: WHEN TRUE DO M100 M102

2. Executable NC block, e.g.: G4 F0.001

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
428 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Function AUXFUDEL(...)
Function:

The function AUXFUDEL deletes the specified auxiliary function from the global list of
auxiliary functions channel-specific for the calling channel. Deletion is realized by setting the
corresponding group index ...GROUPINDEX[n] to 0.

The function must be called before calling AUXFUSYNC.

The function triggers a preprocessing stop.

Syntax:

PROC AUXFUDEL(CHAR <TYPE>, INT <EXTENSION>, REAL <VALUE>, INT <GROUP>)

Parameters:

<TYPE>: Type of auxiliary function to be deleted
<EXTENSION>: Address extension of the auxiliary function to be deleted
<VALUE>: Value of auxiliary function to be deleted
<GROUP>: Number of the auxiliary function group

Function AUXFUDELG(...)
Function:

The function AUXFUDELG deletes all auxiliary functions of the specified auxiliary function
group from the global list of auxiliary functions channel-specific for the calling channel.
Deletion is realized by setting the corresponding group index ...GROUPINDEX[n] to 0.

The function must be called before calling AUXFUSYNC.

The function triggers a preprocessing stop.

Syntax:
PROC AUXFUDELG(INT <GROUP>)

Parameters:

<GROUP>: Number of the auxiliary function group

Multi-channel block search

NOTICE
Multi-channel block search and AUXFUDEL / AUXFUDELG

If, for a multi-channel block search in the SERUPRO end ASUBs, auxiliary functions with
AUXFUDEL / AUXFUDELG are deleted from the global list of auxiliary functions, before
calling the AUXFUSYNC function, the channels involved must be synchronized. The
synchronization ensures that before calling the AUXFUSYNC, all delete requests are
processed and a consistent list is available.

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 429

Examples
Two examples for configuring a user-specific SERUPRO end ASUB.

Example 1: Deleting auxiliary functions and generating the auxiliary function output with
AUXFUSYNC(...)

Program code Comment

N10 DEF STRING[400] ASSEMBLED=""

N20 DEF STRING[31] FILENAME="/_N_CST_DIR/_N_AUXFU_SPF"

N30 DEF INT GROUPINDEX[10]

N40 DEF INT NUM

N60 DEF INT ERROR

N90

N140 AUXFUDEL("M",2,3,5) ; M2=3 (5th auxiliary function group) delete

N150

N170 AUXFUDELG(6) ;

;

Delete the collected auxiliary function of the

6. group.

N180

N190 IF ISFILE(FILENAME)

N210 DELETE(ERROR,FILENAME) ; Delete the FILENAME file

N220 IF (ERROR<>0) ; Error evaluation

N230 SETAL(61000+ERROR)

N240 ENDIF

N250 ENDIF

; CAUTION!

; If, for a multi-channel block search, auxiliary functions with AUXFUDEL/AUXFUDELG

; are deleted from the global list of auxiliary functions, before the loop to

; generate the subprogram FILENAME with AUXFUSYNC, the channels must be synchronized.

 The synchronization ensures that all delete requests were processed

; in all channels and a consistent list is available.

; Example: WAITM(99,1,2,3)

N270 LOOP

N300 AUXFUSYNC(NUM,GROUPINDEX,ASSEMBLED) ; General a part program block

N310

N320 IF (NUM==-1) ;

;

All auxiliary functions of the channel

have been executed.

N340 GOTOF LABEL1

N350 ENDIF

N380 WRITE(ERROR,FILENAME,ASSEMBLED) ; Write a part program block to file FILENAME.

N390 IF (ERROR<>0) ; Error evaluation

N400 SETAL(61000+ERROR)

N410 ENDIF

N430 ENDLOOP

N440

N450 LABEL1:

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
430 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

N460

N480 CALL FILENAME ; Process a generated subroutine.

N490

N510 DELETE(ERROR,FILENAME) ; Delete the file again after execution.

N520 IF (ERROR<>0)

N530 SETAL(61000+ERROR)

N540 ENDIF

N550

N560 M17

Example 2: Deleting auxiliary functions and generating the auxiliary function output without
AUXFUSYNC(...)

Program code Comment

N0610 DEF STRING[400] ASSEMBLED=""

N0620 DEF STRING[31] FILENAME="/_N_CST_DIR/_N_AUXFU_SPF"

N0630 DEF INT GROUPINDEX[10]

N0640 DEF INT NUM

N0650 DEF INT LAUF

N0660 DEF INT ERROR

N0670 DEF BOOL ISQUICK

N0680 DEF BOOL ISSYNACT

N0690 DEF BOOL ISIMPL

...

N0760 AUXFUDEL("M",2,3,5) ; M2=3 (5th auxiliary function group) delete

N0770

N0790 AUXFUDELG(6) ;

;

Delete the collected auxiliary function of the

6. group.

N0800

N0810 IF ISFILE(FILENAME)

N0830 DELETE(ERROR,FILENAME) ;

;

File already exists and must be

deleted.

N0840 IF (ERROR<>0)

N0850 SETAL(61000+ERROR)

N0860 ENDIF

N0870 ENDIF

N0880

; CAUTION!

; If, for a multi-channel block search, auxiliary functions with AUXFUDEL/AUXFUDELG

; are deleted from the global list of auxiliary functions, before the loop to

; generate the subprogram FILENAME with AUXFUSYNC, the channels must be synchronized.

 The synchronization ensures that all delete requests were processed

; in all channels and a consistent list is available.

 H2: Auxiliary function outputs to PLC
 7.13 Behavior during block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 431

Program code Comment

; Example: WAITM(99,1,2,3)

N0890 LOOP

N0920 AUXFUSYNC(NUM,GROUPINDEX,ASSEMBLED) ;

;

;

Procedure to generate

auxiliary function blocks from the global

auxiliary function list.

N0930

N0940 IF (NUM==-1) ;

;

All auxiliary functions of the channel

are processed.

N0960 GOTOF LABEL1

N0970 ENDIF

N0980

N1000 IF (NUM>0) ;

;

If auxiliary functions are output,

the block is generated.

N1010

N1020 ASSEMBLED=""

N1030

N1050 FOR LAUF=0 TO NUM-1 ;

;

Collected auxiliary functions for a

block.

N1060

N1080 IF GROUPINDEX[LAUF]<>0 ;

;

Auxiliary functions deleted from the

global list have the group index 0.

N1090

N1100 ISQUICK=$AC_AUXFU_SPEC[GROUPINDEX[LAUF]] BAND'H2'

N1110

N1120 ISSYNACT=$AC_AUXFU_SPEC[GROUPINDEX[LAUF]] BAND'H1000'

N1130

N1140 ISIMPL=$AC_AUXFU_SPEC[GROUPINDEX[LAUF]] BAND'H2000'

N1150

N1180 IF ISSYNACT ;

;

Assemble a block for the M auxiliary

function output

N1190 ASSEMBLED= ASSEMBLED << "WHEN TRUE DO "

N1200 ENDIF

N1210 ; Implicitly generated M19 is mapped to SPOS[SPI(<spindle no.>)] = IC(0).

N1230 IF (ISIMPL AND ($AC_AUXFU_VALUE[GROUPINDEX[LAUF]==19))

N1240 ASSEMBLED= ASSEMBLED << "SPOS[SPI(" <<

 $AC_AUXFU_EXT[GROUPINDEX[LAUF]] << ")=IC(0)"

N1260 ELSE

N1270 ASSEMBLED= ASSEMBLED << "M[" << $AC_AUXFU_EXT[GROUPINDEX[LAUF]] << "]="

N1280

N1290 IF ISQUICK

N1300 ASSEMBLED= ASSEMBLED << "QU("

N1310 ENDIF

N1320

N1330 ASSEMBLED= ASSEMBLED << $AC_AUXFU_VALUE[GROUPINDEX[LAUF]]

H2: Auxiliary function outputs to PLC
7.13 Behavior during block search

 Basic Functions
432 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

N1340

N1350 IF ISQUICK

N1360 ASSEMBLED= ASSEMBLED << ")"

N1370 ENDIF

N1380 ENDIF

N1400 ENDIF

N1420 ENDFOR

N1430

N1450 WRITE(ERROR,FILENAME,ASSEMBLED) ; Write an auxiliary function block to a file.

N1460

N1470 IF ISSYNACT

N1480 ASSEMBLED="G4 F0.001"

N1490 WRITE(ERROR,FILENAME,ASSEMBLED)

N1500 ENDIF

N1510

N1520 ELSE

N1540 WRITE(ERROR,FILENAME,ASSEMBLED) ; Write an auxiliary function block to a file.

N1550 ENDIF

N1560

N1570 ENDLOOP

N1580

N1590 LABEL1:

N1600

N1620 CALL FILENAME ; Process a generated subroutine.

N1630

N1650 DELETE(ERROR,FILENAME) ; Delete the file again after execution.

N1660 IF (ERROR<>0)

N1670 SETAL(61000+ERROR)

N1680 ENDIF

N1690

N1700 M17

 H2: Auxiliary function outputs to PLC
 7.14 Implicitly output auxiliary functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 433

7.14 Implicitly output auxiliary functions

Function
Implicitly output auxiliary functions are auxiliary functions which have not been programmed
explicitly and which are also output by other system functions (e.g. transformation selection,
tool selection, etc.). These implicit auxiliary functions do not lead to any system function;
instead, the M codes are collected according to output behavior parameters assigned to
them and/or are output to the PLC.

Parameterization
The M codes for auxiliary functions to be output implicitly are defined with the machine data:

● MD22530 $MC_TOCARR_CHANGE_M_CODE (M code at toolholder change)

This machine data value indicates the number of the M code which is output when a
toolholder is activated at the NC/PLC interface.

If the value is positive, the unchanged M code is always output.

If the value is negative, the number of the toolholder is added to the machine data value,
and this number is output.

● MD22532 $MC_GEOAX_CHANGE_M_CODE (M code when switching the geometry
axes)

Number of the M code which is output when the geometry axes on the NC/PLC interface
are switched.

● MD22534 $MC_TRAFO_CHANGE_M_CODE (M code in the case of transformation
changes)

Number of the M code which is output during a transformation switch of the geometry
axes at the NC/PLC interface.

 Note

No M code is output if the number of the M code being output or the
MD22530/MD22532/MD22534 value is between 0 and 6, or is either 17 or 30. Whether or
not an M code which is generated in this manner leads to conflicts with other functions is
not monitored.

Output behavior
In the case of implicitly output auxiliary functions, bit 13 is set in machine data MD22080 or
MD22035 (output behavior of predefined or user-defined auxiliary functions).

This bit can be queried via the system variable $AC_AUXFU_SPEC[<n>].

H2: Auxiliary function outputs to PLC
7.15 Information options

 Basic Functions
434 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Implicitly output auxiliary function M19
To achieve uniformity in terms of how M19 and SPOS or SPOSA behave at the NC/PLC
interface, auxiliary function M19 can be output to the NC/PLC interface in the event of SPOS
and SPOSA (see Section "General functionality (Page 1232)").

The implicitly output auxiliary function M19 is collected during the block search.

7.15 Information options
Information about auxiliary functions (e.g. about the output status) is possible via:

● The group-specific modal M auxiliary function display on the user interface

● Querying system variables in part programs and synchronized actions

7.15.1 Group-specific modal M auxiliary function display

Function
The output status and acknowledgement status of M auxiliary functions can be displayed on
the user interface on a group-specific basis.

Requirements
To implement function-oriented acknowledgement and display of M auxiliary functions, the
auxiliary functions must be managed in the PLC and, thus, in the user program itself.
Therefore, it is up to the PLC programmer to program the acknowledgement of these
auxiliary functions. He has to know which auxiliary functions in which group have to be
acknowledged.

Standard
M auxiliary functions that are not managed by means of the PLC are identified by the NC as
"transferred" and output to the PLC. There is no functional acknowledgement for these
auxiliary functions. All M-auxiliary functions collected after a block search are also displayed
so that the operator knows which auxiliary functions will be output after a start following a
block search.

PLC activities
In the case of auxiliary function groups that are managed by the PLC itself, the PLC user
program must acknowledge all auxiliary functions of this groups when Apply and Function
End are activated. The PLC programmer must know all the auxiliary functions of these
groups.

 H2: Auxiliary function outputs to PLC
 7.15 Information options

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 435

Miscellaneous
Only the group-specific M auxiliary functions are displayed. The block-by-block display is
also retained. Up to 15 groups can be displayed, whereby only the last M function of a group
that was either collected or output to the PLC is displayed for each group. The M functions
are presented in various display modes depending on their status:

Status Display mode
Auxiliary function is collected Inverted with yellow font
Auxiliary function is output from NCK to PLC Inverted
Auxiliary function has been transferred from NCK to PLC
and transport acknowledgement has taken place

Black font on gray background

Auxiliary function is managed by the PLC and has been
directly applied by the PLC.

Black font on gray background

Auxiliary function is managed by the PLC, and the function
acknowledgement has taken place.

Black font on gray background

Display update
The display is organized in such a way that the collected auxiliary functions are always
displayed first, before those that were managed by the PLC and before those that were
managed by the NC. A collected auxiliary function is marked as collected until it has been
output from the NCK to the PLC. PLC-managed auxiliary functions are retained until they are
displaced by another auxiliary function. In the case of a reset, only the collected auxiliary
functions and the NC-managed auxiliary functions are deleted.

7.15.2 Querying system variables

Function
Auxiliary functions can be queried on a group-specific basis via system variables in the part
program and via synchronized actions:

$AC_AUXFU_... [<n>] = <value>

system variables Meaning

Index of the last auxiliary function collected for
an auxiliary function group (search) or the last
predefined auxiliary function to be output
Type: INT

<value>:

If no auxiliary function has been output yet for
the specified group or if the auxiliary function is
a user-defined auxiliary function, the variable
supplies the value "-1".

$AC_AUXFU_PREDEF_INDEX[<n>]

<n>: Group index (0 to 63)

H2: Auxiliary function outputs to PLC
7.15 Information options

 Basic Functions
436 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

system variables Meaning
Note:
A predefined auxiliary function can be uniquely identified via
this variable.

Type of the last auxiliary function collected for
an auxiliary function group (search) or the last
auxiliary function to be output

<value>:

Type: CHAR

$AC_AUXFU_TYPE[<n>]

<n>: Group index (0 to 63)
Address extension of the last auxiliary function
collected for an auxiliary function group (search)
or the last auxiliary function to be output

<value>:

Type: INT

$AC_AUXFU_EXT[<n>]
or M function specific:
$AC_AUXFU_M_EXT[<n>]

<n>: Group index (0 to 63)
Value of the last auxiliary function collected for
an auxiliary function group (search) or the last
auxiliary function to be output

<value>:

Type: REAL

$AC_AUXFU_VALUE[<n>]
or M function specific:
$AC_AUXFU_M_VALUE[<n>]

<n>: Group index (0 to 63)
Bit-encoded output behavior according to
MD22080/MD22035 (or QU programming) of the
last auxiliary function collected for an auxiliary
function group (search) or the last auxiliary
function to be output

Value:

Type: INT
<n>: Group index (0 to 63)

$AC_AUXFU_SPEC[<n>]

Note:
This variable can be used to determine whether the
auxiliary function should be output with a fast
acknowledgement.

Output state of the last auxiliary function
collected for an auxiliary function group (search)
or the last auxiliary function to be output
Type: INT
Value range: 0 ... 5
0: No auxiliary function
1: M-auxiliary function was collected via a

search
2: M-auxiliary function has been output to the

PLC
3: M-auxiliary function has been output to the

PLC and the transport acknowledgement
has taken place

4: M-auxiliary function is managed by the PLC
and has been applied by the PLC

<value>:

5: M-auxiliary function is managed by the
PLC, and the function acknowledgement
has taken place

$AC_AUXFU_STATE[<n>]
or M function specific:
$AC_AUXFU_M_STATE[<n>]

<n>: Group index (0 to 63)

 H2: Auxiliary function outputs to PLC
 7.16 Supplementary conditions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 437

Example
All M-auxiliary functions of the 1st group will be stored in the order they are output
id=1 every $AC_AUXFU_M_STATE[0]==2 do
$AC_FIFO[0,0]=$AC_AUXFU_M_VALUE[0]

References
For more information on the system variables, refer to:

List Manual, system variables

7.16 Supplementary conditions

7.16.1 General constraints

Spindle replacement
Because the auxiliary functions are parameterized channel-specifically, if function: "spindle
replacement" is used, the spindle-specific auxiliary function must be parameterized
immediately in all channels that use the spindles.

Tool management
If tool management is active, the following constraints apply:

● T and M<k> functions are not output to the PLC.
Note
k is the parameterized value of the auxiliary function for the tool change (default: 6):
MD22560 $MC_TOOL_CHANGE_M_CODE (auxiliary function for tool change)

● If no address extension is programmed, the auxiliary function refers to the master spindle
or the master tool holder of the channel.

Definition of the master spindle:

– MD20090 $MC_SPIND_DEF_MASTER_SPIND

– Part program instruction: SETMS

Definition of the master tool holder

– MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER

– Part program instruction: SETMTH

H2: Auxiliary function outputs to PLC
7.16 Supplementary conditions

 Basic Functions
438 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Maximum number of auxiliary functions per part program block
A maximum of 10 auxiliary functions may be programmed in one part program block.

DL (additive tool offset)
The following restrictions apply to the DL function:

● Only one DL function can be programmed per part program block.

● If DL functions are used in synchronous actions, parameter: "Value" is not output to the
PLC.

7.16.2 Output behavior

Thread cutting
During active thread cutting G33, G34 and G35, the following output behavior is always active
for the spindle-specific auxiliary functions:

● M3 (spindle right)

● M4 (spindle left)

● Output duration of one OB40 cycle (quick acknowledgement)

● Output during motion

The spindle-specific auxiliary function M5 (spindle stop) is always output at the end of the
block. The part program block that contains M5 is always ended with exact stop, i.e. even
during active continuous-path mode.

Synchronized actions
With output auxiliary functions from synchronized actions, the parameterized output behavior
is ignored except for the following parameters:

● Bit0: Output duration of one OB1 cycle (normal acknowledgement)

● Bit1: Output duration of one OB40 cycle (quick acknowledgement)

Auxiliary functions: M17 or M2/M30 (end of subprogram)
In its own part program block

If one of the auxiliary functions M17, M2 or M30 is programmed as the only auxiliary function in
a part program block and an axis is still in motion, the auxiliary function is not output to the
PLC until after the axis has stopped.

 H2: Auxiliary function outputs to PLC
 7.16 Supplementary conditions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 439

Overriding the parameterized output behavior

The parameterized output behavior of the auxiliary functions M17 or M2/M30 is overridden by
the output behavior that is determined in the following machine data:

MD20800 $MC_SPF_END_TO_VDI, bit 0 (subprogram end / stop to PLC)

Bit Value Meaning

0 The auxiliary functions M17 or M2/M30 (subprogram end) are not output to the PLC.
Continuous-path mode is not interrupted at the end of the subprogram

0

1 The auxiliary functions M17 or M2/M30 (subprogram end) are output to the PLC.

Auxiliary function: M1 (conditional stop)
Overriding the parameterized output behavior

The parameterized output behavior of the auxiliary function M1 is overridden by the output
behavior defined in the following machine data:

MD20800 $MC_SPF_END_TO_VDI, bit 1 (subprogram end / stop to PLC)

Bit Value Meaning

0 The auxiliary function M01 (conditional stop) is always output to the PLC. A quick
acknowledgement is ineffective, because M01 is permanently assigned to the first
auxiliary function group and is therefore always output at the end of the block.

1

1 The auxiliary function M01 (conditional stop) is only output to the PLC, if the function:
"Programmed stop" is activated via the HMI user interface.
In the case of a quick acknowledgement, the M1 is output to the PLC during the motion.
While the function is not active, this does not interrupt continuous-path mode.

Part program blocks without traversing motion
In a part program block without a traversing motion, all auxiliary functions are output in a
block immediately, irrespective of their parameterized output behavior.

Spindle-specific auxiliary function output only as information for the PLC user program
In certain controller situations, e.g. at the end of a block search, the collected spindle-specific
auxiliary functions (e.g. M3, M4, M5, M19, M40...M45, M70) is output to the NC/PLC interface only
for information purposes for the PLC user program. The controller generates a part program
block (action block) in which the collected auxiliary functions are entered with a negative
address extension. The corresponding system functions are then not executed.

Example: M(-2) = 41 request gear stage change for the 2nd spindle

H2: Auxiliary function outputs to PLC
7.17 Examples

 Basic Functions
440 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

7.17 Examples

7.17.1 Extension of predefined auxiliary functions

Task
Parameter assignment of auxiliary functions M3, M4, and M5 for the second spindle of the
channel

Parameter assignment: M3
Requirements:

● Machine data index: 0 (first user-defined auxiliary function)

● auxiliary function group: 5

● Type and value: M3 (spindle right)

● Address extension: 2 as appropriate for the 2nd spindle of the channel

● Output behavior:

– Output duration one OB1 cycle (normal acknowledgment)

– Output prior to motion

Parameter assignment:

MD22000 $MC_AUXFU_ASSIGN_GROUP[0] = 5
MD22010 $MC_AUXFU_ASSIGN_TYPE [0] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION [0] = 2
MD22030 $MC_AUXFU_ASSIGN_VALUE [0] = 3
MD22035 $MC_AUXFU_ASSIGN_SPEC [0] = 'H21'

Parameter assignment: M4
Requirements:

● Machine data index: 1 (second user-defined auxiliary function)

● auxiliary function group: 5

● Type and value: M4 (spindle left)

● Address extension: 2 as appropriate for the 2nd spindle of the channel

● Output behavior:

– Output duration one OB1 cycle (normal acknowledgment)

– Spindle response following acknowledgment

– Output during motion

 H2: Auxiliary function outputs to PLC
 7.17 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 441

Parameter assignment:

MD22000 $MC_AUXFU_ASSIGN_GROUP [1] = 5
MD22010 $MC_AUXFU_ASSIGN_TYPE [1] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION [1] = 2
MD22030 $MC_AUXFU_ASSIGN_VALUE [1] = 4
MD22035 $MC_AUXFU_ASSIGN_SPEC [1] = 'H51'

Parameter assignment: M5
Requirements:

● Machine data index: 2 (third user-defined auxiliary function)

● auxiliary function group: 5

● Type and value: M5 (spindle stop)

● Address extension: 2 as appropriate for the 2nd spindle of the channel

● Output behavior:

– Output duration one OB1 cycle (normal acknowledgment)

– Spindle response following acknowledgment

– Output at block end

Parameter assignment:

MD22000 $MC_AUXFU_ASSIGN_GROUP [2] = 5
MD22010 $MC_AUXFU_ASSIGN_TYPE [2] = "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION [2] = 2
MD22030 $MC_AUXFU_ASSIGN_VALUE [2] = 5
MD22035 $MC_AUXFU_ASSIGN_SPEC [2] = 'H91'

7.17.2 Defining auxiliary functions

Task
Parameter assignment of the auxiliary function-specific machine data for a machine with the
following configuration:

Spindles

● Spindle 1: Master spindle

● Spindle 2: Second spindle

H2: Auxiliary function outputs to PLC
7.17 Examples

 Basic Functions
442 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Gear stages

● Spindle 1: 5 gear stages

● Spindle 2: No gear stages

Switching functions for cooling water on/off

● Spindle 1

– "ON" = M50

– "OFF" = M51

● Spindle 2

– "ON" = M52

– "OFF" = M53

Requirements
Spindle 1 (master spindle)

 Note
Default assignments
• The auxiliary functions M3, M4, M5, M70 and M1=3, M1=4, M1=5, M1=70 of spindle 1

(master spindle) are assigned as standard to the second auxiliary function group.
• All S and S1 values of spindle 1 (master spindle) are assigned to the third auxiliary

function group by default.

● The gear stage last programmed is to be output after block search. The following auxiliary
functions are assigned to the ninth auxiliary function group for this reason:

– M40, M41, M42, M43, M44, M45

– M1=40, M1=41, M1=42, M1=43, M1=44, M1=45

● The auxiliary functions M3, M4, M5, M70 and M1=3, M1=4, M1=5, M1=70
(second auxiliary function group) and S and S1 values (third auxiliary function group)
should possess the following output behavior:

– Output duration one OB40 cycle (quick acknowledgment)

– Output prior to motion

● The auxiliary functions for gear changeover M40 to M45 and M1=40 to M1=45
(ninth auxiliary function group) should have the following output behavior:

– Output duration one OB1 cycle (normal acknowledgment)

– Output prior to motion

 H2: Auxiliary function outputs to PLC
 7.17 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 443

Spindle 2

● Only one M function for directional reversal may be programmed in one block. The
direction of rotation last programmed is to be output after block search. The following
auxiliary functions are assigned to the tenth auxiliary function group for this reason:

– M2=3, M2=4, M2=5, M2=70

● All S2 values are assigned to auxiliary function group 11.

● The auxiliary functions M2=3, M2=4, M2=5, M2=70 (tenth auxiliary function group) and
S2 values (auxiliary function group 11) should have the following output behavior:

– Output duration one OB40 cycle (quick acknowledgment)

– Output prior to motion

Cooling water

● It is not permissible to switch the cooling water on and off in one part program block. After
a block search, the cooling water will be switched on or off. For this purpose, the following
auxiliary functions are assigned, for example, to auxiliary function group 12 or 13:

– Auxiliary function group 12: M50, M51

– Auxiliary function group 13: M52, M53

● The auxiliary functions M50, M51 (auxiliary function group 12) and M52, M53 (auxiliary
function group 13) should have the following output behavior:

– Output duration one OB1 cycle (normal acknowledgment)

– Output prior to motion

Parameterization of the machine data
The machine data are parameterized by appropriate programming within a parts program.

Program code Comment

$MN_AUXFU_MAXNUM_GROUP_ASSIGN=21 ; Number of user-defined auxiliary functions

per channel

$MN_AUXFU_GROUP_SPEC[1]='H22' ; Output behavior of auxiliary function group 2

$MN_AUXFU_GROUP_SPEC[2]='H22' ; Output behavior of auxiliary function group 3

$MN_AUXFU_GROUP_SPEC[8]='H21' ; Output behavior of auxiliary function group 9

$MC_AUXFU_ASSIGN_TYPE[0]="M" ; Description of auxiliary function 1: M40

$MC_AUXFU_ASSIGN_EXTENSION[0]=0

$MC_AUXFU_ASSIGN_VALUE[0]=40

$MC_AUXFU_ASSIGN_GROUP[0]=9

 ; ... (and analogously for aux. functions 2 to

5)

$MC_AUXFU_ASSIGN_TYPE[5]="M" ; Description of auxiliary function 6: M45

$MC_AUXFU_ASSIGN_EXTENSION[5]=0

$MC_AUXFU_ASSIGN_VALUE[5]=45

H2: Auxiliary function outputs to PLC
7.17 Examples

 Basic Functions
444 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

$MC_AUXFU_ASSIGN_GROUP[5]=9

$MC_AUXFU_ASSIGN_TYPE[6]="M" ; Description of auxiliary function 7: M1=40

$MC_AUXFU_ASSIGN_EXTENSION[6]=1

$MC_AUXFU_ASSIGN_VALUE[6]=40

$MC_AUXFU_ASSIGN_GROUP[6]=9

 ; . . . (and analogously for aux. functions 8

to 11)

$MC_AUXFU_ASSIGN_TYPE[11]="M" ; Description of auxiliary function 12: M1=45

$MC_AUXFU_ASSIGN_EXTENSION[11]=1

$MC_AUXFU_ASSIGN_VALUE[11]=45

$MC_AUXFU_ASSIGN_GROUP[11]=9

$MN_AUXFU_GROUP_SPEC[9] = 'H22' ; Output behavior of auxiliary function group

10

$MC_AUXFU_ASSIGN_TYPE[12]="M" ; Description of auxiliary function 13: M2=3

$MC_AUXFU_ASSIGN_EXTENSION[12]=2

$MC_AUXFU_ASSIGN_VALUE[12]=3

$MC_AUXFU_ASSIGN_GROUP[12]=10

$MC_AUXFU_ASSIGN_TYPE[13]="M" ; Description of auxiliary function 14: M2=4

$MC_AUXFU_ASSIGN_EXTENSION[13]=2

$MC_AUXFU_ASSIGN_VALUE[13]=4

$MC_AUXFU_ASSIGN_GROUP[13]=10

$MC_AUXFU_ASSIGN_TYPE[14]="M" ; Description of auxiliary function 15: M2=5

$MC_AUXFU_ASSIGN_EXTENSION[14]=2

$MC_AUXFU_ASSIGN_VALUE[14]=5

$MC_AUXFU_ASSIGN_GROUP[14]=10

$MC_AUXFU_ASSIGN_TYPE[15]="M" ; Description of auxiliary function 16: M2=70

$MC_AUXFU_ASSIGN_EXTENSION[15]=2

$MC_AUXFU_ASSIGN_VALUE[15]=70

$MC_AUXFU_ASSIGN_GROUP[15]=10

$MN_AUXFU_GROUP_SPEC[10] = 'H22' ; Specification of auxiliary function group 11

$MC_AUXFU_ASSIGN_TYPE[16] = "S" ; Description of auxiliary function 17: S2=<all

values>

$MC_AUXFU_ASSIGN_EXTENSION[16]=2

$MC_AUXFU_ASSIGN_VALUE[16]=-1

$MC_AUXFU_ASSIGN_GROUP[16]=11

 H2: Auxiliary function outputs to PLC
 7.17 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 445

Program code Comment

$MN_AUXFU_GROUP_SPEC[11]='H21' ; Specification of auxiliary function group 12

$MC_AUXFU_ASSIGN_TYPE[17]="M" ; Description of auxiliary function 18: M50

$MC_AUXFU_ASSIGN_EXTENSION[17]=0

$MC_AUXFU_ASSIGN_VALUE[17]=50

$MC_AUXFU_ASSIGN_GROUP[17]=12

$MC_AUXFU_ASSIGN_TYPE[18]="M" ; Description of auxiliary function 19: M51

$MC_AUXFU_ASSIGN_EXTENSION[18]=0

$MC_AUXFU_ASSIGN_VALUE[18]=51

$MC_AUXFU_ASSIGN_GROUP[18]=12

$MN_AUXFU_GROUP_SPEC[12]='H21' ; Specification of auxiliary function group 13

$MC_AUXFU_ASSIGN_TYPE[19]="M" ; Description of auxiliary function 20: M52

$MC_AUXFU_ASSIGN_EXTENSION[19]=0

$MC_AUXFU_ASSIGN_VALUE[19]=52

$MC_AUXFU_ASSIGN_GROUP[19]=13

$MC_AUXFU_ASSIGN_TYPE[20]="M" ; Description of auxiliary function 21: M53

$MC_AUXFU_ASSIGN_EXTENSION[20]=0

$MC_AUXFU_ASSIGN_VALUE[20]=53

$MC_AUXFU_ASSIGN_GROUP[20]=13

H2: Auxiliary function outputs to PLC
7.18 Data lists

 Basic Functions
446 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

7.18 Data lists

7.18.1 Machine data

7.18.1.1 NC-specific machine data

Number Identifier: $MN_ Description
10713 M_NO_FCT_STOPRE M function with preprocessing stop
10714 M_NO_FCT_EOP M function for spindle active after NC RESET
10715 M_NO_FCT_CYCLE M function to be replaced by subroutine
11100 AUXFU_MAXNUM_GROUP_ASSIGN Maximum number of user-defined auxiliary functions

per channel
11110 AUXFU_GROUP_SPEC Group-specific output behavior
11450 SEARCH_RUN_MODE Behavior after a block search

7.18.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20110 RESET_MODE_MASK Definition of control initial setting after part program

start.
20112 START_MODE_MASK Definition of control initial setting after powerup and

on RESET or at end of part program
20270 CUTTING_EDGE_DEFAULT Basic setting of tool cutting edge without programming
20800 SPF_END_TO_VDI Subroutine end / Stop at PLC
22000 AUXFU_ASSIGN_GROUP Group assignment of user-defined auxiliary functions
22010 AUXFU_ASSIGN_TYPE Type of user-defined auxiliary functions
22020 AUXFU_ASSIGN_EXTENSION Address extension for user-defined auxiliary functions
22030 AUXFU_ASSIGN_VALUE Value of user-defined auxiliary functions
22035 AUXFU_ASSIGN_SPEC Output behavior of user-defined auxiliary functions
22040 AUXFU_PREDEF_GROUP Group assignment of predefined auxiliary functions
22050 AUXFU_PREDEF_TYPE Type of predefined auxiliary functions
22060 AUXFU_PREDEF_EXTENSION Address extension for predefined auxiliary functions
22070 AUXFU_PREDEF_VALUE Value of predefined auxiliary functions
22080 AUXFU_PREDEF_SPEC Output behavior of predefined auxiliary functions
22100 AUXFU_QUICK_BLOCKCHANGE Block change delay with quick auxiliary functions
22110 AUXFU_H_TYPE_INT Type of H auxiliary functions
22200 AUXFU_M_SYNC_TYPE M functions output time

 H2: Auxiliary function outputs to PLC
 7.18 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 447

Number Identifier: $MC_ Description
22210 AUXFU_S_SYNC_TYPE S functions output time
22220 AUXFU_T_SYNC_TYPE T functions output time
22230 AUXFU_H_SYNC_TYPE H functions output time
22240 AUXFU_F_SYNC_TYPE F functions output time
22250 AUXFU_D_SYNC_TYPE D functions output time
22252 AUXFU_DL_SYNC_TYPE DL functions output time
22254 AUXFU_ASSOC_M0_VALUE Additional M function for program stop
22256 AUXFU_ASSOC_M1_VALUE Additional M function for conditional stop
22530 TOCARR_CHANGE_M_CODE M code for change of tool holder
22532 GEOAX_CHANGE_M_CODE M code for replacement of geometry axes
22534 TRAFO_CHANGE_M_CODE M code for change of tool holder
22560 TOOL_CHANGE_M_CODE Auxiliary function for tool change

7.18.2 Signals

7.18.2.1 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate associated M01 DB21,DBX30.5 DB3200.DBX14.5

7.18.2.2 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
M function 1 - 5 change DB21,DBX58.0-4 DB2500.DBX4.0-4
M function 1 - 5 not decoded DB21,DBX59.0-4 -
S function 1 - 3 change DB21,DBX60.0-2 DB2500.DBX6.0
S function 1 - 3 quick DB21,DBX60.4-6 -
T function 1 - 3 change DB21,DBX61.0-2 DB2500.DBX8.0
T function 1 - 3 quick DB21,DBX61.4-6 -
D function 1 - 3 change DB21,DBX62.0-2 DB2500.DBX10.0
D function 1 - 3 quick DB21,DBX62.4-6 -
DL function change DB21,DBX63.0 -
DL function quick DB21,DBX63.4 -
H function 1 - 3 change DB21,DBX64.0-2 DB2500.DBX12.0-2
H function 1 - 3 quick DB21,DBX64.4-6 -
F function 1 - 6 change DB21,DBX65.0-5 -
M function 1 - 5 quick DB21,DBX66.0-4 -

H2: Auxiliary function outputs to PLC
7.18 Data lists

 Basic Functions
448 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal name SINUMERIK 840D sl SINUMERIK 828D
F function 1 - 6 quick DB21,DBX67.0-5 -
Extended address M function 1 (16 bit int) DB21,DBB68-69 DB2500.DBB3004
M function 1 (DInt) DB21,DBB70-73 DB2500.DBD3000
Extended address M function 2 (16 bit int) DB21,DBB74-75 DB2500.DBB3012
M function 2 (DInt) DB21,DBB76-79 DB2500.DBD3008
Extended address M function 3 (16 bit int) DB21,DBB80-81 DB2500.DBB3020
M function 3 (DInt) DB21,DBB82-85 DB2500.DBD3016
Extended address M function 4 (16 bit int) DB21,DBB86-87 DB2500.DBB3028
M function 4 (DInt) DB21,DBB88-91 DB2500.DBD3024
Extended address M function 5 (16 bit int) DB21,DBB92-93 DB2500.DBB3036
M function 5 (DInt) DB21,DBB94-97 DB2500.DBD3032
Extended address S function 1 (16 bit int) DB21,DBB98-99 DB2500.DBB4004
S function 1 (real) DB21,DBB100-103 DB2500.DBD4000
Extended address S function 2 (16 bit int) DB21,DBB104-105 DB2500.DBB4012
S function 2 (real) DB21,DBB106-109 DB2500.DBD4008
Extended address S function 3 (16 bit int) DB21,DBB110-111 DB2500.DBB4020
S function 3 (real) DB21,DBB112-115 DB2500.DBD4016
Extended address T function 1 (16 bit int) DB21,DBB116-117 DB2500.DBB2004
T function 1 (integer) DB21,DBB118-119 DB2500.DBD2000
Extended address T function 2 (16 bit int) DB21,DBB120-121 -
T function 2 (integer) DB21,DBB122-123 -
Extended address T function 3 (16 bit int) DB21,DBB124-125 -
T function 3 (integer) DB21,DBB126-127 -
Extended address D function 1 (8 bit int) DB21,DBB128 DB2500.DBB5004
D function 1 (8 bit int) DB21,DBB129 DB2500.DBD5000
Extended address D function 2 (8 bit int) DB21,DBB130 -
D function 2 (8 bit int) DB21,DBB131 -
Extended address D function 3 (8 bit int) DB21,DBB132 -
D function 3 (8 bit int) DB21,DBB133 -
Extended address DL function (8 bit int) DB21,DBB134 -
DL function (real) DB21,DBB136 -
Extended address H function 1 (16 bit int) DB21,DBB140-141 DB2500.DBB6004
H function 1 (real or DInt) DB21,DBB142-145 DB2500.DBD6000
Extended address H function 2 (16 bit int) DB21,DBB146-147 DB2500.DBB6012
H function 2 (REAL or DInt) DB21,DBB148-151 DB2500.DBD6008
Extended address H function 3 (16 bit int) DB21,DBB152-153 DB2500.DBB6020
H function 3 (real or DInt) DB21,DBB154-157 DB2500.DBD6016
Extended address F function 1 (16 bit int) DB21,DBB158-159 -
F function 1 (real) DB21,DBB160-163 -
Extended address F function 2 (16 bit int) DB21,DBB164-165 -

 H2: Auxiliary function outputs to PLC
 7.18 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 449

Signal name SINUMERIK 840D sl SINUMERIK 828D
F function 2 (real) DB21,DBB166-169 -
Extended address F function 3 (16 bit int) DB21,DBB170-171 -
F function 3 (real) DB21,DBB172-175 -
Extended address F function 4 (16 bit int) DB21,DBB176-177 -
F function 4 (real) DB21,DBB178-181 -
Extended address F function 5 (16 bit int) DB21,DBB182-183 -
F function 5 (real) DB21,DBB184-187 -
Extended address F function 6 (16 bit int) DB21,DBB188-189 -
F function 6 (real) DB21,DBB190-193 -
Dynamic M function: M00 - M07 DB21,DBB194 DB2500.DBB1000
Dynamic M function: M08 - M15 DB21,DBB195 DB2500.DBB1001
Dynamic M function: M16 - M23 DB21,DBB196 DB2500.DBB1002
Dynamic M function: M24 - M31 DB21,DBB197 DB2500.DBB1003
Dynamic M function: M32 - M39 DB21,DBB198 DB2500.DBB1004
Dynamic M function: M40 - M47 DB21,DBB199 DB2500.DBB1005
Dynamic M function: M48 - M55 DB21,DBB200 DB2500.DBB1006
Dynamic M function: M56 - M63 DB21,DBB201 DB2500.DBB1007
Dynamic M function: M64 - M71 DB21,DBB202 DB2500.DBB1008
Dynamic M function: M72 - M79 DB21,DBB203 DB2500.DBB1009
Dynamic M function: M80 - M87 DB21,DBB204 DB2500.DBB1010
Dynamic M function: M88 - M95 DB21,DBB205 DB2500.DBB1011
Dynamic M function: M96 - M99 DB21,DBX206.0-3 DB2500.DBB1012.0-3
Associated M00/M01 active DB21,DBX318.5 DB3300.DBX4002.5

7.18.2.3 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
F function for positioning axis (real) DB31,DBB78-81 -

7.18.2.4 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
M function for spindle (Int) DB21,DBB86-87 DB370x.DBD0000
S function for spindle (real) DB21,DBB88-91 DB370x.DBD0004

H2: Auxiliary function outputs to PLC
7.18 Data lists

 Basic Functions
450 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 451

K1: Mode group, channel, program operation, reset
response 8
8.1 Product brief

Channel
An NC channel represents the smallest unit for manual traversing of axes and automatic
processing of part programs. At any one time, a channel will always be in a particular mode,
e.g. AUTOMATIC, MDI, or JOG. A channel can be regarded as an independent NC.

Mode group
A channel always belongs to a mode group. A mode group can also consist of several
channels.

A mode group can be identified by the fact that all channels of the mode group are always in
the same mode at a particular time, e.g. AUTOMATIC, MDI, or JOG. This is ensured through
the NC internal mode logic.

A mode group can be regarded as an independent multi-channel NC.

Channel gaps
When channels are configured, placeholder channels can be provided in order to create as
uniform a configuration as possible over machines in a series. Only the channels that are
actually used are then activated.

Program test
The following options are available for testing or moving in position a new part program.

● Program execution without setpoint outputs

● Program execution in singleblock mode

● Program execution with dry run feedrate

● Skip part program blocks

● Block search with or without calculation.

K1: Mode group, channel, program operation, reset response
8.1 Product brief

 Basic Functions
452 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Block search
The block search function enables the following program simulations for locating specific
program points:

● Type 1 without calculation at contour

● Type 2 with calculation at contour

● Type 4 with calculation at block end point

● Type 5 automatic start of the selected program point with calculation of all required data
from history

● Automatic start of an ASUB after a block search

● Cascaded block search

● Cross-channel block search in "Program test" mode

Program operation
The execution of part programs or part program blocks in AUTOMATIC or MDI modes is
referred to as program operation. During execution, the program sequence can be controlled
by PLC interface signals and commands.

For each channel, basic settings or channel-specific machine data can be specified. These
initial settings affect, for example, G groups and auxiliary function output.

A part program can be selected only if the relevant channel is in the Reset state.

Furthermore, all further program runs are handled by PLC interface signals and the
corresponding commands.

● Start of part program or part program block

● Part program calculation and program control

● RESET command, program status, and channel status

● Responses to operator and program actions

● Eventdriven program calls

Asynchronous subroutines (ASUBs), interrupt routines
Interrupt inputs allow the NC to interrupt the the current part program execution so that it can
react to more urgent events in interrupt routines or ASUBs.

Single block
With the single-block function, the user can execute a part program block-by-block.

There are 3 types of setting for the single-block function:

● SLB1: = IPO single block

● SLB2: = Decode single block

● SLB3: = Stop in cycle

 K1: Mode group, channel, program operation, reset response
 8.1 Product brief

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 453

Basic block display
A second basic block display can be used with the existing block display to display all blocks
that produce an action on the machine.

The actually approached end positions are shown as an absolute position. The position
values refer either to the workpiece coordinate system (WCS) or the settable zero system
(SZS).

Program execution from external source
When complex workpieces are machined, the NC may not have enough memory for the
programs. The "Execution from external source" function enables subroutines to be called
(EXTCALL) and executed from an external memory (e.g. from the HMI Advanced hard disk).

Behavior after POWER ON, Reset, ...
The control-system response after:

● Power up (POWER ON)

● Reset/part program end

● Part program start

can be modified for functions, such as G codes, tool length compensation, transformation,
coupled axis groupings, tangential follow-up, programmable synchronous spindle for certain
system settings through machine data.

Subroutine call with M, T and D functions
For certain applications, it may be advantageous to replace M, T or D functions as well as a
few NC language commandsSPOS, SPOSA, by a subroutine call. This can be used, for
example, to call the tool change routine.

Relevant machine data can be used to define and control subroutines having M, T or D
functions. For example, for a gear stage change.

Program runtime/part counter
Information on the program runtime and the part count is provided to assist the machine tool
operator.

The functions defined for this purpose are not identical to the functions of tool management
and are intended primarily for systems without tool management.

K1: Mode group, channel, program operation, reset response
8.2 Mode group

 Basic Functions
454 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.2 Mode group

Mode group
A mode group combines NC channels with axes and spindles to form a machining unit.

A mode group contains the channels that are required to run simultaneously in the same
mode from the point of view of the machining sequence.

The configuration of a mode group defines which channels are to be included in the group.

 Note

This description assumes one mode group and one channel.

Functions that need several channels, e.g. "Axis replacement" function, are described in:
References:
Function Manual Extension functions; Mode Groups, Channels, Axis replacement (K5)

Assignment: Channel - Mode group
Axes and/or spindles are assigned to one channel.

The channel, in turn, is assigned to a mode group with the following machine data:

MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP (channel valid in mode group)

If the same mode group is addressed in several channels, these channels together form a
mode group.

 Note

The control system does not recognize mode group-specific data. However, it is possible to
make some channel-specific settings that pertain to the mode group.

Channel-specific assignments
Axes can be assigned to multiple channels that, in turn, are allocated to different mode
groups. The axes can then be interchanged between these channels (axis replacement).
Axis replacement functions independently of the mode group.

Machine axes and spindles are assigned to a channel. They differ as follows:

● Geometry axes can be operated in the path grouping.

Using the master spindle, they can perform functions such as G96, G961, G331, G332, etc.

● Channel axes that are not defined as geometry axes can be moved as path axes,
synchronous axes, positioning axes, PLC axes, and command axes.

● Special axes have no geometric relationship with one another.

 K1: Mode group, channel, program operation, reset response
 8.2 Mode group

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 455

● Master spindle geometry axes can perform functions using the master spindle.

● Auxiliary spindles are all other spindles/axes in the channel apart from the master
spindle.

The GEOAX replacement command can be programmed to declare a channel axis as a
geometry axis and define its geometry axis number. It is defined with SETMS, which spindle in
the channel should be the master spindle.

Any axis in the channel can be configured as a spindle. The number of axes per channel
depends on the controller version. In order to optimize the performance utilization, the
available channel and axis configurations are limited depending on the hardware.

With SINUMERIK 840D sl, the following configurations are permissible depending on the
HW/SW version:

● Up to 12 axes/spindles per channel

● Maximum of 31 axes or 20 spindles per NCU

For information about other axis configurations such as axis containers, link axes,
reciprocating axes, main run, rotary, linear, master and slave axes and the various
implementations, see SectionsK2: Axis Types, Coordinate Systems, Frames (Page 647) and
S1: Spindles (Page 1225).

Mode group-specific interface signals
The exchange of mode group-specific signals to/from the mode group is transferred to DB11
in the user interface. In this way, the mode group can be monitored and controlled from the
PLC or NCK.

The following table represents all the mode group-specific interface signals.

Signals from PLC to NCK
Mode group reset
Mode group stop axes plus spindles
Mode group stop
Mode change
Mode: JOG, MDA, AUTOM.
Single block: Type A, Type B
Machine function REF, REPOS, TEACH IN,

Signals from NCK to PLC
Mode strobe: JOG, MDA, AUTOMATIC
Machine function strobe: REF, REPOS, TEACH IN
All channels (1 to 10, max.) in Reset state
Mode group Ready
Active mode: JOG, MDA, AUTOMATIC

K1: Mode group, channel, program operation, reset response
8.2 Mode group

 Basic Functions
456 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signals from NCK to PLC
Digitizing
Active machine function: REF, REPOS, TEACH IN
var. INC, 10000 INC 1 INC

Change in mode group
A configuration change of a mode group with respect to its assigned channels requires a
subsequent POWER ON.

The change is made using machine data:

MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP.

Mode group numbers must be assigned contiguously starting with 1.

Machine data
There is no mode group-specific machine data.

Channel gaps
The channels to which a mode group is assigned with MD10010 are regarded as activated.

Instead of a mode group number, the number "0" can be assigned to channels. The result is
as follows:

● The non-activated channel does not take up memory space in the controller.

● Series machines with similar designs can be kept uniform during configuration. Only the
channels that can actually be used by the machine tool are activated (channels with
mode group number greater than 0).

Special case:

Channel 1 must always be available!

⇒ If:
MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP [0] = 0
is specified, the controller automatically sets
MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP [0] = 1 (mode group 1).

Example configurations:

MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP[0] = 1

MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP[1] = 2

...

MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP[3] = 0 ; gap

...

MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP[8] = 1

MD10010 $MN_ASSIGN_CHAN_TO_MODE_GROUP[9] = 2

 K1: Mode group, channel, program operation, reset response
 8.2 Mode group

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 457

8.2.1 Mode group stop

Function
The following NC/PLC interface signals are used to stop the traversing motions of the axes
or of the axes and spindles in all mode group channels and to interrupt part program
execution:

DB11 DBX0.5 (mode group stop)

DB11 DBX0.6 (mode group stop, axes plus spindles)

8.2.2 Mode group reset

Function
A mode group Reset is requested via a mode group-specific NC/PLC interface signal:

DB11 DBX0.7 = 1 (mode group reset)

Effect
Effect on the channels of mode group:

● Part program preparation (preprocessing) is stopped.

● All axes and spindles are decelerated to zero speed according to their acceleration
curves without contour violation.

● Any auxiliary functions not yet output to the PLC are no longer output.

● The preprocessing pointers are set to the interruption point, and the block pointers are set
to the beginning of the appropriate part programs.

● All initial settings (e.g. the G functions) are set to the parameterized values.

● All alarms with "Channel reset" criterion are canceled.

If all the channels of the mode group are in reset state, then:

● All alarms with "Mode group reset" cancel criterion are canceled.

● The NC/PLC interface indicates completion of the mode group Reset and the mode
group's readiness to operate:

DB11 DBX6.7 (all channels in the reset state)

DB11 DBX6.3 = 1 (mode group ready)

K1: Mode group, channel, program operation, reset response
8.3 Mode types and mode type change

 Basic Functions
458 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.3 Mode types and mode type change

Unique mode
All channels of a mode group are always in the same mode:

● AUTOMATIC

● JOG

● MDI

If individual channels are assigned to different mode groups, a channel switchover activates
the corresponding mode group. This allows mode changes to be initiated via a channel
switchover.

Modes
The following modes are available:

● AUTOMATIC

Automatic execution of part programs:

– Part program test.

– All channels of the mode group can be active at the same time.

● JOG in Automatic

JOG in AUTOMATIC is an extension of AUTOMATIC mode intended to simplify use. JOG
can be executed without leaving AUTOMATIC mode if boundary conditions so permit.

● JOG

Manual traversing of axes via traversing keys of the machine control panel or via a
handwheel connected to the machine control panel:

– Channel-specific signals and interlocks are taken into account for motions executed by
means of an ASUB or via static synchronized actions.

– Couplings are taken into account.

– Every channel in the mode group can be active.

● MDI

Manual Data Automatic (the blocks are entered via the user interface)

– Restricted execution of part programs and part program sections.

– Part program test.

– A maximum of one channel per mode group can be active (applies only to TEACH IN).

– Axes can only be traversed manually in subordinate machine functions such as JOG,
REPOS or TEACH IN.

 K1: Mode group, channel, program operation, reset response
 8.3 Mode types and mode type change

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 459

Applies to all modes

Cross-mode synchronized actions

Modal synchronized actions can be executed by means of IDS in all modes for the following
functions parallel to the channel:

● Command axis functions

● Spindle functions

● Technology cycles

Selection
The user can select the desired mode by means of softkeys on the user interface.

This selection (AUTOMATIC, MDI, or JOG) is forwarded to the PLC on the NC/PLC
interface, but is not activated:
DB11 DBX4.0, 0.1, 0.2 (strobe mode)

Activation and priorities
The mode of the mode group is activated via the NC/PLC interface:

DB11 DBX0.0, 0.1, 0.2 (mode)

If several modes are selected at the same time, the following priority applies:

Priority Mode Mode-group signal (NCK → PLC)
1st priority, high JOG DB11 DBX0.2
2nd priority, medium MDI DB11 DBX0.1
3rd priority, low AUTOMATIC DB11 DBX0.0

Display
The current mode of the mode group is displayed via the NC/PLC interface:

DB11 DBX6.0, 0.1, 0.2 (active mode)

Mode-group signal (NCK → PLC) Active operating mode
DB11 DBX6.2 JOG
DB11 DBX6.1 MDI
DB11 DBX6.0 AUTOMATIC

K1: Mode group, channel, program operation, reset response
8.3 Mode types and mode type change

 Basic Functions
460 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Machine functions
Machine functions can be selected within a mode that also apply within the mode group:

● Machine functions within the JOG mode

– REF (reference point approach)

– REPOS (repositioning)

– JOG retract (retraction motion in the tool direction)

● Machine functions within the MDI mode

– REF (reference point approach)

– REPOS (repositioning)

– TEACHIN (teach-in of axis positions)

NC/PLC interface signals

● DB11 DBX5.0, 0.1, 0.2 (machine function strobe): Requirement

● DB11 DBX1.0, 0.1, 0.2 (machine function): Activation

● DB11 DBX7.0-2 (active machine function): Feedback signal

Channel states
● Channel reset

The machine is in its initial state. This is defined by the machine manufacturer's PLC
program, e.g. after POWER ON or at the end of the program.

● Channel active

A program has been started, and the program is being executed or a reference point
approach is in progress.

● Channel interrupted

The running program or reference point approach has been interrupted.

Functions within modes
Modes are supplemented through user-specific functions. The individual functions are
technology and machine-independent and can be started and/or executed from the three
channel states "Channel reset", "Channel active" or "Channel interrupted".

Supplementary condition for submode TEACH IN
TEACH IN is not permissible for leading or following axes of an active axis grouping, e.g. for:

● Gantry-axis grouping or a gantry axis pair

● Coupled-axis grouping of master and slave axis

 K1: Mode group, channel, program operation, reset response
 8.3 Mode types and mode type change

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 461

JOG in Automatic
JOG in AUTOMATIC mode is permitted if the mode group is in "RESET" state and the axis is
jog-capable. "RESET" state for the mode group means:

● All channels are in the "RESET" state

● All programs are canceled

● DRF is not active in any channel

An axis is JOG-capable if it is not in any of the following states:

● PLC axis as concurrent positioning axis (request of the axis from the PLC)

● Command axis (the axis has been programmed by a synchronized action and the motion
has not been completed yet)

● Rotating spindle (spindle rotating despite RESET)

● An asynchronous reciprocating axis

Note: The “jog-capable” property is independent of the “JOG in AUTOMATIC” function.

Activation

The function "JOG in AUTOMATIC" can be activated with the machine data:

MD10735 $MN_JOG_MODE_MASK

● Before POWER ON, the following machine data must be set:

MD10735 $MN_JOG_MODE_MASK, bit 0 = 1

● The user switches to AUTO (PLC user interface DB11 DBX0.0 = 0→1 edge). “JOG in
AUTOMATIC” is then active if the NCK previously had channel state “RESET” and
program state “Aborted” in all mode group channels. The axis in question must also be
“jog-capable”. DRF must be deactivated (if not already deactivated).

● RESET is initiated or the running program is finished with M30/M2 in all mode group
channels that do not have channel state “Reset” and program state “Aborted”.

● The relevant axis is automatically made "JOG-capable" (e.g. axis interchanget: PLC →
NC).

Note: In most applications, the axes to be traversed are "JOG-capable" and with the
switchover to AUTOMATIC, "JOG in AUTOMATIC" is also active.

Characteristics

● The +/– keys cause a JOG movement, and the mode group is switched internally to JOG.
(i.e. “Internal JOG”).

● Moving the handwheels causes a JOG movement, and the mode group is switched
internally to JOG, unless DRF is active.

K1: Mode group, channel, program operation, reset response
8.3 Mode types and mode type change

 Basic Functions
462 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● An ongoing JOG movement is not complete until the end position of the increment has
been reached (if this has been set) or the movement has been aborted with “Delete
distance-to-go”.

In this way an increment can be stopped using Stop and then moved to the end using
Start. The NCK remains in “Internal JOG” during this time. A partial increment is possible,
but it must not be interrupted using Stop. There is a mode in which releasing the travel
key causes interruption within an increment.

● Without any JOG movement, “JOG in AUTOMATIC” responds in the same way as
“Automatic”. In particular, the Start key starts the selected part program and the
appropriate HMI softkey initiates a block search.

● If JOG movement is active, the NCK is internally in JOG mode, and, thus, a block search
request is refused and a Start cannot start the part program. Start starts any remaining
increment or has no effect.

● While a mode group axis is being traversed in JOG mode, the mode group remains
internally in JOG mode.
Comment: This phase can begin with the JOG movement of an axis and end with the end
of the JOG movement of another axis.

● Axis interchange is not possible for an axis with active JOG movement (the axis might
change mode group). The NCK blocks any axis interchange attempt.

● The PLC user interface indicates "Automatic" mode:

– DB11 DBX6.0, 6.1, 6.2 = 1

– DB11 DBX7.0, 7.1, 7.2 = 0

● In “JOG in AUTOMATIC”, the NC/PLC interface displays whether the mode group is in
“Mode group RESET”.

– DB11 DBX6.4 (mode group has been reset, mode group 1)

– DB11 DBX26.4 (mode group has been reset, mode group 2)

– DB11 DBX46.4 (mode group has been reset, mode group 3)

● In “JOG in AUTOMATIC”, the NC/PLC interface displays whether the NC has
automatically switched to “Internal JOG”.

– DB11 DBX6.5 (NCK internal JOG active, mode group 1)

– DB11 DBX26.5 (NCK internal JOG active, mode group 2)

– DB11 DBX46.5 (NCK internal JOG active, mode group 3)

Supplementary conditions

“JOG in AUTOMATIC” can only switch internally to JOG if the mode group is in “Mode group
RESET” state, i.e. it is not possible to jog immediately in the middle of a stopped program.
The user can jog in this situation by pressing the JOG key or the Reset key in all channels of
the mode group.

Selecting AUTOMATIC disables the INC keys and the user can/must press the INC keys
again to select the desired increment. If the NCK switches to “Internal JOG”, the selected
increment is retained.

 K1: Mode group, channel, program operation, reset response
 8.3 Mode types and mode type change

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 463

If the user attempts to jog the geometry or orientation axes, the NCK switches to “Internal
JOG” and the movement executed. Several axes can be physically moved in this way; they
must all be “JOG-capable”.

Following the JOG movement, the NCK deactivates “Internal JOG” again and selects AUTO
mode again. The internal mode change is delayed until the movement is complete. This
avoids unnecessary multiple switching operations, e.g. when using the handwheel. The PLC
can only rely on the “Internal JOG active” PLC signal.

The NCK will then switch to “Internal JOG” if the axis is not enabled.

See also
R1: Referencing (Page 1173)

8.3.1 Monitoring functions and interlocks of the individual modes

Channel status determines monitoring functions

Monitoring functions in operating modes

Different monitoring functions are active in individual operating modes. These monitoring
functions are not related to any particular technology or machine.

In a particular mode only some of the monitoring functions are active depending on the
operating status. The channel status determines which monitoring functions are active in
which mode and and in which operating state.

Interlocking functions in operating modes

Different interlocks can be active in the different operating modes. These interlocking
functions are not related to any particular technology or machine.

Almost all the interlocks can be activated in every mode, depending on the operating status.

8.3.2 Mode change

Introduction
A mode change is requested and activated via the mode group interface (DB11, ...). A mode
group will either be in AUTOMATIC, JOG, or MDA mode, i.e. it is not possible for several
channels of a mode group to take on different modes at the same time.

K1: Mode group, channel, program operation, reset response
8.3 Mode types and mode type change

 Basic Functions
464 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

What mode transitions are possible and how these are executed can be configured in the
PLC program on a machine-specific basis.

 Note

The mode is not changed internally until the signal "Channel status active" is no longer
pending. For error-free mode change however, all channels must assume a permissible
operating mode.

Possible mode changes
The following table shows possible mode changes for one channel.

AUTOMATIC JOG MDA

 AUTO MDA JOG without
handwheel

AUTO

Reset Interrupt Reset Interrupt Interrupt Reset Interrupt active Interrupt
AUTOMATIC X X X

JOG X X X X X
MDA X X X X

Possible mode changes are shown by an "X".

Special cases
● Errors during mode change

If a mode change request is rejected by the system, the error message "Operating mode
cannot be changed until after NC Stop" is output. This error message can be cleared
without changing the channel status.

● Mode change disable

A mode change can be prevented by means of interface signal:
DB11, DBX0.4 (Mode change disable).

This suppresses the mode change request.

The user must configure a message to the operator indicating that mode change is
disabled. No signal is set by the system.

● Mode change from MDA to JOG

If all channels of the mode group are in Reset state after a mode change from MDA to
JOG, the NC switches from JOG to AUTO. In this state, part program commands START or
INIT can be executed.

If a channel of the mode group is no longer in Reset state after a mode change, the part
program command START is rejected and Alarm 16952 is issued.

 K1: Mode group, channel, program operation, reset response
 8.4 Channel

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 465

8.4 Channel

Assignment part program - channel
Part programs are assigned to channels.

Part programs of different channels are largely independent of each other.

Channel properties
A channel constitutes an "NC" in which one part program can be executed at a time.
Machine axes, geometry axes and positioning axes are assigned to the channels according
to the machine configuration and the current program status (AXIS CHANGE, GEO AXIS
CHANGE, SETMS).

The system assigns each channel its own path interpolator with associated programming.
Each channel can run its own machining program which is controlled from the PLC.

The following channel-specific functions make it possible for the channels to process part
programs independently:

● Each channel has its own NC Start, NC Stop, RESET.

● One feedrate override and one rapid traverse override per channel.

● Dedicated Interpreter for each channel.

● Dedicated path interpolator for each channel which calculates the path points such that
all the machining axes of the channel are controlled simultaneously from path axes.

● Selection and deselection of tool cutting edges and their length and radius
compensations for a tool in a specific channel.

For further information on the tool offset, see Section "W1: Tool offset (Page 1389)".

● Channel-specific frames and frames active in the channel for transforming closed
calculation rules into Cartesian coordinate systems. Offsets, rotations, scalings, and
mirrorings for geometry axes and special axes are programmed in a frame.

For further information on frames, see Section "Zero offset external via system frames
(Page 753)".

● Display of channel-specific alarm responses.

● Display of current machining sequence (axis position, current G functions, current
auxiliary functions, current program block) for each channel.

● Separate program control functions for each channel.

These functions (with the exception of the display functions) are controlled and checked by
the PLC with interface signals.

Channels in the same mode group always have to be operated in the same mode
(AUTOMATIC, JOG, MDA).

K1: Mode group, channel, program operation, reset response
8.4 Channel

 Basic Functions
466 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Channel configuration
Channels can be filled with their own channel name via the following machine data:

MD20000 $MC_CHAN_NAME (channel name)

The various axes are then assigned to the available channels via machine data. There can
be only one setpoint-issuing channel at a time for an axis/spindle. The axis/spindle actual
value can be read by several channels at the same time. The axis/spindle must be registered
with the relevant channel.

The following channel-specific settings can also be made using machine data:

● Position of deletions or the basic program settings of G groups via the machine data:

MD20150 $MC_GCODE_RESET_VALUES (initial setting of the G groups)

● Auxiliary function groups regarding the combination and the output time.

● Transformation conditions between machine axes and geometry axes.

● Other settings for the execution of a part program.

Change in the channel assignment
An online change in the channel configuration cannot be programmed in a part program or
PLC user program. Changes in the configuration must be made via the machine data. The
changes become effective only after a new POWER ON.

Container axes and link axes
An axis container combines a group of axes in a container. These axes are referred to as
container axes. This involves assigning a pointer to a container slot (ring buffer location
within the relevant container) to a channel axis. One of the axes in the container is located
temporarily in this slot.

Each machine axis in the axis container must be assigned at all times to exactly one channel
axis.

Link axes can be assigned permanently to one channel or dynamically (by means of an axis
container switch) to several channels of the local NCU or the other NCU. A link axis is a non-
local axis from the perspective of one of the channels belonging to the NCU to which the axis
is not physically connected.

The assignment between the link axes and a channel is implemented as follows:

● For permanent assignment using machine data:

Allow the direct logic machine axis image to show link axes.

● For dynamic assignment:

Allow the axis container slot machine data to show link axes.

Further information on link axes and container axes can be found in:
References:
Function Manual, Extended Functions; Several Operator Panel Fronts and Multiple NCUs,
Distributed Systems (B3)

 K1: Mode group, channel, program operation, reset response
 8.4 Channel

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 467

Interface signals
The signals of the 1st channel are located in the NC/PLC interface in DB21, the signals from
channel 2 are located in DB22. The channel or channels can be monitored and controlled
from the PLC or NCK.

Channel-specific technology specification
The technology used can be specified for each channel:

MD27800 $MC_TECHNOLOGY_MODE

In the delivery state, machine data is active for milling as standard.

Spindle functions using a PLC
In addition to function block FC18, spindle functions can also be started and stopped via the
axial NC/PLC interface signals in parallel to part programs that are running.

Requirements:

● Channel status: "Interrupted" or "RESET"

● Program status: "Interrupted" or "canceled"

The following functions can be controlled from the PLC via interface signals:

● Stop (corresponds to M5)

● Start with clockwise direction of rotation (corresponds to M3)

● Start with counter-clockwise direction of rotation (corresponds to M4)

● Select gear stage

● Positioning (corresponds to M19)

For several channels, the spindle started by the PLC is active in the channel to which it is
assigned at the start.

For further information on the special spindle interface, see Section "S1: Spindles
(Page 1225)".

PLC-controlled single-axis operations
An axis can also be controlled from the PLC instead of from a channel. For this purpose, the
PLC requests the axis from the NC via the NC/PLC interface:

DB31, ... DBX28.7 = 1 (PLC controls axis)

The following functions can be controlled from the PLC:

● Cancel axis/spindle sequence (equivalent to delete distance-to-go)

● Stop or interrupt axis/spindle

● Resume axis/spindle operation (continue the motion sequence)

● Reset axis/spindle to the initial state

K1: Mode group, channel, program operation, reset response
8.4 Channel

 Basic Functions
468 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

For further information on the channel-specific signal exchange (PLC → NCK), see Section
"P3: Basic PLC program for SINUMERIK 840D sl (Page 809)".

The exact functionality of independent single-axis operations is described in:

References:
Function Manual, Extended Functions; Positioning Axes (P2)

8.4.1 Global start disable for channel

User/PLC
A global Start disable can be set for the selected channel via the HMI or from the PLC.

Function
When Start disable is set, no new program starts are accepted for the selected channel.
Start attempts are counted internally.

If a start is executed by the PLC before a global block disable is sent from the HMI to the
NCK, the program is not stopped by the Start disable and its status is transmitted to the HMI.

NC Start disable and global Start disable have the same effect on the internal counter for
starts that have been sent but not executed. (OPI variable startRejectCount).

Bypassing global Start disable
The interface signal:
DB21, ... DBX7.5 (PLC → NCK)
allows the PLC to temporarily bypass a global Start disable.

0: Global Start disable is effective
1: Global Start disable is temporarily canceled.

Messages
If desired, a message can be issued when a Start attempt occurs while a global block
disable is active.

The control is exercised using machine data:

MD11411 $MN_ENABLE_ALARM_MASK Bit 6

1: Alarm 16956 appears: Channel %1, Program %2 cannot be started because of

"Global Start disable".
0: Start attempts when a global block disable is set are not signaled by an alarm.

 K1: Mode group, channel, program operation, reset response
 8.5 Program test

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 469

8.5 Program test
Several control functions are available for testing a new part program. These functions are
provided to reduce danger at the machine and time required for the test phase. Several
program functions can be activated at the same time to achieve a better result.

Test options
The following test options are described below:

● Program execution without setpoint outputs

● Program execution in singleblock mode

● Program execution with dry run feedrate

● Skip part program blocks

● Block search with or without calculation.

8.5.1 Program execution without setpoint outputs

Function
In the "Program test" status, a part program is executed without the output of axis or spindle
setpoints.

The user can use this to check the programmed axis positions and auxiliary function outputs
of a part program. This program simulation can also be used as an extended syntax check.

Selection
This function is selected via the operator interface in the "Program control" menu.

The selection sets the following interface signal:

DB21, ... DBX25.7 (program test selected)

This does not activate the function.

Activation
The function is activated via interface signal:

DB21, ... DBX1.7 (activate program test)

Display
The corresponding field on the operator interface is reversed and the interface signal in the
PLC as a checkback of the active program test:

DB21, ... DBX33.7 (program test active)

K1: Mode group, channel, program operation, reset response
8.5 Program test

 Basic Functions
470 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program start and program run
When the program test function is active, the part program can be started and executed (incl.
auxiliary function outputs, wait times, G function outputs etc.) via the interface signal:

DB21, ... DBX7.1 (NC-Start)

The safety functions such as software limit switch, working area limits continue to be valid.

The only difference compared to normal program operation is that an internal axis disable is
set for all axes (including spindles). The machine axes do not move, the actual values are
generated internally from the setpoints that are not output. The programmed velocities
remain unchanged. This means that the position and velocity information on the operator
interface is exactly the same as that output during normal part program execution. The
position control is not interrupted when this function is active, so the axes do not have to be
referenced when the function is switched off.

CAUTION
The signals for exact stop:
DB31, ... DBX60.6/60.7 (exact stop coarse/fine)
mirror the actual status on the machine.

They are only canceled during program testing if the axis is pushed out of its set position
(the set position remains constant during program testing).

With signal:
DB21, ... DBX33.7 (program test active)
both the PLC program and the part program can use variable $P_ISTEST to decide how to
react or branch in response to these signals during testing.

 Note
Dry run feedrate

"Program execution without axis motion" can also be activated with the function "Dry run
feedrate". With this function, part program sections with a small programmed feedrate can be
processed in a shorter time.

 Note
Tool management

Because of the axis disable, the assignment of a tool magazine is not changed during
program testing. A PLC application must be used to ensure that the integrity of the data in
the tool management system and the magazine is not corrupted. The toolbox diskettes
contain an example of the basic PLC program.

 K1: Mode group, channel, program operation, reset response
 8.5 Program test

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 471

8.5.2 Program execution in single-block mode

Function
In case of "Program execution in single-block mode" the part program execution stops after
every program block. If tool cutter radius compensation or a tool nose radius correction is
selected, processing stops after every intermediate block inserted by the controller.

The program status switches to "Program status stopped".

The channel status remains active.

The next part program block is processed on NC Start.

Application
The user can execute a part program block-by-block to check the individual machining steps.
Once the user decides that an executed part program block is functioning correctly, the next
block can be called.

Single-block types
The following single block types are differentiated:

● Decoding single block

With this type of single block, all blocks of the part program (even the pure computation
blocks without traversing motions) are processed sequentially by "NC Start".

● Action single block (initial setting)

With this type of single block, the blocks that initiate actions (traversing motions, auxiliary
function outputs, etc.) are processed individually.

Blocks that were generated additionally during decoding (e.g. for cutter radius
compensation at acute angles) are also processed individually in single-block mode.

Processing is however not stopped at calculation blocks as these do not trigger actions.

The single-block types are determined via the user interface in the menu "Program controls".

CAUTION
Function feature for single-block type series

In a series of G33/G34/G35 blocks, a single block is only operative if "dry run feed" is selected.

Calculation blocks are not processed in single-step mode (only if single decoding block is
active).

SBL2 is also ineffective with G33/G34/G35.

K1: Mode group, channel, program operation, reset response
8.5 Program test

 Basic Functions
472 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Selection
It is possible to select the single-block mode:

● Via the machine control panel (key "Single Block")

● Via the user interface

For an exact procedure, see:

References:
Operating Manual of the installed HMI application

Activation
The function is activated through the PLC basic program via the interface signal:

DB21, ... DBX0.4 (activate single block)

Display
Active single-block mode is indicated by a reversal in the relevant field in the status line on
the user interface.

Because of the single-block mode, as soon as the part program processing has processed a
part program block, the following interface signal is set:

DB21, ... DBX35.3 (program status interrupted)

Processing without single-block stop
Despite the selected single-block mode, a processing without the single-block stop can be
set for specific program runs, e.g. for:

● Internal ASUBs

● User ASUBs

● Intermediate blocks

● Block search group blocks (action blocks)

● Init blocks

● Subprograms with DISPLOF

● Non-reorganizable blocks

● Non-repositionable blocks

● Reposition block without travel information

● Tool approach block.

The setting is made via the following machine data:

MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (prevent single-block stop)

References:
List Manual, Detailed Description of the Machine Data

 K1: Mode group, channel, program operation, reset response
 8.5 Program test

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 473

8.5.3 Program execution with dry run feedrate

Function
During "Program execution with dry run feedrate" the traversing speeds which have been
programmed together with G01, G02, G03, G33, G34 and G35, are replaced by a
parameterized feedrate value:

SD42100 $SC_DRY_RUN_FEED (dry run feedrate)

The dry run feedrate also replaces the programmed revolutional feedrate in program blocks
with G95.

The exact way of working of the parameterized dry run feedrate (SD42100) depends on the
setting of another setting data:

SD42101 $SC_DRY_RUN_FEED_MODE (mode for test run speed)

Value Meaning
0 Dry run feedrate is the maximum of the programmed feedrate and setting data SD42100.

(Default setting!)
⇒ SD42100 becomes effective only when the stored value is greater than the programmed
feedrate.

1 Dry run feedrate is the minimum of the programmed feedrate and SD42100.
⇒ SD42100 becomes effective only when the stored value is less than the programmed
feedrate.

2 The value in SD42100 acts as the dry run feedrate, regardless of the programmed feedrate.
10 As in the case of "0", except thread cutting (G33, G34, G35) and thread boring (G331,

G332, G63). These functions are executed as programmed.
11 As in the case of "1", except thread cutting (G33, G34, G35) and thread boring (G331,

G332, G63). These functions are executed as programmed.
12 As in the case of "2", except thread cutting (G33, G34, G35) and thread boring (G331,

G332, G63). These functions are executed as programmed.

A dry run feedrate can be selected in the automatic modes and activated on interruption of
an automatic mode or end of a block.

For further information on influencing the feedrate, see Section "V1: Feedrates (Page 1335)".

Application

DANGER
High cutting speeds

Workpieces may not be machined when "dry run feedrate" is active because the altered
feedrates might cause the permissible tool cutting rates to be exceeded and the workpiece
or machine tool could be damaged.

K1: Mode group, channel, program operation, reset response
8.5 Program test

 Basic Functions
474 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Selection
This function is selected via the user interface in the "Program control" menu.

The selection sets the following interface signal:

DB21, ... DBX24.6 (dry run feedrate selected)

This does not activate the function.

Activation
The function is activated via interface signal:

DB21, ... DBX0.6 (activate dry run feed)

Display
Active dry run feedrate mode is indicated by a reversal in the relevant field in the status line
on the user interface.

8.5.4 Skip part-program blocks

Function
When testing or breaking in new programs, it is useful to be able to disable or skip certain
part program blocks during program execution. For this, the respective records must be
marked with a slash.

%100

N120 M30

N80 ...

N30 ...

Main program/subroutine

N10 ...

N20 ...

/N40 ...

/N50 ...

N60 ...

N70 ...

N90 ...

N100 ...

N110 ...

Block being
processed

Skip blocks
N40 and N50 during
processing

Figure 8-1 Skipping part program blocks

 K1: Mode group, channel, program operation, reset response
 8.6 Workpiece simulation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 475

Selection
This function is selected via the operator interface in the "Program control" menu.

The selection sets the following interface signal:

DB21, ... DBX26.0 (skip block selected)

This does not activate the function.

Activation
The function is activated via the interface signal:

DB21, ... DBX2.0 (activate skip block)

 Note

The "Skip part programs" function remains active during block searches.

Display
Activated "Skip block" function is indicated by a reversal of the relevant field on the operator
interface.

8.6 Workpiece simulation

Function
The actual part program is completely calculated in the tool simulation and the result is
graphically displayed in the user interface. The result of programming is verified without
traversing the machine axes. Incorrectly programmed machining steps are detected at an
early stage and incorrect machining on the workpiece prevented.

Simulation NCK
The simulation uses its own NCK instance (simulation NCK). Therefore, before a simulation
is started, the real NCK must be aligned to the simulation NCK. With this alignment, all active
machine data are read out of the NCK and read into the simulation NCK. The NCK and cycle
machine data are included in the active machine data.

K1: Mode group, channel, program operation, reset response
8.7 Block search

 Basic Functions
476 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Compile cycles in simulation (only 840D sl)
Up to SW 4.4, no compile cycles are supported, from SW 4.4 and higher only selected
compile cycles (CC) are supported for the workpiece simulation. The machine data of the
supported compile cycles are aligned once after the control has powered-up. An alignment
with "simulation start" does not take place!

 Note

In part programs, CC-specific language commands and machine data of unsupported CCs
cannot be used (see also paragraph "CC-commands in the part program").

Special motion of supported CCs (OEM transformations) are - under certain circumstances -
incorrectly displayed.

CC-commands in the part program

Language commands in the part program of compile cycles that are not supported (OMA1
... OMA5, OEMIPO1/2, G810 ... G829, own procedures and functions) therefore result in an alarm
message and cancellation of the simulation without any individual handling.

Solution:Individually handle the missing CC-specific language elements in the part program
($P_SIM query). Example:

Program code Comment

N1 G01 X200 F500

IF (1==$P_SIM)

N5 X300 ; CC not active for simulation.

ELSE

N5 X300 OMA1=10

ENDIF

8.7 Block search

Function
Block search offers the possibility of starting part program execution from almost any part
program block.

This involves the NC rapidly performing an internal run through the part program (without
traversing motions) to the selected target block during block search. Here, every effort is
made to achieve the exact same control status as would result at the target block during
normal part program execution (e.g. with respect to axis positions, spindle speeds, loaded
tools, NC/PLC interface signals, variable values) in order to be able to resume automatic part
program execution from the target block with minimum manual intervention.

 K1: Mode group, channel, program operation, reset response
 8.7 Block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 477

Block search types
● Type 1: Block search without calculation

Block search without calculation is used to find a part program block in the quickest
possible way. No calculation of any type is performed. The control status at the target
block remains unchanged compared to the status before the start of the block search.

● Type 2: Block search with calculation at contour

Block search with calculation at contour is used to enable the programmed contour to be
approached in any situation. On NC Start, the start position of the target block or the end
position of the block before the target block is approached. This is traversed up to the end
position. Processing is true to contour.

● Type 4: Block search with calculation at block end point

Block search with calculation at block end point is used to enable a target position (e.g.
tool change position) to be approached in any situation. The end position of the target
block or the next programmed position is approached using the type of interpolation valid
in the target block. This is not true to contour.

Only the axes programmed in the target block are moved. If necessary, a collision-free
initial situation must be created manually on the machine in "JOG REPOS" mode before
the start of further automatic part program execution.

● Type 5: Block search with calculation in "Program test" (SERUPRO) mode

SERUPRO (search run by programtest) is a cross-channel block search with calculation.
Here, the NC starts the selected part program in "Program test" mode. On reaching the
target block, the program test is automatically deselected. This type of block search also
enables interactions between the channel in which the block search is being performed
and synchronized actions as well as with other NC channels.

 Note

For further explanations regarding the block search, see Section "Behavior during block
search (Page 413)".

Subsequent actions
After completion of a block search, the following subsequent actions may occur:

● Type 1 - Type 5: Automatic Start of an ASUB

When the last action block is activated, a user program can be started as an ASUB.

● Type 1 - Type 4: Cascaded block search

A further block search with a different target specification can be started from "Search
target found".

K1: Mode group, channel, program operation, reset response
8.7 Block search

 Basic Functions
478 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.7.1 Sequence for block search of the type 1, 2 and 4

Time sequence
The block search (Types 1, 2, and 4) proceeds as follows:

1. Activation via the user interface

2. Search target found, or alarm if target cannot be found

3. NC Start for output of action blocks

4. NC Start for program continuation.

Block search
active (DB21, ...
DBX33.4)

Action block
active (DB21, ...
DBX32.3)

Block search
starting

Search target 1
found

Block search
starting

Search target 2
found

NC Start
action blocks
being output

Last
action block

Channel status
Reset (DB21, ...
DBX35.7)

Last action block
active (DB21, ...
DBX32.6)

Channel status
interrupted
(DB21, ... DBX35.6)

Figure 8-2 Time sequence of interface signals

Interface signals
In the PLC, the following interface signals are set according to the time sequence shown in
the figure:

DB21, ... DBX33.4 (block search active)

DB21, ... DBX32.3 (action block active)

DB21, ... DBX32.4 (approach block active)

DB21, ... DBX32.6 (last action block active)

DB21, ... DBX1.6 (PLC action complete)

 K1: Mode group, channel, program operation, reset response
 8.7 Block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 479

Continuation mode after block search
Following the block search, the program can be resumed via interface signal:
DB21, ... DBX7.1 (NC Start).

If an axis is first programmed after "Block search with calculation at block end point", the
incremental value can be added to the value accumulated up to the search target using
setting data
SD42444 $SC_TARGET_BLOCK_INCR_PROG.

Action blocks
Action blocks contain the actions accumulated during "Block search with calculation", such
as auxiliary function outputs and tool (T, D), spindle (S), and feedrate programming
commands. During "block search with calculation" (contour or block end point), actions such
as M function outputs are accumulated in so-called action blocks. These blocks are output
on an NC Start after "Search target found".

 Note

With the action blocks, the accumulated spindle programming (S value, M3/M4/M5/M19, SPOS)
also becomes active.

The PLC user program must ensure that the tool can be operated and that, if necessary, the
spindle programming is reset via PLC signal:
DB31, ... DBX2.2 (spindle reset)
or the spindle programming is not output.

Single-block processing: MD10702 $MN_IGNORE_SINGLEBLOCK_MASK ()

By setting bit 3 = 1, it is possible to prevent a stop after every action block in single-block
mode.

Supplementary conditions for approach block / target block
Block search type 2

Interface signal:
DB21, ... DBX32.4 (approach block active)
is only set with "Block search with calculation at contour" because a separate approach
block is not generated with "Block search with calculation at block end point" (the approach
block is the same as the target block).

Block search type 4

The approach motion "Search with calculation to block end point" is performed using the
type of interpolation valid in the target block. This should be G0 or G1, as appropriate. With
other types of interpolation, the approach motion can be aborted with an alarm (e.g. circle
end point error on G2/G3).

K1: Mode group, channel, program operation, reset response
8.7 Block search

 Basic Functions
480 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.7.2 Block search in connection with other NCK functions

8.7.2.1 ASUB after and during block search

Synchronization of the channel axes
With the start of an ASUB after "block search with calculation", the actual positions of all
channel axes are synchronized during preprocessing.

Effects:

● System variable: $P_EP (programmed end position)

In the ASUB, the system variable provides: $P_EP (programmed end position) the
current actual position of a channel axes in the work piece coordinate system.

$P_EP == "current actual position of the channel axis"

● System variable: $AC_RETPOINT (repositioning point in the ASUB)

In the ASUB, the system variable provides: $AC_RETPOINT (repositioning point in the
ASUB) the actual position of a channel axis in the workpiece coordinate system
accumulated with a block search.

$AC_RETPOINT == "collected search position of the channel axis (WCS)"

Block search type 2
For block search type 2 (block search with calculation on contour) the following part program
command must be programmed at the conclusion of the ASUB:

REPOSA (repositioning on the contour; linear; all channel axes)

Effect:

● All channel axes are moved to their search position that was collected during the block
search.

● $P_EP == "accumulated search position of the channel axis (WCS)"

Block search type 4 and part program command REPOS
After block search type 4 (block search with calculation at block end point) no automatic
repositioning is initiated during the following period of time by the part program command
REPOS:

● Start: NC/PLC interface signals: DB21,... DBB32, Bit6 (last action block active) == 1

● End: Continuing the part program processing per NC START,.

The start point of the approach movement is represented by the current axis positions of the
channel axes at the time of the NC start command. The end point results from the other
transversing movements programmed in the part program.

 K1: Mode group, channel, program operation, reset response
 8.7 Block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 481

For block search type 4, no approach movement is generated by the NC.

Effect:

● After exiting the ASUB, the system variable $P_EP thus provides the actual position, on
which the channel axes of the ASUB were positioned (or manual (mode: JOG).

$P_EP == "current actual position of the channel axis"

8.7.2.2 PLC actions after block search
To allow activation of PLC actions (starting of ASUBs, call-up of PLC functions) after the end
of the block search at a defined point, there is the NCK/PLC interface signal:

DB21, ... DB32.6 (last action block active) == 1

This means that all action blocks are processed and that actions are possible by the PLC
(ASUB, FC) or the operator (overstoring, mode change after JOG/REPOS). This allows the
PLC to perform another tool change, for example, before the start of the transversing
movement.

By default, alarm 10208 is output at this moment to notify the operator that another NC
START is needed to continue program execution.

In combination with alarm 10208, the following interface signals are set:

DB21, ... DBX36.7 (NCK alarm with processing stop)

DB21, ... DBX36.6 (channel-specific NCK alarm is present)

PLC-controlled alarm triggering
The setting by which alarm 10208 is only triggered after ending the PLC action, is done via
machine data:
MD11450 $MN_SEARCH_RUN_MODE, Bit 0 = 1

Bit Value Meaning
0 1 With the change of the last action block after a block search, the following takes

place:
• Execution of the part program is stopped
• DB21, ... DBB32.6 (last action block active) = 1
• Alarm display: Alarm 10208 only if the following applies:

DB21, ... DBX1.6 (PLC action ended) == 1

K1: Mode group, channel, program operation, reset response
8.7 Block search

 Basic Functions
482 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.7.2.3 Spindle functions after block search

Control system response and output
The behavior with regard to the spindle functions after completion of the block search can be
set via machine data:
MD11450 $MN_SEARCH_RUN_MODE, bit 2

Bit Value Meaning

0 Output of spindle auxiliary functions (M3, M4, M5, M19, M70) in action blocks. 2
1 Output of the auxiliary functions is suppressed in the action blocks. The spindle

programming that accumulated during the block search can be output at a later point
in time (e.g. via ASUB).
The program data for this is stored in the following system variables:
• $P_SEARCH_S
• $P_SEARCH_SDIR
• $P_SEARCH_SGEAR
• $P_SEARCH_SPOS
• $P_SEARCH_SPOSMODE

System variables
The spindle-specific auxiliary functions are always stored in the following system variables
on block search, irrespective of the programming described above:

System variable Description
$P_SEARCH_S[n] Collected spindle speed,

value range = { 0 ... Smax }
$P_SEARCH_SDIR[n] Collected spindle rotation direction,

value range = { 3, 4, 5, -5, -19, 70 }
$P_SEARCH_SGEAR[n] Collected spindle gear stage M function,

value range = { 40 ... 45 }
$P_SEARCH_SPOS[n] Collected spindle position,

value range = { 0 ... MD30330 $MA_MODULO_RANGE }
Collected traverse path,
value range = { -100,000,000 ... 100,000,000 }

$P_SEARCH_SPOSMODE[n] Collected position approach mode,
value range = { 0 ... 5 }

 K1: Mode group, channel, program operation, reset response
 8.7 Block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 483

For later output of the spindle-specific auxiliary functions, the system variables can be read,
for example, in an ASUB, and then output after output of the action blocks:
DB21, ... DBX32.6 == 1 (last action block active)

 Note

The contents of the system variables $P_S, $P_DIR and $P_SGEAR may be lost after block
search due to synchronization operations.

For more detailed information on ASUB, block search and action blocks, see Sections
"Output suppression of spindle-specific auxiliary functions (Page 418)" and "Program test
(Page 469)".

8.7.2.4 Reading system variables for a block search
Different system variables are available in the NC language to access values of the NC
areas preprocessing, main run, or servo/drive:

$P_... System variables that start with $P supply the pre-processing state (i.e. the

programmed values).
$A_... System variables that start with $A supply the main run state.
$V_... System variables that start with $V provide data that are received from the servo/drive.

During a type 2 and 4 block search, no blocks access the main run. Therefore, it should be
ensured that system variables, which reflect the main run or servo/drive states, are not
changed by the search. Where necessary, for this variable, the block search must be
executed in a special fashion by querying the machining type with $P_SEARCH in the NC
program.

System variables that start with $P can be simply used in all search types.

8.7.3 Automatic start of an ASUB after a block search

Parameter assignment
Making the function effective

The automatic ASUB start after a block search is activated by the following MD setting:

MD11450 $MN_SEARCH_RUN_MODE, bit 1 = 1

Program to be activated

In the default setting, the program _N_PROG_EVENT_SPF is activated from the directory
_N_CMA_DIR as ASUB after the block search by changing the last action block. If another
program is to be activated, then the name of this user program must be entered in the
following machine data:

MD11620 $MN_PROG_EVENT_NAME

K1: Mode group, channel, program operation, reset response
8.7 Block search

 Basic Functions
484 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Behavior when the single-block processing is set

Via the following channel-specific machine data it can be set, whether the activated ASUB is
processed without interruption despite a set single-block processing or whether the single-
block processing is to be made active:

MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK

Bit Value Meaning

0 Single-block processing is active. 4
1 Single-block processing is suppressed.

Behavior when the read-in disable is set

Via the following channel-specific machine data it can be set, whether the activated ASUB is
processed without interruption despite a set read-in disable (DB21, ... DBX6.1 = 1), or
whether the read-in disable is to be made active:

MD20107 $MC_PROG_EVENT_IGN_INHIBIT

Bit Value Meaning

0 Read-in disable is active. 4
1 Read-in disable is suppressed.

 Note

For further information on the parameterization of MD11620, MD20108 and MD20107, see
Section "Parameterization (Page 547)".

Programming
The event that has started this ASUB can be determined by scanning the system variable
$P_PROG_EVENT. In case of an automatic activation after a block search
$P_PROG_EVENT returns the value "5".

Sequence
Sequence of automatic start of an ASUB after a block search

1. Start block search (with/without calculation, at contour, at end-of-block point).

2. Stop after "Search target found".

3. NC Start for output of action blocks.

4. Last action block is activated.

 K1: Mode group, channel, program operation, reset response
 8.7 Block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 485

5. Automatic start of /_N_CMA_DIR/_N_PROG_EVENT_SPF (default) as an ASUB.

6. The NC will stop after changing the last ASUB block (REPOSA command) and the following
NC/PLC interface signal is set:

DB21, ... DBX32.6 (last action block active)

The alarm 10208 "Enter NC-start for program continuation" is generated.

 Note

If bit 0 is set to "1" in MD11450 $MN_SEARCH_RUN_MODE, then the alarm 10208 is
generated only when the PLC requests this by setting the following NC/PLC interface
signal:

DB21, ... DBX1.6 (PLC action complete)

8.7.4 Cascaded block search

Functionality
The "Cascaded block search" function can be used to start another block search from the
status "Search target found". The cascading can be continued after each located search
target as often as you want and is applicable to the following block search functions:

● Type 1 block search without calculation

● Type 2 block search with calculation at contour

● Type 3 block search with calculation at block end point

 Note

Another "cascaded block search" can be started from the stopped program execution
only if the search target has been found.

Activation
The "cascaded block search" is configured in the existing machine data:
MD11450 $MN_SEARCH_RUN_MODE

● Cascaded block search is enabled (i.e., several search targets can be specified)
with Bit 3 = 0 (FALSE).

● For compatibility reasons, the cascaded block search can be disabled with Bit 3 = 1
(TRUE). By default, the cascaded block search is set with Bit 3 = 0.

K1: Mode group, channel, program operation, reset response
8.7 Block search

 Basic Functions
486 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Execution behavior

Search target found, restart search

When the search target is reached, the program execution stops and the search target is
displayed as a current block. After each located search target, a new block search can be
repeated as often as you want.

Change search target specifications

You can change the search target specifications and block search function prior to each
block search start.

Example: Sequence with cascaded block search
● RESET

● Block search up to search target 1

● Block search up to search target 2 → "Cascaded block search"

● NC Start for output of the action blocks → Alarm 10208

● NC Start → Continue program execution

Block search
active (DB21, ...
DBX33.4)

Action block
active (DB21, ...
DBX32.3)

Block search
starting

Search target 1
found

Block search
starting

Search target 2
found

NC Start
action blocks
being output

Last
action block

Channel status
Reset (DB21, ...
DBX35.7)

Last action block
active (DB21, ...
DBX32.6)

Channel status
interrupted
(DB21, ... DBX35.6)

Figure 8-3 Chronological order of interface signals

 K1: Mode group, channel, program operation, reset response
 8.7 Block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 487

8.7.5 Examples for block search with calculation

Selection
From the following examples, select the type of block search that corresponds to your task.

Type 4 block search with calculation at block end point
Example with automatic tool change after block search with active tool management:

1. Set machine data:

MD11450 $MN_ SEARCH_RUN_MODE to 1

MD11602 $MN_ASUB_START_MASK Bit 0 = 1 (ASUB Start from stopped state)

2. Select ASUB "BLOCK_SEARCH_END" from PLC via FB4 (see also Section "P3: Basic
PLC program for SINUMERIK 840D sl (Page 809)").

3. Load and select part program "WORKPIECE_1".

4. Search to block end point, block number N220.

5. HMI signals "Search target found".

6. NC Start for output of action blocks.

7. With PLC signal:
DB21... DB32.6 (last action block active)
the PLC starts ASUB "BLOCK_SEARCH_END" via FC9 (see also Section "P3: Basic
PLC program for SINUMERIK 840D sl (Page 809)").

8. After the end of the ASUB (can be evaluated, e.g. via M function M90 to be defined, see
example for block N1110), the PLC sets signal
DB21, ... DBX1.6 (PLC action complete).

Alternatively, NC/PLC interface signal:
DB21-DB30 DBB318 bit 0 (ASUB is stopped)
can be scanned.

As a result, Alarm 10208 is displayed, i.e. other actions can now be performed by the
operator.

K1: Mode group, channel, program operation, reset response
8.7 Block search

 Basic Functions
488 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9. Manual operator actions (JOG, JOG-REPOS, overstoring)

10. Continue part program with NC Start.

Y

X

100

200

0

300

100 200 300 400

Approach point
(170,30)

Tool
change point
(450,300)

Approach movement
Target block N220

Figure 8-4 Approach motion for search to block end point (target block N220)

 Note

"Search to contour" with target block N220 would generate an approach motion to the tool
change point (start point of the target block).

Type 2 block search with calculation at contour
Example with automatic tool change after block search with active tool management:

1. to 3. Same as example for Type 4 block search
4. Search to contour, block number N260
5. to 10. Same as example for Type 4 block search

 K1: Mode group, channel, program operation, reset response
 8.7 Block search

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 489

Y

X

100

200

0

300

100 200 300 400

Approach point

Tool
change point
(450,300)

Approach movement

N260

Figure 8-5 Approach motion for search to contour (target block N260)

 Note

"Search to block end point" with target block N260 would result in Alarm 14040 (circle end
point error).

Part programs for Type 4 and Type 2
PROC WORKPIECE_1

Program code Comment

; Main program

...

;Machine contour section 1 with "CUTTER_1"tool

...

N100 G0 G40 X200 Y200 ; Deselect radius compensation

N110 Z100 D0 ; Deselect length correction

;End of contour section 1

;

;Machine contour section 2 with "CUTTER_2"tool

N200 T="CUTTER_2" ; Preselect tool

N210 WZW ; Call tool change routine

N220 G0 X170 Y30 Z10 S3000 M3 D1 ; Approach block for contour section 2

N230 Z-5 ; Infeed

N240 G1 G64 G42 F500 X150 Y50 ; Start point of contour

N250 Y150

K1: Mode group, channel, program operation, reset response
8.7 Block search

 Basic Functions
490 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

N260 G2 J50 X100 Y200

N270 G1 X50

N280 Y50

N290 X150

N300 G0 G40 G60 X170 Y30 ; Deselect radius compensation

N310 Z100 D0 ; Deselect length correction

End of contour section 2

...

M30

PROC WZW

;Tool change routine

N500 DEF INT TNR_AKTIV ; Variable for active T number

N510 DEF INT TNR_VORWAHL ; Variable for preselected T number

N520 TNR_AKTIV = $TC_MPP6[9998,1] ; Read T number of active tool

N530 GETSELT(TNR_VORWAHL) ; Read T number of preselected tool

;

;Execute tool change only if tool is not yet active

N540 IF TNR_AKTIV == TNR_VORWAHL GOTOF

ENDE

N550 G0 G40 G60 G90 SUPA X450 Y300 Z300 D0 ; Approach tool change position

N560 M6 ; Execute tool change

;

END: M17

PROC SUCHLAUF_ENDE SAVE

;ASUB for calling the tool change routine after block search

N1000 DEF INT TNR_AKTIV ; Variable for active T number

N1010 DEF INT TNR_VORWAHL ; Variable for preselected T number

N1020 DEF INT TNR_SUCHLAUF ; Variable for T number determined in

search

N1030 TNR_AKTIV = $TC_MPP6[9998,1] ; Read T number of active tool

N1040 TNR_SUCHLAUF = $P_TOOLNO ; Read T number determined by search

N1050 GETSELT(TNR_VORWAHL) ; Read T number of preselected tool

N1060 IF TNR_AKTIV ==TNR_SUCHLAUF GOTOF ASUP_ENDE

N1070 T = $TC_TP2[TNR_SUCHLAUF] ; T selection by tool name

N1080 WZW ; Call tool change routine

N1090 IF TNR_VORWAHL == TNR_SUCHLAUF GOTOF ASUP_ENDE

N1100 T = $TC_TP2[TNR_VORWAHL] ; Restore T preselection by tool name

ASUP_ENDE:

N1110 M90 ; Feedback to PLC

N1120 REPOSA ; ASUB end

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 491

8.8 Block search Type 5 SERUPRO

8.8.1 Description of the function
Block search type 5, block search with calculation in the "Program test" mode (SERUPRO,
"Search-Run by Program test") enables a cross-channel block search with calculation at a
selectable interruption point. Taking into account existing program coordination commands,
all the status data required to continue the program in the interrupted channels is determined
during SERUPRO and then the NC and PLC set to a state permitting the program
continuation.

Before repositioning with subsequent continuation of the program execution, all the output
states that may still be required can be automatically generated via a user-specific ASUB.

Channels
In combination with the HMI, SERUPRO is provided for the following channels:

● For the current SERUPRO channel only (1)

● For all channels with the same workpiece name as the SERUPRO channel (2)

● For all channels with the same mode group as the SERUPRO channel (3)

● For all channels of the NCU (4)

The scope of channels for SERUPRO is selected by means of configuration file
maschine.ini, in Section [BlockSearch]:

Section [BlockSearch] Enable search function for HMI and select search configuration
SeruproEnabled=1 ;SERUPRO softkey available for HMI. Default value is (1)
SeruproConfig=1 ;Number (1) to (4) of above indicated channel grouping. Default value is (1)

All other channels started with SERUPRO are operated in "Self-Acting SERUPRO" mode.
Only the channel in which a target block has been selected can be started with a block
search in SERUPRO mode.

Activation
SERUPRO is activated via the HMI. SERUPRO is operated using the "Prog.Test Contour"
softkey.

SERUPRO uses REPOS to approach the target block.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
492 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Chronological sequence of SERUPRO
1. Via HMI, softkey "Pog. test contour" and the search target are operated.

2. The NC now automatically starts the selected program in "Program test" mode.

– In this mode, axes are not traversed.

– Auxiliary functions $A_OUT and the direct PLC IO are output.

– The auxiliary functions of the target block are not output.

3. The NC stops at the beginning of the target block, deselects the program test internally,
and displays the Stop condition "Wait: Search target found".

4. If the user-specific ASUB "PROG_EVENT.SPF" is available, it is started automatically.

5. Repositioning is performed with the next NC start (REPOS).

The REPOS operation is performed via a system ASUB and can be extended using the
"Editable ASUB" function.

Boundary conditions for block search SERUPRO
The SERUPRO function may only be activated in "AUTOMATIC" mode and may only be
aborted in program state (channel state RESET).

If in normal mode only the PLC starts commonly several channels, then this can be
simulated by SERUPRO in each channel.

With machine data setting:
MD10708 $MN_SERUPRO_MASK, bit 1 = 0,
alarm 16942: "Channel %1 Start program command action %2<ALNX> not possible"
aborts the simulation if part program command START is used.

Machine data:
MD10707 $MN_PROG_TEST_MASK
allows shutdown in the stopped state and has no effect on the SERUPRO operation. The
default setting allows program testing to be deactivated only in the RESET state.

 Note

After program testing has been deactivated, a REPOS operation is initiated that is subject to
the same restrictions as a SERUPRO approach operation. Any adverse effects can be
inhibited using an ASUB.

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 493

Controlling SERUPRO behavior
For the functions listed below as an example, the SERUPRO behavior can be set specifically
for the NC:

● Programmed stop (M0)

● Program coordination command START

● Group SERUPRO

● Cross-channel exiting of SERUPRO

● Override

MD10708 $MN_SERUPRO_MASK = <behavior with SERUPRO>

Channel-specific initial settings for SERUPRO
The channel-specific basic settings are normally specified with the following machine data
after a part program start:

MD20112 $MC_START_MODE_MASK= <initial settings>

You can specify your own initial settings for SERUPRO which replace the initial settings from
MD20112:

MD22620 $MN_START_MODE_MASK_PRT = <SERUPRO initial settings>

The SERUPRO initial settings must be explicitly released via:

MD22621 $MC_ENABLE_START_MODE_MASK_PRT = 1

NC/PLC interface signal "Block search via program test is active"
The block search via program test is displayed using the NC/PLC interface signal:
DB21, ... DBX318.1 == 1

The interface signal is set from the start of the block search until the target block is inserted
into the main run.

For user-defined ASUB after the SERUPRO operation
 Note

If the machine manufacturer decides to start an ASUB after the SERUPRO operation as
described in point 7, the following must be observed:

Stopped status acc. to point 6:

Machine data:
MD11602 $MN_ASUP_START_MASK
and
MD11604 $MN_ASUP_START_PRIO_LEVEL
allow the NCK to start the ASUB from stopped status automatically via the FC9 block.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
494 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Acknowledgement of FC9 only after completion of REPOS block:

The ASUB can only be signaled as complete from the FC9 block with "ASUB Done" if the
REPOS block has also been completed.

Deselection of assigned REPOS operation after point 8:

The start of the ASUB deselects the assigned REPOS operation!

Therefore, the ASUB should be ended with REPOSA in order to retain the REPOS
operation.

Deleting an unwanted REPOS operation:

The unwanted REPOS operation is deleted by completing the ASUB with M17 or RET.

Special handling of ASUB:

As a basic rule, an ASUB that ends with REPOS and is started from stopped state receives
special treatment.

The ASUB stops automatically before the REPOS block and indicates this via:

DB21, ... DBX318.0 (ASUB is stopped)

Automatic ASUB start
The ASUB in path:
/_N_CMA_DIR/_N_PROG_EVENT_SPF
is started automatically in SERUPRO approach with machine data:
MD11450 $MN_SEARCH_RUN_MODE, bit 1 = 1
according to the following sequence:

1. The SERUPRO operation has been performed completely.

2. The user presses "NC start".

3. The ASUB is started.

4. The NC stops automatically before the REPOS part program command and the
message "Press NC start to continue the program" appears.

5. The user presses "NC start" again.

6. The NC executes the repositioning motion and continues the part program at the target
block.

 Note

The automatic ASUB start with MD11450 requires Starts to continue the program.

The procedure is in this respect similar to other search types.

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 495

8.8.2 REPOS

8.8.2.1 Continue machining at the contour after SERUPRO search target found
The "Reposition to the contour" (REPOS) function can be used to continue an interrupted
machining at the interrupted location. Unlike REPOS, SERUPRO permits the "refetching" or
"repetition" of a program section. For this purpose, once SERUPRO has found the target
block, the contour is positioned at the location selected as REPOS mode and the machining
continued.

SERUPRO: Set REPOS response
The REPOS behavior, i.e. the behavior in the repositioning block, is set with the following
machine data :
MD11470 $MN_REPOS_MODE_MASK = <REPOS mode>

Bit Value Meaning

0 An interrupted delay time is repeated 0
1 An interrupted delay time is continued

1 - Reserved
0 DB31, ... DBX10.0 (REPOSDELAY) not considered in the repositioning block. 2
1 DB31, ... DBX10.0 (REPOSDELAY) considered in the repositioning block.
0 SERUPRO: Only path axes traverse in the repositioning block 3
1 SERUPRO: Path and positioning axes traverse concurrently in the repositioning block
0 REPOS : Only path axes traverse in the repositioning block 4
1 REPOS : Path and positioning axes traverse concurrently in the repositioning block
0 During the interruption, changed feedrates and spindle speeds act only after the first part program block

following the interruption location
5

1 During the interruption, changed feedrates and spindle speeds act following the interruption location
0 6
1 SERUPRO: In the repositioning block, neutral axes and positioning spindles traverse as command

axes.
0 @@@ 7
1 @@@

The level of interface signal:
DB31, ... DBX10.0 (REPOSDELAY)
is read if REPOSA is interpreted.
Axes, which are neither geometry nor orientation axes, are then excluded by REPOS and are not
moved.

CAUTION
Risk of collision

MD11470 $MN_REPOS_MODE_MASK, Bit 3 or Bit 4 = 1

The user alone is responsible for ensuring that the concurrent traversal of the axes in the
repositioning block does not cause any collision on the machine.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
496 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Repositioning with controlled REPOS
The REPOS mode can be specified for the path axes via the NC/PLC interface:

DB21, ... DBX31.0 - .2 (REPOS mode A, B, C)

This mode is programmed in the part program and defines the approach behavior (see
Section "Repositioning on contour with controlled REPOS (Page 503)").

The REPOS behavior of individual axes can also be controlled via NC/PLC interface signals
and is enabled with machine data:
MD11470 $MN_REPOS_MODE_MASK BIT 2==1.

Path axes cannot be influenced individually. For all other axes that are not geometry axes,
REPOS of individual axes can be prevented temporarily and also delayed. NC/PLC interface
signals can be used to subsequently re-enable or to continue blocking individual channel
axes that REPOS would like to traverse.

DANGER
Risk of collision

Signal:
DB31, ... DBX2.2 (delete distance-to-go, axis-specific)
produces the following dangerous behavior with ”Prevent repositioning of individual axes"
via:
MD11470 $MN_REPOS_MODE_MASK (Bit 2==1).

As long as an axis is programmed incrementally after the interruption, the NC approaches
different positions than those approached with no interruption (see example below).

Example: Axis is programmed incrementally
Axis A is positioned at 11° before the REPOS operation; the programmed operation in the
interruption block (target block for SERUPRO) specifies 27°.

Any number of blocks later, this axis is programmed to move incrementally through 5° with:
N1010 POS[A]=IC(5) FA[A]=1000.

With interface signal:
DB31, ... DBX10.0 (REPOSDELAY)
the axis does not traverse in the REPOS operation and is moved to 32° with N1010.

(The user may have to deliberately acknowledge the travel from 11° to 27°.)

Caution:
The axis is programmed incrementally after the interruption.

In the example, the NC moves to 16° (instead of 32°).

Starting axes individually

The REPOS behavior for SERUPRO approach with several axes is selected with:

MD11470 $MN_REPOS_MODE_MASK BIT 3 == 1

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 497

The NC commences SERUPRO approach with a block that moves all positioning axes to the
programmed end and the path axis to the target block.

The user starts the individual axes by selecting the appropriate feedrate enables. The target
block motion is then executed.

Repositioning positioning axes in the repositioning block

Positioning axes are not repositioned in the residual block but rather in the repositioning
block, and their effect is not limited to the block search via program test on SERUPRO
approach.

MD11470 $MN_REPOS_MODE_MASK
Bit 3=1 for block search via program test (SERUPRO)
Bit 4=1 for each REPOS

 Note

If neither bit 3 nor bit 4 is set, "non-path axes" are repositioned in the residual block in this
phase.

Prefer or ignore REPOS
Further REPOS adaptations can be made by setting the bits in:

MD11470 $MN_REPOS_MODE_MASK

Bit 5 = 1 Modified feedrates and spindle speeds are valid immediately in the residual

block and are given priority. This behavior relates to every REPOS operation.
Bit 6 = 1 Neutral axes and positioning spindles are repositioned after SERUPRO.

Neutral axes that are not allowed to be further repositioned must receive
interface signal:
DB31, ... DBX10.0 (REPOSDELAY)
This cancels the REPOS motion.

Bit 7 = 1 The level of interface signal:
DB31, ... DBX10.0 (REPOSDELAY)
is read if REPOSA is interpreted.
Axes, which are neither geometry nor orientation axes, are then excluded by
REPOS and are not moved.
Remark: REPOSDELAY is changed from edge to level evaluation.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
498 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Delayed approach of axis with REPOS offset
With the axial level-triggered NC/PLC interface signal axis/spindle (PLC→NCK):
DB31, ... DBX10.0 (REPOSDELAY)

the REPOS offset for this axis is traversed only
after the next time it is programmed with the edge of IS:
DB21, ... DBX31.4 (REPOSMODEEDGE).

Whether this axis is currently subject to a REPOS offset can be scanned via synchronized
actions with $AA_REPOS_DELAY.

CAUTION
Risk of collision

Interface signal:
DB31, ... DBX10.0 (REPOSDELAY)
has no effect on machine axes that form a path.

Whether an axis is a path axis can be determined with:
DB31, ... DBX76.4 (path axis).

Acceptance timing of REPOS NC/PLC interface signals
With the 0/1 edge of the channel-specific NC/PLC interface signal (PLC→NCK):
DB21, ... DBX31.4 (REPOSMODEEDGE)

the level signals of:
DB21, ... DBX31.0-31.2 (REPOSPATHMODE0 to 2)

and
DB31, ... DBX10.0 (REPOSDELAY)

are transferred to the NC.

The levels relate to the current block in the main run. There are two different cases:

1. One repositioning block of a currently active REPOS operation is contained in the main
run.

The active REPOS operation is aborted, restarted and the REPOS offsets controlled via
the signals:
DB21, ... DBX31.0-31.2 (REPOSPATHMODE0 to 2)
and
DB31, ... DBX10.0 (REPOSDELAY).

2. No repositioning block of a currently active REPOS operation is contained in the main
run.

Each future REPOS operation wishing to reapproach the current main program block is
controlled by the level of interface signal:
DB21, ... DBX31.0-31.2 (REPOSPATHMODE0 to 2)
and
DB31, ... DBX10.0 (REPOSDELAY).

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 499

 Note

In the current ASUB, DB21, ... DBX31.4 (REPOSMODEEDGE) does not affect the final
REPOS unless this signal applies to the REPOS blocks.

In case 1, the signal is allowed only in the stopped state.

Response to RESET:
• NCK has acknowledged the PLC signal

DB21, ... DBX31.4 (REPOSMODEEDGE) == 1 AND
DB21, ... DBX319.0 (REPOSMODEEDGEACKN) == 1
If a RESET occurs in this situation, DB21, ... DBX319.1 - .3 (Repos Path Mode Ackn) is
deleted.

• NCK has not yet acknowledged the PLC signal:
DB21, ... DBX31. (REPOSMODEEDGE 4) == 1 AND
DB21, ... DBX319.0 (REPOSMODEEDGEACKN) == 0
If a RESET occurs in this situation, then:
DB21, ... DBX319.0 (REPOSMODEEDGEACKN) = 0
DB21, ... DBX319.1–319.3 (Repos Path Mode Ackn) = 0

Controlling SERUPRO approach with NC/PLC interface signals
The SERUPRO approach can be used with:
DB21, ... DBX31.4 (REPOSMODEEDGE)
and the associated signals in the following phases:

● Between "Search target found" and "Start SERUPRO ASUB"

● From "SERUPO-ASUB stops automatically before REPOS" to "Target block is executed"

While the SERUPRO ASUB is being executed, e.g. in the program section before the
REPOS operation, the interface signal does not affect the SERUPRO positioning

REPOS operations with NC/PLC interface signals
Control REPOS with NC/PLC interface signals

REPOS offsets can be positively influenced with the following channel-specific NC/PLC
interface signals from the PLC:

● DB21, ... DBX31.0-31.2 (REPOSPATHMODE0 to 2) channel-specific *

● DB21, ... DBX31.4 (REPOSMODEEDGE) channel-specific

● DB31, ... DBX10.0 (REPOSDELAY) *axis/spindle
(This axial interface does not affect machine axes that form a path.)

● DB31, ... DBX72.0 (REPOSDELAY) axis/spindle

* These signals are available in the respective DB of the HMI or PLC.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
500 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

REPOS acknowledgement signals
The following NC/PLC interface signals can be used to acknowledge from the NCK,
functions that control the REPOS response via PLC:

● DB21, ... DBX319.0 (REPOSMODEEDGEACKN) channel-specific

● DB21, ... DBX319.1-319.3 (Repos Path Mode Ackn0 to 2) channel-specific

● DB21, ... DBX319.5 (Repos DEFERRAL Chan) channel-specific

● DB31, ... DBX70.0 (Repos offset) axis/spindle

● DB31, ... DBX70.1 (Repos offset valid) axis/spindle

● DB31, ... DBX70.2 (Repos Delay Ackn) axis/spindle

● DB31, ... DBX76.4 (path axis) axis/spindle

For further information, see "REPOS offset in the interface"

REPOS acknowledgement operations
With the channel-specific NC/PLC interface signal:
DB21, ... DBX319.0 (REPOSMODEEDGEACKN)

a "handshake" is established by the interface signal:
DB21, ... DBX31.4 (REPOSMODEEDGE)

which is recognized by the NC and acknowledged with DB21, ... DBX319.0 to the PLC.

 Note

If the NCK has not yet acknowledged interface signal:
DB21, ... DBX31.4 (REPOSMODEEDGE)
with interface signal:
DB21, ... DBX319.0 (REPOSMODEEDGEACKN)
a RESET in this situation causes the program to abort, and the REPOS that is to be used to
control the REPOSPATHMODE can no longer take place.

A REPOSMODE specified by the PLC is acknowledged by the NC with the interface signals:
DB21, ... DBX319.1-319.3 (Repos Path Mode Ackn)

and
DB31, ... DBX10.0 (Repos Delay)

with:
DB31, ... DBX70.2 (Repos Delay Ackn)

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 501

in the following way:

A part program is stopped at N20 (→ time (2) in figure). The NCK stops according to the
braking ramp. After the PLC has specified the REPOSPATHMODE, the NCK accepts the
REPOSPATHMODE with the 0/1 edge of REPOSMODEEDGE at → Time (3). Repos Path
Mode Ackn remains set until the ASUB is initiated (→ Time (4)). The REPOS command is
started in the ASUB (→ Time (5)). The ASUB RESET block is activated again (→ Time (6)):

Figure 8-6 REPOS sequence in part program with timed acknowledgement signals from NCK

NC sets acknowledgement again
Phase with REPOSPATHMODE still active (residual block of the program stopped at → Time
(2) is not yet completely executed).

As soon as the REPOS repositioning motion of the ASUB is executed, the NCK sets the
"Repos Path Mode Ackn" again (→ Time (5)). If no REPOSPATHMODE has been
preselected via an NC/PLC interface signal, the programmed REPOS mode is displayed.

"Repos Path Mode Ackn" is canceled when the residual block is activated (→ Time (6)).
 The part program block N30 following the block at → Time (2) is resumed.

Interface signal:
DB31, ... DBX70.2 (Repos Delay Ackn) is defined in the same way.

DB31, ... DBX70.1 (Repos offset valid) = 1, if:

DB21, ... DBX319.1-319.3 (Repos Path Mode Ackn0 to 2) = 4 (RMNBL).

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
502 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Valid REPOS offset
At the end of the SERUPRO operation, the user can read out the REPOS offset via the
axis/spindle NC/PLC interface signal (NCK→PLC):
DB31, ... DBX70.0 (REPOS offset).

The effects of this signal on the relevant axis are as follows:

Value 0: No REPOS offset is applied.
Value 1: REPOS offset is applied.

Range of validity
Interface signal:
DB31, ... DBX70.0 (REPOS offset)
is supplied at the end of the SERUPRO operation.

The REPOS offset is invalidated at the start of a SERUPRO ASUB or the automatic ASUB
start.

Updating the REPOS offset within the scope
Between the SERUPRO end and SERUPRO start, the axis can be moved in JOG mode with
a mode change.

In JOG mode, the user manually moves the axis over the REPOS offset path in order to set
interface signal:
DB31, ... DBX70.0 (REPOS offset) to the value 0.

Within the range of validity, the axis can also be traversed using FC18, whereby the IS
DB31, ... DBX70.0 (REPOS offset) is continuously updated.

Displaying the range of validity
The range of validity of the REPOS offset is indicated with interface signal:

DB31, ... DBX70.1 (REPOS offset valid)

It is indicated whether the REPOS offset calculation was valid or invalid:

Value 0: The REPOS offset of this axis is calculated correctly.
Value 1: The REPOS offset of this axis cannot be calculated, as the REPOS has not yet

occurred, e.g. it is at the end of the ASUB, or no REPOS is active.

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 503

REPOS offset after an axis interchange
The group signal:
DB21, ... DBX319.5 (Repos DEFERRAL Chan)
can be used to determine whether a valid REPOS offset has taken place:

Value 0: All axes currently controlled by this channel have either no REPOS offset or

their REPOS offsets are invalid.
Value 1: Miscellaneous.

REPOS offset with synchronized synchronous spindle coupling
When repositioning with SERUPRO, processing continues at the point of interruption. If a
synchronous spindle coupling was already synchronized, there is no REPOS offset of the
following spindle and no synchronization path is present. The synchronization signals remain
set.

Search target found on block change
The axial NC/PLC interface signal:
DB31, ... DBX76.4 (path axis)
is 1 if the axis is part of the path grouping.

This signal shows the status of the current block to be executed during block change.
Subsequent status changes are ignored.

If the SERUPRO operation is ended with "Search target found",
DB31, ... DBX76.4 (path axis) refers to the target block.

8.8.2.2 Repositioning on contour with controlled REPOS
Once SERUPRO has been used to find the target block, prior to continuing the interrupted
program, a REPOS operation for repositioning the contour is performed. The REPOS mode
"Reposition at the block start point of the target block" (RMBBL) is active by default. The
REPOS mode can be defined user-specific via the NC/PLC interface:

DB21, ... DBX31.0 - .2 (REPOS mode A, B, C) (Page 1644)

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
504 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

REPOS mode RMNBL repositioning to the next point on the path
in the RMNBL REPOS mode, positioning is made for the REPOS start position from the next
nearest contour point.

Example

The program is interrupted at any point in the block N110. The axes were then traversed to
position (A), e.g. manually. Once SERUPRO has found target block N110, the REPOS
operation with REPOS mode RMNBL is performed. With regard to the REPOS start position
(A), point (B) is the next nearest point of the contour. The REPOS operation is completed
when point (B) is reached. The programmed contour of the interrupted program is traversed
again starting at point (B).

Specifying the REPOS mode via the NC/PLC interface
The REPOS mode can be specified via the following NC/PLC interface signal:
DB21, ... DBX31.0 - .2 (REPOS mode A, B, C)

 Note

RMNBL is a general REPOS extension and it is not restricted to SERUPRO.

RMIBL and RMBBL behavior identically for SERUPRO.

DB21, ... DBX31.0 - .2 (REPOS mode) affects only the traversing motion of the path axes.

The behavior of the other axis can be changed individually using interface signal DB31, ...
DBX10.0 (REPOSDELAY). The REPOS offset is not applied immediately, but only when it is
next programmed.

For further information on the programming of the repositioning point, see:

References:
Programming Manual, Job Planning; Path Behavior, Section: Repositioning on contour

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 505

8.8.3 Acceleration measures via MD

Machine data settings
The processing speed of the entire SERUPRO operation can be accelerated using the
following machine data.

MD22600 $MC_SERUPRO_SPEED_MODE and

MD22601 $MC_SERUPRO_SPEED_FACTOR

With MD22600 $MC_SERUPRO_SPEED_MODE == 1, the SERUPRO operation will run at
the usual "dry run feedrate".

Through MD22600 $MC_SERUPRO_SPEED_MODE == 0

MD22601 $MC_SERUPRO_SPEED_FACTOR is evaluated,

and a further acceleration is permitted. Dynamic monitoring functions are disabled in this
mode.

SPEED factor for channel axes during ramp-up
Machine data MD22600 $MC_SERUPRO_SPEED_MODE is effective for the following
channel axes in the main run throughout the entire SERUPRO operation:

● PLC axes

● Command axes

● Positioning axes

● Reciprocating axes

The functions of MD22600 $MC_SERUPRO_SPEED_MODE and
MD22601 $MC_SERUPRO_SPEED_FACTOR apply only to SERUPRO and not to program
testing. In this case no axes/spindles are moved.

NOTICE
No synchronized action

The NC as a discrete system generates a sequence of interpolation points.

It is possible that a synchronized action that was triggered in normal operation will no
longer be triggered in SERUPRO.

Mode of functioning with DryRun

An active SERUPRO SPEEDFACTOR has the following effect on DryRun:

● DryRun is activated simultaneously.

This causes a switch from G95/G96/G961/G97/G971 to G94 in order to execute
G95/G96/G961/G97/G971 as quickly as you wish.

● Tapping and thread cutting are performed at the usual velocity for DryRun.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
506 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DryRun and SERUPRO affect the spindle/axis with the following G codes:

● G331/G332 causes the spindle to be interpolated as an axis in a path grouping. In the
case of tapping, the drilling depth (e.g. axis X) and the pitch and speed (e.g. spindle S)
are specified.

In the case of DryRun, the velocity of X is specified, the speed remains constant, and the
pitch is adjusted.

Following the SERUPRO simulation, the position for spindle S deviates from the normal
position because the spindle S has rotated less during simulation.

8.8.4 SERUPRO ASUB

SERUPRO ASUB special points
Special points should be noted for SERUPRO ASUB with regard to:

● Reference point approach: Referencing via part program G74

● Tool management: Tool change and magazine data

● Spindle ramp-up: On starting a SERUPRO ASUB

G74 reference point approach
If command G74 (reference point approach) is programmed between the program start and
the search target, this will be ignored by the NC.

SERUPRO approach does not take this G74 command into account!

Tool management
If tool management is active, the following setting is recommended:

MD20310 $MC_TOOL_MANAGEMENT_MASK Bit 20 = 0

The tool management command generated during the SERUPRO operation is thus not
output to the PLC!

The tool management command has the following effect:

● The NC acknowledges the commands automatically.

● No magazine data is changed.

● Tool data is not changed.
Exception:
The tool enabled during the test mode can assume 'active' state. In this way, the wrong
tool may be on the spindle after the SERUPRO operation.
Remedy:
The user starts a SERUPRO ASUB that is actually traversed. Prior to the start, the user
can start an ASUB that loads the correct tool.

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 507

SERUPRO operation: Functionality: In sequence steps 2. to 6.
SERUPRO ASUB: Functionality: The sequence of step 7.

In addition, machine data setting MD20310 $MC_TOOL_MANAGEMENT_MASK Bit 11 = 1
is required because the ASUB may have to repeat a T selection.

Systems with tool management and auxiliary spindle are not supported by SERUPRO!

Example

Tool change subprogram

Program code Comment

PROC L6 ; Tool change routine

N500 DEF INT TNR_AKTUELL ; Variable for active T number

N510 DEF INT TNR_VORWAHL ; Variable for preselected T number

 ; Determine current tool

N520 STOPRE ; In program testing

N530 IF $P_ISTEST ; From the program context

N540 TNR_AKTUELL = $P_TOOLNO ; The "current" tool is read

N550 ELSE ; Otherwise, the tool of the spindle is read out.

N560 TNR_AKTUELL = $TC_MPP6[9998,1] ; Read tool T number on the spindle

N570 ENDIF

N580 GETSELT(TNR_VORWAHL) ; Read T number of the preselected tool of the master spindle

; Execute tool change only if tool is not yet current

N590 IF TNR_AKTUELL <> TNR_VORWAHL ; Approach tool change point

N600 G0 G40 G60 G90 SUPA X450 Y300

Z300 D0

N610 M206 ; Execute tool change

N620 ENDIF

N630 M17

ASUB for calling the tool change routine after type 5 block search

Program code Comment

PROC ASUPWZV2

N1000 DEF INT TNR_SPINDEL ; Variable for active T number

N1010 DEF INT TNR_VORWAHL ; Variable for preselected T number

N1020 DEF INT TNR_SUCHLAUF ; Variable for T number determined in block search

N1030 TNR_SPINDEL = $TC_MPP6[9998,1] ; Read tool T number on the spindle

N1040 TNR_SUCHLAUF = $P_TOOLNO ; Read T number determined by search,

i.e. this tool determines the

current tool offset

N1050 GETSELT(TNR_VORWAHL) ; Read T number of preselected tool

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
508 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

N1060 IF TNR_SPINDEL ==TNR_SUCHLAUF GOTOF

ASUP_ENDE1

N1070 T = $TC_TP2[TNR_SUCHLAUF] ; T selection by tool name

N1080 L6 ; Call tool change routine

N1085 ASUP_ENDE1:

N1090 IF TNR_VORWAHL == TNR_SUCHLAUF GOTOF

ASUP_ENDE

N1100 T = $TC_TP2[TNR_VORWAHL] ; Restore T preselection by tool name

N1110 ASUP_ENDE:

N1110 M90 ; Feedback to PLC

N1120 REPOSA ;ASUB end

In both of the programs PROC L6 and PROC ASUPWZV2, the tool change is programmed
with M206 instead of M6.
ASUB "ASUPWZV2" uses different system variables to detect the progress of the program
($P_TOOLNO) and represent the current status of the machine ($TC_MPP6[9998,1]).

Spindle ramp-up
When the SERUPRO ASUB is started, the spindle is not accelerated to the speed specified
in the program because the SERUPRO ASUB is intended to move the new tool into the
correct position at the workpiece after the tool change.

A spindle ramp-up is performed with SERUPRO ASUB as follows:

● SERUPRO operation has finished completely.

● The user starts the SERUPRO ASUB via function block FC 9
 in order to ramp up the spindle.

● The start after M0 in the ASUB does not change the spindle status.

● SERUPRO ASUB automatically stops before the REPOS part program block.

● The user presses START.

● The spindle accelerates to the target block state if the spindle was not programmed
differently in the ASUB.

 Note

Modifications for REPOS of spindles:

The transitions of speed control mode and positioning mode must be taken into
consideration in the event of modifications in SERUPRO approach and spindle
functionality.

For further information on the operating mode switchover of spindles, see Section "Modes
(Page 1226)".

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 509

8.8.5 Selfacting SERUPRO

Selfacting SERUPRO
The channel-specific function "Self-acting SERUPRO" allows a SERUPRO sequence without
having to previously define a search target in a program of the associated SERUPRO
channels.

In addition, a special channel, the "serurpoMasterChan", can be defined for each "Self-acting
SERUPRO". A search target can be defined in this channel.

The "Selfacting SERUPRO" function supports the SERUPRO cross-channel block search.

Function
The "SelfActing SERUPRO" operation cannot be used to find a search target. If the search
target is not reached, no channel is stopped. In certain situations, however, the channel is
nevertheless stopped temporarily. In this case, the channel will wait for another channel.
Examples are: Wait marks, couplings, or axis replacement.

Wait phase occurs:

During this wait phase, the NC checks whether the channel "seruproMasterChan" has
reached a search target. If no search target is reached, the Wait phase is left.

If the search target is reached,
the SERUPRO operation is also ended in the channel. The "seruproMasterChan" channel
must have been started in normal SERUPRO mode.

No wait phase occurs:

"Self-Acting SERUPRO" is ended by M30 of the part program.
The channel is now in Reset state again.
A SERUPRO approach does not not take place.

Starting a group of channels
If a group of channels is only started with "SelfActing SERUPRO", then all channels are
ended with "RESET".

Exceptions:
A channel waits for a partner channel that has not been started at all.

A cross-channel block search can be carried out as follows:

● Via the HMI, the user selects the channels that must work together (channel group).

● The user chooses an especially important channel from the channel group for which he
wants to select a search target explicitly (target channel).

● The HMI will then start SERUPRO on the target channel and "SelfActing SERUPRO" in
the remaining channels of the channel group.

The operation is complete if each channel concerned has deleted "seruproActive".

 "Selfacting SERUPRO" accepts no master channel on another NCU.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
510 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Activation
"Self-acting SERUPRO" is activated via the HMI as a block search start for the Type 5 block
search for target channel "seruproMasterChan".

No search target is specified for dependent channels started from the target channel.

8.8.6 Locking a program section for "Continue machining at the contour"

Programmed interrupt pointer
If because of manufacturing and/or process-related reasons, "Continue machining at the
contour" may not be possible within a certain program section at a program abort, this
program section can be locked for the target block of a block search.

If after a program abort there is a block search for the interruption point within the locked
program section for "Continue machining at the contour", the last executable block (main run
block) before the start of the locked section is used by the control as target block (hold
block).

Programming

Syntax

IPTRLOCK()

Functionality

Marks the beginning of the program section as of which "Continue machining at the contour"
is locked. The next executable block (main run block) in which IPTRLOCK becomes active is
now used as target block for a block search with "Continue machining at the interruption
point", until the release with IPTRUNLOCK. This block is referred to as the hold block in the
following.

Effectiveness: Modal

Syntax

IPTRUNLOCK()

Marks the end of the program section locked for "Continue machining at the contour". As of
the next executable block (main run block) in which IPTRLOCK becomes active, the current
block is used again as target block for a block search with "Continue machining at the
interruption point". This block is referred to as the release block in the following.

Effectiveness: Modal

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 511

Example

Program code Comment

...

N010 IPTRLOCK() ; Locked area: Start

N020 R1=R1+1

N030 G4 F1 ; Hold block

... ; Locked area

N200 IPTRUNLOCK() ; Locked area: End

N220 R1=R1+1

N230 G4 F1 ; Release block

...

Boundary conditions
● IPTRLOCK acts within a program (*.MPF, *.SPF) at the most up to the end of the program

(M30, M17, RET). IPTRUNLOCK implicitly becomes active at the end of the program.

● Multiple programming of IPTRLOCK within a program does not have a cumulative effect.
With the first programming of IPTRUNLOCK within the program or when the end of the
program is reached, all previous IPTRLOCK calls are terminated.

● If there is a subprogram call within a locked area, "Continue machining at the contour" is
also locked for this and all following subprogram levels. The lock also cannot be
cancelled within the called subprogram through explicit programming of IPTRUNLOCK.

Example: Nesting of locked program sections in two program levels

With the activation of the "Continue machining at the contour" lock in PROG_1, "Continue
machining at the contour" is also locked for PROG_2 and all following program levels.

Program code Comment

PROC PROG_1 ; Program 1

...

N010 IPTRLOCK()

N020 R1=R1+1

N030 G4 F1 ; Hold block

... ; Locked area: Start

N040 PROG_2 ; Locked area

... ; Locked area: End

N050 IPTRUNLOCK()

N060 R2=R2+2

N070 G4 F1 ; Release block

...

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
512 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

PROC PROG_2 ; Program 2

N210 IPTRLOCK() ; Ineffective due to program 1

...

N250 IPTRUNLOCK() ; Ineffective due to program 1

...

N280 RET ; Ineffective due to program 1

Example 3: Multiple programming of IPTRLOCK

Program code Comment

PROC PROG_1 ; Program 1

...

N010 IPTRLOCK()

N020 R1=R1+1

N030 G4 F1 ; Hold block

... ; Locked area: Start

N150 IPTRLOCK() ; Locked area

... ; Locked area

N250 IPTRLOCK() ; Locked area

... ; Locked area: End

N360 IPTRUNLOCK()

N370 R2=R2+2

N380 G4 F1 ; Release block

...

System variable
The status of the current block can be determined via the system variable $P_IPTRLOCK:

$P_IPTRLOCK Meaning

FALSE The current block is not within a program section locked for "Continue machining
at the contour"

TRUE The current block is within a program section locked for "Continue machining at
the contour"

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 513

Automatic function-specific "Continue machining at the contour" lock
For various couplings, the activation/deactivation of the "Continue machining at the contour"
lock can be performed automatically channel-specifically with the activation/deactivation of
the coupling:

MD22680 $MC_AUTO_IPTR_LOCK, bit x

Bit Value Meaning

Electronic gear (EGON / EGOF)
1 Automatic "Continue machining at the contour" lock is active

0

0 Automatic "Continue machining at the contour" lock is not active
Axial master value coupling (LEADON / LEADOF)

1 Automatic "Continue machining at the contour" lock is active
1

0 Automatic "Continue machining at the contour" lock is not active

This program section begins with the last executable block before the activation and ends
with the deactivation.

The automatic interrupt pointer is not active for couplings that were activated or deactivated
via synchronized actions.

Example: Automatically declaring axial master value coupling as search-suppressed:

Program code Comment

N100 G0 X100

N200 EGON(Y,"NOC",X,1,1) ; Search-suppressed program section starts.

N300 LEADON(A,B,1)

...

N400 EGOFS(Y)

...

N500 LEADOF(A,B) ; Search-suppressed program section ends.

N600 G0 X200

A program abort within search-suppressed program section (N200 - N500) always provides the
interrupt pointer with N100.

NOTICE
Unwanted state caused by function overlappings

If there is an overlap of the "Programmable interrupt pointer" and "Automatic interrupt
pointer" functions via machine data, the NC selects the largest possible search-suppressed
area.

A program may need a coupling for almost all of the runtime. In this case, the automatic
interrupt pointer would always point to the start of the program and the SERUPRO function
would in fact be useless.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
514 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.8.7 Behavior during POWER ON, mode change and RESET
SERUPRO is inactive during POWER ON. The mode change is permitted during
SERUPRO. RESET will cancel SERUPRO and deselects the internally selected program
test. SERUPRO cannot be combined with other block search types.

8.8.8 Supplementary conditions

8.8.8.1 STOPRE in the target block

STOPRE block
The STOPRE block receives all modal settings from the preceding block and can, therefore,
apply conditions in advance in relation to the following actions:

● Synchronize program line currently processing with the main run.

● Derive modal settings for SERUPRO in order, for example, to influence this REPOS
motion on approach of SERUPRO.

Example 1:
Position a Z axis by specifying an X axis setpoint.

When block "G1 F100 Z=$AA_IM[X]" is interpreted, the preceding STOPRE block ensures
synchronization with the main run. The correct setpoint of the X axis is thus read via $AA_IM
to move the Z axis to the same position.

Example 2:
Read and correctly calculate external zero offset.

Program code Comment

N10 G1 X1000 F100 ;

N20 G1 X1000 F500 ;

N30 G1 X1000 F1000 ;

N40 G1 X1000 F5000 ;

N50 SUPA G1 F100 X200 ; move external zero offset after 200

N60 G0 X1000 ;

N70 ... ;

Via an implicit STOPRE before N50, the NCK can read and correctly calculate the current
zero offset.
For a SERUPRO operation on the N50 search target, repositioning is on the implicit
STOPRE in the SERUPRO approach and the velocity is determined from N40 with F5000.

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 515

Implicit preprocessing stop

Situations in which Interpreter issues an implicit preprocessing stop:

1. In all blocks in which one of the following variable access operations occurs: -
Programming of a system variable beginning with $A...
-Redefined variable with attribute SYNR/SYNRW

2. For the following part program commands:
-Part program command MEACALC, MEASURE
-Programming of SUPA (suppress frames and online offsets)
-Programming of CTABDEF (start of curve table definition)
-Part program command WRITE/DELETE (write/delete file)
-Before the first WRITE/DELETE command in a sequence of such commands
-Part program command EXTCALL
-Part program command GETSELT, GETEXET
-Tool change and active fine tool offset FTOCON

3. For the following command execution:
-Finishing of Type 1 search ("Search without calculation") and
Type 2 search with calculation ("Search at contour end point")

Note: Type 2 search "Block search at contour start point" has the same behavior.

8.8.8.2 SPOS in target block

SPOS
If a spindle is programmed with M3/M4 and the target block contains an SPOS command,
the spindle is switched over to SPOS on completion of the SERUPRO process (search
target located). This is indicated on the VDI interface.

8.8.8.3 Travel to fixed stop (FXS)
During repositioning (REPOS), the "Travel to fixed stop" function (FXS) is repeated
automatically. Every axis is taken into account. The torque programmed last before the
search target is used as torque.

System variable

The system variables for "Travel to fixed stop" have the following meaning with SERUPRO:

● $AA_FXS: Progress of the program simulation

● $VA_FXS: Real machine state

The system variables always have the same values outside of the SERUPRO function.

ASUB

A user-specific ASUB can be activated for SERUPRO.

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
516 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

References
For detailed information on the SERUPRO block search, see Section "Detailed description
(Page 281)".

8.8.8.4 Travel with limited torque/force (FOC)
During repositioning (REPOS), the "Travel with limited torque/force" function (FOC) is
repeated automatically. Every axis is taken into account. The torque programmed last before
the search target is used as torque.

System variable

The system variables for "Travel with limited torque/force" have the following meaning with
SERUPRO:

● $AA_FOC: Progress of the program simulation

● $VA_FOC: Real machine state

Supplementary condition
A changing torque characteristic cannot be implemented during repositioning.

Example

A program traverses axis X from 0 to 100 and switches "Travel with limited torque/force"
(FOC) on every 20 increments for 10 increments. This torque characteristic is usually
generated with non-modal FOC and cannot be performed during repositioning (REPOS).
Instead, axis X is traversed from 0 to 100 with or without limited torque/force in accordance
with the last programming.

References
For detailed information on the SERUPRO block search, see Section "Detailed description
(Page 281)".

8.8.8.5 Synchronous spindle

The synchronous spindle can be simulated.
The synchronous spindle operation with main spindle and any number of following spindles
can be simulated in all existing channels with SERUPRO.

For further information about synchronous spindles, see:

References:

Function Manual, Extended Functions; Synchronous Spindle (S3)

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 517

8.8.8.6 Couplings and master-slave

Setpoint and actual value couplings
The SERUPRO operation is a program simulation in Program Test mode with which setpoint
and actual value couplings can be simulated.

Specifications for EG simulation
For simulation of EG, the following definitions apply:

1. Simulation always takes place with setpoint coupling.

2. If not all leading axes are under SERUPRO, the simulation is aborted with Alarm 16952
"Reset Clear/No Start". This can occur with cross-channel couplings.

3. Axes that have only one encoder from the NCK point of view and are moved externally,
cannot be simulated correctly. These axes must not be integrated in couplings.

CAUTION

Incorrect simulation

In order to be able to simulate couplings correctly, they must have been switched off
previously.

This can be performed with machine data MD10708 $MA_SERUPRO_MASK.

Specifications for coupled axes
The SERUPRO operation simulates coupled axes always assuming that they are setpoint
couplings. In this way, the end points are calculated for all axes that are used as target
points for SERUPRO approach. The coupling is also active with "Search target found". The
path from the current point to the end point is carried out for SERUPRO approach with the
active coupling.

LEADON

The following specifications apply for the simulation of axial master value couplings:

1. Simulation always takes place with setpoint coupling.

2. SERUPRO approach takes place with active coupling and an overlaid motion of the
following axis in order to reach the simulated target point.

The following axis that is moved solely by the coupling cannot always reach the target point.
In SERUPRO approach, an overlaid linear motion is calculated for the following axis to
approach the simulated point!

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
518 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Reaching simulated target point for LEAD with JOG

At the time of "Search target found", the coupling is already active, especially for the JOG
motions. If the target point is not reached, SERUPRO approach can be used to traverse the
following axis with active coupling and an overlaid motion to the target point.

 Note

For further information on the repositioning of axis couplings, see Section "Continue
machining at the contour after SERUPRO search target found (Page 495)".

Master-slave
A system ASUB can be started automatically after the block search is finished. In this
subprogram, the user can control the coupling state and the associated axis positions
subsequently. The required information is provided via the following system variables:

System variable Description
$P_SEARCH_MASLD[<slave axis>] Position offset between slave and master axis when

the link is closed.
$AA_MASL_STAT[<slave axis>] Current state of a master/slave coupling
$P_SEARCH_MASLC[<slave axis>] Status: The state of the coupling was changed during

the block search
The system variables are deleted when the coupling is switched on (MASLON).

 Note

The coupled axes must be in the same channel when the block search is executed.

Further information on the master/slave coupling can be found in:

References:
Function Manual, Special Function; Speed/Torque Coupling (TE3) Master-Slave

The name of the system ASUB is progevent.spf and must be available in the /_N_CMA_DIR
directory. The contents might be as follows:

progevent.spf
X=Master axis, Y=Slave axis

Programming

N10 IF(($S_SEARCH_MASLC[Y]< >0) AND ($AA_MASL_STAT[Y]< >0))

N20 MASLOF(Y)

N30 SUPA Y=$AA_IM[X]-$P_SEARCH_MASLD[Y]

N40 MASLON(Y)

N50 ENDIF

N60 REPOSA

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 519

To ensure that the ASUB can be automatically started, the following machine data must be
set:

● NC-specifically:

– MD11602 $MN_ASUP_START_MASK = 'H01'

– MD11604 $MN_ASUP_START_PRIO_LEVEL = 100

– MD11450 $MN_SEARCH_RUN_MODE = 'H02'

● Channel-specifically for the channel in which the ASUB is started or generally for all
channels:

– MD20105 $MC_PROG_EVENT_IGN_REFP_LOCK = ’H3F’

– MD20115 $MC_IGNORE_REFP_LOCK_ASUP = ’HFFFFFFFF’

Axis couplings

 Note

For a leading axis whose following axes are in another channel, the setting for acceleration
of the processing speed has no effect:
MD22601 $MC_SERUPRO_SPEED_FACTOR > 0

Coupled motion

The coupled motion function (TRAILON) is supported by SERUPRO.

For further information on coupled motion with TRAILON and TRAILOF, see:

References:

● Function Manual, Special Functions; Axis Couplings (M3)

● Programming Manual, Job Planning; Axis Couplings

Gantry axes

The gantry axis function is supported by SERUPRO.

For further information on the functionality of gantry axes, see:

References:
Function Manual, Special Functions; Gantry Axes (G1)

Tangential control

The tangential follow-up of individual axes function is supported by SERUPRO.

For further information on tangential control, see:

References:
Function Manual, Special Functions; Tangential Control (T3)

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
520 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.8.8.7 Axis functions

SERUPRO conditions
The special conditions for SERUPRO must be observed with axis enable, autonomous axis
operations, and axis replacement.

Axis enable
The axial interface DB31, ... DBX3.7 ("Program test axis/spindle enable") controls the axis
enables if no closed-loop controller enable is to (or can) be issued at the machine and is
active only during the program test or when SERUPRO is active.

It is possible to issue this enable via interface signal PLC→NCK
DB31, ... DBX3.7 (program test axis/spindle enable). If the real servo enable is missing
during program test or SERUPRO, the effect on the axes/spindles is as follows:

● As soon as the simulated program run intends to move an axis/spindle, the message
"Waiting for axis enable" or "Waiting for spindle enable" is displayed and the simulation is
stopped.

● If during a simulated motion, NC/PLC interface signal DB31, ... DBX3.7 (program test
axis/spindle enable) is then canceled, alarm 21612: "Channel %1 axis %2 NC/PLC
interface signal ’controller enable’ reset during motion” is activated.

Autonomous axis operations
Autonomous single-axis operations are axes controlled by the PLC that can also be
simulated on SERUPRO. During SERUPRO operation, as in normal operation, the PLC can
take over or give up control of an axis. If required, this axis can also be traversed using
FC18. The PLC takes over control of the axis before the approach block and is responsible
for positioning this axis. This is valid for all block search types.

For further information about autonomous single-axis operations, see:

References:
Function Manual, Extended Functions; Positioning Axes (P2)

Axis replacement
Problem: A program moves an axis and gives up control before the target block with
WAITP(X). X is thus not subject to REPOS and the axis is not taken into account in
SERUPRO approach.

Via the machine data MD11470 $MN_REPOS_MODE_MASK, the following behavior can be
achieved for SERUPRO-REPOS:

The neutral axes are moved as "command axes" in the SERUPRO-REPOS. The axis
interpolates without a path context even if it was last programmed as a path axis. In this
scenario, the velocity results from MD32060 $MA_POS_AX_VELO. After SERUPRO
approach, this axis is again neutral.

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 521

Neutral axes that are however not allowed to be repositioned must receive the axial NC/PLC
interface signal “REPOSDELAY”. This deletes the REPOS movement.

Example:

After SERUPRO, one axis is deliberately moved in the synchronized action via technology
cycles. The command axes are always moved in the approach block, never in the target
block. The target block can only be changed if all command axes have been moved to the
end.

CAUTION
The PLC-controlled axis is not repositioned

Axes enabled by RELEASE(X) before the target block are not repositioned.

8.8.8.8 Gear stage change

Operational sequences
The gear stage change (GSC) requires physical motions from the NCK in order to be able to
engage a new gear.
In the SERUPRO operation, no gear stage change is required and is carried out as follows:

Some gears can only be changed when controlled by the NC, since either the axis must
oscillate or a certain position must be approached beforehand.

The gear stage change can be suppressed selectively for DryRun, program test, and
SERUPRO using bits 0 to 2 in MD35035 $MA_SPIND_FUNCTION_MASK.

The gear stage change must then be performed in REPOS; this will work even if the axis
involved is to be in "speed control mode" at the target block. In other cases, the automatic
gear stage change is denied with an alarm if, for example, the axis was involved in a
transformation or coupling between the gear stage change and the target block.

 Note

For further information on gear stage changes in DryRun, Program test and SERUPRO, see
Section "S1: Spindles (Page 1225)".

K1: Mode group, channel, program operation, reset response
8.8 Block search Type 5 SERUPRO

 Basic Functions
522 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.8.8.9 Superimposed motion

Only SERUPRO
If "overlaid movements" are used, only the block search via program test (SERUPRO) can
be used, since the overlaid movements are interpolated accordingly in the main run. This
applies in particular to $AA_OFF.

Velocity profile instead of maximum axis velocity
During Program test, a velocity profile must be used, which allows "superimposed
movements" to be interpolated during the main run. It is thus not possible to interpolate at
the maximum axis velocity.

The axis velocity is set in "Dry run feedrate" mode using
SD42100 $SC_DRY_RUN_FEED.

The velocity of the SERUPRO operation is selected using
MD22600 $MC_SERUPRO_SPEED_MODE.

8.8.8.10 NC/PLC interface signals

REPOS offset available

If a REPOS offset has resulted for an axis during SERUPRO, this is displayed via the axial
NC/PLC interface at the end of the SERUPRO operation:

DB31, ...DBX70.0 == 1 (REPOS offset available)

Validity of the REPOS offset

The REPOS offset becomes invalid at the start of a SERUPRO ASUB or NC start to resume
the machining:

DB31, ... DBX70.1 == 1 (REPOS offset invalid)

The axis can be traversed manually in JOG mode or via the PLC user program using FC 18
between the end of the SERUPRO operation and NC start to resume the machining. If the
REPOS offset is traversed completely, the interface signal is reset.

 K1: Mode group, channel, program operation, reset response
 8.8 Block search Type 5 SERUPRO

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 523

8.8.8.11 Making the initial settings more flexible

Initial setting/initial SERUPRO setting
Machine data MD20112 $MC_START_MODE_MASK defines the initial setting of the control
for part program start with respect to the G codes (especially the current plane and settable
zero offset), tool length compensation, transformation, and axis couplings. The special option
exists for the SERUPRO operation of using
MD22620 $MC_ENABLE_START_MODE_MASK_PRT
to select an initial setting that differs from the normal part program start. The new setting
must therefore been stored in:
MD22620 $MC_START_MODE_MASK_PRT

The meaning of the bits of MD22620 is identical to those of:
MD20112 $MC_START_MODE_MASK.

Example:
The synchronous spindle coupling at the beginning of the SERUPRO operation is retained
for the part program start.

 ; synchronous spindle coupling not

configured

$MC_START_MODE_MASK = 'H400' ; is switched off

$MC_START_MODE_MASK_PRT = 'H00' ; remains active

$MC_ENABLE_START_MODE_MASK_PRT = 'H01' ; $MC_START_MODE_MASK_PRT is evaluated

in SERUPRO instead of

$MC_START_MODE_MASK

8.8.9 System variable
Overview of the system variables relevant for SERUPRO:

System variable Meaning
$AC_ASUP, bit 20 ASUB activation reason:

$AC_ASUP, Bit 20 == 1 ⇒ system ASUB active, reason: SERUPRO search goal
reached

$AC_SERUPRO SERUPRO status:
$AC_SERUPRO == 1 ⇒ SERUPRO is active

$P_ISTEST Program test status:
SERUPRO active ⇒ $P_ISTEST == 1

$P_SEARCHL Most recently active block-search type:
$P_SEARCHL == 5 from the start of SERUPRO to reset or end of program

$AC_REPOS_PATH_MODE REPOS mode for repositioning the contour after a SERUPRO

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
524 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.9 Program operation

PLC, MD, operation
The execution of part programs can be controlled via the HMI in many ways using PLC
inputs, machine data settings and operator inputs.

Definition
The execution of part programs or part program blocks in AUTOMATIC or MDA modes is
referred to as program operation.

Channel control
Every channel can be manipulated by means of interface signals from the PLC. The control
is exercised via mode groupspecific or channelspecific interface signals. An overview of
these signals is given under data lists in this Description of Functions.

Status messages

Each channel reports its current program operation status to the PLC with interface signals.
These signals are, in turn, divided up into mode groupspecific and channelspecific signals.

8.9.1 Initial settings

Machine data
Defined conditions can be set via machine data for the program operation or certain
implementations of the NC language scope.

Initial settings
Initial settings can be programmed in channel-specific machine data for each channel. These
initial settings affect, for example, G groups and auxiliary function output.

Auxiliary function output

The timing for output of auxiliary functions can be predefined via machine data
AUXFU_x_SYNC_TYPE (MD22200, 22210, 22220, 22230, 22240, 22250, 22260), (output
timing for M, S, T, H, F, D, E functions). For more detailed explanations, see Section "H2:
Auxiliary function outputs to PLC (Page 369)".

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 525

G groups

An initial programming setting can be specified for each of the available G groups using
MD20150 $MC_GCODE_RESET_VALUES (reset state of G groups). This initial setting is
automatically active during program start or in Reset until it is deselected by a G command
from the same G group.

Via the MD22510 $MC_GCODE_GROUPS_TO_PLC (G codes, which are output to interface
NCK-PLC after block change / RESET), the output of the G codes to the PLC interface can
be activated.

A list of G groups with the associated G functions is available in:

References:
Programming Manual, Fundamentals

Basic configurations of the NC language scope for SINUMERIK solution line
For SINUMERIK 840D sl, certain basic configurations of the NC language scope can be
generated (configurable) via machine data. The options and functions of the NC language
scope is specially tailored (configured) to the needs of the user.

NC language scope
The way that non-active options and functions should be moved with NC language
commands can be set via the machine data MD10711
$MN_NC_LANGUAGE_CONFIGURATION:

0: All available language commands can be programmed. Whether or not the needed
function is activated can only be recognized upon execution.

If only certain options are enabled and not all operations are available:

1: All the language commands are known. Language commands for non-enabled options are
already recognized at the beginning of the program interpretation and lead to the alarm
12553 "option/function is not active."

2: Only those language commands are known which correspond to the current scope of
enabled options of the NCK software. All commands for non-enabled options are not
recognized and trigger the alarm 12550 "Name not defined or option/function not available".

 Note

Option-free functions also have the status "enable option"

If only certain functions are activated:

3: All the language commands are known. Non-activated functions are already recognized at
the beginning of the program interpretation and result in the alarm 12553 "Option/function is
not active". For example, if the option date is set for the cylinder surface transformation, but
the transformation is not activated in machine data MD24100 $MC_TRAOF_TYPE_1, then
the programming of TRACYL triggers the alarm 12553.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
526 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4: Only those NC language commands are known which correspond to the current scope of
active functions of the NCK software. All commands for non-active functions are not
recognized and trigger the alarm 12550 "Name not defined or option/function not available".
Whether the command in question is generally unavailable in the Siemens NC language or
whether this is true only on the corresponding system cannot be distinguished in this
scenario.

Whether the current NC language scope of enabled options and active functions is also truly
programmable can be checked using the STRINGIS program command, see example.

Check sample application for NC language scope on cylinder surface transformation TRACYL
The cylinder surface transformation is optional and must be enabled beforehand. In order to
check this, the following initial conditions are assumed:

The cylinder surface transformation option is not enabled and the machine data
$MN_NC_LANGUAGE_CONFIGURATION = 2; NC language command TRACYL is unknown

The following program is started

Program code Comment

N1 R1=STRINGIS("TRACYL") ; R1 is 0 (TRACYL is an unknown name)

N2 IF STRINGIS("TRACYL")==204

N3 TRACYL(1, 2, 3) ; Block is not interpreted

N4 ELSE

N5 G00

N6 ENDIF

N7 M30

Example of whether STRINGIS result is programmable or not
The result of STRINGIS = number-coded return value (three-digit)

Number coding of the basic information (1st digit from the left):

000 Name is unknown, programming is denied with Alarm 12550

100: Name is known, but cannot be programmed, triggers alarm 12533

200: Name/symbol is known, but interpretation is not possible

2xx: Name/symbol is known, the command can be programmed, if xx > 0

Definition for name/symbol:

Name: Any STRING that is checked to see
whether it is a component of the NC language in the existing NCK version or configuration.

Symbol: Contains the description or significance of an NC language command that is
needed for the NC program and cycle interpretation.

Dependent on machine data MD10711

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 527

$MN_NC_LANGUAGE_CONFIGURATION = (set value) results in the following interpretations of the
option and function relative to their programmability 2xx:

Table 8- 1 Setting options

MD10711 = 0 1 2 3 4
Option Function Return value as the basic information (1st digit from the left)
0 0 2 1 0 1 0
1 0 2 2 2 1 0
1 1 2 2 2 2 2
0 1 2 1 0 1 0

Definition for option/function:

0 corresponds to option not activated or function deactivated
1 corresponds to option activated or function activated

For more detailed information on the value ranges of 2xx programmable functions, see:

References:
Programming Manual, Job Planning, Additional Functions,
Section: Check scope of NC language present (STRINGIS)

8.9.2 Selection and start of part program or part program block

Reset status

Channel status

A part program can be selected only if the relevant channel is in the Reset state.

Start command, channel status

There are two possible START commands for initiating processing of a part program or part
program block:

● The channel-specific interface DB21, ... DBX7.1 (NC Start), which is usually controlled
from the machine control panel key NC Start, starts program execution in the same
channel.

● With the NC instruction START, program execution in the first channel can be started
from the second channel, for example.

The START command can only be executed in AUTOMATIC and MDA modes. For this, the
channel concerned must be in the following state:

DB21, ... DBX35.7(channel status reset) or

DB21, ... DBX35.6 (channel status interrupted).

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
528 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signals, Alarms

Required signal states

The part program can now be enabled for execution in the channel with the START
command on the condition that certain signal states exist on the machine.

The following enable signals are relevant on the NC/PLC interface:

● DB11 DBX4.4 (mode group ready) must be present

● DB11 DBX0.7 (mode group reset) must not be present

● DB21, ... DBX1.7 (activate program test) must not be present

● DB21, ... DBX7.0 (NC start disable) must not be present

● DB21, ... DBX7.2 (NC stop at the block limit) must not be present

● DB21, ... DBX7.3 (NC stop) must not be present

● DB21, ... DBX7.4 (NC stop axes plus spindle) must not be present

● DB21, ... DBX7. 7 (reset) must not be present

● DB10 DBX56.1 (emergency stop) may not be present

● No axis or NCK alarm must be active

For a further explanation of the individual signals see Section 5.

Execution of command

The part program or the part program block is automatically executed and the the following
interface signals are set:

DB21, ... DBX35.5 (channel status reset)

DB21, ... DBX35.0 (program status running)

The program is processed until the end of the program has been reached or the channel is
interrupted or aborted by a STOP or RESET command.

Alarms

Under certain conditions the START command will have no effect and one of the following
alarms will be triggered:

● 10200 "No NC Start permitted with active alarm"

● 10202 "No NC Start permitted with active command"

● 10203 "No NC Start permitted for non-referenced axes"

References:
Diagnostics Manual, Alarms

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 529

8.9.3 Part program interruption

Channel status
A part program interruption is only executed when the channel and program are active:

● DB21, ... D35.5 == 1 ("Channel active")

● DB21, ... D35.0 == 1 ("Program running")

STOP commands
The part program processing can be interrupted via the following STOP commands:

● DB21, ... DBX7.2 ("NC stop at the block limit)

● DB21, ... DBX7.3 ("NC stop")

● DB21, ... DBX7.4 ("NC stop, axes plus spindles")

● DB21, ... DBX2.0 ("Single block")

● Program command M00 or M01

The channel and program are then in the state "interrupted":

● DB21, ... D35.6 == 1 ("Channel interrupted")

● DB21, ... D35.3 == 1 ("Program interrupted")

References

A detailed description of the interface signals can be found in:

Function Manual Basic Functions; NC/PLC Interface Signals (Z1)

Sequence
The following actions are performed after a STOP command:

● Interruption of the part program execution at the next block limit (with "NC stop at the
block limit", M00, M01 or single block), or immediately for all other STOP commands.

● The traversing axes of the channel are stopped via braking ramp. The braking of the axes
down to standstill can be extended over several blocks.

● The block indicator shows the current block at the point of interruption.

● The auxiliary functions that have not been output before the point of interruption are no
longer output.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
530 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Possible actions in the interrupt state

Various functions can be performed in the channel during a part program interruption, for
example:

● Overstore
References
Operating Manual, HMI Advanced, Section "Machine operating area" > Automatic mode"
> "Overstore"

● Block search
References
Function Manual, Basic Functions; Section "Mode group, channel, program operation,
reset response (K1)" > "Block search" or "Block search type 5 SERUPRO"

● Repositioning (REPOS)
References Function Manual, Basic Functions; Section "Mode group, channel, program
operation, reset response (K1)" > "Block search type 5 SERUPRO" > "REPOS" >
"Repositioning with controlled REPOS"

● Oriented tool retraction
References

– Programming Manual, Job Planning; Section "Tool offsets"

– Description of Functions, Basic Functions; Section "Tool offsets (W1)" > "Orientable
toolholders" > ""

● Interrupt routine (see Section "Asynchronous subprograms (ASUBs), interrupt routines
(Page 559)")

● DRF function, offset of the workpiece zero
References
Function Manual, Extended Functions; Manual and Handwheel Travel (H1)

● Starting the interrupted program via:

– START command from another channel
References
 Programming Manual, Job Planning; Section "Flexible NC programming" > "Program
coordination (INIT, START, WAITM, WAITMC, WAITE, SETM, CLEARM)"

– NC/PLC interface:
DB21, ... DBX7.1 (NC start)

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 531

8.9.4 RESET command

Command priority

Channel status

The RESET command can be executed in every channel state. This command is aborted by
another command.

Commands

RESET-Command

The following Reset commands are available:

● DB11, ... DBX0.7 ("mode group reset")

● DB21, ... DBX7.7 ("Reset")

For a further explanation of the individual interface signals, please see
References: /FB1/ Function Manual Basic Functions; NC/PLC interface signals (Z1)

A RESET command can be used to interrupt an active part program or a part program block
(in MDA).

After execution of the Reset command, the interface signal DB21, ... DBX35.7 ("Channel
status Reset") is set.

The part program cannot be continued at the point of interruption. All the axes of the channel
go into exact stop unless they are in followup mode. The same applies to the spindles
configured in the channel.

The following actions are executed when the RESET command is triggered:

● Part program preparation is stopped immediately.

● Axes and, if they exist, spindles in the channel are decelerated along a braking ramp.

● Any auxiliary functions of the current block not yet output, are no longer output.

● The block indicator is reset to the beginning of the part program.

● All Reset alarms (channelspecific, axisspecific, spindlespecific) are cleared from the
display.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
532 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.9.5 Program status
The status of the selected program is displayed in the interface for each channel.
The PLC can then trigger certain responses and interlocks configured by the manufacturer
depending on the status at the interface.
The program status is only displayed in AUTOMATIC and MDA mode. In all other modes the
program status is aborted or interrupted.

Program states
The following program states are displayed at the NC/PLC interface (DB21, ...):

● DB21, ... DBX35.4 ("aborted")

● DB21, ... DBX35.3 ("interrupted")

● DB21, ... DBX35.2 ("stopped")

● DB21, ... DBX35.1 ("waiting")

● DB21, ... DBX35.0 ("running")

A detailed description of the interface signals can be found in Section "Signals from channel
(DB21, ...) (Page 1649)".

Effects of commands and NC/PLC interface signals

The program state of an active program is influenced by various commands and NC/PLC
interface signals. The following table shows the respective resulting state.

Initial state: "Running"

Command or NC/PLC interface signal
(IS)

Resulting state

 Aborted Interrupted Stopped Waiting Running
IS "Reset" x

IS "NC stop" x
IS "NC stop at block limit" x

IS "NC stop axes and spindles" x
IS "Read-in disable" x

IS "Feed stop, channelsp." x
IS "Feed stop, axissp." x

Feed override = 0% x
IS "Spindle stop" x

M02/M30 in a block x
M00/M01 in a block x

IS "Single block" x
IS "Delete distance-to-go" x

Auxiliary functions output to PLC but not
yet acknowledged

 x

Wait instruction in program x

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 533

8.9.6 Channel status
The current channel status is displayed in all operating modes at the NC/PLC interface
(DB21, ...) for each channel.

Channel states
The following channel states are displayed at the NC/PLC interface (DB21, ...):

● DB21, ... DBX35.7 ("reset")

● DB21, ... DBX35.6 ("interrupted")

● DB21, ... DBX35.5 ("active")

A detailed description of the interface signals can be found in Section "Signals from channel
(DB21, ...) (Page 1649)".

Effects of commands and NC/PLC interface signals

The channel state of an active program is influenced by various commands and NC/PLC
interface signals. The following table shows the respective resulting state.

Initial state: "Active"

Command or NC/PLC interface signal
(IS)

Resulting state

 Reset Interrupted Active
IS "Reset" x

IS "NC stop" x
IS "NC stop at block limit" x

IS "NC stop axes and spindles" x
IS "Read-in disable" x

IS "Feed stop, channelsp." x
IS "Feed stop, axissp." x

Feed override = 0%
IS "Spindle stop" x

M02/M30 in a block x
M00/M01 in a block x

IS "Single block" x
IS "Delete distance-to-go" x

Auxiliary functions output to PLC but not
yet acknowledged

 x

Wait instruction in program x

The "Channel state active" signal is obtained when a part program or part program block is
being executed or when axes are traversed in JOG mode.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
534 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.9.7 Responses to operator or program actions

Status transitions
The following table shows the channel and program states that result after certain operator
and program actions.

The left-hand side of the table shows the channel and program states and the mode groups
from which the initial situation can be selected. Various operator/program actions are listed
on the righthand side of the table, the number of the situation after the action has been
carried out is shown in brackets after each action.

Table 8- 2 Responses to operator or program actions

Situation Channel
status

Program status Active mode Operator or program action (situation after the
action)

 R U A N U S W A A M J
1 x x x RESET (4)
2 x x x RESET (5)
3 x x x RESET (6)
4 x x x NC Start (13); Mode change (5 or 6)
5 x x x NC Start (14); Mode change (4 or 6)
6 x x x Direction key (15); Mode change (4 or 5)
7 x x x NC Start (14)
8 x x x NC Start (15)
9 x x x NC Start (13); Mode change (10 or 11)
10 x x x NC Start (16); Mode change (9 or 11)
11 x x x Direction key (17); Mode change (9 or 10)
12 x x x NC Start (13); Mode change (10 or 11)
13 x x x NC Stop (12)
14 x x x NC Stop (7); at block end (5)
15 x x x NC Stop (8); at JOG end (6)
16 x x x NC Stop (10); at block end (10)
17 x x x NC Stop (11); at JOG end (11)
18 x x x Reset (4); wait for other channel (18)

Channel status Program status Modes
R --> aborted N --> aborted A --> aborted
U --> interrupted U --> interrupted M --> aborted
A --> running S --> stopped J --> aborted
 W --> waiting
 A --> running

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 535

8.9.8 Part-Program Start

Start handling

Table 8- 3 Typical program sequence

Sequence Command Conditions
(must be satisfied before the
command)

Comments

1 Load program (via the operator
interface or part program)

2 Select AUTOMATIC mode
3 Program preselection Channel preselected

Preselected channel in
 RESET state

User ID sufficient for
program preselection

4 NC start for preselected channel NC start disable not
available

Reference point approached in
all

axes

5 Program execution
6 M02/M30/RESET None End of program

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
536 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.9.9 Example of a timing diagram for a program run

2

1

Program aborted with RESET

Program stopped with read-in disable

AuxF M170 from PLC user program completed,
i.e. block N10 complete (AuxF output during travel)

Logic operation through PLC user program

Program:

Axis runningSpindle
run-up

IS "Spindle in the setpoint range" (from NCK)

IS "Spindle stationary" (from NCK)

IS "Exact stop fine" (from NCK)

IS "Travel command X axis" (from NCK)

IS "Program state aborted" (from NCK)

IS "Program state stopped" (from NCK)

IS "Program state interrupted"

IS "Program state running"

IS "Feed stop"

IS "Axis controller enable"

IS "Spindle stop"

IS "Spindle enable"

IS "Read-in disable"

IS "NC START DISABLE"

NC STOP (from PLC, HMI, COM, X user language)

NC START (from PLC, HMI, COM, X user language)

.....
M170 If N20 M0 If

M3 S1000 F1000
N10 G01 G90 X100

(DB31, ... DBX83.5)

(DB31, ... DBX61.4)

(DB31, ... DBX60.7)

(DB31, ... DBB68)

(DB21, ... DBX35.4)

(DB21, ... DBX35.2)

(DB21, ... DBX35.3)

(DB21, ... DBX35.0)

(DB31, ... DBX4.3)

(DB31, ... DBX2.1)

(DB31, ... DBX4.3)

(DB31, ... DBX2.1)

(DB21, ... DBX6.0)

(DB21, ... DBX7.0)

Figure 8-7 Examples of signals during the program run

8.9.10 Program jumps

8.9.10.1 Jump back to start of program

Function
With the function "Jump back to start of the program" the control jumps back from a part
program to the beginning of the program. The program is then processed again.

As compared to the function "Program jumps to jump marks", with which a repeated
processing of the program can also be implemented, the function "Jump back to the start of
the program" offers the following advantages:

● The programming of a jump mark at the start of the program is not necessary.

● The program restart can be controlled through the NC/PLC interface signal:

DB21, ... DBX384.0 (control program branching)

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 537

● The timer for the program runtime can be reset to "0" at the restart of the program.

● The timer for workpiece counting can be incremented by "1" at program restart.

Application
The function is used, if the processing of subsequent workpieces is to be done through an
automatic program restart e.g. in case of turning machine with bar loader/-changer.

Activation
The jump back takes place only when the following NC/PLC interface signal is set:

DB21, ... DBX384.0 (control program branching) = 1

If the signal is at "0", then no jump back is exected and the program processing is continued
with the next part program block after the function call.

Parameter assignment
Program runtime

The runtime of the selected NC program is stored in the system variable $AC_CYCLE_TIME.
When starting a new program, the system variable is automatically reset to "0"(see Chapter
" Program runtime (Page 627) ")

Via the following machine data it can be set that the system variable $AC_CYCLE_TIME is
reset to "0" even in case of a program restart through the function "jump back to start of
program":

MD27860 $MC_PROCESSTIMER_MODE (Activation of the program runtime measurement)

Bit Value Description

0 $AC_CYCLE_TIME is not reset to "0" by the function "jump back to start of program". 8
1 $AC_CYCLE_TIME is reset to "0" by the function "jump back to start of program".

 Note

In order that the setting of bit 8 can become effective, the measurement of the current
program runtime must be active (MD27860 bit 1 = 1).

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
538 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Workpiece count

After the part program end (M02 / M30) has been attained, the activated workpiece counters
($AC_TOTAL_PARTS / $AC_ACTUAL_PARTS / $AC_SPECIAL_PARTS) are incremented
by "1" (see Chapter " Workpiece Counter (Page 634) ").

Via the following machine data it can be set that the activated workpiece counter is
incremented even in case of a program restart through the function "jump back to start of
program":

MD27880 $MC_PART_COUNTER (activation of workpiece counters)

Bit Value Description
 In case of a program restart through the function "jump back to start of program", the

workpiece counter:
0 $AC_TOTAL_PARTS is not incremented. 7
1 $AC_TOTAL_PARTS is incremented.
0 $AC_ACTUAL_PARTS is not incremented. 11
1 $AC_ACTUAL_PARTS is incremented.
0 $AC_SPECIAL_PARTS is not incremented. 15
1 $AC_SPECIAL_PARTS is incremented.

Programming
The function is called in the main or the part program via the command GOTOS.

Syntax: GOTOS

Parameters: none

Application in synchronized actions: not possible

 Note

GOTOS internally initiates a STOPRE (pre-processing stop).

Example

Programming Comment

N10 ... ; Beginning of the program

...

N90 GOTOS ; Jump to beginning of the program

...

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 539

8.9.11 Program section repetitions

8.9.11.1 Overview

Function
The program section repetition allows the repetition of any labeled section of a part program.

For more information on labels, please see:

References:

Programming Manual Fundamentals; Program Jumps and Program Repetitions

Definition options of part program sections
The program repetition offers various options for defining a part program section that is
supposed to be repeated:

● A single part program block

● A part program section after a start label

● A part program section between a start label and end label

● A part program section between a start label and the key word: ENDLABEL

References:

Programming Manual, Job Planning; Section "Program coordination"

8.9.11.2 Individual part program block

Functionality
Via REPEATB (B=Block) in part program block N150, the part program processing branches to
the part program block N120 that is labeled START_1. This is repeated x number of times. If P
is not specified, the program section is repeated exactly once. After the last repetition, the
part program is continued with the part program block N160 following the REPEATBinstruction.

:

N100 ...

N120 START_1: ... ; Label: START_1

N130 ...

N140 ...

N150 REPEATB START_1 P=n ; Repetition after: START_1

N160 ...

:

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
540 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note
Label search direction

The part program block identified by the label can appear before or after the REPEATB
statement. The search initially commences toward the start of the program. If the label is not
found, a search is made in the direction of the program end.

Programming

Syntax: REPEATB <Label> [P=n]

Label Start label to which the instruction: REPEAT branches
Type: String

P Number of repetitions

-{}-n Number of repetitions
Type: Integer

8.9.11.3 A part program section after a start label

Functionality
Via REPEAT in part program block N150, the part program processing branches to the part
program block N120 that is labeled START_1. This part program block and all of the following
part program blocks (N130 and N140) are repeated x number of times up to the part
program block that contains the REPEATinstruction (N150). If P is not specified, the part
program section (N120 - N140) is repeated exactly once. After the last repetition, the part
program is continued with the part program block N160 following the REPEATinstruction.

:

N100 ...

N120 START_1: ... ; Start label: START_1

N130 ...

N140 ...

N150 REPEAT START_1 P=n ; Repetition after: START_1

N160 ...

:

 Note
Label search direction

The part program block marked with the Start label must come before the REPEATinstruction.

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 541

Programming

Syntax: REPEAT <Label> [P=n]

Label Start label to which the instruction: REPEAT branches
Type: String

P Number of repetitions

-{}-n Number of repetitions
Type: Integer

8.9.11.4 A part program section between a start label and end label

Functionality
Via REPEAT in part program block N160, the part program processing branches to the part
program block N120 that is labeled START_1 with a start label. This part program block and all
the part program blocks up to and including the part program block marked with the end
label END_1 (N140) are repeated x number of times. If P is not specified, the part program
section (N120 - N140) is repeated exactly once. After the last repetition, the part program is
continued with the part program block N170 following the REPEATinstruction.

:

N100 ...

N120 START_1: ... ; Start label: START__1

N130 ...

N140 END_1 ... ; End label: END_1

N150 ...

N160 REPEAT START_1 END_1 P=n ; Repetition: START_1 until END_1

N170 ...

:

 Note
Label search direction

The program section marked with the Start and End labels can come before or after the
REPEATinstruction. The search initially commences toward the start of the program. If the Start
label is not found, a search is made in the direction of the program end.

If the REPEAT instruction is between the Start and End label, only the part program section
from the Start label to the REPEAT instruction is repeated.

REPEAT instruction repeated.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
542 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programming

Syntax: REPEAT <Start_Label> <End_Label> [P=n]

 Start_Label Start label to which the instruction: REPEAT branches.
Beginning of the part program section that is repeated.
Type: String

End_Label End of the part program section that is repeated.
Type: String

P Number of repetitions

n Number of repetitions
Type: Integer

8.9.11.5 A part program section between a Start label and the key word: ENDLABEL

Functionality
Via REPEAT in part program block N150, the part program processing branches to the part
program block N120 that is labeled START_1 with a start label. This part program block and all
the part program blocks up to and including the part program block marked with the key word
ENDLABEL (N140) are repeated x number of times. If P is not specified, the part program
section (N120 - N140) is repeated exactly once. After the last repetition, the part program is
continued with the part program block N170 following the REPEATinstruction.

:

N100 ...

N120 START_1: ... ; Start label: START__1

N130 ...

N140 ENDLABEL: ... ; End label: Keyword ENDLABEL

N150 ...

N160 REPEAT START_1 END_1 P=n ; Repetition: START_1 until END_1

N170 ...

:

 Note
Label search direction

The program section marked with the Start and End labels can come before or after the
REPEATinstruction. The search initially commences toward the start of the program. If the Start
label is not found, a search is made in the direction of the program end.

If no keyword ENDLABEL is located between the Start label and the REPEAT instruction, the part
program section from the Start label to the REPEAT instruction is repeated.

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 543

Programming

Syntax: REPEAT <Label> [P=n]

 Label Start label to which the instruction: REPEAT branches.
Beginning of the part program section that is repeated.
Type: String

P Number of repetitions
n Number of repetitions

Type: Integer

8.9.12 Event-driven program calls

8.9.12.1 Function

What is the purpose of the function?
The function "Event-driven program calls" offers the possibility of letting an application
program run implicitly during certain events, such as for making default settings of functions
of initializations.

Events
Triggering events can be:

● Part program start

● Part program end

● Operator panel reset

● Power-up of the NC control

The triggering events are selected with the machine data MD20108
$MC_PROG_EVENT_MASK (see Section "Parameterization (Page 547)").

User program
In the default setting the program _N_PROG_EVENT_SPF is activated after the triggering
event occurs. If a different application program is to be activated, then it must be entered in
the machine date MD11620 $MN_PROG_EVENT_NAME (see Section "Parameterization
(Page 547)").

The application program activated by the event is basically processed in the channel, in
which the respective event occurred.

The application program is executed with the lowest priority and so can be interrupted by the
user ASUB.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
544 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Processing sequence
Sequence during activation through part program start

Initial state:

Channel: In the Reset state
Mode: AUTO

AUTO + overstoring or MDA
TEACHIN

1. NC Start

2. Initialization sequence with evaluation of:

MD20112 $MC_START_MODE_MASK (definition of the control default settings in case of
NC START)

3. Implicit call of _N_PROG_EVENT_SPF as part program

4. Processing of the data part of the main program

5. Processing of the program part of the main program

Sequence during activation through part program end

Initial state:

Channel: In active state
Mode: AUTO

AUTO + overstoring or MDA
TEACHIN

1. Block with end of part program is changed

2. Control activates reset-sequence with evaluation of machine data:

MD $MC_RESET_MODE_MASK

$MC_GCODE_RESET_VALUES

$MC_GCODE_RESET_MODE

3. Implicit call of _N_PROG_EVENT_SPF as ASUB

4. Control activates reset-sequence with evaluation of machine data:

$MC_RESET_MODE_MASK

$MC_GCODE_RESET_VALUES

$MC_GCODE_RESET_MODE

⇒ The G code reset position continues to be set via machine data!

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 545

Sequence during activation through operator panel reset

Initial state:

Channel: Any
Mode: Any

1. Control activates reset-sequence with evaluation of machine data:

MD $MC_RESET_MODE_MASK

$MC_GCODE_RESET_VALUES

$MC_GCODE_RESET_MODE

2. Implicit call of _N_PROG_EVENT_SPF as ASUB

3. Control activates reset-sequence with evaluation of machine data:

$MC_RESET_MODE_MASK

$MC_GCODE_RESET_VALUES

$MC_GCODE_RESET_MODE

⇒ The G code reset position continues to be set via machine data!

Sequence during activation through power-up

1. Control activates after power-up reset-sequence with evaluation of machine data:

MD $MC_RESET_MODE_MASK

$MC_GCODE_RESET_VALUES

$MC_GCODE_RESET_MODE

2. Implicit call of _N_PROG_EVENT_SPF as ASUB

3. Control activates reset-sequence with evaluation of machine data:

$MC_RESET_MODE_MASK

$MC_GCODE_RESET_VALUES

$MC_GCODE_RESET_MODE

⇒ The G code reset position continues to be set via machine data!

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
546 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal chart
The following diagrams show the signal chart of the NC/PLC interface signals DB21, ...
DBB35 ("Program status" and "Channel status") in case of event-driven program call:

Figure 8-8 Signal chart in case of activation through part program start and part program end

Figure 8-9 Signal chart during activation through operator panel reset

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 547

 Note

DB21, ... DBX35.4 ("Program status aborted") and DB21, ... DBX35.7 ("Channel status
reset") are only received if event-driven user program is complete. Between program end
and the start of the event-driven application program these states are not imported. This is
also the case between an operator panel reset and the start of the application program.

Display
The information about the triggering event is provided to the PLC via the NC/PLC interface
byte DB21, ... DBB376.

Bit Value Meaning
0 1 Part program start from the channel status reset
1 1 Part program end
2 1 Operator panel reset
3 1 Power-up
4 1 1st start after block search (see "Automatic Start of an ASUB after block search

(Page 483)")

The global query of DB21, ... DBB376 on 0 enables the determination, whether an event-
driven application program is active at all.

If the event-driven application program has expired or has been interrupted with RESET,
then the related display bit is deleted in the interface. For a very brief program, the
corresponding bit remains for at least the duration of a complete PLC cycle.

8.9.12.2 Parameterization

Triggering event
Which events the application program should activate, is set channel-specific in the machine
data:

MD20108 $MC_PROG_EVENT_MASK (event-controlled program call)

Bit Value Meaning
0 1 Activation through part program start
1 1 Activation through part program end
2 1 Activation through operator panel reset
3 1 Activation through run-up of the NC

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
548 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Requirement for the activation:

The application program (default setting: _N_PROG_EVENT_SPF) must be loaded and
cleared.

 Note

MD20108 $MC_PROG_EVENT_MASK is ignored during the simulation.

User program
In the default setting after an event set with MD20108 occurs, the program
_N_PROG_EVENT_SPF is activated from the directory _N_CMA_DIR.

If another program is to be activated, then the name of this user program must be entered in
the following machine data:

MD11620 $MN_PROG_EVENT_NAME

The specified program must be present in one of the cycle directories.

The following search path is run when an event set with MD20108 occurs.

1. /_N_CUS_DIR/ for user cycles

2. /_N_CMA_DIR/ for manufacturer cycles

3. /_N_CUS_DIR/ for standard cycles

The first found program with the given name is called.

 Note

The specified name is checked syntactically as in case of a subprogram name, i.e. the first
two characters must be letters or underscores (no numbers). Prefix (_N_) and suffix (_SPF)
of the program names are added automatically, if not specified.

 Note

The same protection mechanisms that can be activated for cycles (protection levels for
writing, reading, etc.) are activated.

Behavior when starting a user ASUB
The behavior of the function "event-driven program call" upon start of a user ASUB from the
reset channel state can be set channel-specific with the machine data:

MD20109 $MC_PROG_EVENT_MASK_PROPERTIES

Bit Value Meaning

0 The occurrence of an event set with MD20108 (part program start, part program
end and/or operator panel reset) leads to the activation of the event-driven user
program.

0

1 The occurrence of an event set with MD20108 does not lead to the activation of the
event-driven user program.

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 549

Behavior when the single-block processing is set
The behavior of the function "event-driven program call" in case of set single-block
processing can be set channel-specific with the machine data:

MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK

Bit Value Meaning
 In the event-driven user program:

 • After an activation through part program start:

0 The single-block processing is effective

0

1 The single-block processing is suppressed
 • After an activation through part program end:

0 The single-block processing is effective

1

1 The single-block processing is suppressed
 • After an activation through operator panel reset:

0 The single-block processing is effective

2

1 The single-block processing is suppressed
 • After an activation through run-up:

0 The single-block processing is effective

3

1 The single-block processing is suppressed

If the single-block processing is suppressed, then the event-driven user program is
processed without interruption.

 Note

MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK affects all single-block processing
types.

 Note

The single-block processing in the event-driven user program can be switched-off through
the following configuration:

MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (prevent single-block stop) bit 0 = 1

The differentiated settings in MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK are then
ineffective.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
550 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Behavior when the read-in disable is set
The behavior of the function "event-driven program call" in case of set read-in disable
(DB21, ... DBX6.1 = 1) can be set channel-specific with the machine data:

MD20107 $MC_PROG_EVENT_IGN_INHIBIT

Bit Value Meaning
 In the event-driven user program:

 • After an activation through part program start:

0 The read-in disable is effective

0

1 The read-in disable is suppressed
 • After an activation through part program end:

0 The read-in disable is effective

1

1 The read-in disable is suppressed
 • After an activation through operator panel reset:

0 The read-in disable is effective

2

1 The read-in disable is suppressed
 • After an activation through run-up:

0 The read-in disable is effective

3

1 The read-in disable is suppressed

 Note

For bit 0 = 1 (user program is activated after part program start) the following constraint is
applicable:

If the user program is ended with the part program command RET, then RET always leads to
an executable block (similar to M17).

In case of bit 0 = 0, RET interpretation is done in the Interpreter and leads to an executable
block.

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 551

Suppress updating of the display of the program and channel states.
In order to avoid a flickering of the display of the program and the channel states in the
operator panel, the updating of the display can be suppressed for the execution of the
normally very brief event-driven user program. In the display, the program and channel
states remain visible before activation of the event-driven user program (e.g. "program state
canceled" and "channel state reset").

The parameterization of this function is performed with the channel-specific machine data:

MD20192 $MC_PROG_EVENT_IGN_PROG_STATE

Bit Value Meaning
 During execution of an event-driven user program, the updating of the display of

the program and channel states is:
 • After an activation through part program end:

0 Not suppressed

1

1 Suppressed
 • After an activation through operator panel reset:

0 Not suppressed

2

1 Suppressed
 • After an activation through run-up:

0 Not suppressed

3

1 Suppressed

 Note

The system variables $AC_STAT and $AC_PROG are not affected by this function, i.e. in
the running event-driven user program, $AC_STAT is set to "active" and $AC_PROG to
"running".

NC/PLC interface signals DB21, ... DBX35.0-7 ("Program state ..." and "Channel state ...")
also remain unaffected.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
552 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Behavior for NC Stop
The behavior of the function "event-driven program call" for NC Stop (i.e. NC/PLC interface
signal DB21, ... DBX7.2, 7.3 or 7.4 is set) can be set channel-specific for the triggering event
part program end, operator panel reset and run-up with the machine data:

MD20193 $MC_PROG_EVENT_IGN_STOP

Bit Value Meaning
 The event-driven user program is:

 • After an activation through part program end:

0 Stopped/prevented at NC stop

1

1 Despite NC Stop been completely processed
 • After an activation through operator panel reset:

0 Stopped/prevented at NC stop

2

1 Despite NC Stop been completely processed
 • After an activation through run-up:

0 Stopped/prevented at NC stop

3

1 Despite NC Stop been completely processed

In this way, an edge change of the interface signal DB21, ... DBX7.3 (NC Stop) initiated by
the user by activating the NC Stop key in case of reset or power-up is ignored during the
execution of the event-driven user program and an undesired stop behavior at the machine
is prevented.

 Note

A programming of DELAYFSTON/ DELAYFSTOF in the event-driven user program cannot be
provided with the behavior set with MD20193, because the NC Stop can cause an
interruption before the execution of the first command DELAYFSTON.

8.9.12.3 Programming

User program
End of program

The following must be kept in mind, if the user program is to be activated through the part
program start.

● The user program must be ended with M17 or RET.

● A jump back by means of REPOS command is not permitted and leads to an alarm.

Block display

The display can be suppressed in the current block display using the DISPLOF attribute in the
PROC statement.

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 553

Processing status

Via the user M function the PLC can be informed about the processing status of the event-
driven user program.

Scan for triggering event
The event, which causes the activation of the user program, can be queried in the user
program with the following system variable:

$P_PROG_EVENT (event-driven program call active)

Value Description
1 Activation through part program start
2 Activation through part program end
3 Activation through Operator panel reset
4 Activation through Power up
5 Activation after output of the last action block after Block search (see "Automatic Start of an

ASUB after block search (Page 483)")

Query of the current channel
The application program is basically processed in the channel, in which the corresponding
event has occurred. The current channel is queried in the user program with the following
system variables:

$P_CHANNO (query of the current channel number)

 Note

Power up is an event that takes place in all channels.

8.9.12.4 Boundary conditions

Emergency stop / error message
If an error is present when the operator panel is reset or after powerup EMERGENCY STOP
or Mode group/NCKContinue, then the event-driven user program will only be processed
after EMERGENCY STOP or the error has been acknowledged in all channels.

 Note

The power up event occurs in all channels at the same time.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
554 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.9.12.5 Examples

Example 1: Call of all events set with MD20108
Parameter assignment:

MD20108 $MC_PROG_EVENT_MASK = 'H0F' Call of _N_PROG_EVENT_SPF for:

• Part program start
• Part program end
• Operator panel reset
• Ramp-Up

Programming:

Program code Comment

PROC PROG_EVENT DISPLOF

IF ($P_PROG_EVENT==1) ; Processing for part program start.

 MY_GUD_VAR=0 ; Initialize GUD variable

 RET

ENDIF

IF ($P_PROG_EVENT==2) OR ($P_PROG_EVENT==3) ; Processing for part program end and

operator panel reset.

 DRFOF ; Deactivate DRF offsets

 IF $MC_CHAN_NAME=="CHAN1"

 CANCEL(2) ; Delete modal synchronized action 2

 ENDIF

 RET

ENDIF

IF ($P_PROG_EVENT==4) ; Sequence for power-up

 IF $MC_CHAN_NAME=="CHAN1"

 IDS=1 EVERY $A_INA[1]>5.0 DO $A_OUT[1]=1

 ENDIF

 RET

ENDIF

RET

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 555

Example 2: Call through Operator panel reset
Parameter assignment:

MD20108 $MC_PROG_EVENT_MASK = 'H04' Call of _N_PROG_EVENT_SPF for:

• Operator panel reset

Programming:

Program code Comment

PROC PROG_EVENT DISPLOF

N10 DRFOF ; Deactivate DRF offsets

N20 M17

Example 3: Initialization of the function
Section of the startup file (_N_INITIAL_INI):

Program code Comment

...

CHANDATA(3) ; Initialization for channel 3

$MC_PROG_EVENT_IGN_INHIBIT='H04F'

$MC_PROG_EVENT_MASK='H04'

...

Meaning:

The part program _N_PROG_EVENT_SPF from the directory _N_CMA_DIR should be
started automatically with the RESET key and processed till the end, regardless of whether
the read-in disable is activated or deactivated.

8.9.13 Influencing the Stop events through Stop delay area

Stop delay area
The reaction to a stop event can be influenced by the conditioned interruptible area in the
current part program. Such a program area is called stop delay area.

Within the stop delay areas there should be no stop and the feed should not be changed.
Stops do not take effect until the program section has been completed (Example: Making of
a thread).

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
556 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

A stop delay area is defined with the part program commands:

DELAYFSTON Start of a stop delay area
DELAYFSTOF End of a stop delay area

References:
Programming Manual, Job Planning

Stop events
Overview of the NCK events that cause a stop:

NCK events Reaction Stop criteria
Reset and mode group RESET Immediate IS: DB21, ... DBX7.7 and DB11 DBX20.7
PROG_END Alarm 16954 NC prog.: M30
Interrupt Delayed IS: "FC-9" and ASUB DB10 DBB1
DELDISTOGO_SYNC Immediate IS: "Delete distance-to-go" DB21, ... DBX6.2 and axial
PROGRESETREPEAT Delayed IS: "Clear number of subprogram passes" DB21, ...

DBX6.3
PROGCANCELSUB Delayed IS: "Program level abort" DB21, ... DBX6.4
SINGLEBLOCKSTOP Delayed In the stop delay area: NC stops at the end of the 1st

block outside the stop delay area.
Single block is active before the stop delay area:
IS: "NC Stop at block limit" DB21, ... DBX7.2

SINGLEBLOCK_IPO Delayed IS: "Activate single-block type 1" DB11 DBX21.7
SINGLEBLOCK_DECODIER Delayed IS: "Activate single-block type 2" DB11 DBX21.6
STOPALL Immediate IS: DB21, ... DBX7.4 and DB11 DBX20.6
STOPPROG Delayed IS: DB21, ... DBX7.3 and DB11 DBX20.5
OVERSTORE_BUFFER_END_REACHED Alarm 16954 NC prog.: Stop because of empty overstore buffer
PREP_STOP Alarm 16954 NC prog.: STOPRE and all implicit Stopres
PROG_STOP Alarm 16954 NC prog.: M0 and M1
STOPPROGATBLOCKEND Delayed IS: "NC Stop at block limit" DB21, ... DBX7.2
STOPPROGATSUPEND System fault Subprogram end should always deselect the stop delay

area.
WAITM Alarm 16954 NC prog.: WAITM
WAITE Alarm 16954 NC prog.: WAITE
INIT_SYNC Alarm 16954 NC prog.: INIT with parameter "S"
MMCCMD Alarm 16954 NC prog.: MMC(STRING, CHAR)
PROGMODESLASHON Delayed IS: DB21, ... DBB26 Activate / switch over skip block
PROGMODESLASHOFF Delayed IS: DB21, ... DBB26 Deactivate skip block
PROGMODEDRYRUNON Delayed IS: DB21, ... DBX0.6 Activate DryRun
PROGMODEDRYRUNOFF Delayed IS: DB21, ... DBX0.6 Deactivate DryRun
BLOCKREADINHIBIT_ON Delayed IS: DB21, ... DBX6.1 Activate read-in disable

 K1: Mode group, channel, program operation, reset response
 8.9 Program operation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 557

NCK events Reaction Stop criteria
STOPATEND_ALARM Immediate Alarm: Alarm configuration STOPATENDBYALARM
STOP_ALARM Immediate Alarm: Alarm configuration STOPBYALARM
STOPATIPOBUFFER_ISEMPTY_ALARM Immediate Internal: Stop after alarm on empty IPO buffer
STOPATIPOBUF_EMPTY_ALARM_REORG Immediate Internal: Stop after alarm on empty IPO buffer
RETREAT_MOVE_THREAD Alarm 16954 NC prog.: Alarm 16954 at LFON (Stop & fast lift in G33

not possible
WAITMC Alarm 16954 NC prog.: WAITMC
NEWCONF_PREP_STOP Alarm 16954 NC prog.: NEWCONF
BLOCKSEARCHRUN_NEWCONF Alarm 16954 NC prog.: NEWCONF
SET_USER_DATA Delayed OPI: PI "_N_SETUDT"
ESR Delayed Extended stop and retract
EXT_ZERO_POINT Delayed External zero offset
STOPRUN Alarm 16955 OPI: PI "_N_FINDST" STOPRUN

Reaction

The reaction to a stop event can be:

● Immediate

Stops immediately even in the stop delay area. Is known as a "hard stop event".

● Delayed

Does not stop (even short-term) until after the stop delay area. Is known as a "soft stop
event".

● Alarm 16954

Program is aborted because illegal program commands have been used in the stop delay
area.

● Alarm 16955

Program is continued, an illegal action has taken place in the stop delay area.

● Alarm 16957

The program area (stop delay area) enclosed by DELAYFSTON and DELAYFSTOF could not be
activated. As a result, every stop will take effect immediately and is not subject to a delay!
This will always occur when the deceleration begins before the stop delay area but ends
within the stop delay area. Likewise, if the stop delay area is entered with an override of
0, the stop delay area also cannot be activated. (Example: A G4 before the stop delay
area allows the user to reduce the override to 0. The next block in the stop delay area
then begins with override 0 and the described alarm situation occurs.)

 Note

MD11411 $MN_ENABLE_ALARM_MASK (activation of warnings) Bit 7 activates this
alarm.

K1: Mode group, channel, program operation, reset response
8.9 Program operation

 Basic Functions
558 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Stop criteria

A stop event can be triggered by the following

• NC/PLC interface signals from the PLC → "Hard" stop event

• Alarms with NOREADY response → "Hard" stop event

• Stop key → "Soft" stop event

• Read-in disable → "Soft" stop event

• Single block → "Soft" stop event

 Note

Some NCK events are stopped for a short time, in order to perform a switching operation,
and restart immediately. These include, e.g. the ASUB that stops the contour briefly in order
to then start the ASUB immediately. These events are also allowed in the stop delay area,
however they are pushed back to its end and are thus considered "soft stop events".

Conditions
The following conditions apply while a stop delay area is being processed:

● A change in the feed is ignored while in the stop delay area. A feed disable is thus not
effective until the program area has been exited, and is stopped.

● None of the main run axes, such as command axes and positioning axes, which are
traversed with POSA, are stopped.

● Part program command G4 is permitted in the stop delay area.

Other part program commands that cause a stop in the meantime (e.g. WAITM) are not
permitted and trigger the alarm 16954.

● A stop delay area entered with an override of 0% will not be accepted!

 K1: Mode group, channel, program operation, reset response
 8.10 Asynchronous subprograms (ASUBs), interrupt routines

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 559

8.10 Asynchronous subprograms (ASUBs), interrupt routines

8.10.1 Function

8.10.1.1 General functionality

 Note

The terms "asynchronous subprogram (ASUB)" and "interrupt routine" are used
interchangeably in the description below to refer to the same functionality.

interrupt routines
Interrupt routines are normal part programs, which are started by interrupt events (interrupt
inputs, process or machine status) related to the machining process or the relevant machine
status.

Any part program block currently being executed will be interrupted by the routine if it is not
specifically declared to be locked against interruption. It is possible to continue the part
program at the point of interruption at a later stage.

Definition of interrupt routines
The command SETINT or an interrupt signal via the PI service "ASUB" must be assigned to a
part program, which is supposed to act as interrupt routine. This turns the part program into
an interrupt routine.

K1: Mode group, channel, program operation, reset response
8.10 Asynchronous subprograms (ASUBs), interrupt routines

 Basic Functions
560 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Interrupt signals
● A total of 8 interrupt signals (inputs) are available.

● All inputs can be controlled via the PLC.

● The first four interrupt signals are also controlled via the 4 rapid NC inputs of the NCU
module.

● The signal status of the rapid NC inputs can be read out via the PLC interface (DB10).

● The transmission of the rapid NC input signals to the interrupt signals can be disabled via
the PLC interface (DB10).

4 rapid NC inputs

4 interrupt signals 4 interrupt signals

PLC interface

Figure 8-10 Interrupt signals

For further information about PLC control of the rapid NC inputs (interrupt signals) see
Section "P3: Basic PLC program for SINUMERIK 840D sl (Page 809)".

References:
Function Manual, Extended Function; Digital and Analog NCK I/O (A4)

Call of interrupt routines
During program operation

It is possible to call the interrupt routines, when the mode groups are present in program
operation. This means that the processing is done either in the mode type AUTOMATIC or
MDA part program blocks.

Outside the program operation

Interrupt routines can also be activated in the following program states or mode types:

● JOG, JOG REF

● MDA Teach In, MDA Teach In REF, MDA Teach In JOG, MDA REF, MDA JOG

● AUTOMATIC, stopped, ready

● Not referenced

If an interrupt routine is activated in JOG or REF mode, it will interrupt any jogging and
referencing operations in progress.

 K1: Mode group, channel, program operation, reset response
 8.10 Asynchronous subprograms (ASUBs), interrupt routines

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 561

Activation
The activation of an interrupt routine can be initiated:

● By a 0/1 transition of the interrupt signal, triggered by a 0/1 transition at the rapid NC
input

● By calling the "Function call ASUB" (see Section "P3: Basic PLC program for
SINUMERIK 840D sl (Page 809)")

● By setting an output via synchronized action which indirectly sets an interrupt input via
short-circuit (see "Examples (Page 570)").

References:
Function Manual, Synchronized Actions

Display
The activation of an interrupt routine is shown with the following NC/PLC interface signal:

DB21, … DBX378.0 (ASUB active)

8.10.1.2 Sequence of an interrupt routine in program operation

Decelerating the axes
Upon activation, all machine axes are decelerated to a standstill according to the
acceleration ramp (MD32300 $MA_MAX_AX_ACCEL), and the axis positions are stored.

Reorganization
In addition to decelerating the axes, the previously decoded calculation blocks are calculated
back to the interruption block, i.e. all the variables, frames and G codes are assigned the
value that they would have at the point of interruption if the part program had not been
previously decoded. These values are transferred to the buffer so that they can be called up
again when the interrupt routine is completed.

Exceptions where no reorganization is possible:

● In thread cutting blocks

● With complex geometries (e.g. spline or radius compensation)

Processing of interrupt routine
The interrupt routine is automatically started on completion of reorganization.

The system handles the interrupt routine like a normal part program (nesting depth, etc.)

K1: Mode group, channel, program operation, reset response
8.10 Asynchronous subprograms (ASUBs), interrupt routines

 Basic Functions
562 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

End of interrupt routine
After the end identifier (M02, M30, M17) of the interrupt routine has been processed, the axis
traverses by default to the end position programmed in the part program block following the
interruption block.
A REPOS instruction must have been programmed at the end of the interrupt routine if return
positioning to the point of interruption is required, e.g.
N104 REPOSL M17

Part program:
PROGNAME
N10 ...
N20 Y20
N30 X60
N40 ...
N50 M30

Interrupt routine:
INTER
N101 ...
N102 ...
N103 ...
N104 REPOSL M17

Interruption point

Standard (for G90)

End point of the
interrupt routine

Path with
REPOSL

Standard (for G91)

N101

N20

N30

N40

N104Traverse path of the
interrupt routine

Figure 8-11 End of interrupt routine

8.10.1.3 Interrupt routine with REPOSA
If an interrupt routine with REPOSA triggered by the PLC (block FC9) "interrupted" in channel
status in program operation is completed, then the following sequence is typical:
1. Before the re-approach to the contour, the controller stops and goes to program status

"Stopped". The following NC/PLC-interface signal is set:
DB21, ... DBX318.0 (ASUB is stopped)

2. The operator presses the START key. Thereupon, the signal DB21, ... DBX318.0 is reset
and the re-approach motion starts.

3. At the end of the re-approach motion, the FC9 signal "ASUB done" is set and the path of
the interrupted part program is continued.

 Note

The NC/PLC-interface signal DB21, ... DBX318.0 (ASUB is stopped) is available only for
the following case: Interrupt "interrupted" in program operation in the channel status.

 Note

In case of interrupt routines that close without REPOS, the signals "Asub-Done" and
DB21, ... DBX318.0 (ASUB is stopped) occur at the same time.

 K1: Mode group, channel, program operation, reset response
 8.10 Asynchronous subprograms (ASUBs), interrupt routines

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 563

8.10.1.4 NC response
The different reactions of the control to an activated interrupt routine in the various operating
states are given in the following table:

Status of NC ASUB start Control system reaction
Program is active Interrupt, (PLC) 1. Fast retraction or stop axes

2. Interrupt the program for the duration of the ASUB
3. Approach of the interruption point, if REPOS in ASUB
4. Continuation of the part program

RESET Interrupt, (PLC) The ASUB is executed like a main program. RESET (without M30) is
executed at the end of the ASUB. The next control system status
depends on the following machine data:
MD20110 $MC_RESET_MODE_MASK
MD20112 $MC_START_MODE_MASK
References:
Function Manual Basic Functions; Axes, Coordinate Systems, Frames
(K2), Chapter: "Workpiece-related actual-value system"

Interrupt, (PLC) ASUB is executed. At the end of the ASUB the STOP state is reapplied.
If REPOS in the ASUB:
• The ASUB processing is stopped before the approach block.
• The approach movement can be initiated with the Start key.

Program operation
(AUTOMATC or MDA)
+ channel stopped

Start key Once the ASUB has been executed, processing of the interrupted
program is resumed.

Manual mode
+ channel stopped

Interrupt, (PLC) Control system assumes the status "internal program execution mode"
for the addressed channel (not evident externally) and then activates the
ASUB. The selected operating mode remains valid. The original status is
resumed after execution of the ASUB (M17).

JOG
AUTO Teach-In
AUTO Teach reference pnt.

Interrupt, (PLC)

MDA JOG,
MDA Teach-In,
MDA Teach reference pnt.

Interrupt, (PLC)

Stop processing, evaluate:
MD11602 $MN_ASUP_START_MASK
MD11604 $MN_ASUP_START_PRIO_LEVEL
Internal switchover to "internal program execution mode" if appropriate,
activate ASUB, restore status prior to ASUB start.
Any LIFTFAST defined with SETINT is not activated in JOG mode.

Manual mode
+ channel running

Interrupt, (PLC) The current active motion is stopped. The distancetogo is deleted. The
remaining sequence of operations is the same as for "Manual mode,
channel stopped".

Processing of INITIAL.INI
Block search
Alarm that cannot be
removed by NC start.
Digitalizing active
Channel in fault condition

not possible The signal "Interrupt request not possible" is generated.

K1: Mode group, channel, program operation, reset response
8.10 Asynchronous subprograms (ASUBs), interrupt routines

 Basic Functions
564 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.10.2 Parameterization

Effect of mode group-specific signals
The effect of the mode group-specific signals (NC/PLC interface signals DB11) on channels
of the mode group that is currently processing the interrupt routines, is set in the machine
data:

MD11600 $MN_BAG_MASK.bit n = <value>

Bit Value Meaning

0 The mode group-specific signals (NC/PLC interface signals DB11) are effective. 0
1 The mode group-specific signals (NC/PLC interface signals DB11) are not

effective.

MD11600 also controls whether the internal program execution mode is imported only for the
channel in which the interrupt routine has been activated, or to all channels in the mode
group.

Bit Value Meaning

0 A mode group switchover is performed in all channels of the mode group. 1
1 An internal mode group switchover is only performed in the channel in which an

interrupt routine is active (only possible with bit 0==1).

If, because of the machine data setting, the channel in which the interrupt is being processed
has left the mode group, the mode group signals "Mode group reset", "Mode group stop",
etc. have no effect on this channel. In this way, the interrupt routine is run without being
disturbed by the mode group signals.

Parameterizable start enable
In the basic setting, the start of an ASUB is blocked by the following states in the channel:

● Stop through NC stop, M0 or M01

● Not all axes in the channel are referenced

● Read-in disable is active (DB21, ... DBX6.1 = 1)

The start can be enabled for specific states via the following machine data.

NC-specific start enable for NC stop, M0, M01, read-in disable

MD11602 $MN_ASUP_START_MASK

 K1: Mode group, channel, program operation, reset response
 8.10 Asynchronous subprograms (ASUBs), interrupt routines

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 565

Channel-specific start enable for non-referenced axes in the channel

● MD20105 $MC_PROG_EVENT_IGN_REFP_LOCK

The start enable can be set separately for the following states via the machine data for
event-driven program calls (ProgEvent) for non-referenced axes in the channel:

– Part program start from channel state "Reset"

– Part program end

– Reset

– Power On

– First start after search

● MD20115 $MC_IGNORE_REFP_LOCK_ASUP

The start enable can be issued interrupt-specific via the machine data for the ASUB with
non-referenced axes in the channel.

Manual start enable
If an ASUB cannot be started automatically because of the parameterized start enables, the
user can manually issue a start enable by triggering NC start

 Note

The ASUB for "fast retraction from the contour" (LIFTFAST) is started in every case.

Manual traversing during an ASUB interruption in JOG mode
Axes can be manually traversed by the operator using the traversing keys during the
interruption of an ASUB started automatically in JOG mode. The function is enabled via:

MD11602 $MN_ASUP_START_MASK.bit 3

 Note
Multi-channel systems

In multi-channel systems, the following machine data must also be set:

MD11600 $MN_BAG_MASK, bit 1 = 1

Continuation of the ASUB

After manually traversing the axes, NC Start must be initiated by the operator. The axes are
automatically traversed to the interruption point (REPOS). The ASUB is then continued at
the interruption point.

K1: Mode group, channel, program operation, reset response
8.10 Asynchronous subprograms (ASUBs), interrupt routines

 Basic Functions
566 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Application example

In case of a single-slide turning machine a stock removal cycle is started as ASUB in the
JOG mode and with this a shaft several meters long is machined. During machining it is
necessary to change the cutting edge of the tool. The machine operator stops the ASUB and
retracts the axes manually using the traversing keys in order to change the cutting edge of
the tool. After changing the cutting edge, the operator activates NC Start. Repositioning at
the interruption point is performed with the REPOS operation. Thereafter, the ASUB is
continued.

Supplementary condition

Manual traversing of axes during the interruption of an ASUB in JOG mode is only possible if
the ASUB has been activated from the program state "Aborted", channel state "Reset".

Effectiveness of the parameterized start enables
The user-specific interrupt signals are assigned the priorities 1 - 8, with 1 = highest priority
(see Section "Programming (Page 568)"). Starting from the highest, up to which priority the
parameterized start enables apply for the associated ASUB is defined with the following
machine data:

MD11604 $MN_ASUP_START_PRIO_LEVEL = <priority>

Behavior with read-in disable
The following channel-specific machine data is used to set for each interrupt signal whether
the assigned ASUB is processed despite a set read-in disable (DB21, ... DBX6.1 = 1), or
whether the read-in disable is to apply:

MD20116 $MC_IGNORE_INHIBIT_ASUP, bit 0 - bit 31

Bit x is assigned to the interrupt signal (x+1).

Boundary conditions

The settings in MD20116 $MC_IGNORE_INHIBIT_ASUP have no effect if the read-in disable
in the ASUB is always to be ignored:

MD11602 $MN_ASUP_START_MASK, bit 2 = 1

Behavior when the single-block processing is set
The following channel-specific machine data is used to set for each interrupt signal whether
the assigned ASUBs are processed without interruption with active single-block processing
or whether the single-block processing is to apply:

MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP, bit 0 - bit 31

Bit x is assigned to the interrupt signal (x+1).

 K1: Mode group, channel, program operation, reset response
 8.10 Asynchronous subprograms (ASUBs), interrupt routines

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 567

Boundary conditions

● MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP only applies for IPO single block
(SBL1).

● The settings in MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP have no effect if the
single-block processing in the ASUB is always to be ignored:

MD10702 $MN_IGNORE_SINGLEBLOCK_MASK, bit 1 = 1

Suppressing the updating of the "Program and channel state" display
To avoid a flickering of the display of the program and the channel states on the user
interface when executing a very short ASUB, the updating of the display can be suppressed.
The program and channel state before activation of the ASUB is then displayed. The
parameter assignment is performed via channel-specific machine data:

MD20191 $MC_IGN_PROG_STATE_ASUP, bit 0 - bit 31

Bit x is assigned to the interrupt signal (x+1).

The following NC/PLC interface signal is set when executing an ASUB with suppressed
display:

DB21, … DBX378.1 == 1 (still ASUB active)

Special system variables and NC/PLC interface signals

The system variables and NC/PLC interface signals for the program state and the channel
state are not affected by the suppression of the display during the execution of an ASUB:

● $AC_STAT (channel state)

● $AC_PROG (program state)

● DB21, ... DBX35.0 - 4 (program state)

● DB21, ... DBX35.5 - 7 (channel state)

Fast retraction from contour (LIFTFAST)
The following machine data can be used to set whether the retraction direction for "Fast
retraction from the contour" (LIFTFAST) is to be mirrored when the "Mirror" function is active:

MD21202 $MC_LIFTFAST_WITH_MIRROR (fast retraction with mirroring)

The mirroring of the retraction direction only refers to the direction components perpendicular
to the tool direction.

References
A detailed description of the machine data can be found in:

Lists Manual "Detailed Description of the Machines"

K1: Mode group, channel, program operation, reset response
8.10 Asynchronous subprograms (ASUBs), interrupt routines

 Basic Functions
568 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.10.3 Programming

Assignment interrupt signal ↔ part program
The assignment interrupt signal ↔ part program is performed with the command SETINT.

Example:

Program code Comment

...

N20 SETINT(3) ABHEBEN_Z ; If input 3 switches, then interrupt routine

"ABHEB_Z" should start.

...

Together with SETINT additionally the following commands can be programmed:

● LIFTFAST

When the interrupt signal arrives, a "Fast retraction of the tool from the contour" is
executed before the interrupt routine starts. The motion direction for the fast retraction is
specified by the program instruction ALF.

● BLSYNC

Upon receiving the interrupt signal, the current program block is processed and only then
is the interrupt routine started.

 Note

The assignment interrupt signal ↔ part program is cleared when the following happens:
• Channel in Reset state
• CLRINT instruction in part program

Priorities
If several SETINT instructions are in the part program and therefore several signals can be
simultaneously received, the assigned interrupt routines must be allocated priorities that
define the sequence in which the interrupt routines are executed:
PRIO=<value>

There are priorities from 1 to 128. Priority 1 corresponds to the highest priority.
Example:

Program code Comment

...

N20 SETINT(3) PRIO=2 ABHEBEN_Z ; If input 3 switches, then interrupt routine

"ABHEB_Z" should start.

N30 SETINT(2) PRIO=2 ABHEBEN_X ; If input 2 switches, then interrupt routine

"ABHEB_X" should start.

...

The interrupt routines are executed in the sequence of the priority values if the inputs
become available simultaneously (are energized simultaneously): First "ABHEBEN_Z", then
"ABHEBEN_X".

 K1: Mode group, channel, program operation, reset response
 8.10 Asynchronous subprograms (ASUBs), interrupt routines

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 569

REPOS-query
With interrupt routines, sequences may be generated for which there is no unambiguous
return to an interruption point in the block processing sequence (REPOS).

The system variable $P_REPINF can be used to scan the ASUB to determine whether a
REPOS is possible.

Value Meaning
0 Repositioning with REPOS not possible because:

• Not called in the ASUB
• ASUB ran from reset status
• ASUB ran from JOG

1 Repositioning with REPOS possible in ASUB

Determining the cause of activation
With the system variable $AC_ASUP the cause leading to the activation of an interrupt
routine is specified bit-coded and can be read in the part program and in synchronized
actions (see "User-specific ASUB for RET and REPOS > Programming (Page 572)").

Flexible programming
The following commands help in the flexible programming of interrupt routines:

Command Meaning
SAVE If the SAVE command has been used to define the interrupt routine, the G

codes, frames and transformations previously active in the interrupted
part program become operative again as soon as the interrupt routine is
ended.

DISABLE The DISABLE command can be set to protect part program sections from
being interrupted by an interrupt routine.
The assignment interrupt signal ↔ part program is maintained but the
interrupt routine no longer responds to the 0/1 signal transition.

ENABLE The DISABLE command can be reset with the ENABLE command. Interrupt
routines are not activated until the next 0/1 transition of the interrupt
signal.

CLRINT Clear assignment interrupt signal ↔ part program

References
Programming Manual, Job Planning; Section: "Flexible NC Programming" > "Interrupt routine
(ASUB)"

K1: Mode group, channel, program operation, reset response
8.10 Asynchronous subprograms (ASUBs), interrupt routines

 Basic Functions
570 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.10.4 Restrictions

Cross-mode Start of interrupt routines

Requirement

MD11602 $MN_ASUP_START_MASK, at least bit 0 = 1

The following data must also be taken into account:

● MD11600 $MN_BAG_MASK

● MD11604 $MN_ASUP_START_PRIO_LEVEL

● Interrupt assignment priority

Recommended settings

NC-specific machine data:

● MD11600 $MN_BAG_MASK = 'H11'

● MD11602 $MN_ASUP_START_MASK = 'H101'

● MD11604 $MN_ASUP_START_PRIO_LEVEL = 7

Channel-specific machine data for the channel in which the ASUB is started or generally for
all channels:

● MD20105 $MC_PROG_EVENT_IGN_REFP_LOCK = ’H3F’

● MD20115 $MC_IGNORE_REFP_LOCK_ASUP = ’HFFFFFFFF’

8.10.5 Examples

Activation of an interrupt routine via synchronous action
1. Define number of active digital inputs/outputs:

MD10350 $MN_FASTIO_DIG_NUM_INPUTS=3

MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS=3

2. Generate short-circuit with the following MD setting:

MD10361 $MN_FASTIO_DIG_SHORT_CIRCUIT[0]='H0102B102'

MD10361 $MN_FASTIO_DIG_SHORT_CIRCUIT[1]='H0202B202'

3. HW assignment of the external NC input byte for NC program interrupt:

MD21210 $MC_SETINT_ASSIGN_FASTIN=2 ; better 1 byte more than needed

4. Define input as ASUB trigger:

SETINT(1) PRIO=1 SYNCASUP

5. IDS=1 EVERY $$AC_PATHN>=0.5 DO $A_OUT_[9]=1

 K1: Mode group, channel, program operation, reset response
 8.11 User-specific ASUB for RET and REPOS

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 571

8.11 User-specific ASUB for RET and REPOS

8.11.1 Function

Function
The NCK software supplied contains preprogrammed processes (internal ASUBs) for
implementation of the RET and REPOS functions. They can be replaced by user-specific
ASUBs written by the machine tool manufacturer.

DANGER
Programming fault

The machine manufacturer is responsible for the contents of ASUB routines used to
replace ASUP.SYF supplied by Siemens.

Installation
In the manufacturer directory _N_CMA_DIR or in the user directory _N_CUS_DIR a routine
with the name "_N_ASUP_SPF" can be loaded. It must implement the actions desired by the
user for the functions RET and REPOS.

8.11.2 Parameter assignment

Activation
The parameters for the activation of the user-specific routine "_N_ASUP_SPF" are set with
the machine data:

MD11610 $MN_ASUP_EDITABLE (activation of a user-specific ASUB).

Bit 0 and bit 1 specify which of the internal system routines are to be replaced by the user-
specific ASUB:

Binary value Meaning
0 Neither in case of RET nor in case of REPOS is the user-specific routine

_N_ASUP_SPF activated.
1 If the user-defined routine is activated for RET, then the routine provided in the

system is activated for REPOS.
2 If the user-defined routine is activated for REPOS, then the routine provided in the

system is activated for RET.
3 As in case RET and also in case of REPOS the user-specific routine is activated.

K1: Mode group, channel, program operation, reset response
8.11 User-specific ASUB for RET and REPOS

 Basic Functions
572 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Bit 2 defines in which directory the user-specific routine is to be searched first in case of
activation.

Bit Value Meaning

0 The user-specific routine is searched first in the user directory _N_CUS_DIR. 2
1 The user-specific routine is searched first in the manufacturer directory

_N_CMA_DIR.

Defining a level of protection
If a user-specific ASUB is to be used for RET and/or REPOS, i.e. when:
MD11610 $MN_ASUP_EDITABLE ≠ 0
then a level of protection can be defined for the user-specific routine "_N_ASUP_SPF". The
level of protection can have values in the range 0 - 7.

The setting is made via the following machine data:

MD11612 $MN_ASUP_EDIT_PROTECTION_LEVEL (level of protection of the user-specific
ASUB)

For further information about protection levels, refer to:
References:
Commissioning Manual; level of protection concept

Behavior when the single-block processing is set
Via the following machine data it can be set that the internal ASUB or the user-specific
"_N_ASUP_SPF" is processed without interruption, despite a set single block processing:

MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (prevent single-block stop)

Bit Value Meaning

0 A stop is done in each ASUB block. 0
1 The ASUB is processed without interruption.

8.11.3 Programming

Determining the cause of the ASUB activation
The cause of the activation of the ASUB can be read bit-coded via the system variable
$AC_ASUP.

 K1: Mode group, channel, program operation, reset response
 8.12 Single block

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 573

Continuation
When using the system ASUB, the behavior for the continuation after execution of the
actions is permanently specified within the ASUB:

● System ASUB 1 → continuation with RET (subprogram return)

● System ASUB 2 → continuation with REPOS (repositioning)

The description of the system variables specifies the behavior with regard to the system
ASUB for each cause at "Continued for".

 Note
Continued for user-specific ASUB

It is recommended for user-specific ASUBs that the appropriate continuation of the system
ASUB be retained.
Cause: Change of operating mode ($AC_ASUP, bit 9 == 1)

At a change of operating mode, the continuation depends on the machine data:

MD20114 $MC_MODESWITCH_MASK (interruption of MDA through mode change)
• Bit 0 == 0: System ASUB 1 → continuation with RET
• Bit 0 == 1: System ASUB 2 → continuation with REPOS

References
A detailed description of the system variables can be found in:

List Manual, System Variables

8.12 Single block

Block-by-block processing
With the single-block function, the user can execute a part program block-by-block.

Single-block types
There are 3 types of setting for the single-block function:

● SBL1 := IPO single block
When the SLB1 function is active, machining stops or pauses after each machine action
block (Ipo block).

● SBL2 := Decode single block
When the SLB2 function is active, machining always stops or pauses after each part
program block. If a part program block is processed in several IPO blocks, machining
stops after every Ipo block. Thread cutting is an exception.

● SBL3 := Decode single block
As for SLB2, but machining also stops in the part program blocks of the cycles.

K1: Mode group, channel, program operation, reset response
8.12 Single block

 Basic Functions
574 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

1. Stopping after every block is undesirable in many situations and/or with certain blocks.

– 1. Example:
Change after jog operation, if reorganization and/or repositioning
 is not possible, MD10702, bits 6 and 7.
 If a stop occurs in a block at the end of block, which cannot be
 reorganized and/or repositioned, in this situation
 Jog mode cannot be selected.

– 2. Example:
Change after JOG operation to a STOPRE block,
 MD10702, bits 6 and 7
 If AUTO mode is changed to Jog mode while a
 STOPRE block is active, in addition to system ASUB2, a continuation start will be
followed by
 one residual block and one or possibly (with
 decoder single block) two more STOPRE blocks. A logic operation,
which always triggers a part program start in single block
and then always changes to Jog mode, remains
at the STOPRE block indefinitely.

– 3. Example:
DISPOF: Deactivate block display, MD10702, bits 6 and 7
 If DISPOF is programmed in a subroutine, the block display
is suppressed. The operator must continuously
press Start blindly in the single block up to the end of the subroutine.

2. When single block is deactivated there is no stop at end of block.

3. When STOPRE blocks are displayed, the main run and preprocessing are synchronized
in the decoding single block.

The following sections describe how to control the behavior of single blocks and prevent
stops in particular situations.

8.12.1 Decoder single block SBL2 with implicit preprocessing stop

Asynchronicity
As a result of preprocessing of part program blocks, the reference between the current block
display relative to the main run status of the NCK and the variable values displayed on the
HMI can be lost. The operator display then shows implausible variable values.

 K1: Mode group, channel, program operation, reset response
 8.12 Single block

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 575

Preprocessing stop for each block
A preprocessing stop is executed for active SBL2 with each block with the channel-specific
setting data SD42200 $SC_SINGLEBLOCK2_STOPRE (activate debug mode for SBL2).
This suppresses preprocessing of part program blocks and maintains the relationship
between the current block display and the variable values display.

 Note

This variant of SBL2 does not maintain an accurate contour. In other words, as a result of
the preprocessing stop, a different contour may be generated from the one created without
single-block mode or with SBL1.

Application: Debug mode for testing part programs.

8.12.2 Single-block stop: Suppression using SBLOF

Single block off
Programs characterized by the SBLOF language command are executed completely in one
block as with every type of single block.

SBLOF is also valid in the called subprograms.

SBLOF
Example for subprogram without stop in single block:

PROC EXAMPLE SBLOF
G1 X10
RET

At the return command, the decision is made whether to stop at the end of the subprogram:

Return jump with M17 Stop at the end of the subprogram
Return jump with RET No stop at end of the subprogram

SBLOF in the program
SBLOF alone must remain in the block. Single-block stop is deactivated from this block
onwards up to the next programmed SBLON or up to the end of the active subprogram level.

If SBLOF is active, then this definition is also valid in the called subprograms. SBLON

K1: Mode group, channel, program operation, reset response
8.12 Single block

 Basic Functions
576 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example of an area in single block mode

The area between N20 and N60 is executed as one step in single-block mode.

N10 G1 X100 F1000
N20 SBLOF ; Deactivate single block
N30 Y20
N40 M100
N50 R10=90
N60 SBLON ; Reactivate single block
N70 M110
N80 ...

Asynchronous subprograms
The asynchronous ASUP1.SYF and ASUP2.SYF subprograms started system-internally in
REORG/REPOS can process the system ASUB in one step through the programming of
SBLOF.

Example: ASUP.SPF:

N10 SBLOF
N20 IF $AC_ASUP==’H200’
N30 RET ; No REPOS on mode change
N40 ELSE
N50 REPOSA ; REPOS in all other cases
N60 ENDIF
N70 RET

Boundary conditions

● The current block display can be suppressed in cycles with DISPLOF.

● If DISPLOF is programmed together with SBLOF, then the cycle call continues to be
displayed on single-block stops within the cycle.

● The preset behavior of asynchronous subprograms in single-block mode specified in
MD20117 MC_IGNORE_SINGLEBLOCK_ASUP (process interrupt program fully despite
single block) can be overwritten on a program-specific basis using SBLOF.

Cycle
Example 1: A cycle is to act like a command for a user.

Main program:

N10 G1 X10 G90 F200
N20 X-4 Y6
N30 CYCLE1
N40 G1 X0
N50 M30

 K1: Mode group, channel, program operation, reset response
 8.12 Single block

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 577

Program cycle:1

N100 PROC CYCLE1 DISPLOF SBLOF ; Suppress single block
N110 R10=3*SIN(R20)+5
N120 IF (R11 <= 0)
N130 SETAL(61000)
N140 ENDIF
N150 G1 G91 Z=R10 F=R11
N160 M17

CYCLE1 is processed for an active single block, i.e. the Start key must be pressed once to
process CYCLE1.

Example 2: An ASUB, which is started by the PLC in order to activate a modified zero offset
and tool offsets, is to be executed invisibly.

N100 PROC ZO SBLOF DISPLOF
N110 CASE $P_UIFRNUM OF 0 GOTOF
_G500 1 GOTOF _G54 2 GOTOF _G55 3 GOTOF _G56 4
GOTOF _G57 DEFAULT GOTOF END

N120 _G54: G54 D=$P_TOOL T=$P_TOOLNO
N130 RET
N140 _G54: G55 D=$P_TOOL T=$P_TOOLNO
N150 RET
N160 _G56: G56 D=$P_TOOL T=$P_TOOLNO
N170 RET
N180 _G57: G57 D=$P_TOOL T=$P_TOOLNO
N190 RET
N200 END: D=$P_TOOL T=$P_TOOLNO
N210 RET

8.12.3 Single-block stop: Inhibit according to situation

Suppress stopping in single cases
Depending on

MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (prevent single-block stop)

setting bits 0 to 12 = 1 can suppress stopping at the end of the block during the following
machining processes.

Program execution must not stop after single blocks even if non-modal processing is
selected:

1. During an internal ASUB

2. During a user ASUB

3. Subprograms with the attribute DISPLOF

K1: Mode group, channel, program operation, reset response
8.12 Single block

 Basic Functions
578 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4. Intermediate blocks

5. Block search group blocks

6. Init blocks

7. Blocks that cannot be reorganized

8. Blocks that cannot be repositioned

9. At a repositioning block which contains no traversing information

10. At a preprocessing / main run / synchronization block due to REORG

11. At a tool selection block

12. At a GET block

13. During a single block type 2

Sequence
If an ASUB is activated during the single block, for example, execution of the ASUB is
completed. The deceleration does not take place until after the end of the ASUB or the first
IPO block in which single-block suppression is not activated. If the velocity is too large for the
deceleration to be performed in this block (with active G64 continuous-path mode), further
block changes are allowed.

For decoding the single block, MD10702 is only effective with "internal ASUB", "user ASUB"
and "subprograms with the attribute DISPLOF". In these cases, it is already clear at the time
of interpretation that the block belongs to one of the above categories. In these cases,
further blocks can be generated.

SBLON in ASUB

The single-block stop of an internal ASUB or user ASUB that is suppressed with MD10702
$MN_IGNORE_SINGLEBLOCK_MASK can be reactivated in the ASUB by programming
SBLON.

This functionality can be suppressed again with MD20117
$MC_IGNORE_SINGLEBLOCK_ASUB. The SBLON command then becomes ineffective.

Boundary conditions
The following restrictions apply to decoding single block SBL2:

● Block search approach blocks

● Block not in ASUB; DISPLOF, SBLOF

● Non-reorganizable or non-repositionable blocks

● Blocks that are not generated in the Interpreter, e.g. intermediate blocks

 K1: Mode group, channel, program operation, reset response
 8.12 Single block

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 579

8.12.4 Single-block behavior in mode group with type A/B

Classifying channels
One mode group channel must be classified as a single-block control channel (KS), while the
other mode group channels must be classified as dependent channels (KA) via interface
signal. Type A or type B single-block behavior can be selected for KA channels.

Type A determines Stop (analogous to Stop key).

Type B determines Stop (analogous to stop at block limit).

Channel classification
In one channel (KS) in a mode group, the user should select single block (NST DB21 ...
DBX0.4 (activate single block)). Single-block type A or B refers to other channels (KA) of a
mode group.

Figure 8-12 Channel classification for single block in mode group 1

Type A, IS DB11, … DBX1.7=1 (single-block type A)

- All channels are stopped

- All channels receive a start (Start key)

- Channel KS stops at the end of the block (due to single block)

- Channels KA receive a STOP (analogous to Stop key).

- All channels are stopped (deceleration phase of all KAs)

Type B, IS DB11, ... DBX1.6=1 (single-block type B)

- All channels are stopped

- All channels receive a start

- Channel KS stops at the end of the block

- Channels KA receive a STOPATEND
 (analogous to NST DB21, ... DBX7.2 ("NC Stop at the block limit)

- All channels are stopped at a block limit (at some point in time)

K1: Mode group, channel, program operation, reset response
8.13 Program control

 Basic Functions
580 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.13 Program control

Options
1. Function selection (via operator interface or PLC)

2. Activation of skip levels

3. Adapting the size of the interpolation buffer

4. Program display modes via an additional basic block display

5. Execution from external source (buffer size and number)

6. Execution from external subroutines

8.13.1 Function selection (via operator panel front or PLC)

User interface or PLC
The user can control part program execution via the operator panel front or PLC.

Selection, activation, feedback
Selection
Different functions are available under the Program control soft key. Selection affects an
interface signal in the PLC. These signals are to be understood as selection signals from the
user interface, and do not activate the selected function.

Activation
These signal states must be transferred to another area of the data block to activate the
selected function. With program control by the PLC the signals are to be set directly.

Feedback
The activated functions are partly signaled back to the PLC from the NCK (see also Section
"Z1: NC/PLC interface signals (Page 1583)").

Table 8- 4 Program control: Interface signals

Function Selection signal Activation signal Feedback signal
SKP skip block 0 to 7
SKP skip block 8 to 9

DB21, ... DBX26.0 - 26.7
DB21, ... DBX27.0 - 27.1

DB21, ... DBX2.0 - 2.7
DB21, ... DBX31.6 - 31.7

- - -

DRY dry run feedrate DB21, ... DBX24.6 DB21, ... DBX0.6 DB21, ... DBX318.6
ROV Rapid traverse override DB21, ... DBX25.3 DB21, ... DBX6.6 - - -
Single block: Preselection of SBL1, SBL2 or SBL3 via program control display of HMI
 SBL1: Action single block
 SBL2: Decoding single block
 SBL3: In cycle

HMI operator panel DB21, ... DBX0.4 - - -

 K1: Mode group, channel, program operation, reset response
 8.13 Program control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 581

Function Selection signal Activation signal Feedback signal
M01 (Programmed stop) DB21, ... DBX24.5 DB21, ... DBX0.5 DB21, ... DBX32.5
Associated M01 DB21, ... DBX24.4 DB21, ... DBX30.5 DB21, ... DBX318.5
DRF selection DB21, ... DBX24.3 DB21, ... DBX0.3 DB21, ... DBX33.3
PRT program test DB21, ... DBX25.7 DB21, ... DBX1.7 DB21, ... DBX33.7

References:
Operating Manual HMI Advanced "Operating Area, Machine"

8.13.2 Activation of skip levels

Function
It is possible to skip blocks which are not to be executed every time the program runs.
Blocks to be skipped are indicated in the part program by the character "/" before the block
number.

The skip levels in the part program are specified by "/0" to "/9".

Only one skip level can be specified for each part program block.

Parameter assignment
The number of skip levels is defined using machine data:

MD51029 $MM_MAX_SKP_LEVEL (max. number of skip levels in the NC program)

Programming
Blocks which are not to be executed in every program pass (e.g. program test blocks) can be
skipped according to the following schematic.

Program code Comment

/N005 ; Block skipped, (DB21,... DBX2.0) 1st skip level

/0 N005 ; Block skipped, (DB21,... DBX2.0) 1st skip level

/1 N010 ; Block skipped, (DB21,... DBX2.1) 2nd skip level

/2 N020 ; Block skipped, (DB21,... DBX2.2) 3rd skip level

/3 N030 ; Block skipped, (DB21,... DBX2.3) 4th skip level

/4 N040 ; Block skipped, (DB21,... DBX2.4) 5th skip level

/5 N050 ; Block skipped, (DB21,... DBX2.5) 6th skip level

/6 N060 ; Block skipped, (DB21,... DBX2.6) 7th skip level

/7 N070 ; Block skipped, (DB21,... DBX2.7) 8th skip level

/8 N080 ; Block skipped, (DB21,... DBX31.6) 9th skip level

/9 N090 ; Block skipped, (DB21,... DBX31.7) 10th skip level

K1: Mode group, channel, program operation, reset response
8.13 Program control

 Basic Functions
582 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Activation
The 10 skip levels "/0" to "/9" are activated by the PLC setting the PLC → NCK interface
signals.

The function is activated from the HMI via the "Program control" menu in the "Machine"
operating area:

● For skip levels "/0" to "/7":

Via the interface HMI → PLC DB21, ... DBB26 (skip block selected).

● For skip levels "/8" to "/9":

Via the interface HMI → PLC DB21, ... DBX27.0 to DBX27.1.

References:
Operating Manual

 Note

The levels to be skipped can only be changed when the control is in the STOP/RESET state.

8.13.3 Adapting the size of the interpolation buffer

MD28060
The channelspecific interpolator executes prepared blocks from the interpolation buffer
during the part program run. The maximum number of blocks requiring space in the
interpolation buffer at any given point in time is defined by the memory configuring MD28060
$MM_IPO_BUFFER_SIZE (number of NC blocks in the IPO buffer (DRAM)). For some
applications it may be meaningful not to use the full buffer capacity in order to minimize the
"interval" between preparation and interpolation.

SD42990
The number of blocks in the interpolation buffer can be restricted dynamically to a smaller
value than in MD28060 $MC_MM_IPO_BUFFER_SIZE (number of NC blocks in the IPO
buffer (DRAM)), minimum 2 blocks, with the setting data SD42990
$SC_MAX_BLOCKS_IN_IPOBUFFER (max. number of blocks in the IPO buffer).

Values of setting data SD42990 $SC_MAX_BLOCKS_IN_IPOBUFFER:

Value Effect
< 0 No interpolation buffer limit active.

The max. possible interpolation buffer as set in MD 28060:
MM_IPO_BUFFER_SIZE is activated.

or 1 The minimum permissible interpolation buffer with 2 blocks is activated.

 K1: Mode group, channel, program operation, reset response
 8.13 Program control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 583

< < MM_IPO_BUFFER_SIZE The interpolation buffer is activated with no more than the maximum specified
number of blocks.

>= MM_IPO_BUFFER_SIZE The interpolation buffer is activated with the number of blocks specified in MD
28060: MM_IPO_BUFFER_SIZE.

 Note

If SD42990 $SC_MAX_BLOCKS_IN_IPOBUFFER is set in the part program, the
interpolation buffer limitation takes effect immediately if the block with the SD is being
preprocessed by the interpreter.

This means that the limitation of the IPO buffer may take effect a few blocks before the
intended limitation (see also MD 28070 $MC_MM_NUM_BLOCKS_IN_PREP).

To avoid premature activation and to make the limitation of the IPO buffer take effect in
synchronism with the block, a STOPRE (preprocessing stop) must be programmed before
the SD is set in the part program.

Validity

SD42990 $SC_MAX_BLOCK_IN_IPOBUFFER has global, channel-specific validity and can
also be modified in a part program. This modified value is maintained at program end. If this
setting data is to be reset again on defined events, a so-called event-driven program must be
created to do this. For example, this setting data could always be set to a predefined value
on RESET.

Application

The IPO buffer limitation can be used whenever the number of blocks between block
preparation and interpolation must be minimized, e.g., when actual positions in the part
program must be read and processed for other purposes.

Example

N10 ...

N20 ...

..........

N100 $SC_MAX_BLOCKS_IN_IPOBUFFER = 5 ; Limitation of IPO buffer to 5 NC

blocks

N110 ...

N120 ...

............

N200 $SC_MAX_BLOCKS_IN_IPOBUFFER = -1 ; Cancellation of the IPO buffer

limitation

N210 ...

............

K1: Mode group, channel, program operation, reset response
8.13 Program control

 Basic Functions
584 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.13.4 Program display modes via an additional basic block display

Basic block display (only for ShopMill/ShopTurn)
A second so-called basic block display can be used with the existing block display to show
all blocks that produce an action on the machine.

LookAhead basic block display
The actually approached end positions are shown as an absolute position. The position
values refer either to the workpiece coordinate system (WCS) or the settable zero system
(SZS).

The number of LookAhead display blocks stored in the display buffer depends on the
number of prepared blocks in the NCK preprocessing buffer in the relevant processing state.
If a preprocessing stop is processed, the number of display blocks is reduced to zero and
increases again after the stop is acknowledged. In the case of REORG events (e.g. mode
change, ASUB start), the display blocks stored for LookAhead are deleted and preprocessed
again afterwards.

Processed values

Values processed in the basic block display coincide with the:

● Selected tools

● Feedrate and spindle speed

● Actually approached position values
Exceptions:
With active tool radius compensation, deviations can occur.
For modulo axes, the programmed value is displayed in the basic block display. This
value can also lie outside the modulo range.

 Note

Generally the positions are represented in the WCS or the SZS.

The basic block display can be activated or deactivated with setting data

SD42750 $SC_ABSBLOCK_ENABLE.

 K1: Mode group, channel, program operation, reset response
 8.13 Program control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 585

8.13.5 Basic block display for ShopMill/ShopTurn

Configure basic block display
The basic block display can be configured via the following machine data:

NCK machine data for basic block display Significance:
MD28400 $MC_MM_ABSBLOCK Activate basic block display
MD28402
$MC_MM_ABSBLOCK_BUFFER_CONF[2]

Size of display buffer

Display machine data Position values to be set:
MD9004 $MM_DISPLAY_RESOLUTION For metric measurements
MD9011 $MM_DISPLAY_RESOLUTION_INCH For inch measurements
MD9010 $MM_SPIND_DISPLAY_RESOLUTION

Settable coordinate system for spindle display
resolution

MD9424 $MM_MA_COORDINATE_SYSTEM For actual value display in WCS or SZS

These display machine data are copied to NCK machine data
MD17200 $MN_GMMC_INFO_UNIT[0] to MD17200 $MN_GMMC_INFO_UNIT[3]. allowing
them to be accessed from the NCK.

Activating

The basic block display is activated by MD 28400 $MC_MM_ABSBLOCK by means of
Power On. If MD28400 $MC_MM_ABSBLOCK is set to 1, a channelspecific display buffer
(FIFO) is created during power-up.

Size of display buffer (FIFO) = (MD28060 $MC_MM_IPO_BUFFER_SIZE + MD28070
$MC_MM_NUM_BLOCKS_IN_PREP) multiplied by 128 bytes. This corresponds to a size of
6KB in the machine data default setting.

Optimize size of display buffer:
The memory requirement can be optimized by entering a value between 128 and 512. The
display blocks preprocessed in the display buffer are transferred to the HMI via a
configurable upload buffer.

Maximum size of upload buffer is obtained by multiplying (MD28402
$MC_MM_ABSBLOCK_BUFFER_CONF[0] +
MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[1] + 1) by the block length configured in
MD28400 $MC_MM_ABSBLOCK.

The number of blocks before the current block is configured in
MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[0] and the number of blocks after the
current block is configured in MD28402 $MC_MM_ABSBLOCK_BUFFER_CONF[1].

Constraints

If the length of a display block configured in MD28400 $MC_MM_ABSBLOCK is exceeded,
this display block is truncated accordingly. This is represented by string "..." at the end of the
block.

For preprocessed cycles (MD10700 $MN_PREPROCESSING_LEVEL > 1), the display block
contains only axis positions.

K1: Mode group, channel, program operation, reset response
8.13 Program control

 Basic Functions
586 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Additional boundary conditions for the basic block display:

● Modal synchronized action blocks with absolute values are
not taken into account.

● The basic block display is deactivated during block search with or without computation.

● Polar coordinate programming is not shown in Cartesian system.

Radius / diameter values

Diameter values shown in the basic block display and position display may be needed as a
radius for internal calculation. These values for measurements in radius/diameter according
to G code group 29 can be manipulated using the following options:

● G code DIAMCYCOF (expansion of channel-specific diameter programming)
This G code deactivates the channel-specific diameter programming during the cycle
execution. In this way, computations in the cycle can always be done in the radius. The
position display and the basic block display are continued according to the state of the
diameter programming before DIAMCYCOF.
In the basic block display, the last displayed value is retained.

● G code DIACYCOFA[AX] (axis-specific diameter programming)
This G code deactivates the axis-specific diameter programming during the cycle
execution. In this way, computations in the cycle can always be done in the radius. In the
position display and in the basic block display, this continues according to the state of the
diameter programming before DIACYCOFA[AX].
In the basic block display, the last displayed value is retained.

● MD27100 $MC_ABSBLOCK_FUNCTION_MASK

Bit0 = 1 Transverse axis setpoints are always shown as diameter values in the

basic block display.

Behavior while the compressor is active

With active compressor and G/Code group 30 not equal to COMPOF, two display blocks are
generated. The

● first contains the G/Code of the active compressor.

● The second contains the string "..." as character for missing display blocks.

Example:

G0 X10 Y10 Z10 ; Block to be preprocessed for the basic block display

COMPCAD ; Compressor for optimized surface quality (CAD prog.) A

... ; string as character for missing display blocks

To avoid bottlenecks in the NCK performance, the basic block display is deactivated
automatically. As a sign that the display blocks are missing, a display block with the string
"..." is generated.
All display blocks are always generated in the single block.

 K1: Mode group, channel, program operation, reset response
 8.13 Program control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 587

8.13.6 Structure for a DIN block

Structure of display block for a DIN block
Basic structure of display block for a DIN block

● Block number/label

● G function of the first G group
(only if changed as compared to the last machine function block).

● Axis position
(sequence corresponding to MD20070 $MC_AXCONF_MACHAX_USED (machine axis
number valid in the channel)).

● Further modal G functions
(only if changed as compared to the last machine function block).

● Other addresses as programmed.

The display block for the basic block display is directly derived from the programmed part
program blocks according to the following rules:

● Macros are expanded.

● Skip identifiers and comments are omitted.

● Block number and labels are transferred from the original block, but omitted if DISPLOF is
active.

● The number of decimal places is defined in display machine data MD 9004, MD 9010 and
MD 9011 via the HMI.

HMI display machine data Access in NCK machine data
MD9004 $MM_DISPLAY_RESOLUTION MD17200 $MN_GMMC_INFO_NO_UNIT[0]
MD9011
$MM_DISPLAY_RESOLUTION_INCH

MD17200 $MN_GMMC_INFO_NO_UNIT[1]

MD9010
$MM_SPIND_DISPLAY_RESOLUTION

MD17200 $MN_GMMC_INFO_NO_UNIT[2]

MD9424 $MM_MA_COORDINATE_SYSTEM MD17200 $MN_GMMC_INFO_NO_UNIT[3]

● Programmed axis positions are represented as absolute positions in the coordinate
system (WCS / ENS) specified in MD9424 $MM_MA_COORDINATE_SYSTEM
(coordinate system for actual value display)

 Note

The modulo correction is omitted for modulo axes, which means that positions outside the
modulo range can be displayed. It also means that the basic block display differs from the
position display in which values are always moduloconverted.

K1: Mode group, channel, program operation, reset response
8.13 Program control

 Basic Functions
588 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Examples
Comparisons between display block (original block) and basic block display:

● Programmed positions are displayed as absolute.
The addresses AP/RP are displayed with their programmed values.

Original block: Display block:

N10 G90 X10.123 N10 X10.123

N20 G91 X1 N20 X11.123

● Address assignments (non-DIN addresses) are displayed in the form <address> =
<constant>.

Original block: Display block:

N110 R1 = -67.5 R2 = 7.5

N130 Z = R1 RND = R2 N130 Z-67.5 RND = 7.5

● Address indices (address extensions) are displayed as constants <address> [<constant>
] = <constant>.

Original block: Display block:

N220 DEF AXIS AXIS_VAR = X

N240 FA[AXIS_VAR] = R2 N240 FA[X] = 1000

● DIN addresses without address extension are displayed in the form
<din_address> <constant>.

Original block: Display block:

N410 DEF REAL FEED = 1.5

N420 F = FEED N420 F1.5

The following applies for H functions: Each programmed value is display irrespective of the
output type to the PLC.
(MD22110 $MC_AUXFU_H_TYPE_INT (type of H auxiliary function is integer)).

● For Tool selection by tool command
Display information is generated in the form T<value> or T=<string>. If an address
extension has been programmed, this is displayed as well.

If several spindles have been configured or the "Tool change via master toolholder"
function (MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER (toolholder number)) is
active, the T number is always output with address extension.

If no address extension has been programmed, the number of the master spindle or the
master toolholder is used instead (T<spindle_number/tool_holder>=).

 K1: Mode group, channel, program operation, reset response
 8.13 Program control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 589

● For the Spindle programming via S, M3, M4, M5, M19, M40 - M45 and M70 (or MD
20094 $MC_SPIND_RIGID_TAPPING_M_NR (M function for switching over in the
controlled axis operation)) the following regulation applies regarding the address
extension:
If an address extension has been programmed, then this is also resolved.

If several spindles have been configured, then the address extension is also output.
If no address extension has been programmed, the number of the master spindle is used
(S<spindle_number>=).

● Indirect G code programming in form G[<group>] = <printout> is substituted by the
corresponding G code.

Original block: Display block:

N510 R1=2

N520 G[8]= R1 N520 G54

● Modal G codes that do not generate an executable block are collected and output with
the display block of the next executable block if permitted by the syntax (DIN block). If
this is not the case (e.g. predefined subprogram call TRANSMIT), a separate display
block containing the modified G codes is placed in front of the next executable block.

Original block: Display block:

N610 G64 G64

N620 TRANSMIT N620 TRANSMIT

● A display block is always generated for part program lines in which the addresses F and
FA appear (including for MD22240 $MC_AUXFU_F_SYNC_TYPE = 3 (output time of the
F functions)).

Original block: Display block:

N630 F1000 N630 F1000

N640 X100 N640 X100

● The display blocks generated for the block display are derived directly from the
programmed part program blocks. If intermediate blocks (e.g. tool radius compensation
G41/G42, radius/chamfer RNDM, RND, CHF, CHR) are generated in the course of
contour preprocessing, these are assigned the display information from the part program
block on which the motion is based.

Original block: Display block:

N710 Y157.5 G42 N710 Y157.5 G42

N720 Z-67.5 RND=7.5 N720 Z-67.5 RND=7.5

● With the EXECTAB command (processing a table of contour elements), the block
generated by EXECTAB is shown in the display block.

Original block: Display block:

N810 EXECTAB (KTAB[5]) N810 G01 X46.147 Z-25.38

K1: Mode group, channel, program operation, reset response
8.13 Program control

 Basic Functions
590 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● With the EXECSTRING command, the block generated via EXECSTRING is displayed in
the display block.

Original block:

N910 DEF STRING[40] PROGSTRING = "N905 M3 S1000 G94 Z100 F1000 G55"

N920 EXECSTRING(PROGSTRING)

Original block:

N905 Z100 G55 G94 M3 S1000 F1000

8.13.7 Execution from external

Function
The "Execution from external" function can be used to execute programs that cannot be
saved directly in the NC memory due to memory shortage of an external program memory.

 Note

Protected cycles (_CPF files) cannot be processed with this function.

External program memory
External program memory can be found on the following data carriers:

● Local drive

● Network drive

● USB drive

 Note
Execution from external source via USB interface

If external programs are to be transferred from an external USB drive via a USB interface,
only the interface via X203 (named "TCU_1") can be used.

A USB FlashDrive cannot be recommended as a persistent storage medium.

 K1: Mode group, channel, program operation, reset response
 8.13 Program control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 591

Applications
● Direct execution from external programs

In principle, any program that is accessible via the directory structure of the interface in
the "Execution from external" HMI mode can be selected and executed.

● Execution of external subprograms from the part program

The external subprogram is called through the part program command EXTCALL with
specification of a call path (optional) and the subprogram name (→ see "Execution from
external subroutines (Page 592)").

Parameterization
A reloading memory (FIFO buffer) must be reserved in the dynamic NC memory for
executing a program in the "Executing from external" mode (main program or subprogram).

Size of FIFO buffer

The size of the FIFO buffer is set in the machine data:

MD18360 $MN_MM_EXT_PROG_BUFFER_SIZE (FIFO buffer size for processing from
external)

Default: 30 KB

 Note
Programs with jump commands

For external programs that contain jump commands (GOTOF, GOTOB, CASE, FOR, LOOP, WHILE,
REPEAT, IF, ELSE, ENDIF etc.) the jump destinations must lie within the post loading memory.

 Note
ShopMill/ShopTurn programs

The contour descriptions added at the file end mean the ShopMill and ShopTurn programs
must be stored completely in the read-only memory.

Number of FIFO buffers

One FIFO buffer must be provided each for all programs (main program or subprogram) that
are executed simultaneously in the "Execution from external source" mode.

The number of FIFO buffers is set in the machine data:

MD18362 $MN_MM_EXT_PROG_NUM (number of externally executed program levels
executable simultaneously)

Behavior during RESET, POWER ON
External program calls are aborted through RESET and POWER ON and the concerned
FIFO buffers are erased.

A program selected for "Execution from external source" remains selected for "Execution
from external source" even after RESET / part program end. A POWER ON deletes the
selection.

K1: Mode group, channel, program operation, reset response
8.13 Program control

 Basic Functions
592 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.13.8 Execution from external subroutines

Function
Individual machining steps for producing complex workpieces may involve program
sequences that require so much memory that they cannot be stored in the NC memory.

In such cases, the user has the option of executing the program sequences as subprograms
from an external program memory in the "Execution from external source" mode with the
help of the EXTCALL part program command.

Preconditions
The following preconditions are applicable to the execution from external subprograms:

● The subprograms must be accessible via the directory structure of the operator interface.

● A reloading memory (FIFO buffer) must be reserved for each subprogram in the dynamic
NC memory.

 Note
Subprograms with jump commands

For external subprograms that contain jump commands (GOTOF, GOTOB, CASE, FOR, LOOP, WHILE,
REPEAT, IF, ELSE, ENDIF etc.) the jump destinations must lie within the post loading memory.

The size of the post loading memory is set via:

MD18360 MM_EXT_PROG_BUFFER_SIZE
ShopMill/ShopTurn programs

The contour descriptions added at the file end mean the ShopMill and ShopTurn programs
must be stored completely in the read-only memory.

Parameterization
The path for the external subprogram directory can be preset using setting data:

SD42700 $SC_EXT_PROG_PATH (program path for the EXTCALL external subprogram
call)

The entire path of the program to be called along with the subprogram path or name
specified during programming is derived therefrom.

 K1: Mode group, channel, program operation, reset response
 8.13 Program control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 593

Programming
An external subprogram is called by means of parts program command EXTCALL.

Syntax: EXTCALL("<path/><program name>")

Parameter:

 Absolute or relative path data (optional)

<path>:

Type: STRING

 The program name is specified without prefix "_N_".

The file extension ("MPF", "SPF") can be attached to program
names using the "_" or "." character (optional).

<program name>:

Type: STRING

 Note
Path specification: Short designations

The following short designations can be used to specify the path:
• LOCAL_DRIVE: for local drive
• CF_CARD: for CompactFlash Card
• USB: for USB front connection

CF_CARD: and LOCAL_DRIVE: can be alternatively used.

EXTCALL call with absolute path name

If the subprogram exists at the specified path, it will be executed following the EXTCALL call. If
it does not exist, program execution is canceled.

EXTCALL call with relative path name / without path name

In the event of an EXTCALL call with a relative path name or without a path name, the
available program memories are searched as follows:

● If a path name is preset in SD42700 $SC_EXT_PROG_PATH, the data specified in the
EXTCALL call (program name or with relative path name) is searched for first, starting from
this path. The absolute path results from linking the following characters:

– The path name preset in SD42700

– The "/" character as a separator

– The subprogram path or name programmed in EXTCALL

● If the called subprogram is not found at the preset path, the data specified in the EXTCALL
call is then searched for in the user-memory directories.

● The search ends when the subprogram is found for the first time. If the search does not
produce any hits, the program is canceled.

K1: Mode group, channel, program operation, reset response
8.13 Program control

 Basic Functions
594 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
Execute from local drive

Main program:

Program code

N010 PROC MAIN

N020 ...

N030 EXTCALL ("ROUGHING")

N040 ...

N050 M30

External subprogram:

Program code

N010 PROC ROUGHING

N020 G1 F1000

N030 X= ... Y= ... Z= ...

N040 ...

...

...

N999999 M17

The "MAIN.MPF" main program is stored in NC memory and is selected for execution.

The "SCHRUPPEN.SPF" or "SCHRUPPEN.MPF" subprogram to be subsequently loaded is
on the local drive in the directory "/user/sinumerik/data/prog/WKS.DIR/WST1.WPD".

The subprogram path is preset in SD42700:

SD42700 $SC_EXT_PROG_PATH = "LOCAL_DRIVE:WKS.DIR/WST1.WPD"

 Note

Without the path being specified in the SD42700, the EXTCALL operation for this example
would have to be programmed as follows:

EXTCALL("LOCAL_DRIVE:WKS.DIR/WST1.WPD/SCHRUPPEN")

 K1: Mode group, channel, program operation, reset response
 8.14 System settings for power-up, RESET / part program end and part program start

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 595

8.14 System settings for power-up, RESET / part program end and part
program start

Concept
The behavior of the control can be set via the machine data for the following events:

● Run-up (Power On)

● Reset / part program end

● Part program start

The control-system response after: Can be set with:
Run-up (POWER ON) *) MD20110 $MC_RESET_MODE_MASK

MD20144 $MC_TRAFO_MODE_MASK
MD20150 $MC_GCODE_RESET_VALUES

RESET / part program end MD20110 $MC_RESET_MODE_MASK
MD20150 $MC_GCODE_RESET_VALUES
MD20152 $MC_GCODE_RESET_MODE

Part program start MD20112 $MC_START_MODE_MASK
MD20110 $MC_RESET_MODE_MASK

*) see also POWER ON (Page 767)

K1: Mode group, channel, program operation, reset response
8.14 System settings for power-up, RESET / part program end and part program start

 Basic Functions
596 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System settings after run-up
MD20110 $MC_RESET_MODE_MASK, bit 0 = 0 or 1

Figure 8-13 System settings after run-up

 K1: Mode group, channel, program operation, reset response
 8.14 System settings for power-up, RESET / part program end and part program start

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 597

System settings after reset / part program end and part program start
MD20110 $MC_RESET_MODE_MASK, bit 0 = 0 or 1

Figure 8-14 System settings after reset / part program end and part program start

K1: Mode group, channel, program operation, reset response
8.14 System settings for power-up, RESET / part program end and part program start

 Basic Functions
598 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

G code effective after run-up and reset / part program end
The setting of the G code effective in every G group after run-up (power on) and reset / part
program end is performed via the following machine data:

MD20150 $MC_GCODE_RESET_VALUES[<G group>] = <default-G code>

MD20152 $MC_GCODE_RESET_MODE[<G group>] = <value>

Value Description: Per G group

0 The default-G code from MD20150 $MC_GCODE_RESET_VALUES takes effect.
1 The last active/current G code takes effect.

Control basic setting after run-up, reset / part program end and part program start
The definition of control initial setting after run-up, reset / part program end and part program
start is performed via the following machine data:

● MD20110 $MC_RESET_MODE_MASK (definition of the control initial setting after run-up
and reset / part program end)

● MD20112 $MC_START_MODE_MASK (definition of the control initial setting after part
program start)

References

Detailed Machine Data Description

Relevant machine data

Machine data Meaning
MD20120 $MC_TOOL_RESET_VALUE Tool length compensation during run-up, reset / part program

end
MD20121 $MC_TOOL_PRESEL_RESET_VALUE Preselect tool on Reset
MD20130 $MC_CUTTING_EDGE_RESET_VALUE Tool cutting-edge length compensation on run-up
MD20140 $MC_TRAFO_RESET_VALUE Run-up transformation data block
MD20144 $MC_TRAFO_MODE_MASK Selection of the kinematic transformation function
MD20150 $MC_GCODE_RESET_VALUES Initial setting of the G groups
MD20152 $MC_GCODE_RESET_MODE Reset behavior of the G groups
MD21330 $MC_COUPLE_RESET_MODE_1 Coupling cancellation response
MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB Assignment of geometry axis to channel axis
MD20118 $MC_GEOAX_CHANGE_RESET Allow automatic geometry axis change

 K1: Mode group, channel, program operation, reset response
 8.14 System settings for power-up, RESET / part program end and part program start

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 599

Example

Activate reset setting on reset:

● MD20110, bit 0 = 1

● MD20112 = 0

Transformation remains with reset / part program start:

● MD20110, bit 0 = 1

● MD20110, bit 7 = 1

● MD20112 = 0

Tool length compensation is retained after reset / part program start:

● MD20110, bit 4 = 1

● MD20110, bit 6 = 1

● MD20112 = 0

Active level (bit 4) and settable frame (bit 5) remain active after reset and are reset on part
program start:

● MD20110, bit 4 = 1

● MD20110, bit 5 = 1

● MD20112, bit 4 = 1

● MD20112, bit 5 = 1

 Note
MD20110/MD20112, bit 5 and bit 6

If MD20110/MD20112 are parameterized so that tool length compensation or a frame is
active on a part program start in the automatic or MDI mode, the first programming of the
axes must use absolute measurements (because of the traversing of the offset).

Exception: With MD42442/MD42440 the offsetting process for G91 is suppressed.

K1: Mode group, channel, program operation, reset response
8.14 System settings for power-up, RESET / part program end and part program start

 Basic Functions
600 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.14.1 Tool withdrawal after POWER ON with orientation transformation

Function
If a part program with a machining operation with tool orientation is aborted due to a power
failure or reset, it is possible to select the previously active transformation and generate a
frame in the direction of the tool axis after the control has run up (power on). The tool can
then be retracted in JOG mode by means of a retraction movement towards the tool axis.

Requirement
The active measuring systems must have a machine reference for all the machine axes
involved in the transformation. See Section "Automatic restoration of the machine reference
(Page 1216)".

Parameterization
The following machine data must be set so that the last active transformation is retained
after POWER ON:

● MD20144 $MC_TRAFO_MODE_MASK, bit 1 = 1

● MD20110 $MC_RESET_MODE_MASK, bit 0 = 1

● MD20110 $MC_RESET_MODE_MASK, bit 7 = 1

See also Section "System settings for power-up, RESET / part program end and part
program start (Page 595)".

Programming

Wait for machine reference WAITENC

With the command WAITENC, the system waits channel-specific in a program until there is a
valid machine reference for all the active measuring systems of the parameterized axes. See
the "Requirement" section above. The parameter assignment of the axes is performed via:

MD34800 $MA_WAIT_ENC_VALID = 1

Application

In the user program (…/_N_CMA_DIR/_N_PROG_EVENT_SPF) to be called event-
controlled when running up (requirement: MD20108 bit 3 = 1), the system must wait using
the command WAITENC until the valid axis positions are available.

A frame that positions the tool axis in the direction of the X, Y or Z axis can then be
generated using the NC language command TOROTX/TOROTY/TOROTZ.

 K1: Mode group, channel, program operation, reset response
 8.14 System settings for power-up, RESET / part program end and part program start

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 601

Example
Orientation transformation and orientation axes with incremental encoders.

Configuration: Meaning:
MD10720 $MN_OPERATING_MODE_DEFAULT [0] = 6 Run-up in JOG mode.
MD30240 $MA_ENC_TYPE [0, <axis>] = 1 Incremental measuring system.
MD34210 $MA_ENC_REFP_STATE [0, <axis>] = 3 Enable the restoration of axis positions for

incremental encoders.
MD20108 $MC_PROG_EVENT_MASK = ’H9’ Activate event-controlled using program

PROG_EVENT during run-up and at the start of
the part program.

MD20152 $MC_GCODE_RESET_MODE [52] = 1 Obtain TOFRAME via reset.
MD20110 $MC_RESET_MODE_MASK = ’HC1’ Obtain transformation and tool offset via reset.
MD20144 $MC_TRAFO_MODE_MASK = ’H02’ Obtain transformation via POWER OFF.

Event-driven user program (…/_N_CMA_DIR/_N_PROG_EVENT_SPF):

Program code Comment

;

Example with activation of the frame, which aligns the WCS in the tool direction, when running up

and resetting with part program start.

IF $P_PROG_EVENT == 4 ; Run-up

 IF $P_TRAFO <> 0 ; Transformation has been selected.

 WAITENC ; Wait for valid axis positions of the orientation axes.

 TOROTZ ; Rotate the Z axis of the WCS towards the tool axis.

 ENDIF

 M17

ENDIF

IF $P_PROG_EVENT == 1 ; Start of the part program.

 TOROTOF ; Reset the tool frame.

 RET

ENDIF

The WAITENC command essentially corresponds to the following program sequence (example
for 5-axis machine with AB kinematics):

Program code Comment

WHILE TRUE ; Wait for a measuring system.

 IF (($AA_ENC_ACTIVE[X]==TRUE) AND ($AA_ENC_ACTIVE[Y]==TRUE) AND ($AA_ENC_ACTIVE[Z]==TRUE) AND

($AA_ENC_ACTIVE[A]==TRUE) AND ($AA_ENC_ACTIVE[B]==TRUE)) GOTOF GET_LABEL

 ENDIF

 G4 F0.5 ; 0.5 s wait time

ENDWHILE

:Position synchronization

GET_LABEL: GET(X,Y,Z,A,B,)

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
602 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Continuing machining

AUTOMATIC mode

For automatic execution of programs in the AUTOMATIC mode, all the machine axes, whose
actual position of the active measuring system has been restored, must be referenced.

MDI mode and overstore

In the MDI mode and for the overstore function, machining can also be performed, without
referencing the axes, with restored positions. To do this, NC start with restored positions
must be enabled explicitly for a specific channel:

MD20700 $MC_REFP_NC_START_LOCK = 2

Supplementary condition

Axes with incremental encoders and without actual value buffering

It is to be assumed that axes with incremental encoders and without actual value buffering
are clamped with sufficient speed in the event of a power failure to prevent them drifting from
their last position setpoint.

8.15 Replacing functions by subprograms

8.15.1 Overview

Function
User-specific auxiliary functions (e.g. M101) do not trigger any system functions. They are
only output to the NC/PLC interface. The functionality of the auxiliary function must be
implemented by the user / machine manufacturer in the PLC user program. A description will
be provided as to how a user-specific subprogram call can be configured (replacement
subprogram) instead of the output to NC/PLC interface, which is the default setting.

Function M101 is then still programmed in the part program. However, when executing the
part program, the substitute subprogram is called. Therefore, the NC replaces the function
by a subprogram call. This results in the following advantages:

● When adapting to the production process, an existing, tested and proven part program
can still be used, unchanged. The changes required are then shifted into the user-specific
subprograms.

● The functionality can be implemented within the substitute subprogram with the full
functional scope of the NC language.

● The communication overhead between NC and PLC is not required.

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 603

Functions that can be replaced
The following functions can be replaced by subprograms:

Auxiliary functions
M Switching functions
T Tool selection
TCA Tool selection independent of the tool status
D Tool offset
DL Additive tool offset

Spindle-related functions during active synchronous spindle coupling
M40 Automatic gear stage change
M41 - M45 Gear stage selection 1 ... 5
SPOS Spindle positioning
SPOSA Spindle positioning
M19 Spindle positioning

8.15.2 Replacement of M, T/TCA and D/DL functions

8.15.2.1 Replacement of M functions

General Information
The following conditions are applicable for replacing the M functions:

● Per block only one M function is replaced.

● A block in which an M function is to be replaced, must not contain the following elements:

– M98

– Modal subprogram call

– Subprogram return

– Part program end

● M functions that trigger system functions must not be replaced by a subprogram (see
Section "Non-replaceable M functions").

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
604 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterization

M function and subprogram

M functions and the replacement subprograms are parameterized in the following machine
data:

● MD10715 $MC_M_NO_FCT_CYCLE[<Index>] = <M function number>

● MD10716 $MC_M_NO_FCT_CYCLE_NAME[<Index>] = "<subprogram name>"

The M function and the corresponding replacement subprogram are connected through the
same index.

Example: M function M101 is replaced by subprogram SUB_M101 and M function M102 by
SUB_M102:

MD10715 $MC_M_NO_FCT_CYCLE[0] = 101
MD10716 $MC_M_NO_FCT_CYCLE_NAME[0] = "SUB_M101"

MD10715 $MC_M_NO_FCT_CYCLE[1] = 102
MD10716 $MC_M_NO_FCT_CYCLE_NAME[1] = "SUB_M102"

System variable for transferring information

For a freely selectable M function, information regarding the M function that has been
replaced and additional functions (T, TCA, D, DL) for evaluation in the replacement
subprogram are made available via the system variable (see Section "System variable
(Page 608)"). The data contained in the system variables refers to the block in which the M
function to be replaced is programmed.

The M function is selected with the index of machine data MD10715
$MC_M_NO_FCT_CYCLE[<Index>] in which the M function to be replaced has been
parameterized:

MD10718 $MC_M_NO_FCT_CYCLE_PAR = <Index>

 Note

For an M function replacement with transfer of information via system variable, the address
extension and function value of the M function must be programmed as constant values.

Permissible programming:
• M<function value>
• M=<function value>
• M[<address extension>]=<function value>

Illegal programming:
• M=<variable1>
• M[<variable2>]=<variable1>

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 605

Programming
Rules for replacing M functions:

● The replacement subprogram is called at the block end

● Within the replacement subprogram, no M functions are replaced

● In an ASUB, the M function is also replaced if the ASUB was started within the
replacement subprogram.

M functions that cannot be replaced
The following M functions trigger system functions as pre-defined auxiliary functions and
must not be replaced by a subprogram:

● M0 ... M5

● M17, M30,

● M19

● M40 ... M45

● M98, M99 (only for MD18800 $MN_MM_EXTERN_LANGUAGE ≠ 0)

User-specific M functions parameterized via machine data must also not be replaced by a
subprogram as they also trigger system functions.

Machine data Meaning
MD10714 $MN_M_NO_FCT_EOP M function for spindle active after

RESET
MD10804 $MN_EXTERN_CHAN_M_NO_SET_INT M function for ASUB activation

(external mode)
MD10806 $MN_EXTERN_CHAN_M_NO_DISABLE_INT M function for ASUB deactivation

(external mode)
MD10814 $MN_EXTERN_M_NO_MAC_CYCLE Macro call via M function
MD20094 $MC_SPIND_RIGID_TAPPING_M_NR M function for switchover to controlled

axis mode
MD20095 $MC_EXTERN_RIGID_TAPPING_M_NR M function for switchover to controlled

axis mode (external mode)
MD22254 $MC_AUXFU_ASSOC_M0_VALUE Additional M function for program stop
MD22256 $MC_AUXFU_ASSOC_M1_VALUE Additional M function for conditional

stop
MD26008 $MC_NIBBLE_PUNCH_CODE Definition of M functions (for nibble-

specific)
MD26012 $MC_PUNCHNIB_ACTIVATION Activation of punching and nibbling

functions

 Note
Exception

The M function parameterized with MD22560 $MC_TOOL_CHANGE_M_CODE (tool change
with M function) must not be replaced with a subprogram.

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
606 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.15.2.2 Replacing T/TCA and D/DL functions

Boundary conditions
For replacing functions T, TCA, D and DL, the following supplementary conditions apply:

● A maximum of one function replacement is active per block.

● A block with the function replacement must not contain the following elements:

– M98

– Modal subprogram call

– Subprogram return

– Part program end

● If the multitool slot number is programmed with address MTL for the multitool select with
T = slot number, the T replacement also replaces the MTL address. The programmed
values can be queried in the replacement subprogram using the $C_MTL_PROG and
$C_MTL system variables.

Parameterization: Replacement subprogram
The replacement subprogram is specified function-specific in the machine data:

Function Machine data
T MD10717 $MN_T_NO_FCT_CYCLE_NAME
TCA MD15710 $MN_TCA_CYCLE_NAME
D/DL MD11717 $MN_D_NO_FCT_CYCLE_NAME

 Note

It is recommended that the same subprogram is used to replace T, TCA and D/DL functions.

Parameterization: Behavior regarding D or DL function with simultaneous T function
When D or DL and T functions are simultaneously programmed in a block, the D or DL
number is either transferred as parameter to the replacement subprogram or the D or DL
function is executed before calling the replacement subprogram. The behavior is
configurable via:

MD10719 $MN_T_NO_FCT_CYCLE_MODE (parameterization of the T function
replacement)

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 607

Bit Value Meaning

0 The D or DL number is available in the subprogram in the form of a system variable
(initial state).

0

1 The D or DL number is calculated directly in the block.
Note:
This function is only active if the tool change was configured with M function:
MD22550 $MC_TOOL_CHANGE_MODE = 1
otherwise the D or DL values are always transferred.

System variable for transferring information

The replacement subroutine is provided with all of the information relevant to the functions
programmed in the block via system variables (see Section "System variable (Page 608)").

The data contained in the system variables refers to the block in which the function to be
replaced was programmed.

Parameterization: Time that the replacement subprogram is called
The call time of the replacement subprogram is set via:

MD10719 $MN_T_NO_FCT_CYCLE_MODE, bit 1 and bit 2

Bit 2 Bit 1 Time that the replacement subprogram is called

0 0 At the end of the block
After the replacement subprogram has been executed, the interpretation is
resumed with the program line following the line that triggered the replacement
operation.

0 1 At block start
After the replacement subprogram has been executed, the program line, which
resulted in the replacement subprogram being called, is interpreted. The T address
and the D or DL address and the M function for the tool change are no longer
processed.

1 - At block start and block end
The replacement program is called twice.

System variable for the call time

System variable $P_SUB_STAT can be used to read whether the substitution is active, and if
so, when the replacement subprogram – referred to the block – was called up:

Value Meaning

0 Replacement not active
1 Replacement active, subprogram call is made at the block start
2 Replacement active, subprogram call is made at the block end

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
608 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example: Replacement of the T function

Parameterization Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 0 Tool change with T function
MD10717 $MN_T_NO_FCT_CYCLE_NAME = "MY_T_CYCLE" Name of the subprogram to

replace the T function
MD10719 $MN_T_NO_FCT_CYCLE_MODE = 0 Call time: End of block

Programming Comment

N110 D1 ; D1

N120 G90 G0 X100 Y100 Z50 ; D1 is active.

N130 D2 X110 Z0 T5 ; D1 remains active. The T function is replaced

at the block end with the MY_T_CYCLE

subprogram call. D2 provides MY_T_CYCLE in a

system variable.

A detailed example for replacement of the T function can be found in Section: "Examples of
M/T function replacement at a tool change (Page 610)".

8.15.2.3 System variable

General Information
The replacement subprogram is provided with all of the information relevant to the functions
programmed in the block (T or TCA, D or DL, M) via system variables.

Exception

D or DL number is not transferred if:

● MD10719 $MN_T_NO_FCT_CYCLE_MODE, bit 0 = 1

● MD22550 $MC_TOOL_CHANGE_MODE = 1

AND

● D or DL are programmed together with the T or M function in a block.

CAUTION

Values do not act

The values provided for the replacement subprogram in the system variables are not yet
effective. It is the sole responsibility of the user / machine manufacturer to resolve this
by using the appropriate programming in the replacement subprogram.

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 609

System variable

System variable Meaning
$C_M_PROG TRUE, if the M function has been programmed
$C_M For $C_M_PROG == TRUE, contains the value of address M

We must differentiate between two cases here:
• $C_M supplies the value if, for the tool change with M function, a

subprogram is configured with parameter transfer: MD10715
MN_M_NO_FCT_CYCLE

• If only one subprogram is configured for the addresses T and/or
D/DL and if in the program the M function for the tool change is
programmed together with one of the addresses to be replaced, then
$C_M supplies the value: MD22560
$MC_TOOL_CHANGE_M_CODE

$C_AUX_VALUE[0] Value of the replaced M function
$C_ME For $C_M_PROG == TRUE, contains the value of the address extension

of the M function
$C_AUX_EXT[0] Address extension of the M function (identical to $C_ME)
$C_AUX_IS_QUICK[0] TRUE, if the M function was programmed with quick output to the PLC
$C_T_PROG TRUE, if the T function was programmed
$C_T For $C_T_PROG == TRUE, contains the value of the T function
$C_TE Contains for:

• $C_T_PROG == TRUE
• $C_TS_PROG == TRUE
the value of the address extension of the T function

$C_TS_PROG TRUE, if for the T or TCA replacement, a tool name has been
programmed.

$C_TS For $C_TS_PROG == TRUE, contains the tool name programmed for
the T or TCA replacement

$C_TCA TRUE, if the TCA replacement is active
$C_DUPLO_PROG TRUE, if the duplo number of the TCA replacement has been

programmed
$C_DUPLO For $C_DUPLO_PROG == TRUE, contains the value of the programmed

duplo number
$C_THNO_PROG TRUE, if the toolholder/spindle number of the TCA replacement has

been programmed
$C_THNO For $C_THNO_PROG == TRUE, contains the value of the programmed

toolholder/spindle number
$C_D_PROG TRUE, if the D function has been programmed
$C_D For $C_D_PROG == TRUE, contains the value of the D function
$C_DL_PROG TRUE, if the DL function was programmed
$C_DL For $C_DL_PROG == TRUE, contains the value of the DL function
$P_SUB_STAT Block-related time when the replacement subprogram is called
$C_MTL_PROG TRUE if address MTL has been programmed
$C_MTL For $C_MTL_PROG == TRUE, contains the value of address MTL

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
610 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.15.2.4 Example: Replacement of an M function

Example 1
The function M6 is replaced by calling the subprogram "SUB_M6".

The information relevant for a tool change should be transferred using system variables.

Parameterization

Machine data Meaning
MD10715 $MN_M_NO_FCT_CYCLE[2] = 6 Tool change with M6
MD10716 $MN_M_NO_FCT_CYCLE_NAME[2] = "SUB_M6" Replacement

subprogram for M6
MD10718 $MN_M_NO_FCT_CYCLE_PAR = 2 Information transfer

using system variables

Main program

Programming Comment

PROC MAIN

... ;

N10 T1 D1 M6 ;

;

M6 is replaced by subroutine "SUB_M6"

... ;

N90 M30

Subprogram "SUB_M6"

Programming Comment

PROC SUB_M6

N110 IF $C_T_PROG==TRUE ; IF address T is programmed

N120 T[$C_TE]=$C_T ; Execute T selection

N130 ENDIF ; ENDIF

N140 M[$C_ME]=6 ; Execute tool change.

N150 IF $C_D_PROG==TRUE ; IF address D is programmed

N160 D=$C_D ; Execute D selection

N170 ENDIF ; ENDIF

N190 M17

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 611

Example 2
The new tool is prepared for changing with the T function. The tool change is only realized
with function M6. The T function is replaced by calling the subprogram "MY_T_CYCLE". The
D / DL number is transferred to the subprogram.

Parameterization

Parameterization Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 1 Tool change prepared with T

function
MD10717 $MN_T_NO_FCT_CYCLE_NAME = "MY_T_CYCLE" Replacement subprogram
MD10719 $MN_T_NO_FCT_CYCLE_MODE = 0 Transfer of the D/DL number

Main program

Program code Comment

N210 D1 ;

N220 G90 G0 X100 Y100 Z50 ; D1 is active.

N230 D2 X110 Z0 T5 ;

;

D1 remains active, programmed D2 is transferred

to the subprogram as variable

N240 M6 ; Execute tool change

Example 3
The new tool is prepared for changing with the T function. The tool change is only realized
with function M6. The T function is replaced by calling the subprogram "MY_T_CYCLE". The
D / DL number is not transferred to the subprogram.

Parameterization

Parameterization Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 1 Tool change prepared with T

function
MD10717 $MN_T_NO_FCT_CYCLE_NAME = "MY_T_CYCLE" Replacement subprogram
MD10719 $MN_T_NO_FCT_CYCLE_MODE = 1 No transfer of the D/DL number

Main program

Program code Comment

N310 D1

N320 G90 G0 X100 Y100 Z50 ; D1 is active.

N330 D2 X110 Z0 T5 ;

;

D2 is active and is not transferred as variable

to

the replacement subprogram.

N340 M6 ; Execute tool change.

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
612 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example 4
The functions T and M6 are replaced by the subprogram "MY_T_CYCLE".

The parameters are transferred to the subprogram when replacing M6.

If M6 is programmed together with D or DL in the block, the D or the DL number is also
transferred as parameter to the subprogram if no transfer of the D/DL number has been
parameterized:

MD10719 $MN_T_NO_FCT_CYCLE_MODE = 1

Parameterization

Configuration Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 1 Tool change with M function
MD22560 $MC_TOOL_CHANGE_M_CODE = 6 M code for tool change
MD10715 $MC_M_NO_FCT_CYCLE[3] = 6 M function to be replaced
MD10716 $MC_M_NO_FCT_CYCLE_NAME[3] = "MY_T_CYCLE" Replacement subprogram for

the M function
MD10717 $MN_T_NO_FCT_CYCLE_NAME = "MY_T_CYCLE" Replacement subprogram for

the T function
MD10718 $MN_M_NO_FCT_CYCLE_PAR = 3 Parameter transfer to the

replacement subprogram for
M6

MD10719 $MN_T_NO_FCT_CYCLE_MODE = 1 No transfer of the D/DL number

Main program

Program code Comment

N410 D1

N420 G90 G0 X100 Y100 Z50 ; D1 is active.

N330 D2 X110 Z0 T5 M6 ; D1 remains active, D2 and T5 are transferred to

the M6 replacement subprogram as variable.

8.15.2.5 Example: Replacement of a T and D function
The functions T and D are replaced by calling the subprogram "D_T_SUB_PROG". The
following should also be true for the example:

● The tool change is realized with address T.

● The subprogram is called at the start of the block.

● The tool management is not active.

● Axis B is an indexing axis with Hirth gearing.

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 613

Parameterization

Machine data Meaning
MD11717 $MN_D_NO_FCT_CYCLE_NAME = "D_T_SUB_PROG" Replacement

subprogram
for D function

MD10717 $MN_T_NO_FCT_CYCLE_NAME = "D_T_SUB_PROG" Replacement
subprogram
for M function

MD10719 $MN_T_NO_FCT_CYCLE_MODE = 'H2' Call at block start
MD22550 $MC_TOOL_CHANGE_MODE = 0 Tool change with T

function

Main program

Programming Comment

PROC MAIN

... ;

N10 G01 F1000 X10 T1=5 D1 ;

;

T and D function replaced by calling

"D_T_SUB_PROG" at start of block

... ;

N90 M30

Subprogram "D_T_SUB_PROG"

Programming Comment

N1000 PROC D_T_SUB_PROG DISPLOF SBLOF

N4100 IF $C_T_PROG==TRUE ; IF address T is programmed

N4120 POS[B]=CAC($C_T) ; Approach the indexing position

N4130 T[$C_TE]=$C_T ; Select tool (T selection)

N4140 ENDIF ; ENDIF

N4300 IF $C_T_PROG==TRUE ; IF address D is programmed

N4320 D=$C_D ; Select offset (D selection)

N4330 ENDIF ; ENDIF

N4400 IF $C_DL_PROG==TRUE ; IF address DL is programmed

N4420 D=$C_DL ; Select insert offset

N4430 ENDIF ; ENDIF

N9999 RET

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
614 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.15.2.6 Behavior in the event of a conflict

Conflict case
A conflict is present if several functions are programmed in one block and the functions
should be replaced with different subprograms:

● Addresses D and DL replaced with subprogram:

MD11717 $MN_FCT_CYCLE_NAME = "D_SUB_PROG"

● Address T replaced with subprogram:

MD10717 $MN_FCT_CYCLE_NAME = "T_SUB_PROG"

● M function M6 replaced with subprogram:

MD10715 $MN_M_NO_FCT_CYCLE[0] = 6

MD10716 $MN_M_NO_FCT_CYCLE_NAME[0] = "M6_SUB_PROG"

MD10718 $MN_M_NO_FCT_CYCLE_PAR = 0

MD22550 $MC_TOOL_CHANGE_MODE = 1

MD22560 $MC_TOOL_CHANGE_M_CODE = 6

Resolution
A conflict is resolved corresponding to the following table:

The following are programmed in one program line:

D and/or DL T or TCA M6

Called subprogram:

– – x M6_SUB_PROG
– x – T_SUB_PROG
– x x M6_SUB_PROG
x – – D_SUB_PROG
x – x M6_SUB_PROG
x x – T_SUB_PROG
x x x M6_SUB_PROG

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 615

8.15.3 Replacement of spindle functions

8.15.3.1 General

Function
When a coupling is active the following spindle functions can be replaced for leading
spindles:

● M40: Automatic gear stage change

● M41 ... M45 Programmed gear stage change

● SPOS, SPOSA and M19: Spindle positioning

Boundary conditions
● To replace a spindle function, the following conditions must be met:

– The programmed spindle must be the leading spindle of an active coupling.

– Leading and following spindle are located in the same channel. This is only detected if
the leading spindle is located in the channel in which the coupling was closed. If the
leading spindle is changed to another channel, a gear stage change or positioning of
this spindle does not call the replacement subprogram.

– A programmed gear stage change must result in a real gear stage change. For this
purpose, the programmed and active gear stage must differ.

● In a block, only one spindle function can be replaced. Multiple replacements lead to the
termination of the program processing. The spindle functions, which are to be replaced,
must then be distributed over several blocks.

Parameterization

Spindle function

The spindle functions to be replaced by the subprogram are selected in the machine data:

MD30465 $MA_AXIS_LANG_SUB_MASK

Bit Meaning

Gear-stage change automatic (M40) and directly (M41-M45)
Value Meaning

0 No replacement

0

1 Replacement through the subprogram set in MD15700 and MD15702
Spindle positioning with SPOS / SPOSA / M19
Value Meaning

0 No replacement

1

1 Replacement through the subprogram set in MD15700 and MD15702

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
616 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Subprogram: Name

The name of the replacement subprogram is entered in the machine data:

MD15700 $MN_LANG_SUB_NAME = "<subprogram name>"

Subprogram: Path

The path of the replacement subprogram is set in the machine data:

MD15702 $MN_LANG_SUB_PATH = <value>

Value Meaning
0 Manufacturer cycle folder: /_N_CMA_DIR
1 User cycle folder: /_N_CUS_DIR
2 Siemens cycle folder: /_N_CST_DIR

System variable: Time that the replacement subprogram is called
The time that the replacement subprogram is called can be read using the system variable
$P_SUB_STAT:

Value Meaning
0 Replacement not active
1 Replacement active, subprogram call is made at the block start
2 Replacement active, subprogram call is made at the block end

Block processing

If the replacement subprogram is called at the block start, after processing the replacement
subprogram, the block that initiated the call is processed. The replaced commands are no
longer processed.

If the replacement subprogram is called at the block end, the block that initiated calling the
replacement subprogram is first processed without the commands to be replaced. The
replacement subprogram is then subsequently called.

8.15.3.2 Replacement of M40 - M45 (gear stage change)

Function
When a coupling is active, the commands for gear stage change (M40, M41 ... M45) of the
leading spindle are replaced by calling a user-specific subprogram.

Parameterization

Activation

● MD30465 $MA_AXIS_LANG_SUB_MASK, bit 0 = 1

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 617

Time that the subprogram is called

● M40

The time of the call cannot be set. The replacement subprogram is always called at the
block start.

● M41 ... M45

The call time depends on the configured output behavior of the auxiliary function to the
PLC (see below MD22080):

– Output before or during motion: Subprogram call at the start of the block.

– Output after motion: Subprogram call at the end of the block

MD22080 $MC_AUXFU_PREDEF_SPEC[12 ... 16] (output behavior for M41 ... M45)

Bit Value Meaning
5 1 Output of the auxiliary function before the motion
6 1 Output of the auxiliary function during the motion
7 1 Output of the auxiliary function after the motion

System variable to transfer information
The replacement subroutine is provided with all of the information relevant to the functions
programmed in the block via system variables (see Chapter "System variable (Page 618)").
The data refer exclusively to the block, in which the function to be replaced has been
programmed.

8.15.3.3 Replacement of SPOS, SPOSA, M19 (spindle positioning)

Function
When a coupling is active, the positioning commands (SPOS, SPOSA or M19) of a leading
spindle are replaced by calling a user-specific subprogram (replacement subprogram).

Application example

When machining workpieces in parallel on a double-spindle machine, the spindles are
coupled through a coupling factor not equal to 1. When changing the tool, they must be
brought to the same position. The replacement subprogram opens the coupling, separately
positions the spindles at the tool change position and then recloses the coupling.

Parameterization

Activation

● MD30465 $MA_AXIS_LANG_SUB_MASK, bit 1 = 1

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
618 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Time that the replacement subprogram is called

● SPOS, SPOSA

The time of the call cannot be set. The replacement subprogram is always called at the
block start.

● M19

The call time depends on the configured output behavior of the auxiliary function to the
PLC (see below MD22080):

– Output before or during motion: Subprogram call at the start of the block.

– Output after motion: Subprogram call at the end of the block

MD22080 $MC_AUXFU_PREDEF_SPEC[9]
Bit Value Meaning
5 1 Output of the auxiliary function before the motion
6 1 Output of the auxiliary function during the motion
7 1 Output of the auxiliary function after the motion

System variable for transferring information
The replacement subroutine is provided with all of the information relevant to the functions
programmed in the block via system variables (see Chapter "System variable (Page 618)").
The data refer exclusively to the block, in which the function to be replaced has been
programmed.

8.15.3.4 System variable

System variable Meaning
$P_SUB_AXFCT TRUE, if M40, M41 ... M45 replacement is active
$P_SUB_GEAR Programmed or calculated gear stage

Outside the replacement subprogram: Gear stage of the master spindle
$P_SUB_AUTOGEAR TRUE, if M40 was active in the block that had initiated the replacement

operation.
Outside the replacement subprogram: Actual setting in the interpreter

$P_SUB_LA Contains the axis name of the leading spindle of the active coupling,
which had triggered the replacement operation.
Note
If the variable is used outside the replacement subprogram, program
processing is cancelled with an alarm.

$P_SUB_CA Contains the axis name of the following spindle of the active coupling,
which had triggered the replacement operation.
Note
If the variable is called outside the replacement subprogram, program
processing is cancelled with an alarm.

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 619

System variable Meaning
$P_SUB_AXFCT Contains the active replacement types corresponding to MD30465

$MA_AXIS_LANG_SUB_MASK
$P_SUB_SPOS TRUE, if the SPOS replacement is active
$P_SUB_SPOSA TRUE, if the SPOSA replacement is active
$P_SUB_M19 TRUE, if the M19 replacement is active
$P_SUB_SPOSIT Contains the programmed spindle position

Note
If the variable is called outside the replacement subprogram, program
processing is cancelled with an alarm.
Contains the position approach mode for the programmed spindle
position:
Value Meaning

0 No change of the position approach mode
1 AC
2 IC
3 DC
4 ACP
5 ACN
6 OC
7 PC

$P_SUB_SPOSMODE

Note:
If the variable is called outside the replacement subprogram, program
processing is cancelled with an alarm.

$P_SUB_STAT Block-related time when the replacement subprogram is called

8.15.3.5 Example: Gear stage change
In the subprogram, all commands to change the gear stage M40, M41 ... M45 are replaced.

Parameterization

Machine data Meaning
MD15700 $MN_LANG_SUB_NAME = "LANG_SUB" Subprogram
MD15702 $MN_LANG_SUB_PATH = 0 Manufacturer's folder
MD22080 $MC_AUXFU_PREDEF_SPEC[12] = 'H21' M41: Output prior to motion
MD22080 $MC_AUXFU_PREDEF_SPEC[13] = 'H21' M42: Output prior to motion
MD22080 $MC_AUXFU_PREDEF_SPEC[13] = 'H21' M43: Output prior to motion
MD22080 $MC_AUXFU_PREDEF_SPEC[15] = 'H21' M44: Output prior to motion
MD22080 $MC_AUXFU_PREDEF_SPEC[16] = 'H21' M45: Output prior to motion
MD30465 $MA_AXIS_LANG_SUB_MASK[AX5] =
'H0001'

Replace gear change commands

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
620 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Main program

Programming Comment

PROC MAIN

N110 COUPON(S2,S1) ; Close the synchronous spindle coupling

N120 G01 F100 X100 S5000 M3 M43 ; Subprogram call due to M43

N130 M40 ; Switch-on automatic gear stage change

N140 M3 S1000 ;

;

;

Subprogram call due to S1000

and as a result initiated automatic

Gear stage change

N9999 M30

Replacement subprogram "LANG_SUB", version 1
Optimized for simplicity and velocity by directly addressing the spindles (S1: Leading spindle,
S2: Following spindle).

Programming Comment

N1000 PROC LANG_SUB DISPLOF SBLOF

N1100 IF($P_SUB_AXFCT ==1) ; Replacement due to gear stage change

N1140 DELAYFSTON ; Start of stop delay area

N1150 COUPOF(S2,S1) ; Open synchronous spindle coupling

N1160 ;gear stage change separately for leading and following spindles

N1170 M1=$P_SUB_GEAR M2=$P_SUB_GEAR

N1180 DELAYFSTON ; End of stop delay area

N1190 COUPON(S2,S1) ; Close the synchronous spindle coupling

N1200 ENDIF

...

N9999 RET

Replacement subprogram "LANG_SUB", version 2
Flexibility through indirect addressing using the system variable (leading spindle:
$P_SUB_LA, following spindle: $P_SUB_CA).

Programming Comment

N1000 PROC LANG_SUB DISPLOF SBLOF

N1010 DEF AXIS _LA ; Bit memory for leading axis / leading spindle

N1020 DEF AXIS _CA ; Bit memory for following axis / following

spindle

N1030 DEF INT _GEAR ; Bit memory for gear stage

N1100 IF($P_SUB_AXFCT==1) ; Replacement due to gear stage change

N1110 _GEAR=$P_SUB_GEAR ; Gear stage to be activated

N1120 _LA=$P_SUB_LA ; Axis name of the leading spindle

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 621

Programming Comment

N1130 _CA=$P_SUB_CA ; Axis name of the following spindle

N1140 DELAYFSTON ; Start of stop delay area

N1150 COUPOF(_CA,_LA) ; Open synchronous spindle coupling

N1160 ;gear stage change for leading and following spindles

N1170 M[AXTOSPI(_LA)]=_GEAR M[AXTOSPI(_CA)]=_GEAR

N1180 DELAYFSTOF ; End of stop delay area

N1190 COUPON(_CA,_LA) ; Close the synchronous spindle coupling

N1200 ENDIF

...

N9999 RET

8.15.3.6 Example: Spindle positioning
In the subprogram, only the replacement of commands SPOS and SPOSA is explicitly executed.
Additional replacements should be supplemented in essentially the same fashion.

Parameterization

Machine data Meaning
MD30465 $MA_AXIS_LANG_SUB_MASK[AX5] =
'H0002'

Replace positioning commands

MD22080 $MC_AUXFU_PREDEF_SPEC[9] = 'H0021' Output of M19 to the PLC before
motion

Setting Data Meaning
SD43240 $SA_M19_SPOS[AX5] = 260 Spindle position for M19 = 260
SD43250 $SA_M19_SPOSMODE[AX5] = 4 Position approach mode for M19:

"Approach in the positive direction
(ACP)"

Main program

Programming Comment

PROC MAIN

...

N210 COUPON(S2,S1) ; Activate synchronous spindle coupling

N220 SPOS[1]=100 ; Position leading spindle with SPOS

...

N310 G01 F1000 X100 M19 ; Position leading spindle with M19

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
622 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Replacement subprogram "LANG_SUB", version 1
Optimized for simplicity and velocity by directly addressing the spindles (S1: Leading spindle,
S2: Following spindle).

Programming Comment

N1000 PROC LANG_SUB DISPLOF SBLOF

N2100 IF($P_SUB_AXFCT==2)

N2110 ;Replacement of SPOS/SPOSA/M19 for active synchronous spindle coupling

N2185 DELAYFSTON ; Start of stop delay area

N2190 COUPOF(S2,S1) ; Open synchronous spindle coupling

N2200 ; Position leading and following spindles

N2210 IF($P_SUB_SPOS==TRUE) OR ($P_SUB_SPOSA==TRUE)

N2220 ;SPOS and SPOSA are mapped to SPOS

N2230 CASE $P_SUB_SPOSMODE OF \

 0 GOTOF LABEL1_DC \

 1 GOTOF LABEL1_IC \

 2 GOTOF LABEL1_AC \

 3 GOTOF LABEL1_DC \

 4 GOTOF LABEL1_ACP \

 5 GOTOF LABEL1_ACN \

 DEFAULT GOTOF LABEL_ERR

LABEL1_DC: SPOS[1]=DC($P_SUB_SPOSIT) SPOS[2]=DC($P_SUB_SPOSIT)

 GOTOF LABEL1_CONT

LABEL1_IC: DELAYFSTOF

 SPOS[1]=IC($P_SUB_SPOSIT) SPOS[2]=IC($P_SUB_SPOSIT)

 DELAYFSTON

 GOTOF LABEL1_CONT

LABEL1_AC: SPOS[1]=AC($P_SUB_SPOSIT) SPOS[2]=AC($P_SUB_SPOSIT)

 GOTOF LABEL1_CONT

LABEL1_ACP: SPOS[1]=ACP($P_SUB_SPOSIT) SPOS[2]=ACP($P_SUB_SPOSIT)

 GOTOF LABEL1_CONT

LABEL1_ACN: SPOS[1]=ACN($P_SUB_SPOSIT) SPOS[2]=ACN($P_SUB_SPOSIT)

LABEL1_CONT:

N2250 ELSE ; Positioning the spindle using M19

N2270 M1=19 M2=19 ; Leading and following spindles

N2280 ENDIF ; End replacement SPOS, SPOSA

N2285 DELAYFSTOF ; End of stop delay area

N2290 COUPON(S2,S1) ; Activate synchronous spindle coupling

N2410 ELSE

N2420 ;from here processing further replacements

...

N3300 ENDIF ; End replacements

...

N9999 RET ; Normal end of program

LABEL_ERR: SETAL(61000) ; Error has occurred

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 623

Replacement subprogram "LANG_SUB", version 2
Flexibility through indirect addressing using the system variable (leading spindle:
$P_SUB_LA, following spindle: $P_SUB_CA).

Programming Comment

N1000 PROC LANG_SUB DISPLOF SBLOF

N1010 DEF AXIS _LA ; Leading axis/spindle

N1020 DEF AXIS _CA ; Following axis/spindle

N1030 DEF INT _LSPI ;

;

Leading spindle number (programmed

spindle)

N1040 DEF INT _CSPI ; Following spindle number

...

N2100 IF($P_SUB_AXFCT==2)

N2110 ;Replacement of SPOS/SPOSA/M19 for active synchronous spindle coupling

N2120 _LA=$P_SUB_LA ; Axis name of the leading spindle

N2130 _CA=$P_SUB_CA ; Axis name of the following spindle

N2140 _LSPI=AXTOSPI(_LA) ; Number of the leading spindle

N2180 _CSPI=AXTOSPI(_LA) ; Number of the following spindle

N2185 DELAYFSTON ; Start of stop delay area

N2190 COUPOF(_CA,_LA) ; Deactivate synchronous spindle coupling

N2200 ; Position leading and following spindle:

N2210 IF($P_SUB_SPOS==TRUE) OR ($P_SUB_SPOSA==TRUE)

N2220 ;SPOS and SPOSA are mapped to SPOS

N2230 CASE $P_SUB_SPOSMODE OF

 0 GOTOF LABEL1_DC \

 1 GOTOF LABEL1_IC \

 2 GOTOF LABEL1_AC \

 3 GOTOF LABEL1_DC \

 4 GOTOF LABEL1_ACP \

 5 GOTOF LABEL1_ACN \

 DEFAULT GOTOF LABEL_ERR

LABEL1_DC: SPOS[_LSPI]=DC($P_SUB_SPOSIT) SPOS[_CSPI]=DC($P_SUB_SPOSIT)

 GOTOF LABEL1_CONT

LABEL1_IC: DELAYFSTOF

 SPOS[_LSPI]=IC($P_SUB_SPOSIT) SPOS[_CSPI]=IC($P_SUB_SPOSIT)

 DELAYFSTON

 GOTOF LABEL1_CONT

LABEL1_AC: SPOS[_LSPI]=AC($P_SUB_SPOSIT) SPOS[_CSPI]=AC($P_SUB_SPOSIT)

 GOTOF LABEL1_CONT

LABEL1_ACP: SPOS[_LSPI]=ACP($P_SUB_SPOSIT) POS[_CSPI]=ACP($P_SUB_SPOSIT)

 GOTOF LABEL1_CONT

LABEL1_ACN: SPOS[_LSPI]=ACN($P_SUB_SPOSIT) POS[_CSPI]=ACN($P_SUB_SPOSIT)

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
624 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programming Comment

LABEL1_CONT:

N2250 ELSE ; Position the spindle using M19

N2270 M[_LSPI]=19 M[_CSPI]=19

N2280 ENDIF

N2285 DELAYFSTOF ; End of stop delay area

N2290 COUPON(_CA,_LA) ; Activate synchronous spindle coupling

N2410 ELSE

N2420 ;from here processing further replacements

...

N3300 ENDIF

...

N9999 RET ; Normal end of program

LABEL_ERR: SETAL(61000) ; Error has occurred

8.15.4 Properties of the subprograms

General rules
● The subprogram called when making the replacement can contain the command PROC

and the attribute SBLOF and DISPLOF.

● The replacement is also made in the ISO language mode. However, the replacement
subprograms are exclusively processed in the standard language mode (Siemens). There
is an implicit switchover into the standard language mode. The original language mode is
reselected with the return jump from the replacement subprogram.

● System variables are exclusively used to transfer information to the replacement
subprogram. Transfer parameters are not possible.

● The behavior for a single block and attribute SBLOF depends on the setting in:

MD10702 IGNORE_SINGLEBLOCK_MASK, bit 14 (prevent single-block stop)

Value Meaning

0 The replacement subprogram behaves like a "normal" subprogram:
• Return jump with M17: Stop at the end of the subprogram

Note

The output of the M function at the PLC depends on:

MD20800 $MC_SPF_END_TO_VDI, bit 0 (subprogram end to PLC)

 - Bit 0 = 0: No output

 - Bit 0 = 1: M17 is output to the PLC.
• Return jump with RET: No stop at the end of the replacement subprogram

 K1: Mode group, channel, program operation, reset response
 8.15 Replacing functions by subprograms

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 625

Value Meaning
1 In the block, in which the replacement subprogram is called, only one stop is made.

Regardless of whether:
• The subprogram was called at the block start and/or at the block end
• Other subprograms are called in the subprogram
• The subprogram is exited with M17 or RET
The single-block stop takes place for the replacement of M functions at the end of the
replacement subprogram.
For the replacement of T and D/DL functions, the time of the single-block stop depends on
when the subprogram is called:
• Call at block start: Single-block stop at the end of the block
• Call at the block end: Single-block stop at the end of the replacement subprogram

● For replacement subprograms with the attribute DISPLOF in the block display, the program
line is displayed as actual block, which resulted in the subprogram being called.

● In the replacement subprogram, areas or the complete replacement subprogram can be
protected against interruptions, such as NC stop, read-in inhibit etc., using the DELAYFSTON
and DELAYFSTOF commands.

● Replacements do not occur recursively, i.e. the function that has led to the replacement
subprogram call is no longer replaced if it is programmed again in the replacement
subprogram.

Output of auxiliary functions to PLC
When replacing auxiliary functions, calling the replacement subprogram does not initiate that
the auxiliary function is output to the PLC. The auxiliary function is only output if the auxiliary
function is reprogrammed in the replacement subprogram.

Behavior during block search
The replacement subprogram is also called in the search modes "Block search with
calculation" and "Block search with calculation in the program test mode" (SERUPRO). Any
special features must be implemented in the replacement subprogram using the system
variable: $P_SEARCH, $AC_SERUPRO.

Regarding collecting actions for "search with calculation", replacement subprograms behave
just like "normal" subprograms.

K1: Mode group, channel, program operation, reset response
8.15 Replacing functions by subprograms

 Basic Functions
626 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.15.5 Restrictions
● Function replacements are not permitted in:

– Synchronized actions

– Technology cycles

● There must be no blockwise synchronized actions in front of a block that contains
functions at the beginning to be replaced. See the paragraph below "Example for: Non-
modal synchronized actions".

● Only the actions required for the respective replacements can be performed in the
replacement subprogram.

● In a block, in which the replacement subprogram is called at the block end, the following
should be observed:

– No modal subprogram call should be active

– No subprogram return jump should be programmed

– No program end should be programmed

 Note

The controller does not monitor whether the function to be replaced has been realized
in the replacement subprogram.

Example of: Non-modal synchronized actions
MD30465 $MA_AXIS_LANG_SUB_MASK, bit 0 = 1 (gear stage change)

Program code

...

N1000 WHENEVER $AA_IM[X2] <= $AA_IM[X1] + 0.5 DO $AA_OVR[X1]=0

N1010 G1 X100 M43

...

If, in block N1010, the function M43 initiates that a replacement subprogram is called,
machining is interrupted and an alarm is output.

 K1: Mode group, channel, program operation, reset response
 8.16 Program runtime / part counter

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 627

8.16 Program runtime / part counter
Information on the program runtime and workpiece counter are provided to support the
machine tool operator.

This information can be processed as system variables in the NC and/or PLC program. This
information is also available to be displayed on the operator interface.

8.16.1 Program runtime

Function
The "program runtime" function provides internal NC timers to monitor technological
processes, which can be read into the part program and into synchronized actions via the
NC and channel-specific system variables.

Time since the last control power-up

The timers for measuring the time since the last control power-up are always active and can
be read via NC-specific system variables:

System variable Meaning
$AN_SETUP_TIME Time since the last control power-up with default values ("cold restart") in minutes.

Is automatically reset to "0" in each control power-up with default values.
$AN_POWERON_TIME Time since the last normal control power-up ("warm restart") in minutes.

Is automatically reset to "0" in each normal control power-up.

Program runtimes

The timers for measuring the program runtimes are:

● Available only in the mode type AUTOMATIC

● Can be read via channel-specific system variables

Some of the timers are always active, others can be activated/deactivated through MD
parameterization.

K1: Mode group, channel, program operation, reset response
8.16 Program runtime / part counter

 Basic Functions
628 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following system variables are available for the timers that are always active:

System variable Meaning
$AC_ACT_PROG_NET_TIME Actual net runtime of the current program in seconds

Net runtime means that the time, in which the program was stopped, has been
deducted.
If, in the AUTOMATIC operating mode, a part program is restarted from the
RESET channel state, then $AC_ACT_PROG_NET_TIME is automatically
reset to "0".
Additional properties:
• The reset button does not reset $AC_ACT_PROG_NET_TIME back to "0"

but only stops the timer.
• When starting an ASUB, $AC_ACT_PROG_NET_TIME is set to "0" and

also counts the runtime of the ASUB. At the end of an ASUB, it behaves
just the same as for the RESET button: The timer is only held, but is not
set to "0".

• $AC_ACT_PROG_NET_TIME is not reset when starting an event-
controlled program (PROG_EVENT).

The program runtime is only counted further if it involves a start, M30 or a
search PROG_EVENT.

• The behavior of $AC_ACT_PROG_NET_TIME for GOTOS and override =
0% can be parameterized using MD27850 (refer to Section
"Parameterization")

Tip:
With $AC_PROG_NET_TIME_TRIGGER, $AC_ACT_PROG_NET_TIME can
be manipulated further.

$AC_OLD_PROG_NET_TIME Net runtime in seconds of the program that has just been correctly ended
"Correctly ended" means that the program was not interrupted with RESET,
but instead ended properly with M30.)
If a new program is started, $AC_OLD_PROG_NET_TIME remains
unscanned, till M30 is reached again.
Additional properties:
• $AC_OLD_PROG_NET_TIME is set to "0" if the currently selected program

is edited.
• $AC_OLD_PROG_NET_TIME is not changed at the end of an ASUB or an

event-controlled program (PROG_EVENT).
Tip:
The implied copying process of $AC_ACT_PROG_NET_TIME after
$AC_OLD_PROG_NET_TIME takes place only when
$AC_PROG_NET_TIME_TRIGGER is not written.

 K1: Mode group, channel, program operation, reset response
 8.16 Program runtime / part counter

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 629

System variable Meaning
$AC_OLD_PROG_NET_TIME_COUNT Changes to $AC_OLD_PROG_NET_TIME

After POWER ON, $AC_OLD_PROG_NET_TIME_COUNT is at "0".
$AC_OLD_PROG_NET_TIME_COUNT is always increased if the control has
newly written to $AC_OLD_PROG_NET_TIME.
If the user terminates the running program with RESET ,
$AC_OLD_PROG_NET_TIME and $AC_OLD_PROG_NET_TIME_COUNT
remain unchanged.
With $AC_OLD_PROG_NET_TIME_COUNT it can thus be ascertained,
whether $AC_OLD_PROG_NET_TIME was written.
Example:
If two programs running consecutively have the same runtime and were ended
correctly, then the user can identify this via the changed value in
$AC_OLD_PROG_NET_TIME_COUNT.
Trigger for the runtime measurement
Used for selective measurement of program sections i.e. by writing
$AC_PROG_NET_TIME_TRIGGER in the NC program the time measurement
can be enabled and disabled again:
1. $AC_PROG_NET_TIME_TRIGGER = 2 starts the measurement and in so

doing sets $AC_ACT_PROG_NET_TIME to "0".
2. $AC_PROG_NET_TIME_TRIGGER = 1 ends the measurement and copies

the value from $AC_ACT_PROG_NET_TIME into
$AC_OLD_PROG_NET_TIME.

In order to exploit all trigger options, specific values for
$AC_PROG_NET_TIME_TRIGGER are filled with special functions:
0 Neutral state

The trigger is not active.
1 Exit

Ends the measurement and copies the value from
$AC_ACT_PROG_NET_TIME into $AC_OLD_PROG_NET_TIME.
$AC_ACT_PROG_NET_TIME is set to "0" and then continues to run.

2 Start
Starts the measurement and in so doing sets
$AC_ACT_PROG_NET_TIME to "0". $AC_OLD_PROG_NET_TIME is not
changed.

3 Stop
Stops the measurement. Does not change $AC_OLD_PROG_NET_TIME
and keeps $AC_ACT_PROG_NET_TIME constant until it resumes

$AC_PROG_NET_TIME_TRIGGER

4 Continue
The measurement is resumed, i.e. a measurement that was previously
stopped is continued. $AC_ACT_PROG_NET_TIME continues to run.
$AC_OLD_PROG_NET_TIME is not changed.

All system variables are reset to 0 as a result of POWER ON!

K1: Mode group, channel, program operation, reset response
8.16 Program runtime / part counter

 Basic Functions
630 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note
Residual time for a workpiece

If the same workpieces are produced one after the other, then from the timer values:
• Processing time for the last workpiece produced (see $AC_OLD_PROG_NET_TIME)

and
• Current processing time (see $AC_ACT_PROG_NET_TIME)

the remaining residual time for a workpiece can be determined.

The residual time is displayed on the user interface in addition to the current processing
time.

 Note
Using STOPRE

The system variables $AC_OLD_PROG_NET_TIME and
$AC_OLD_PROG_NET_TIME_COUNT do not generate any implicit preprocessing stop. This
is uncritical when used in the part program if the value of the system variables comes from
the previous program run. However, if the trigger for the runtime measurement
($AC_PROG_NET_TIME_TRIGGER) is written very frequently and as a result
$AC_OLD_PROG_NET_TIME changes very frequently, then an explicit STOPRE should be
used in the part program.

The following system variables are available for the timers that are activated/deactivated
through MD parameterization:

System variable Meaning
$AC_OPERATING_TIME Total runtime of NC programs in Automatic mode (in s)

In the automatic mode, the runtimes of all programs between NC start and end of program
/ reset are summed up.
The default is not to count in NC STOP and override = 0%. Continued counting can be
activated at an override of 0% via MD27860.
The value is automatically reset to "0" every time the control powers up.

$AC_CYCLE_TIME Runtime of the selected NC program (in seconds)
The runtime between NC Start and End of program / NC-Reset is measured in the
selected NC program.
The default is not to count in NC STOP and override = 0%. Continued counting can be
activated at an override of 0% via MD27860.
The value is automatically reset to "0" every time a new NC program starts up. MD27860
can be set to ensure that this value will be deleted even if there is a jump to the beginning
of the program with GOTOS or in the event of ASUBs and PROG_EVENTs starting.

 K1: Mode group, channel, program operation, reset response
 8.16 Program runtime / part counter

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 631

System variable Meaning
$AC_CUTTING_TIME Processing time in seconds

The runtime of the path axes (at least one is active) is measured in all NC programs
between NC start and end of program/NC reset without rapid traverse active. MD27860
can be used to set whether measuring should only be conducted when the tool is active or
independent of the tool state.
The measurement is interrupted when a dwell time is active.
The value is automatically reset to "0" every time the control powers up with default
values.

Activation/deactivation
The timer that can be activated is switched-in/switched-out using machine data:

MD27860 $MC_PROCESSTIMER_MODE, Bit 0-2

Bit Value Meaning

0 Timer for $AC_OPERATING_TIME not active. 0
1 Timer for $AC_OPERATING_TIME active.
0 Timer for $AC_CYCLE_TIME not active. 1
1 Timer for $AC_CYCLE_TIME active.
0 Timer for $AC_CUTTING_TIME not active. 2
1 Timer for $AC_CUTTING_TIME active.

Parameterization
Behavior of the timer that is always active

The behavior of the timer that is always active for GOTOS and override = 0% is set using
machine data:

MD27850 $MC_PROG_NET_TIMER_MODE

Bit Value Meaning

0 $AC_ACT_PROG_NET_TIME is not reset to "0" in case of a jump with GOTOS to the
program start (initial setting).

0

1 With a jump with GOTOS to the start of the program, $AC_ACT_PROG_NET_TIME is
reset to "0", the value is first saved in $AC_OLD_PROG_NET_TIME and the program
counter $AC_OLD_PROG_NET_TIME_COUNT is incremented.

0 For override = 0%, $AC_ACT_PROG_NET_TIME is not increased. This means that
the program runtime is measured without the time for which the override was set to
"0" (basic setting).

1

1 Also for override = 0%, $AC_ACT_PROG_NET_TIME is increased. This means that
the program runtime is measured with the time for which the override was set to "0".

K1: Mode group, channel, program operation, reset response
8.16 Program runtime / part counter

 Basic Functions
632 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Behavior of the timer that can be activated

The behavior of the timer that can be activated for certain functions (e.g. test run feedrate,
program test) is set using machine data:

MD27860 $MC_PROCESSTIMER_MODE

Bit Value Meaning

0 No measurement during active dry run feedrate. 4
1 Measurement during active dry run feedrate.
0 No measurement during program test. 5
1 Measurement during program test.
Only for bit 1 = 1 (timer for $AC_CYCLE_TIME is active)
0 $AC_CYCLE_TIME is reset to "0" also in case of Start through ASUB and

PROG_EVENTs.

6

1 $AC_CYCLE_TIME is not reset to "0" in case of Start through ASUB and
PROG_EVENTs.

Only for bit 2 = 1 (timer for $AC_CUTTING_TIME is active)
0 Timer for $AC_CUTTING_TIME counts only for the active tool.

7

1 Timer for $AC_CUTTING_TIME counts independent of the tool.
Only for bit 1 = 1 (timer for $AC_CYCLE_TIME is active)
0 $AC_CYCLE_TIME is not reset to "0" in case of a jump with GOTOS to the program

start.

8

1 $AC_CYCLE_TIME is reset to "0" in case of a jump with GOTOS to the program start.
Only for bit 0, 1 = 1 (timer for $AC_OPERATING_TIME and $AC_CYCLE_TIME are active)
0 Counting of the program runtime is not continued at an override of 0%.

9

1 Counting of the program runtime continues at an override of 0%.

Supplementary conditions
● Block search

No program runtimes are determined through block searches.

● REPOS

The duration of a REPOS process is added to the current processing time
($AC_ACT_PROG_NET_TIME).

Examples
Example 1: Parameterization of the runtime measurement via MD27860

● Activating the runtime measurement for the active NC program and hence no
measurement in case of active dry run feedrate and program test:

MD27860 $MC_PROCESSTIMER_MODE = 'H2'

● Activating the measurement for the tool action time and measurement also with active dry
run feedrate and program test.

MD27860 $MC_PROCESSTIMER_MODE = 'H34'

 K1: Mode group, channel, program operation, reset response
 8.16 Program runtime / part counter

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 633

● Activating the measurement for the total runtime and the processing time with an active
tool, including measurement with a program test:

MD27860 $MC_PROCESSTIMER_MODE = 'H25'

● Activating the measurement for the total runtime and the machining time (independent of
the tool), including measurement with a program test:

MD27860 $MC_PROCESSTIMER_MODE = 'Ha5'

● Activating the measurement for the processing time with an active tool, including
measurements at an override = 0%, but not with a trial run feed active:

MD27860 $MC_PROCESSTIMER_MODE = 'H22'

Example 2: Measuring the duration of "mySubProgrammA"

Program code

...

N50 DO $AC_PROG_NET_TIME_TRIGGER=2

N60 FOR ii= 0 TO 300

N70 mySubProgrammA

N80 DO $AC_PROG_NET_TIME_TRIGGER=1

N95 ENDFOR

N97 mySubProgrammB

N98 M30

After the program has processed line N80, the net runtime of "mySubProgrammA" is located
in $AC_OLD_PROG_NET_TIME.

The value from $AC_OLD_PROG_NET_TIME:

● Is kept beyond M30.

● Is updated each time the loop is run through.

Example 3: Measuring the duration of "mySubProgrammA" and "mySubProgrammC"

Program code

N10 DO $AC_PROG_NET_TIME_TRIGGER=2

N20 mySubProgrammA

N30 DO $AC_PROG_NET_TIME_TRIGGER=3

N40 mySubProgrammB

N50 DO $AC_PROG_NET_TIME_TRIGGER=4

N60 mySubProgrammC

N70 DO $AC_PROG_NET_TIME_TRIGGER=1

N80 mySubProgrammD

N90 M30

K1: Mode group, channel, program operation, reset response
8.16 Program runtime / part counter

 Basic Functions
634 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.16.2 Workpiece counter

Function
Various counters with a range of values from 0 to 999,999,999 are available with the
"Workpiece counter" function in the form of channel-specific system variables. Read and
write access to the system variables is possible.

The following channel-specific machine data can be used to control counter activation,
counter reset timing and the counting algorithm.

System variables for workpiece counting

System variable Meaning
$AC_REQUIRED_PARTS Number of workpieces to be produced (setpoint number of

workpieces)
In this counter the number of workpieces at which the actual workpiece
count ($AC_ACTUAL_PARTS) will be reset to "0" can be defined.
MD27880 can be used to activate the generation of the display alarm:
"Channel %1 workpiece target = %2 reached"
and of the channel-specific NC/PLC interface signal:
DB21, DBX317.1 (workpiece target reached)
.

$AC_TOTAL_PARTS Total number of completed workpieces (actual workpiece total)
This counter specifies the total number of workpieces produced since
the start time. The value is only automatically reset to "0" when the
control runs up with default values.

$AC_ACTUAL_PARTS Number of completed workpieces (actual workpiece total)
This counter registers the total number of workpieces produced since
the start time. On condition that $AC_REQUIRED_PARTS > 0, the
counter is automatically reset to "0" when the required number of
workpieces ($AC_REQUIRED_PARTS) is reached.

$AC_SPECIAL_PARTS Number of workpieces selected by the user
This counter supports user-specific workpiece counts. An alarm can be
defined to be output when the setpoint number of workpieces is
reached ($AC_REQUIRED_PARTS). Users must reset the counter
themselves.

 Note

All workpiece counters are set to "0" when the control runs up with default values and can be
read and written independent of their activation.

 K1: Mode group, channel, program operation, reset response
 8.16 Program runtime / part counter

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 635

Activation
The workpiece counter is activated with the machine data:

MD27880 $MC_PART_COUNTER (activation of workpiece counters)

Bit Value Meaning
0 1 $AC_REQUIRED_PARTS is active

0 Alarm / signal output in case of: $AC_ACTUAL_PARTS = $AC_REQUIRED_PARTS 1
1 Alarm / signal output in case of: $AC_SPECIAL_PARTS = $AC_REQUIRED_PARTS

4 1 $AC_TOTAL_PARTS is active.
0 $AC_TOTAL_PARTS is incremented by the value "1" through M02/M30. 5
1 $AC_TOTAL_PARTS is incremented by the value "1" through the M command

defined with MD27882[0].
6 0 $AC_TOTAL_PARTS is also active for program test / block search.
7 1 $AC_TOTAL_PARTS is incremented by the value "1" upon a jump back with GOTOS.
8 1 $AC_ACTUAL_PARTS is active

0 $AC_ACTUAL_PARTS is incremented by the value "1" through M02/M30. 9
1 $AC_ACTUAL_PARTS is incremented by the value "1" through the M command

defined with MD27882[1].
10 0 $AC_ACTUAL_PARTS is also active for program test / block search.
11 1 $AC_ACTUAL_PARTS is incremented by the value "1" upon a jump back with GOTOS.
12 1 $AC_SPECIAL_PARTS is active.

0 $AC_SPECIAL_PARTS is incremented by the value "1" through M02/M30. 13
1 $AC_SPECIAL_PARTS is incremented by the value 1 through the M command

defined with MD27882[2].
14 0 $AC_SPECIAL_PARTS is also active for program test / block search.
15 1 $AC_SPECIAL_PARTS is incremented by the value "1" upon a jump back with

GOTOS.

Workpiece counting with user-defined M command
If the corresponding bit is set in MD27880, then the count pulse can be triggered via a user-
defined M command parameterized via the following machine data instead of via the end of
program M2/M30.

MD27882 $MC_PART_COUNTER_MCODE[<n>] (workpiece counting with user-defined M
command)

<n> Meaning

0 MD27882[0] defines the M command in which $AC_TOTAL_PARTS is incremented.
1 MD27882[1] defines the M command in which $AC_ACTUAL_PARTS is incremented.
2 MD27882[2] defines the M command in which $AC_SPECIAL_PARTS is incremented.

The respective workpiece counter is incremented by "1", when a user-defined M command is
called.

K1: Mode group, channel, program operation, reset response
8.16 Program runtime / part counter

 Basic Functions
636 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Supplementary conditions
● Mode change / NC RESET

The counters are not affected by a mode change or NC RESET.

● $AC_REQUIRED_PARTS ≤ 0

Where $AC_REQUIRED_PARTS ≤ 0 and MD27880 $MC_PART_COUNTER, bit 0 = 1,
the counting procedure and the identity comparison set with MD27880 are not conducted
for all the active counters.

Examples
● Activation of the workpiece counter $AC_REQUIRED_PARTS:

MD27880 $MC_PART_COUNTER = 'H3'

– $AC_REQUIRED_PARTS is active

– Display alarm at: $AC_REQUIRED_PARTS == $AC_SPECIAL_PARTS

● Activation of the workpiece counter $AC_TOTAL_PARTS:

MD27880 $MC_PART_COUNTER = 'H10'

MD27882 $MC_PART_COUNTER_MCODE[0] = 80

– $AC_TOTAL_PARTS is active; the counter is incremented by the value 1 with each
M02.

– $MC_PART_COUNTER_MCODE[0] has no significance.

● Activation of the workpiece counter $AC_ACTUAL_PARTS:

MD27880 $MC_PART_COUNTER = 'H300'

MD27882 $MC_PART_COUNTER_MCODE[1] = 17

– $AC_TOTAL_PARTS is active; the counter is incremented by a value of "1" with each
M17.

● Activation of the workpiece counter $AC_SPECIAL_PARTS:

MD27880 $MC_PART_COUNTER = 'H3000'

MD27882 $MC_PART_COUNTER_MCODE[2] = 77

– $AC_SPECIAL_PARTS is active.

– The following takes place with every M77: $AC_SPECIAL_PARTS + 1

● Deactivation of the workpiece counter $AC_ACTUAL_PARTS:

MD27880 $MC_PART_COUNTER = 'H200'

MD27882 $MC_PART_COUNTER_MCODE[1] = 50

– $AC_ACTUAL_PARTS is inactive

 K1: Mode group, channel, program operation, reset response
 8.16 Program runtime / part counter

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 637

● Activation of all counters:

MD27880 $MC_PART_COUNTER = 'H3313'

MD27882 $MC_PART_COUNTER_MCODE[0] = 80

MD27882 $MC_PART_COUNTER_MCODE[1] = 17

MD27882 $MC_PART_COUNTER_MCODE[2] = 77

– $AC_REQUIRED_PARTS is active

– Display alarm at: $AC_REQUIRED_PARTS == $AC_SPECIAL_PARTS

– $AC_TOTAL_PARTS is active; the counter is incremented by the value 1 with each
M02.

– $MC_PART_COUNTER_MCODE[0] has no significance.

– $AC_ACTUAL_PARTS is active; the counter is incremented by a value of "1" with
each M17.

– $AC_SPECIAL_PARTS is active; the counter is incremented by a value of "1" with
each M77.

● Workpiece counter $AC_ACTUAL_PARTS is not processed during the program test /
block search:

MD27880 $MC_PART_COUNTER = 'H700'

MD27882 $MC_PART_COUNTER_MCODE[1] = 75

– $AC_ACTUAL_PARTS is active; the counter is incremented by a value of "1" with
each M75, apart from during the program test and search.

● Cancellation of the count modes in the MD27880 $MC_PART_COUNTER with bit 0 = 1:

MD27882 $MC_PART_COUNTER_MCODE[0] = 41

MD27882 $MC_PART_COUNTER_MCODE[1] = 42

MD27882 $MC_PART_COUNTER_MCODE[2] = 43

Program code Comment

...

N100 $AC_REQUIRED_PARTS=-10 ; Value < 0 ⇒ stop counting.

N200 M41 M43 ; Not counting.

N300 M42

...

N500 $AC_REQUIRED_PARTS=52 ; Value > 0: Counting in accordance with MD27880

activated.

N501 M43 ; Counting.

N502 M42 M41 ; Counting.

...

K1: Mode group, channel, program operation, reset response
8.17 Data lists

 Basic Functions
638 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.17 Data lists

8.17.1 Machine data

8.17.1.1 General machine data

Displaying machine data

Number

SINUMERIK Operate

Identifier: $MM_ Description

9421 MA_AXES_SHOW_GEO_FIRST Display geo axes of channel first
9422 MA_PRESET_MODE PRESET / basic offset in JOG.
9423 MA_MAX_SKP_LEVEL Maximum number of skip levels

NC-specific machine data

Number Identifier: $MN_ Description
10010 ASSIGN_CHAN_TO_MODE_GROUP Channel valid in mode group
10280 PROG_FUNCTION_MASK Comparison commands ">" and "<"
10700 PREPROCESSING_LEVEL Program preprocessing level
10702 IGNORE_SINGLEBLOCK_MASK Prevent single block stop
10707 PROG_TEST_MASK Program test modes
10708 SERUPRO_MASK Block change modes
10710 PROG_SD_RESET_SAVE_TAB Setting data to be updated
10711 NC_LANGUAGE_CONFIGURATION Manner of handling the languages, whose related

option or function is not activated.
10713 M_NO_FCT_STOPRE M function with preprocessing stop
10715 M_NO_FCT_CYCLE M function to be replaced by subprogram
10716 M_NO_FCT_CYCLE_NAME Subroutine name for M function replacement
10717 T_NO_FCT_CYCLE_NAME Name of the tool change cycle for T function

replacement
10718 M_NO_FCT_CYCLE_PAR M function replacement with parameters
10719 T_NO_FCT_CYCLE_MODE Parameter assignment for T function replacement
11450 SEARCH_RUN_MODE Block search parameter settings
11470 REPOS_MODE_MASK Repositioning properties
11600 BAG_MASK Mode group response to ASUB
11602 ASUP_START_MASK Ignore stop conditions for ASUB
11604 ASUP_START_PRIO_LEVEL Priorities, starting from which

$MN_ASUP_START_MASK is effective

 K1: Mode group, channel, program operation, reset response
 8.17 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 639

Number Identifier: $MN_ Description
11610 ASUP_EDITABLE Activating a user-specific ASUB program
11612 ASUP_EDIT_PROTECTION_LEVEL Protection level of user-specific ASUB program
11620 PROG_EVENT_NAME Program name for PROG_EVENT
11717 D_NO_FCT_CYCLE_NAME Subroutine name for D function replacement
15700 LANG_SUB_NAME Name for replacement subprogram
15702 LANG_SUB_PATH Call path for replacement subprogram
17200 GMMC_INFO_NO_UNIT Global HMI info (without physical unit)
17201 GMMC_INFO_NO_UNIT_STATUS Global HMI status info (without physical unit)
18360 MM_EXT_PROG_BUFFER_SIZE FIFO buffer size for execution from external source

(DRAM)
18362 MM_EXT_PROG_NUM Number of program levels that can be processed

simultaneously from external

8.17.1.2 Channel-specific machine data

Basic machine data

Number Identifier: $MC_ Description
20000 CHAN_NAME Channel name
20050 AXCONF_GEOAX_ASSIGN_TAB Assignment of geometry axis to channel axis
20060 AXCONF_GEOAX_NAME_TAB Geometry axis name in channel
20070 AXCONF_MACHAX_USED Machine axis number valid in channel
20080 AXCONF_CHANAX_NAME_TAB Channel axis name in channel [channel axis no.]: 0...7
20090 SPIND_DEF_MASTER_SPIND Initial setting of master spindle in channel
20100 DIAMETER_AX_DEF Geometry axis with transverse axis function
20106 PROG_EVENT_IGN_SINGLEBLOCK Prog events ignore the single block
20107 PROG_EVENT_IGN_INHIBIT Prog events ignore the read-in disable
20108 PROG_EVENT_MASK Event-driven program calls
20109 PROG_EVENT_MASK_PROPERTIES Prog events properties
20114 MODESWITCH_MASK Setting for REPOS
20116 IGNORE_INHIBIT_ASUP Execute user ASUBs completely in spite of read-in

disable
20117 IGNORE_SINGLEBLOCK_ASUP Process user ASUBs completely in spite of single-

block processing
20160 CUBIC_SPLINE_BLOCKS Number of blocks for C spline
20170 COMPRESS_BLOCK_PATH_LIMIT Maximum traversing length of NC block for

compression
20191 IGN_PROG_STATE_ASUP Do not display the execution of the interrupt routine on

the operator panel
20192 PROG_EVENT_IGN_PROG_STATE Do not display the execution of the program events on

the operator panel

K1: Mode group, channel, program operation, reset response
8.17 Data lists

 Basic Functions
640 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Number Identifier: $MC_ Description
20193 PROG_EVENT_IGN_STOP Prog events ignore the Stop key
20210 CUTCOM_CORNER_LIMIT Max. angle for intersection calculation with tool radius

compensation
20220 CUTCOM_MAX_DISC Maximum value for DISC
20230 CUTCOM_CURVE_INSERT_LIMIT Maximum angle for intersection calculation with tool

radius compensation
20240 CUTCOM_MAXNUM_CHECK_BLOCKS Blocks for predictive contour calculation with tool

radius compensation
20250 CUTCOM_MAXNUM_DUMMY_BLOCKS Maximum number of blocks without traversing motion

for TRC
20270 CUTTING_EDGE_DEFAULT Basic setting of tool cutting edge without programming
20400 LOOKAH_USE_VELO_NEXT_BLOCK Look Ahead to programmed following block velocity
20430 LOOKAH_NUM_OVR_POINTS Number of override corner values for Look Ahead
20440 LOOKAH_OVR_POINTS Override switch points for LookAhead
20500 CONST_VELO_MIN_TIME Minimum time with constant velocity
20600 MAX_PATH_JERK Path-related maximum jerk
20610 ADD_MOVE_ACCEL_RESERVE Acceleration reserve for overlaid motions
20700 REFP_NC_START_LOCK NC start disable without reference point
20750 ALLOW_GO_IN_G96 G0 logic for G96, G961
20800 SPF_END_TO_VDI Subprogram end to PLC
21000 CIRCLE_ERROR_CONST Circle end point monitoring constant
21010 CIRCLE_ERROR_FACTOR Circle end point monitoring factor
21100 ORIENTATION_IS_EULER Angle definition for orientation programming
21110 X_AXIS_IN_OLD_X_Z_PLANE Coordinate system for automatic Frame definition
21200 LIFTFAST_DIST Traversing path for fast retraction from the contour
21210 SETINT_ASSIGN_FASTIN HW assignment of the ext. NCK input byte for NC

program interrupt:
21202 LIFTFAST_WITH_MIRROR Lift fast with mirror

Block search

Number Identifier: $MC_ Description
20128 COLLECT_TOOL_CHANGE Tool change commands to the PLC after block search
22600 SERUPRO_SPEED_MODE Velocity with block search type 5
22601 SERUPRO_SPEED_FACTOR Velocity factor for block search type 5
22621 ENABLE_START_MODE_MASK_PRT Switches MD22620: START_MODE_MASK_ PRT for

SERUPRO search run
22622 DISABLE_PLC_START Allow part program start via PLC
22680 AUTO_IPTR_LOCK Disable interrupt pointer

 K1: Mode group, channel, program operation, reset response
 8.17 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 641

Reset response

Number Identifier: $MC_ Description
20110 RESET_MODE_MASK Initial setting after RESET / parts program end
20112 START_MODE_MASK Basic setting for NC start after part program start
20118 GEOAX_CHANGE_RESET Allow automatic geometry axis change
20120 TOOL_RESET_VALUE Tool length compensation when powering-up

(RESET / part program end)
20121 TOOL_PRESEL_RESET_VALUE Preselected tool on RESET
20130 CUTTING_EDGE_RESET_VALUE Tool cutting edge length compensation when

powering-up (RESET / part program end)
20140 TRAFO_RESET_VALUE Transformation data set when powering-up

(RESET / part program end)
20150 GCODE_RESET_VALUES Initial setting of the G groups
20152 GCODE_RESET_MODE Reset behavior of G groups
20156 MAXNUM_GCODES_EXT Reset behavior of the external G groups
22620 START_MODE_MASK_PRT Initial setting at special NC Start after power-up and at

RESET

Auxiliary function settings

Number Identifier: $MC_ Description
22000 AUXFU_ASSIGN_GROUP Auxiliary function group
22010 AUXFU_ASSIGN_TYPE Auxiliary function type
22020 AUXFU_ASSIGN_EXTENSION Auxiliary function extension
22030 AUXFU_ASSIGN_VALUE Auxiliary function value
22200 AUXFU_M_SYNC_TYPE Output timing of M functions
22210 AUXFU_S_SYNC_TYPE Output timing of S functions
22220 AUXFU_T_SYNC_TYPE Output timing of T functions
22230 AUXFU_H_SYNC_TYPE Output timing of H functions
22240 AUXFU_F_SYNC_TYPE Output timing of F functions
22250 AUXFU_D_SYNC_TYPE Output timing of D functions
22400 S_VALUES_ACTIVE_AFTER_RESET S function active after RESET
22410 F_VALUES_ACTIVE_AFTER_RESET F function active after RESET
22510 GCODE_GROUPS_TO_PLC G codes that are output to the NCK/PLC interface on

block change/RESET
22550 TOOL_CHANGE_MODE New tool offset for M function
22560 TOOL_CHANGE_M_CODE M function for tool change

K1: Mode group, channel, program operation, reset response
8.17 Data lists

 Basic Functions
642 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Memory settings

Number Identifier: $MC_ Description
27900 REORG_LOG_LIMIT Percentage of IPO buffer for log file enable
28000 MM_REORG_LOG_FILE_MEM Memory size for REORG (DRAM)
28010 MM_NUM_REORG_LUD_MODULES Number of blocks for local user variables for REORG
28020 MM_NUM_LUD_NAMES_TOTAL Number of local user variables (DRAM)
28040 MM_LUD_VALUES_MEM Memory size for local user variables (DRAM)
28050 MM_NUM_R_PARAM Number of channelspecific R parameters (SRAM)
28060 MM_IPO_BUFFER_SIZE Number of NC blocks in IPO buffer (DRAM)
28070 MM_NUM_BLOCKS_IN_PREP Number of blocks for block preparation (DRAM)
28080 MM_NUM_USER_FRAMES Number of settable Frames (SRAM)
28090 MM_NUM_CC_BLOCK_ELEMENTS Number of block elements for compile cycles (DRAM)
28100 MM_NUM_CC_BLOCK_USER_MEM Size of block memory for compile cycles (DRAM)
28400 MM_ABSBLOCK Activating basis blocks with absolute values
28402 MM_ABSBLOCK_BUFFER_CONF Dimension size of upload buffer
28500 MM_PREP_TASK_STACK_SIZE Stack size of preparation task (DRAM)

Program runtime and workpiece counter

Number Identifier: $MC_ Description
27860 PROCESSTIMER_MODE Activate the runtime measurement
27880 PART_COUNTER Activate the workpiece counter
27882 PART_COUNTER_MCODE[] Workpiece counting via M command

8.17.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30465 AXIS_LANG_SUB_MASK Substitution of NC language commands
30550 AXCONF_ASSIGN_MASTER_CHAN Reset position of channel for axis change
30600 FIX_POINT_POS Fixed value positions of axes with G75
33100 COMPRESS_POS_TOL Maximum deviation with compensation

 K1: Mode group, channel, program operation, reset response
 8.17 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 643

8.17.2 Setting data

8.17.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42000 THREAD_START_ANGLE Start angle for thread
42010 THREAD_RAMP_DISP Acceleration behavior of axis when thread cutting
42100 DRY_RUN_FEED Dry run feedrate
42200 SINGLEBLOCK2_STOPRE Activate debug mode for SBL2
42444 TARGET_BLOCK_INCR_PROG Continuation mode after block search with calculation
42700 EXT_PROG_PATH Program path for external subroutine call EXTCALL
42750 ABSBLOCK_ENABLE Enable basic block display
42990 MAX_BLOCKS_IN_IPOBUFFER Maximum number of blocks in the interpolation buffer

8.17.3 Signals

8.17.3.1 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Emergency stop DB10.DBX56.1 DB2600.DBX0.1

8.17.3.2 Signals to mode group

Signal name SINUMERIK 840D sl SINUMERIK 828D
AUTOMATIC mode DB11.DBX0.0 DB3000.DBX0.0
MDA mode DB11.DBX0.1 DB3000.DBX0.1
JOG mode DB11.DBX0.2 DB3000.DBX0.2
Mode change disable DB11.DBX0.4 DB3000.DBX0.4
Mode group stop DB11.DBX0.5 -
Mode group stop axes plus spindles DB11.DBX0.6 -
Mode group RESET DB11.DBX0.7 DB3000.DBX0.7
Machine function teach in DB11.DBX1.0 DB3000.DBX1.0
Machine function REPOS DB11.DBX1.1 -
Machine function REF DB11.DBX1.2 DB3000.DBX1.2

K1: Mode group, channel, program operation, reset response
8.17 Data lists

 Basic Functions
644 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

8.17.3.3 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Selected mode AUTOMATIC DB11.DBX4.0 -
Selected mode MDI DB11.DBX4.1 -
Selected JOG mode DB11.DBX4.2 -
Selected machine function teach in DB11.DBX5.0 -
Selected machine function REPOS DB11.DBX5.1 -
Selected machine function REF DB11.DBX5.2 -
Active mode AUTOMATIC DB11.DBX6.0 DB3100.DBX0.0
Active mode MDI DB11.DBX6.1 DB3100.DBX0.1
Active mode JOG DB11.DBX6.2 DB3100.DBX0.2
Mode group ready DB11.DBX6.3 DB3100.DBX0.3
Mode group has been reset DB11.DBX6.4 -
NCK internal JOG active DB11.DBX6.5 -
All channels in the reset state DB11.DBX6.7 -
Active machine function teach in DB11.DBX7.0 DB3100.DBX1.0
Active machine function REPOS DB11.DBX7.1 -
Active machine function REF DB11.DBX7.2 DB3100.DBX1.2

8.17.3.4 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate DRF DB21,DBX0.3 DB3200.DBX0.3
Activate single block DB21,DBX0.4 DB3200.DBX0.4
Activate M01 DB21,DBX0.5 DB3200.DBX0.5
Activate dry run feed DB21,DBX0.6 DB3200.DBX0.6
PLC action completed DB21,DBX1.6 -
Activate program test DB21,DBX1.7 DB3200.DBX1.7
Skip block levels: /0 to /7 DB21,DBX2.0-7 DB3200.DBX2.0-7
Read-in disable DB21,DBX6.1 DB3200.DBX6.1
Program level abort DB21,DBX6.4 DB3200.DBX6.4
NC start disable DB21,DBX7.0 DB3200.DBX7.0
NC start DB21,DBX7.1 DB3200.DBX7.1
NC Stop at block limit DB21,DBX7.2 DB3200.DBX7.2
NC stop DB21,DBX7.3 DB3200.DBX7.3
NC Stop axes plus spindles DB21,DBX7.4 DB3200.DBX7.4
Reset DB21,DBX7.7 -
REPOSPATHMODE DB21,DBX31.0-2 -
REPOSMODEEDGE DB21,DBX31.4 -

 K1: Mode group, channel, program operation, reset response
 8.17 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 645

8.17.3.5 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
DRF selected DB21,DBX24.3 DB1700.DBX0.3
Select NCK associated M01 DB21,DBX24.4 -
M01 selected DB21,DBX24.5 DB1700.DBX0.5
Dry run feedrate selected DB21,DBX24.6 DB1700.DBX0.6
REPOSPATHMODE 0 - 2 DB21,DBX25.0-2 -
Feedrate override selected for rapid traverse DB21,DBX25.3 DB1700.DBX1.3
REPOS MODE EDGE DB21,DBX25.4 -
Program test selected DB21,DBX25.7 DB1700.DBX1.7
Skip block selected /0 - /7 DB21,DBX26.0-7 DB1700.DBX2.0-7
Skip block selected /8 DB21,DBX27.0 DB1700.DBX3.0
Skip block selected /9 DB21,DBX27.1 DB1700.DBX3.1
REPOSPATHMODE 0 - 2 DB21,DBX31.0-2 -
REPOS MODE EDGE DB21,DBX31.4 -
Skip block active /8 DB21,DBX31.6 DB3200.DBX15.6
Skip block active /9 DB21,DBX31.7 DB3200.DBX15.7
Execution from external active DB21,DBX32.0 DB3300.DBX0.0
Action block active DB21,DBX32.3 DB3300.DBX0.3
Approach block active DB21,DBX32.4 DB3300.DBX0.4
M0/M1 active DB21,DBX32.5 DB3300.DBX0.5
Last action block active DB21,DBX32.6 DB3300.DBX0.6
Block search active DB21,DBX33.4 DB3300.DBX1.4
M02/M30 active DB21,DBX33.5 DB3300.DBX1.5
Transformation active DB21,DBX33.6 DB3300.DBX1.6
Program test active DB21,DBX33.7 DB3300.DBX1.7
Program state: Running DB21,DBX35.0 DB3300.DBX3.0
Program state: Waiting DB21,DBX35.1 DB3300.DBX3.1
Program state: Stopped DB21,DBX35.2 DB3300.DBX3.2
Program state: Interrupted DB21,DBX35.3 DB3300.DBX3.3
Program state: Aborted DB21,DBX35.4 DB3300.DBX3.4
Channel state: Active DB21,DBX35.5 DB3300.DBX3.5
Channel state: Interrupted DB21,DBX35.6 DB3300.DBX3.6
Channel state: Reset DB21,DBX35.7 DB3300.DBX3.7
Interrupt handling active DB21,DBX36.4 -
Channel is ready DB21,DBX36.5 -
Read-in enable is ignored DB21,DBX37.6 -
Stop at the end of block with SBL is suppressed DB21,DBX37.7 -
Number of the active G function of G function group 1 – n
(8 bit int)

DB21,DBB208-271 DB3500.DBB0-63

Workpiece setpoint reached DB21,DBX317.1 DB3300.DBX4001.1

K1: Mode group, channel, program operation, reset response
8.17 Data lists

 Basic Functions
646 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal name SINUMERIK 840D sl SINUMERIK 828D
ASUB is stopped DB21,DBX318.0 DB3300.DBX4002.0
Block search via program test is active DB21,DBX318.1 -
REPOS MODE EDGEACKN DB21,DBX319.0 -
Repos Path Mode Ackn: 0 - 2 DB21,DBX319.1-3 -
Repos DEFERAL Chan DB21,DBX319.5 -
Display of the triggering event in case of event-driven
program call

DB21,DBX376.0-7 DB3300.DBB4004

ASUB is active DB21,DBX378.0 DB3300.DBB4006.0
ASUB with suppressed display update is active DB21,DBX378.1 DB3300.DBB4006.1

8.17.3.6 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
REPOSDELAY DB31,DBX10.0 -

8.17.3.7 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
REPOS offset DB31,DBX70.0 -
REPOS offset valid DB31,DBX70.1 -
REPOS Delay Ackn DB31,DBX70.2 -
REPOSDELAY DB31,DBX72.0 -
Path axis DB31,DBX76.4 DB390x.DBX1002.4

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 647

K2: Axis Types, Coordinate Systems, Frames 9
9.1 Brief description

9.1.1 Axes

Machine axes
Machine axes are the axes that actually exist on a machine tool.

Channel axes
Every geometry axis and every special axis is assigned to a channel and, therefore, a
channel axis. Geometry axes and additional axes are always traversed in "their" channel.

Geometry axes
The three geometry axes always make up a fictitious rectangular coordinate system, the
basic coordinate system (BCS).

By using FRAMES (offset, rotation, scaling, mirroring), it is possible to image geometry axes
of the workpiece coordinate system (WCS) on the BCS.

Special axes
In contrast to geometry axes, no geometrical relationship is defined between the special
axes.

Path axes
Path axes are interpolated together (all the path axes of a channel have a common path
interpolator).

All the path axes of one channel have the same acceleration phase, constant travel phase
and delay phase.

Positioning axes
Positioning axes are interpolated separately (each positioning axis has its own axis
interpolator). Each positioning axis has its own feedrate and acceleration characteristic.

K2: Axis Types, Coordinate Systems, Frames
9.1 Brief description

 Basic Functions
648 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Synchronized axes
Synchronous axes are interpolated together with path axes (all path axes and synchronous
axes of one channel have a common path interpolator).

All path axes and all synchronous axes of a channel have the same acceleration phase,
constant travel phase and deceleration phase.

Axis configuration
The machine data below are used to assign the geometry axes, special axes, channel axes
and machine axes as well as the names of the individual axis types:

MD20050 $MC_AXCONF_GEOAX_ASIGN_TAB (assignment of geometry axis to channel
axis)

MD20060 $MC_AXCONF_GEOAX_NAME_TAB (name of the geometry axis in the channel)

MD20070 $MC_AXCONF_MACHAX_USED (machine axis number valid in channel)

MD20080 $MC_AXCONF_CHANAX_NAME_TAB (name of the channel axis in the channel)

MD10000 $MN_AXCONF_MACHAX_NAME_TAB (machine axis name)

MD35000 $MA_SPIND_ASSIGN_TO_MACHAX (assignment of spindle to machine axis)

Replaceable geometry axes
The "Replaceable geometry axes" function allows the geometry axes in a grouping to be
replaced by other channel axes.

Axes that are initially configured as synchronous special axes in a channel can replace any
selected geometry axis in response to a program command.

Link axis
Link axes are axes, which are physically connected to another NCU and whose position is
controlled from this NCU. Link axes can be assigned dynamically to channels of another
NCU. Link axes are not local axes from the perspective of a particular NCU.

The axis container concept is used for the dynamic modification of the assignment to an
NCU. Axis replacement with GET and RELEASE from the part program is not available for link
axes across NCU boundaries.

The link axes are described in
References:
Function Manual, Extended Functions; Several Operator Panels on Multiple NCUs,
Distributed Systems (B3)

 K2: Axis Types, Coordinate Systems, Frames
 9.1 Brief description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 649

Axis container
An axis container is a circular buffer data structure, in which local axes and/or link axes are
assigned to channels. The entries in the circular buffer can be shifted cyclically.

In addition to the direct reference to local axes or link axes, the link axis configuration in the
logical machine axis image also allows references to axis containers.

This type of reference consists of:

● Axis container number

● A slot (circular buffer location within the corresponding container)

The entry in a circular buffer location contains:

● A local axis

or

● A link axis

The axis container function is described in
References:
Function Manual, Extended Functions; Several Operator Panels on Multiple NCUs,
Distributed Systems (B3)

9.1.2 Coordinate systems

MCS
The machine coordinate system (MCS) has the following properties:

● It is defined by the machine axes.

● The machine axes can be perpendicular to each other to form Cartesian system or
arranged in any other way.

● The names of the machine axes can be defined.

● The machine axes can be linear or rotary axes.

BCS
The basic coordinates system (BKS) has the following properties:

● The geometry axes form a perpendicular Cartesian coordinate system.

● The BCS is derived from a kinematic transformation of the MCS.

BZS
The basic zero system (BZS) is the basic coordinate system with a basic offset.

K2: Axis Types, Coordinate Systems, Frames
9.1 Brief description

 Basic Functions
650 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

SZS
The settable zero system (SZS) is the workpiece coordinate system with a programmable
frame from the viewpoint of the WCS. The workpiece zero is defined by the settable frames
G54 to G599.

WCS
The workpiece coordinate system (WCS) has the following properties:

● In the workpiece coordinate system all the axes coordinates are programmed (parts
program).

● It is made up of geometry axes and special axes.

● Geometry axes always form a perpendicular Cartesian coordinate system

● Special axes form a coordinate system without any geometrical relation between the
special axes.

● The names of the geometry axes and special axes can be defined.

● The workpiece coordinate system can be translated, rotated, scaled or mirrored with
FRAMES (TRANS, ROT, SCALE, MIRROR).

Multiple translations, rotational movements, etc., are also possible.

Zero offset external
The zero offset external has the following properties:

● At a time defined in the PLC, a predefined additional zero offset between the basic and
the workpiece coordinate systems is activated.

● The magnitudes of the offsets can be set by the following for each of the axes involved:

– PLC

– Operator Panel

– Part program

● Activated offsets take effect at the instant the first motion block of the relevant axes is
processed after offset activation. The offsets are superimposed on the programmed path
(no interpolation).

The velocity, at which the zero offset external is applied, is as follows:

Programmed F value plus +1/2 JOG velocity

The zero offset external is traversed at the end of G0 blocks.

● The activated offsets are retained after RESET and end of program.

● After POWER ON, the last active offset is still stored in the control but must be
reactivated by the PLC.

 K2: Axis Types, Coordinate Systems, Frames
 9.1 Brief description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 651

9.1.3 Frames

Frame
A frame is a closed calculation rule (algorithm) that translates one Cartesian coordinate
system into another.

Frame components

Figure 9-1 Frame components

A frame consists of the following components:

Frame components Programmable with:

Coarse offset TRANS
ATRANS (additive translation component)
CTRANS (zero offset for multiple axes)
G58 (axial zero offset)

Offset

Fine offset CFINE
G59 (axial zero offset)

Rotation ROT / ROTS
AROT / AROTS
CROTS

Scaling SCALE
ASCALE

Mirroring MIRROR
AMIRROR

K2: Axis Types, Coordinate Systems, Frames
9.1 Brief description

 Basic Functions
652 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Features in relation to axes
The coarse and fine offsets, scaling and mirroring can be programmed for geometry and
special axes. A rotation can also be programmed for geometry axes.

Coarse and fine offsets
The translation component of frames comprises:

● Coarse offset with TRANS, ATRANS and CTRANS

The coarse offset is normally specified by the machine setter.

The programmable offsets for all geometry axes and special axes are specified with
TRANS.

● Fine offset with CFINE

This can be defined by the machine operator, within certain input limits.

G58, G59 (only 840D sl)
For SINUMERIK 840 D sl,G58 and G59 can be programmed to replace the coarse and fine
offsets of the programmable frame on an axial basis. These functions can only be used
when the fine offset is configured.

● Coarse offset with G58

G58 changes only the absolute translation component (coarse offset) for the specified
axis; the total of additively programmed translations (fine offset) is retained.

● Fine offset with G59

G59 is used for axial overwriting of the additively programmed translations for the specified
axes that were programmed with ATRANS.

Frame rotations
Orientations in space are defined via frame rotations as follows:

● Rotation with ROT defines the individual rotations for all geometry axes.

● Solid angles with ROTS, AROTS, CROTS define the orientation of a plane in space.

● Frame rotation with TOFRAME defines a frame with a Z axis pointing in the tool direction.

Scaling
SCALE is used to program the programmable scale factors for all geometry axes and special
axes.

If a new scaling is to be based on a previous scaling, rotation, translation or mirroring, then
ASCALE must be programmed.

 K2: Axis Types, Coordinate Systems, Frames
 9.1 Brief description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 653

Mirroring
The axis to be mirrored can be set via the following machine data:

MD10610 MIRROR_REF_AX (reference axis for the mirroring)

Value Meaning
0 Mirroring is performed around the programmed axis.
1, 2 or 3 Depending on the input value, mirroring is mapped onto the mirroring of a specific

reference axis and rotation of two other geometry axes.

Frame chaining
Frame components or complete frames can be combined using the concatenation operator
":" to create a complete frame. For instance, the actual frame $P_ACTFRAME comprises
chaining the complete basic frame, adjustable frame, the systems frames and the
programmable frame:

$P_ACTFRAME = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :

$P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
$P_ACTBFRAME : $P_IFRAME : $P_TOOLFRAME :
$P_WPFRAME : $P_TRAFRAME: $P_PFRAME
$P_ISO4FRAME : $P_CYCFRAME

Frames with G91
Incremental programming with G91 is defined such that the compensation value is traversed
additively to the incrementally programmed value when a zero offset is selected.

The behavior depends on the setting in the setting data:

SD42440 $SC_FRAME_OFFSET_INCR_PROG (zero offset in frames)

Value Meaning
1 Zero offset is applied on FRAME and incremental programming of an axis (= default setting).
0 Only the programmed path is traversed.

K2: Axis Types, Coordinate Systems, Frames
9.1 Brief description

 Basic Functions
654 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Suppression of frames
The actual frames can be suppressed with the following operations:

Comman
d

Meaning

G53 Suppression of the actual zero offset (non-modal)
G153 Suppression of the actual frame including basic frame
SUPA Suppression of actual zero offset, including programmed offsets, system frames,

handwheel offsets (DRF), external zero offset and overlaid motion

NCU global basic frames
Using NCU global basic frames, frames for other channels can be pre-assigned from a
channel.

Properties of the NCU global basic frames:

● Can be read and written from all channels

● Can be activated only in the channels

● Offsets, scaling and mirroring for channel and machine axes

All global and channel-specific basic frames are chained and therefore a complete basic
frame is obtained. As standard, there is at least one basic frame available per channel.

Settable frames
Adjustable frames can be defined as either global NCU or channel-specific frames.

Consistency
When writing, reading and activating frames, e.g. using channel coordination, the user is
solely responsible for achieving consistent behavior within the channels. Cross-channel
activation of frames is not supported.

 K2: Axis Types, Coordinate Systems, Frames
 9.2 Axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 655

9.2 Axes

9.2.1 Overview

Figure 9-2 Relationship between geometry axes, special axes and machine axes

Figure 9-3 Local and external machine axes (link axes)

K2: Axis Types, Coordinate Systems, Frames
9.2 Axes

 Basic Functions
656 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.2.2 Machine axes

Meaning
Machine axes are the axes that actually exist on a machine tool.

Figure 9-4 Machine axes X, Y, Z, B, S on a Cartesian machine

Application
The following can be machine axes:

● Geometry axes X, Y, Z

● Orientation axes A, B, C

● Loader axes

● Tool turrets

 K2: Axis Types, Coordinate Systems, Frames
 9.2 Axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 657

● Axes for tool magazine

● Axes for automatic tool changer

● Spindle sleeves

● Axes for pallet changers

● Etc.

9.2.3 Channel axes

Meaning
Each geometry axis and each special axis is assigned to a channel. Geometry axes and
additional axes are always traversed in "their" channel.

9.2.4 Geometry axes

Meaning
The three geometry axes always make up a fictitious rectangular coordinate system.

By using FRAMES (offset, rotation, scaling, mirroring), it is possible to image geometry axes
of the workpiece coordinate system (WCS) on the BCS.

Application
Geometry axes are used to program the workpiece geometry (the contour).

Plane selection G17, G18 and G19 (DIN 66217) always refers to the three geometry axes. That
is why it is advantageous to name the three geometry axes X, Y and Z.

9.2.5 Replaceable geometry axes

Meaning
The "Replaceable geometry axes" function allows the geometry axes in a grouping to be
replaced by other channel axes.

Axes that are initially configured as synchronous special axes in a channel can replace any
selected geometry axis in response to a program command.

K2: Axis Types, Coordinate Systems, Frames
9.2 Axes

 Basic Functions
658 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
On a machine with two Z axes, Z1 and Z2, either of the Z axes can be programmed as the
geometry axis in response to an instruction in the part program.

Activation
Axis replacement is activated by the program command:

GEOAX([n, channel axis name]...)

n=0: Removes an axis from the geometry axis grouping.
n=1, 2, 3: Index of the geometry axis
GEOAX(): Establishes the basic setting defined via MD for the assignment of

channel axes to geometry axes.
Channel axis name: Name of channel axis, which is to operate as a geometry axis.

A channel axis, which has been designated a geometry axis, can only be addressed under
its geometry axis name. The geometry axes names themselves remain unchanged.

Geometry axes can be replaced either individually or as a group in one command.

Supplementary conditions
As a basic rule, any channel axis designated as a geometry axis can be replaced by another
channel axis.

In this case, the following restrictions apply:

● Rotary axes may not be programmed as geometry axes.

● A geometry axis, which has the same name as a channel axis, cannot be replaced by
another channel axis (alarm message). Nor can an axis of this type be removed from the
geometry axis grouping. It cannot change its position within the geometry axis grouping.

● Both axes in each of the axis pairs involved in the replacement operation must be block-
synchronized.

● The following functions may not be active when geometry axes are replaced:

– Transformation

– Spline interpolation

– Tool radius compensation

– Tool fine compensation

● Any active DRF offset or zero offset external will remain operative. They both act on
channel axes. The channel axis assignment is not affected by the replacement of
geometry axes.

 K2: Axis Types, Coordinate Systems, Frames
 9.2 Axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 659

Replacement of geometry axes
All frames, protection zones and working area limitations are deleted. They may need to be
reprogrammed after the replacement operation.

The system response to replacement of geometry axes is, therefore, identical to its response
to a change (switch on/off, switchover) in a kinematic transformation.

Tool length compensation
Any active tool length compensation remains operative and is applied to the new geometry
axes after replacement.

The system treats tool length compensations as not yet applied for the following geometry
axes:

● All geometry axes, which have been newly added to the geometry axis grouping

● All geometry axes, which have changed their positioning within the geometry axis
grouping

Geometry axes, which retain their position within the geometry axis grouping after a
replacement operation, also retain their status with respect to tool length compensation.

RESET
The reset behavior of the changed geometry axis assignment is defined with the following
machine data:

MD20110 $MC_RESET_MODE_MASK (definition of initial control settings after RESET / TP
End)

MD20118 $MC_GEOAX_CHANGE_RESET (allow automatic geometry axis change)

MD20110 $MC_RESET_MODE_MASK

Bit Value Meaning

0 In case of set machine data MD20118 $MC_GEOAX_CHANGE_RESET (allow
automatic geometry axis change) a changed geometry axis assignment is deleted
during reset or part program end.
The initial setting defined in the machine data for the geometry axis assignment
becomes active.

12

1 A modified geometry axis assignment remains active after a reset/part-program end.

K2: Axis Types, Coordinate Systems, Frames
9.2 Axes

 Basic Functions
660 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MD20118 $MC_GEOAX_CHANGE_RESET

Value Meaning
0 The current configuration of the geometry axes remains unchanged on reset and program

start. With this setting, the response is identical to older software versions without geometry
axis replacement.

1 The configuration of the geometry axis remains unchanged during reset or part program end
as a function of machine data MD20110 $MC_RESET_MODE_MASK and during part
program start as a function of machine data MD20112 $MC_START_MODE_MASK
(definition of initial control system settings with NC START) or brought to the initial status
defined in the machine data MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB (assignment
of geometry axis to channel axis).

Program start
Analogously to the Reset response, the behavior during program start is based on the
setting in the machine data:

MD20112 $MC_START_MODE_MASK (definition of initial control system settings at NC-
START)

Bit Value Meaning

0 A modified geometry axis assignment remains active on part-program start. 12
1 A modified geometry axis assignment is cleared on part-program start.

Approaching a reference point
When the "Reference point approach" mode is selected, the geometry axis configuration
defined by the machine data is automatically set.

M code
A changeover of the geometry axis with GEOAX() can be communicated to the PLC through
the output of an M code:

MD22532 $MC_GEOAX_CHANGE_M_CODE (M code at toolholder change)

 Note

If this machine data is set to one of the values 0 to 6, 17, 30, then no M code is output.

 K2: Axis Types, Coordinate Systems, Frames
 9.2 Axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 661

Transformation changeover
The following interrelationships must be noted with respect to kinematic transformation and
geometry axis replacement:

● Geometry axis assignments cannot be modified when the transformation is active.

● Activation of a transformation deletes the programmed geometry axis configuration and
replaces it by the geometry axis assignment stored in the machine data of the activated
transformation.

● The initial setting defined through MD for the geometry axis configuration becomes
effective after deactivating the transformation.

Should it be necessary to modify the geometry axis assignment in connection with
transformations, then another new transformation must be configured. The total number of
the transformations simultaneously available in the channel is equal to 8.

A maximum of two transformations per channel can be available simultaneously from the
transformation groups below:

● Orientation transformations

(3-axis, 4-axis, 5-axis and nutation transformation)

● TRAANG (oblique axis)

● TRANSMIT

● TRACYL

References:
Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

Function Manual, Extended Functions; Kinematic Transformation (M1)

Example
In the example below, it is assumed that there are 6 channel axes with channel axis names
XX, YY, ZZ, U, V, W and three geometry axes with names X, Y, Z. The basic setting is
defined in machine data so that the geometry axes are mapped on the first three channel
axes, i.e. on XX, YY and ZZ.

Program code Comment

GEOAX() ; The geometry axis assignment defined via the machine

data

MD AXCONF_GEOAX_ASSIGN_TAB

 is effective,

i.e. XX, YY and ZZ become geometry axes.

G0 X0 Y0 Z0 U0 V0 W0 ; All the axes in rapid traverse to position 0.

GEOAX (1, U, 2, V, 3, W) ; Channel axis U becomes the first, V the second and W

the third geometry axis.

GEOAX(1, XX, 3, ZZ) ; Channel axis XX becomes the first, ZZ the third

geometry axis. The second geometry axis remains

unchanged.

G17 G2 X20 I10 F1000 ; Semicircle in the X, Y plane. Channel axes XX and V

traverse.

K2: Axis Types, Coordinate Systems, Frames
9.2 Axes

 Basic Functions
662 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

GEOAX(2,W) ; Channel axis W becomes the second geometry axis. The

first and third geometry axes remain unchanged.

G17 G2 X20 I10 F1000 ; Full circle in the X, Y plane. Channel axes XX and W

traverse.

GEOAX() ; The geometry axis assignment defined via the machine

data

MD AXCONF_GEOAX_ASSIGN_TAB

 is effective,

i.e. XX, YY and ZZ become geometry axes.

GEOAX (1, U, 2, V, 3, W) ; U, V and W become the first, second and third

geometry axes.

G1 X10 Y10 Z10 XX=25 ; Channel axes U, V, W each traverse to position 10, XX

traverses to position 25.

GEOAX(0,V) ; V is again removed from the geometry axis grouping. U

and W remain geometry axes. The second geometry axis

is no longer assigned.

GEOAX (1, U, 2, V, 3, W) ; U, V and W become the first, second and third

geometry axes, i.e. U and W remain unchanged.

GEOAX(3,V) ; V becomes the third geometry axis. This means that W,

which was previously the third geometry axis, is

removed from the geometry axis grouping. The second

geometry axis is no longer assigned.

9.2.6 Special axes

Significance
In contrast to geometry axes, no geometrical relationship is defined between the special
axes.

 Note

Geometry axes have an exactly defined relationship in the form of a rightangled coordinate
system.

Special axes are part of the basic coordinate system (BCS). With FRAMES (translation,
scaling, mirroring), special axes of the workpiece coordinate system can be mapped on the
basic coordinate system.

Application
Typical special axes are:
● Rotary axes
● Machine tool axes
● Tool revolver axes
● Loader axes

 K2: Axis Types, Coordinate Systems, Frames
 9.2 Axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 663

9.2.7 Path axes

Meaning
Path axes are interpolated together (all the path axes of a channel have a common path
interpolator).

All the path axes of one channel have the same acceleration phase, constant travel phase
and delay phase.

The feedrate programmed under address F (path feedrate) applies to all the path axes
programmed in a block, with the following exceptions:

● An axis has been programmed that has been defined as having no control over the path
velocity with instruction FGROUP.

● Axes programmed with instructions POS or POSA have an individual feedrate setting (axis
interpolator).

Application
Path axes are used to machine the workpiece with the programmed contour.

9.2.8 Positioning axes

Meaning
Positioning axes are interpolated separately (each positioning axis has its own axis
interpolator). Each positioning axis has its own feedrate and acceleration characteristic.
Positioning axes can be programmed in addition to path axes (even in the same block). Path
axis interpolation (path interpolator) is not affected by the positioning axes. Path axes and
the individual positioning axes do not necessarily reach their block end points at the same
time.

Instructions POS and POSA are used to program positioning axes and define block change
criteria:

● POS

Block change takes place when the path axes and positioning axes have reached their
block end points.

● POSA

Block change takes place when the path axes have reached their end of block position.
Positioning axes continue to traverse beyond block limits to their block end point.

Concurrent positioning axes differ from positioning axes in that they:

● Only receive their block end points from the PLC

● Can be started at any time (not at block limits)

● Do not affect the execution of current part programs.

K2: Axis Types, Coordinate Systems, Frames
9.2 Axes

 Basic Functions
664 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Application
Typical positioning axes are:

● Loaders for moving workpieces away from machine

● Tool magazine/turret

Reference
For further information, see Section "P3: Basic PLC program for SINUMERIK 840D sl
(Page 809)" and "S1: Spindles (Page 1225)".

References:

● Function Manual, Extended Functions; Positioning Axes (P2)

● Function Manual, Special Functions; Gantry Axes (G1)

● Function Manual, Special Functions; Axis Couplings and ESR (M3)

● Function Manual, Extended Functions; Oscillation (P5)

● Function Manual, Synchronized Actions

9.2.9 Main axes

Meaning
A main axis is an axis that is interpolated by the main run.

This interpolation can be started as follows:

● From synchronized actions

(as command axes due to an event via block-related, modal or static synchronized
actions)

● From the PLC via special function blocks in the basic PLC program

(named as a concurrent positioning axis or a PLC axis)

● Via the setting data or from the part program

(as an asynchronous or block-synchronous oscillating axis)

 K2: Axis Types, Coordinate Systems, Frames
 9.2 Axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 665

Channel control
An axis interpolated by the main axis reacts in terms of:

● NC stop

● Alarm handling

● Program control

● End of program

● RESET

 Note

The response at the end of the program varies. The axis movement need not always be
completed and, therefore, may carry on beyond the end of the program.

Application
Certain axes in the main run can be decoupled at the channel response triggered by the NC
program sequence and controlled from the PLC. These axes are also interpolated in the
main run and respond independently for the channel and program sequence.

A PLC-controlled axis can then be controlled independently by the NC. This concerns the
following actions:

● The sequence for canceling the axis (equivalent to delete distancetogo)

● Stopping or interrupting the axis

● Continuing the axis (continue sequence of motion)

● Resetting the axis to its basic status

9.2.10 Synchronized axes

Meaning
Synchronous axes are components of the path axes, which are not referenced in order to
calculate the tool path velocity. They are interpolated together with path axes (all path axes
and synchronous axes of one channel have a common path interpolator).

All path axes and all synchronous axes of a channel have the same acceleration phase,
constant travel phase and deceleration phase.

The feedrate (path feedrate) programmed under address F applies to all the path axes
programmed in a block but not to the synchronous axes.

Synchronous axes take the same time to cover the programmed path as the path axes.

K2: Axis Types, Coordinate Systems, Frames
9.2 Axes

 Basic Functions
666 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

FGROUP command
The command FGROUP specifies whether the axis is a feed-defining path axis (used to
calculate the path velocity) or a synchronous axis (not used to calculate the path velocity).

Example

Program code Comment

N05 G00 G94 G90 M3 S1000 X0 Y0 Z0 ;

N10 FGROUP(X,Y) ; Axes X/Y are path axes,

 Z is a synchronous axis.

N20 G01 X100 Y100 F1000 ; Progr. feedrate 1000 mm/min.

 Feedrate of axis X = 707 mm/min.

 Feedrate of axis Y = 707 mm/min.

N30 FGROUP (X) ; Axis X is a path axis,

 axis Y is a synchronous axis

N20 X200 Y150 ; Progr. Feedrate 1000 mm/min

Feedrate of Axis X = 1000 mm/min

Feedrate of Axis Y is set to 500 mm/min,

because only half the distance is to be

traversed.

 Note

The channel axis name must be used for the FGROUP command.

This is defined by the machine data:

MD20080 $MC_AXCONF_CHANAX_NAME_TAB (name of the channel axis in the channel)

Application
In the case of helical interpolation FGROUP can be programmed to determine whether:

● The programmed feedrate should be valid on the path

(all three programmed axes are path axes)

● The programmed feedrate should be valid on the circle

(two axes are path axes and the infeed axis is a synchronous axis)

 K2: Axis Types, Coordinate Systems, Frames
 9.2 Axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 667

9.2.11 Axis configuration

Assigning geometry, special, channel and machine axes.

Figure 9-5 Axis configuration

K2: Axis Types, Coordinate Systems, Frames
9.2 Axes

 Basic Functions
668 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Special features
● Leading zeros for user-defined axis names are ignored:

MD10000 `$MN_AXCONF_MACHAX_NAME_TAB[0] = X01 corresponds to X1

● The geometry axes must be assigned to the channel axes in ascending order without any
gaps.

● All channel axes that are not geometry axes are special axes.

Channel axis gaps
Normally, each channel axis defined in machine data MD20080
$MC_AXCONF_CHANAX_NAME_TAB must be assigned a machine axis.

In order to simplify commissioning series of machines with a different number of machine
axes, channel axes may also be defined, which are not assigned to any machine axis. As a
result, gaps can occur in the numbering sequence of the channel axes.

Any channel axis gaps must be explicitly enabled:

MD11640 $MN_ENABLE_CHAN_AX_GAP = 1

Without being enabled, a value of 0 in machine data:

MD20070 $MC_AXCONF_MACHAX_USED

ends the assignment of possibly existing additional machine axes to channel axes.

References:
Function Manual, Extended Functions; Several Operator Panels on Multiple NCUs,
Distributed Systems (B3)

 Note

Channel axes without assigned machine axes (channel axis gaps) are, regarding the number
and indexing of the channel axes, treated just like normal channel axes with associated
machine axes.

If a channel axis without assigned machine axis (channel axis gap) is defined as geometry
axis, then this is rejected without an alarm.

 K2: Axis Types, Coordinate Systems, Frames
 9.2 Axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 669

Example: Channel axis gap
Channel axis B is not assigned a machine axis in the following example.

Figure 9-6 Axis configuration with channel axis gap (excerpt)

Special situations: Channel axis gaps
Regarding channel axis gaps, the following also have to be taken into account:

● Channel axes without assigned machine axes (channel axis gaps) are, regarding the
number and indexing of the channel axes, treated just like normal channel axes with
associated machine axes.

● If a channel axis without assigned machine axis (channel axis gap) is defined as
geometry axis, then this is rejected without an alarm.

9.2.12 Link axes

Meaning
A link axis is a machine axis that is not on the NCU from which it is traversed. The name of a
local machine axis is not entered in the machine data for the logical machine axis image of
the traversing NCU, but the NCU and machine axis name of the NCU to which it is physically
connected.

As an example, machine axis AX1 of NCU2 should be traversed from NCU1:

● NCU1: MD10002 $MN_AXCONF_LOGIC_MACHAX_TAB[n] = NC2_AX1

K2: Axis Types, Coordinate Systems, Frames
9.3 Zeros and reference points

 Basic Functions
670 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Requirement
The NCUs involved must be connected using link communication as a requirement for using
link axes. The link axes and link communication functions are described in detail in:

References:
Function Manual, Extended Functions; Several Operator Panels on Multiple NCUs,
Distributed Systems (B3)

9.3 Zeros and reference points

9.3.1 Reference points in working space

Zeros and reference points
The neutral position of the machine is obtained from the coordinate axes and the
constructive characteristics of the machine. The zero of the coordinate system is obtained by
defining a suitable reference point on the machine in its neutral position.

The position of the coordinate systems (MCS, BCS, BZS, SZS, WCS) is determined by
means of zeros.

Zero points Reference points

M = Machine zero

R = Reference point

W = Workpiece zero

T = Toolholder reference point

Machine zero M
The machine zero M defines the machine coordinate system MCS. All other reference points
refer to the machine zero.

Workpiece zero W
The workpiece zero W defines the workpiece coordinate system in relation to the machine
zero M. The programmed part-program blocks are executed in the workpiece coordinate
system WCS.

 K2: Axis Types, Coordinate Systems, Frames
 9.3 Zeros and reference points

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 671

Reference point R
The position of the reference point R is defined by cam switches. Reference point R
calibrates the position measuring system.

With incremental encoders, the reference point must be approached every time the control
power is switched on. The control can only then work with the measuring system and
transfer all position values to the coordinate systems.

Toolholder reference point T
The toolholder reference point T is located on the toolholder locator. By entering the tool
lengths, the control calculates the distance between the tool tip (TCP Tool Center Position)
and the toolholder reference point.

Example: Zeros and reference points on a turning machine

K2: Axis Types, Coordinate Systems, Frames
9.3 Zeros and reference points

 Basic Functions
672 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.3.2 Position of coordinate systems and reference points

Control POWER ON
For incremental measuring probes, the reference point must be approached each time the
control is activated so that the control can transfer all position values to the coordinate
system.

Figure 9-7 Position of coordinate systems by machine zero M and workpiece zero W

Figure 9-8 Position of reference point in relation to machine zero

 K2: Axis Types, Coordinate Systems, Frames
 9.4 Coordinate systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 673

9.4 Coordinate systems

9.4.1 Overview

Cartesian coordinate systems
DIN 66217 stipulates that machine tools must use right-angled, rectangular (Cartesian)
coordinate systems. The positive directions of the coordainate axes are determined using
the "Right Hand Rule". The coordinate system is related to the workpiece and programming
takes place independently of whether the tool or the workpiece is being traversed. When
programming, it is always assumed that the tool traverses relative to the coordinate system
of the workpiece, which is intended to be stationary.

Figure 9-9 Right-hand rule

Figure 9-10 Clockwise, rectangular Cartesian coordinate system

K2: Axis Types, Coordinate Systems, Frames
9.4 Coordinate systems

 Basic Functions
674 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following coordinate systems are defined:

MCS Machine Coordinat System
BCS Basic Coordinate System
BZS Basic Zero System
SZS Settable Zero System
WCS Workpiece Coordinate System

Interrelationships between coordinate systems
The coordinate systems are determined by the kinematic transformation and the FRAMES.

A kinematic transformation is used to derive the BCS from the MCS. If no kinematic
transformation is active, the BCS is the same as the MCS.

The basic frame maps the BCS onto the BKS.

An activated adjustable FRAME G54...G599 ENS is derived from the BNS.

The WCS, which is the basis for programming, is defined by the programmable FRAME.

 K2: Axis Types, Coordinate Systems, Frames
 9.4 Coordinate systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 675

Figure 9-11 Interrelationships between coordinate systems

K2: Axis Types, Coordinate Systems, Frames
9.4 Coordinate systems

 Basic Functions
676 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.4.2 Machine coordinate system (MCS)

Machine coordinate system (MCS)
The machine coordinate system (MCS) is made up of all physically available machine axes.

Figure 9-12 MCS with machine axes X, Y, Z, B, C (5-axis milling machine)

Figure 9-13 MCS with machine axes X, Z (turning machine)

 K2: Axis Types, Coordinate Systems, Frames
 9.4 Coordinate systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 677

Axial preset offset
The reference point of the control in the machine coordinate system (machine zero) can be
reset via the "Preset offset (PRESETON)" function.

CAUTION
Loss of the encoder adjustment

After a preset offset, the appropriate machine axis is in the "Not referenced" state! This
means that when using absolute encoders, the encoder adjustment is lost and must be
performed again (e.g. by calibration with a laser interferometer). The use of PRESETON in
combination with absolute encoders is therefore not recommended.

 Note

We recommend that the function is only used for machine axes that do not require a
reference point.

In order to restore the original machine coordinate system, the machine axis must be re-
referenced, e.g. with G74 (reference point approach).

The machine axes are not moved with the preset offset.

References

● Programming Manual, Fundamentals
Section: "Supplementary commands" > "Reference point approach (G74)"

● Programming Manual, Job Planning
Section: "Coordinate transformations (FRAMES)" > "Preset offset (PRESETON)

K2: Axis Types, Coordinate Systems, Frames
9.4 Coordinate systems

 Basic Functions
678 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.4.3 Basic coordinate system (BCS)

Basic coordinate system (BCS)
The basic coordinate system (BCS) consists of three mutually perpendicular axes (geometry
axes) as well as other special axes, which are not interrelated geometrically.

Machine tools without kinematic transformation
BCS and MCS always coincide when the BCS can be mapped onto the MCS withouth
kinematic transformation (e.g. TRANSMIT / face transformation, 5-axis transformation and up
to three machine axes).

On such machines, machine axes and geometry axes can have the same names.

Figure 9-14 MCS=BCS without kinematic transformation

 K2: Axis Types, Coordinate Systems, Frames
 9.4 Coordinate systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 679

Machine tools with kinematic transformation
The BCS and MCS do not coincide when the BCS is mapped onto the MCS with kinematic
transformation (e.g. TRANSMIT / face transformation, 5-axis transformation or more than three
axes).

On such machines the machine axes and geometry axes must have different names.

Figure 9-15 Kinematic transformation between the MCS and BCS

Machine kinematics
The workpiece is always programmed in a two- or three-dimensional, right-angled coordinate
system (WCS). However, such workpieces are being programmed ever more frequently on
machine tools with rotary axes or linear axes not perpendicular to one another. Kinematic
transformation is used to represent coordinates programmed in the workpiece coordinate
system (rectangular) in real machine movements.

References:
Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

Function Manual, Extended Functions; Kinematic Transformation (M1)

K2: Axis Types, Coordinate Systems, Frames
9.4 Coordinate systems

 Basic Functions
680 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.4.4 Additive offsets

External zero offsets
The "zero offset external" is an axial offset. Unlike with frames, no components for rotation,
scaling and mirroring are possible.

Figure 9-16 Zero offset external between BCS and BZS

Setting the offset values
The offset values are set:

● PLC

By describing system variables

● Via the operator panel

From menu "Current zero offsets"

● NC program

By assigning to system variable $AA_ETRANS[axis]

Activation of the offset values
The 0/1 edge of the following PLC signal activates the previously defined offset values:

DB31, ... DBX3.0 (accept external zero offset)

The 0/1 edge change is only evaluated in Automatic operating mode.

 K2: Axis Types, Coordinate Systems, Frames
 9.4 Coordinate systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 681

Effect of activation
The offset for an axis becomes active when the first motion block for this axis is executed
after the offset is activated.

Example of possible chronological sequence:

Program code Comment

G0 X100

X150 ; A new "Zero offset external" is activated by the PLC during

this motion.

X200 ;

The new "Zero offset external" is applied due to G0

programming at the end of the block (X200), if no velocity

reserve is available (100%).

The "Zero offset external via system frame" is applied immediately.

Channel-specific system frames can be configured through the following machine data:

MD28082 $MC_MM_SYSTEM_FRAME_MASK (system frames SRAM)

Programming
Setting a new offset via the axis-specific system variables:

$AA_ETRANS[axis]=Ri

The instruction below reads the axis-specific active offset value:

Ri=$AA_ETRANS[axis]

 Note

The read value can then differ from the previously set value, if the set value has not yet been
activated.

The read value corresponds to a value set previously, if the most recently set value has not
yet been activated. The system frame for the "Zero offset external" exists only if it has been
configured.

DRF offset
The DRF offset enables the adjustment of an additional incremental zero offset for geometry
and additional axes in the basic coordinate system through handwheel.

The DRF offset can be read via the axis-specific system variable:

$AC_DRF[<Axis>]

References:
Function Manual, Extended Functions; Manual and Handwheel Travel (H1),
Section: DRF offset

K2: Axis Types, Coordinate Systems, Frames
9.4 Coordinate systems

 Basic Functions
682 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Overlaid movements
The "Superimposed motion" for the programmed axis can only be accessed from
synchronized actions via the system variable $AA_OFF[axis].

Power-up
After run-up (POWER ON) the last used offset values for the "Zero offset external" are
stored and do not become effective again until there is a renewed activation signal.

System frames are retained during Power ON, depending on the following machine data:

MD24008 $MC_CHSFRAME_POWERON_MASK (reset system frames after Power On)

RESET/end of program
The activated values remain active after RESET and program end.

Reset response of channel-specific system fames as follows:

The system frame for the "external zero offset" is active after RESET with the following
machine data setting:

MD24006 $MC_CHSFRAME_RESET_MASK, bit 1 = 1

The "external zero offset" in the active system frame is deleted in the data management
through the following machine data setting:

MD24006 $MC_CHSFRAME_RESET_MASK, bit 1 = 0

The following frames are active after RESET:

● System frame for:

MD24006 $MC_CHSFRAME_RESET_MASK, Bit 4 = 1 (workpiece reference point)

MD24006 $MC_CHSFRAME_RESET_MASK, Bit 5 = 1 (cycles)

Suppression
The NC program instruction SUPA suppresses the "Zero offset external" while the block is
being processed.

The command G74 (reference point approach) and the equivalent operator actions in
"Reference point approach" mode suppress the "Zero offset external" for the duration of the
reference point approach.

With G74, i.e. "Automatic" or "MDA" mode, the previously active "External zero offset"
automatically becomes active again with the next traversing motion in the block.

After a mode change from "Reference point approach" mode, the NC/PLC interface signal
for the referenced axes must be set for reactivation.

 K2: Axis Types, Coordinate Systems, Frames
 9.4 Coordinate systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 683

9.4.5 Basic zero system (BZS)

Basic zero system (BZS)
The basic zero system (BZS) is the basic coordinate system with a basic offset.

Figure 9-17 Basic offset between BCS and BZS

Basic offset
The basic offset describes the coordinate transformation between BCS and BZS. It can be
used, for example, to define the palette window zero.

The basic offset comprises:

● Zero offset external

● DRF offset

● Superimposed motion

K2: Axis Types, Coordinate Systems, Frames
9.4 Coordinate systems

 Basic Functions
684 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Chained system frames

● Chained basic frames

Figure 9-18 Example of the use of the basic offset

The following settings apply:

● The user can change the basic offset from the part program by means of an operator
action and from the PLC.

● If the basic offset is to take effect immediately, an ASUB can be started via the PLC using
FC9 in order to execute the appropriate G code.

 Note

Recommendation to the machine manufacturer

Use the 3rd basic offset onwards for your own applications.

The 1st and 2nd basic offset are reserved for PRESET and the "Zero offset external".

 K2: Axis Types, Coordinate Systems, Frames
 9.4 Coordinate systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 685

9.4.6 Settable zero system (SZS)

Settable zero system (SZS)
The "settable zero system" (SZS) is the workpiece coordinate system WCS with a
programmable frame (viewed from the perspective of the WCS). The workpiece zero is
defined by the settable FRAMES G54 to G599.

Figure 9-19 Settable FRAME G54 ... G599 between BNS and ENS

Programmable offsets act on the "settable zero system". All programmable offsets refer to
the "settable zero system".

WCS actual-value display in WCS or SZS
The actual values of the axes in the machine coordinate system (MCS) or the WCS can be
displayed on the HMI operator interface. For displays in WCS, the actual values can also be
displayed in relation to the SZS. The corresponding parameterization takes place through
the machine data:

MD9424 $MM_MA_COORDINATE_SYSTEM (coordinate system for actual value display)

Value Significance
0 Actual-value display in relation to the WCS
1 Actual-value display in relation to the SZS

 Note
Display of the current coordinate system

When "Actual-value display in relation to the SZS" is active, the WCS is still displayed on the
HMI operator interface as the coordinate system to which the actual-value display relates.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
686 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
Actual-value display in relation to the WCS or SZS

Code (excerpt) Actual value display:

Axis X (WCS)
Actual value display:
Axis X (SZS)

N10 X100 100 100
N20 X0 0 0
N30 $P_PFRAME = CTRANS(X,10) 0 10
N40 X100 100 110

9.4.7 Workpiece coordinate system (WCS)

Workpiece coordinate system (WCS)
The workpiece coordinate system (WCS) is the programming basis.

Figure 9-20 Programmable FRAME between SZS and WCS

9.5 Frames

9.5.1 Frame types
A frame is a data structure that contains values for offset (TRANS), fine offset (FINE), rotation
(ROT), mirroring (MIRROR) and scaling (SCALE) for axes.

When activating the frame, using the frame values, a static coordinate transformation for the
axes contained in the frame is performed using a defined algorithm.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 687

Axial frame
An axial frame contains the frame values of an axis.

Example of the data structure of an axial frame for axis X:

Axis TRANS FINE ROT MIRROR SCALE
X 10.0 0.1 0.0 0 1

Channel-specific frame
A channel-specific frame contains frame values for all channel axes (geometry, special and
machine axes).

Rotations (ROT) are only included in the calculation for geometry axes.

A channel-specific frame is only active in the channel in which the frame is defined.

Example of the data structure of a channel-specific frame:

● Geometry axes: X, Y, Z

● Special axes: A

● Machine axes: AX1

Axis TRANS FINE ROT MIRROR SCALE
X 10.0 0.1 0.0 0 1
Y 0.0 0.0 0.0 1 1
Z 0.0 0.0 45.0 0 1
A 2.0 0.1 0.0 0 2
AX1 0.0 0.0 0.0 0 0

Global frame
A global frame contains the frame values for all machine axes.

A global frame is active in all channels of the NC.

Example of the data structure of a channel-specific frame:

● Machine axes: AX1, ... AX5

Axis TRANS FINE ROT MIRROR SCALE
AX1 10.0 0.1 - 0 1
AX2 0.0 0.0 - 1 1
AX3 0.0 0.0 - 0 1
AX4 2.0 0.1 - 0 2
AX5 0.0 0.0 - 1 1

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
688 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.2 Frame components

9.5.2.1 Translation

Programming
The programming of the translation or coarse offset can be performed via the following
commands:

● Example of data management frames $P_UIFR

– Complete frame: $P_UIFR[<n>] = CTRANS(<K1>,<V1>[,<K2>,<V2>][,<K3>,<V3>])
with Km = coordinate x, y or z and Vm = offset m

– Frame component: $P_UIFR[<n>,<k>,TR] = <V>
with K = coordinate x, y or z and V = offset

● Example of programmable frame

– TRANS <K1> <V1> [<K2> <V2>][<K3> <V3>]
with Km = coordinate x, y or z and Vm = offset m

Programs examples:

Program code Remark

$P_UIFR[1] = CTRANS(X,10,Y,10) Complete frame

$P_UIFR[1,X,TR] = 10 Frame components

TRANS X=10 Y=10 Programmable frame

Figure 9-21 Offset in the Z direction

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 689

9.5.2.2 Fine offset

Parameterization
The fine offset is enabled via the machine data:

MD18600 $MN_MM_FRAME_FINE_TRANS = <value>

Value Meaning

0 The fine offset cannot be entered or programmed.
1 Fine offset is possible for settable frames, basic frames and the programmable frame via

command or program.

Programming
The programming of the translation or coarse offset can be performed via the following
commands:

● Example of data management frames $P_UIFR

– Complete frame: $P_UIFR[<n>] = CFINE(<K1>,<V1>[,<K2>,<V2>][,<K3>,<V3>])
with Km = coordinate x, y or z and Vm = offset m

– Frame component: $P_UIFR[<n>,<K>,FI] = <V>
with K = coordinate x, y or z and V = offset

● Example of programmable frame

– TRANS <K1> <V1> [<K2> <V2>][<K3> <V3>]
with Km = coordinate x, y or z and Vm = offset m

Programming examples:

Program code Remark

$P_UIFR[1] = CTRANS(X,10,Y,10) Complete frame

$P_UIFR[1,X,TR] = 10 Frame components

TRANS X=10 Y=10 Programmable frame

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
690 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.2.3 Rotation Overview (geometry axes only)

Function
The direction of rotation around the coordinate axes is determined by means of a right-hand,
rectangular coordinate system with axes x, y and z. If the rotary motion is in a clockwise
direction when looking in the positive direction of the coordinate axis, the direction of rotation
is positive. A, B and C designate rotations whose axes are parallel to the coordinate axes.

The following figure shows the new position of the coordinate system x', y' and z' after the
rotation around z with γ = -45°

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 691

Parameterization of the rotation sequence
The following machine data is used to set around which coordinate axes and in which order
the rotations are performed when more than one angle of rotation is programmed:

MD10600 $MN_FRAME_ANGLE_INPUT_MODE = <value>

Value Meaning

1 Euler angles in zy'x'' convention (RPY angles)
2 Euler angles in zx'z" convention

 Note

For historical reasons, Euler angles in zx'z" convention can be used. However, it is strongly
recommended that only Euler angles in zy'x" convention (RPY angles) be used (see Section
Rotation with a Euler angles: ZY'X" convention (RPY angles) (Page 691)).

9.5.2.4 Rotation with a Euler angles: ZY'X" convention (RPY angles)
Euler angles in zy'x" convention are also called RPY angles. RPY is derived from:

R: Roll → rotation around x
P: Pitch → rotation around y'
Y: Yaw → rotation around z''

With RPY angles, the rotations are in the order z, y', x".

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
692 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Assignment of rotary axis to geometry axis

Rotary axis Geometry axis in channel
x'' 1. Geometry axis
y' 2. Geometry axis
z 3. Geometry axis

Range of values

With RPY angles, programmed values can only be unambiguously calculated back within the
following value ranges:

-180
-90

-180

<=
<

<=

x
y
z

<=
<

<=

180
90

180

Programming of the complete frame
When programming the complete frame, all rotation components of the frame are always
written. Non-programmed components are implicitly assigned the value 0°.

Syntax
<Frame> = CROT([<1st GAx>,<angle>,][<2nd GAx>,<angle>,][<3rd
GAx>,<angle>])
ROT [<1st GAx><angle>] [<2nd GAx><angle>] [<3rd GAx><angle>]
AROT [<1st GAx><angle>] [<2nd GAx><angle>] [<3rd GAx><angle>]

Meaning

CROT: Absolute rotation,

reference frame: Arbitrary programmed frame
<Frame>: Arbitrary active or data management frame
ROT: Absolute rotation,

reference frame: Programmable frame $P_PFRAME,
reference point: Zero point of the current workpiece coordinate system
set with G54 ... G57, G505 ... G599

AROT: Additive rotation,
reference frame: Programmable frame $P_PFRAME,
reference point: Zero point of the current workpiece coordinate system
set with G54 ... G57, G505 ... G599
Name of the nth geometry axis around which rotation is to be performed
with the specified angle. The value 0° is implicitly set as angle of rotation
for a geometry axis that has not been programmed.
Assignment of geometry axis to rotary axis:

Geometry axis Rotary axis
1. Geometry axis x''
2. Geometry axis y'

<nth GAx>:

3. Geometry axis z
<angle>: Angle specification in degrees.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 693

Programming a frame component
When programming a frame component, only the programmed component of the frame is
written. The components that are not programmed remain unchanged.

Syntax
<frame>[<index>,<GAx>,RT] = <angle>

Meaning

<Frame>: Arbitrary active or data management frame
<Index>: Array index of the frame, e.g. $P_UIFR[0 ... n]
<GAx>: Name of the geometry axis around which rotation is to be performed

with the specified angle.
RT: Keyword for rotation "RoTation"
<Angle> Angle specification in degrees.

Reading back the rotation components
In general, the same values are obtained when reading back the rotation components of a
frame as those that were programmed:

Saved rotation components 1) Programmed

x, RT y, RT z, RT
<Frame>=CROT(X,45,Y,30,Z,-20) 45 30 -20
1) The values of the saved rotation components are obtained when reading back

Values outside the value range

Programmed values outside a value range are mapped on the range limits:

Saved rotation components 1) Programmed

x, RT y, RT z, RT
<Frame>=CROT(X,190,Y,0,Z,-200) -170 0 160
1) The values of the saved rotation components are obtained when reading back

 Note

It is recommended that when writing the rotation components of the frame, the specified
value ranges are observed so that the same values are obtained when reading back the
rotation components.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
694 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Gimbal lock
Gimbal lock designates a geometric problem in which the rotation components can no longer
be unambiguously calculated back from the position vector. Gimbal lock occurs in RPY
angles with an angular position of the rotation component y = 90°. In this case, the rotation
components are converted by the controller after being written so that the following applies:

● Rotation component z = rotation component z - rotation component x

● Rotation component x = 0°

● Rotation component y = 90°

Saved rotation components Programmed

x, RT y, RT z, RT
<Frame>=CROT(X,30,Y,90,Z,40) 0 90 40 - 30 = 10

CAUTION
Different values for reading back the rotation component z

Because of the different conversion times after writing the complete frame or the writing of
individual rotation components of a data management frame and the writing of individual
rotation components of an active frame, different values can be read back for rotation
component z.

Differences when writing the complete frame and frame components

Two cases must be distinguished when writing the rotation components of a frame:

1. Writing the complete frame: <Frame>=CROT(X,a,Y,b,Z,c)

When writing the complete frame, the conversion is immediately at the time of writing.

2. Writing individual rotation components, e.g. rotation around X: <Frame>[0,X,RT]=a

When writing individual rotation components, the conversion depends on the storage
location of the frame:

– Data management frames

With data management frames, the conversion is at the time of activation of the frame
based on the rotation components written by this time. With regard to the conversion
of a data management frame, a data management frame therefore behaves in the
same way after writing individual rotation components as when writing the complete
frame.

– Active frames

In the case of active frames, the conversion is immediately at time of writing of the
rotation component.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 695

Examples: Writing the complete frame

The conversion is made in each block after the complete frame has been written.

Saved rotation components Programmed

x, RT y, RT z, RT
N10 <Frame>=CROT(X,0,Y,90,Z,90) 0 90 90
N20 <Frame>=CROT(X,90,Y,90) 0 90 -90 1)
N30 <Frame>=CROT(X,90,Y,90,Z,90) 0 90 0 1)
1) Different values compared to the writing of individual rotation components of an active frame

Examples: Writing individual rotation components of a data management frame

A conversion is performed on the activation of the data management frame. In the example,
at any time after N30.

Saved rotation components Programmed

x, RT y, RT z, RT
N10 <Data management frame>[0,X,RT]=0
N20 <Data management frame>[0,Y,RT]=90
N30 <Data management frame>[0,Z,RT]=90

0 90 90

N10 <Data management frame>[0,X,RT]=90
N20 <Data management frame>[0,Y,RT]=90
N30 <Data management frame>[0,Z,RT]=0

0 90 -90 1)

N10 <Data management frame>[0,X,RT]=90
N20 <Data management frame>[0,Y,RT]=90
N30 <Data management frame>[0,Z,RT]=90

0 90 0 1)

1) Different values compared to the writing of individual rotation components of an active frame

Examples: Write individual rotation components of an active frame

Any required conversion is performed immediately on writing the rotation component. The
stored initial values of the frame are: x = 0, y = 0, z = 0.

Saved rotation components Programmed

x, RT y, RT z, RT
N10 <Active frame>[0,X,RT]=0
N20 <Active frame>[0,Y,RT]=90
N30 <Active frame>[0,Z,RT]=90

0 90 90

N10 <Active frame>[0,X,RT]=90
N20 <Active frame>[0,Y,RT]=90
N30 <Active frame>[0,Z,RT]=0

0 90 0 1)

N10 <Active frame>[0,X,RT]=90
N20 <Active frame>[0,Y,RT]=90
N30 <Active frame>[0,Z,RT]=90

0 90 90 1)

1) Different values compared to the writing of the complete frame or the writing of individual rotation
components of a data management frame

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
696 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.2.5 Rotation with a Euler angles: ZX'Z" convention
With Euler angles, the rotations are in the order z, x', z".

 Note
Recommended use

For historical reasons, Euler angles in zx'z" convention can be used. However, it is strongly
recommended that only Euler angles in zy'x" convention (RPY angles) be used (see Section
Rotation with a Euler angles: ZY'X" convention (RPY angles) (Page 691)).

Assignment of rotary axis to geometry axis

Rotary axis Geometry axis in channel
z'' 3rd geometry axis
x' 1st geometry axis
z 3rd geometry axis

Range of values

Data from Euler angles can only be unambiguously calculated back within the following
value ranges:

0
-180
-180

<=
<=
<=

x
y
z

<
<=
<=

180
180
180

For data outside the specified value ranges, a modulo conversion is made referred to the
value of the particular range limit.

 Note

It is recommended that when writing the rotation components of the frame, the specified
value ranges are observed so that the same values are obtained when reading back the
rotation components.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 697

9.5.2.6 Rotation in any plane

CRPL - Constant Rotation Plane
The predefined function "Constant Rotation Plane" enables a rotation to be programmed for
a frame in an arbitrary plane (G17, G18, G19) without specifying the name of a geometry axis.
This enables rotations to be programmed in the third plane when only two geometry axes are
present in the channel due to the specific machine constellation.

Syntax

CRPL(<rotary axis>,<angle of rotation>)

Meaning

CRPL: Rotation in any plane
<rotary axis>: Axis around which the rotation is performed
 Type: INT
 Value Meaning
 0 Rotation in the active plane
 1 Rotation around Z
 2 Rotation around Y
 3 Rotation around X
<angle of
rotation>: Angle in degrees through which the rotation is performed

 Type: REAL
 It is strongly recommended to observe the specified angular ranges. If the

limits are not observed, then an unambiguous reverse calculation is not
possible. Angles outside the limits are not rejected.

 RPY angle: X -180 <= <angle of rotation> <= 180
 Y -90 <= <angle of rotation> <= 90
 Z -180 <= <angle of rotation> <= 180
 ZX'Z" convention: X -180 <= <angle of rotation> <= 180
 Y 0 <= <angle of rotation> <= 180
 Z -180 <= <angle of rotation> <= 180

Chaining with frames

CRPL() can be chained with frames and known frame functions such as CTRANS(), CROT(),
CMIRROR(), CSCALE(), CFINE() etc.

Examples:

$P_PFRAME = $P_PFRAME : CRPL(0,30.0)

$P_PFRAME = CTRANS(X,10) : CRPL(1,30.0)

$P_PFRAME = CROT(X,10) : CRPL(2,30.0)

$P_PFRAME = CRPL(3,30.0) : CMIRROR(Y)

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
698 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.2.7 Scaling

Programming
The program commands below are used to program the scaling:
$P_UIFR[1] = CSCALE(x,1,y,1)
SCALE x = 1y = 1
$P_UIFR[1,x,sc] = 1

9.5.2.8 Mirroring

Programming
The program commands below are used to program a mirroring:
$P_UIFR[1] = CMIRROR(x,1,y,1)
MIRROR x = 1y = 1
$P_UIFR[1,x,mi] = 1

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 699

9.5.2.9 Chain operator
Frame components or complete frames can be combined into a complete frame using the
chain operator (:).

9.5.2.10 Programmable axis name
Geometry, channel and machine axis names can be used in the frame commands. The
programmed axis must be known to the channel-specific frames in the channel.

SPI
When programming frame commands, the SPI(<spindle number>) axis function can be used
in place of an axis name.

SPI(<spindle number>) forms the reference of the spindle to the channel axis.
→ refer to MD35000 $MA_SPIND_ASSIGN_TO_MACHAX[] (assignment of spindle to
machine axis)

The following frame commands can be programmed with SPI(spino):

CTRANS()

CFINE()

CMIRROR()

CSCALE()

A spindle can only be assigned to one rotary axis at a time. The CROT(..) function can
therefore not be programmed withSPI(), as only geometry axes are permitted forCROT().

The channel axis name or machine axis name of the axis belonging to the spindle is always
output when decompiling frames, even when axis names have been programmed in the part
program with SPI(..).

If the spindle is assigned e.g., to the Channel Axis A then the programming:

N10 $P_UIFR[1] = CTRANS(SPI(1),33.33,X,1):CSCALE(SPI(1),33.33):CMIRROR(SPI(1))

during recompilation:

$P_UIFR[1]=CTRANS(X,1,A,33.33):CSCALE(A,33.33):CMIRROR(A)

If a spindle and an assigned axis are programmed in a frame command, then Alarm 16420
"Axis % multiply programmed" is output.

Example:

$P_UIFR[1] = CTRANS(SPI(1),33.33,X,1,A,44)

(The spindle is assigned to Axis A.)

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
700 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programming examples
$P_PFRAME[SPI(1),TR]=22.22

$P_PFRAME=CTRANS(X, axis value,Y,axis value,SPI(1),axis value)

$P_PFRAME=CSCALE(X,Scale,Y,scale,SPI(2),scale)

$P_PFRAME=CMIRROR(S1,Y,Z)

$P_UBFR=CTRANS(A,10):CFINE(SPI(1),0.1)

9.5.2.11 Coordinate transformation

The formulae below are used to discover the coordinate transformation for geometry axes:

V: Position vector in BCS
V': Position vector in WCS

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 701

9.5.3 Frames in data management and active frames

9.5.3.1 Overview
The following frame types are available:
● System frames (see diagram)
● Basic frames ($P_NCBFR[n], $P_CHBFR[n])
● Adjustable frames ($P_UIFR[n])
● Programmable frame ($P_PFRAME[n])
Apart from the programmable frame, all types have a frame in the data management (data
management frame) and an active frame. For a programmable frame, there is only one
active frame.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
702 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Writing frames
Data management frames and active frames can be written from the part program. Only data
management frames can be written via the user interface.

Archiving frames
Only data management frames can be archived.

9.5.3.2 Activating data management frames
Data management frames become active frames as a result of the following actions:

● Part program commands to activate/deactivate offsets: G54...G599, G500

● RESET and MD20110 $MC_RESET_MODE_MASK, Bit14 = 1

● Transformation changeover

● Changing the geometry axis assignment GEOAX

● Via SINUMERIK Operate with PI service "_N_SETUDT"

Activating via SINUMERIK Operate
The activation of a data management frame with PI service "_N_SETUDT" only becomes
active in the channel after a hot restart for the selected part program. The activation is
effective in the reset state if the following machine data is set:

MD9440 $MM_ACTIVATE_SEL_USER_DATA (set active offset immediately)

Activating system frames
System frames are activated by:

● programming the corresponding system function in the part program

● Operator control at SINUMERIK Operate

 Note
Modifying system frames of the data management

Although in principle, system frames of the data management can be modified by the
cycle programmer and activated using a G500, G54...G599 operation. However, this option
should only be used with reservation.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 703

Activating data management frames
The behavior when activating data management frames can be set using the following
machine data:

MD24050 $MC_FRAME_SAA_MODE (save and activate data management frames)

Bit Value Meaning

0 Data management frames are activated only by programming the $P_CHBFRMASK,
$P_NCBFRMASK and $P_CHSFRMASK bit masks.
G500...G599 activate only the corresponding settable frame.
The reset response is independent of this.

0

1 Data management frames are not implicitly described by system functions, such as
TOROT, PAROT,
 zero offset external and transformations.

System variable $P_CHSFRMASK

The system frames of the data management can be activated using system variable
$P_CHSFRMASK. The value of the variables is specified as bit coded according to the
machine data:
MD28082 $MC_MM_SYSTEM_FRAME_MASK (system frames of the data management)

The corresponding system frame of the data management in the channel is activated by
setting a bit of the system variable $P_CHSFRMASK to a value of 1. For a value of 0, the
currently active system frame in the channel remains active.

Activating system frames after RESET

After RESET, the system frames in the channel are activated whose bits are set in the
following machine data:

MD24006 $MC_CHSFRAME_RESET_MASK (active system frames after Reset)

Activating system frames for TCARR, PAROT and TOROT, TOFRAME

The system frames for TCARR, PAROT and TOROT, TOFRAME are activated according to the setting
in the following machine data:

MD20150 $MC_GCODE_RESET_VALUES (initial setting of the G groups)

When changing over geometry axes using transformation selection/deselection or the GEOAX
command, the actual total frame $P_ACTFRAME is either deleted or is re-calculated using
the new geometry axis constellation and activated. The system frames and all other frames
are conditioned again in relation to the geometry axes.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
704 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.3.3 NCU global frames
All settable frames G54 to G599 and all basic frames can be configured NCU globally or
channel-specifically. A combination of these is also possible with basic frames. Global
frames affect all channels on an NCU. All channels have read and write access to the NCU.
Global frames only have axial frame components, such as translations, scales and mirrors of
individual axes. Each channel can read or modify global frames for any machine axis.

A characteristic of global frames is that they are calculated in all channels of an NCU. As the
assignment of machine axes to channel axes and, in particular, to geometry axes, can be
different in all channels, there is no geometric relationship. Global frames describe offsets,
scales and mirrors of machine axes. Rotations cannot be used on global frames.

All settable frames can be reconfigured to global frames with the following machine data:

MD18601 $MN_MM_NUM_GLOBAL_USER_FRAMES (number of global, pre-defined user
frames (SRAM))

If the value of this machine data is greater than zero, there are no channel-specific settable
frames.

The following machine data becomes irrelevant then, and is not evaluated:

MD28080 $MC_MM_NUM_USER_FRAMES (number of settable frames (SRAM))

The number of global basic frames is parameterized through the following machine data:

MD18602 $MN_MM_NUM_GLOBAL_BASE_FRAMES (number of global, basic frames
(SRAM))

Channel-specific basic frames can also exist simultaneously through the following machine
data:

MD28081 $MC_MM_NUM_BASE_FRAMES (number of basic frames (SRAM))

Global frames can be read and written from all channels of an NCU. When writing global
frames, the user must ensure channel coordination. This can be achieved through e.g., wait
markers.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 705

9.5.4 Frame chain and coordinate systems

9.5.4.1 Overview
The figure below shows the frame chain for the current complete frame. The frame chain is
located between the basic coordinate system (BCS) and the workpiece coordinate system
(WCS).
The settable zero system (SZS) corresponds to the WCS transformed by the programmable
frame. The basic zero system (BZS) still includes the current settable frame. The system
frame for the external zero offset is only available if it has been configured, otherwise the
external zero offset is traversed as an overlaid motion of the axis.

WCS: Workpiece Coordinate System
SZS: Settable Zero System
BZS: Basic Zero System
BCS: Basic Coordinate System
MCS: Machine Coordinate System

The current complete frame $P_ACTFRAME results from the chaining of all active frames of the
frame chain:

$P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
$P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
$P_ACTBFRAME : $P_IFRAME : $P_TOOLFRAME :
$P_WPFRAME : $P_TRAFRAME: $P_PFRAME :

$P_ACTFRAME =

$P_ISO4FRAME : $P_CYCFRAME

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
706 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.4.2 Relative coordinate systems
Relative coordinate systems display the current setpoint positions of the axes which lie
relative to a specified reference point in the active displayed coordinate system. No
programming can be done regarding the relative coordinate systems. Only the axis positions
in these systems can be read via the system variables.

The new display coordinate systems lie relative to WCS and ENS coordinate system and
result through transformation of the WCS or ENS axis positions with the active system frame
$P_RELFRAME. The relative coordinate systems can not only be displaced linearly, but also
rotated, mirrored, compressed or expanded.

The position indicator for axis setpoints is done in WCS or in ENS. The configuring is done
via HMI machine data. Always only one display-coordinate system is active in the channel.
For this reason only one relative frame is provided which generates both relative coordinate
systems in the same ratio. The HMI displays the relative coordinates according to the
configuration.

Figure 9-22 Relative coordinate systems

The data maintenance frame $P_RELFR can be written in the part program and via BTSS.
All the frame components can be modified.

The active system frame $P_RELFRAME can be written in the part program and via BTSS.

The configuring of the system frame $P_RELFR is done via the following machine data:

Machine data Bit Meaning
MD28082 $MC_MM_SYSTEM_FRAME_MASK 11 Creation of $P_RELFR; with this, relative

coordinate systems become existent.
MD28083 $MC_MM_SYSTEM_DATAFRAME_MASK 11 Data maintenance frame $P_RELFR
MD24006 $MC_CHSFRAME_RESET_MASK. 11 $P_RELFR becomes active at Reset
MD24007 $MC_CHSFRAME_RESET_CLEAR_MASK 11 $P_RELFR is deleted at Reset
MD24008 $MC_CHSFRAME_POWERON_MASK 11 $P_RELFR is deleted at PowerOn

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 707

The axis position in the relative coordinate system WCSRel can be read via the variable
$AA_PCS_REL[ax]. The variable can be read in part program, BTSS and via synchronized
actions.

The axis position in the relative coordinate system ENSRel can be read via the variable
$AA_ACS_REL[ax]. The variable can be read in part program, BTSS and via synchronized
actions.

The setting of a relative reference point via the operator panel is done via the general
command interface for the workpiece and tool measuring. The system frame $P_RELFR for
relative coordinate systems is calculated and activated as follows:

● $AC_MEAS_TYPE = 14

● PI-services _N_SETUDT(6, 7)

An example of setting the relative axis positions can be found in:
References:
Function Manual, Extended functions; Measurement (M5),
Section "Measurement of geometry and special axes (meas. type 14, 15)"

9.5.4.3 Configurable SZS
The function of the SZS coordinate system is to display actual values and move the axes
during a cycle interruption. Cycles utilize frames in the frame chain to perform their functions.
They input translations or rotations into either the programmable frame or the cycle system
frame. The WCS is, therefore, modified by cycles. A user who uses Stop to interrupt a cycle,
however, does not wish to traverse in the "cycle coordinate system", but in the programmed
WCS. This is why the SZS is used for the display. For reasons of compatibility, the SZS is
made configurable.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
708 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following machine data can be used to set whether the ENS is with or without the
programmable frame, the transformation frame and $P_ISO4FRAME:

MD24030 $MC_FRAME_ACS_SET (setting of the ENS coordinate system)

As default, the value 1 is set.

Reconfiguring the SZS affects all SZS actual-value displays and the $AA_IEN[axis] system
variables. Traversing geometry axes in JOG mode in the SZS also depends on the
configuration.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 709

9.5.4.4 Manual traverse in the SZS coordinate system
Previously, geometry axes have been traversed manually in JOG mode in the WCS. In
addition, there is also the option to carry out this manual operation in the SZS coordinate
system. The $AC_JOG_COORD variable enables the user to switch between manual
traversing in the WCS and SZS. The user can now select if he wants to traverse in the SZS
or the WCS.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
710 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.4.5 Suppression of frames

Programming

Comman
d

Meaning

G53 Nonmodal suppression of the following frames:
• System frame for cycles
• Programmable frame
• System frame for transformations, workpieces, TOROT and TOFRAME
• Active settable frame

G153 Nonmodal suppression of the following frames:
• System frame for cycles
• Programmable frame
• System frame for TOROT and TOFRAME, workpieces
• Active settable frame
• All channel-specific and NCU global basic frames
• System frames for PAROT, PRESET, scratching, ext. ZO

SUPA Implicit preprocessing stop and non-modal suppression of frames analog G153 and
additional
• Handwheel offsets (DRF)
• [Ext. zero offset]
• Overlaid motion

G500 Modal activation of the G500 frame. The G500 frame should be a zero frame.
DRFOF Deactivate (clear) the handwheel offsets (DRF)

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 711

Parameterization
Frame suppressions SUPA, G153 and G53 lead to the WCS, SZS and possibly the BZS
jumping when frame suppression is active. This characteristic for position display and pre-
defined position variables can be changed through the following machine data:

MD24020 $MC_FRAME_SUPPRESS_MODE (Positions during frame suppression)

Bit Meaning
0 Positions for display (OPI) are without frame suppression.
1 Position variables are without frame suppression.

When the bit is set, the position for the display or the variables is calculated without frame
suppression so that no further jumps in the position occur.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
712 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.5 Frames of the frame chain

9.5.5.1 Overview
There are up to four frame variants:

● Settable frames (G500,G54 to G599)

● Basic frames

● Programmable frame

● System frames

9.5.5.2 Settable frames $P_UIFR[n]
The number of NCU global settable frames is set through the following machine data:

MD18601 $MN_MM_NUM_GLOBAL_USER_FRAMES (number of global, pre-defined user
frames (SRAM))

The number can be between 0 and 100. If the MD has a value greater than zero, there are
only NCU global settable frames, otherwise the following machine data specifies the number
of channel-specific settable frames:

MD28080 $MC_MM_NUM_USER_FRAMES (number of settable frames (SRAM))

System variable $P_UIFR[n] can be used to read and write the frame field elements. The
frame is not activated simultaneously when writing a field element, but rather activation only
takes place on execution of a G500,G54, to G599 instruction. For NCU global frames, the
changed frame only becomes active in those channels of the NCU, which execute a
G500,G54 to G599 instruction. The variable is used primarily for storing write operations from
HMI or PLC. These frame variables are saved by the data backup.

Current settable frame $P_IFRAME
The predefined frame variable $P_IFRAME can be used to read and write the current
settable frame, which is valid in the channel, in the part program. The written settable frame
is immediately included in the calculation. In the case of NCU global settable frames, the
modified frame acts only in the channel in which the frame was programmed. If the frame is
to be modified for all channels of an NCU, $P_UIFR[n] and $P_IFRAME must be written
simultaneously. The other channels must then activate the corresponding frame, e.g., with
G54.

Programming of settable frames
Settable frames can be read and written via the part program and via the OPI by operator
actions and by the PLC. However, only data management frames can be written by the OPI.
The index of the active settable frame can be ascertained via the $P_UIFRNUM system
variable.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 713

9.5.5.3 Channel basic frames $P_CHBFR[n]
The number of basic frames in the channel can be configured via the machine data:

MD28081 $MC_MM_NUM_BASE_FRAMES (number of basic frames (SRAM))

The minimum configuration is designed for at least one basic frame per channel. A maximum
of 16 basic frames per channel is possible. In addition to the 16 basic frames, there can also
be 16 NCU-global basic frames in the channel.

System variable $P_CHBFR[n] can be used to read and write the basic frame field elements.
While writing a basic frame field element, the chained total frame is not activated. Instead,
the activation takes place only after a G500,G54..G599instruction is executed. The variable is
used primarily for storing write operations to the basic frame on HMI or PLC. These frame
variables are saved by the data backup.

Current channel basic frames $P_CHBFRAME[n]

System variable $P_CHBFRAME[n] can be used to read and write the current channel basic
frame field elements. The resulting total basic frame is calculated by means of the write
process in the channel. Whenever a basic frame is written, the complete basic frame is
calculated again.

Basic frame in channel $P_UBFR

The system variable is retained for reasons of compatibility, although it is redundant for the
$P_CHBFR[0] variables.

The basic frame with field device 0 is not activated simultaneously when writing to the
predefined $P_UBFR variable, but rather activation only takes place on execution of a
G500,G54,.G599instruction. For NCU global frames, the changed frame only becomes active
in those channels of the NCU, which execute a G500,G54..G599instruction. The variable is
used primarily for storing write operations to the basic frame on HMI or PLC. The variable
can also be read and written in the program.

$P_UBFR is identical to $P_CHBFR[0]. One basic frame always exists in the channel by
default, so that the system variable is compatible with older versions. If there is no channel-
specific basic frame, an alarm is issued at read/write: "Frame: Instruction not allowed" is
output on a read or write access.

Current first basic frame in the channel $P_BFRAME

The system variable is retained for reasons of compatibility, although it is redundant for the
$P_CHBFRAME[0] variables.

The predefined frame variable $P_BFRAME can be used to read and write the current basic
frame with the field device of 0, which is valid in the channel, in the part program. The written
basic frame is immediately included in the calculation. In the case of NCU global settable
frames, the modified frame acts only in the channel in which the frame was programmed. If
the frame is to be modified for all channels of an NCU, $P_UBFR and $P_BFRAME must be
written simultaneously. The other channels must then activate the corresponding frame, e.g.,
with G54.

$P_BFRAME is identical to $P_CHBFRAME[0]. The system variable always has a valid
default value. If there is no channel-specific basic frame, an alarm is issued at read/write:
"Frame: Instruction not allowed" is output on a read or write access.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
714 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programming basic frames

Basic frames can be read and written via the part program and via the OPI by operator
actions and by the PLC. However, only data management frames can be written by the OPI.

9.5.5.4 NCU global basic frames $P_NCBFR[n]
The number of global basic frames can be configured via the machine data:

MD18602 $MN_MM_NUM_GLOBAL_BASE_FRAMES (number of global, basic frames
(SRAM))

There are a maximum of 16 global basic frames. All basic frames are stored as fields.

System variable $P_NCBFR[n] can be used to read and write the basic frame field elements.
While writing a basic frame field element, the chained total frame is not activated. Instead,
the activation takes place only after a G500,G54..G599 command is executed. If the modified
frame is to be active in every channel of the NCU, every channel must execute a
G500,G54..G599 command. The variable is used primarily for storing write operations to the
basic frame on HMI or PLC. These frame variables are saved by the data backup.

Current NCU global basic frames $P_NCBFRAME[n]
System variable $P_NCBFRAME[n] can be used to read and write the current global basic
frame field elements. The resulting total basic frame is calculated by means of the write
process in the channel. The modified frame is activated only in the channel in which the
frame was programmed. If the frame is to be modified for all channels of an NCU,
$P_NCBFR[n] and $P_NCBFRAME[n] must be written simultaneously. The other channels
must then activate the frame, e.g., with G54. Whenever a basic frame is written, the complete
basic frame is calculated again.

Programming global frames
Global frames are programmed analogously, as are channel-specific frames, i.e., global
basic frames are programmed with $P_NCBFR[n] and global settable frames with
$P_UIFR[n].

Geometry axis, channel axis and machine axis names can be used as axis names for frame
program commands. If there is no machine axis for the channel axis on the NCU,
programming with channel axis names is rejected with the alarm 18314 "Frame: Type
conflict". Channel-specific frames can be programmed with geometry axis, channel axis and
machine axis names. If there is no corresponding channel axis for the machine axis on the
NCU, programming with machine axis names is rejected with the alarm 18314 "Frame: Type
conflict". If frame components are applied to a machine axis or a channel axis, which is also
a geometry axis, the corresponding geometry axis components will also be simultaneously
modified.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 715

Example:

$P_NCBFR[0] = CTRANS(ax1, 10)
$P_NCBFR[0] = CTRANS(x, 10)
$P_NCBFR[0, ax1, FI] = 0.1
$P_NCBFR[0, x, FI] = 0.1

Rotations cannot be used on global frames. The programming of a rotation is denied with
alarm: "18310 Channel %1 Block %2 Frame: Rotation not allowed" is displayed.

It is not possible to program chaining of global frames and channel-specific frames, and any
attempt at this is rejected with the alarm 18314 "Frame: Type conflict". All global frames and
channel-specific frames are internally chained to the complete frame. This takes place in the
channel and only with all channel axes known in the channel. The assignment of a frame
with rotation components to a global frame is denied with alarm "Frame: Rotation not
allowed".

Example:

$P_NCBFR[0] = CTRANS(x, 10):CROT(y, 45) ; Faulty assignment on the global basic frame

The following frames are channel-specific:

$P_UBFR, $P_BFRAME, $P_CHBFR[n],

$P_CHBFRAME[n], $P_NCBFRAME[n],

$P_ACTBFRAME and $P_ACTFRAME

These frames can contain rotation components.

These frames only affect the channel that has been set.

With SW 5.1, attempts to program a channel axis, which is also a link axis, is rejected with
alarm "14092 Channel %1 block %2 axis %3 is wrong axis type". An axis can be
programmed only if it physically exists on the NCU.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
716 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.5.5 Complete basic frame $P_ACTBFRAME
The chained complete basic frame is determined by the variable. The variable is read-only.

$P_ACTBFRAME=
$P_NCBFRAME[0] : ... : $P_NCBFRAME[n] : $P_CHBFRAME[0] : ... : $P_CHBFRAME[n]

Programmability of the complete basic frame
System variables $P_CHBFRMASK and $P_NCBFRMASK can be used to select which
basic frames to include in the calculation of the "complete" basic frame. The variables can
only be programmed in the program and read via the OPI. The value of the variables is
interpreted as a bit mask and specifies which basic frame array element of $P_ACTBFRAME
is included in the calculation. $P_CHBFRMASK can be used to define which channelspecific
basic frames are included, and $P_NCBFRMASK can be used to define which NCU global
basic frames are included in the calculation. When the variables are programmed, the
complete basic frame and the complete frame are calculated again. After RESET and in the
default setting, the value of $P_CHBFRMASK equals $MC_CHBFRAME_RESET_MASK and
the value of $P_NCBFRMASK equals $MN_NCBFRAME_RESET_MASK.

$P_NCBFRMASK = 'H81' ; $P_NCBFRAME[0] : $P_NCBFRAME[7]
$P_CHBFRMASK = 'H11' ; $P_CHBFRAME[0] : $P_CHBFRAME[4]

9.5.5.6 Programmable frame $P_PFRAME
Programmable frames are available only as active frames.
This frame is reserved for the programmer.

The programmable frame remains at RESET, if:

MD24010 $MC_PFRAME_RESET_MODE (reset mode for programmable frame) = 1

This functionality is especially important after a RESET if one still wants to retract out of an
oblique hole.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 717

MIRROR
Mirrorings of a geometry axis were thus far (up to SW-P4) related to a defined reference axis
only using the machine data:
MD10610 $MN_MIRROR_REF_AX
(reference axis for the mirroring).

From the user's point of view, this definition is hard to follow. When mirroring the z axis, the
display showed that the x axis was mirrored and the y axis had been rotated about 180
degrees. When mirroring two axes this became even more complex and it was no longer
easy to understand, which axes had been mirrored and, which had not.

With SW P5 and higher, there is the option to clearly display the mirroring of an axis.
Mirroring is then not mapped to mirroring of a reference axis and rotations of other axes.

This setting can be configured using:

MD10610 $MN_MIRROR_REF_AX = 0

MIRROR and AMIRROR are used to expand the programming of the programmable frame.
Previously, the specified value of the coordinate axis, e.g. the value 0 for MIRROR X0 is not
evaluated, but the AMIRROR has a toggle function, i.e. MIRROR X0 activates mirroring and an
additional AMIRROR X0 deactivates it. MIRROR always has an absolute effect and AMIRROR an
additive effect.

The
MD10612 $MN_MIRROR_TOGGLE = 0 ("Mirror Toggle")
machine data setting can be used to define that the programmed values are evaluated.
A value of 0, as inAMIRROR X0, deactivates the mirroring of the axis, and values not equal to 0
cause the axis to be mirrored if it is not already mirrored.

Reading or writing mirroring component-by-component is independent of the machine data:

MD10612 $MN_MIRROR_TOGGLE

A value = 0 means that the axis is not mirrored and a value = 1 means that the axis will
always be mirrored, irrespective of whether it has already been mirrored or not.

$P_NCBFR[0,x,mi]=1 ; the x axis is always mirrored.

$P_NCBFR[0,x,mi]=0 ; x axis mirroring off.

Axial replacement G58, G59 (only 840D sl)
The translation component of the programmable frame is split into an absolute component
and a component for the total of all additively programmed translations. The absolute
component can be changed using TRANS, CTRANS or by writing the translation components, in
which the additive component is set to zero. G58 changes only the absolute translation
component for the specified axis; the total of additively programmed translations is retained.

G58 X... Y... Z... A... ...

G59 is used to axially overwrite the additively programmed translations for the specified axes
that were programmed with ATRANS.

G59 X... Y... Z... A... ...

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
718 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example:

TRANS X10 Y10 Z10

ATRANS X5 Y5 ; Total translations X15 Y15 Z10

G58 X20 ; Total translations X25 Y15 Z10

G59 X10 Y10 ; Total translations X30 Y20 Z10

G58 and G59 can only be used if:

MD24000 $MC_FRAME_ADD_COMPONENTS (frame components for G58 / G59) = TRUE

Otherwise Alarm "18311 Channel %1 block %2 frame: instruction not permissible" is output.

The function can also only be used in conjunction with a configured fine offset for the
programmable frame. If G58 or G59 is used without a configured fine offset, alarm "18312
channel %1 block %2 frame: Fine offset not configured" is output.

The absolute component of the translation is stored in the rough offset component and the
additive translation component is stored in the fine offset component. To this end, the
programmable frame or the fine offset is expanded.

The fine component is transferred on saving the programmable frame in a local frame
variable (LUD or GUD) and on rewriting.

The table below shows the effect of various program commands on the absolute and
additive translation.

 Coarse or absolute translation Fine or additive translation
TRANS X10 10 0
ATRANS X10 Unchanged alt_fine + 10
CTRANS(X,10) 10 0
CTRANS() 0 0
CFINE(X,10) 0 10
$P_PFRAME[X,TR] = 10 10 Unchanged
$P_PFRAME[X,FI] = 10 Unchanged 10
G58 X10 10 Unchanged
G59 X10 Unchanged 10

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 719

9.5.5.7 Channelspecific system frames

Channelspecific system frames
System frames are only described by system functions, such as PRESET, scratching, zero
offset external and oblique processing. There are up to seven system frames per channel.

The valid system frames in the channel can be defined via machine data:

MD28082 $MC_MM_SYSTEM_FRAME_MASK (System frames SRAM)

Only system frames required for system functions should be configured, in the interests of
memory space. Per channel, each system frame occupies approx. 1 KB SRAM und approx.
6 KB DRAM. The system frame for PRESET and scratching and the system frame for cycles
are the default. Channel-specific system frames are configured as bit codes, in accordance
with the table below:

Bit Default System frame
0 1 PRESET and scratching
1 0 Zero offset external via system frames
2 0 TCARR and PAROT with an orientational toolholder
3 0 TOROT and TOFRAME
4 0 Frame for workpiece reference points
5 1 Frame for cycles
6 0 Frame for selection and deselection of transformations
7 0 $P_ISO1FRAME : Frame for G51.1 mirroring (ISO)
8 0 $P_ISO2FRAME : Frame for G68 2DROT (ISO)
9 0 $P_ISO3FRAME : Frame for G68 3DROT (ISO)
10 0 $P_ISO4FRAME: Frame for G51 scale (ISO)
11 0 $P_RELFR: Frame for relative coordinate systems

Example:
$MC_MM_SYSTEM_FRAME_MASK = 'B001101' means that
there are three system frames; one for PRESET, one for PAROT and one for TOROT and
TOFRAME.

The system frame mask is used to define if the corresponding function has a system frame.
With non-configured frames, in certain circumstances the function will be rejected with an
alarm.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
720 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

System frames in data management
The system frames are stored in the static NC memory and can, therefore, be archived and
reloaded. System frames in data management can be read and written in the program using
the following variables:

System variables Significance
$P_SETFR System frame for PRESET and scratching (SetFrame)
$P_EXTFR System frame for zero offset external (ExtFrame)
$P_PARTFR System frame for TCARR and PAROT (PartFrame)
$P_TOOLFR System frame for TOROT and TOFRAME (ToolFrame)
$P_WPFR System frame for workpiece reference points (Work-Piece-Frame)
$P_CYCFR System frame for cycles (Cycle-Frame)
$P_TRAFRAME System frame for transformations (Transformation Frame)
$P_ISO1FR Frame for G51.1 mirroring (ISO)
$P_ISO2FR Frame for G68 2DROT (ISO)
$P_ISO3FR Frame for G68 3DROT (ISO)
$P_ISO4FR System frame for G51 scale (ISO)
$P_RELFR System frame for relative coordinate systems

All write operations to these frames must be executed using system functions. For cycle
programmers, it has been made possible to write the frames using the above variables.
Attempts to write to a non-configured system frame are rejected with the alarm "Channel %1
block %2 name %3 not defined or option not available".

System frames in the data management are either activated directly with the system function
(TOROT, PAROT, etc.), or with a G500, G54 to G599 instruction.

Active system frames
The active system frames are the frames, which are active in the main run. An appropriate
current system frame exists for each current system frame in the data management. Only
with the activation of the data management frame are the values taken into account with
regard to the preprocessing.

The following current system frames exist:

● $P_SETFRAME

In the part program, the variable $P_SETFRAME can be used to read and write the
current system frame for PRESET and scratching. The variable returns a zero frame if the
system frame is not configured through MD28082.

● $P_EXTFRAME

In the part program, the variable $P_EXTFRAME can be used to read and write the
current system frame for the zero offset external. The variable returns a zero frame if the
system frame is not configured through MD28082.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 721

● $P_PARTFRAME

In the part program, the variable $P_PARTFRAME can be used to read and write the
current system frame for TCARR and PAROT for toolholders with orientation capability. The
variable returns a zero frame if the system frame is not configured through MD28082.

● $P_TOOLFRAME

In the part program, the variable $P_TOOLFRAME can be used to read and write the
current system frame for TOROT and TOFRAME. The variable returns a zero frame if the
system frame is not configured through MD28082.

● $P_WPFRAME

In the part program, the variable $P_WPFRAME can be used to read and write the
current system frame for setting workpiece reference points. The variable returns a zero
frame if the system frame is not configured through MD28082.

● $P_CYCFRAME

In the part program, the variable $P_CYCFRAME can be used to read and write the
current system frame for cycles. The variable returns a zero frame if the system frame is
not configured through MD28082.

● $P_TRAFRAME

In the part program, the variable $P_TRAFRAME can be used to read and write the
current system frame for transformations. The variable returns a zero frame if the system
frame is not configured through MD28082.

● $P_ISO1FRAME, $P_ISO2FRAME, $P_ISO3FRAME, $P_ISO4FRAME

One can read and write the current system frames for special ISO language commands
in the parts program through the variables. The variable returns a zero frame if the
system frame is not configured through MD28082.

● $P_RELFRAME

In the part program, the variable $P_RELFRAME can be used to read and write the
current system frame for relative coordinate systems. The variable returns a zero frame if
the system frame is not configured through MD28082.

● $P_ACSFRAME

The currently resulting frame that is defined by the ENS-(ACS) coordinate system, can be
read and written through the $P_ACSFRAME variable.

 For MD24030 $MC_FRAME_ACS_SET = 0, the frame is calculated as follows:

 $P_ACSFRAME = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
 $P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
 $P_ACTBFRAME : $P_IFRAME :
 $P_TOOLFRAME : $P_WPFRAME

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
722 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 For MD24030 $MC_FRAME_ACS_SET = 1, the frame is calculated as follows:

 $P_ACSFRAME = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
 $P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
 $P_ACTBFRAME : $P_IFRAME :
 $P_TOOLFRAME : $P_WPFRAME : $P_TRAFRAME:
 $P_PFRAME : $P_ISO4FRAME

● $P_ACTFRAME

The resulting current complete frame $P_ACTFRAME is now a chain of all system
frames, basic frames, the current settable frame and the programmable frame. The
current frame is always updated whenever a frame component is changed.

The current complete frame is calculated according to the formula below:

 $P_ACTFRAME = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME :
 $P_ISO1FRAME : $P_ISO2FRAME : $P_ISO3FRAME :
 $P_ACTBFRAME : $P_IFRAME :
 $P_TOOLFRAME : $P_WPFRAME : $P_TRAFRAME:
 $P_PFRAME : $P_ISO4FRAME : $P_CYCFRAME

9.5.6 Implicit frame changes

9.5.6.1 Frames and switchover of geometry axes
In the channel, the geometry axis configuration can be changed by switching a
transformation on and off and with the GEOAX() command (R3).

Machine data
MD10602 $MN_FRAME_GEOAX_CHANGE_MODE
 can be used to configure, for all channels of the system, whether the current complete frame
is calculated again on the basis of the new geometry axes or whether the complete frame is
deleted.

Four modes can be set via machine data:

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 0

The current complete frame is deleted when geometry axes are switched over, when
transformations are selected and deselected, and on GEOAX().
The modified geometry axis configuration is not used until a new frame is activated.

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

The current complete frame is calculated again when the geometry axes are switched
over, and the translations, scalings and mirrorings of the new geometry axes are
effective. The rotations of the geometry axes which were programmed before the
switchover remain effective for the new geometry axes.
For TRANSMIT, TRACYL and TRAANG, see Section "Frame for selection and deselection of
transformations (Page 725)".

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 723

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 2

The current complete frame is calculated again when the geometry axes are switched
over, and the translations, scalings and mirrorings of the new geometry axes are
effective. If rotations are active in the current basic frames, the current settable frame or
the programmable frame before the switchover, it is aborted with the alarm "Frame:
Geometry axis switchover not allowed".
For TRANSMIT, TRACYL and TRAANG, see Section "Frame for selection and deselection of
transformations (Page 725)".

● MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 3

The current frame is deleted when selecting and deselecting transformations.
With GEOAX(), the current complete frame is calculated again and the translations,
scalings and mirrorings of the new geometry axes come into effect.
The rotations of the geometry axes which were programmed before the switchover
remain effective for the new geometry axes.

The workpiece geometry is described by a coordinate system that is formed by the geometry
axes. A channel axis is assigned to each geometry axis and a machine axis is assigned to
each channel axis. An axial frame exists for each machine axis and for each frame (system
frame, basic frame, settable frame, programmable frame). When a new machine axis is
assigned to a geometry axis, the axial frame components of the machine axis, such as
translations (coarse and fine), scaling and mirroring of the appropriate frame, are also
applied. The new geometry in the channel is then generated by the new contour frames
resulting from the new geometry axes (up to three in number).

The current valid frames are calculated again on the geometry axis switchover and a
resulting complete frame is generated. The data management frames are not included
unless they are activated.

Example:

The channel axis is to become a geometry axis x through geo axis substitution. The
substitution is to give the programmable frame a translation component of 10 in the x axis.
The current settable frame is to be retained.

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

Program code Comment

$P_UIFR[1] = CROT(x,10,y,20,z,30) ; Frame is retained after geo axis

substitution.

G54 ; Settable frame becomes active.

TRANS a10 ; Axial offset of a is also substituted.

GEOAX(1, a) ; a becomes x axis;

$P_ACTFRAME=CROT(x,10,

y,20,z,30):CTRANS(x10).

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
724 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Several channel axes can become geometry axes on a transformation change.

Example:

Channel axes 4, 5 and 6 become the geometry axes of a 5axis transformation. The
geometry axes are thus all substituted before the transformation. The current frames are
changed when the transformation is activated. The axial frame components of the channel
axes which become geometry axes are taken into account when calculating the new WCS.
Rotations programmed before the transformation are retained. The old WCS is restored
when the transformation is deactivated. The most common application will be that the
geometry axes do not change before and after the transformation and that the frames are to
stay as they were before the transformation.

Machine data:

$MN_FRAME_GEOAX_CHANGE_MODE = 1

$MC_AXCONF_CHANAX_NAME_TAB[0] = "CAX"
$MC_AXCONF_CHANAX_NAME_TAB[1] = "CAY"
$MC_AXCONF_CHANAX_NAME_TAB[2] = "CAZ"
$MC_AXCONF_CHANAX_NAME_TAB[3] = "A"
$MC_AXCONF_CHANAX_NAME_TAB[4] = "B"
$MC_AXCONF_CHANAX_NAME_TAB[5] = "C"

$MC_AXCONF_GEOAX_ASSIGN_TAB[0] = 1
$MC_AXCONF_GEOAX_ASSIGN_TAB[1] = 2
$MC_AXCONF_GEOAX_ASSIGN_TAB[2] = 3

$MC_AXCONF_GEOAX_NAME_TAB[0] = "X"
$MC_AXCONF_GEOAX_NAME_TAB[1]="Y"
$MC_AXCONF_GEOAX_NAME_TAB[2] = "Z"

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[0]=4
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[1]=5
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[2]=6

$MC_TRAFO_AXES_IN_1[0] = 4
$MC_TRAFO_AXES_IN_1[1] = 5
$MC_TRAFO_AXES_IN_1[2] = 6
$MC_TRAFO_AXES_IN_1[3] = 1
$MC_TRAFO_AXES_IN_1[4] = 2

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 725

Program:

Program code

$P_NCBFRAME[0] = ctrans(x,1,y,2,z,3,a,4,b,5,c,6)

$P_CHBFRAME[0] = ctrans(x,1,y,2,z,3,a,4,b,5,c,6)

$P_IFRAME = ctrans(x,1,y,2,z,3,a,4,b,5,c,6):crot(z,45)

$P_PFRAME = ctrans(x,1,y,2,z,3,a,4,b,5,c,6):crot(x,10,y,20,z,30)

Program code Comment

TRAORI ; Transformation sets GeoAx(4,5,6)

 ; $P_NCBFRAME[0] = ctrans(x,4,y,5,z,6,cax,1,cay,2,caz,3)

 ; $P_ACTBFRAME =ctrans(x,8,y,10,z,12,cax,2,cay,4,caz,6)

 ; $P_PFRAME =

ctrans(x,4,y,5,z,6,cax,1,cay,2,caz,3):crot(x,10,y,20,z,30)

 ; $P_IFRAME = ctrans(x,4,y,5,z,6,cax,1,cay,2,caz,3):crot(z,45)

TRAFOOF ; Deactivation of the transformation sets GeoAx(1,2,3)

 ; $P_NCBFRAME[0] = ctrans(x,1,y,2,z,3,a,4,b,5,c,6)

 ; $P_CHBFRAME[0] = ctrans(x,1,y,2,z,3,a,4,b,5,c,6)

 ; $P_IFRAME = ctrans(x,1,y,2,z,3,a,4,b,5,c,6):crot(z,45)

 ; $P_PFRAME =

ctrans(x,1,y,2,z,3,a,4,b,5,c,6):crot(x,10,y,20,z,30)

9.5.6.2 Frame for selection and deselection of transformations
This function is available with NCK 51.00.00 and higher. Transformations TRANSMIT,
TRACYL and TRAANG are supported.

As a rule, the assignment of geometry axes to channel axes changes when selecting and
deselecting transformations. It is not possible to uniquely assign axial frame components to
geometric contour frame components when carrying out transformations, in which rotary
axes become linear axes and vice versa. The contour frame must be conditioned using
special treatment for such non-linear transformations.

The mode, set with MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1 and 2, is
expanded in such a way as to take the above transformations into account.

When selecting transformations, the contour frame is connected to the axial frames. With
transformations TRANSMIT, TRACYL and TRAANG, the virtual geometry axis is subject to
special treatment.

 Note
Transformations with virtual axes

When selecting TRANSMIT or TRACYL, offsets, scaling and mirroring of the real Y axis are
not transferred and accepted in the virtual Y axis. Offsets, scaling and mirroring of the virtual
Y axis are deleted for TRAFOOF.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
726 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

TRANSMIT

Transmit expansions:

The machine data below can be used to take the axial complete frame of the TRANSMIT
rotary axis, i.e., the translation, fine offset, mirroring and scaling, into account in the
transformation:

MD24905 $MC_TRANSMIT_ROT_AX_FRAME_1 = 1

MD24955 $MC_TRANSMIT_ROT_AX_FRAME_2 = 1

A rotary axis offset can, for example, be entered by compensating the oblique position of a
workpiece in a frame within a frame chain. As a rule, this offset can also be included in the
transformation as an offset in the rotary axis. A c axis offset, as in the figure above, then
leads to corresponding x and y values.

MD24905 $MC_TRANSMIT_ROT_AX_FRAME_1 = 2

MD24955 $MC_TRANSMIT_ROT_AX_FRAME_2 = 2

With this setting, the axial offset of the rotary axis is taken account of in the transformation
up to the SZS. The axial offsets of the rotary axis included in the SZS frames are entered
into the transformation frame as rotation. This setting is only effective if the transformation
frame has been configured.

Frame expansions:

The expansions described below are only valid for the following machine data settings:

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 2

The selection of transformation TRANSMIT produces a virtual geometry axis, coupled by
way of the rotary axis, which is merely included in the contour frame but does not have a
reference to an axial frame. The geometric value results from the rotation of a rotary axis. All
other geometry axes accept their axial components when the transformation is selected.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 727

Translations:

When selecting TRANSMIT, translations of the virtual axis are deleted. Translations of the
rotary axis can be taken into account in the transformation.

Rotations:

Rotation before the transformation is taken over.

Mirroring:

Mirroring of the virtual axis is deleted. Mirroring of the rotary axis can be taken into account
in the transformation.

Scaling:

Scaling of the virtual axis is deleted. Scaling of the rotary axis can be taken into account in
the transformation.

Example:

Machine data for TRANSMIT

; FRAME configurations

$MC_MM_SYSTEM_FRAME_MASK='H41' ; TRAFRAME, SETFRAME

$MC_CHSFRAME_RESET_MASK='H41' ; Frames are active after Reset.

$MC_CHSFRAME_POWERON_MASK='H41' ; Frames are deleted for Power On.

$MN_FRAME_GEOAX_CHANGE_MODE=1 ; Frames are calculated after switchover

of the geo axis.

$MC_RESET_MODE_MASK='H4041' ; Basic frame is not deselected after

RESET.

;$MC_RESET_MODE_MASK='H41' ; Basic frame is deselected after RESET.

;$MC_GCODE_RESET_VALUES[7]=2 ; G54 is the default setting.

$MC_GCODE_RESET_VALUES[7]=1 ; G500 is the default setting.

$MN_MM_NUM_GLOBAL_USER_FRAMES=0

$MN_MM_NUM_GLOBAL_BASE_FRAMES=3

$MC_MM_NUM_USER_FRAMES=10 ; from 5 to 100

$MC_MM_NUM_BASE_FRAMES=3 ; from 0 to 8

$MN_NCBFRAME_RESET_MASK='HFF'

$MC_CHBFRAME_RESET_MASK='HFF'

$MN_MIRROR_REF_AX=0 ; No scaling when mirroring.

$MN_MIRROR_TOGGLE=0

$MN_MM_FRAME_FINE_TRANS=1 ; Fine offset

$MC_FRAME_ADD_COMPONENTS=TRUE ; G58, G59 is possible.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
728 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

; TRANSMIT is 1st transformer

$MC_TRAFO_TYPE_1=256

$MC_TRAFO_AXES_IN_1[0]=1

$MC_TRAFO_AXES_IN_1[1]=6

$MC_TRAFO_AXES_IN_1[2]=3

$MC_TRAFO_AXES_IN_1[3]=0

$MC_TRAFO_AXES_IN_1[4]=0

$MA_ROT_IS_MODULO[AX6]=TRUE;

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[0]=1

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[1]=6

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[2]=3

$MC_TRANSMIT_BASE_TOOL_1[0]=0.0

$MC_TRANSMIT_BASE_TOOL_1[1]=0.0

$MC_TRANSMIT_BASE_TOOL_1[2]=0.0

$MC_TRANSMIT_ROT_AX_OFFSET_1=0.0

$MC_TRANSMIT_ROT_SIGN_IS_PLUS_1=TRUE

$MC_TRANSMIT_ROT_AX_FRAME_1=1

; TRANSMIT is 2nd transformer

$MC_TRAFO_TYPE_2=256

$MC_TRAFO_AXES_IN_2[0]=1

$MC_TRAFO_AXES_IN_2[1]=6

$MC_TRAFO_AXES_IN_2[2]=2

$MC_TRAFO_AXES_IN_2[3]=0

$MC_TRAFO_AXES_IN_2[4]=0

$MC_TRAFO_GEOAX_ASSIGN_TAB_2[0]=1

$MC_TRAFO_GEOAX_ASSIGN_TAB_2[1]=6

$MC_TRAFO_GEOAX_ASSIGN_TAB_2[2]=2

$MC_TRANSMIT_BASE_TOOL_2[0]=4.0

$MC_TRANSMIT_BASE_TOOL_2[1]=0.0

$MC_TRANSMIT_BASE_TOOL_2[2]=0.0

$MC_TRANSMIT_ROT_AX_OFFSET_2=19.0

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 729

$MC_TRANSMIT_ROT_SIGN_IS_PLUS_2=TRUE

$MC_TRANSMIT_ROT_AX_FRAME_2=1

Part program:

; Frame settings

N820 $P_UIFR[1] = ctrans(x,1,y,2,z,3,c,4)

N830 $P_UIFR[1] = $P_UIFR[1] : crot(x,10,y,20,z,30)

N840 $P_UIFR[1] = $P_UIFR[1] : cmirror(x,c)

N850

N860 $P_CHBFR[0] = ctrans(x,10,y,20,z,30,c,15)

N870

; Tool selection, clamping compensation, plane selection

N890 T2 D1 G54 G17 G90 F5000 G64 SOFT

N900

; Approach start position

N920 G0 X20 Z10

N930

N940 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,C,15)

N950 setal(61000)

N960 endif

N970 if $P_BFRAME <> $P_CHBFR[0]

N980 setal(61000)

N990 endif

N1000 if $P_IFRAME <>

CTRANS(X,1,Y,2,Z,3,C,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1010 setal(61000)

N1020 endif

N1030 if $P_IFRAME <> $P_UIFR[1]

N1040 setal(61000)

N1050 endif

N1060 if $P_ACTFRAME <>

CTRANS(X,11,Y,22,Z,33,C,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1070 setal(61000)

N1080 endif

N1090

N1100 TRANSMIT(2)

N1110

N1120 if $P_BFRAME <> CTRANS(X,10,Y,0,Z,20,CAZ,30,C,15)

N1130 setal(61000)

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
730 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

N1140 endif

N1180 if $P_IFRAME <>

CTRANS(X,1,Y,0,Z,2,CAZ,3,C,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1190 setal(61000)

N1200 endif

N1240 if $P_ACTFRAME <>

CTRANS(X,11,Y,0,Z,22,CAZ,33,C,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1250 setal(61001)

N1260 endif

N1270

N1280

N1290 $P_UIFR[1,x,tr] = 11

N1300 $P_UIFR[1,y,tr] = 14

N1310

N1320 g54

N1330

; Set frame

N1350 ROT RPL=-45

N1360 ATRANS X-2 Y10

N1370

; Four-edge roughing

N1390 G1 X10 Y-10 G41 OFFN=1; allowance 1 mm

N1400 X-10

N1410 Y10

N1420 X10

N1430 Y-10

N1440

; Tool change

N1460 G0 Z20 G40 OFFN=0

N1470 T3 D1 X15 Y-15

N1480 Z10 G41

N1490

; Four-edge finishing

N1510 G1 X10 Y-10

N1520 X-10

N1530 Y10

N1540 X10

N1550 Y-10

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 731

N1560

; Deselect frame

 N2950 m30 N1580 Z20 G40

N1590 TRANS

N1600

N1610 if $P_BFRAME <> CTRANS(X,10,Y,0,Z,20,CAZ,30,C,15)

N1620 setal(61000)

N1630 endif

N1640 if $P_BFRAME <> $P_CHBFR[0]

N1650 setal(61000)

N1660 endif

N1670 if $P_IFRAME <>

TRANS(X,11,Y,0,Z,2,CAZ,3,C,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1680 setal(61000)

N1690 endif

N1730 if $P_ACTFRAME <>

TRANS(X,21,Y,0,Z,22,CAZ,33,C,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1740 setal(61001)

N1750 endif

N1760

N1770 TRAFOOF

N1780

N1790 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,C,15)

N1800 setal(61000)

N1810 endif

N1820 if $P_BFRAME <> $P_CHBFR[0]

N1830 setal(61000)

N1840 endif

N1850 if $P_IFRAME <>

TRANS(X,11,Y,2,Z,3,C,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1860 setal(61000)

N1870 endif

N1880 if $P_IFRAME <> $P_UIFR[1]

N1890 setal(61000)

N1900 endif

N1910 if $P_ACTFRAME <>

TRANS(X,21,Y,22,Z,33,C,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1920 setal(61002)

N1930 endif

N1940

N2010 $P_UIFR[1] = ctrans()

N2011 $P_CHBFR[0] = ctrans()

N2020 $P_UIFR[1] = ctrans(x,1,y,2,z,3,c,0)

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
732 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

N2021 G54

N2021 G0 X20 Y0 Z10 C0

N2030 TRANSMIT(1)

N2040 TRANS x10 y20 z30

N2041 ATRANS y200

N2050 G0 X20 Y0 Z10

N2051 if $P_IFRAME <> CTRANS(X,1,Y,0,Z,3,CAY,2)

N2052 setal(61000)

N2053 endif

N2054 if $P_ACTFRAME <> CTRANS(X,11,Y,20,Z,33,CAY,2):CFINE(Y,200)

N2055 setal(61002)

N2056 endif

N2060 TRAFOOF

N2061 if $P_IFRAME <> $P_UIFR[1]

N2062 setal(61000)

N2063 endif

N2064 if $P_ACTFRAME <> CTRANS(X,11,Y,2,Z,33):CFINE(Y,0)

N2065 setal(61002)

N2066 endif

TRACYL

TRACYL expansions:

The machine data below can be used to take the axial complete frame of the TRACYL rotary
axis, i.e., the translation, fine offset, mirroring and scaling, into account in the transformation:

MD24805 $MC_TRACYL_ROT_AX_FRAME_1 = 1

MD24855 $MC_TRACYL_ROT_AX_FRAME_2 = 1

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 733

A rotary axis offset can, for example, be entered by compensating the oblique position of a
workpiece in a frame within a frame chain. As a rule, this offset can also be included in the
transformation as an offset in the rotary axis or as a y offset. A c axis offset, as in the figure
above, then leads to corresponding x and y values.

MD24805 $MC_TRACYL_ROT_AX_FRAME_1 = 2

MD24855 $MC_TRACYL_ROT_AX_FRAME_2 = 2

With this setting, the axial offset of the rotary axis is taken account of in the transformation
up to the SZS. The axial offsets of the rotary axis included in the SZS frames are entered
into the transformation frame as offsets on the peripheral surface. This setting is only
effective if the transformation frame has been configured.

Frame expansions:

The expansions described below are only valid for the following machine data settings:

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 2

The selection of transformation TRACYL produces a virtual geometry axis on the peripheral
surface, coupled via the rotary axis, which is only taken into account in the contour frame but
does not have a reference to an axial frame. All components of the virtual geometry axis are
deleted. All other geometry axes accept their axial components when the transformation is
selected.

Translations:

When selecting TRACYL, translations of the virtual axis are deleted. Translations of the
rotary axis can be taken into account in the transformation.

Rotations:

Rotation before the transformation is taken over.

Mirroring:

Mirroring of the virtual axis is deleted. Mirroring of the rotary axis can be taken into account
in the transformation.

Scaling:

Scaling of the virtual axis is deleted. Scaling of the rotary axis can be taken into account in
the transformation.

Example:

Machine data for TRACYL:

; FRAME configurations

$MC_MM_SYSTEM_FRAME_MASK = 'H41' ; TRAFRAME, SETFRAME

$MC_CHSFRAME_RESET_MASK = 'H41' ; Frames are active after Reset.

$MC_CHSFRAME_POWERON_MASK = 'H41' ; Frames are deleted for Power On.

$MN_FRAME_GEOAX_CHANGE_MODE = 1 ; Frames are calculated after switchover

of the geo axis.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
734 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

$MC_RESET_MODE_MASK = 'H4041' ; Basic frame is not deselected after

Reset.

;$MC_RESET_MODE_MASK = 'H41' ; Basic frame is deselected after Reset.

;$MC_GCODE_RESET_VALUES[7] = 2 ; G54 is the default setting.

$MC_GCODE_RESET_VALUES[7] = 1 ; G500 is the default setting.

$MN_MM_NUM_GLOBAL_USER_FRAMES = 0

$MN_MM_NUM_GLOBAL_BASE_FRAMES = 3

$MC_MM_NUM_USER_FRAMES = 10 ; from 5 to 100

$MC_MM_NUM_BASE_FRAMES = 3 ; from 0 to 8

$MN_NCBFRAME_RESET_MASK = 'HFF'

$MC_CHBFRAME_RESET_MASK = 'HFF'

$MN_MIRROR_REF_AX = 0 ; No scaling when mirroring.

$MN_MIRROR_TOGGLE = 0

$MN_MM_FRAME_FINE_TRANS = 1 ; Fine offset

$MC_FRAME_ADD_COMPONENTS = TRUE ; G58, G59 is possible

; TRACYL with groove side offset is 3rd transformer

$MC_TRAFO_TYPE_3 = 513; TRACYL

$MC_TRAFO_AXES_IN_3[0] = 1

$MC_TRAFO_AXES_IN_3[1] = 5

$MC_TRAFO_AXES_IN_3[2] = 3

$MC_TRAFO_AXES_IN_3[3] = 2

$MC_TRAFO_GEOAX_ASSIGN_TAB_3[0] = 1

$MC_TRAFO_GEOAX_ASSIGN_TAB_3[1] = 5

$MC_TRAFO_GEOAX_ASSIGN_TAB_3[2] = 3

$MC_TRACYL_BASE_TOOL_1[0] = 0.0

$MC_TRACYL_BASE_TOOL_1[1] = 0.0

$MC_TRACYL_BASE_TOOL_1[2] = 0.0

$MC_TRACYL_ROT_AX_OFFSET_1 = 0.0

$MC_TRACYL_ROT_SIGN_IS_PLUS_1 = TRUE

$MC_TRACYL_ROT_AX_FRAME_1 = 1

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 735

Part program:

;Simple traversing test with groove side offset

N450 G603

N460

; Frame settings

N500 $P_UIFR[1] = ctrans(x,1,y,2,z,3,b,4)

N510 $P_UIFR[1] = $P_UIFR[1] : crot(x,10,y,20,z,30)

N520 $P_UIFR[1] = $P_UIFR[1] : cmirror(x,b)

N530

N540 $P_CHBFR[0] = ctrans(x,10,y,20,z,30,b,15)

N550

N560 G54

N570

; Continuous-path mode with selected smoothing

N590 G0 x0 y0 z-10 b0 G90 F50000 T1 D1 G19 G641 ADIS=1 ADISPOS=5

N600

N610 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,B,15)

N620 setal(61000)

N630 endif

N640 if $P_BFRAME <> $P_CHBFR[0]

N650 setal(61000)

N660 endif

N670 if $P_IFRAME <>

TRANS(X,1,Y,2,Z,3,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N680 setal(61000)

N690 endif

N700 if $P_IFRAME <> $P_UIFR[1]

N710 setal(61000)

N720 endif

N730 if $P_ACTFRAME <>

TRANS(X,11,Y,22,Z,33,B,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N740 setal(61000)

N750 endif

N760

; Transformation ON

N780 TRACYL(40.)

N790

N800 if $P_BFRAME <> CTRANS(X,10,Y,0,Z,30,CAY,20,B,15)

N810 setal(61000)

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
736 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

N820 endif

N830 if $P_CHBFR[0] <> CTRANS(X,10,Y,0,Z,30,CAY,20,B,15)

N840 setal(61000)

N850 endif

N860 if $P_IFRAME <>

TRANS(X,1,Y,0,Z,3,CAY,2,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N870 setal(61000)

N880 endif

N890 if $P_UIFR[1] <>

TRANS(X,1,Y,0,Z,3,CAY,2,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N900 setal(61000)

N910 endif

N920 if $P_ACTFRAME <>

TRANS(X,11,Y,0,Z,33,CAY,22,B,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N930 setal(61001)

N940 endif

N950

N960 $P_UIFR[1,x,tr] = 11

N970 $P_UIFR[1,y,tr] = 14

N980

N990 g54

N1000

N1010 if $P_BFRAME <> CTRANS(X,10,Y,0,Z,30,CAY,20,B,15)

N1020 setal(61000)

N1030 endif

N1040 if $P_BFRAME <> $P_CHBFR[0]

N1050 setal(61000)

N1060 endif

N1070 if $P_IFRAME <>

TRANS(X,11,Y,0,Z,3,CAY,2,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N1080 setal(61000)

N1090 endif

N1100 if $P_IFRAME <> $P_UIFR[1]

N1110 setal(61000)

N1120 endif

N1130 if $P_ACTFRAME <>

TRANS(X,21,Y,0,Z,33,CAY,22,B,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N1140 setal(61001)

N1150 endif

N1160

; Transformation off

N1180 TRAFOOF

N1190

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 737

N1200 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,B,15)

N1210 setal(61000)

N1220 endif

N1230 if $P_BFRAME <> $P_CHBFR[0]

N1240 setal(61000)

N1250 endif

N1260 if $P_IFRAME <>

TRANS(X,11,Y,2,Z,3,B,4):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N1270 setal(61000)

N1280 endif

N1290 if $P_IFRAME <> $P_UIFR[1]

N1300 setal(61000)

N1310 endif

N1320 if $P_ACTFRAME <>

TRANS(X,21,Y,22,Z,33,B,19):CROT(X,10,Y,20,Z,30):CMIRROR(X,B)

N1330 setal(61002)

N1340 endif

N1350

N1360 G00 x0 y0 z0 G90

N1370

N1380 m30

TRAANG

Frame expansions:

The expansions described below are only valid for the following machine data settings:

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 1

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
738 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MD10602 $MN_FRAME_GEOAX_CHANGE_MODE = 2

Translations:

When selecting TRAANG, translations of the virtual axis are deleted.

Rotations:

Rotation before the transformation is taken over.

Mirroring:

Mirrorings of the virtual axis are taken over.

Scaling:

Scalings of the virtual axis are taken over.

Example:

Machine data for TRAANG:

; FRAME configurations

$MC_MM_SYSTEM_FRAME_MASK = 'H1' ; SETFRAME

$MC_CHSFRAME_RESET_MASK = 'H41' ; Frames are active after RESET.

$MC_CHSFRAME_POWERON_MASK = 'H41' ; Frames are deleted for "Power On".

$MN_FRAME_GEOAX_CHANGE_MODE = 1 ; Frames are calculated after switchover

of the geo axis.

$MC_RESET_MODE_MASK = 'H4041' ; Basic frame is not deselected after

RESET.

;$MC_RESET_MODE_MASK = 'H41' ; Basic frame is deselected after RESET.

;$MC_GCODE_RESET_VALUES[7] = 2 ; G54 is the default setting.

$MC_GCODE_RESET_VALUES[7] = 1 ; G500 is the default setting.

$MN_MM_NUM_GLOBAL_USER_FRAMES = 0

$MN_MM_NUM_GLOBAL_BASE_FRAMES = 3

$MC_MM_NUM_USER_FRAMES = 10 ; from 5 to 100

$MC_MM_NUM_BASE_FRAMES = 3 ; from 0 to 8

$MN_NCBFRAME_RESET_MASK = 'HFF'

$MC_CHBFRAME_RESET_MASK = 'HFF'

$MN_MIRROR_REF_AX = 0 ; No scaling when mirroring.

$MN_MIRROR_TOGGLE = 0

$MN_MM_FRAME_FINE_TRANS = 1 ; Fine offset

$MC_FRAME_ADD_COMPONENTS = TRUE ; G58, G59 is possible.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 739

; TRAANG is 1st transformer

$MC_TRAFO_TYPE_1 = 1024

$MC_TRAFO_AXES_IN_1[0] = 4 ; Inclined axis

$MC_TRAFO_AXES_IN_1[1] = 3 ; Axis is parallel to z

$MC_TRAFO_AXES_IN_1[2] = 2

$MC_TRAFO_AXES_IN_1[3] = 0

$MC_TRAFO_AXES_IN_1[4] = 0

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[0]=4

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[1]=2

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[2] = 3

$MC_TRAANG_ANGLE_1 = 85.

$MC_TRAANG_PARALLEL_VELO_RES_1 = 0.

$MC_TRAANG_PARALLEL_ACCEL_RES_1 = 0.

$MC_TRAANG_BASE_TOOL_1[0] = 0.0

$MC_TRAANG_BASE_TOOL_1[1] = 0.0

$MC_TRAANG_BASE_TOOL_1[2] = 0.0

; TRAANG is 2nd transformer

$MC_TRAFO_TYPE_2 = 1024

$MC_TRAFO_AXES_IN_2[0] = 4

$MC_TRAFO_AXES_IN_2[1] = 3

$MC_TRAFO_AXES_IN_2[2] = 0

$MC_TRAFO_AXES_IN_2[3] = 0

$MC_TRAFO_AXES_IN_2[4] = 0

$MC_TRAFO_GEOAX_ASSIGN_TAB_2[0] = 4

$MC_TRAFO_GEOAX_ASSIGN_TAB_2[1] = 0

$MC_TRAFO_GEOAX_ASSIGN_TAB_2[2] = 3

$MC_TRAANG_ANGLE_2 = -85.

$MC_TRAANG_PARALLEL_VELO_RES_2 = 0.2

$MC_TRAANG_PARALLEL_ACCEL_RES_2 = 0.2

$MC_TRAANG_BASE_TOOL_2[0] = 0.0

$MC_TRAANG_BASE_TOOL_2[1] = 0.0

$MC_TRAANG_BASE_TOOL_2[2] = 0.0

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
740 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Part program:

; Frame settings

N820 $P_UIFR[1] = ctrans(x,1,y,2,z,3,b,4,c,5)

N830 $P_UIFR[1] = $P_UIFR[1] : crot(x,10,y,20,z,30)

N840 $P_UIFR[1] = $P_UIFR[1] : cmirror(x,c)

N850

N860 $P_CHBFR[0] = ctrans(x,10,y,20,z,30,b,40,c,15)

N870

; Tool selection, clamping compensation, plane selection

N890 T2 D1 G54 G17 G90 F5000 G64 SOFT

N900

; Approach start position

N920 G0 X20 Z10

N930

N940 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,B,40,C,15)

N950 setal(61000)

N960 endif

N970 if $P_BFRAME <> $P_CHBFR[0]

N980 setal(61000)

N990 endif

N1000 if $P_IFRAME <>

TRANS(X,1,Y,2,Z,3,B,4,C,5):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1010 setal(61000)

N1020 endif

N1030 if $P_IFRAME <> $P_UIFR[1]

N1040 setal(61000)

N1050 endif

N1060 if $P_ACTFRAME <>

TRANS(X,11,Y,22,Z,33,B,44,C,20):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1070 setal(61000)

N1080 endif

N1090

N1100 TRAANG(,1)

N1110

N1120 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,CAX,10,B,40,C,15)

N1130 setal(61000)

N1140 endif

N1150 if $P_BFRAME <> $P_CHBFR[0]

N1160 setal(61000)

N1170 endif

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 741

N1180 if $P_IFRAME <>

CTRANS(X,1,Y,2,Z,3,CAX,1,B,4,C,5):CROT(X,10,Y,20,Z,30):CMIRROR(X,CAX,C)

N1190 setal(61000)

N1200 endif

N1210 if $P_IFRAME <> $P_UIFR[1]

N1220 setal(61000)

N1230 endif

N1240 if $P_ACTFRAME <>

TRANS(X,11,Y,22,Z,33,CAX,11,B,44,C,20):CROT(X,10,Y,20,Z,30):CMIRROR(X,CAX,C)

N1250 setal(61001)

N1260 endif

N1270

N1280

N1290 $P_UIFR[1,x,tr] = 11

N1300 $P_UIFR[1,y,tr] = 14

N1310

N1320 g54

N1330

; Set frame

N1350 ROT RPL=-45

N1360 ATRANS X-2 Y10

N1370

; Four-edge roughing

N1390 G1 X10 Y-10 G41 OFFN=1; allowance 1 mm

N1400 X-10

N1410 Y10

N1420 X10

N1430 Y-10

N1440

; Tool change

N1460 G0 Z20 G40 OFFN=0

N1470 T3 D1 X15 Y-15

N1480 Z10 G41

N1490

; Four-edge finishing

N1510 G1 X10 Y-10

N1520 X-10

N1530 Y10

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
742 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

N1540 X10

N1550 Y-10

N1560

; Deselect frame

N1580 Z20 G40

N1590 TRANS

N1600

N1610 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,CAX,10,B,40,C,15)

N1620 setal(61000)

N1630 endif

N1640 if $P_BFRAME <> $P_CHBFR[0]

N1650 setal(61000)

N1660 endif

N1670 if $P_IFRAME <>

TRANS(X,11,Y,14,Z,3,CAX,1,B,4,C,5):CROT(X,10,Y,20,Z,30):CMIRROR(X,CAX,C)

N1680 setal(61000)

N1690 endif

N1700 if $P_IFRAME <> $P_UIFR[1]

N1710 setal(61000)

N1720 endif

N1730 if $P_ACTFRAME <>

TRANS(X,21,Y,34,Z,33,CAX,11,B,44,C,20):CROT(X,10,Y,20,Z,30):CMIRROR(X,CAX,C)

N1740 setal(61001)

N1750 endif

N1760

N1770 TRAFOOF

N1780

N1790 if $P_BFRAME <> CTRANS(X,10,Y,20,Z,30,B,40,C,15)

N1800 setal(61000)

N1810 endif

N1820 if $P_BFRAME <> $P_CHBFR[0]

N1830 setal(61000)

N1840 endif

N1850 if $P_IFRAME <>

TRANS(X,1,Y,14,Z,3,B,4,C,5):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1860 setal(61000)

N1870 endif

N1880 if $P_IFRAME <> $P_UIFR[1]

N1890 setal(61000)

N1900 endif

N1910 if $P_ACTFRAME <>

TRANS(X,11,Y,34,Z,33,B,44,C,20):CROT(X,10,Y,20,Z,30):CMIRROR(X,C)

N1920 setal(61002)

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 743

N1930 endif

N1940

N1950 m30

9.5.6.3 Adapting active frames
The geometry axis configuration can change during program execution or on RESET. The
number of available geometry axes can vary from zero to three. With unavailable geometry
axes, components in the active frames (e.g., rotations) can lead to the active frames for this
axis configuration becoming invalid. This is indicated by the alarms below:

Channel %1 block %2 rotation programmed for non-existent geometry axis

This alarm remains present until the frames have been changed accordingly.

The machine data below can be used to switch on the automatic adaptation of active frames,
thus preventing alarm 16440:

MD24040 $MC_FRAME_ADAPT_MODE

Bitmask for adapting the active frames with reference to the axis constellation.

The following settings apply:

Bit 0: Rotations in active frames, which rotate coordinate axes with no geometry axes,

are deleted from the active frames.
Bit 1: Shear angles in the active frames are orthogonalized.
Bit 2: Scalings of all geometry axes in the active frames are set to value 1.

With machine data setting
MD24040 $MC_FRAME_ADAPT_MODE = 1
, all rotations in the active frames, which could produce coordinate axis movements for non-
existent geometry axes, are deleted.
The data management frames are not changed. Only the possible rotations are applied
when the data management frames are activated.

Example:

No y axis exists:

MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[0] = 1

MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[1] = 0

MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[2] = 3

$P_UIFR[1] = crot(x,45,y,45,z,45)

N390 G54 G0 X10 z10 f10000

if $P_IFRAME <> crot(y,45) ; Only the rotation about y is taken

over.

setal(61000)

endif

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
744 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.6.4 Mapped Frames

Overview
The "mapped frames" function supports the cross-channel consistent change of axial frames
inside channel-specific or global data management frames. Using axial machine data, it is
defined between which axes mapping is realized.

If frame mapping is, e.g. active for machine axes AX1 and AX4, and the axial frame of axis
AX1 is changed in a channel-specific data management frame (e.g. basic frame
$P_CHBFR[x]) (translation, fine translation, scaling, mirroring), then this frame data for AX1
and AX4 is transferred to all channel-specific data management frames (e.g. basic frame
$P_CHBFR[x]) in all channels in which they are parameterized as channel axes.

Frame mapping is not realized when changing the axial frame data for the rotation.

Preconditions
The following requirements must be fulfilled for frame mapping:

● The data management frames used for mapping must be configured:
MD28083 $MC_MM_SYSTEM_DATAFRAME_MASK (system frames)

● Channel-specific data management frames must be explicitly enabled for mapping:
MD10616 $MN_MAPPED_FRAME_MASK (enable frame mapping)

Note
For global data management frames, mapping is always carried out. An enable is not
required.

Parameterization
The parameterization of the mapping relationships is realized in the axis-specific machine
data:

MD32075 $MA_MAPPED_FRAME[<AXn>] = "AXm"

AXn, AXm: Machine axis name with n, m = 1, 2, ... max. number of machine axes

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 745

Mapping rules
The following rules apply for frame mapping:

● The mapping is bidirectional.
An axial frame can be written for AXn or AXm. The frame data is always accepted and
taken for the other axis.

● All parameterized mapping relationships are always evaluated.
When writing an axial frame of axes AXn, all mapping relationships are evaluated and the
frame data accepted for all directly and indirectly involved axes.

● The mapping is global across all channels.
When writing an axial frame of axis AXn or AXm for a channel-specific frame, the frame
data is accepted for all channels in which AXn or AXm are parameterized as channel
axes.

● When writing an axial frame using geometry or special axis name, the mapping
relationships are evaluated via the machine axes currently assigned to the geometry or
special axis.

● Mapping is frame-specific.
When writing an axial frame, the frame data is only mapped within the same channel-
specific or global data management frame.

 Note
Data consistency

The user / machine manufacturer is solely responsible for ensuring that after a frame is
written, consistent frame data is available in all channels, e.g. by using channel
synchronization.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
746 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Description Parameterization: $MA_
① Simple mapping relationship:

AX1(K1) ↔ AX4(K2)
MAPPED_FRAME[<AX1>] = "AX4"

② Chained mapping relationships:
AX1(K1) ↔ AX4(K2) ↔ AX7(K3)

MAPPED_FRAME[<AX1>] = "AX4"
MAPPED_FRAME[<AX4>] = "AX7"

③ Mapping relationship to itself, with AX1 as
channel axis of channels 1, 2 and 3:
AX1(K1+K2+K3)

MAPPED_FRAME[<AX1>] = "AX1"

④ Mapping relationship between two axes, the
channel axes in two channels are:
AX1(K1+K2) ↔ AX4(K3+K4)

MAPPED_FRAME[<AX1>] = "AX4"

⑤ Chained mapping relationships where multiple
channel axes can be written in the same
channel:
AX4(K1) ↔ AX7(K2) ↔ AX8(K2) ↔ AX5(K1)

MAPPED_FRAME[<AX4>] = "AX7"
MAPPED_FRAME[<AX7>] = "AX8"
MAPPED_FRAME[<AX8>] = "AX5"

Figure 9-23 Mapping examples

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 747

Activating the data management frame
Data management frames can be written in the part program and via the user interface of
SINUMERIK Operate. The following should be noted when activating the data management
frames in the channels written directly and via frame mapping:

● Writing in the part program
The data management frames must be explicitly activated in each channel (G500, G54 ...
G599)

● Writing via user interface
Data management frames are written via the user interface, e.g. by entering new zero
offsets. A modified data management frame is immediately active in all of the involved
channels if none of these channels is in the "Channel active" state. The data
management frame is not active in any channel if one of the channels involved is in the
"Channel active" state. The activation must then be explicitly programmed in each
channel in the part program (G500, G54 ... G599). Or, the next time that the channel state
changes, it becomes active after "Channel reset".

Example
The following channels and channel axes are parameterized at a control:

● Channel 1

– Z: Geometry axis

– AX1: Machine axis of geometry axis Z

● Channel 2

– Z: Geometry axis

– AX4: Machine axis of geometry axis Z

The zero point of the Z axis should always be the same in both channels:

● Mapping relationship: $MA_MAPPED_FRAME[AX1] = "AX4"

Programming in the part program

Channel 1 Channel 2
... ...

N100 WAIT (10,1,2) N200 WAIT (10,1,2)

N110 $P_UIFR[1] = CTRANS(Z, 10)
N120 WAIT (20,1,2) N220 WAIT (20,1,2)

N130 G54 N230 G54

N140 IF ($P_IFRAME[0, Z, TR] <> 10) N230 IF ($P_IFRAME[0, Z, TR] <> 10)

N150 SETAL(61000) N250 SETAL(61000)

N160 ENDIF N260 ENDIF

... ...

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
748 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Description:
N100 / N200 Channel synchronization for consistent writing and mapping of frame data
N110 Writing of the settable data management frame $P_UIFR[1]:

Moving the zero point of the Z axis to 10 mm
Mapping the axial frame data:
Channel 1: Z ≙ AX1 ⇔ channel 2: Z ≙ AX4

N120 / N220 Channel synchronization for consistent activation of new frame data
N130 / N230 Activating the new frame data
N140 / N240 Checking the zero point of the Z axis for: 10 mm

9.5.7 Predefined frame functions

9.5.7.1 Inverse frame
To round off the frame arithmetic, the part program provides a function which calculates the
inverse frame from another frame. The chaining between a frame and its inverse frame
always produces a zero frame.

FRAME INVFRAME(FRAME)

Frame inversion is an aid for coordinate transformations. Measuring frames are usually
calculated in the WCS. If you should wish to transform this calculated frame into another
coordinate system, i.e., the calculated frame should be entered into any desired frame within
the frame chain, the calculations below should be used.

The new complete frame is a chain of the old complete frame and the calculated frame.

$P_ACTFRAME = $P_ACTFRAME : $AC_MEAS_FRAME

The new frame in the frame chain is therefore:

Target frame is $P_SETFRAME:
$P_SETFRAME = $P_ACTFRAME : $AC_MEAS_FRAME : INVFRAME($P_ACTFRAME) :
$P_SETFRAME

Target frame is nth channel basic frame $P_CHBFRAME[n]:

n = 0: TMP = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME : $P_NCBFRAME[0..k]
n <> 0: TMP = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME : $P_NCBFRAME[0..k]
: $P_CHBFRAME[0..n-1]
k = $MN_MM_NUM_GLOBAL_BASE_FRAMES
$P_CHBFRAME[n] = INVFRAME(TMP) : $P_ACTFRAME : $AC_MEAS_FRAME :
INVFRAME($P_ACTFRAME) : TMP : $P_CHBFRAME[n]

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 749

Target frame is $P_IFRAME:

TMP = $P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME : $P_BFRAME
$P_IFRAME = INVFRAME(TMP) : $P_ACTFRAME : $AC_MEAS_FRAME :
INVFRAME($P_ACTFRAME) : TMP : $P_IFRAME

Application example:

A frame calculated, for example, via a measuring function, must be entered in the current
SETFRAME such that the new complete frame is a chain of the old complete frame and the
measurement frame. The SETFRAME is calculated accordingly by means of frame inversions.

DEF INT RETVAL
DEF FRAME TMP

$TC_DP1[1,1]=120 ; Type
$TC_DP2[1,1]=20.;0
$TC_DP3[1,1]= 10. ; (z) length compensation vector
$TC_DP4[1,1]= 0. ; (y)
$TC_DP5[1,1]= 0. ; (x)
$TC_DP6[1,1]= 2. ; Radius

T1 D1

g0 x0 y0 z0 f10000

G54

$P_CHBFRAME[0] = crot(z,45)

$P_IFRAME[x,tr] = -sin(45)
$P_IFRAME[y,tr] = -sin(45)

$P_PFRAME[z,rt] = -45

; Measure corner with four measuring points
$AC_MEAS_VALID = 0

; Approach measuring point 1
g1 x-1 y-3

; Store measuring point 1
$AC_MEAS_LATCH[0] = 1

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
750 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

; Approach measuring point 2
g1 x5 y-3

; Store measuring point 2
$AC_MEAS_LATCH[1] = 1

; Approach measuring point 3
g1 x-4 y4

; Store measuring point 3
$AC_MEAS_LATCH[2] = 1

; Approach measuring point 4
g1 x-4 y1

; Store measuring point 4
$AC_MEAS_LATCH[3] = 1

; Set position setpoint of the corner
$AA_MEAS_SETPOINT[x] = 0
$AA_MEAS_SETPOINT[y] = 0
$AA_MEAS_SETPOINT[z] = 0

; Define setpoint angle of intersection
$AC_MEAS_CORNER_SETANGLE = 90
$AC_MEAS_WP_SETANGLE = 30

; Measuring plane is G17
$AC_MEAS_ACT_PLANE = 0

;Select tool
$AC_MEAS_T_NUMBER = 1
$AC_MEAS_D_NUMBER = 1

; Set measuring type on corner 1
$AC_MEAS_TYPE = 4

; Start measuring process
RETVAL = MEASURE()

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 751

if RETVAL <> 0
setal(61000 + RETVAL)
endif

if $AC_MEAS_WP_ANGLE <> 30
setal(61000 + $AC_MEAS_WP_ANGLE)
endif

if $AC_MEAS_CORNER_ANGLE <> 90
setal(61000 + $AC_MEAS_CORNER_ANGLE)
endif

; Transform measured frame and write in accordance with $P_SETFRAME in such a way
; that a complete frame is produced, as a result of the old complete frame
; being chained with the measuring frame.

$P_SETFRAME = $P_ACTFRAME : $AC_MEAS_FRAME : INVFRAME($P_ACTFRAME) :
$P_SETFRAME

; Describe system frames in data management
$P_SETFR = $P_SETFRAME

; Approach the corner
g1 x0 y0

; Retract the rectangle rotated about 30 degrees
g1 x10
y10
x0
y0

m30

9.5.7.2 Additive frame in frame chain
Measurements on the workpiece or calculations in the part program and cycles generally
produce a frame that is applied additively to the current complete frame. The WCS and thus
the programming zero must, therefore, be displaced and possibly rotated. This measured
frame is available as a temporary frame and not yet actively included in the frame chain. This
function is used to calculate and possible activate this frame:

INT ADDFRAME(FRAME,STRING)

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
752 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programming

Parameter 1: Type: FRAME Additively measured or calculated frame

Strings for current frames:
"$P_CYCFRAME", "$P_ISO4FRAME",
"$P_PFRAME", "$P_WPFRAME",
"$P_TOOLFRAME", "$P_IFRAME",
"$P_CHBFRAME[0..16]", "$P_NCBFRAME[0..16]",
"$P_ISO1FRAME", "$P_ISO2FRAME",
"$P_ISO3FRAME",
"$P_EXTFRAME", "$P_SETFRAME"
"$P_PARTFRAME"

Strings for data management frames:
"$P_CYCFR", "$P_ISO4FR, "$P_TRAFR",
"$P_WPFR",
"$P_TOOLFR", "$P_UIFR[0..99]",
"$P_CHBFR[0..16]", "$P_NCBFR[0..16]",
"$P_ISO1FR, "$P_ISO2FR, "$P_ISO3FR,

Parameter 2: Type: STRING

"$P_EXTFR", "$P_SETFR", "$P_PARTFR"

Value: Significance:
0 OK
1 Specified target (string) is wrong
2 Target frame is not configured

Function value: Type: INT

3 Rotation in frame is not permitted

The ADDFRAME() function calculates the target frame, which is specified by the STRING. The
target frame is calculated in such a way that the new complete frame appears as a chain of
the old complete frame and the transferred frame, e.g.:

ERG = ADDFRAME(TMPFRAME,"$P_SETFRAME")

The new complete frame is calculated to be:

$P_ACTFRAMEnew = $P_ACTFRAMEold : TMPFRAME

If a current frame has been specified as a target frame, then the new complete frame
becomes active at the preprocessing stage. If the target frame is a data management frame,
then the frame is not operative until it is explicitly activated in the part program.

The function does not set any alarms, but returns the error codes via the return value. The
cycle can react according to the error codes.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 753

9.5.8 Functions

9.5.8.1 Setting zeros, workpiece measuring and tool measuring
PRESET is achieved using HMI operator actions or measuring cycles. The calculated frame
can be written to system frame SETFRAME. The position setpoint of an axis in the WCS can be
altered when the actual-value memory is preset.

"Scratching" means workpiece and tool measuring. The position of the workpiece in relation
to an edge, a corner or a hole can be measured. To determine the zero position of the
workpiece or the hole, position setpoints can be added to the measured positions in the
WCS. The resultant offsets can be entered in a selected frame. In tool measuring, the length
or radius of a tool can be measured using a measured reference part.

Measurements can be taken via operator actions or measuring cycles. Communication with
the NCK takes place via predefined system variables. In the NCK, the calculation is made by
using a HMI operator action to activate a PI service, or by using a part-program command
from the measuring cycles. A tool and a plane can be selected as a basis for the calculation.
The calculated frame is entered in the result frame.

9.5.8.2 Zero offset external via system frames

Zero offset via PLC or part program
The amount of the external zero offset can be specified through HMI and PLC via BTSS or
programmed in the part program via the axis-specific system variable $AA_ETRANS
[<Axis>] = <Value>.

Activation
The activation of the external zero offset takes place through the interface signal:
DB31, ... DBX3.0 (accept external zero offset)

Behavior
After the activation the respective specified axis-specific amount of the external zero offset is
traversed outside for each axis with the next possible traversing block.

Next possible means that enough dynamic reserves must be available for the respective axis
for traversing the zero offset. If the axis is traversed in the next traversing block after
activation owing to its programming with the maximum speed, dynamic reserve is no longer
available for traversing the external zero offset.

Together with the continuous path mode G64 the traversing of the offset can stretch over
several part program blocks.

Zero offset via system frame
The external zero offset can then also be managed and activated by the functionality
described above via the system frame $P_EXTFRAME .

configuring
The configuring of the external zero offset is done via the system frame $P_EXTFRAME via
bit1 = 1 in the machine data: MD28082 $MC_MM_SYSTEM_FRAME_MASK = 'B0010'
The amount for the external zero offset can be specified manually via the HMI user interface
and the PLC user program via BTSS or programmed in the part program via the axial system
variable $AA_ETRANS[<Axis>].

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
754 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Activation
The activation of the external zero offset takes place through the interface signal:
DB31, ... DBX3.0 (accept external zero offset)

Behavior
Upon activation of the external zero offset the traversing movements of all axes, except
command and PLC axes, are stopped immediately and the advance is reorganized. The
rough offset of the current system frame and of the system frame in data management is set
to the value of the axial system variable $AA_ETRANS[<axis>]. Thereafter, the offset is
traversed first and then the interrupted movement is continued.

Behavior for incremental dimension
In case of active incremental dimension G91 and machine data:
MD42440 $MC_FRAME_OFFSET_INCR_PROG (zero offset in frames) = 0
traversing the offset is done in the scope of the external zero offset via system frame,
despite opposite configuring of the machine data, with the approach block, although it is
specified by a frame.

 Note

The external zero offset always acts absolutely.

9.5.8.3 Toolholder

Translations
With kinematics of type "P" and "M", the selection of a toolholder activates an additive frame
(table offset of the orientable toolholder) which takes into account the zero offset as a result
of the rotation of the table. The zero offset is entered in the system frame $P_PARTFR. In this
case the translatory component of this frame is overwritten. The other frame components are
retained.

The system frame $P_PARTFR must be enabled via the following machine data:
MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 2 = 1 (system frame for TCARR and
PAROT)

 Note

Alternatively, the offset can also parameterized via machine data to record the the table
offset:

MD20184 $MC_TOCARR_BASE_FRAME_NUMBER = <number of the basic frame>

This option is only for compatibility reasons to older software versions. You are strongly
recommended not to use this procedure any longer.

A frame offset as a result of a toolholder change becomes effective immediately on selection
of TCARR=.... A change in the tool length, on the other hand, only becomes effective
immediately if a tool is active.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 755

A frame rotation does not take place on activation, and a rotation which is already active is
not changed. As in case T (only the tool can be rotated), the position of the rotary axes used
for the calculation is dependent on the command TCOFR / TCOABS and determined from the
rotation component of an active frame or from the entries $TC_CARRn. Activation of a frame
changes the position in the workpiece coordinate system accordingly, without compensating
motion by the machine itself.

The ratios are shown in the figure below:

Figure 9-24 Frame on activation of a rotary table with TCARR

With kinematics of type M (tool and table are each rotary around one axis), the activation of
a toolholder with TCARR simultaneously produces a corresponding change in the effective tool
length (if a tool is active) and the zero offset.

Rotations
Depending on the machining task, it is necessary to take into account not only a zero offset
(whether as frame or as tool length) when using a rotary toolholder or table, but also a
rotation. However, the activation of a toolholder with orientation capability never leads
directly to a rotation of the coordinate system.

If only the tool can be rotated, a frame can be defined for it using TOFRAME or TOROT.

With rotary tables (kinematics types P and M), activation with TCARR similarly does not lead to
an immediate rotation of the coordinate system, i.e. even though the zero point of the
coordinate system is offset relative to the machine, while remaining fixed relative to the zero
point of the workpiece, the orientation remains unchanged in space.

If the coordinate system needs to be fixed relative to the workpiece, i.e. not only offset
relative to the original position but also rotated according to the rotation of the table, then
PAROT can be used to activate such a rotation in a similar manner to the situation with a rotary
tool.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
756 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

With PAROT, the translations, scalings and mirroring in the active frame are retained, but the
rotation component is rotated by the rotation component of an orientational toolholder
corresponding to the table. The entire programmable frame including its rotation component
remains unchanged.

The rotation component that describes the rotation of the table is then either entered in the
system frame $PARTFR or in the basic frame parameterized with MD20184
$MC_TOCARR_BASE_FRAME_NUMBER:

$MC_MM_SYSTEM_FRAME_MASK, bit 2 = <value>

Value Meaning

1 Rotation component → $PARTFR
0 Rotation component → MD20184 $MC_TOCARR_BASE_FRAME_NUMBER

As with the note made in the description of the table offset, the second alternative here is not
recommended for use with new systems.

The rotation component of the part frame can be deleted with PAROTOF, irrespective of
whether this frame is in a basic or a system frame.
The translation component is deleted when a toolholder which does not produce an offset is
activated or a possibly active orientable toolholder is deselected with TCARR=0.

PAROT or TOROT take into account the overall orientation change in cases where the table or
the tool are oriented with two rotary axes. With mixed kinematics only the corresponding
component caused by a rotary axis is considered. It is thus possible, for example, when
using TOROT, to rotate a workpiece such that an inclined plane lies parallel to the XY plane
fixed in space, whereby rotation of the tool must be taken into account in machining where
any holes to be drilled, for example, are not perpendicular to this plane.

Example

On a machine, the rotary axis of the table points in the positive Y direction. The table is
rotated by +45 degrees. PAROT defines a frame which similarly describes a rotation of 45
degrees around the Y axis. The coordinate system is not rotated relative to the actual
environment (marked in the figure with "Position of the coordinate system after TCARR"), but
is rotated by -45 degrees relative to the defined coordinate system (position after PAROT). If
this coordinate system is defined with ROT Y-45, for example, and if the toolholder is then
selected with active TCOFR, an angle of +45 degrees will be determined for the rotary axis of
the toolholder.

Language command PAROT is not rejected if no toolholder with orientation capability is active.
However, such a call then produces no frame changes.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 757

Machining in direction of tool orientation
Particularly on machines with tools that can be oriented, traversing should take place in the
tool direction (typically, when drilling) without activating a frame (e.g. using TOFRAME or TOROT),
on which one of the axes points in the direction of the tool. This is also a problem if, when
carrying out inclined machining operations, a frame defining the inclined plane is active, but
the tool cannot be set exactly perpendicularly because an indexed toolholder (Hirth tooth
system) prevents free setting of the tool orientation. In these cases it is then necessary -
contrary to the motion actually requested perpendicular to the plane - to drill in the tool
direction, as the drill would otherwise not be guided in the direction of its longitudinal axis
(tool breaks).

The end point of such a motion is programmed with MOVT=
The programmed value is effective incrementally in the tool direction as standard.
The positive direction is defined from the tool tip to the tool adapter. The content of MOVT is
thus generally negative for the infeed motion (when drilling), and positive for the retraction
motion. This corresponds to the situation with normal paraxial machining, e.g. with G91 Z
....

Instead of MOVT= ... it is also possible to write MOVT=IC(...) if it is to be plainly visible that
MOVT is to function incrementally. There is no functional difference between the two forms.

If the motion is programmed in the form MOVT=AC(...), MOVT functions absolutely.
In this case a plane is defined which runs through the current zero point, and whose surface
normal vector is parallel to the tool orientation. MOVT then gives the position relative to this
plane (see figure). The reference plane is only used to calculate the end position. Active
frames are not affected by this internal calculation.

Programming with MOVT is independent of the existence of a toolholder that can be oriented.
The direction of the motion is dependent on the active plane.
It runs in the directions of the vertical axes, i.e. with G17 in Z direction, with G18 in Y direction
and with G19 in X direction. This applies when no orientable toolholder is active and for the
case of an orientable toolholder without rotary tool or with a rotary tool in its basic setting.

MOVT acts similarly for active orientation transformation (3-, 4-, 5-axis transformation).

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
758 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

If in a block with MOVT the tool orientation is changed simultaneously (e.g. active 5-axis
transformation by means of simultaneous interpolation of the rotary axes), the orientation at
the start of the block is decisive for the direction of motion of MOVT.
With an active 5-axis transformation, the path of the tool center point (TCP) is not affected by
the change of orientation, i.e. the path remains a straight line and its direction is determined
by the tool orientation at the start of the block.

If MOVT is programmed, linear or spline interpolation must be active (G0,G1, ASPLINE, BSPLINE,
CSPLINE). Otherwise, an alarm is produced.
If a spline interpolation is active, the resultant path is generally not a straight line, since the
end point calculated by MOVT is treated as if it had been programmed explicitly with X, Y, Z.

A block with MOVT must not contain any programming of geometry axes (alarm 14157).

Definition of frame rotations with solid angles
Where a frame is to be defined to describe a rotation around more than one axis, this is
achieved through chaining individual rotations. A new rotation is hereby always performed in
the already rotated coordinate system.
This applies both to programing in one block, e.g. with ROT X... Y... Z..., and when
constructing a frame in several blocks, e.g. in the form:

N10 ROT Y...

N20 AROT X...

N30 AROT Z...

In workpiece drawings, inclined surfaces are frequently described by way of solid angles, i.e.
the angles which the intersection lines of the inclined plane form with the main planes (X-Y,
Y-Z, Z-X planes) (see figure). The machine operator is not expected to convert these solid
angles into the angles of rotation of a chaining of individual rotations.

① Inclined plane

Figure 9-25 Rotation with solid angles

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 759

For this reason, the language commands ROTS, AROTS and CROTS are used, with which the
rotations can be immediately described as solid angles.

The orientation of a plane in space is defined unambiguously by specifying two solid angles.
The third solid angle is derived from the first two. Therefore, a maximum of two solid angles
may be programmed, e.g. in the form ROTS X10 Y15. If a third solid angle is specified, an
alarm will be triggered.

It is permissible to specify a single solid angle. The rotations which are performed with ROTS
or AROTS in this case are identical to those for ROT and AROT.

An expansion of the existing functionality arises only in cases where exactly two solid angles
are programmed.

The two programmed axes define a plane, the non-programmed axis defines the related
third axis of a right-hand coordinate system. Which axis is first and which second is then
unambiguously defined for both programmed axes (the definition corresponds to those found
in the plane definition of G17/G18/G19). The angle programmed with the axis letter of an axis
of the plane then specifies the axis, around which the other axis of the plane must be rotated
in order to move this into the line of intersection, which the rotated plane forms with the plane
surrounded by the other and the third axis. This definition ensures that, in the case that one
of the two programmed angles is towards zero, the defined plane enters the plane, which is
created if only one axis is programmed (e.g. with ROT or AROT).

The diagram shows an example where X and Y are programmed. Y specifies the angle here,
through which the X axis must rotate around the Y axis to bring the X axis to the line of
intersection formed by the inclined plane and the X-Z plane. The same principle applies for
the programmed value of X.

 Note

In the shown position of the inclined plane the value of Y is positive, that of X on the other
hand negative.

The specification of the solid angle does not define the orientation of the two-dimensional
coordinate system within the plane (i.e. the angle of rotation around the surface normal
vector). The position of the coordinate system is thus determined so that the rotated first axis
lies in the plane which is formed by the first and third axes of the non-rotated coordinate
system.

This means that

● When programming X and Y the new X axis lies in the old Z-X plane.

● When programming Z and X the new Z axis lies in the old Y-Z plane.

● When programming Y and Z the new Y axis lies in the old X-Y plane.

If the required coordinate system does not correspond to this basic setting, then an
additional rotation must be performed with AROT....

The programmed solid angles are converted to the equivalent Euler angles according to the
zy'x" convention (RPY angle) or zx'z" convention when entering depending on the machine
data:
MD10600 $MN_FRAME_ANGLE_INPUT_MODE.
 These then appear in the display.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
760 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Frame rotation in tool direction
With the language command TOFRAME, which also existed in older software versions, it is
possible to define a frame whose Z axis points in the tool direction.
An already programmed frame is then overwritten by a frame which describes a pure
rotation. Any zero offsets, mirrorings or scalings existing in the previously active frame are
deleted.
This response is sometimes interfering. It is often particularly practical to retain a zero offset,
with which the reference point in the workpiece is defined.

The language command TOROT is then also used. This command overwrites only the rotation
component in the programmed frame and leaves the remaining components unchanged.
The rotation defined with TOROT is the same as that defined with TOFRAME.
TOROT is, like TOFRAME, independent of the availability of an orientational toolholder. This
language command is also especially useful for 5-axis transformations.

The new language command TOROT ensures consistent programming with active orientational
toolholders for each kinematics type.

TOFRAME or TOROT defines frames whose Z direction points in the tool direction. This definition
is suitable for milling, where G17 is usually active. However, particularly with turning or, more
generally, when G18 or G19 is active, it is desirable that frames which will be aligned on the X
or Y axis, can be defined. For this purpose, the following commands are available in G group
53:

● TOFRAMEX, TOFRAMEY, TOFRAMEZ

● TOROTX, TOROTY, TOROTZ

The appropriate frames can be defined with these commands. The functions of TOFRAME and
TOFRAMEZ or of TOROT and TOROTZ are identical to one another.

The frames resulting from TOROT or TOFRAME can be written in a separate system frame
($P_TOOLFR). The programmable frame is then retained unchanged.

● Requirement: MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 3 = 1

When programming TOROT or TOFRAME, etc. response is identical, with or without a system
frame. Differences occur when the programmable frame is processed further elsewhere.

 Note

In new systems, it is recommended that only the intended system frame is used for frames
produced by the commands of G group 53.

Example

TRANS is programmed after TOROT. TRANS without specified parameters deletes the
programmable frame. In the variant without a system frame, this also deletes the frame
component of the programmable frame produced by TOROT, but if the TOROT component is in
the system frame, it is retained.

TOROT or TOFRAME, etc. are disabled with language command TOROTOF. TOROTOF deletes the
entire system frame $P_TOOLFR. If the programmable frame (old variant) and not the
system frame is described by commands TOFRAME, etc. TOROT only deletes the rotation
component and leaves the remaining frame components unchanged.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 761

If a rotating frame is already active before language command TOFRAME or TOROT is activated,
a request is often made that the newly defined frame should deviate as little as possible from
the old frame. This is the case, for example, if a frame definition needs to be modified slightly
because the tool orientation cannot be set freely on account of Hirth-toothed rotary axes.
The language commands uniquely define the Z direction of the new frame.

Frame definition for TOFRAME, TOROT and PAROT
The following machine data can be used to select one of two variants for the position of the
X axis and Y axis. However, in both cases there is no reference to the previously active
frame.

MD21110 $MC_X_AXIS_IN_OLD_X_Z_PLANE (coordinate system for automatic frame
definition)

For this reason, it is recommended that the following setting data be used instead so that the
behavior of TOFRAME and TOROT can be specifically controlled.

SD42980 $SC_TOFRAME_MODE (frame definition for TOFRAME, TOROT and PAROT)

Value Meaning

1 The new X direction is chosen to lie in the X-Z plane of the old coordinate system. In this
setting, the angle difference between the old and new Y axis will be minimal.

2 The new Y direction is chosen to lie in the Y-Z plane of the old coordinate system. In this
setting the angle difference between the old and new X axis will be minimal.

3 The value chosen is the mean value of the two settings, which would have been chosen with
1 and 2.

A detailed description of all parameterization options can be found in:
References
Detailed Machine Data Description

Special features and extensions

The behavior for value = 1 and 2 is achieved when starting from an arbitrary position of the X
and Y axes, by rotating the coordinate system around the Z axis until the desired setting is
reached.

The behavior for value = 3 is achieved by executing a rotation whose value is the exact
mean of these two angles. However, this only applies for the case that the old and new Z
direction enclose an angle of less than 90 degrees.

With value = 1, both the old and new X axes form an angle of under 90 degrees, with value =
2 the same is true of the Y axis (the relevant axes point in "approximately" the same
direction). If the two Z directions form an angle of more than 90 degrees, however, the
conditions of an angle < 90 degrees between the old and new axes can no longer be met
simultaneously for both X and Y. In this case, priority is given to the X direction, i.e. a mean
value is taken from the direction for 1 and the negative direction for 2.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
762 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

If one of the commands TOFRAMEX, TOFRAMEY, TOROTX, TOROTY is programmed in place of
TOFRAME(Z) or TOROT(Z), the descriptions for adapting the axis directions perpendicular to the
main direction are also valid for the cyclically exchanged axes. The assignments in the table
below are then valid:

 TOFRAME, TOFRAMEZ

TOROT, TOROTZ
TOFRAMEY
TOROTY

TOFRAMEX
TOROTX

Tool direction
(vertical axis)

Z Y X

Secondary axis
(horizontal axis)

X Z Y

Secondary axis
(ordinate)

Y X Z

Example

N90 $SC_TOFRAME_MODE=1

N100 ROT Z45

N110 TCARR=1 TCOABS T1 D1

N120 TOROT

N100 describes a rotation by 45 degrees in the X-Y plane. It is assumed that the toolholder
activated in N110 rotates the tool by 30 degrees around the X axis, i.e. the tool lies in the Y-Z
plane and is rotated by 30 degrees relative to the Z axis. As a result the Z axis of the frame
newly defined in N120 also points in this direction (independently of the value in setting data
SD42980 $SC_TOFRAME_MODE in N90).

SD42980 $SC_TOFRAME_MODE == 1:

The old and new X axes X and X' coincide in the projection in the direction of the old Z axis.
The old and new Y axes Y and Y' form an angle of 8.13 degrees (right angles are generally
not retained in the projection).

SD42980 $SC_TOFRAME_MODE == 2:
Y and Y' coincide and X and X' form an angle of 8.13 degrees.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 763

SD42980 $SC_TOFRAME_MODE == 3:
X and X' and well as Y and Y' each form an angle of 4.11 degrees.

 Note

The named angles (8.13 and 4.11 degrees) are the angles, which the projections of the axes
form in the X-Y plane. They are not the spatial angles of these axes.

TCARR (request toolholder) and PAROT (align workpiece coordinate system on the workpiece)
TCARR uses the basic frame identified by following machine data:
MD20184 $MC_TOCARR_BASE_FRAME_NUMBER.

A system frame can be created for TCARR and PAROT alone, in order to avoid conflicts with
systems, which already use all the basic frames.

PAROT, TOROT and TOFRAME have previously changed the rotation component of the
programmable frames. In this case, it is not possible to shut down PAROT or TOROT separately.
On RESET, the programmable frame is deleted, which means that after changing the
operating mode to JOG, the rotation component of PAROT and TOROT is no longer available.
The user must also have unrestricted access to the programmable frame. Frames produced
by PAROT and TOROT must be able to be archived and reloaded via data backup.

The system frame for TCARR and PAROT is configured with:
MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 2 = 1

The following machine data is then no longer evaluated:
MD20184 $MC_TOCARR_BASE_FRAME_NUMBER

If the system frame for TCARR is configured, TCARR and PAROT describe that corresponding
system frame; otherwise the basic frame identified by machine data MD20184 is described.

With kinematics systems of the types P and M, TCARR will enter the table offset of the
orientational toolholder (zero offset resulting from the rotation of the table) as a translation
into the system frame. PAROT converts the system frame so that a workpiece-related WCS
results.

The system frames are stored retentively and therefore retained after a reset. The system
frames also remain active in the case of a mode change.

For the display, the commands PAROT and TOROT, TOFRAME are each assigned to a separate G
code group.

PAROTOF
PAROTOF is the switch off command for PAROT. This command deletes the rotations in the
system frame for PAROT. In so doing, the rotations in the current $P_PARTFRAME and in the
data management frame $P_PARTFR are deleted. The position of the coordinate system is
then recreated according to TCARR. PAROTOF is in the same G group as PAROT and appears
therefore in the G code display.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
764 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

TOROT (align Z axis of the WCS by rotating the frame parallel to the tool orientation) and TOFRAME
(ditto.)

The system frame for TOROT and TOFRAME is activated via the following machine data:
MD28082 $MC_MM_SYSTEM_FRAME_MASK, bit 3 = 1

This system frame is located before the programmable frame in the frame chain.
The SZS coordinate system is located before the programmable frame.

TOROTOF
TOROTOF is the switch off command for TOROT and TOFRAME. This command deletes the
corresponding system frame. The current $P_TOOLFRAME and the data management
frame $P_TOOLFR are also deleted. TOROTOF is in the same G group as TOROT and TOFRAME
and appears therefore in the G code display.

Example
Example of using an orientational toolholder with deactivated kinematics:

N10 $TC_DP1[1,1]= 120

N20 $TC_DP3[1,1]= 13 ; Tool length 13 mm

; Definition of toolholder 1:

N30 $TC_CARR1[1] = 0 ; X component of the 1st

; offset vector

N40 $TC_CARR2[1] = 0 ; Y component of the 1st

; offset vector

N50 $TC_CARR3[1] = 0 ; Z component of the 1st

; offset vector

N60 $TC_CARR4[1] = 0 ; X component of the 2nd

; offset vector

N70 $TC_CARR5[1] = 0. ; Y component of the 2nd

; offset vector

N80 $TC_CARR6[1] = -15. ; Z component of the 2nd

; offset vector

N90 $TC_CARR7[1] = 1 ; X components of 1st axis

N100 $TC_CARR8[1] = 0 ; Y components of 1st axis

N110 $TC_CARR9[1] = 0 ; Z components of 1st axis

N120 $TC_CARR10[1] = 0 ; X components of 2nd axis

N130 $TC_CARR11[1] = 1 ; Y components of 2nd axis

N140 $TC_CARR12[1] = 0 ; Z components of 2nd axis

N150 $TC_CARR13[1] = 30. ; Angle of rotation of 1st axis

N160 $TC_CARR14[1] = -30. ; Angle of rotation of 2nd axis

N170 $TC_CARR15[1] = 0 ; X component of the 3rd

; offset vector

N180 $TC_CARR16[1] = 0 ; Y component of the 3rd

; offset vector

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 765

N190 $TC_CARR17[1] = 0 ; Z component of the 3rd

; offset vector

N200 $TC_CARR18[1] = 0 ; X component of the 4th

; offset vector

N210 $TC_CARR19[1] = 0 ; Y component of the 4th

; offset vector

N220 $TC_CARR20[1] = 15. ; Z component of the 4th

; offset vector

N230 $TC_CARR21[1] = A ; Reference for 1st axis

N240 $TC_CARR22[1] = B ; Reference for 2nd axis

N250 $TC_CARR23[1] = "M" ; Toolholder type

N260 X0 Y0 Z0 A0 B45 F2000

N270 TCARR=1 X0 Y10 Z0 T1 TCOABS ; Selection of orientable

; toolholder

N280 PAROT ; Rotation of table

N290 TOROT ; Rotation of the z axis in

; tool orientation

N290 X0 Y0 Z0

N300 G18 MOVT=AC(20) ; Processing in G18 plane

N310 G17 X10 Y0 Z0 ; Processing in G17 plane

N320 MOVT=-10

N330 PAROTOF ; Deactivate rotation of table

N340 TOROTOF ; No longer align WCS to

; tool.

N400 M30

9.5.9 Subprograms with SAVE attribute (SAVE)
For various frames, the behavior regarding subprograms can be set using the SAVE
attribute.

Settable frames G54 to G599
The behavior of the adjustable frames can be set using MD10617
$MN_FRAME_SAVE_MASK.BIT0 :

● BIT0 = 0

Using the subprogram, if only the values of the active adjustable frame are changed
using the system variable $P_IFRAME, but the G functions are kept, then the change is
also kept after the end of the subprogram.

● BIT0 = 1

With the end of the subprogram, the adjustable frame, G function and values, active
before the subprogram call, are reactivated.

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
766 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic frames $P_CHBFR[] and $P_NCBFR[]
The behavior of the basic frame can be set using MD10617
$MN_FRAME_SAVE_MASK.BIT1:

● BIT1 = 0
If the active basic frame is changed by the subprogram, the change remains effective
even after the end of the subprogram.

● BIT1 = 1
With the end of the subprogram the basic frame which is active before the subroutine call
is reactivated.

Programmable frame
With the end of the subprogram the programmable frame active before the subroutine call is
reactivated.

System frames
If the system frames are changed by the subprogram, the change remains effective even
after the end of the subprogram.

9.5.10 Data backup
Data block _N_CHANx_UFR is used to archive the system frames.

Machine data
MD28082 $MC_MM_SYSTEM_FRAME_MASK
 should not have changed between saving and reintroducing the saved system frames. If it
has changed then it is possible that saved system frames could no longer be loaded.
In this case, the loading process triggers an alarm.

Data backup always takes place in accordance with the currently valid geometry axis
assignment, not in accordance with the axis configurations set in the machine data.

The machine data
$MC_MM_SYSTEM_DATAFRAME_MASK
 can be used to configure data management frames for the system frames.
If you do not want a data management frame for a system frame, the frame does not have to
be saved. With G500, G54 to G599, the active frame is retained.

A separate data block _N_NC_UFR is used to archive global frames.
The block requested by the HMI is created if the machine data
MD18601 $MN_MM_NUM_GLOBAL_USER_FRAMES
 or
MD18602 $MN_MM_NUM_GLOBAL_BASE_FRAMES
 has a value greater than zero.
Channel-specific frames are saved in data block _N_CHANx_UFR.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 767

In certain circumstances, alarms could be triggered when reintroducing saved data, if the
frame affiliates, be they NCU global or channel-specific, have been changed using machine
data.

Data backup always takes place in accordance with the axis configuration set in the machine
data, not in accordance with the currently valid geometry axis assignment.

9.5.11 Positions in the coordinate system
The setpoint positions in the coordinate system can be read via the following system
variables. The actual values can be displayed in the WCS, SZS, BZS or MCS via the PLC.
There is a softkey for actual-value display in MCS/WCS. Machine manufacturers can define
on the PLC side, which coordinate system corresponds to the workpiece coordinate system
on their machines. The HMI requests the appropriate actual values from the NCK.

$AA_IM[axis]

The setpoints in the machine coordinate system can be read for each axis using the
variables $AA_IM[axis].

$AA_IEN[axis]

The setpoints in the settable zero system (SZS) can be read for each axis using the
variables $AA_IEN[axis].

$AA_IBN[axis]

The setpoints in the basic zero system (BZS) can be read using the variable $AA_IBN[axis].

$AA_IW[axis]

The setpoints in the workpiece coordinate system (WCS) can be read using the variable
$AA_IW[axis].

9.5.12 Control system response

9.5.12.1 POWER ON

Frame conditions after POWER ON

Frame Frame conditions after POWER ON
Programmable frame Deleted.
Settable frames Are retained, depending on:

MD24080 $MC_USER_FRAME_POWERON_MASK Bit 0 = 1
MD20152 $MC_GCODE_RESET_MODE[7] = 1

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
768 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Frame Frame conditions after POWER ON
Complete basic frame Retained, depending on

MD20110 $MC_RESET_MODE_MASK bit 0 and bit 14
Individual basic frames can be deleted with
MD10615 $MN_NCBFRAME_POWERON_MASK
and
MD24004 $MC_CHBFRAME_POWERON_MASK
.

System frames Retained
Depending on:
MD24008 $MC_CHSFRAME_POWERON_MASK
, individual system frames can be deleted on POWER ON.
Deletion of system frame is executed in the data management
on first priority.

Zero offset external Permanent, but has to be activated again.
The system frame is retained.

DRF offset Deleted.

9.5.12.2 Mode change

System frames
System frames are retained and remain active when the operating mode is changed.

JOG mode
In JOG mode, the frame components of the current frame are only taken into account for the
geometry axes if a rotation is active. No other axial frames are taken into account.

PLC and command axes
The response for PLC and command axes can be set via machine data:

MD32074 $MA_FRAME_OR_CORRPOS_NOTALLOWED (Frame or HL correction is not
permissible)

9.5.12.3 RESET, end of part program

RESET responses of basic frames
The RESET response of basic frames is set via the machine data:

MD20110 $MC_RESET_MODE_MASK (definition of initial control settings after RESET/TP-
End)

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 769

RESET responses of system frames
The system frames are retained in the data management after a Reset.

The machine data below can be used to configure the activation of individual system frames:

MD24006 $MC_CHSFRAME_RESET_MASK (active system frames after Reset)

Bit Significance
0 System frame for actual value setting and scratching is active after RESET.
1 System frame for zero offset external is active after RESET.
2 Is not evaluated.
3 Is not evaluated.
4 System frame for workpiece reference point is active after RESET.
5 System frame for cycles is active after RESET.
6 Reserved, RESET response depends on MD20110 $MC_RESET_MODE_MASK.
7 System frame $P_ISO1FR is active after RESET.
8 System frame $P_ISO2FR is active after RESET.
9 System frame $P_ISO3FR is active after RESET.
10 System frame $P_ISO4FR is active after RESET.
11 System frame $P_RELFR is active after RESET.

RESET response of the system frames of TCARR, PAROT, TOROT and TOFRAME
The RESET response of the system frames of TCARR, PAROT, TOROT and TOFRAME depends on
the G-Code RESET setting.

The setting is made with machine data:

MD20110 $MC_RESET_MODE_MASK (definition of initial control settings after RESET/TP-
End)

MD20152 $MC_GCODE_RESET_MODE[] (RESET response of G groups)

MD20150 $MC_GCODE_RESET_VALUES (RESET position of G groups)

MD20110 Significance
Bit 0 = 0 TCARR and PAROT system frames are retained as before the RESET.

MD20152 $MC_GCODE_RESET_MODE[51] = 0
 MD20150 $MC_GCODE_RESET_VALUES[51] = 1 PAROTOF
 MD20150 $MC_GCODE_RESET_VALUES[51] = 2 PAROT

MD20152 $MC_GCODE_RESET_MODE[51] = 1 TCARR and PAROT

system frames are retained
as before the RESET.

MD20152 $MC_GCODE_RESET_MODE[52] = 0

Bit 0 = 1

 MD20150 $MC_GCODE_RESET_VALUES[52] = 1 TOROTOF

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
770 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MD20110 Significance
 MD20150 $MC_GCODE_RESET_VALUES[52] = 2 TOROT
 MD20150 $MC_GCODE_RESET_VALUES[52] = 3 TOFRAME

MD20152 $MC_GCODE_RESET_MODE[52] = 1 TOROT and TOFRAME

system frames are retained
as before the RESET.

TCARR and PAROT are two independent functions, which describe the same frame. With
PAROTOF, the component of TCARR is not activated on RESET.

MD20110 Significance
Bit 0 = 1 and bit 14 = 0 Chained complete basic frame is deleted.

The complete basic frame is derived on the basis of:
MD24002 $MC_CHBFRAME_RESET_MASK
(active channel-specific basic frame after RESET)
and
MD10613 $MN_NCBFRAME_RESET_MASK
(active NCU global basic frame after RESET)

MD24002 $MC_CHBFRAME_RESET_MASK
Bit 0 = 1 1. Channel basic frame is calculated into the chained

complete basic frame.
Bit 7 = 1 8. Channel basic frame is calculated into the chained

complete basic frame.

MD10613 $MN_NCBFRAME_RESET_MASK
Bit 0 = 1 1. NCU global basic frame is calculated into the chained

complete basic frame.

Bit 0 = 1 and bit 14 = 1

Bit 7 = 1 8. NCU global basic frame is calculated into the chained
complete basic frame.

Frame conditions after RESET / parts program end

Frame condition after RESET / part program end
Programmable frame Deleted.
Settable frames Retained, depending on

MD20110 $MC_RESET_MODE_MASK
and
MD20152 $MC_GCODE_RESET_MODE.

Complete basic frame Retained, depending on:
MD20110 $MC_RESET_MODE_MASK Bit 0 and Bit 14,
MD10613 $MN_NCBFRAME_RESET_MASK
and
MD24002 $MC_CHBFRAME_RESET_MASK.

 K2: Axis Types, Coordinate Systems, Frames
 9.5 Frames

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 771

Frame condition after RESET / part program end
System frames Retained, depending on

MD24006 $MC_CHSFRAME_RESET_MASK
and
MD20150 $MC_GCODE_RESET_VALUES[].

External zero offset Retained
DRF offset Retained

Deletion of system frames
The system frames in the data management can be deleted during RESET uisng machine
data:

MD24007 $MC_CHSFRAME_RESET_CLEAR_MASK (deletion of system frames during
RESET)

Bit Significance
0 System frame for actual value setting and scratching is deleted during RESET.
1 System frame for zero offset external is deleted during RESET.
2 Reserved, for TCARR and PAROT see MD20150 $MC_GCODE_RESET_VALUES[].
3 Reserved, for TOROT and TOFRAME see MD20150 $MC_GCODE_RESET_VALUES[].
4 System frame for workpiece reference points is deleted during RESET.
5 System frame for cycles is deleted during RESET.
6 Reserved, RESET response depends on MD20110 $MC_RESET_MODE_MASK.
7 System frame for $P_ISO1FR is deleted during RESET.
8 System frame for $P_ISO2FR is deleted during RESET.
9 System frame for $P_ISO3FR is deleted during RESET.
10 System frame for $P_ISO4FR is deleted during RESET.
11 System frame $P_RELFR is deleted during RESET.

9.5.12.4 Part program start

Frame conditions after part program start

Frame Condition after parts program start
Programmable frame Deleted.
Settable frames Retained, depending on:

MD20112 $MC_START_MODE_MASK
Complete basic frame Retained
System frames Retained
External zero offset Retained
DRF offset Retained

K2: Axis Types, Coordinate Systems, Frames
9.5 Frames

 Basic Functions
772 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

9.5.12.5 Block search

Block search
Data management frames are also modified when carrying out a block search with
calculation.

Cancellation of block search
If the block search is aborted with RESET, then the machine data:
MD28560 $MC_MM_SEARCH_RUN_RESTORE_MODE
can be used to configure that all data management frames are set to the value they had
before the block search:

Bit Significance
0 All frames in the data management are restored.

In case of cascaded block searches, the frames are set to the status of the previous block
search.

SERUPRO
The "SERUPRO" function is not supported.

9.5.12.6 REPOS
There is no special treatment for frames. If a frame is modified in an ASUB, it is retained in
the program. On repositioning with REPOS, a modified frame is included, provided the
modification was activated in the ASUB.

 K2: Axis Types, Coordinate Systems, Frames
 9.6 Workpiece-related actual value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 773

9.6 Workpiece-related actual value system

9.6.1 Overview

Definition
The term "workpiece-related actual-value system" designates a series of functions that
permit the user:

● To use a workpiece coordinate system defined in machine data after powerup.

Features:

– No additional operations are necessary.

– Effective in JOG and AUTOMATIC modes

● To retain the valid settings for the following after end of program for the next part
program:

– Active plane

– Settable frame (G54-G57)

– Kinematic transformation

– Active tool offset

● To change between work coordinate system and machine coordinate system via the user
interface.

● To change the work coordinate system by operator action (e.g., changing the settable
frame or the tool offset).

9.6.2 Use of the workpiece-related actual value system

Requirements, basic settings
The settings described in the previous Section have been made for the system.
The predefined setting after power-up of the HMI software is MCS.

Switchover to WCS
The change to the WCS via the user interface causes the axis positions relative to the origin
of the WCS to be displayed.

Switchover to MCS
The change to the MCS via the user interface causes the axis positions relative to the origin
of the MCS to be displayed.

K2: Axis Types, Coordinate Systems, Frames
9.6 Workpiece-related actual value system

 Basic Functions
774 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Interrelationships between coordinate systems
The figure below shows the interrelationships between the machine coordinate system
(MCS) and the workpiece coordinate system (WCS).

Figure 9-26 Interrelationship between coordinate systems

For further information, see "H2: Auxiliary function outputs to PLC (Page 369)" and "W1:
Tool offset (Page 1389)".

 K2: Axis Types, Coordinate Systems, Frames
 9.6 Workpiece-related actual value system

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 775

References:
● Programming Guide Fundamentals
● Function Manual, Extended Functions; Kinematic Transformation (M1)
● Function Manual, Special Functions; Axis Couplings and ESR (M3);

Section: Coupled motion, Section: Master value coupling
● Function Manual, Special Functions; Tangential Control (T3)

9.6.3 Special reactions

Overstore
Overstoring in RESET state of:
● Frames (zero offsets)
● Active plane
● Activated transformation
● Tool offset

immediately affects the actual-value display of all axes in the channel.

Entry via operator panel front
If operations on the operator panel are used to change the values for
"Active frame" (zero offsets, "Parameters" operating area)
and
"Active tool length compensation" ("Parameters" operating area)
, one of the following actions is used to activate these changes in the display:
● Press the RESET key.
● Reselect:

– Zero offset by the part program
– Tool offset by the part program

● Reset:
– Zero offset by overstoring
– Tool offset by overstoring

● Part program start

MD9440
If the HMI machine data
MD9440 ACTIVATE_SEL_USER_DATA
 for the operator panel front is set, the entered values become active immediately in RESET
state.

When values are entered in the part-program execution stop state, they become effective
when program execution continues.

K2: Axis Types, Coordinate Systems, Frames
9.7 Restrictions

 Basic Functions
776 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Actual-value reading
If the actual value of $AA_IW is read in the WCS after activation of a frame (zero offset) or a
tool offset, the activated changes are already contained in the result read even if the axes
have not yet been traversed with the activated changes.

The actual values in the settable zero system (SZS) can be read from the part program for
each axis using the variable $AA_IEN[axis].

The actual values in the basic zero system (BZS) can be read from the part program for
each axis using the variable $AA_IBN[axis].

Actual-value display
The programmed contour is always displayed in the WCS.

The following offsets are added to the MCS:

● Kinematic transformation

● DRF offset/zero offset external

● Active frame

● Active tool offset of the current tool

Switchover by PLC
The actual values can be displayed in the WCS, SZS, BZS or MCS via the PLC. The PLC
can define, which coordinate system corresponds to the workpiece coordinate system on a
machine.

On MMC power-up the MCS is preset.
With the signal DB19 DBB0.7 "MCS/WCS switchover", it is also possible to switch from the
PLC to the WCS.

Transfer to PLC
Depending on machine data
MD20110 / MD20112, bit 1
, the auxiliary functions (D, T, M) are output to the PLC (or not) on selection of the tool length
compensation.

 Note

If the WCS is selected from the PLC, an operator action can still be used to switch between
the WCS and MCS for the relevant mode.
However, when the mode and or area is changed, the WCS selected by the PLC is
evaluated and activated (see Section "K1: Mode group, channel, program operation, reset
response (Page 451)").

9.7 Restrictions
There are no supplementary conditions to note.

 K2: Axis Types, Coordinate Systems, Frames
 9.8 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 777

9.8 Examples

9.8.1 Axes

Axis configuration for a 3axis milling machine with rotary table

1. Machine axis: X1 Linear axis
2. Machine axis: Y1 Linear axis
3. Machine axis: Z1 Linear axis
4. Machine axis: B1 Rotary table (for turning for multiface machining)
5. Machine axis: W1 Rotary axis for tool magazine (tool revolver)
6. Machine axis: C1 (Spindle)

1. Geometry axis: X (1. channel)
2. Geometry axis: Y (1. channel)
3. Geometry axis: Z (1. channel)
1. Special axis: B (1. channel)
2. Special axis: WZM (1. channel)
1. spindle: S1/C (1. channel)

K2: Axis Types, Coordinate Systems, Frames
9.8 Examples

 Basic Functions
778 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterization of the machine data

Machine data Value
MD10000 AXCONF_MACHAX_NAME_TAB[0] = X1
MD10000 AXCONF_MACHAX_NAME_TAB[1] = Y1
MD10000 AXCONF_MACHAX_NAME_TAB[2] = Z1
MD10000 AXCONF_MACHAX_NAME_TAB[3] = B1
MD10000 AXCONF_MACHAX_NAME_TAB[4] = W1
MD10000 AXCONF_MACHAX_NAME_TAB[5] = C1

MD20050 AXCONF_GEOAX_ASSIGN_TAB[0] = 1
MD20050 AXCONF_GEOAX_ASSIGN_TAB[1] = 2
MD20050 AXCONF_GEOAX_ASSIGN_TAB[2] = 3

MD20060 AXCONF_GEOAX_NAME_TAB[0] =X
MD20060 AXCONF_GEOAX_NAME_TAB[1] =Y
MD20060 AXCONF_GEOAX_NAME_TAB[2] =Z

MD20070 AXCONF_MACHAX_USED[0] = 1
MD20070 AXCONF_MACHAX_USED[1] = 2
MD20070 AXCONF_MACHAX_USED[2] = 3
MD20070 AXCONF_MACHAX_USED[3] = 4
MD20070 AXCONF_MACHAX_USED[4] = 5
MD20070 AXCONF_MACHAX_USED[5] = 6

MD20080 AXCONF_CHANAX_NAME_TAB[0] =X
MD20080 AXCONF_CHANAX_NAME_TAB[1] =Y
MD20080 AXCONF_CHANAX_NAME_TAB[2] =Z
MD20080 AXCONF_CHANAX_NAME_TAB[3] = B
MD20080 AXCONF_CHANAX_NAME_TAB[4] = WZM
MD20080 AXCONF_CHANAX_NAME_TAB[5] = S1

MD30300 IS_ROT_AX[3] = 1
MD30300 IS_ROT_AX[4] = 1
MD30300 IS_ROT_AX[5] = 1

MD30310 ROT_IS_MODULO[3] = 1
MD30310 ROT_IS_MODULO[4] = 1
MD30310 ROT_IS_MODULO[5] = 1

MD30320 DISPLAY_IS_MODULO[3] = 1
MD30320 DISPLAY_IS_MODULO[4] = 1

 K2: Axis Types, Coordinate Systems, Frames
 9.8 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 779

Machine data Value
MD20090 SPIND_DEF_MASTER_SPIND = 1

MD35000 SPIND_ASSIGN_TO_MACHAX[AX1] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX2] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX3] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX4] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX5] = 0
MD35000 SPIND_ASSIGN_TO_MACHAX[AX6] = 1

9.8.2 Coordinate systems

Configuring a global basic frame
An NC with 2 channels is required. The following applies:

● The global basic frame can then be written by either channel.

● The other channel recognizes this change when the global basic frame is reactivated.

● The global basic frame can be read by either channel.

● Either channel can activate the global basic frame for that channel.

Machine data

Machine data Value
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[0]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[1]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[2]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[3]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[4]
MD10000 $MN_AXCONF_MACHAX_NAME_TAB[5]

= X1
= X2
= X3
= X4
= X5
= X6

MD18602 $MN_MM_NUM_GLOBAL_BASE_FRAMES = 1
MD28081 $MC_MM_NUM_BASE_FRAMES = 1

K2: Axis Types, Coordinate Systems, Frames
9.8 Examples

 Basic Functions
780 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Machine data for channel 1 Value Machine data for channel 1 Value
$MC_AXCONF_CHANAX_NAME_TAB[0]
$MC_AXCONF_CHANAX_NAME_TAB[1]
$MC_AXCONF_CHANAX_NAME_TAB[2]

=X
=Y
=Z

 $MC_AXCONF_CHANAX_NAME_TAB[0]
$MC_AXCONF_CHANAX_NAME_TAB[1]
$MC_AXCONF_CHANAX_NAME_TAB[2]

=X
=Y
=Z

$MC_AXCONF_MACHAX_USED[0]
$MC_AXCONF_MACHAX_USED[1]
$MC_AXCONF_MACHAX_USED[2]

= 1
= 2
= 3

 $MC_AXCONF_MACHAX_USED[0]
$MC_AXCONF_MACHAX_USED[1]
$MC_AXCONF_MACHAX_USED[2]

= 4
= 5
= 6

$MC_AXCONF_GEOAX_NAME_TAB[0]
$MC_AXCONF_GEOAX_NAME_TAB[1]
$MC_AXCONF_GEOAX_NAME_TAB[2]

=X
=Y
=Z

 $MC_AXCONF_GEOAX_NAME_TAB[0]
$MC_AXCONF_GEOAX_NAME_TAB[1]
$MC_AXCONF_GEOAX_NAME_TAB[2]

=X
=Y
=Z

$MC_AXCONF_GEOAX_ASSIGN_TAB[0]
$MC_AXCONF_GEOAX_ASSIGN_TAB[1]
$MC_AXCONF_GEOAX_ASSIGN_TAB[2]

= 1
= 2
= 3

 $MC_AXCONF_GEOAX_ASSIGN_TAB[0]
$MC_AXCONF_GEOAX_ASSIGN_TAB[1]
$MC_AXCONF_GEOAX_ASSIGN_TAB[2]

= 4
= 5
= 6

Part program in first channel

Code (excerpt) Comment

. . .

N100 $P_NCBFR[0] = CTRANS(x, 10) ; Activation of the NC global basic frame

. . .

N130 $P_NCBFRAME[0] = CROT(X, 45) ; Activation of the NC global basic frame with rotation =>

alarm 18310, since rotations of NC global frames

are not permitted

. . .

Part program in second channel

Code (excerpt) Comment

. . .

N100 $P_NCBFR[0] = CTRANS(x, 10) ; The NCU global basic frame is also active in second

channel.

. . .

N510 G500 X10 ; Activate basic frame

N520 $P_CHBFRAME[0] = CTRANS(x, 10) ; Current frame of second channel is activated with an

offset.

. . .

 K2: Axis Types, Coordinate Systems, Frames
 9.8 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 781

9.8.3 Frames

Example 1
The channel axis is to become a geometry axis through geometry axis substitution.

The substitution is to give the programmable frame a translation component of 10 in the X
axis.

The current settable frame is to be retained:

FRAME_GEOX_CHANGE_MODE = 1

$P_UIFR[1] =

CROT(x,10,y,20,z,30)

; Frame is retained after geo axis substitution.

G54 ; Settable frame becomes active.

TRANS a10 ; Axial offset of a is also substituted.

GEOAX(1, a) ; a becomes x axis.

 ; $P_ACTFRAME= CROT(x,10,y,20,z,30):CTRANS(x10)

Several channel axes can become geometry axes on a transformation change.

Example 2
Channel axes 4, 5 and 6 become the geometry axes of a 5axis orientation transformation.
The geometry axes are thus all substituted before the transformation.

The current frames are changed when the transformation is activated.

The axial frame components of the channel axes, which become geometry axes, are taken
into account when calculating the new WCS. Rotations programmed before the
transformation are retained. The old WCS is restored when the transformation is
deactivated.

The most common application will be that the geometry axes do not change before and after
the transformation and that the frames are to stay as they were before the transformation.

Machine data:

$MN_FRAME_GEOAX_CHANGE_MODE = 1

$MC_AXCONF_CHANAX_NAME_TAB[0] = "CAX"
$MC_AXCONF_CHANAX_NAME_TAB[1] = "CAY"
$MC_AXCONF_CHANAX_NAME_TAB[2] = "CAZ"
$MC_AXCONF_CHANAX_NAME_TAB[3] = "A"
$MC_AXCONF_CHANAX_NAME_TAB[4] = "B"
$MC_AXCONF_CHANAX_NAME_TAB[5] = "C"

K2: Axis Types, Coordinate Systems, Frames
9.8 Examples

 Basic Functions
782 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

$MC_AXCONF_GEOAX_ASSIGN_TAB[0] = 1
$MC_AXCONF_GEOAX_ASSIGN_TAB[1] = 2
$MC_AXCONF_GEOAX_ASSIGN_TAB[2] = 3

$MC_AXCONF_GEOAX_NAME_TAB[0] = "X"
$MC_AXCONF_GEOAX_NAME_TAB[1]="Y"
$MC_AXCONF_GEOAX_NAME_TAB[2] = "Z"

$MC_TRAFO_GEOAX_ASSIGN_TAB_1[0]=4
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[1]=5
$MC_TRAFO_GEOAX_ASSIGN_TAB_1[2]=6

$MC_TRAFO_AXES_IN_1[0] = 4
$MC_TRAFO_AXES_IN_1[1] = 5
$MC_TRAFO_AXES_IN_1[2] = 6
$MC_TRAFO_AXES_IN_1[3] = 1
$MC_TRAFO_AXES_IN_1[4] = 2

Program:

$P_NCBFRAME[0] = ctrans(x,1,y,2,z,3,a,4,b,5,c,6)

$P_CHBFRAME[0] = ctrans(x,1,y,2,z,3,a,4,b,5,c,6)

$P_IFRAME = ctrans(x,1,y,2,z,3,a,4,b,5,c,6):crot(z,45)

$P_PFRAME = ctrans(x,1,y,2,z,3,a,4,b,5,c,6):crot(x,10,y,20,z,30)

TRAORI ; Geo axis (4,5,6) sets transformer

 ; $P_NCBFRAME[0] =

ctrans(x,4,y,5,z,6,cax,1,cay,2,caz,3)

 ; $P_ACTBFRAME =

ctrans(x,8,y,10,z,12,cax,2,cay,4,caz,6)

 ; $P_PFRAME = ctrans(x,4,y,5,z,6,cax,1,cay,2,caz,3):

 ; crot(x,10,y,20,z,30)

 ; $P_IFRAME =

ctrans(x,4,y,5,z,6,cax,1,cay,2,caz,3):crot(z,45)

TRAFOOF; ; Geo axis (1,2,3) sets transformation deactivation

 ; $P_NCBFRAME[0] = ctrans(x,1,y,2,z,3,a,4,b,5,c,6)

 ; $P_CHBFRAME[0] = ctrans(x,1,y,2,z,3,a,4,b,5,c,6)

 ; $P_IFRAME =

ctrans(x,1,y,2,z,3,a,4,b,5,c,6):crot(z,45)

 ; $P_PFRAME =

ctrans(x,1,y,2,z,3,a,4,b,5,c,6):crot(x,10,y,20,z,30)

 K2: Axis Types, Coordinate Systems, Frames
 9.9 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 783

9.9 Data lists

9.9.1 Machine data

9.9.1.1 Displaying machine data

Number Identifier: $MM_ Description
SINUMERIK Operate

9242 MA_STAT_DISPLAY_BASE Numerical basis for display of moving
joint STAT

9243 MA_TU_DISPLAY_BASE Numerical basis for display of rotary
axis position TU

9244 MA_ORIAXES_EULER_ANGLE_NAME Display of orientation axes as Euler
angle

9245 MA_PRESET_FRAMEIDX Value storage scratching and
PRESET

9247 USER_CLASS_BASE_ZERO_OFF_PA Availability of basic offset in
"Parameters" operating area

9248 USER_CLASS_BASE_ZERO_OFF_MA Availability of basic offset in Machine
operating area

9424 MA_COORDINATE_SYSTEM Coordinate system for actualvalue
display

9440 ACTIVE_SEL_USER_DATA Active data (frames) are immediately
operative after editing

9449 WRITE_TOA_LIMIT_MASK Applicability of MD9203 to edge data
and locationdependent offsets

9450 MM_WRITE_TOA_FINE_LIMIT Limit value for wear fine
9451 MM_WRITE_ZOA_FINE_LIMIT Limit value for offset fine

9.9.1.2 NC-specific machine data

Number Identifier: $MN_ Description
10000 AXCONF_MACHAX_NAME_TAB Machine axis name
10600 FRAME_ANGLE_INPUT_MODE Sequence of rotation in the frame
10602 FRAME_GEOAX_CHANGE_MODE Frames and switchover of geometry axes
10610 MIRROR_REF_AX Reference axis for mirroring
10612 MIRROR_TOGGLE Change over mirror
10613 NCBFRAME_RESET_MASK ActiveNCU-global basic frame after reset
10615 NCBFRAME_POWERON_MASK Reset global basic frames after Power On

K2: Axis Types, Coordinate Systems, Frames
9.9 Data lists

 Basic Functions
784 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Number Identifier: $MN_ Description
10617 FRAME_SAVE_MASK Behavior of frames for SAVE subprograms
10650 IPO_PARAM_NAME_TAB Name of interpolation parameters
10660 INTERMEDIATE_POINT_NAME_TAB Name of intermediate point coordinates for G2/G3
11640 ENABLE_CHAN_AX_GAP Channel axis gaps are allowed
18600 MM_FRAME_FINE_TRANS Fine offset for FRAME (SRAM)
18601 MM_NUM_GLOBAL_USER_FRAMES Number of globally predefined user frames (SRAM)
18602 MM_NUM_GLOBAL_BASE_FRAMES Number of global basic frames (SRAM)

9.9.1.3 Channel-specific machine data

Number Identifier: $MC_ Description
20050 AXCONF_GEOAX_ASSIGN_TAB Assignment geometry axis to channel axis
20060 AXCONF_GEOAX_NAME_TAB Geometry axis name in channel
20070 AXCONF_MACHAX_USED Machine axis number valid in channel
20080 AXCONF_CHANAX_NAME_TAB Channel axis name in the channel
20110 RESET_MODE_MASK Definition of basic control settings after RESET / TP

end
20118 GEOAX_CHANGE_RESET Allow automatic geometry axis change
20126 TOOL_CARRIER_RESET_VALUE Active toolholder on RESET
20140 TRAFO_RESET_VALUE Transformation record on power-up (RESET / TP-

End)
20150 GCODE_RESET_VALUES Initial setting of the G groups
20152 GCODE_RESET_MODE RESET response of the G groups
20184 TOCARR_BASE_FRAME_NUMBER Number of the basic frame for pickup of the table

offset
21015 INVOLUTE_RADIUS_DELTA End point monitoring for evolvents (involutes)
22532 GEOAX_CHANGE_M_CODE M code for replacement of geometry axes
22534 TRAFO_CHANGE_M_CODE M code for transformation change
24000 FRAME_ADD_COMPONENTS Frame components for G58 and G59
24002 CHBFRAME_RESET_MASK RESET response of channel-specific basic frames
24004 CHBFRAME_POWERON_MASK Reset channel-specific basic frames after Power On
24006 CHSFRAME_RESET_MASK Active system frames after reset
24007 CHSFRAME_RESET_CLEAR_MASK Clear system frames on RESET
24008 CHSFRAME_POWERON_MASK Reset system frames after POWER ON
24010 PFRAME_RESET_MODE RESET mode for programmable frame
24020 FRAME_SUPPRESS_MODE Positions for frame suppression
24030 FRAME_ACT_SET SZS coordinate system setting
24040 FRAME_ADAPT_MODE Adapting active frames

 K2: Axis Types, Coordinate Systems, Frames
 9.9 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 785

Number Identifier: $MC_ Description
24050 FRAME_SAA_MODE Saving and activating data management frames
24805 TRACYL_ROT_AX_FRAME_1 Rotary axis offset TRACYL 1
24855 TRACYL_ROT_AX_FRAME_2 Rotary axis offset TRACYL 2
24905 TRANSMIT_ROT_AX_FRAME_1 Rotary axis offset TRANSMIT1
24955 TRANSMIT_ROT_AX_FRAME_2 Rotary axis offset TRANSMIT2
28080 MM_NUM_USER_FRAMES Number of settable Frames (SRAM)
28081 MM_NUM_BASE_FRAMES Number of basic frames
28082 MM_SYSTEM_FRAME_FRAMES System frames (SRAM)
28560 MM_SEARCH_RUN_RESTORE_MODE Restore data after a simulation

9.9.1.4 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
32074 FRAME_OR_CORRPOS_NOTALLOWED FRAME or HL offset is not permitted
35000 SPIND_ASSIGN_TO_MACHAX Assignment spindle to machine axis

9.9.2 Setting data

9.9.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42440 FRAME_OFFSET_INCR_PROG Work offsets in frames
42980 TOFRAME_MODE Frame definition for TOFRAME, TOROT and PAROT

9.9.3 System variables

Identifier Description
$AA_ETRANS[axis] External zero offset
$AA_IBN[axis] Actual value in basic zero coordinate system (BZS)
$AA_IEN[axis] Actual value in settable zero point coordinate system (SZS)
$AA_OFF[axis] Overlaid motion for programmed axis
$AC_DRF[axis] Handwheel override of an axis
$AC_JOG_COORD Coordinate system for manual traversing
$P_ACSFRAME Active frame between BCS and SZS

K2: Axis Types, Coordinate Systems, Frames
9.9 Data lists

 Basic Functions
786 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Identifier Description
$P_ACTBFRAME Active complete basic frame
$P_ACTFRAME Active complete frame
$P_BFRAME 1st active basic frame in the channel. Corresponds to $P_CHBFRAME
$P_CHBFR[n] Active basic frame in the channel, can be activated via G500, G54...G599
$P_CHBFRAME[n] Active basic frame in the channel

0 to 15 NCU basic frames can be set through:
MD28081 MM_NUM_BASE_FRAMES

$P_CHBFRMASK Basic frame mask in the channel
$P_CHSFRMASK System frame mask
$P_CYCFR Active system frame for cycles
$P_CYCFRAME Active system frame for cycles
$P_EXTFR System frame for external zero offset in data management
$P_EXTFRAME Active system frame for external zero offset
$P_IFRAME Active settable frame
$P_ISO1FR Data management frame for ISO G51.1 Mirroring
$P_ISO2FR Data management frame for ISO G68 2DROT
$P_ISO3FR Data management frame for ISO G68 3DROT
$P_ISO4FR System frame for ISO G51 Scale
$P_ISO1FRAME Active system frame for ISO G51.1 Mirroring
$P_ISO2FRAME Active system frame for ISO G68 2DROT
$P_ISO3FRAME Active system frame for ISO G68 3DROT
$P_ISO4FRAME Active system frame for ISO G51 Scale
$P_NCBFR[n] Global basic frame of the data management, can be activated via G500,

G54...G599
$P_NCBFRAME[n] Current NCU basic frame

0 to 15 NCU basic frames can be set through:
MD18602 MM_NUM_GLOBAL_BASE_FRAMES

$P_NCBFRMASK Global basic frame mask
$P_PARTFR Data management frame for TCARR and PAROT
$P_PARTFRAME Active system frame for TCARR and PAROT with orientational toolholder
$P_PFRAME Programmable frame
$P_SETFR Data management frame for actual value setting
$P_SETFRAME Active system frame for actual value setting
$P_TOOLFR Data management frame for TOROT and TOFRAME
$P_TOOLFRAME Active system frame for TOROT and TOFRAME
$P_TRAFRAME Data management frame for transformations
$P_TRAFRAME Active system frame for transformations
$P_UBFR 1st basic frame in the channel in the data management that is activated

after G500, G54...G599. Corresponds to $P_CHBFR[0].
$P_UIFR[n] Settable data management frames, can be activated via G500, G54...G599

 K2: Axis Types, Coordinate Systems, Frames
 9.9 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 787

Identifier Description
$P_UIFRNUM Number of active settable frame $P_UIFR
$P_WPFR Data management frame for the workpiece
$P_WPFRAME Active system frame for the workpiece

$AA_ETRANS[X]

$AA_ETRANS[X] is an axis-specific system variable of the DOUBLE type. The default
setting in the system for this variable is zero.

Values set by the user are activated through the NC/PLC interface signal:

DB31, ... DBX3.0 (external zero offset)

9.9.4 Signals

9.9.4.1 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
T function modification DB21,DBX61.0-.2 -
D function modification DB21,DBX62.0-.2 -
T function 1 DB21,DBB118-119 DB2500.DBD2000
D function 2 DB21,DBB129 DB2500.DBD5000
Number of active function G group 1 8 (bit int) DB21,DBB208 DB3500.DBB0
Number of active function G group 2 8 (bit int) DB21,DBB209 DB3500.DBB1
... ... …
Number of active function G group 29 8 (bit int) DB21,DBB236 DB3500.DBB28

9.9.4.2 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Accept zero offset external DB31,DBX3.0 -

9.9.4.3 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Spindle/no axis DB31,DBX60.0 DB390x.DBX0.0

K2: Axis Types, Coordinate Systems, Frames
9.9 Data lists

 Basic Functions
788 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 789

N2: Emergency stop 10
10.1 Brief Description

Function
The control system supports the machine manufacturer in implementing an emergency stop
function on the basis of the following functions:

● An emergency stop button is installed in a location easily accessible to the machine
operator on all SINUMERIK machine control panels. The functionality of the emergency
stop button includes the positive opening of electrical switching contacts and a
mechanical self-activating latching/locking.

● The emergency stop request to the NC is transmitted via the NC/PLC interface on the
PLC.

● The Emergency Stop function must bring the machine to a standstill according to stop
category 0 or 1 (EN 60204).

● In the case of an emergency stop, all machine functions controlled by the PLC can be
brought to a safe state that can be set by the machine manufacturer.

● Unlatching the emergency stop button does not cancel the emergency stop state nor
does it initiate a restart.

● After the emergency stop state has been canceled, it is not necessary to reference the
machine axes or synchronize the spindles. The actual positions of the machine axes are
continuously tracked during the emergency stop sequence.

10.2 Relevant standards

Relevant standards
Compliance with the following standards is essential for the emergency stop function:

● EN ISO 12000-1

● EN ISO 12000-2

● EN 418

● EN 60204

N2: Emergency stop
10.2 Relevant standards

 Basic Functions
790 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Emergency stop
In accordance with EN 418, an emergency stop is a function that:

● Is intended to prevent or diminish developing or existing risks to operating personnel, and
damage to the machine or machined materials.

● Is triggered by a single action of a person, if the normal stop function is not suitable for it.

Hazards
In the terms of EN 418, risks may arise from:

● Functional irregularities (machine malfunctions, unacceptable properties of the material to
be machined, human error, etc.).

● Normal operation.

Stadard EN ISO 12000-2
In accordance with the basic safety requirement of the EC Machinery Directive regarding
emergency stop, machines must be equipped with an energency stop device.

Exceptions

No emergency stop device is required on machines:

● Where an emergency stop device would not reduce the risk, either because the shutdown
time would not be reduced or because the measures to be taken would not be suitable for
controlling the risk.

● That are held and operated manually.

 Note

The machine manufacturer is expressly directed to comply with the national and
international standards. The SINUMERIK controllers support the machine manufacturer
in the implementation of the emergency stop function according to the specifications in
the following function description. But the responsibility for the emergency stop function
(its triggering, sequence and acknowledgement) rests exclusively with the machine
manufacturer.

 N2: Emergency stop
 10.3 Emergency stop control elements

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 791

10.3 Emergency stop control elements

Emergency stop control elements
In accordance with EN 418, emergency stop control elements must be designed so that they
latch mechanically on their own and are easy for the operator and others to actuate in the
event of an emergency.

The following list includes some possible types of control elements:

● Mushroom pushbutton switches

● Wires/cables, cords, rods

● Puller grips

● In special cases: Foot switches without protective covers

Emergency stop button and control
Actuation of the emergency stop button or a signal derived directly from the button must be
routed to the controller (PLC) as a PLC input. In the PLC user program, this PLC input must
be forwarded to the NC on the interface signal:

DB10 DBX56.1 (Emergency stop)

Resetting of the emergency stop button or a signal derived directly from the button must be
routed to the controller (PLC) as a PLC input. In the PLC user program, this PLC input must
be forwarded to the NC on the interface signal:

DB10 DBX56.2 (Acknowledge emergency stop)

Connection conditions
For connecting the emergency stop button see:
References:
Operator Components Manual

N2: Emergency stop
10.4 Emergency stop sequence

 Basic Functions
792 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

10.4 Emergency stop sequence
After actuation of the emergency stop control element, the emergency stop device must
operate in the best possible way to prevent or minimize the danger.

"In the best possible way" means that the most favorable delay rate can be selected and the
correct stop category (defined in EN 60204) can be determined according to a risk
assessment.

Emergency stop sequence in the NC
The predefined (in EN 418) sequence of internal functions implemented to obtain the
emergency stop state is as follows in the control system:

1. Part program execution is interrupted.

All machine axes are braked in the relevant axis-specific parameterized time:

MD36610 $MA_AX_EMERGENCY_STOP_TIME (time of braking ramp in event of errors)

The maximum braking ramp that can be achieved thereby, is defned by the maximum
brake current of the respective drive. The maximum brake current is achieved by setting a
setpoint = 0 (fast braking).

2. Reset interface signal:

DB11 DBX6.3 (Mode group ready)

3. Set the interface signal:

DB10 DBX106.1 (emergency stop active)

4. Alarm 3000 "Emergency stop" is displayed.

5. After the expiry of a paramaterized delay time, the servo enables of machine axes are
reset.

The setting of the delay time is programmed in machine data:

MD36620 $MA_SERVO_DISABLE_DELAY_TIME (OFF delay of the controller enable)

The following setting rule must be observed: MD36620 ≥ MD36610

6. All machine axes are switched in the follow-up mode within the controller.

The machine axes are no longer in position control.

 N2: Emergency stop
 10.4 Emergency stop sequence

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 793

Emergency stop sequence at the machine
The emergency stop sequence on the machine is determined solely by the machine
manufacturer.

Attention should be paid to the following points in connection to the sequence on the NC:

● The process in the NC is started using the interface signal:

DB10 DBX56.1 (Emergency stop)

After the machine axes have come to a standstill, the power supply must be interrupted,
in compliance with EN 418.

 Note

The responsibility for interrupting the power supply rests with the machine manufacturer.

● The digital and analog outputs of the PLC I/O are not influenced by the emergency stop
sequence in the NC.

If individual outputs are required to attain a particular state or voltage level in the event of
an emergency stop, the machine manufacturer must implement this in the PLC user
program.

● The fast digital outputs of the NCK I/O system are not influenced by the emergency stop
sequence in the NC.

If individual outputs must assume a specific state in case of emergency stop, the machine
manufacturer must transmit the desired state to the NC in the PLC user program via
interface signals:

DB10 DBB4-7

 Note

If the sequence in the NC is not to be executed as described above, then the interface
signal DB10 DBX56.1 (emergency stop) must not be set until an emergency stop state
defined by the machine manufacturer in the PLC user program is reached.

As long as the interface signal is not set and no other alarm is pending, all interface
signals are operative in the NC. Any emergency stop state defined by the manufacturer
(including axis-, spindle- and channel-specific emergency stop states) can therefore be
assumed.

N2: Emergency stop
10.5 Emergency stop acknowledgement

 Basic Functions
794 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

10.5 Emergency stop acknowledgement
The emergency stop control element may only be reset as a result of manual manipulation of
the emergency stop control element according to EN 418.

Resetting of the emergency stop control element alone must not trigger a restart command.

A machine restart must be impossible until all of the actuated emergency stop control
elements have been deliberately reset by hand.

Emergency stop acknowledgement
The EMERGENCY STOP state is only reset if the interface signal:DB10 DBX56.2
(acknowledge EMERGENCY STOP) is set followed by the interface signal:DB11, ... DBX0.7
(mode group reset).

Hence it can be noted that the interface signal DB10 DBX56.2 (acknowledge emergency
stop) and the interface signal DB21, ... DBX7.7 (Reset) together are set at least for so long
until the interface signal DB10 DBX106.1(emergency stop active) is reset.

 Note

The emergency stop state cannot be reset with the interface signal DB21, ... DBX7.7 (Reset)
alone.

1

2

3

(1) DB10 DBX56.2 (acknowledge emergency stop) is inoperative
(2) DB21, ... DBX7.7 (Reset) is inoperative
(3) DB10 DBX56.2 and DB21, ... DBX7.7 reset DB10 DBX106.1 (emergency stop active)

Figure 10-1 Resetting the emergency stop state

 N2: Emergency stop
 10.5 Emergency stop acknowledgement

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 795

Effects
Resetting the emergency stop state has the following effects:

● Within the controller for all machine axes:

– The servo enables are set.

– The follow-up mode is canceled.

– The position control is activated.

● The following interface signals are set:

DB31, ... DBX60.5 (position control active)

DB11 DBX6.3 (mode group ready)

● The following interface signal is reset:

DB10 DBX106.1 (emergency stop active)

● Alarm 3000 "Emergency stop" is deleted.

● Part program processing is interrupted in all channels of the NC.

PLC and NCK I/Os
The PLC user program must switch the PLC and NCK I/Os back to the state for operation of
the machine.

POWER OFF / ON (supply off / on)
The emergency stop state can also be reset by switching the controller off and back on
(POWER OFF / ON).

Requirement:

During power-up of the controller the interface signal DB10 DBX56.1 (emergency stop) must
not be set.

N2: Emergency stop
10.6 Data lists

 Basic Functions
796 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

10.6 Data lists

10.6.1 Machine data

10.6.1.1 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
36610 AX_EMERGENCY_STOP_TIME Length of the braking ramp for error states
36620 SERVO_DISABLE_DELAY_TIME Cutout delay servo enable

10.6.2 Signals

10.6.2.1 Signals to NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Emergency stop DB10.DBX56.1 DB2600.DBX0.1
Acknowledge Emergency Stop DB10.DBX56.2 DB2600.DBX0.2

10.6.2.2 Signals from NC

Signal name SINUMERIK 840D sl SINUMERIK 828D
Emergency stop active DB10.DBX106.1 DB2700.DBX0.1

10.6.2.3 Signals to BAG

Signal name SINUMERIK 840D sl SINUMERIK 828D
Mode group RESET DB11.DBX0.7 DB3000.DBX0.7

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 797

P1: Transverse axes 11
11.1 Brief description

Transverse axis
Within the framework of "turning" technology, the transverse axis refers to the machine axis
that travels perpendicular to the axis of symmetry of the spindle, in other words, to
longitudinal axis Z.

Figure 11-1 Position of the transverse axis in the machine coordinate system

Properties
● Every geometry axis of a channel can be defined as a transverse axis.

● A transverse axis is a linear axis for the following functions, which can be permitted and
activated at the same time or separately:

– Programming and display in the diameter

– Reference axis for constant cutting speed G96/G961/G962

P1: Transverse axes
11.1 Brief description

 Basic Functions
798 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Several transverse axes in the channel
The introduction several transverse axes in the channel involves a functional decoupling of
diameter programming and reference axis for G96/G961/G962. Diameter programming and
reference axis for G96/G961/G962 can be active for different transverse axes (see table
below).

 Programming and display

in the diameter
Reference axis for
G96/G961/G962

Permissible axis type: Geometry axis Linear channel
axes

Geometry axis

Selection in the channel: one m of 3 m of n one one of 3
Specific effect:
Machine data:

Channel
MD20100

Axis
MD30460

Channel
MD20100

Programming: DIAM*
channel-specific modal
G group 29

SCC[AX]
channel-specific modal
Reference axis for G96/G961/G962

Acceptance during axis
replacement:

DIAM*A[AX]
axis-specific modal

Axis-specific non-modal
diametral/radius
programming:

DAC, DIC; RAC, RIC
blockwise axis-specific only programming

DIAM*: DIAMOF, DIAMON, DIAM90, DIAMCYCOF
DIAM*A[AX]: DIAMOFA[AX], DIAMONA[AX], DIAM90A[AX], DIACYCOFA[AX], DIAMCHANA[AX]
AX: Axis name for geometry, channel or machine axis name

 Note

Rotary axes are not permitted to serve as transverse axes.

Programming the transverse paths
The traverse paths of a transverse axis programmed in the part program may be either
radius- or diameter-based. It is possible to switch between the two reference types with the
part program commands DIAMON (DIAMeter ON = diameter) and DIAMOF (DIAMeter OF =
radius). In this way, dimensional information can be taken directly from the technical drawing
without conversion.

Active parts program

When the part program DIAMON (dimensional information as diameter) is active, the following
is true for the transverse axis:

● The setpoint and actual values that refer to the workpiece coordinate system are
displayed as diameter values.

● System variables for setpoints and actual values that refer to the workpiece coordinate
system contain diameter values.

 P1: Transverse axes
 11.2 Defining a geometry axis as transverse axis

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 799

● Offsets are entered, programmed and displayed in radius format.

● Programmed end positions are converted to radius values internally.

● The absolute interpolation parameters (e.g. I, J, K) for circular interpolation (G2 and G3)
are converted to radius values internally.

● Measurement results that were determined by touch trigger probe in the workpiece
coordinate system are stored as diameter measurements.

● Setpoints and actual values can be read in diameter format in the WCS with the aid of
system variables.

When the part program command DIAMOF (dimensional information as radius) is active, the
above-mentioned data is always entered, programmed, internally stored, read or displayed
as radius data.

11.2 Defining a geometry axis as transverse axis

Definition of a transversing axis in the channel
The definition of one geometry axis as transverse axis is realized using machine data:

MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function)

Example:

MD20100 $MC_DIAMETER_AX_DEF="X" ; geometry axis X is the transverse axis in the

channel.

For this axis, diameter programming and assigning a constant cutting speed with
G96/G961/G962 are both permitted.

Several transverse axes in the channel
The axis-specific machine data:
MD30460 BASE_FUNCTION_MASK (axis functions)
allows the definition of additional transverse axes, for which the functionality of the axis-
specific diameter programming is permitted:

Bit Value Meaning

0 Axis-specific diameter programming is not permitted. 2
1 Axis-specific diameter programming is permitted.

 Note

The setting MD30460 bit 2 = 1 is only possible for linear axes.

P1: Transverse axes
11.2 Defining a geometry axis as transverse axis

 Basic Functions
800 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

An axis can be simultaneously defined in MD20100 and in MD30460 (bit 2). For this, the
channel-specific MD20100 has a higher priority than the axis-specific MD30460.

With:

● MD20100, the function G96/G961/G962 is assigned to the transverse axis during power
up.

● MD20100, the channel-specific diameter programming DIAMON, DIAMOF, DIAM90,
DIAMCYCOF is assigned to the transverse axis during power up.

After power up, this axis has the axis-specific basic position DIAMCHANA[AX].

● MD30460 bit2 the additional enabling of the axis-specific operations DIAMONA[AX],
DIAMOFA[AX], DIAM90A[AX], DIACYCOFA[AX], DIMCHANA[AX].

Channel-specific basic position after power up, RESET
The channel-specific basic position after power up or RESET or end of parts program of the
G group 29: DIAMON, DIAM90, DIAMOF, DIAMCYCOF define the

MD20150 $MC_GCODE_RESET_VALUE
and independently of
MD20110 $MC_RESET_MODE_MASK / bit0 the MD20152 $MC_GCODE_RESET_MODE.

The user can set the respective desired status via an event-controlled program call (prog-
event).

If G96/G961/G962 is the basic position after power up, a transverse axis must be defined
using MD20100 $MC_DIAMETER_AX_DEF, otherwise the alarm message 10870 is output.

Reference axis for G96/G961/G962 retained:

MD20110 $MC_RESET_MODE_MASK, bit 18=1 for RESET or end of parts program

MD20112 $MC_START_MODE_MASK, bit 18=1 for start of parts program

A reference axis for G96/G961/G962 can also be assigned without application of a
transverse axis in MD20100 via SCC[AX]. For this scenario, the constant cutting speed
cannot be activated with G96. For additional information, see:
Reference
Programming Manual Fundamentals, Feedrate Control and Spindle Motion
"Constant Cutting Speed (G96, G961, G962, G97, G971, LIMS, ACC[AX])"

 P1: Transverse axes
 11.3 Dimensional information for transverse axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 801

11.3 Dimensional information for transverse axes
Transverse axes can be programmed with respect to both diameter and radius. Generally,
they are diameter-related, i.e. programmed with doubled path dimension so that the
corresponding dimensional information can be transferred to the part program directly from
the technical drawings.

Figure 11-2 Transverse axis with diameter information (D1, D2)

Switching the diameter programming on/off
Channel-specific diameter programming

The activating or deactivating of the diameter programming is done via the modally active
parts program statements of the G group 29:

● DIAMON: Diameter programming ON

● DIAMOF: Diameter programming OFF, in other words, radius programming ON

● DIAM90: Diameter or radius programming depending on the reference mode:

– Diameter programming ON in connection with absolute dimensioning G90

– Radius programming ON in connection with incremental dimensioning G91

● DIAMCYCOF: Radius programming for G90 and G91 ON , for the HMI, the last active G code
of this group remains active

Reference is made exclusively to the transverse axis of the channel.

P1: Transverse axes
11.3 Dimensional information for transverse axes

 Basic Functions
802 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Axis-specific diameter programming for several transverse axes in one channel

 Note

The additionally specified axis must be activated via MD30460
$MA_BASE_FUNCTION_MASK with bit2=1.

The axis specified must be a known axis in the channel. Geometry, channel or machine axes
are permitted.
Programming is not permitted in synchronized actions.

The following axis-specific modal statements can be programmed several times in a parts
program block:

● DIAMONA[Axis]: Diameter programming for G90, G91 AC and IC ON

● DIAMOFA[Axis]: Diameter programming OFF, in other words, radius programming ON

● DIAM90A[axis]: Diameter or radius programming depending on the reference mode:

– Diameter programming ON in connection with absolute dimensioning G90 and AC

– Radius programming ON in connection with incremental dimensioning G91 and IC

● DIACYCOFA[axis]: Radius programming for G90 and G91 ON , for the HMI, the last active G
code of this group remains active

● DIAMCHANA[axis]: Acceptance of diameter programming channel status

● DIAMCHAN: all axes with MD30460, bit2=1 accept the diameter programming channel
status

Axis-specific modal statements have priority over the channel setting.

Acceptance of the additional transverse axis in the channel
Due to a GET request from the parts program, the diameter programming status for an
additional transverse axis is accepted in the new channel during axis replacement using
RELEASE[axis].

Axis replacement in synchronized actions

For axis replacement in synchronized actions, a transverse axis takes the status of the axis-
specific diameter programming with it into the new channel if the following applies to the
transverse axis:

● with MD30460, bit2=1 axis-specific diameter programming is permitted.

● it is not subordinated to the channel-specific diameter programming in the releasing
channel.

The active dimension can be queried via the system variable $AA_DIAM_STAT[AX].

 P1: Transverse axes
 11.3 Dimensional information for transverse axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 803

Axis replacement via axis container rotation

By rotating the axis container, the assignment of a channel axis can change to assignment of
a machine axis. The current diameter programming status is retained however for the
channel axis after the rotation. This also applies to the current channel status and axis
status, because the status is the same for all axes of the axis container at the time of the
machine data "putting into effect" the status from MD30460 $MA_BASE_FUNCTION_MASK.

Initial setting
The following machine data is used to parameterize the initial setting:

MD20150 $MC_GCODE_RESET_VALUES [28] (initial setting of the G groups)
and independently of MD20110 $MC_RESET_MODE_MASK for bit0 the
MD20152 $MC_GCODE_RESET_MODE

Diameter-related data
After activation of the diameter programming, the following data refer to diameter
dimensions:

DIAMON/DIAMONA[AX]
● Display data of transverse axis in the workpiece coordinate system:

– Setpoint and actual position

– Distance-to-go

– REPOS Offset

● "JOG" mode:

– Increments for incremental dimension (INC) and handwheel travel (dependent upon
active MD)

● Part program programming:

– End positions, independent of reference mode (G90 / G91)

– Interpolation parameters of circular-path programming (G2 / G3) if these are
programmed with part program instruction: AC absolute.

● Actual values read with reference to the workpiece coordinate system (WCS):

– $AA_MW[Transverse axis]

System variable of the measuring functions MEAS (measuring with delete distance-to-
go) and MEAW (measuring without delete distance-to-go)

– $P_EP[Transverse axis]

– $AA_IW[Transverse axis]

P1: Transverse axes
11.3 Dimensional information for transverse axes

 Basic Functions
804 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DIAM90/DIAM90A[AX]
After activation of the reference-mode-dependent diameter programming, the following data
are always displayed in relation to diameter regardless of the operating mode (G90 / G91):

● Actual value

● Actual values read with reference to the workpiece coordinate system (WCS):

– $AA_MW[Transverse axis]

System variable of the measuring functions MEAS (measuring with delete distance-to-
go) and MEAW (measuring without delete distance-to-go)

– $P_EP[Transverse axis]

– $AA_IW[Transverse axis]

DIAMCYCOF/DIACYCOFA[AX]
Just as for DIAMCYCOF, a changeover to radius programing takes place within the controller for
DIACYCOFA[AX]. The diameter programming status that was active before DIAMCYCOF or
DIACYCOFA[AX] continues to be displayed to the HMI.

Permanently radius-related data
For transverse axes, the following data is always entered, programmed and displayed in
relation to radius:

● Offsets:

– Tool offsets

– Programmable and configurable frames

– External work offset

– DRF and preset offset

– etc.

● Working area limitation

● software limit switch

● Feed

● Display data with reference to the machine coordinate system

● Display data of the service images for axis, FSD and MSD

 P1: Transverse axes
 11.3 Dimensional information for transverse axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 805

Extended functions for data that is always radius-related:

The following applies for PLC axes, via FC18 or axes controlled exclusively from the PLC:

● The dimension for PLC axes in the radius also applies to several transverse axes with
diameter function and is independent of channel-specific or axis-specific diameter
programming.

● In the JOG mode (Inc) a PLC axis is subordinate to the channel status. If diameter
programming is active and MD20624 $MC_HANDWH_CHAN_STOP_COND bit 15 = 0,
only half the path of the specified increment is traversed.

Radius programming from MD20100 $MC_DIAMETER_AX_DEF and MD30460
$MA_BASE_FUNCTION_MASK bit 2 is taken into account as follows depending on
MD20360 $MC_TOOL_PARAMETER_DEF_MASK:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK
Bit Value Meaning
3 0 Work offset $P_EXTFRAME and frames

For transverse axes , work offsets in frames are always calculated as radius
values.

5 0 External work office (axis overlay)
For transverse axes, the external work offset is always calculated as radius value.

8 1 Display of remaining path in WCS always as a radius
9 For all transverse axes, with MD11346 $MN_HANDWH_TRUE_DISTANCE==1

0 • half of the path of the specified handwheel increment is traveled, if channel-
specific or axis-specific diameter programming is active for this axis.

1 • half of the path of the specified handwheel increment is always traveled.

13 1 When jogging around circles, the circle center point coordinate is always a radius
value, see SD42690 $SC_JOG_CIRCLE_CENTRE

14 1 For cycle masks, the absolute values of the transverse axis are in the radius.

Displaying position values in the diameter
Position values of the transverse axis are always displayed as a diameter value, if bit 0 = 1 is
set by
MD27100 $MC_ABSBLOCK_FUNCTION_MASK.

P1: Transverse axes
11.3 Dimensional information for transverse axes

 Basic Functions
806 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Dimension on several transverse axes permanent diameter-related data
Several transverse axes permitted by MD30460 $MA_BASE_FUNCTION_MASK, bit 2 = 1
do not behave differently in comparison to a transverse axis defined using MD20100
$MC_DIAMETER_AX_DEF. Diameter values continue to be converted into radius values.

According to MD20360 $MC_TOOL_PARAMETER_DEF_MASK, for all of the transverse
axes defined in the channel, the following functions can be activated as diameter:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK
Bit Value Meaning
1 1 Transverse axis tool length as a diameter
2 1 Alarm for wear or tool length as a diameter and plane change
3 1 Work offset in frames of the transverse axis as a diameter
4 1 Preset value as a diameter
5 1 External work offset of transverse as a diameter
6 1 Actual values of the transverse axis as a diameter
7 1 Display of actual values of the transverse axis as a diameter value
10 1 Tool portion of an active tool carrier that can be oriented if no tool is active
11 1 Evaluation of $TC_DP6 as a diameter
12 1 Evaluation of $TC_DP15 as wear of the tool diameter
15 1 Incremental values of the transverse axis for cycle masks as diameter

Work offset $P_EXTFRAME and frames

Bit 3 = 1: For all transverse axes
, work offsets in frames are always calculated as diameter values. The frame stores the work
offsets internally as a radius value. There is no conversion during a change of diameter, to
radius programming or vice versa.

External work offset

Bit 5 = 1: For all transverse axes,
external work offsets are always calculated as diameter values. There is no conversion
during a change of diameter, to radius programming or vice versa.

Settable response of geometry axes for traveling with handwheel
If the geometry axis is traveled as a transverse axis in the channel for handwheel traveling
MD11346 $MN_HANDWH_TRUE_DISTANCE == 1, the response of the handwheel traveling
can be changed via MD20624 $MC_HANDWH_CHAN_STOP_COND, bit15:

Bit 15 = 0: Only the half path of the specified increment is traveled.

Bit 15 = 1: The specified increment is traveled completely.

 P1: Transverse axes
 11.3 Dimensional information for transverse axes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 807

Application Examples
X is a transverse axis defined via MD20100 $MC_DIAMETER_AX_DEF.
Y is a geometry axis and U is an additional axis. These two axes are transverse axes with
specified diameter further defined in MD30460 $MA_BASE_FUNCTION_MASK with bit2=1.
DIAMON is not active after power up.

N10 G0 G90 X100 Y50 ;no diameter programming is active

N20 DIAMON ;Channel-specific diameter programming, in effect for

X

N30 Y200 X200 ;Dimensions: X in the diameter, Y in the radius

N40 DIAMONA[Y] ;axis-specific modal diameter programming,

;in effect for Y

N50 Y250 X300 ;Dimensions: X and Y in diameter

N60 DIAM90 ;Dimensions: X G90/AC in the diameter, G91/IC in the

radius

N70 Y200 ;Y: continuing, axis-specific modal diameter

programming

N75 G91 Y20 U=DIC(40) ;Dimensions: Y in the diameter, U non-modally IC in

the diameter

N80 X50 Y100 ;Dimensions: X in the radius (G91), Y in the diameter

N85 G90 X100 U200 ;Dimensions: X in the diameter, U in the radius

N90 DIAMCHANA[Y] ;Y accepts the channel status DIAM90

N95 G91 X100 Y100 ;Dimensions: X and Y in the radius(G91)

N100 G90 X200 Y200 ;Dimensions: X and Y in diameter

Example with axle replacement

Transverse axes with diameter specification applied as in the previous example.
X and Y are located in channel 1 and are also known in channel 2, i.e. permitted for axis
replacement.

Channel 1

N10 G0 G90 X100 Y50 ;no diameter programming is active

N20 DIAMON ;Channel-specific diameter programming for X

N30 Y200 X200 ;Dimensions: X in the diameter, Y in the radius

N40 DIAMONA[Y] ;Y axis-specific modal diameter programming

N50 Y250 X300 ;Dimensions: X and Y in diameter

N60 SETM(1) ;Synchronous marker 1

N70 WAIT(1,2) ;wait for synchronous marker 1 in channel 2

Channel 2

...

N50 DIAMOF ;channel 2 no diameter programming active

...

N100 WAIT(1,1) ;wait for synchronous marker 1 in channel 1

N110 GETD(Y) ;Axis replacement direct Y

N120 Y100 ;Y the channel-specific diameter programming

;subordinated in channel 2, i.e. dimension in the radius

P1: Transverse axes
11.4 Data lists

 Basic Functions
808 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

11.4 Data lists

11.4.1 Machine data

11.4.1.1 Channelspecific machine data

Number Identifier: $MC_ Description
20050 AXCONF_GEOAX_ASSIGN_TAB[n] Assignment of geometry axis to channel axis
20060 AXCONF_GEOAX_NAME_TAB[n] Geometry axis name in channel
20100 DIAMETER_AX_DEF Geometry axis with transverse axis function
20110 RESET_MODE_MASK Definition of control basic setting after powerup and RESET /

part program end
20112 START_MODE_MASK Definition of the control basic settings for NC start
20150 GCODE_RESET_VALUES[n] Reset G groups
20152 GCODE_RESET_MODE[n] G code basic setting at RESET/end of parts program
20360 TOOL_PARAMETER_DEF_MASK Definition of tool parameters
20624 HANDWH_CHAN_STOP_COND Definition of the behavior of traveling with handwheel
27100 ABSBLOCK_FUNCTION_MASK Parameterize block display with absolute values

11.4.1.2 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30460 BASE_FUNCTION_MASK Axis functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 809

P3: Basic PLC program for SINUMERIK 840D sl 12
12.1 Brief description

General
The PLC basic program organizes the exchange of signals and data between the PLC user
program and the NCK (Numerical Control Kernel), HMI (Human Machine Interface) and MCP
(Machine Control Panel). In the case of signals and data, a distinction is made between the
following groups:

● Cyclic signal exchange

● Event-driven signal exchange

● Messages

Cyclic signal exchange
The cyclically-exchanged signals consist primarily of bit arrays.

● They contain commands transferred from the PLC to the NCK (such as start or stop) and
status information from the NCK (such as program running, interrupted, etc.).

● The bit fields are organized into signals for:

– Mode group

– Channels

– Axes/spindles

– General NCK signals

The cyclic exchange of data is performed by the basic program at the start of the PLC cycle
(OB1). This ensures, for example, that the signals from the NCK remain constant throughout
a cycle.

Event-driven signal exchange NCK → PLC
PLC functions that have to be executed as a function of the workpiece program are triggered
by auxiliary functions in the workpiece program. If a block with auxiliary functions is
executed, the type of auxiliary function determines whether the NCK has to wait for this
function to execute (e.g. tool change) or whether the function will be executed together with
the workpiece machining process (e.g. tool loading on milling machines with chain
magazine).

Data transfer must be as fast and yet as reliable as possible, in order to minimize the effect
on the NCK machining process. Data transfer is, therefore, interrupt- and acknowledgement-
driven. The basic program evaluates the signals and data, acknowledges this to the NCK
and transfers the data to the application interface at the start of the cycle. If the data does
not require user acknowledgement, this does not affect NC processing.

P3: Basic PLC program for SINUMERIK 840D sl
12.1 Brief description

 Basic Functions
810 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Event-driven signal exchange PLC → NCK
An "event driven signal exchange PLC → NCK" takes place whenever the PLC transfers a
request to the NCK (e.g. traversal of an auxiliary axis). In this case, data transfer is also
acknowledgement-driven. When performed from the user program, this type of signal
exchange is triggered using a function block (FB) or function call (FC).

The associated FBs (Function Blocks) and FCs (Function Calls) are supplied together with
the basic program.

Messages
User messages are acquired and conditioned by the basic program. The message signals
are transferred to the basic program via a specified bit array. where they are evaluated and,
if message events occur, entered in the PLC's interrupt buffer by means of the ALARM S/SQ
functions. If an HMI (e.g. SINUMERIK Operate) is being used, the messages are transferred
to the HMI and displayed.

PLC/HMI data exchange
In this type of data exchange, the HMI takes the initiative, being referred to as the "client" on
the bus system. The HMI polls or writes data. The PLC processes these requests at the
cycle control point via the operating system. The PLC basic program is not involved in these
exchanges.

 Note

The function of the machine is largely determined by the PLC program. Every PLC program
in the RAM can be edited with the programming device.

Know-how protection for user blocks
To protect the know-how contained in the the user blocks (OB, FB and FC), they can be
encoded with the SBP tool (SIMATIC block protection) contained in SIMATIC STEP 7. These
blocks can then no longer be opened, debugged and modified without specifying the
password for the encoding.

When encoding, the automation system on whose PLC-CPU the blocks are to be executed,
must be specified: SIMATIC and/or SINUMERIK PLC-CPU.

The handling of the blocks, e.g. loading to the CPU, is not affected by the encoding.

Requirement

SIMATIC STEP 7 as of Version 5.5 SP3

 P3: Basic PLC program for SINUMERIK 840D sl
 12.2 Key data of the PLC CPU

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 811

12.2 Key data of the PLC CPU

Key data of the PLC CPU
The overview of the key data of the PLC CPU integrated in the SINUMERIK NCU can be
found in:

References

NCU 7x0.3 PN Manual, Section "Technical data"

 Note
I/O addresses for integrated drives

The I/O addresses above 4096 are reserved for the integrated drives of the NCU and must
not assigned otherwise.

Functions of the basic PLC program

Scope

Axes/spindles 31
Channels 10

Mode groups 10
Functions

Status/control signals +
M decoders (M00-99) +
G group decoders +
Aux. function distributors +
Aux. function transfer, interrupt-driven +
M decoding acc. to list +
Move axes/spindles from PLC +
ASUB interface +
Error/operating messages +
Transfer MCP and HHU signals +
Display control handheld unit +
Read/write NCK variables and GUD +
PI services +
Tool management +

Star/delta switchover +
m:n +
Safety Integrated +
Program diagnostics +

P3: Basic PLC program for SINUMERIK 840D sl
12.3 PLC operating system version

 Basic Functions
812 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.3 PLC operating system version
The PLC operating system version is displayed at:

● User interface of SINUMERIK Operate: "Operating area switchover" > "Diagnostics" >
"Version" ⇒ version data / system software NCU: Selection "PLC" > "Details" ⇒ version
data / system software NCU/PLC: The PLC operating system version is displayed in the
first line is at "PLC 3xx…".
Note
The displayed version is SINUMERIK-specific. It is not compatible with the basic
SIMATIC CPU.

● SIMATIC STEP 7, HW Config: In the properties of the PLC CPU in the SINUMERIK rack:
"Properties - CPU 3xx…" > "Order no. / firmware": xxxx / Vx.y.z
Note
The version of the basic SIMATIC CPU is displayed.

12.4 PLC mode selector
The PLC mode selector is located on the front of the NCU module. The following PLC
operating modes can be set via the PLC mode selector:

S 1) Meaning Remark
0 RUN-P The PLC program can be changed without activation of the password
1 RUN Only read access operations are possible using a programming device (PG). It

is not possible to make changes to the PLC program until the password has
been set.

2 STOP Processing the PLC program is stopped and all PLC outputs are set to
substitute values.

3 MRES The PLC is switched into the STOP state followed by a PLC general reset
(default data).

1) Switch position of the PLC mode selector

References

A detailed description of the position of the PLC mode selector on the front of the NCU
module, as well as its use in connection with NCK and PLC general reset can be found in:

CNC Commissioning Manual: NCK, PLC, Drive:

● Section "Switch-on/power-up" > "Operator control and display elements for power-up"

● Section "Switch-on/power-up" > "NCK and PLC general reset"

● Section "General tips" > "Separate NCK and PLC general reset"

 P3: Basic PLC program for SINUMERIK 840D sl
 12.5 Reserve resources (timers, counters, FC, FB, DB, I/O)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 813

12.5 Reserve resources (timers, counters, FC, FB, DB, I/O)

Reserve resources (timers, counters, FC, FB, DB, I/O)
The components below are reserved for the basic program:

● Timers

No reservation

● Counter

No reservation

● FC, FB, DB

FC 0 to FC 29 and FB 0 to FB 29 are reserved for the basic program. The number range
between 1000 and 1023 is also reserved for FCs and FBs. Data blocks DB 1 to DB 62
and DB 71 to DB 80 are reserved. The number range 1000 to 1099 is also reserved in
addition for DB. The data blocks of channels, axes/spindles and tool management
functions that are not activated may be assigned as desired by the user.

● I/O range

The PLC has an I/O address volume of 8192 bytes each for inputs and outputs. The
address ranges starting at 4096 / 4096 are reserved for/occupied by integrated drives.
However, diagnostic addresses for modules can be assigned to the highest address
range as proposed by STEP 7. Furthermore, the address range between 256 and 287 is
assigned for the NCK, CP and HMI in rack 0 on the SIMATIC 300 station.

12.6 Commissioning hardware configuration of the PLC CPU
The commissioning of the PLC CPU is described in detail in:

References

CNC Commissioning Manual: NCK, PLC, Drive:

● Section: "Connect PG/PC to PLC"

● Section: "Commissioning PLC"

● Section: "Basics" > "PLC program"

● Section: "General tips" > "Separate NCK and PLC general reset"

● Section: "General tips" > "Integrating PG/PC into the network (NetPro)"

P3: Basic PLC program for SINUMERIK 840D sl
12.7 Starting up the PLC program

 Basic Functions
814 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.7 Starting up the PLC program

12.7.1 Installation of the basic program
The installation of the basic program is described in detail in:

References

CNC Commissioning Manual: NCK, PLC, Drive; Section: "Commissioning PLC" > "Creating
a PLC program"

 Note
Installation/update

Before installing the toolbox for SINUMERIK 840D sl, SIMATIC STEP 7 must be installed.

It is recommended that the hardware expansions for STEP 7 be installed again from the
toolbox after an update of STEP 7.
Contents

The OB source programs, including standard parameterization, interface symbols and data-
block templates for the handheld unit and M decoding functions are included in the basic
program.

12.7.2 Application of the basic program
A new CPU program (e.g. "Turnma1") must be set up in a project by means of the STEP 7
software for each installation (machine).

Remark
The catalog structures of a project and the procedure for creating projects and user
programs are described in the relevant SIMATIC documentation.

Procedure
The basic program blocks are copied using the SIMATIC Manager and
"File" > "Open" > "Library".

The following components must be copied from the library:

● From the block container: FCs, FBs, DBs, OBs, SFC, SFB, UDT

● The source_files (from the source container): GPOB840D

● Possibly MDECLIST, HHU_DB and others

● The symbols table (from the symbols container)

 P3: Basic PLC program for SINUMERIK 840D sl
 12.7 Starting up the PLC program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 815

Compatibility with STEP 7
There are no dependencies between the basic program and current STEP 7 versions.

12.7.3 Version codes

Basic program
The version of the basic program is displayed on the Version screen of the user interface
along with the controller type.

The controller type is encoded as follows:

Left-justified decade of DB 17 DBD 0 (byte 0) Controller type
03 SINUMERIK 840D sl (NCU 7x0)

User program
Users can also display their own PLC version codes in the Version screen. For this purpose,
a data of type STRING containing a maximum of 54 characters must be defined in any data
block. The data can contain a text of the user's choice. Parameterizations for this string are
made via a pointer in FB 1. Parameterization requires symbolic definition of the data block.

See also section "block descriptions" > "FB 1: RUN_UP Basic program, startup section
(Page 889) ".

12.7.4 Machine program
The machine manufacturer creates the machine program using the library routines supplied
with the basic program. The machine program contains the logic operations and sequences
on the machine. The interface signals to the NC are also controlled in this program. More
complex communication functions with the NCK, e.g. read/write NC data, tool-management
acknowledgments, etc., are activated and executed via blocks FCs and FBs of the basic-
program).

The machine program can be created in various STEP 7 creation languages, e.g. AWL,
KOP, FUP, S7-HIGRAPH, S7GRAPH, SCL. The complete machine program must be
generated and compiled in the correct sequence.

This means that blocks that are called by other blocks must generally be compiled before
these blocks.

P3: Basic PLC program for SINUMERIK 840D sl
12.7 Starting up the PLC program

 Basic Functions
816 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

If blocks that are called by other blocks are subsequently modified in the interface
(VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR) as the program is developed, then the
call block and all blocks associated with it must be compiled again. This general procedure
applies analogously to instance data blocks for FBs. If these sequence of operations is not
maintained, time-stamp conflicts occur when the data retranslated into STEP 7. As such, the
recompilability of the blocks is not ensured and with the function "Status of block"
unnecesary conflicts can also appear. It is, moreover, advisable to generate blocks in ASCII-
STL by means of the STEP 7 editor when they have been created in Ladder Diagram or in
single statements (incremental mode).

12.7.5 Data backup
The PLC-CPU does not save any symbolic names, but instead only the datatype
descriptions of the block parameters VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR and
the datatypes of the global data blocks.

 Note

No sensible recompilation is possible without the related project for this machine. This
especially affects, for instance the function status of the block or the necessary changes
done in the PLC-CPU programs later. It is, therefore, necessary to keep a backup copy of
the STEP 7 project located in the PLC CPU on the machine. This is a great help for the
service case and saves unnecessary consumption of time in restoring the original project.

If the STEP 7 project exists and has been created according to the instructions given above,
then symbols can be processed in the PLCCPU on this machine. It may also be advisable to
store the machine source programs as ".awl" files in case they are required for any future
upgrade.

The source programs of all organization blocks and all instance data blocks should always
be available.

12.7.6 PLC series startup, PLC archive
Once the blocks have been loaded to the PLC CPU, a series archive can be generated via
the HMI user interface to back up data on the machine. To ensure data consistency, this
backup must be created immediately after block loading when the PLC is in the Stop state. It
does not replace the SIMATIC project backup as the series archive saves binary data only.
For instance, no symbolic information is present here. In addition, no CPU DBs (SFC 22
DBs) or SDBs generated in the CPU are saved.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.7 Starting up the PLC program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 817

Selection of the SINUMERIK archiving program

The PLC series archive can be generated directly from the SIMATIC project as an
alternative.

● Open the "Settings" dialog box in the SIMATIC Manager: Menu bar "Tools" > "Settings"

● Open the "Archive" tab

● Select the the SINUMERIK archiving program "SINUMERIK (*.arc)" in the "Preferred
archiving program" drop-down list box.

Start of the SINUMERIK archiving program

The SINUMERIK archiving program is started in the SIMATIC Manager via the menu
command "File" > "Archive".

The PLC archive is generated after assigning the archive name. If a project contains several
program paths, the S7 program for which the PLC archive will be created can be selected in
the dialog box. All blocks contained in the selected program path are archived (except data
blocks created with SFC 22 (online) in the CPU).

The "SDB archive" function can be activated or deactivated for the archiving program. If
"SDB archive" is activated, a PLC archive is created that only contains the system data
blocks (SDB) of the selected program path.

Automation
The process of generating a series archive can be automated (comparable to the command
interface in STEP 7). In generating this series archive, the command interface is expanded.

The following functions are available for this expansion:

The functions (shown here in VB script) are not available until server instantiations and
Magic have been called:

Const S7BlockContainer = 1138689, S7PlanContainer = 17829889

Const S7SourceContainer = 1122308

set S7 = CreateObject("Simatic.Simatic.1")

instantiate rem command interface of STEP 7

Set S7Ext = CreateObject("SimaticExt.S7ContainerExt")

Call S7Ext.Magic("")

Functions:

● Function Magic(bstrVal As String) As Long

● Function MakeSerienIB (FileName As String, Option As Long, Container As

S7Container) As Long

P3: Basic PLC program for SINUMERIK 840D sl
12.7 Starting up the PLC program

 Basic Functions
818 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Description
Function Magic(bstrVal As String) As Long

The call provides access to certain functions. The function must be called once after server
instantiation. The value of bstrVal can be empty. This initiates a check of the correct STEP 7
version and path name in Autoexec. The functions are enabled with a return parameter of 0.

Return parameter (-1) = incorrect STEP 7 version

Return parameter (-2) = no entry in Autoexec.bat

Function MakeSeriesstart-up(FileName As String, Option As Long, Container As
S7Container) As Long

"Option" parameter:

0: Normal series startup file with general reset
Bit 0 = 1: Series startup file without general reset. When project contains SDBs, this option is

inoperative.
A general reset is then always executed

Bit 1 = 1: Series startup file with PLC restart

Return parameter value:

0 = OK
-1 = Function unavailable, call Magic function beforehand
-2 = File name cannot be generated
-4 = Container parameter invalid or container block empty
-5 = Internal error (memory request rejected by Windows)
-6 = Internal error (problem in STEP 7 project)
-7 = Write error when generating series startup files (e.g. diskette full)

Use in script

Program code

If S7Ext.Magic("") < 0 Then

 Wscript.Quit(1)

End If

 Set Proj1 = s7.Projects("new")

 set S7Prog = Nothing

 Set s7prog = Proj1.Programs.Item(1) 'if there is only one program'

For Each cont In s7prog.Next

 If (Cont.ConcreteType = S7BlockContainer) Then

 ' Check block container

 Exit For

 End if

 P3: Basic PLC program for SINUMERIK 840D sl
 12.7 Starting up the PLC program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 819

Program code

 Cont = Nothing

 Next

Error = S7Ext.MakeSerienIB("f:\dh\arc.dir\PLC.arc", 0, Cont)

' Now error analysis

The For Each ... Next block programmed above can be programmed in the Delphi
programming language as follows (the programming for C, C++ programming languages is
similar):

Program code

Var

 EnumVar: IEnumVariant;

 rgvar: OleVariant;

 fetched: Cardinal;

//For Each Next

EnumVar := (S7Prog.Next._NewEnum) as IEnumVariant;

While (EnumVar.Next(1,rgvar,fetched) = S_OK) Do Begin

 Cont := IS7Container(IDispatch(rgvar)); // block container

 Check sources

 If (Cont.ConcreteType = S7BlockContainer) Then Break;

 Cont := NIL;

End;

12.7.7 Software upgrade
A general PLC reset should be performed to achieve a defined initial state before the PLC
software is upgraded. In this case, among other things, all user data (program and data
blocks) will be deleted. The PLC general reset is described in:

References:
Commissioning Manual CNC: NCK, PLC, Drive, General Tips,
Section: PLC general reset

Generating a new SIMATIC S7 project
In normal cases, the new PLC basic program is to be linked-in for a new NCU software
version. The basic programs blocks must be loaded into the user project for this purpose. If
the following program and data blocks are already in the user project, then these should not
be transferred with the blocks of the basic PLC program: OB 1, OB 40, OB 82, OB 86, OB
100, FC 12 and DB 4. These may have been modified by the user and should not be
overwritten. The new basic program must be linked with the user program. The following
procedure must be taken into account:

1. Generate the text or source file of all user blocks before copying the basic PLC program.

P3: Basic PLC program for SINUMERIK 840D sl
12.7 Starting up the PLC program

 Basic Functions
820 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

2. Copy the new basic program blocks into the SIMATIC S7 project (for a description, see
Section "Application of the basic program (Page 814)")

3. All user programs "*.awl" must be recompiled in the correct order! (see also: " Machine
program (Page 815)"):

4. This newly compiled SIMATIC S7 project should then be downloaded with STEP 7 into
the PLC.

However, it is normally sufficient to recompile the organization blocks (OBs) and the instance
data blocks of the S7 project. This means before upgrading, only the sources for the
organization blocks and the instance data blocks have to be generated.

NC variables
The latest NC VAR selector can be used for each NC software version (even earlier
versions). The variables can also be selected from the latest list for earlier NC software
versions. The data content in DB 120 (default DB for variables) does not depend on the
software status. That is, variables selected in an older software version need not be
reselected when the software is upgraded.

12.7.8 I/O modules (FM, CP modules)
Additional packages for STEP 7 are generally required for more complex I/O modules (FM,
CP modules). Support blocks (FC/FB) are provided in these additional packets. The blocks
contain specific functions for operating the relevant module. These functions can be
parameterized and called in the user program.

Identical numbers

If handling and basic program blocks have identical numbers, the block numbers of the basic
program must remain unchanged. The block numbers of the handling blocks must be
renamed to free numbers via STEP 7.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.7 Starting up the PLC program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 821

12.7.9 Troubleshooting
This section describes problems which may occur, their causes and remedies and should be
read carefully before hardware is replaced.

Errors, cause/description and remedy
Serial
no.
error
informati
on

Errors Cause/description To correct or avoid errors

1 No connection
via MPI to
PLC.

The MPI cable is not plugged in
or is defective. Possibly, the
STEP 7 software is also not
correctly configured for the MPI
card.

Test: Create a link with the
programmer in the STEP 7 editor by
means of connection "Direct_PLC". A
number of node addresses must be
displayed here. If they do not appear,
the MPI cable is defective/not plugged
in.

2 PLC cannot
be accessed
in spite of
PLC general
reset.

A system data block SDB 0 has
been loaded with a modified MPI
address. This has caused an
MPI bus conflict due to dual
assignment of addresses.

Disconnect all MPI cables to other
components. Create the link
"Direct_PLC" with the programmer.
Correct the MPI address.

3 All four LEDs
on the PLC
flash (DI
disaster)

A system error has occurred in
the PLC.
Measures:
The diagnostic buffer on the PLC
must be read to analyze the
system error in detail. To access
the buffer, the PLC must be
stopped (e.g. set "PLC" switch to
position 2). A hardware reset
must then be performed. The
diagnostic buffer can then be
read out with STEP 7. Relay the
information from the diagnostic
buffer to the Hotline /
Development Service. A general
reset must be carried out if
requested after the hardware
RESET. The diagnostic buffer
can then be read with the PLC in
the Stop state.

Once the PLC program has been
RESET or reloaded, the system may
return to normal operation. Even in this
case, the content of the diagnostic
buffer should be sent to the
Development Office.

P3: Basic PLC program for SINUMERIK 840D sl
12.8 Coupling of the PLC CPU

 Basic Functions
822 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.8 Coupling of the PLC CPU

12.8.1 General
A CPU of the S7-300 automation system is used as PLC for the SINUMERIK 840D sl. The
PLC-CPU is integrated into the NCU component as a sub-module. A reference to the
performance data of the PLC CPU can be found in Section "Key data of the PLC CPU
(Page 811)".

12.8.2 Properties of the PLC CPU
The PLC integrated in the SINUMERIK 840D sl generally has the same functionality as the
corresponding SIMATIC S7-300 PLC.

For differences, see reference in Section "Key data of the PLC CPU (Page 811)".

Owing to differences in their memory system as compared to a SIMATIC S7-300 PLC,
certain functions are not available (e.g. save blocks on memory card, save project on
memory card).

 Note

As with the PLC integrated in SINUMERIK, there is no automatic start of the PLC after power
failure and recovery for a SIMATIC S7-300 PLC when a "PLC stop" is triggered by an
operator action on the programming device. For safety reasons, the PLC remains in the stop
state with an appropriate diagnostic entry. You can start the PLC only by an operator action
on the programming device, "Execute a restart", or via the mode selector "Stop" > "Run"
(warm restart).

12.8.3 Interface with integrated PLC

Physical interfaces
With the SINUMERIK 840D sl, the PLC integrated in the NCU offers the option of
exchanging signals between the NCK and PLC directly via a dual-port RAM.

Data exchange with the operator panel
Data exchange with the operator panel (e.g. TCU/OP) can be performed via Ethernet or
PROFIBUS. With a connection via Ethernet, communication takes place via the integrated
communication processor (CP 840D sl).

Data exchange with the machine control panel (MCP) and handheld unit (HHU) can be
performed via MPI, PROFIBUS or Ethernet.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.8 Coupling of the PLC CPU

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 823

Programming devices should preferably be connected via Ethernet or via MPI (Multi-Point
Interface) directly to the PLC.

Figure 12-1 NCK/PLC coupling on SINUMERIK 840D sl (integrated PLC)

Interface: NCK/PLC
The data exchange between NCK and PLC is organized by the basic program on the PLC
side. The status information, such as "Program running", stored by the NCK in the NCK/PLC
interface is copied to data blocks by the basic program at the beginning of the cycle (OB 1)
and can then be accessed in the user program (user interface). The control signals for the
NCK (e.g. NC start) entered in the interface data block by the user are also written to the
internal DPR and transferred to the NCK at the start of the cycle.

P3: Basic PLC program for SINUMERIK 840D sl
12.8 Coupling of the PLC CPU

 Basic Functions
824 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Workpiece-program-specific auxiliary functions transferred to the PLC are first evaluated by
the basic program (interrupt-driven) and then transferred to the user interface at the start of
OB 1. If the relevant NC block contains auxiliary functions that require that NCK processing
is interrupted (e.g. M06 for tool change), the basic program stops the decoding of the NCK
block initially for one PLC cycle. The user can then use the "read disable" interface signal to
halt the block execution until the tool change has been completed. If, on the other hand, the
relevant NC block only contains auxiliary functions, which do not require interruption of the
decoding (e.g. M08 for cooling medium on), the transfer of these "fast" auxiliary functions is
directly acknowledged in OB 40, so that decoding is only insignificantly influenced by the
transfer to the PLC.

The evaluation and enabling of the G functions transferred from the NCK are also alarm-
driven, however they are transferred directly to the user interface. Where a G function is
evaluated at several points in the PLC program, differences in the information of the G
function within one PLC cycle may arise.

In the case of NC actions triggered and assigned with parameters by the PLC (e.g. traverse
concurrent axes), triggering and parameter assignment is performed using FCs and FBs, not
interface data blocks. The FCs and FBs belonging to the actions are supplied together with
the basic program. The FCs and FBs required must be loaded by the user and called in the
PLC program of the machine manufacturer (machine program). For an overview of FC, FB
and data blocks, sorted according to basic and extended functions, please refer to Section
"Start-up of PLC programs".

Interface: HMI/PLC
HMI/PLC data exchange is performed via the integrated CP, whereby the HMI is always the
active partner (client) and the PLC is always the passive partner (server). Data transferred or
requested by the HMI is read from and written to the HMI/PLC interface area by the PLC
operating system (timing: Cycle control point). From the viewpoint of the PLC application, the
data is identical to I/O signals.

Interface: MCP/PLC or HHU/PLC (connection: Ethernet)

MCP/PLC and HHU (HT2) / PLC data exchange is performed via the integrated CP. The CP
transfers the MCP/HHU signals to and fetches them from the PLC's internal DPR (Dual-Port
RAM). On the PLC side, the basic program handles communication with the user interface.
The basic program parameters define the operand areas (e.g. I/O areas) and the start
addresses via the parameters of the basic programs (FB 1, DB 7).

Interface: MCP/PLC (connection: PROFIBUS)

MCP/PLC data exchange takes place via the PLC's PROFIBUS. The MCP's I/O addresses
are to be set in the PLC's process image area and via HW configuration in STEP 7. The
MCP*In, MCP*Out pointer variables must be set to the same addresses. The selected DP
slave number must be entered in MCP*BusAdr.

Interface: HHU/PLC (connection: MPI)

The HHU/PLC data exchange is performed via the MPI interface on the PLC. The
"Communication with global data (GD)" service is used for this purpose (see also STEP 7
User Manual). The PLC operating system handles the transfer of signals from and to the
user interface. The STEP 7 "Communication configuration" configuring tool is used to define
both GD parameters as well as operand areas (e.g. I/O areas) and their start addresses.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.9 Interface structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 825

12.8.4 Diagnostic buffer on PLC
The diagnostic buffer of the PLC (readable using STEP 7) will enter diagnostic information
on the PLC operating system.

12.9 Interface structure

Interface DBs
Mapping in interface data blocks is necessary due to the large number of signals exchanged
between the NCK and PLC. These are global data blocks from the viewpoint of the PLC
program. During system start-up, the basic program creates these data blocks from current
NCK machine data (no. of channels, axes, etc.). The advantage of this approach is that the
minimum amount of PLC RAM required for the current machine configuration is used.

12.9.1 PLC/NCK interface

General
The PLC/NCK interface comprises a data interface on one side and a function interface on
the other. The data interface contains status and control signals, auxiliary functions and G
functions, while the function interface is used to transfer jobs from the PLC to the NCK.

Data interface
The data interface is subdivided into the following groups:

● NCK-specific signals

● Mode-group-specific signals

● Channel-specific signals

● Axis/spindle/drive-specific signals

P3: Basic PLC program for SINUMERIK 840D sl
12.9 Interface structure

 Basic Functions
826 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Function interface
The function interface is formed by FBs and FCs. The figure below illustrates the general
structure of the interface between the PLC and the NCK.

Figure 12-2 PLC/NCK user interface

 P3: Basic PLC program for SINUMERIK 840D sl
 12.9 Interface structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 827

Compile-cycle signals
In addition to the standard signals exchanged between the PLC and NCK, an interface data
block for compile cycles is also generated if required (DB 9). The associated signals which
are dependent on the compile cycles are transmitted cyclically at the start of OB 1. The basic
program starts transmission at the lowest address and works up to the highest. First, signals
are transferred from the PLC to the NCK, then from the NCK to the PLC. The user must
synchronize the NCK and PLC as necessary (e.g. using the semaphore technique). Signal
transmission is asynchronous between NCK and PLC. This means, for example, that active
NCK data transmission can be interrupted by the PLC. This can mean that data is not always
consistent.

PLC/NCK signals
The group of signals from the PLC to NCK includes:

● Signals for modifying the digital and analog I/O signals of the NCK

● Keyswitch and emergency stop signals

Figure 12-3 PLC/NCK interface

P3: Basic PLC program for SINUMERIK 840D sl
12.9 Interface structure

 Basic Functions
828 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

NCK/PLC signals
The group of signals from the NCK to PLC includes:

● Actual values of the digital and analog I/O signals of the NCK

● Ready and status signals of the NCK

Also output in this group are the HMI handwheel selection signals and the status signals.

The signals for handwheel selection are decoded by the basic program and entered in the
machine/axis-specific interface.

Digital/analog I/Os of the NCK
The following must be noted with respect to the digital and analog I/Os of the NCK:

Inputs:

● All input signals or input values of the NCK are also transferred to the PLC.

● The transfer of signals to the NC part program can be suppressed by the PLC. Instead, a
signal or value can be specified by the PLC.

● The PLC can also transfer a signal or value to the NCK even if there is no hardware for
this channel on the NCK side.

Outputs:

● All signals or values to be output are also transferred to the PLC.

● The NCK can also transfer signals or values to the PLC even if there is no hardware for
this channel on the NCK side.

● The values transferred by the NCK can be overwritten by the PLC.

● Signals and values from the PLC can also be output directly via the NCK I/O devices.

 Note

While realizing the digital and analog NCK I/Os the information contained in the following
documentation must be taken into account:
References:
Functions Manual Extended Functions; Digital and analog NCK I/Os (A4)

 P3: Basic PLC program for SINUMERIK 840D sl
 12.9 Interface structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 829

Signals PLC/Mode group
The operating mode signals set by the machine control panel or the HMI are transferred to
the operating mode group (BAG) of the NCK. These apply to all NCK channels. Several
mode groups can be optionally defined in the NCK.

The mode group reports its current status to the PLC.

Figure 12-4 PLC/Mode group interface

Signals PLC/NCK channels
The signal groups below must be considered on the interface:

● Control/status signals

● Auxiliary/G functions

● Tool management signals

● NCK functions

The control/status functions are transmitted cyclically at the start of OB1. The signals
entered in the channel-specific interface by the HMI (HMI signals are entered by the PLC
operating system) are also transferred at this time if they have been defined on the HMI
operator panel, not on the MCP.

Auxiliary functions and G functions are entered in the interface data blocks in two ways.
First, they are entered with the change signals.

● The M signals M00 - M99 (they are transferred from the NCK with extended address 0)
are also decoded and the associated interface bits set for the duration of one cycle.

● For G functions, only the groups selected via machine data are entered in the interface
data block.

● The S values are also entered together with the related M signals (M03, M04, M05) in the
spindle-specific interface. The axis-specific feedrates are also entered in the appropriate
axisspecific interface.

When the tool management (magazine management) function is activated in the NCK, the
assignment of spindle or revolver and the loading/unloading points are entered in separate
interface DBs (DB71 - 73)

P3: Basic PLC program for SINUMERIK 840D sl
12.9 Interface structure

 Basic Functions
830 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The triggering and parameter assignment of NCK functions is performed by means of PLC
function calls.
The following function calls are available:
● Position a linear axis or rotary axis
● Position an indexing axis
● Start a prepared asynchronous subprogram (ASUB)
● Reading/writing of NC variables
● Update magazine and tool motion

Some of the above functions are described in their own function documentation.

Figure 12-5 PLC/NCK channel interface

PLC/axis, spindle, drive signals
The axis-specific and spindle-specific signals are divided into the following groups:
● Shared axis/spindle signals
● Axis signals
● Spindle signals
● Drive signals

 P3: Basic PLC program for SINUMERIK 840D sl
 12.9 Interface structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 831

The signals are transmitted cyclically at the start of OB 1 with the following exceptions:
Exceptions include:
● Axial F value
● M value
● S value

An axial F value is entered via the M, S, F distributor of the basic program if it is transferred
to the PLC during the NC machining process.

The M and S value are also entered via the M, S, F distributor of the basic program if one or
both values require processing.

Figure 12-6 Interface between PLC and axes/spindles/drives

12.9.2 Interface PLC/HMI

General
The following groups of functions are required for the PLC/HMI interface:
● Control signals
● Machine operation
● PLC messages
● PLC status display

P3: Basic PLC program for SINUMERIK 840D sl
12.9 Interface structure

 Basic Functions
832 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Control signals
Some control signals are signal inputs, for example, via the machine control panel, which
have to be taken into account by the HMI. This group of signals includes, for example,
display actual values in MCS or WCS, key disable, etc. These are exchanged with the HMI
via a separate interface data block (DB19).

Machine operation
All operator inputs, which lead to response actions on the machine, are monitored by the
PLC. Operator actions are usually performed on the machine control panel (MCP). However,
it is also possible to perform some operator actions on the HMI, e.g. mode selection.

The PLC operating system enters the operating signals sent by the HMI directly into the
interface data blocks. As standard, the basic program routes these operating signals in such
a way that, provided equivalent operator actions are available, these can be performed either
on the HMI or on the MCP. If required, the user can switch off the operation via HMI through
a parameter "MMCToIF" of FB1.

PLC messages
The signaling functions are based on the system diagnostic functions integrated in the
operating system of the AS 300. These have the following characteristics:

● The PLC operating system enters all important system states and state transitions in a
diagnostics status list. Communication events and I/O module diagnostics data (for
modules with diagnostic functions) are also entered.

● Diagnostics events, which lead to a system stop, are also entered with a time stamp in a
diagnostic buffer (circular buffer) in the chronological order of their occurrence.

● The events entered in the diagnostic buffer are automatically transmitted to human
machine interface systems (OP or HMI) via the bus systems once these have issued a
ready signal (message service). Transfer to the node ready is a function of the PLC
operating system. Receipt and interpretation of the messages are executed by the HMI
software.

● The PLC user program can also use SFCs (System Function Calls) to enter messages in
the diagnostic buffer or ALARM S/ALARM SQ buffer.

● The events are entered in the interrupt buffer.

The associated message texts must be stored on the OP or HMI.

An FC (FC 10) for message acquisition is prepared in conjunction with the basic program.
This FC records events, subdivides them into signal groups and reports them to the HMI via
the interrupt buffer.

The message acquisition structure is shown in the figure "Acquisition and signaling of PLC
events". The features include:

● Bit fields for events related to the NC/PLC interface are combined in a single data block
(DB2) with bit fields for user messages.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.9 Interface structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 833

● Bit fields are evaluated at several levels by FC10.

– Evaluation 1; Acquisition of group signals

A group signal is generated for each group of signals if at least one bit signal is set to
"1". This signal is generally linked to the disable signal of the NC/PLC interface (on
modules with diagnostic functions). The group signals are acquired completely in
cycles.

– Evaluation 2; Acquisition of interrupt messages

A fixed specification exists to define which signals in a group generate an interrupt
message when they change from "0" to "1".

– Evaluation 3; Acquisition of operating signals

A fixed specification exists to define which signals in a group generate an operational
message.

● The scope of the user bit fields (user area) is set by default to 10 areas with 8 bytes each,
but the number of areas can also be adjusted to suit the requirements of the machine
manufacturer via basic program parameters in FB 1.

Acknowledgement concept
The following acknowledgement procedures are implemented for error and operational
messages:

Operating messages are intended for the display of normal operating states as information
for the user. Acknowledgement signals are, therefore, not required for this type of message.
An entry is made in the diagnostic status list for incoming and outgoing messages. The HMI
maintains an up-to-date log of existing operating messages using the identifiers "operating
message arrived" and "operating message gone".

Interrupt messages are used to display error states on the machine, which will usually lead
to the machine being stopped. Where several errors occur in rapid succession, it is important
to be able to distinguish their order of occurrence for troubleshooting purposes. This is
indicated, on the one hand, by the order in which they are entered in the diagnostic buffer
and on the other, by the time stamp, which is assigned to every entry.

If the cause of the error disappears, the associated interrupt message is only deleted if the
user has acknowledged it (e.g. by pressing a key on the MCP). In response to this signal, the
"Message acquisition" FC examines which of the reported errors have disappeared and
enters these in the diagnostic buffer with the entry "Interrupt gone". This enables the HMI to
also maintain an up-to-date log of pending interrupt messages. The time of day indicating the
time at which the error occurred is maintained for messages, which are still pending (in
contrast to a received interrogation).

STEP 7
A tool can be started in the SIMATIC Manager via menu item "Target system" > "CPU
messages". Alarms and messages can be displayed by number using this tool. To do this,
acivate the "Alarm" tab and enter a check mark under "A" in the upper half of the screen.

P3: Basic PLC program for SINUMERIK 840D sl
12.9 Interface structure

 Basic Functions
834 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

User program
The user PLC program merely needs to call the basic program block FC 10 with appropriate
parameter settings in the cyclic program section and set or reset the bit fields in DB2. All
further necessary measures are implemented by the basic program and HMI.

Figure 12-7 Acquisition and signaling of PLC events

Extensions of the PLC alarms via the block FC 10
The FB 1 parameter "ExtendAlMsg" helps in making a selection of the PLC alarm
mechanism.
If "ExtendAlMsg:= FALSE" the earlier process of the FC 10 with the DB 2 is active as bit-field
data block. The known restrictions regarding the number of channels and axes are
applicable.
On the other hand, in case of "ExtendAlMsg:= TRUE" the extension of the FC 10 becomes
active. The DB 2 and DB 3 are created as usual. The user must set or reset the bits in DB 2.
The parameter setting via message and alarm and a parameter setting of the numeric value
of the 2nd decade of the user alarms are contained in DB 5.
The extensions are:
● Support for 10 channels, 31 axes.
● Areas for feed stop, read-in disable, etc. are available without messages. The information

from this area is stored on the interface in DB21, DB31 depending upon the FC 10
parameter "ToUserIF" together with the related message bits as group signals. As such,
the previous cumbersome handling of the signals is omitted.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.9 Interface structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 835

● The alarms / messages also get the 16-bit integer additional value (%Z parameter in the
alarm text) in addition to the alarm number for the user area 0. The user must write the
16-bit integer values in the DB 2 in the Array variable ZInfo0 parallel to setting an alarm
bit. An integer value is available for each bit in the user area 0, see UDT1002 in the basic
program.

● The user messages can be parameteized in the second decade of the message number
in the numerical range 0 to 9. The display value of the second decade must be written by
the user in the DB5 in the array variable UserDek2No. A number can be defined for each
user area, see DB 5 in the basic program.

The value 0 is set by default for second decade.

The structuring of the DB 2 in UDT1002 can be recoginzed (basic program). In case of new
alarm functions, the UDT1002 must be assigned symbolically to the DB2.

At the start of DB 2 there are bit fields for signals without alarm generation. This is followed
by an array of size 64 integer for additional info of the user area 0.

Thereafter follow the areas, which also trigger alams / messages (see List manual) These
areas are extended to 10 channels, 31 axes.

Simple implementation of a user program on the new alarms
The source container of the basic program contains the file "udt2_for_Convert.awl", which
has the following structural element from UDT1002:

● ChanA as array of 1 ... 8

● AxisA as array of 1 ... 18

● UserA as array of 1 ... 31

This UDT2 is to be compiled via the KOP/FUP/AWL - Editor. The UDT2 must be assigned to
the DB 2 in the symbol table.

Sources must be generated for components, which have assignments on DB 2. Alternatively,
sources can naturally be created for all blocks too. The UDT1002 must now be assigned to
the DB 2 in the symbol table. Thereafter, the sources must be recompiled.

Now all the alarm allocations are assigned to the new data areas in the DB 2 and now only
the parameter "ExtendAlMsg" at FB 1 must be set to True .

After a Power On RESET the alarm behavior is the same as earlier.

12.9.3 PLC/MCP/HHU interface

General
There are different connection options for the machine control panel (MCP) and the
handheld unit (HHU). This is in part due to the history of the MCP and HHU. This description
focuses primarily on the connection of the Ethernet components.

On the SINUMERIK 840D sl, the machine control panel (MCP) and handheld unit (HHU) are
connected via the Ethernet bus, which also links the TCU to the NCU. The advantage of this
is that only one bus cable is required to connect the operating unit.

P3: Basic PLC program for SINUMERIK 840D sl
12.9 Interface structure

 Basic Functions
836 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Topology SINUMERIK 840D sl
On the 840 D, the machine control panel and the handheld unit are connected to the CP
840D sl Ethernet bus (see Figure below). Where the connection of further keys and displays
is required for customized operator panels, an additional keyboard interface (machine control
panel without operating unit) can be used. For each keyboard interface, 64 pushbuttons,
switches, etc. and 64 display elements can be connected via ribbon cable.

The signals sent from the MCP are copied to the PLC's DPR (Dual-Port RAM) by the
integrated Ethernet CP-840D sl. The basic program of the PLC enters the incoming signals
in the input image configured on FB1. The NC-related signals are generally distributed by the
basic program to the NC/PLC interface. If required, the signals can be modified by the user.

The signals from the PLC to the MCP (displays) are transferred in the opposite direction.

Figure 12-8 Connection of the machine control panel on 840D sl

Bus addresses
On Ethernet components, MAC and IP addresses or logic names are determining factors in
respect of communication. The control system's system programs convert logic names into
MAC or IP addresses. On the PLC, the numeric component of the logic name is used for
communication. This numeric part is specified by the user to the FB 1 via the parameter
"MCPxBusAdr".

The logical name of an MCP or HHU always begins with "DIP". This is followed by a number
corresponding to the switch position of the MCP component (e.g. DIP 192, DIP 17).

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 837

MCP interface in the PLC
The signals from the machine control panel are routed by default via the I/O interface to the
PLC area. A distinction must be made between NC and machine-specific signals. NC-
specific key signals are distributed to the relevant mode-group-, NCK-, axis- and spindle-
specific interface by FC19 (or FC24, FC25, FC26, depending on the type of MCP) by default.
The reverse applies to the associated status signals which are routed to the MCP interface.
For this purpose, FC 19 or the other blocks mentioned above must be called in the user
program.

Customized keys, which can be used to trigger a wide range of machine functions, must be
evaluated directly by the user program. The user program also routes the status signals to
the output area for the LEDs.

Figure 12-9 Interface to and from machine control panel

12.10 Structure and functions of the basic program

General
The PLC program has a modular structure. The organization blocks (OB) form the interface
between the operating system and the basic and user programs.
● Restart (warm restart) with start-up and synchronization (OB 100)
● Cyclic operation (OB 1)
● Process alarms (OB 40)
● Asynchronous errors: Diagnostic alarm (OB 82), module failure (OB 86)

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
838 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The calls of the function blocks of the basic and user programs must be programmed by the
user in the organization blocks (OB).

Figure 12-10 Structure of the basic program (principle)

12.10.1 Startup and synchronization of NCK PLC

Loading the basic program
The basic program must be loaded with the S7 tool when the PLC is in the Stop state. This
ensures that all blocks in the basic program will be initiated correctly the next time they are
called. Otherwise, undefined states can occur in the PLC (e.g. blinking of all PLC LEDs).

Startup,
The synchronization of NCK and PLC is performed during startup. The system and user data
blocks are checked for integrity and the most important basic program parameters are
verified for plausibility. In cases of errors, the basic program produces an alarm (visible on
HMI) and switches the PLC to the Stop state.

A warm restart is not provided, i.e. following system initialization, the operating system runs
organization block OB 100 and always commences cyclic execution at the start of OB 1.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 839

Synchronization
The PLC is synchronized with the HMI and NCK and CP during powerup.

Sign-of-life
After a correct initial start and the first complete OB1 cycle (initial setting cycle) the PLC and
NCK continuously exchange sign of life signals. If the sign of life from the NCK fails to
materialize, the PLC/NCK interface is initialized and the signal "NCK CPU ready" in DB 10 is
set to FALSE.

12.10.2 Cyclic operation (OB 1)

General
The NCK PLC interface is processed completely in cyclic mode. From a chronological
viewpoint, the basic program runs ahead of the user program. In order to minimize the
execution time of the basic program, only the control/status signals are transmitted cyclically;
transfer of the auxiliary functions and G functions only takes place on request.

The following functions are performed in the cyclic part of the basic program:

● Transmission of the control/status signals

● Distribution of the auxiliary functions

● M decoding (M00 - M99),

● M, S, F distribution

● Transfer the MCP signals via NCK

● Acquisition and conditioning of the user errors and operating messages.

Control/status signals
A shared feature of the control and status signals is that they are bit fields. The basic
program updates them at the start of OB1.

The signals can be subdivided into the following groups:

● General signals

● Mode group-specific signals (such as mode types)

● Channel-specific signals (such as program and feed modifications)

● Axis- and spindle-specific signals (such as feed disable)

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
840 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Auxiliary and G functions
The auxiliary and G functions have the following characteristics:

● Transfer to the PLC is block-synchronous (referred to a part program block)

● Transfer is acknowledge-driven.

● The acknowledgement times have an immediate effect on the execution time of NC
blocks containing auxiliary functions requiring acknowledgement.

The value range is presented in the table below:

Function Structure Range of values Data type
 1st value 2nd value 1st value 2nd value 1st value 2nd value
G function G function 2551) Byte
M word M group M word 99 99,999,999 Word DWord
S word Spindle no. S word 6 Floating

point2)
Word DWord

T word Magazine
no.

T word 99 65535 Word Word

D word - D word 99 255 Byte Byte
H word H group H word 99 Floating

point
Word DWord

F word Axis no. F word 18 Floating
point

Word DWord

1) relative number, transferred for each G group
2) corresponding STEP 7 format (24-bit mantissa, 8-bit exponent)

The M, S, T, H, D and F values sent by the NCK are output together with the accompanying
change signals to the CHANNEL DB interface via the auxiliary/G functions (see List Manual).
The function value and the extended address are transferred to the appropriate data word.
The accompanying modification signal is activated to 1 for one PLC cycle. When the
modification signal is reset, the acknowledgement is passed to the NCK. The
acknowledgement of high-speed auxiliary functions is given by the basic program
immediately the basic program detects the auxiliary function.

In addition to distribution of the auxiliary and G functions, selected signals are processed as
described below.

M decoder
M functions can be used to transfer switching commands and fixed-point values. Decoded
dynamic signals are output to the CHANNEL DB interface for standard M functions (range
M00 - M99) signal length = 1 cycle time).

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 841

G group decoders
In the case of G functions sent by the NCK, the related groups are decoded and the current
G number is entered in the corresponding interface byte of the CHANNEL DB, i.e. all active
G functions are entered in the channel DBs. The entered G functions are retained even after
the NC program has terminated or aborted.

 Note

During system startup, all G group bytes are initialized with the value "0".

M, S, F distributor
The M, S, F, distributor is used to enter spindle-specific M words M(1...6)=[3,4,5], S words
and F words for axial feeds in the appropriate spindle and axis data blocks. The criterion for
distribution is the extended address which is passed to the PLC for M words, S words and
axial F words.

MCP signal transmission
Depending on the bus connection, the MCP signals are either transmitted directly to the PLC
or indirectly to the parameterized I/O areas via an internal procedure using the basic
program.

User messages
The acquisition and processing of the user error and operational messages is performed by
an FC in the basic program.

12.10.3 Time-interrupt processing (OB 35)
The user must program OB 35 for time-alarm processing. The default time base setting of
OB 35 is 100 ms. A different time base can be selected using the STEP7 "HW Config" tools.
However, the OB 35 time setting must be at least 3 ms in order to avoid a PLC CPU stop.
The stop is caused by reading of the HMI system state list during powerup of the HMI. This
reading process blocks priority class control for approx. 2 ms. The OB 35 with a time base
set to a rather lower value is then no longer processed correctly.

12.10.4 Process interrupt processing (OB 40)
A process interrupt OB 40 (interrupt) can, for example, be triggered by appropriately
configured I/Os or by certain NC functions. Due to the different origin of the interrupt, the
PLC user program must first interpret the cause of the interrupt in OB 40. The cause of the
interrupt is contained in the local data of OB 40.

References:
SIMATIC STEP 7 Description or Online Help of STEP 7

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
842 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.10.5 Diagnostic interrupt, module failure processing (OB 82, OB 86)

General
A module diagnosis or module failure on an I/O module triggers OB 82 / OB 86. These
blocks are supplied by the basic program. The basic program block FC5 is called in these
OBs. This is wired by default to trigger a PLC stop in the event of an error being detected.

A PLC Stop is not initiated when it is "fault cause corrected" and for the PROFIBUS MCP
specified on the FB 1.

The response can be changed by modifying the FC5 parameter setting.

PROFIBUS diagnostics
The slaves of both the PROFIBUS connections MPI/DP or DP1 are registered by the basic
program as group message in the form of a ready signal in the interface signal
● DB10 DBX92.0 (MPI/DP Bus Slaves OK)
● DB10, DBX92.1 (DP1 Bus Slaves OK)

The group message is derived from the LED status of the respective PROFIBUS (System
state list SZL 0x174).

 Note

A PROFIBUS diagnosis is also possible using FC 125. The block occupies relatively little
cycle time. The DB 10 interface can be used to update the slave status by activating the
FC 125 block.

12.10.6 Response to NCK failure

General
During cyclic operation, the PLC basic program continuously monitors NCK availability by
polling the signoflife character. If the NCK is no longer reacting, the NCK PLC interface is
initialized, and the NCK CPU ready signal in the area of the signals from NC (DB 10.DBX
104.7) is reset. Furthermore, the signals sent from the NCK to the PLC and vice versa are
set to an initial state.

The PLC itself remains active so that it can continue to control machine functions. However,
it remains the responsibility of the user program to set the machine to a safe state.

NCK → PLC signals
The signals sent by the NCK to the PLC are divided into the following groups:
● Status signals from the NCK, channels, axes and spindles
● Modification signals of the auxiliary functions
● Values of the auxiliary functions
● Values of the G functions

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 843

Status signals:

The status signals from the NCK, channels, axes, and spindles are reset.

Auxiliary-function modification signals:

Auxiliary-function modification signals are also reset.

Auxiliary-function values:

Auxiliary-function values are retained so that it is possible to trace the last functions triggered
by the NCK.

G-function values:

G function values are reset (i.e. initialized with the value 0 respectively).

PLC → NCK signals
The signals sent by the PLC to the NCK are divided into control signals and tasks that are
transferred by FCs to the NCK.

Control signals:

The control signals from the PLC to the NCK are frozen; cyclic updating by the basic
program is suspended.

Jobs from PLC to NCK:

The FCs and FBs, which are used to pass jobs to the NCK, must no longer be processed by
the PLC user program, as this could lead to incorrect checkback signals. During powerup of
the control, a job (e.g. read NCK data) must not be activated in the user program until the
NCK CPU ready signal is set.

12.10.7 Functions of the basic program called from the user program

General
In addition to the modules of the basic program which are called at the start of OBs 1, 40 and
100, functions are also provided which have to be called and supplied with parameters at a
suitable point in the user program.

These functions can be used, for example, to pass the following jobs from the PLC to the
NCK:

● Traversing concurrent axes (FC 18)

● Start asynchronous subprograms (ASUBs) (FC 9),

● Selecting NC programs (FB 4)

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
844 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Control of spindles (FC 18),

● Read/write variables (FB 2, FB 3)

 Note
Checking and diagnostics of a function call of the basic PLC program

To simplify the checking and diagnostics of a function call (FB or FC) of the basic PLC
program that is controlled via a trigger (e.g. via Req, Start parameters) and that provide
an execution acknowledgement as output parameter (e.g. via Done, NDR, Error
parameters), proceed as follows.

A variable compiled of other signals which produce the trigger for the function call should
be set. Start conditions may be reset only as a function of the states of parameters Done,
NDR and Error.

The appropriate control mechanism can be placed in front of or behind the function call. If
the mechanism is placed after the call, the output variables can be defined as local
variables (advantage: Reduction of global variables, markers, data variables and time-
related advantages over data variables).

The trigger parameter must be a global variable (e.g. marker, data variable).

Jobs that are still active must be reset from the user program in OB 100 (Req, Start,
parameters,
etc. from TRUE ⇒ FALSE). A POWER OFF/ON could result in a state in which jobs are
still active.

Concurrent axes
The distinguishing features of concurrent axes are as follows:

● They must be defined as such via the NC machine data.

● They can be traversed either from the PLC or from the NC by means of the JOG keys.

● Starting from the PLC is possible in the NC operating modes MDA and AUTOMATIK via
FC.

● The start is independent of NC block boundaries.

Function calls are available for positioning axes, indexing axes and spindles (FC 18).

Figure 12-11 FC 18 input/output parameters

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 845

Asynchronous subprograms (ASUBs)
An ASUB can be used to activate arbitrary functions in the NCK. Before an asynchronous
subprogram can be started from the PLC, it must be ensured that it is available and prepared
by the NC program or by FB 4 PI services (ASUB).
Once prepared in this way, it can be started at any time from the PLC. The NC program
running in one of the parameterized channels of FC 9 is interrupted by the asynchronous
subprogram. An ASUB is started by calling FC 9 from the user program by setting the start
parameter to 1.

 Note

If an asynchronous subprogram has not been prepared by an NC program or by FB 4
(ASUB) (e.g. if no interrupt no. has been assigned), a start error is output (StartErr = TRUE).

Read/Write NC variables
NCK variables can be read with FB GET while values can be entered in NCK variables with
FB PUT. The NCK variables are addressed via identifiers at inputs Addr1 to Addr8. The
identifiers (symbols) point to address data which must be stored in a global DB. To allow
generation of this DB, the PC software is supplied with the basic program with which the
required variables can be selected from a table, which is also supplied. The selected
variables are first collected in a second, project-related list. Command Generate DB creates
a "*.AWL" file which must be linked to the program file for the machine concerned and
compiled together with the machine program.
1 to 8 values can be read or written with a read or write job. If necessary, the values are
converted [e.g. NCK floating-point values (64-bit) are converted to PLC format (32-bit with
24-bit mantissa and 8-bit exponent) and vice versa]. A loss of accuracy results from the
conversion from 64-bit to 32-bit REAL. The maximum precision of 32-bit REAL numbers is
approximately 10 to the power of 7.

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
846 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

AG_SEND/AG_RECV functions
The AG_SEND/AG_RECV functions correspond to the functions of the library
"SIMATIC_NET_CP" of the S7-300 CPU in STEP 7. In general, the online help is valid for
these functions.
The AG_SEND/AG_RECV functions can be used for data exchange with another station via
the integrated "CP 840D sl". A description of the functions is provided in Section "Block
descriptions (Page 889)".

 Note

Other communication blocks (e.g. BSEND, USEND) which possess a CP343-1 are not
supported in SINUMERIK 840D sl.

12.10.8 Symbolic programming of user program with interface DB

General

 Note

The basic program library on the CD supplied with the Toolbox for the 840D contains files
NST_UDTB.AWL and TM_UDTB.AWL.

The compiled UDT blocks from these two files are stored in the CPU program of the basic
program.

A UDT is a data type defined by the user that can, for example, be assigned to a data block
generated in the CPU.

Symbolic names of virtually all the interface signals are defined in these UDT blocks.

The UDT numbers 2, 10, 11, 19, 21, 31, 71, 72, 73 are used.

The assignments have been made as follows:

UDT assignments
UDT number Assignment to interface DB Significance
UDT 2 DB 2 Interrupts/Messages
UDT 10 DB 10 NCK signals
UDT 11 DB 11 Mode group signals
UDT 19 DB 19 HMI signals
UDT 21 DB 21 to DB 30 Channel signal
UDT 31 DB 31 to DB 61 Axis/spindle signals
UDT 71 DB71 Tool management: Load/unload locations
UDT 72 DB 72 Tool management: Change in spindle
UDT 73 DB 73 Tool management: Change in revolver

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 847

UDT assignments
UDT number Assignment to interface DB Significance
UDT 77 DB 77 MCP and HHU signals with standard SDB 210
UDT 1002 DB 2 extended alarms / messages (FB 1-Parameter

"ExtendAlMsg:=TRUE"

To symbolically program the interface signals, the interface data blocks must first be
symbolically assigned using the symbol editor.

For example, symbol "AxisX" is assigned to operand DB31 with data type UDT 31 in the
symbol file.

After this input, the STEP 7 program can be programmed in symbols for this interface.

 Note

Programs generated with an earlier software version that utilize the interface DBs described
above can also be converted into symbol programs. A fully qualified instruction for data
access e.g. "U DB31.DBX60.0" is then necessary here for (spindle/ no axis) in the program
created till now. This command is converted upon activation of the symbolics in the editor
"AxisX.E_SpKA".

Description
Abbreviated symbolic names of the interface signals are defined in the two STL files
NST_UDTB.AWL and TM_UDTB.AWL.

In order to create the reference to the names of the interface signals, the name is included in
the comment after each signal.

The names are based on the English language. The comments are in English.

The symbolic names, commands and absolute addresses can be viewed by means of a
STEP 7 editor command when the UDT block is opened.

 Note

Unused bits and bytes are listed, for example, with the designation "f56_3".
• "56": Byte address of the relevant data block
• "3": Bit number in this byte

12.10.9 M decoding acc. to list

Description of functions
When the M decoding according to list function is activated via the GP parameter of FB1
"ListMDecGrp" (number of M groups for decoding), up to 256 M functions with extended
address can be decoded by the basic program.

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
848 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The assignment of the M function with extended address and the bit to be set in the signal
list is defined in the decoding list. The signals are grouped for this purpose.

The signal list contains 16 groups with 16 bits each as decoded signals.

There is only one decoding list and one signal list i.e. this is a cross-channel function.

The M functions are decoded. Once they are entered in the decoding list, then the
associated bit in the signal list is set.

When the bit is set in the signal list, the readin disable in the associated NCK channel is set
simultaneously by the basic program.

The readin disable in the channel is reset once the user has reset all the bits output by this
channel and thus acknowledged them.

The output of an M function decoded in the list as a highspeed auxiliary function does not
result in a readin disable.

The figure below shows the structure of the M decoding according to list:

Figure 12-12 M decoding acc. to list

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 849

Activation of the function
The number of groups to be evaluated / decoded is indicated in the basic program parameter
"ListMDecGrp" when FB 1 is called in OB 100 (see also " FB 1: RUN_UP Basic program,
startup section (Page 889) "). M decoding is activated if this value is between 1 and 16.
Before the function is activated, the decoding list DB75 must be transferred to the PLC
followed by a restart.

Structure of decoding list
The source file for the decoding list (MDECLIST.AWL) is supplied with the basic program.
DB 75 is created when the STL source is compiled.

There must be an entry in decoding list DB 75 for every group of M functions to be decoded.

A maximum of 16 groups can be created.

16 bits are available in each group in the list of decoded signals.

The assignment between the M function with extended address and the bit to be set in the
signal list is specified via the first and last M functions in the decoding list.

The bit address is generated correspondingly from the first M function ("MFirstAdr") to the
last M function ("MLastAdr") from bit 0 up to maximum bit 15 for each group.

Each entry in the decoding lists consists of 3 parameters, each of which is assigned to a
group.

Assignment of groups
Group Extended

 M address
First M address in group Last M address in group

1 MSigGrp[1].MExtAdr MSigGrp[1].MFirstAdr MSigGrp[1].MLastAdr
2 MSigGrp[2].MExtAdr MSigGrp[2].MFirstAdr MSigGrp[2].MLastAdr
...
16 MSigGrp[16].MExtAdr MSigGrp[16].MFirstAdr MSigGrp[16].MLastAdr

Type and value range for signals
Signal Type Value range Remark
MExtAdr Int 0 ... 99 Extended M address
MFirstAdr DInt 0 to 99.999.999 First M address in group
MLastAdr Dint 0 to 99.999.999 Last M address in group

Signal list
Data block DB 76 is set up when the function is activated.

A bit is set in the appropriate group in DB 76 for an M signal decoded in the list.

At the same time, a readin disable is set in the channel in which the M function has been
output.

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
850 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
Three groups of M commands are to be decoded in the following example:

● M2 = 1 to M2 = 5

● M3 = 12 to M3 = 23

● M40 = 55

Structure of the decoding list in DB 75:

Example parameters
Group Decoding list (DB 75) Signal list
 Extended

M address
First
M address
in group

Last
M address
in group

DB 76

1 2 1 5 DBX 0.0 ... DBX 0.4
2 3 12 23 DBX 2.0 ... DBX 3.3
3 40 55 55 DBX 4.0

DATA_BLOCK DB 75

TITLE =

VERSION : 0.0

 STRUCT

 MSigGrp : ARRAY [1 .. 16] OF STRUCT

 MExtAdr : INT ;

 MFirstAdr : DINT;

 MLastAdr : DINT;

 END_STRUCT;

 END_STRUCT;

BEGIN

 MSigGrp[1].MExtAdr := 2;

 MSigGrp[1].MFirstAdr := L#1;

 MSigGrp[1].MLastAdr := L#5;

 MSigGrp[2].MExtAdr := 3;

 MSigGrp[2].MFirstAdr := L#12;

 MSigGrp[2].MLastAdr := L#23;

 MSigGrp[3].MExtAdr := 40;

 MSigGrp[3].MFirstAdr := L#55;

 MSigGrp[3].MLastAdr := L#55;

END_DATA_BLOCK

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 851

Structure of FB 1 in the OB 100
(enter the number of M groups to be decoded in order to activate the function):

Call FB 1, DB 7(

...

ListMDecGrp := 3, //M decoding of three groups

...

);

The appending of the entry in OB 100 and transfer of DB 75 (decoding list) to the AG must
be followed by a restart. During the restart, the basic program sets up DB76 (signal list).

If the NC program is started at this point and the expanded M function (e.g. M3=17) is
processed by the NCK, this M function will be decoded and bit 2.5 set in DB 76 (see
decoding list DB 75). At the same time, the basic program sets the read-in disable and the
processing of the NC program is halted (in the corresponding NC-channel DB the entry
"expanded address M function" and "M function no." is made).

The readin disable in the channel is reset once the user has reset and, therefore,
acknowledged, all the bits output by this channel in the signal list (DB 76).

12.10.10 PLC machine data

General
The user has the option of storing PLC-specific machine data in the NCK. The user can then
process these machine data after the power-up of the PLC (OB 100). This enables, for
example, user options, machine expansion levels, machine configurations, etc., to be
implemented.

The interface for reading these data lies in the DB 20. However, DB20 is set up by the basic
program during power-up only when user machine data are used i.e. sum of GP parameters
"UDInt", "UDHex" and "UDReal" is greater than zero.

The sizes of the individual areas, and hence the total length of the DB 20, is set by the
following PLC machine data:

MD14504 $MN_MAXNUM_USER_DATA_INT

MD14506 $MN_MAXNUM_USER_DATA_HEX

MD14508 $MN_MAXNUM_USER_DATA_FLOAT

These settings are specified to the user in the GP parameters "UDInt", "UDHex" and
"UDReal".

The data is stored in the DB 20 by the BP in the sequence:

1. Integer MD

2. Hexa-fields MD

3. Real MD

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
852 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The integer and real values are stored in DB 20 in S7 format.

Hexadecimal data is stored in DB20 in the order in which they are input (use as bit fields).

Figure 12-13 DB 20

 Note

If the number of PLC machine data used is increased later, then DB20 must be deleted
beforehand. To prevent such extensions in use having any effect on the existing user
program, the data in DB20 should be accessed in symbolic form wherever possible, e.g. by
means of a structure definition in the UDT.

Alarms
400120 Delete DB 20 in PLC and restart
Explanation DB length is not the same as the required DB length
Reaction Alarm display and PLC stop
Remedy Delete DB 20 followed by RESET
Continuation After cold restart

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 853

Example
The project in the example requires 4 integer values, 2 hexadecimal fields with bit
information and 1 real value.
Machine data:

MD14510 $MN_USER_DATA_INT[0] 123
MD14510 $MN_USER_DATA_INT[1] 456
MD14510 $MN_USER_DATA_INT[2] 789
MD14510 $MN_USER_DATA_INT[3] 1011
...
MD14512 $MN_USER_DATA_HEX[0] 12
MD14512 $MN_USER_DATA_HEX[1] AC
...
MD14514 $MN_USER_DATA_FLOAT[0] 123.456

GP parameter (OB 100):
CALL FB 1, DB 7 (
 MCPNum := 1,

 MCP1In := P#E0.0,

 MCP1Out := P#A0.0,

 MCP1StatSend := P#A8.0,

 MCP1StatRec := P#A12.0,

 MCP1BusAdr := 6,

 MCP1Timeout := S5T#700MS,

 MCP1Cycl := S5T#200MS,

 NCCyclTimeout := S5T#200MS,

 NCRunupTimeout := S5T#50S;

BP parameters (to scan runtime):
 l gp_par.UDInt; //=4,

 l gp_par.UDHex; //=2,

 l gp_par.UDReal; //=1)

During PLC power-up, DB20 was generated with a length of 28 bytes:

DB 20
Address Data
0.0 123
2.0 456
4.0 789
6.0 1011
8.0 b#16#12
9.0 b#16#AC
10.0 1.234560e+02

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
854 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The structure of the machine data used is specified in a UDT:

TYPE UDT 20

 STRUCT

 UDInt : ARRAY [0 .. 3] OF INT;

 UDHex0 : ARRAY [0 .. 15]OF BOOL;

UDReal : ARRAY [0 .. 0] OF REAL; //Description as field, for

// later expansions

 END_STRUCT;

END_TYPE

 Note

ARRAY OF BOOL are always sent to even-numbered addresses. For this reason, an array
range of 0 to 15 must generally be selected in the UDT definition or all Boolean variables
specified individually.

Although only a REAL value is used initially in the example, a field (with one element) has
been created for the variable. This ensures that extensions can be made easily in the future
without the symbolic address being modified.

Symbolic accesses
An entry is made in the symbol table to allow data access in symbolic form:

Symbol Operand Data type
UData DB 20 UDT 20

Access operations in user program (list includes only symbolic read access):

...

 L "UData".UDInt[0];

 L "UData".UDInt[1];

 L "UData".UDInt[2];

 L "UData".UDInt[3];

 U "UData".UDHex0[0];

 U "UData".UDHex0[1];

 U "UData".UDHex0[2];

 U "UData".UDHex0[3];

 U "UData".UDHex0[4];

 U "UData".UDHex0[5];

 U "UData".UDHex0[6];

 U "UData".UDHex0[7];

 U "UData".UDHex0[15];

 L "UData".UDReal[0];

...

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 855

12.10.11 Configuration machine control panel, handheld unit, direct keys

General
Up to two machine control panels and one handheld unit can be in operation at the same
time. There are various connection options (Ethernet/PROFINET, PROFIBUS) for the
machine control panel (MCP) and handheld unit (HHU). It is possible to connect two MCPs
to different bus systems (mixed operation is only possible on Ethernet and PROFIBUS). This
can be achieved using FB1 parameter "MCPBusType". In this parameter, the right-hand
decade (units position) is responsible for the first MCP and the left-hand decade (tens
position) for the second MCP.

The components are parameterized by calling basic-program block FB 1 in OB 100. FB 1
stores its parameters in the associated instance DB (DB 7, symbolic name "gp_par").
Separate parameter sets are provided for each machine control panel and the handheld unit.
The input/output addresses of the user must be defined in these parameter sets. These
input/output addresses are also used in FC 19, FC 24, FC 25, FC 26 and FC 13. Further, the
addresses for status information, PROFIBUS or Ethernet/PROFINET are also to be defined.
The default time settings for timeout and cyclic forced retriggering should not be changed.
Please refer to the Operator Components manual for further information on MCPs and
handheld unit components.

Activation
Each component is activated either via the number of machine control panels ("MCPNum"
parameter) or, in the case of the handheld unit, via the "HHU" parameter. The MCP and
HHU connection settings are entered in FB1 parameters "MCPMPI", "MCPBusType" or
"BHG", "BHGMPI".

Handheld unit (HT2)
In the handheld unit the addressing is done via a parameter of the GD parameter set. This
was necessary for reasons of compatibility of the parameter names.

Configuration
Essentially, there are various communication mechanisms for transferring data between the
MCP/HHU and PLC. These mechanisms are characterized by the bus connection of the
MCP and HHU. In one case (Ethernet), data is transported via the "CP 840D sl".

The mechanism is parameterized completely via the MCP/HHU parameters in FB1.

In the other case the transmission is via the PLC operating system through the PROFIBUS
configuration.

The parameter setting is done via STEP 7 in HW-Config. To enable the basic program to
access the data and failure monitoring of MCP/HHU, the addresses set in FB 1-parameters
must be made available to the basic program.

An overview of the various coupling mechanisms is shown below. Mixed operation can also
be configured.

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
856 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

If an error is detected due to a timeout monitor, an entry is made in the alarm buffer of the
PLC CPU (alarms 400260 to 400262). In this case, the input signals from the MCP or from
the handheld unit (MCP1In/MCP2In or BHGIn) are reset to 0. If it is possible to
resynchronize the PLC and MCP/HHU, communication is resumed automatically and the
error message reset by the GP.

 Note

The abbreviation "(n.r.)" in the tables below means "Not relevant".

Ethernet connection (MCPBusType = 5)
Without further configuration settings being made, communication takes place directly from
the PLC GP via the CP 840D sl. The FB 1 parameters listed below are used for
parameterization.

The numeric part of the logical name of the component must be entered in "MCP1 BusAdr",
"MCP2 BusAdr" or "BHGRecGDNo" (corresponds to the bus address of the node). The
logical name is defined via switches on the MCP or terminal box.

Figure 12-14 Ethernet connection

Relevant parameters (FB 1)
MCP HHU
MCPNum=1 or 2 (number of MCPs) HHU = 5 (via CP 840D sl)
MCP1In MCP2In BHGIn
MCP1Out MCP2Out BHGOut
MCP1StatSend MCP2StatSend BHGStatSend
MCP1StatRec (n.r.) MCP2StatRec (n.r.) BHGStatRec
MCP1BusAdr MCP2BusAdr BHGInLen (n.r.)
MCP1Timeout (n.r.) MCP2Timeout (n.r.) BHGOutLen (n.r.)
MCP1Cycl (n.r.) MCP2Cycl (n.r.) BHGTimeout (n.r.)
MCPMPI = FALSE BHGCycl (n.r.)
MCP1Stop MCP2Stop BHGRecGDNo
MCP1NotSend MCP2NotSend BHGRecGBZNo (n.r.)

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 857

Relevant parameters (FB 1)
MCP HHU
 BHGRecObjNo (n.r.)
MCPBusType = b#16#55 (via CP 840D sl) BHGSendGDNo (n.r.)
 BHGSendGBZNo (n.r.)
MCPSDB210= FALSE BHGSendObjNo (n.r.)
MCPCopyDB77 = FALSE BHGMPI = FALSE
 BHGStop
 BHG NotSend

An error entry is also made in the PLC alarm buffer for timeouts. As a result, the following
error messages are output at the HMI:

● 400260: MCP 1 failure

or

● 400261: MCP 2 failure

● 400262: HHU failure

An MCP or HHU failure is detected immediately after a cold restart even if no data has yet
been exchanged between the MCP/HHU and PLC.
The monitoring function is activated as soon as all components have signaled "Ready" after
powerup.

Example: OP with direct keys
The direct keys of the OPs at the Ethernet bus should be transferred to the PLC. Previously,
the direct keys have been transferred to the PLC via the PROFIBUS or via a special cable
connection between OP and MCP.

For connecting the direct keys via the Ethernet, this concerns e.g. the "OP08T", there is a
parameterization in the basic program for activating the data transport. The related
parameters lie in the instance DB of the FB 1 (OpKeyNum to OpKeyBusType, see data
table). The parameters are provided by the user in the start OB 100 through the switching of
the parameter at the FB 1 call. The bus address and Op1/2KeyStop can also be modified in
the cyclic operation by writing the FB 1-Instance-DB DB 7.

The transport of the user data of the direct keys runs in the same way as in the case of
Ethernet MCP. The data transport can also be stopped and restarted via writing the DB 7-
parameter "Op1/2KeyStop". During the Stop phase the address of the direct key module
(TCU-index or the MCP-address) can also be changed.

After resetting the Stop signal, a connection to the new address is established.

The status of the respective direct-key interfaces can be read in the interface signal:

DB10.DBX104.3 (OP1Key ready)

or

DB10.DBX104.4 (OP2Key ready)

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
858 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Address direct keys

For the parameter Op1/2KeyBusAdr the TCU index is normally to be used. This affects the
OPs, such as OP08T, OP12T, which for the direct keys do not have special cable connection
to an Ethernet MCP.

If OPs with direct keys have a special cable connection and these are connected to an
Ethernet-MCP, then for the parameter Op1/2KeyBusAdr the address of the MCP (DIP-switch
setting of the MCP) is to be used. Only the data stream of the direct keys (2 bytes) is
transferred via the direct key interface.

Alarm direct keys

An error entry is also made in the PLC alarm buffer for timeouts. As a result, the following
error messages are output at the HMI:

● 400274: Direct key 1 failed

or

● 400275: Direct key 2 failed

Control unit switching for direct keys

The user switches Op1/2KeyBusAdr with 0xFF and Stop = TRUE in the startup block OB
100. Via the M to N block FB 9 the direct key address of the M-to-N interface is stored to the
parameter "Op1KeyBusAdr".

Relevant parameters (FB 1)
Direct keys e.g. direct keys OP08T
OpKeyNum = 1 or 2 (number of OPs with direct keys)
Op1KeyIn Op2KeyIn
Op1KeyOut Op2KeyOut
OpKey1BusAdr Op2KeyBusAdr Address: TCU index:
Op1KeyStop Op2KeyStop
Op1KeyNotSend Op2KeyNotSend

OpKeyBusType = b#16#55 (via CP 840D sl)

MCP identification
Via the Identify interface in the DB 7 it is possible to query the type of the Ethernet
component (MCP, HT2, HT8 or direct keys) with the relevant parameters at the input/output
in cyclic operation:

● Relevant parameters at the input:

"IdentMcpBusAdr", "IdentMcpProfilNo", "IdentMcpBusType", "IdentMcpStrobe"

● Relevant parameters at the output:

"IdentMcpType", "IdentMcpLengthIn", "IdentMcpLengthOut"

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 859

Here the DIP device address or the TCU index at the parameter "IdentMcpBusAdr" is
activated by the user program together with setting of the Strobe signal.

The input parameter "IdentMcpProfilNo" is normally to be set to the value 0. This parameter
is to be set to the value 1 only in the identification of the direct keys. The parameter
"IdentMcpBusType" currently has no significance for a user program and is to be left in its
default value.

After resetting the Strobe signal by the basic program, valid output information becomes
available to the user. The resetting of the Strobe signals by the basic program can last for
several PLC cycles (up to two seconds).

The output parameters should show the user the size of the data areas for the addressed
device. Furthermore, it can be defined here, whether an HT2 or an HT8 or no device is
connected to the connection box. With this information, the MCP channel or the HHU
channel can be activated. In the cyclic operation the parameters can be written symbolically
by the user program and read via the symbol names of the DB 7 (gp_par).

Relevant parameters (FB 1)
MCP device identification Input parameters, e.g. OP08T
Input Output Values in direct keys

IdentMcpBusAdr IdentMcpType IdentMcpBusAdr = TCU index
IdentMcpBusProfilNo IdentMcpLengthIn IdentMcpBusProfilNo = Value 1
IdentMcpBusType IdentMcpLengthOut IdentMcpBusType = Default value
IdentMcpStrobe

IdentMcpBusProfilNo Value
MCP, BHG, HT8, HT2 B#16#0
Direct keys, such as OP08T, OP12T B#16#1

IdentMcpType (Mcp-Type)
no device connected 0
MCP 483C IE (Compact) B#16#80
MCP 483C IE B#16#81
MCP 310 B#16#82
MCP OEM B#16#83
MCP DMG B#16#84
HT8 B#16#85
TCU_DT (direct keys) B#16#86
MCP_MPP B#16#87
HT2 B#16#88
OP08T (direct keys) B#16#89

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
860 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

PROFIBUS connection on the DP port (MCPBusType = 3)
In case of PROFIBUS connection of the MCP, this component must be considered in the
hardware configuration setting of STEP 7. The MCP is connected to the standard DP bus of
the PLC (not to MPI/DP). The addresses must be stored in the input and output log range.
These start addresses must also be stored in the pointer parameters of the FB1. The FB1
parameters listed below are used for further parameterization.

There is no PROFIBUS variant of the HHU. For this reason, an Ethernet connection is
shown for the HHU in this figure. The PROFIBUS slave address must be stored in the
parameters "MCP1BusAdr" and "MCP2BusAdr". Enter the pointer to the configured
diagnostic address (e.g. P#A8190.0) in "MCPxStatRec".

Figure 12-15 PROFIBUS connection

Relevant parameters (FB 1)
MCP HHU
MCPNum = 1 or 2 (number of MCPs) HHU = 5 (via CP 840D sl)
MCP1In MCP2In BHGIn
MCP1Out MCP2Out BHGOut
MCP1StatSend (n.r.) MCP2StatSend (n.r.) BHGStatSend
MCP1StatRec MCP2StatRec BHGStatRec
MCP1BusAdr MCP2BusAdr BHGInLen
MCP1Timeout MCP2Timeout BHGOutLen
MCP1Cycl (n.r.) MCP2Cycl (n.r.) BHGTimeout (n.r.)
MCPMPI = FALSE BHGCycl (n.r.)
MCP1Stop MCP2Stop BHGRecGDNo
MCPBusType = b#16#33 BHGRecGBZNo (n.r.)
 BHGRecObjNo (n.r.)
MCPSDB210= FALSE BHGSendGDNo (n.r.)
MCPCopyDB77 = FALSE BHGSendGBZNo (n.r.)

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 861

Relevant parameters (FB 1)
MCP HHU
 BHGSendObjNo (n.r.)
 BHGMPI = FALSE
 BHGStop

MCP failure normally switches the PLC to the STOP state. If this is undesirable, OB 82, OB
86 can be used to avoid a stop. The basic program has, as standard, the OB 82 and OB 86
call. FC5 is called in these OBs. This FC5 checks whether the failed slave is an MCP. If this
is the case, no PLC stop is triggered. Setting "MCPxStop" := TRUE causes the basic
program to deactivate the MCP as a slave via SFC 12. If the PLC does not switch to the stop
state following the failure or fault of the MCP, an alarm message will be generated via the
basic program. The interrupt is deleted when the station recovers.

PROFIBUS connection on the MPI/DP port (MCPBusType = 4)
With the PROFIBUS connection of the MCP, this component must be considered in the
STEP 7 hardware configuration. The MCP is connected on the MPI/DP bus of the PLC.

The addresses must be stored in the input and output log range. These start addresses must
also be stored in the pointer parameters of the FB1. The FB1 parameters listed below are
used for further parameter assignment. There is no PROFIBUS variant of the HHU. For this
reason, an Ethernet connection is shown for the HHU in this diagram. The PROFIBUS slave
address must be stored in the parameters MCP1BusAdr and MCP2BusAdr. Enter the pointer
to the configured diagnostic address (e.g. P#A8190.0) in MCPxStatRec.

Figure 12-16 PROFIBUS connection on the MPI/DP port

Relevant parameters (FB1)
MCP HHU
MCPNum = 1 or 2 (number of MCPs) HHU = 5 (via CP 840D sl)
MCP1In MCP2In BHGIn

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
862 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Relevant parameters (FB1)
MCP HHU
MCP1Out MCP2Out BHGOut
MCP1StatSend (n.r.) MCP2StatSend (n.r.) BHGStatSend
MCP1StatRec MCP2StatRec BHGStatRec
MCP1BusAdr MCP2BusAdr BHGInLen
MCP1Timeout MCP2Timeout BHGOutLen
MCP1Cycl (n.r.) MCP2Cycl (n.r.) BHGTimeout (n.r.)
MCPMPI = FALSE BHGCycl (n.r.)
MCP1Stop MCP2Stop BHGRecGDNo
MCPBusType = b#16#44 BHGRecGBZNo (n.r.)
 BHGRecObjNo (n.r.)
MCPSDB210= FALSE BHGSendGDNo (n.r.)
MCPCopyDB77 = FALSE BHGSendGBZNo (n.r.)
 BHGSendObjNo (n.r.)
 BHGMPI = FALSE
 BHGStop

MCP failure normally switches the PLC to the STOP state. If this is not wanted, OB 82, OB
86 can be used to avoid a PLC stop. The basic program has, as standard, the OB 82 and
OB 86 call. FC5 is called in these OBs. This FC5 checks whether the failed slave is an MCP.
If this is the case, no PLC stop is triggered. Setting MCPxStop := True causes the basic
program to deactivate the MCP as a slave via SFC 12. If the PLC does not switch to the stop
state following the failure or fault of the MCP, an alarm message will be generated via the
basic program. The alarm is deleted when the station returns.

PROFINET connection (MCPBusType = 6)
In case of a PROFINET connection of the MCP, this component must be parameterized in
the hardware configuration of STEP 7. The MCP is coupled with the PROFINET module of
the CPU.

When parameterizing the MCP in HW Config, the addresses should be placed in the input
and output mapping area. These start addresses must also be stored in the pointer
parameters (MCPxIn and MCPxOut) of FB1. This is because signals are transferred
between the MCP and basic program via these parameters. The MCP is also monitored
using parameter MCPxIn. This is the reason why parameter MCPxBusAdr is not relevant for
this MCP version.

Enter the pointer to the configured diagnostic address (e.g. P#A8190.0) in MCPxStatRec.

The PROFINET MCP has its own type which should be applied for parameter MCPBusType.

The FB1 parameters listed below are used for further parameter assignment. There is no
PROFIBUS variant of the HHU. An Ethernet port for the HHU is shown in the diagram.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 863

Figure 12-17 PROFINET connection

Relevant parameters (FB1)
MCP HHU
MCPNum = 1 or 2 (number of MCPs) HHU = 5 (via CP 840D sl)
MCP1In MCP2In BHGIn
MCP1Out MCP2Out BHGOut
MCP1StatSend (n.r.) MCP2StatSend (n.r.) BHGStatSend
MCP1StatRec MCP2StatRec BHGStatRec
MCP1BusAdr (n.r.) MCP2BusAdr (n.r.) BHGInLen
MCP1Timeout MCP2Timeout BHGOutLen
MCP1Cycl MCP2Cycl BHGTimeout (n.r.)
MCPMPI = FALSE BHGCycl (n.r.)
MCP1Stop MCP2Stop BHGRecGDNo
MCPBusType = b#16#36
(as in the figure as example)
 (6 = PROFINET for MCP1)
 (3 = PROFIBUS for MCP2)

BHGRecGBZNo (n.r.)

 BHGRecObjNo (n.r.)
MCPSDB210= FALSE BHGSendGDNo (n.r.)
MCPCopyDB77 = FALSE BHGSendGBZNo (n.r.)
 BHGSendObjNo (n.r.)
 BHGMPI = FALSE
 BHGStop

MCP failure normally switches the PLC to the STOP state. If this is not wanted, then OB 82,
OB 86 can be used to avoid a PLC stop. The basic program has, as standard, the OB 82
and OB 86 call. FC5 is called in these OBs. This FC5 checks whether the failed slave is an
MCP. If this is the case, no PLC stop is triggered. The input address at parameter MCPxIn is
of significance when monitoring for MCPxIn failure.

P3: Basic PLC program for SINUMERIK 840D sl
12.10 Structure and functions of the basic program

 Basic Functions
864 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Setting MCPxStop := True causes the basic program to deactivate the MCP as a slave via
SFC 12. If the PLC does not switch to the stop state following the failure or fault of the MCP,
an alarm message will be generated via the basic program. The alarm is deleted when the
station returns.

12.10.12 Switchover of machine control panel, handheld unit
Only Ethernet variants support switchover/deactivation of the machine control panel (MCP)
or handheld unit (HHU) as standard. On MPI and PROFIBUS variants, this function is either
not supported at all or can only be implemented in restricted format requiring additional effort
on the part of the user. For example, with the PROFIBUS variant of the MCP, the DB77 data
area specified for MCP1, MCP2 or HHU can be used for the MCP pointer on FB1. The MCP
slave bus address must be set correctly under MCPxBusAdr as this is used as the basis for
monitoring. A user program copy routine to copy the signals of the active MCP from the I/O
area configured in HW Config to DB77. This enables a number of MCPs on the PROFIBUS
to be switched via signals. Set the MCPxStop parameter to True for the switchover phase
from one MCP to another.

One method will be outlined now with the Ethernet variants of MCP and HHU.

Control signals
Parameters MCP1Stop, MCP2Stop and BHGStop can be used to stop communication with
individual components (parameter setting = 1). This function is available only on Ethernet
variants. This stop or activation of communication can be applied in the current cycle.
However, the change in value must be implemented through the symbolic notation of the
parameters and not by means of another FB 1 call.

Example of stopping transfer from the 1st machine control panel:

SET;

S gp_par.MCP1Stop;

Setting parameters MCP1Stop, MCP2Stop, BHGStop also results in a suppression or
deletion of interrupts 400260 to 400262.

Switchover of bus address
An existing connection with a machine control panel (MCPl) or handheld unit (HHU) can be
aborted. Another MCP or HHU component already connected to the bus (different address)
can then be activated. Proceed as follows to switch addresses:

1. Stop communication with component to be decoupled via parameter MCP1Stop or
MCP2Stop or BHGStop = 1.

2. Following checkback in DB10 byte 104 (relevant bits 0, 1 and 2 are set to 0), the bus
address (with MCP, this is the FB1 parameter "MCP1BusAdr" or "MCP2BusAdr") is
changed; With HHU Ethernet variant, the bus address is set at FB1 parameter
"BHGRecGDNo") of this unit is changed to the new component.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.10 Structure and functions of the basic program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 865

3. In this PLC cycle, communication with the new component can now be activated again by
means of parameter MCP1Stop or MCP2Stop or BHGStop = 0.

4. Communication with the new component is taking place when the checkback is in DB 10
byte 104 (relevant bits 0, 1, 2 are set to 1).

Switch off Ethernet MCP flashing

General behavior and general conditions

After POWER ON the MCPs always flash and indicate the completion of the power-up
sequence and that the system is waiting for a connection to be established (default setting of
the MCP).

When establishing a connection to the MCP (e.g. the PLC connects itself to the appropriate
MCP) the behavior of the LEDs can be set for the subsequent state where there is no
communication.

Presently, this behavior cannot be retentively stored on the MCP!

Setting via the PLC:

As of MCP firmware V02.02.04, flashing can be suppressed in the offline mode.

No communication takes place in the offline mode (e.g. even if the MCP connection fails).

In order to deactivate the flashing, the bits in FB1 parameter MCPxStatSend (status double
word for sending) must be set as follows before communication to the MCP starts:

Bit 30 = FALSE and bit 31 = TRUE

Before communication starts to the MCP means:

● In OB100 or

● In OB1 before MCP stop/start

(DB7 parameter change MCPxStop = TRUE → MCPxStop = FALSE)

Feedback of the status is presently not available.

Example:

Extract from OB100: (based on the example for MCP1)

CALL "RUN_UP" , "gp_par"

...

MCP1StatSend := P#E 8.0

...

//deactivate MCP flashing

SET

R A 11.6

S A 11.7

...

P3: Basic PLC program for SINUMERIK 840D sl
12.11 SPL for Safety Integrated

 Basic Functions
866 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.11 SPL for Safety Integrated
Rather than being a function of the basic program, SPL is a user function. The basic
program makes a data block (DB 18) available for Safety SPL signals and runs a data
comparison to ensure the consistency of SPL program data in the NCK.

References:
/FBSI/ Description of Functions Safety Integrated

12.12 Assignment overview

12.12.1 Assignment: NCK/PLC interface
The values of the NC/PLC interface for SINUMERK 840D sl are described in detail in:
References:
Lists sl (Buch2)

12.12.2 Assignment: FB/FC

Number Significance
FB 15 Basic program
FB 1, FC 2, FC 3, FC 5 Basic program
FC 0 ... 29 Reserved for Siemens
FB 0 ... 29 Reserved for Siemens
FC 30 ... 999 1) Free for user assignment
FB 30 ... 999 1) Free for user assignment
FC 1000 ... 1023 Reserved for Siemens
FB 1000 ... 1023 Reserved for Siemens
FC 1024 ... upper limit Free for user assignment
FB 1024 ... upper limit Free for user assignment

1) The actual upper limit of the block number (FB/FC) depends on the PLC CPU on which the
selected NCU is located.

 Note

Values of FC, FB see " Memory requirements of the basic PLC program (Page 872)".

 P3: Basic PLC program for SINUMERIK 840D sl
 12.12 Assignment overview

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 867

12.12.3 Assignment: DB

 Note

Only as many data blocks as are required according to the NC machine data configuration
are set up.

Overview of data blocks
DB no. Name Name Packa

ge
1 Reserved for Siemens BP
2 ... 5 PLC-MELD PLC messages BP
6 ... 8 Basic program
9 NC-COMPILE Interface for NC compile cycles BP
10 NC INTERFACE Central NCK interface BP
11 Mode group 1 Interface mode group BP
12 Computer link and transport system interface
13 ... 14 Reserved for basic program
15 Basic program
16 PI Service definition
17 Version identifier
18 Reserved for basic program
19 HMI interface
20 PLC machine data
21 ... 30 CHANNEL 1 ... n Interface NC channels BP

BP 31 ... 61 AXIS 1 ... m Interfaces for axes/spindles
or free for user assignment

62 ... 70 Free for user assignment
71 ... 74 Tool management BP
75 ... 76 M group decoding
77 Data block for MCP signals
78 ... 80 Reserved for Siemens
81 ... 999 1) see below: ShopMill, ManualTurn
1000 ... 1099 Reserved for Siemens
1100 ... High
limit

 Free for user assignment

1) The actual upper limit of the block number (DB) depends on the PLC CPU on which the selected
NCU is located. The data blocks of channels, axes/spindles and tool management functions that
are not activated may be assigned as desired by the user.

 Note

The data blocks of channels, axes/spindles and tool management functions that are not
activated may be assigned as required by the user.

P3: Basic PLC program for SINUMERIK 840D sl
12.13 PLC functions for HMI

 Basic Functions
868 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.12.4 Assignment: Timers

Timer No. Significance
T 0 ... T 512 1) User area

1) The actual upper limit of the timer number (DB) depends on the PLC CPU on which the selected
NCU is located.

12.13 PLC functions for HMI

12.13.1 Program selection from the PLC

Function
The NC program to be executed can be specified via the PLC. The names of the NC
programs are entered in program lists.

There are two types of program lists that are dependent on the access level where NC
programs are combined into different files for SINUMERIK Operate:

1. user: Editing possible by the user (access level 3).

2. manufacturer: Editing possible only by the manufacturer (access level 1).

Access rights Index Program lists Directory
user 1 plc_proglist_user.ppl /user/sinumerik/hmi/plc/programlist
 2 reserved
manufacturer 3 plc_proglist_manufacturer.ppl /oem/sinumerik/hmi/plc/programlist

References
SINUMERIK Operate (IM9) Commissioning Manual; General Settings, Section "Access
levels"

Changing the name of the program list:
If the name of the program list is changed, a control file with the "plc_proglist_main.ppl"
name must be created.

Depending on the access rights, the control file is saved in the directory
/oem/sinumerik/hmi/plc/programlist or /user/sinumerik/hmi/plc/programlist. The index and the
modified name must be entered into the control file.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.13 PLC functions for HMI

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 869

Interface signals
Jobs from the PLC to HMI; perform a program selection in the NC:

DB19.DBB13 (PLC → HMI)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Part program
Selection Download Unload

reserved Disable
teach
transfer

The job is specified using an index in the control file:

DB19.DBB16 (PLC → HMI)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Always 1 =
passive file

system

PLC index for control file; value 1 or 3

An index in the specified program list refers to the NC program:

DB19.DBB17 (PLC → HMI)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Part program handling: Index of the file to be transferred from the program list.
user = value 1 - 100
oem = value 201 - 255

Acknowledgement byte from HMI for the current data transfer status:

DB19.DBB26 (HMI → PLC)
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Part program
Selection Download Unload

 Active Error OK reserved

Job processing
A PLC job is processed according to the following scheme:

● The PLC may only initiate a job in the job byte if the acknowledgement byte is 0.

● The HMI mirrors the job (excluding the parameter set) in the acknowledgement byte
(signaling to the PLC that its job is being processed). The PLC receives a "job active"
signal for an unfinished job.

● Once the operation is finished (without error or with error), the PLC must respond again
and delete the job byte.

● The HMI then sets the acknowledgement byte to 0. This ensures a sequential procedure.

P3: Basic PLC program for SINUMERIK 840D sl
12.13 PLC functions for HMI

 Basic Functions
870 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Error IDs at the PLC

DB19.DBB27 (HMI → PLC)
Value Meaning

0 No error
1 Invalid number for the control file (value in DB19.DBB16 < 127 or invalid).
3 Control file "plc_proglist_main.ppl" not found (value in DB19.DBB16 invalid).
4 Invalid index in control file (incorrect value in DB19.DBB17).
5 Job list in the selected workpiece could not be opened.
6 Error in job list (job list interpreter returns error).
7 Job list interpreter returns empty job list.

For further explanations of the interface signals, see Section "A2: Various NC/PLC interface
signals and functions (Page 33)".

12.13.2 Activating the key lock
The operator panel keyboard and a keyboard connected to the HMI can be locked via an
interface signal.

Interface signal

DB19 Signals to the operator panel front (PLC → HMI)
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 Part program handling: Index of the file to be transferred from the user list.
DBB0 Key

lock On

DB19 Signals to operator panel front (PLC → 2nd HMI)
 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 Part program handling: Index of the file to be transferred from the user list.
DBB50 Key lock

On

 P3: Basic PLC program for SINUMERIK 840D sl
 12.13 PLC functions for HMI

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 871

12.13.3 HMI monitor
The HMI monitor is a data area in a freely-selectable user-specific PLC data block.

Configuring HMI monitors
The PLC address of the HMI monitor is configured using the following display machine data:

MD9032 $MM_HMI_MONITOR (determining the PLC data for HMI monitor information)

Byte Meaning
0 Saves the PLC-ID of the active operating

area.
2
3

Saves the PLC-ID of the window that is
currently selected.

The machine data is a string and is interpreted as a pointer to a PLC data area with specified
byte offset, e.g. DB60.DBB10. The PLC data area encompasses 8 bytes of the PLC. The
start address must have an even byte offset (0, 2, 4, 6, 8, etc.).

Example
DB60.DBB10 for data block 60, byte 10

Reserves the bytes 10, 11, 12, 13, 14, 15, 16, 17 as HMI monitor

DB60.DBB10: PLC-ID of the active operating area

DB60.DBW12: PLC-ID of the window that is currently selected

 Note

When using the HMI monitor, the corresponding variables in the PLC user interface –
DB19.DBB21 and DB19.DBW24 – are no longer supplied.

This means that either the user interface or the HMI monitor can be used – but not both
simultaneously.

P3: Basic PLC program for SINUMERIK 840D sl
12.14 Memory requirements of the basic PLC program

 Basic Functions
872 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.14 Memory requirements of the basic PLC program
The basic program consists of basic and optional functions. The basic functions include
cyclic signal exchange between the NC and PLC. The Options include e.g. the FCs, which
can be used, if needed.

The table below lists the memory requirements for the basic functions and the options. The
data quoted represent guide values, the actual values depend on the current software
version.

Memory requirements of blocks for SINUMERIK 840D sl

Block size (bytes)
Block
type no.

Function

Remark Working

memory

Basic functions in basic program
FB 1, FB 15 must be loaded /

on CF card
 52182

FC 2, 3, 5, 12 Must be loaded 470
DB 4, 5, 7, 8 Must be loaded 1006
DB 2, 3, 17 Are generated by the BP 632
OB 1, 40, 100, 82, 86 Must be loaded 398
 Total 55698

PLC/NCK, PLC/HMI interface
DB 10 PLC/NCK signals Must be loaded 262
DB 11 Signals PLC/Mode group Is generated by BP 56
DB 19 PLC/HMI signals Is generated by BP 434
DB 21 to DB 30 PLC/channel signals Are generated by BP as a function of NCMD: for

each DB
 416

DB 31 to DB 61 PLC / axis or spindle
signals

Are generated by BP as a function of NCMD: for
each DB

 148

Basic program options
 Machine control panel
FC 19 Transfer of MCP signals,

M variant
Must be loaded when M variant of MCP is
installed

 92

FC 25 Transfer of MCP signals,
T variant

Must be loaded when T variant of MCP is
installed

 92

FC 24 Transfer of MCP signals,
slim variant

Must be loaded when slim variant of MCP is
installed

 100

FC 26 Transfer of MCP signals,
HT8 variant

Must be loaded for HT8 68

 Handheld unit

 P3: Basic PLC program for SINUMERIK 840D sl
 12.14 Memory requirements of the basic PLC program

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 873

Basic program options
FC 13 Display control HHU Can be loaded for handheld units 144
 Error/operating messages
FC 10 Acquisition FM/BM Load when FM / BM is used 66
 ASUB
FC 9 ASUB start Load when PLC ASUBs are used 128

Basic program options
 Star/delta changeover
FC 17 Star/delta switchover of

MSD
Load for star/delta switchover 114

 Spindle control
FC 18 Spindle control Load for spindle control from PLC 132
 PLC/NC communication
FB 2 Read NC variable Load for Read NC variable 76
DB n Read NC variable One instance DB per FB 2 call 270
FB 3 Write NC variable Load for Write NC variable 76
DB m Write NC variable One instance DB per FB3 call 270
FB 4 PI services Load for PI services 76
DB o PI services One instance DB per FB 4 call 130
DB 16 PI services description Load for PI services 618
FB 5 Read GUD variables Load for PI services 76
DB p Read GUD variables One instance DB per FB 5 call 166

DB 15 General communication Global data block for communication 146
FB 7 PI services 2 Load for PI services 76
DB o PI services 2 One instance DB per FB4 call: every 144
FC 21 Transfer Load with dual-port RAM, ... 164
 m:n
FB 9 Switchover M to N Load with M to N 58
 Safety Integrated
FB 10 Safety relay Load with Safety option 74
FB 11 Brake test Load with Safety option 76
DB 18 Safety data DB for Safety 308
 Tool management
FC 7 Transfer function

turret
Load for tool management option 84

FC 8 Transfer function Load for tool management option 132
FC 22 Direction selection Load, when direction selection is needed 138
DB 71 Loading locations Generated by BP as a function of NC MD 40+30*B
DB 72 Spindles Generated by BP as a function of NC MD 40+48*Sp

P3: Basic PLC program for SINUMERIK 840D sl
12.14 Memory requirements of the basic PLC program

 Basic Functions
874 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic program options
DB 73 Revolver Generated by BP as a function of NC MD 40+44*R
DB 74 Basic function Generated by BP as a function of NC MD 100+(B+

Sp+R)*22
 Compile cycles
DB 9 Interface

PLC compile cycles
Is generated by BP as a function of NC option 436

Example:
Based on the memory requirements in the table above, the memory requirements have been
determined for two sample configurations (see table below).

Block size (bytes)

Block
type no.

Function

Remark Working

memory

Minimum configuration (1 spindle, 2 axes and T MCP)
see above Basic program, base 54688
 Interface DBs 1612
 MCP 92
 Total 56392

Block size (bytes)
Block
type no.

Function

Remark Working

memory

Maximum configuration (2 channels, 4 spindles, 4 axes, T MCP)
see above Basic program, base 54688
see above Interface DBs 2768
see above MCP 92
see above Error/operating

messages
 66

see above ASUBs 1 ASUB initiation 128
see above Concurrent axis For 2 turrets 132
see above PLC/NC communication 1 x read variable and 1 x write variable 838
see above Tool management 2 turrets with one loading point each 674
see above Compile cycles 436
 Total 59822

 P3: Basic PLC program for SINUMERIK 840D sl
 12.15 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 875

12.15 Basic conditions and NC VAR selector

12.15.1 Supplementary conditions

12.15.1.1 Programming and parameterizing tools

Hardware
For the PLCs used in SINUMERIK 840D sl, the following equipment is required for the
programming devices or PCs:

 Minimum Recommendation
Processor Pentium Pentium
RAM (MB) 256 512 or more
Hard disk,
free capacity (MB)

500 > 500

Interfaces MPI, Ethernet incl. cable
Memory card

Graphic SVGA (1024*768)
Mouse Yes
Operating system Windows 2000 /XP Professional, STEP 7 version 5.3 SP2 or

higher

The required version of STEP 7 can be installed on equipment meeting the above
requirements in cases where the package has not already been supplied with the
programming device.

The following functions are possible with this package:

● Programming

– Editors and compilers for STL (complete scope of the language incl. SFB/SFC calls),
LAD, FBD

– Creation and editing of assignment lists (symbol editor)

– Data block editor

– Input and output of blocks ON/OFF line

– Insertion of modifications and additions ON and OFF line

– Transfer of blocks from programming device to the PLC and vice versa

● Parameterizing

– Parameterizing tool HW Config for CPU and I/O device parameterization

– NetPro parameterizing tool for setting the CPU communication parameters

– Output of system data such as hardware and software version, memory capacity, I/O
expansion/assignment

P3: Basic PLC program for SINUMERIK 840D sl
12.15 Basic conditions and NC VAR selector

 Basic Functions
876 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Testing and diagnostics (ONLINE)

– Variable status/forcing (I/Os, flags, data block contents, etc.)

– Status of individual blocks

– Display of system states (ISTACK, BSTACK, system status list)

– Display of system messages

– Trigger PLC stop / restart / general reset from the PG

– Compress PLC

● Documentation

– Printout of individual or all blocks

– Allocation of symbolic names (also for variables in data blocks)

– Input and output of comments within each block

– Printout of test and diagnostics displays

– Hardcopy function

– Cross-reference list

– Program overview

– Assignment plan I/O/M/T/Z/D

● Archiving of utility routines

– Allocation of the output states of individual blocks

– Comparison of blocks

– Rewiring

– STEP 5 → STEP 7 converter

● Option packages

– Programming in S7-HIGRAPH, S7-GRAPH, SCL.

These packages can be ordered from the SIMATIC sales department.

– Additional packages for configuration modules (e.g. CP3425 → NCM package)

 Note

More information about possible functions can be found in SIMATIC catalogs and
STEP 7 documentation.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.15 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 877

12.15.1.2 SIMATIC documentation required
ReferenceS:

● System description SIMATIC S7

● S7-300 instruction list

● Programming with STEP 7

● User Manual STEP 7

● Programming manual STEP 7; designing of user programs

● Reference manual STEP 7; Instructions list AWL

● Reference manual STEP 7; Ladder Diagram KOP

● Reference manual STEP 7; Default and system functions

● Manual STEP 7; Conversion of STEP 5 programs

● STEP 7 overall index

● Manual CPU 317-2DP

12.15.1.3 Relevant SINUMERIK documents
References:

● Commissioning Manual IBN CNC: NCK, PLC, Drive

● Operator Components and Networking Manual

● Function Manual Basic Functions

● Function Manual, Extended Functions:

● Function Manual, Special Functions

● Lists sl (Book1)

● Lists sl (Book2)

12.15.2 NC VAR selector

12.15.2.1 Overview

General
The PC application "NC VAR selector" fetches the addresses of required NC variables and
processes them for access in the PLC program (FB 2/FB 3). This enables the programmer to
select NC variables from the entire range of NC variables, to store this selection of variables,
to edit them by means of a code generator for the STEP 7 compiler and finally to store them
as an ASCII file (*.AWL) in the machine CPU program. This process is shown in the figure
"NC VAR selector".

P3: Basic PLC program for SINUMERIK 840D sl
12.15 Basic conditions and NC VAR selector

 Basic Functions
878 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

For storing the files created by NC-VAR-selector a catalog is to be implemented via the
Windows Explorer with any catalog name. The selected data of the NC-VAR selector
(data.VAR and data.AWL files) must be stored in this catalog. Thereafter, the STL file is to
be transferred and compiled via the menu option "Code" → "in STEP 7 Project". The
"data.AWL" (STL data) file must then be inserted into the STEP 7 machine project via
"Insert", "External Source" in the STEP 7 Manager. The source container must be selected
in the manager for this purpose. This action stores this file in the project structure. Once the
file has been transferred, these AWL (STL) files must be compiled with STEP 7.

 Note

The latest NC VAR selector can be used for each NC software version (even earlier
versions). For older NC software versions the variables can also be selected from the latest
complete list. The data content in DB 120 (default DB for variables) does not depend on the
software status. That is, variables selected in an older software version need not be
reselected when the software is upgraded.

Figure 12-18 NC VAR selector

After the "NC VAR selector" application has been started, select a list of variables of an NC
variant (hard disk → file Ncv.mdb) to display all the variables contained in this list in a
window.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.15 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 879

The following ncv*.mdb variable list is available:

Variables List
NC variables including machine and setting data: ncv_NcData.mdb
Parameters of the drive: ncv_SinamicsServo.mdb

The user can also transfer variables to a second list (separate window). This latter selection
of variables can then be stored in an ASCII file or edited as a STEP 7 source file (.awl) and
stored.

After generating a PLC data block by means of the STEP 7 compiler, the programmer is able
to read or write NCK variables via the basic program function blocks "PUT" and "GET" using
the STEP 7 file.

The list of selected variables is also stored as an ASCII file (file extension .var).

The variable list supplied with the "NC VAR selector" tool is adapted to the current NC
software version. This list does not contain any variables (GUD variables) defined by the
user. These variables are processed by the function block FB 5 in the basic program.

 Note

The latest version of the "NC VAR selector" is capable of processing all previous NC
software versions. It is, therefore, not necessary to install different versions of the "NC VAR
selector" in parallel.

System features, supplementary conditions
The PC application "NC VAR selector" requires Windows 2000 or a higher operating system.

The assignment of names to variables is described in:
References:
/LIS1/ Lists (Book1); Section: Variables,
or in the Variables Help file (integrated in NC VAR selector).

P3: Basic PLC program for SINUMERIK 840D sl
12.15 Basic conditions and NC VAR selector

 Basic Functions
880 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.15.2.2 Description of functions

Overview
The figure below illustrates how the NC VAR selector is used within the STEP 7
environment.

Figure 12-19 Application of NC VAR selector in the STEP 7 environment

The NC VAR selector is used to generate a list of selected variables from a list of variables
and then to generate an .awl file that can be compiled by the STEP 7 compiler.

● A *.awl file contains the names and alias names of the NC variables, as well as
information about their address parameters. Any data block generated from this file will
only contain the address parameters (10 bytes per parameter).

● The generated data blocks must always be stored in the machine-specific file storage
according to STEP 7 specifications.

● To ensure that the parameterization of the GET/PUT (FB 2/3) blocks with respect to NC
addresses can be implemented with symbols, the freely assignable, symbolic name of the
generated data block must be included in the STEP 7 symbol table.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.15 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 881

Basic display / basic menu
After the NC VAR selector has been selected (started), the basic display with all input
options (upper menu bar) appears on the screen. All other displayed windows are placed
within the general window.

Figure 12-20 Basic display with basic menu

Project menu item
All operator actions associated with the project file (file of selected variables) are performed
under this menu item.

Terminating the application
The application can be terminated by selecting the "End" option under the "Project" menu
item.

Creating a new project
A new project (new file for selected variables) can be set up under the "Project" menu item.

A window is displayed for the selected variables when "NEW" is selected. The file selection
for the NC variable list is then displayed after a prompt (applies only if the NC variable list is
not already open).

P3: Basic PLC program for SINUMERIK 840D sl
12.15 Basic conditions and NC VAR selector

 Basic Functions
882 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 12-21 Window with selected variables for new project

The selected variables are displayed in a window.

Open an already existing project
Select "Open" under the "Project" menu item to open an existing project (variables already
selected). A file selection window is displayed allowing the appropriate project with extension
".var" to be selected.

Figure 12-22 Selection window for existing projects

If, after selection of the project, new variables are to be added, a complete list of NC
variables must be selected. No complete list need be called if the user only wishes to delete
variables from the project.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.15 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 883

Storing a project
The variable list is stored using the "Project" > "Save" or "Save As...." menu items.

"Save" stores the variable list under a path, which is already specified. If the project path is
not known, then the procedure is as for "Save As....".

"Save As..." displays a window in which the path for the project to be stored can be
specified.

Printing a project
The "Print" command under the "Project" menu item can be selected to print a project file.
The number of lines per page is selected under the "Print Setting" menu item. The default
setting is 77 lines.

Edit menu item
The following operator actions are examples of those, which can be carried out directly with
this menu item:

● Transfer variables

● Delete variables

● change alias names

● Find variables

These actions can also be canceled again under Edit.

Undoing actions
Operator actions relating to the creation of the project file (transfer variables, delete
variables, change alias names) can be undone in this menu.

NC variables menu item
The basic list of all variables is saved in NC Var Selector path Data\Swxy (xy stands for
software version no., e.g. SW 5.3:=xy=53). This list can be selected as an NC variables list.
In case of SINUMERIK 840D sl the basic lists are present in the path Data\Swxy_sl.

P3: Basic PLC program for SINUMERIK 840D sl
12.15 Basic conditions and NC VAR selector

 Basic Functions
884 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Selecting an NC variable list
A list of all the NC variables for an NC version can now be selected and displayed via the
"NC Variable List", "Select" menu item.

Figure 12-23 Window with selected Complete List

The field variables (e.g. axis area, T area data, etc.) are indicated by means of brackets ([.]).
Additional information must be specified here. When the variables are transferred to the
project list, the additional information required is requested.

Displaying subsets
Double-click on any table field (with the exception of variable fields) to display a window in
which filter criteria can be preset.

Figure 12-24 Window with filter criteria for displaying list of variables

 P3: Basic PLC program for SINUMERIK 840D sl
 12.15 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 885

There are three options:

● Display all data

● Input area, block and name (incl. combinations)

● Display MD/SE data number

The following wildcards can also be used:

* To extend the search criterion as required

Example search criteria

Name search criterion: CHAN* Found: CHAN_NAME
 chanAlarm
 chanStatus
 channelName
 chanAssignment

● Select variable

A variable is selected by means of a simple mouse click and transferred to the window of
selected variables by double-clicking. This action can also be undone under the "Edit"
menu item.

Alias name
The variable names provided can be up to 32 characters in length. To make variables clearly
identifiable in the data block to be generated, several ASCII characters are added to the
selected name. However, the STEP 7 compiler recognizes only 24 ASCII characters as an
unambiguous STEP 7 variable. Since it cannot be precluded that variable names can only be
differentiated by the last 8 character positions, ALIAS names are used for names, which are
too long. When a variable is selected, the length of the STEP 7 name to be used is,
therefore, checked. If the name is longer than 24 characters, the user must enter an
additional name, which is then used as the alias.

In this case, the user must ensure that the alias name is unambiguous.

Alias input can always be activated by the user in the "Options" menu.
An alias name can then be entered every time a variable is transferred.

It is also possible to edit alias names at a later point in time by double-clicking on the S7
variable name field. This action can also be undone under the "Edit" menu item.

P3: Basic PLC program for SINUMERIK 840D sl
12.15 Basic conditions and NC VAR selector

 Basic Functions
886 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 12-25 Screen with complete list and selected variables

Scrolling
A scroll bar is displayed if it is not possible to display all variables in the window. The
remaining variables can be reached by scrolling (page up/down).

Variables in multi-dimensional structures
If variables are selected from multi-dimensional structures, then the column and/or line
number as well as the area number must be entered so that the variables can be addressed.
The required numbers can be found in the NC variables documentation.

References:
Lists sl (Book1); Variables

By entering a zero (0) as the block number or the line or column index, it is possible to use
the variable in the S7 PLC as a pointer to these data. When reading or writing these data via
the functions "PUT" and "GET", the optional parameters "UnitX", "ColumnX" and "LineX"
must be filled with the necessary information.

Figure 12-26 Entry field for line, column and block no.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.15 Basic conditions and NC VAR selector

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 887

Delete variables
Variables are deleted in the window of selected variables by selecting the appropriate
variables (single mouse click) and pressing the "Delete" key. No deletion action is taken with
the double-click function. It is possible to select several variables for deletion (see Section
"Example of search criteria > Selecting variables").

This action can also be undone under the "Edit" menu item.

 Note

Deleting of variables results in a change of the absolute addresses of the pointer structures
to the variables. When changing the variable selection, it is, therefore, absolutely necessary
to generate one or several text files of all user blocksprior to the change. This is the only way
to ensure that the assignment of the variables in FB "GET" or FB "PUT" remains correct,
even after recompilation.

Storing a selected list
Once variables have been selected, they can be stored under a project name. The files are
stored on a project-specific basis.

A window is displayed for the file to be stored. The project path and name for the file must be
selected in the window.

Figure 12-27 Window for project path and name of file to be stored

Code generation
This menu item contains three selection options:

1. Settings (input of data block number to be generated) and other settings

2. Generate (create data block)
3. In the STEP 7 project (transferring the data block to a STEP 7 project)

P3: Basic PLC program for SINUMERIK 840D sl
12.15 Basic conditions and NC VAR selector

 Basic Functions
888 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Settings
Under this menu item, the DB number and the symbol for this DB number for which the code
is created is entered.

Under the "Mass System" tab, a selection is made to determine how the unit system
variables are calculated in the PLC.

Under the "Generate" tab, the project creation is defined for the relevant target system.

Generate
Under this menu item, the STEP 7 file from the selected variable list with extension ".awl" is
set.

A file is generated when "Select" is clicked:

An .awl file that can be used as an input for the STEP 7 compiler.

A window opens, in which path and name for the .awl file to be generated must be specified
for the file to be saved.

In STEP 7 project
The generated STL file is transferred to a selectable SIMATIC project (program path) and
compiled. Furthermore, the symbol can also be transferred. This function is available as of
STEP 7 Version 5.1. This process takes a longer time owing to the call of STEP 7. Before
transferring a new STL file the file window of the STL file is to be closed in the LAD/FBD/STL
editor.

Option menu item
The following can be selected under the "Option" menu item:

● The current language

● The mode for alias input (always / > 24 characters)

Help menu item
The information below can be viewed by selecting the corresponding submenu item:

● The Operating Manual

● The Description of Variables

The copyright and the version number can also be displayed.

12.15.2.3 Startup, installation
The Windows application "NC Var selector" is installed using the SETUP program supplied
with the package.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 889

12.16 Block descriptions

12.16.1 FB 1: RUN_UP Basic program, startup section

Function
The synchronization of NCK and PLC is performed during startup. The data blocks for the
NC/PLC user interface are created with reference to the NC configuration defined in the
machine data and the most important parameters verified for plausibility. In the event of an
error, FB 1 passes an error identifier to the diagnostics buffer and switches the PLC to the
STOP state.

To enable an orderly start-up of the control, it is vital to synchronize the NCK and PLC, as
these systems have their own types of power-up procedure. During startup routine,
therefore, the CPUs perform "subsidiary startup functions" and exchange ID information to
ensure that the procedure is functioning correctly.

Since the startup procedure is asynchronous, it is unavoidable that one CPU may have to
"wait" until the other has "caught up". This is automatically managed by the basic program.

The integrated PLC only supports cold starts. A warm restart is not provided, i.e. following
system initialization, the operating system runs organization block OB 100 and always
commences cyclic execution at the start of OB 1.

Users need only supply the FB 1 parameters that are relevant to their applications. The
preset values in the associated instance DB 7 do not need to be assigned. The block can
only be called in OB 100.

Output parameters
The output parameters in FB 1 provide the PLC user with information about the control
system configuration. This data can also be accessed in the cyclic program section.

There are two access options:

1. Direct access to the DB 7 data block (instance of the FB 1) in symbolic format (e.g. L
gp_par.MaxChan; in this case, gp_par is the symbolic name of the DB 7).

2. Assignment of a flag; during parameterization of the FB 1, the data element is assigned
to the relevant parameter (e.g. MaxChan:=MW 20). Information about the maximum
number of channels can then be polled in memory word 20 in the rest of the user
program.

 Note

For the values of the parameters of MCP and HHU see "Configuration machine control
panel, handheld unit, direct keys (Page 855) ".

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
890 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Declaration SINUMERIK 840D sl

FUNCTION_BLOCK FB 1

VAR_INPUT

 MCPNum: INT:=1; //0: No MCP

//1: 1 MCP (default)

//2: 2 MCPs

 MCP1In: POINTER; //Start addr. input signals MCP 1

 MCP1Out: POINTER; //Start addr. output signals MCP

1

 MCP1StatSend: POINTER; //Status DW for sending MCP 1

 MCP1StatRec: POINTER; //Status DW for receiving MCP 1

 MCP1BusAdr: INT:=6; //Default

 MCP1Timeout: S5TIME:= S5T#700MS;

 MCP1Cycl: S5TIME:= S5T#200MS;

 MCP2In: POINTER; //Start addr. input signals MCP 2

 MCP2Out: POINTER; //Start addr. output signals MCP

2

 MCP2StatSend: POINTER; //Status DW for sending MCP 2

 MCP2StatRec: POINTER; //Status DW for receiving MCP 2

 MCP2BusAdr: INT;

 MCP2Timeout: S5TIME:= S5T#700MS;

 MCP2Cycl: S5TIME:= S5T#200MS;

 MCPMPI: BOOL:= FALSE;

 MCP1Stop: BOOL:= FALSE;

 MCP2Stop: BOOL:= FALSE;

 MCP1NotSend: BOOL:= FALSE;

 MCP2NotSend: BOOL:= FALSE;

 MCPSDB210: BOOL:= FALSE;

 MCPCopyDB77: BOOL:= FALSE;

 MCPBusType: BYTE=B#16#0;

 HHU: INT:=0; //Handheld unit interface

 //0: No HHU

 //1: HHU on MPI

 //2: HHU on OPI

 BHGIn: POINTER; //Transmit data of the HHU

 BHGOut: POINTER; //Receive data of the HHU

 BHGStatSend: POINTER; //Status DW for sending HHU

 BHGStatRec: POINTER; //Status DW for receiving HHU

 BHGInLen: BYTE:= B#16#6; //Input 6 bytes

 BHGOutLen: BYTE:= B#16#14; //Output 20 bytes

 BHGTimeout: S5TIME:= S5T#700MS;

 BHGCycl: S5TIME:= S5T#100MS;

 BHGRecGDNo: INT:=2;

 BHGRecGBZNo: INT:=2;

 BHGRecObjNo: INT:=1;

 BHGSendGDNo: INT:=2;

 BHGSendGBZNo: INT:=1;

 BHGSendObjNo: INT:=1;

 BHGMPI: BOOL:= FALSE;

 BHGStop: BOOL:= FALSE;

 BHGNotSend: BOOL:= FALSE;

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 891

 NCCyclTimeout: S5TIME:= S5T#200MS;

 NCRunupTimeout: S5TIME:= S5T#50S;

 ListMDecGrp: INT:=0;

 NCKomm: BOOL:= FALSE;

 MMCToIF: BOOL:=TRUE;

 HWheelMMC: BOOL:=TRUE; //Handwheel selection via HMI

 ExtendAlMsg : BOOL;

 MsgUser: INT:=10; //Number of user areas in DB 2

 UserIR: BOOL:= FALSE; //User programs in OB 40,

 //Observe local data expansion!

 IRAuxfuT: BOOL:= FALSE; //Evaluate T function in OB 40

 IRAuxfuH: BOOL:= FALSE; //Evaluate H function in OB 40

 IRAuxfuE: BOOL:= FALSE; //Evaluate DL function in OB 40

 UserVersion: POINTER; //Pointer to string variable

indicated in

 //version screen display

 OpKeyNum : INT;

 Op1KeyIn POINTER;

 Op1KeyOut : POINTER;

 Op1KeyBusAdr : INT;

 Op2KeyIn : POINTER;

 Op2KeyOut : POINTER;

 Op2KeyBusAdr : INT;

 Op1KeyStop : BOOL;

 Op2KeyStop : BOOL;

 Op1KeyNotSend : BOOL;

 Op2KeyNotSend : BOOL;

 OpKeyBusType : BYTE ;

 IdentMcpBusAdr : INT;

 IdentMcpProfilNo :BYTE ;

 IdentMcpBusType : BYTE ;

 IdentMcpStrobe : BOOL;

END_VAR

VAR_OUTPUT

 MaxBAG: INT;

 MaxChan: INT;

 MaxAxis: INT;

 ActivChan: ARRAY[1..10] OF BOOL;

 ActivAxis: ARRAY[1..31] OF BOOL;

 UDInt : INT;

 UDHex: INT;

 UDReal : INT;

 IdentMcpType : BYTE ;

 IdentMcpLengthIn :BYTE ;

 IdentMcpLengthOut

:

BYTE ;

END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
892 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Description of formal parameters of SINUMERIK 840D sl
The table below lists all formal parameters of the RUN_UP function for the 840D sl:

Signal Type Type Range of values Remark

Number of active MCPs MCPNum I INT Up to 2
0: No MCPs available

MCP1In
MCP2In

I POINTER E0.0 to E120.0
or
M0.0 to M248.0
or
DBn DBX0.0 to DBXm.0

Start address for input signals of relevant
machine control panel

MCP1Out
MCP2Out

I POINTER A0.0 to A120.0
or
M0.0 to M248.0
or
DBn DBX0.0 to DBXm.0

Start address for output signals of
relevant machine control panel

MCP1StatSend
MCP2StatSend

I POINTER A0.0 to A124.0
or
M0.0 to M252.0
or
DBn DBX0.0 to DBXm.0

Only for Ethernet MCP:
Switch off flashing (see Section
"Switchover of machine control panel,
handheld unit (Page 864)")

MCP1StatRec
MCP2StatRec

I POINTER A0.0 to A124.0
or
M0.0 to M252.0
or
DBn DBX0.0 to DBXm.0

Currently no significance

MCP1BusAdr
MCP2BusAdr

I INT 1 ... 126
192 .. 223

DP slave: PROFIBUS address
Ethernet MCP: DIP setting

MCP1Timeout
MCP2Timeout

I S5time Recommendation: 700 ms Cyclic sign-of-life monitoring for machine
control panel

MCP1Cycl
MCP2Cycl

I S5time Recommendation: 200 ms Relevant only for PROFIBUS

MCPMPI I BOOL false Available owing to compatibility
0: Start transfer of machine control

panel signals
1: Stop transfer of machine control

panel signals

MCP1Stop
MCP2Stop

I BOOL

DP slave: Slave deactivated
0: Send and receive operation activatedMCP1NotSend

MCP2NotSend
I BOOL

1: Receive machine control panel
signals only

MCPSDB210 I BOOL false Available owing to compatibility
MCPCopyDB77 I BOOL false Available owing to compatibility

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 893

Signal Type Type Range of values Remark
MCPBusType I BYTE Right-hand half byte (bits 0...3) for MCP1

Left-hand half byte (bits 4...7) for MCP2
b#16#33: PROFIBUS
b#16#44: PROFIBUS on the MPI/DP port
b#16#55: Ethernet
B#16#66: PROFINET

Mixed mode possible (see Section
"Configuration machine control panel,
handheld unit, direct keys (Page 855)")
Handheld unit interface
0: No HHU

HHU I INT 0, 5

5: HHU on Ethernet
BHGIn I POINTER E0.0 to E124.0

or
M0.0 to M252.0
or
DBn DBX0.0 to DBXm.0

Start address
PLC receive data
from HHU

BHGOut I POINTER A0.0 to A124.0
or
M0.0 to M252.0
or
DBn DBX0.0 to DBXm.0

Start address
PLC transmit data
to HHU

BHGStatSend I POINTER A0.0 to A124.0
or
M0.0 to M252.0
or
DBn DBX0.0 to DBXm.0

Available owing to compatibility

BHGStatRec I POINTER A0.0 to A124.0
or
M0.0 to M252.0
or
DBn DBX0.0 to DBXm.0

Available owing to compatibility

BHGInLen I BYTE HHU default:
B#16#6 (6 Byte)

Available owing to compatibility

BHGOutLen I BYTE HHU default:
B#16#14 (20 Byte)

Available owing to compatibility

BHGTimeout I S5time Recommendation: 700 ms Available owing to compatibility
BHGCycl I S5time Recommendation: 100 ms Available owing to compatibility
BHGRecGDNo I INT HHU default: 2 Ethernet DIP switch
BHGRecGBZNo I INT HHU default: 2 Available owing to compatibility
BHGRecObjNo I INT HHU default: 1 Available owing to compatibility
BHGSendGDNo I INT HHU default: 2 Available owing to compatibility
BHGSendGBZNo I Int HHU default: 1 Available owing to compatibility
BHGSendObjNo I INT HHU default: 1 Available owing to compatibility
BHGMPI I BOOL false Available owing to compatibility

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
894 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Type Range of values Remark
0: Start transmission

of handheld unit signals
BHGStop I BOOL

1: Stop transmission
of handheld unit signals

0: Send and receive operation activatedBHGNotSend I BOOL
1: Receive handheld unit signals only

NCCyclTimeout I S5time Recommendation: 200 ms Cyclic sign-of-life monitoring NCK
NCRunupTimeout I S5time Recommendation: 50 s Power-up monitoring NCK

Activation of expanded
M group decoding
0: Not active

ListMDecGrp I INT 0 ... 16

1...16: Number of M groups
PLC NC communications services
(FB 2/3/4/5/7:
Put/Get/PI_SERV/GETGUD)

NCKomm I BOOL

TRUE: Active
Transmission of HMI signals to interface
(modes, program control etc.)

MMCToIF I BOOL

TRUE: Active
TRUE: Handwheel selection via HMI HWheelMMC I BOOL
FALSE: Handwheel selection via user

program
ExtendAlMsg I BOOL Activation extension of the FC10 (see

Section "Structure and functions of the
basic program (Page 837)")

MsgUser I INT 0 ... 32 Number of user areas for messages (DB
2)

UserIR I BOOL Local data expansion OB40 required for
processing of signals from user

IRAuxfuT I BOOL Evaluate T function in OB 40
IRAuxfuH I BOOL Evaluate H function in OB 40
IRAuxfuE I BOOL Evaluate DL function in OB 40
UserVersion I POINTER DBxx Pointer to string variable.

The associated string variable is indicated
in the version display
(max. 41 characters).
Number of active
Direct control key modules

OpKeyNum I INT 0 ... 2

0: No Ethernet direct control keys
available.

Op1KeyIn
Op2KeyIn

I POINTER P#Ex.0
or
P#Mx.0
or
P#DBn.DBXx.0.

Start address for the input signals of the
affected direct control key modules

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 895

Signal Type Type Range of values Remark
Op1KeyOut
Op2KeyOut

I POINTER P#Ax.0
or
P#Mx.0
or
P#DBn.DBXx.0.

Start address for the output signals of the
affected direct control key modules

Op1KeyBusAdr
Op2KeyBusAdr

I INT 1 ... 191 Direct control keys via
Ethernet: TCU index:

0:

Start transmission
of direct control key signals

Op1KeyStop
Op2KeyStop

I BOOL

1: Stop transmission
of direct control key signals

0: Send and receive operation activatedOp1KeyNotSend
Op2KeyNotSend

I BOOL
1: Receive

direct control key signals only
OpKeyBusType I BYTE b#16#55 b#16#55: Ethernet
IdentMcpBusAdr I INT 1 ... 254 only IE devices

Profile of a device
0: Complete device

IdentMcpProfilNo I BYTE 0, 1

1: Only direct control keys
IdentMcpBusType I BYTE b#16#5 only IE devices
IdentMcpStrobe I BOOL Activate query
MaxBAG O INT 1 ... 10 Number of mode groups
MaxChan O INT 1 ... 10 Number of channels
MaxAxis O INT 1 ... 31 Number of axes
ActivChan O ARRAY[1...10]

OF BOOL
 Bit string for active channels

ActivAxis O ARRAY [1..31]
OF BOOL

 Bit string for active axes

UDInt O INT Quantity of INTEGER machine data in
DB20

UDHex O INT Quantity of hexadecimal machine data in
DB20

UDReal O INT Quantity of REAL machine data
in DB 20

IdentMcpType O BYTE Type (HT2, HT8, ...)
IdentMcpLengthIn O BYTE Length info

input data in PLC
IdentMcpLengthOut O BYTE Length info

output data in PLC

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
896 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MCP/HHU monitoring (840D sl)
The following alarms are displayed at HMI in cases of errors for the communication with the
machine control panel (MCP):

● 400260: MCP 1 failure or

● 400261: MCP 2 failure

● 400262: HHU failure

In this case, the input signals from the MCP or from the handheld unit (MCP1In/MCP2In or
BHGIn) are reset to 0. If it is possible to resynchronize the PLC and MCP/HHU,
communication is resumed automatically and the error message reset by the GP.

Call example for 840D sl
An example call for the FB 1 in OB 100 appears below. This example is part of the diskette
with basic program for 840D sl.

ORGANIZATION_BLOCK OB 100

VAR_TEMP

 OB100_EV_CLASS : BYTE ;

 OB100_STRTUP : BYTE ;

 OB100_PRIORITY : BYTE ;

 OB100_OB_NUMBR : BYTE ;

 OB100_RESERVED_1 : BYTE ;

 OB100_RESERVED_2 : BYTE ;

 OB100_STOP : WORD ;

 OB100_RESERVED_3 : WORD ;

 OB100_RESERVED_4 : WORD ;

 OB100_DATE_TIME : DATE_AND_TIME;

END_VAR

BEGIN

 CALL FB 1, DB 7 (

 MCPNum := 1,

 MCP1In := P#E0.0,

 MCP1Out := P#A0.0,

 MCP1StatSend := P#A8.0,

 MCP1StatRec := P#A12.0,

 MCP1BusAdr := 6,

 MCP1Timeout := S5T#700MS,

 MCP1Cycl := S5T#200MS,

 NC-CyclTimeout := S5T#200MS,

 NC-RunupTimeout := S5T#50S);

//INSERT USER PROGRAM HERE

END_ORGANIZATION_BLOCK

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 897

12.16.2 FB 2: Read GET NC variable

Function
The FB 2 "GET" function block can be used to read variables from the area of the NC from
the PLC user program. The FB is multi-instance-capable.

FB 2 also includes an Instance DB from the user area.

When FB 2 is called with a positive signal edge change at control input "Req", a job is
started, which reads the NCK variables referenced by "Addr1" to "Addr8" and then copies
them to the PLC operand areas referenced by "RD1" to "RD8". Successful completion of the
read process is indicated by a logical "1" in status parameter "NDR".

The read operation lasts for several PLC cycles (normal case: 1 - 2 PLC cycles). The block
can be called up in cyclic mode only.

Any errors are displayed via "Error" and "State".

In order to reference the NC variables, they are first selected with the "NC VAR selector" tool
and generated as STL source in a data block. A name must then be assigned to this data
block in the signal list. When calling FB 2, the variable addresses are then transferred in the
following form for parameters "Addr1" to "Addr8":

"<DB name>.<S7 name>".

Variable addressing
For some NC variables, it is necessary to select "Area no." and/or "Line" or "Column" from
the NC VAR selector. For these variables it is possible to select a basic type,
i.e. "Area no.", "Line" and "Column" are preassigned "0".

The contents of the "Area no.", "Line" and "Column" specified by the NC VAR selector are
checked for a "0" in FB 2. If a "0" is present, the value is transferred to the input parameter.

Before calling FB 2, the user must supply the appropriate parameters:

Parameter: FB 2 Parameter: NC VAR selector
"Unit<x>" "Area no."
"Column<x>" "Column"
"Line<x>" "Line"
where <x> = 1 - 8

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
898 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note

FB 2 can read NC variables only if basic program parameter NCKomm "1" has been set to
"1" (in OB 100: FB 1, DB 7). The call is permitted only in cyclic program OB1. An assignment
for all parameters with "Req" = 0 is also permitted in OB 100.

Channel-specific variables
When channel-specific variables are read, only variables from one channel may be
addressed via "Addr1" to "Addr8" when FB 2 is called.

Drive-specific variables
When drive-specific variables are read, only variables from one SERVO drive object may be
addressed via "Addr1" to "Addr8" when FB 2 is called. The SERVO drive object must be
assigned to a machine axis of the NC. The line index corresponds to the logical drive
number.

Error case
In the event of an error, reading of variables from different channels or drive objects, or
simultaneously from a channel and a drive object, the following is provided as feedback:
• "Error" == TRUE
• "State" == W#16#02

Variables within one group can be combined in a job:

 Area
Group 1 C[1] N B A T
Group 2 C[2] N B A T
Group 3 V[.] H[.]
The same rules apply for channels 3 to 10 as for group 1 and group 2 shown in the example.

 Note

The number of usable variables can be less than eight when simultaneously reading several
variables of the "String" type.

Declaration of the function

FUNCTION_BLOCK FB 2

VAR_INPUT

Req : BOOL;

NumVar : INT;

Addr1 : ANY ;

Unit1 : BYTE ;

Column1 : WORD ;

Line1 : WORD ;

Addr2 : ANY ;

Unit2 : BYTE ;

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 899

Column2 : WORD ;

Line2 : WORD ;

Addr3 : ANY ;

Unit3 : BYTE ;

Column3 : WORD ;

Line3 : WORD ;

Addr4 : ANY ;

Unit4 : BYTE ;

Column4 : WORD ;

Line4 : WORD ;

Addr5 : ANY ;

Unit5 : BYTE ;

Column5 : WORD ;

Line5 : WORD ;

Addr6 : ANY ;

Unit6 : BYTE ;

Column6 : WORD ;

Line6 : WORD ;

Addr7 : ANY ;

Unit7 : BYTE ;

Column7 : WORD ;

Line7 : WORD ;

Addr8 : ANY ;

Unit8 : BYTE ;

Column8 : WORD ;

Line8 : WORD ;

END_VAR

VAR_OUTPUT

Error : BOOL;

NDR : BOOL;

State : WORD ;

END_VAR

VAR_IN_OUT

RD1 : ANY ;

RD2 : ANY ;

RD3 : ANY ;

RD4 : ANY ;

RD5 : ANY ;

RD6 : ANY ;

RD7 : ANY ;

RD8 : ANY ;

END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
900 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Description of formal parameters
The following table shows all formal parameters of FB 2.

Parameter Type Type Range of values Remark
Req I BOOL - Job start with positive signal edge
NumVar I INT 1 ... 8

Number of variables to be read:
Addr1 - Addr8

Addr1 - Addr8 I ANY [DBName].[VarName] Variable identifiers from
NC Var selector

Unit1 - Unit8 I BYTE - Area address, optional for variable
addressing

Column1 -
Column8

I WORD - Column address, optional for
variable addressing

Line1 - Line8 I WORD - Line address, optional for variable
addressing

Error O BOOL - Negative acknowledgement of job
or execution of job impossible

NDR O BOOL - Job successfully executed Data is
available

State O WORD - See error identifiers
RD1 - RD8 I/O ANY P#Mm.n BYTE x...

P#DBnr.dbxm.n BYTE x
Target area for read data

Error identifiers
If it was not possible to execute a job, the failure is indicated by "logic 1" on status parameter
"Error". The error cause is coded at the block output State:

State Meaning Note

WORD H WORD L
1 - 8 1 Access error WORD H: Number of the variable in

which the error occurred
0 2 Error in job Incorrect compilation of variables in a

job
0 3 Negative acknowledgement, job

not executable
Internal error, try:
• Check job
• NC reset

1 - 8 4 Insufficient local user memory
available

Read variable is longer than specified
in "RD1" - "RD8";
WORD H: Number of the variable in
which the error occurred

0 5 Format conversion error Error on conversion of var. type
double: Variable is not within the S7
REAL area

0 6 FIFO full Job must be repeated since queue is
full

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 901

State Meaning Note
WORD H WORD L

0 7 Option not set BP parameter "NCKomm" is not set
1 - 8 8 Incorrect target area (RD) RD1 to RD8 may not be local data

0 9 Transmission occupied Job must be repeated
1 - 8 10 Error in variable addressing "Unit" or "Column"/"Line" contains

value 0
0 11 Address of variable invalid Check "Addr" (or variable name),

"Area", "Unit"
0 12 NumVar = 0 Check parameter NumVar

1 - 8 13 (0x0d) ANY data reference incorrect NcVar data required has not been
parameterized

Configuration steps
Proceed as follows to read NC variables:

● Select variables with the NC VAR selector.

● Save selected variables in a *.VAR file.

● Generate a STEP 7 *.STL source file.

● Generate a DB with the associated address data.

● Enter the symbol for the generated DB in the symbol table so that it is possible to access
the address parameters symbolically in the user program.

● Parameterization of FB 2.

Pulse diagram

(1) Activation of function
(2) Positive acknowledgement: Receive new data
(3) Reset function activation after receipt of acknowledgement
(4) Signal change by means of FB
(5) Not permissible
(6) Negative acknowledgement: Error has occurred, error code in the output parameter State

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
902 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Call example
Reading of three channel-specific machine data from channel 1, whose address
specifications are stored in DB120.

Select data with NC VAR selector and store in file DB120.VAR; then create file DB120.AWL:

Area Block Name Type No. Byte S7 Name
C[1] M MD20070

$MC_AXCONF_MACHAX_USED[1]
CHAR 20070 1 C1AxConfMachAx Used1

C[1] M MD20070
$MC_AXCONF_MACHAX_USED[2]

CHAR 20070 1 C1AxConfMachAx Used2

C[1] M MD20090
$MC_SPIND_DEF_MASTER_SPIND

INT 20090 1 C1SpindDefMaster Spind

S7 (ALIAS) names have been selected in order to:

● Incorporate the channel designation into the name

and

● Remove the characters [] which are not legal in a STEP 7 symbol.

Entry of the name in the S7 SYMBOL table (e.g. NCVAR for DB120):

Symbol Operand Data type
NCVAR DB 120 DB 120

File DB120.AWL must be compiled and transferred to the PLC.

Parameterization of FB 2 with instance DB 110:

DATA_BLOCK DB 110 //Unassigned user DB, as instance for FB 2

FB 2

BEGIN

END_DATA_BLOCK

Function FC "VariablenCall" : VOID

U I 7.7; //Unassigned machine control panel key

S M 100.0; //Activate req.

U M 100.1; //NDR completed message

R M 100.0; //Terminate job

U I 7.6; //Manual error acknowledgement

U M 102.0; //Error pending

R M 100.0; //Terminate job

CALL FB 2, DB 110 (

Req := M 100.0,

NumVar := 3, //Read three variables

Addr1 := NCVAR.C1AxConfMachAxUsed1,

Addr2 := NCVAR.C1AxConfMachAxUsed2,

Addr3 := NCVAR.C1SpindDefMasterSpind,

Error := M102.0,

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 903

NDR := M100.1,

State := MW104,

RD1 := P#DB99.DBX0.0 BYTE 1,

RD2 := P#DB99.DBX1.0 BYTE 1,

RD3 := P#M110.0 INT 1);

Example: Variable addressing
Reading of two R parameters from channel 1, whose address specifications are stored in DB
120 as the basic type. The R parameter number is parameterized via parameter Line<x>.

DATA_BLOCK DB 120

VERSION : 0.0

STRUCT

C1_RP_rpa0_0:

STRUCT

SYNTAX_ID : BYTE := B#16#82;

area_and_unit : BYTE := B#16#41;

column : WORD := W#16#1;

line : WORD := W#16#0;

block type : BYTE := B#16#15;

NO. OF LINES : BYTE := B#16#1;

type : BYTE := B#16#F;

length : BYTE := B#16#8;

END_STRUCT;

END_STRUCT;

BEGIN

END_DATA_BLOCK

CALL FB 2, DB 110 (

Req := M 0.0,

NumVar := 2,

Addr1 := "NCVAR".C1_RP_rpa0_0,

Line1 := W#16#1,

Addr2 := "NCVAR".C1_RP_rpa0_0,

Line2 := W#16#2,

Error := M 1.0,

NDR := M 1.1,

State := MW 2,

RD1 := P#M 4.0 REAL 1,

RD2 := P#M 24.0 REAL 1);

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
904 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Data types
The data types of the NCK are listed in the NC VAR selector with the variables. The tables
below give the assignments to the S7 data types.

Classification of data types
NCK data type S7 data type
double REAL
double REAL2
float REAL
long DINT
integer DINT
uint_32 DWORD
int_16 INT
uint_16 WORD
unsigned WORD
char CHAR or BYTE
string STRING
bool BOOL
datetime DATE_AND_TIME

In order to read a variable of the "double" type from the NCK without adapting the format, an
ANY pointer of the REAL 2 type must be specified in the target area for read data (e.g.
P#M100.0 REAL 2). If the basic program recognizes REAL 2 as the target type when
reading a variable of the "double" type, the data is applied to the PLC data area as a 64-bit
floating-point number.

12.16.3 FB 3: PUT write NC variables

Function
The FB 3 "PUT" function block can be used to write variables to the area of the NC from the
PLC user program. The FB is multi-instance-capable.

Every FB 3 call must be assigned a separate instance DB from the user area.

When FB 3 is called with a positive signal edge change at control input "Req", a job is
started to overwrite the NC variables referenced by "Addr1" to "Addr8" with the data of the
PLC operand areas locally referenced by "SD1" to "SD8". Successful completion of the write
process is indicated by a logical "1" in status parameter "Done".

The write operation lasts for several PLC cycles (normal case: 1 - 2 PLC cycles). The block
can be called up in cyclic mode only.

Any errors are displayed via "Error" and "State".
In order to reference the NC variables, all required variables are first selected with the "NC
VAR selector" tool and generated as STL source in a data block. A name must then be
assigned to this DB in the symbol table. When calling FB 3, the variable addresses are then
transferred in the following form for parameters "Addr1" to "Addr8":

"<DB name>.<S7 name>".

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 905

Variable addressing
For some NC variables, it is necessary to select "Area no." and/or "Line" or "Column" from
the NC VAR selector. For these variables it is possible to select a basic type, i.e. "Area no.",
"Line" and "Column" are preassigned "0".

The contents of the "Area no.", "Line" and "Column" specified by the NC VAR selector are
checked for a "0" in FB 3. If a "0" is present, the value is transferred to the input parameter.

Before calling FB 3, the user must supply the appropriate parameters:

Parameter: FB 3 Parameter: NC VAR selector
"Unit<x>" "Area no."
"Column<x>" "Column"
"Line<x>" "Line"
where <x> = 1 - 8

Machine data, GUD
In order to define machine data and GUD without a password, the protection level of the data
you want to access must be redefined to the lowest level.

References:

● Commissioning Manual; Section: "Protection levels concept"

● Programming Manual, Job Planning; Section: "Define protection levels for user data"

 Note

FB 3 can only write NC variables if basic program parameter "NCKomm" has been set to
"1" (in OB 100: FB 1, DB 7). The call is permitted only in cyclic program OB1. An
assignment for all parameters with "Req" = 0 is also permitted in OB 100.

Channel-specific variables
When channel-specific variables are written, only variables from one channel may be
addressed via "Addr1" to "Addr8" when FB 3 is called.

Drive-specific variables
When drive-specific variables are written, only variables from one SERVO drive object
may be addressed via "Addr1" to "Addr8" when FB 3 is called. The SERVO drive object
must be assigned to a machine axis of the NC. The line index corresponds to the logical
drive number.

Error case
In the event of an error, writing of variables from different channels or drive objects, or
simultaneously from a channel and a drive object, the following is provided as feedback:
• "Error" == TRUE
• "State" == W#16#02

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
906 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

NCK variables within one group can be combined in a job:

 Area
Group 1 C[1] N B A T
Group 2 C[2] N B A T
Group 3 V[.] H[.]
The same rules apply for channels 3 to 10 as for group 1 and group 2 shown in the example.

 Note

The number of usable variables can be less than eight when simultaneously writing several
variables of the "String" type.

Declaration of the function

FUNCTION_BLOCK FB 3

VAR_INPUT

Req : BOOL;

NumVar : INT;

Addr1 : ANY ;

Unit1 : BYTE ;

Column1 : WORD ;

Line1 : WORD ;

Addr2 : ANY ;

Unit2 : BYTE ;

Column2 : WORD ;

Line2 : WORD ;

Addr3 : ANY ;

Unit3 : BYTE ;

Column3 : WORD ;

Line3 : WORD ;

Addr4 : ANY ;

Unit4 : BYTE ;

Column4 : WORD ;

Line4 : WORD ;

Addr5 : ANY ;

Unit5 : BYTE ;

Column5 : WORD ;

Line5 : WORD ;

Addr6 : ANY ;

Unit6 : BYTE ;

Column6 : WORD ;

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 907

Line6 : WORD ;

Addr7 : ANY ;

Unit7 : BYTE ;

Column7 : WORD ;

Line7 : WORD ;

Addr8 : ANY ;

Unit8 : BYTE ;

Column8 : WORD ;

Line8 : WORD ;

END_VAR

VAR_OUTPUT

Error : BOOL;

Done : BOOL;

State : WORD ;

END_VAR

VAR_IN_OUT

SD1 : ANY ;

SD2 : ANY ;

SD3 : ANY ;

SD4 : ANY ;

SD5 : ANY ;

SD6 : ANY ;

SD7 : ANY ;

SD8 : ANY ;

END_VAR

Description of formal parameters
The table below lists all formal parameters of the PUT function.

Signal Type Type Range of values Remark
Req I BOOL - Job start with positive signal edge
NumVar I INT 1 ... 8 Number of variables to be written:

Addr1 - Addr8
Addr1 - Addr8 I ANY [DBName].[VarName] Variable identifiers from

NC Var selector
Unit 1 - Unit 8 I BYTE - Area address, optional for

variable addressing
Column 1 -
Column 8

I WORD - Column address, optional for
variable addressing

Line 1 - Line 8 I WORD - Line address, optional for variable
addressing

Error O BOOL - Negative acknowledgement of job
or execution of job impossible

Done O BOOL - Job successfully executed

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
908 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Type Range of values Remark
State O WORD - See error identifiers
SD1 - SD8 I/O ANY P#Mm.n BYTE x...

P#DBnr.dbxm.n BYTE x
Data to be written

Error identifiers
If it was not possible to execute a job, the failure is indicated by "logic 1" on status parameter
error. The error cause is coded at the block output State:

State Meaning Note
WORD H WORD L

1 - 8 1 Access error WORD H: Number of the variable in
which the error occurred

0 2 Error in job Incorrect compilation of variables in a
job

0 3 Negative acknowledgement,
job not executable

Internal error, try:
• Check job
• NC reset

1 - 8 4 Data areas or data types do
not match or string is empty

Check data to be written in "SD1" -
"SD8";
WORD H: Number of the variable in
which the error occurred

0 6 FIFO full Job must be repeated since queue is
full

0 7 Option not set BP parameter "NCKomm" is not set
1 - 8 8 Incorrect target area (SD) "SD1" - "SD8" must not be local data

0 9 Transmission occupied Job must be repeated
1 - 8 10 Error in variable addressing "Unit" or "Column"/"Line" contains value

0
0 11 Variable address invalid or

variable is read-only
Check "Addr" (or variable name),
"Area", "Unit"

0 12 NumVar = 0 Check parameter NumVar
1 - 8 13 (0x0d) ANY data reference incorrect NcVar data required has not been

parameterized
1 - 8 15 (0x0f) User data too long Remedy: Write fewer variables per job

or use shorter string variables

Configuration steps
To write NC variables, the same configuration steps are required as for reading NC
variables. It is useful to store the address data of all NC variables to be read or written in a
DB.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 909

Pulse diagram

(1) Activation of function
(2) Positive acknowledgement: variables have been written
(3) Reset function activation after receipt of acknowledgement
(4) Signal change by means of FB
(5) Not permissible
(6) Negative acknowledgement: Error has occurred, error code in output parameter state

Call example
Writing of three channel-specific machine data of channel 1:

Select the three data with NC VAR selector and store in the file DB120.VAR:

Area Block Name Type Byte S7 Name
C[1] RP rpa[5] DOUBLE 4 rpa_5C1RP
C[1] RP rpa[11] DOUBLE 4 rpa_11C1RP
C[1] RP rpa[14) DOUBLE 4 rpa_14C1RP

Entry NCVAR for DB 120 with the S7 SYMBOL Editor:

Symbol Operand Data type
NCVAR DB 120 DB 120

File DB120.AWL must be compiled and transferred to the PLC.

Call and parameterization of FB 3 with instance DB 111:

DATA_BLOCK DB 111 //Unassigned user DB, as instance for FB 3

FB 3

BEGIN

Function FC "VariablenCall" : VOID

END_DATA_BLOCK

U I 7.7; //Unassigned machine control panel key

S M 100.0; //Activate req.

U M 100.1; //Done completed message

R M 100.0; //Terminate job

U I 7.6; //Manual error acknowledgement

U M 102.0; //Error pending

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
910 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

R M 100.0; //Terminate job

CALL FB 3, DB 111 (

Req := M 100.0,

NumVar := 3, //Write three variables

Addr1 := NCVAR.rpa_5C1RP,

Addr2 := NCVAR.rpa_11C1RP,

Addr3 := NCVAR.rpa_14C1RP,

Error := M102.0,

Done := M100.1,

State := MW104,

SD1 := P#DB99.DBX0.0 REAL 1,

SD2 := P#DB99.DBX4.0 REAL 1,

SD3 := P#M110.0 REAL 1);

Example: Variable addressing
Writing of two R parameters of channel 1, whose address specifications are stored in DB
120 as the basic type. The R parameter number is parameterized via parameter LineX.

DATA_BLOCK DB 120

VERSION : 0.0

STRUCT

C1_RP_rpa0_0:

STRUCT

SYNTAX_ID : BYTE := B#16#82;

area_and_unit : BYTE := B#16#41;

column : WORD := W#16#1;

line : WORD := W#16#0;

block type : BYTE := B#16#15;

NO. OF LINES : BYTE := B#16#1;

type : BYTE := B#16#F;

length : BYTE := B#16#8;

END_STRUCT;

END_STRUCT;

BEGIN

END_DATA_BLOCK

CALL FB 3, DB 122 (

Req := M 10.0,

NumVar := 2,

Addr1 := "NCVAR".C1_RP_rpa0_0,

Line1 := W#16#1,

Addr2 := "NCVAR".C1_RP_rpa0_0,

Line3 := W#16#2

Error := M 11.0,

Done := M 11.1,

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 911

State := MW 12,

SD1 := P#M 4.0 REAL 1,

SD2 := P#M 24.0 REAL 1);

12.16.4 PI services

12.16.4.1 FB 4: PI_SERV PI service request

Function
The function block FB 4 "PI_SERV" can be used to start program instance services (PI
services) in the NC area. Every FB 4 call must be assigned an instance DB from the user
area.

 Note

It is recommended that instead of FB 4 the extended function block FB 7 is used. See
Section "FB 7: PI_SERV2 (PI service request) (Page 947)".

The required PI service must be referenced via the "PIService" parameter. The Addr and
WVar parameters can be used to parameterize the selected PI service.

The job is started when FB 4 is called by means of a positive edge change at control input
"Req". Successful execution of the job is displayed by means of a logical "1" at the "Done"
output. Any errors are displayed via the "Error" and "State" outputs.

The DB 16 "PI" data block contains internal descriptions of the possible PI services. A name
must then be assigned to this data block in the signal list. On calling the FB 4, "DB-Name.PI-
Name" is transferred as the actual parameter for "PIService".

The execution of the PI service generally extends over several PLC cycles.

Requirements

FB 4 can start PI services only if the basic program parameter NCKomm = 1 has been set
(OB 100: FB 1, DB 7).

Supplementary conditions

The call is permitted only in cyclic program OB1. Writing of the parameters in OB 100 is also
permissible without starting the request (Req = 0).

Declaration of the function

FUNCTION_BLOCK FB 4

VAR_INPUT

Req : BOOL;

PIService : ANY ;

w

Unit : INT;

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
912 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Addr1 : ANY ;

Addr2 : ANY ;

Addr3 : ANY ;

Addr4 : ANY ;

WVar1 : WORD ;

WVar2 : WORD ;

WVar3 : WORD ;

WVar4 : WORD ;

WVar5 : WORD ;

WVar6 : WORD ;

WVar7 : WORD ;

WVar8 : WORD ;

WVar9 : WORD ;

WVar10 : WORD ;

END_VAR

VAR_OUTPUT

Error : BOOL;

Done : BOOL;

State : WORD ;

END_VAR

Description of formal parameters

Signal Ty

pe
Type Range of values Remark

Req I BOOL Job request
PIService I ANY [DBName].[VarName]

standard:
"PI".[VarName]

Designation of the PI service, see
Section "List of available Pl services
(Page 913)"

Unit I INT 1... Area number
Addr1 to Addr4 I ANY [DBName].[VarName] Reference to strings

Specification according to selected PI
service,

WVar1 to WVar10 I WORD 1... INTEGER or WORD variables
Specification according to selected PI
service,

Error O BOOL TRUE/FALSE Negative acknowledgement of job or
execution of job impossible

Done O BOOL TRUE/FALSE Job successfully executed
State O WORD See error identifiers -
I: Input
O: Output

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 913

Error identifiers
If it was not possible to execute a job, the failure is indicated by "logic 1" at "Error" output.
The cause of the error is displayed at the "State" output:

State Meaning Note

3 Negative acknowledgement, job not executable Internal error, possible remedy through
an NC RESET

6 FIFO full Repeat the job, queue is full
7 Option not set FB 1, parameter "NCKomm" is not set
9 Transmission occupied Repeat the command

13 (0x0d) Addr1.. Adddr4: Reference invalid Specify missing string
14 (0x0e) "PIService": Reference unknown No valid PI designation
15 (0x0f) Addr1.. Adddr4: String too long Check string lengths

Flow diagram

(1) Activation of function
(2) Positive acknowledgement: PI service has been executed
(3) Reset function activation after receipt of acknowledgement
(4) Signal change by means of FB
(5) Not permissible
(6) Negative acknowledgement: Error has occurred, error code in the output parameter State

12.16.4.2 List of available Pl services
The following PI services can be started from the PLC.

General PI services

PI service Function
ASUB (Page 914) Assign interrupt
CANCEL (Page 915) Execute cancel
CONFIG (Page 916) Reconfiguration of tagged machine data
DIGION (Page 916) Digitizing on

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
914 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

PI service Function
DIGIOF (Page 916) Digitizing off
FINDBL (Page 917) Activate block search
LOGIN (Page 917) Activate password
LOGOUT (Page 917) Reset password
NCRES (Page 918) Trigger NC-RESET
SELECT (Page 918) Select program for processing for one channel
SETUDT (Page 919) Sets the current user data to active
SETUFR (Page 919) Activate user frame
RETRAC (Page 919) Retraction of the tool in the tool direction

PI services of tool management

PI service Function
CRCEDN (Page 920) Create a tool cutting edge with specification of the T number
CREACE (Page 921) Create a tool cutting edge with the next higher/free D number
CREATO (Page 921) Create a tool with specification of a T number.
DELECE (Page 922) Delete a tool cutting edge
DELETO (Page 922) Delete tool
MMCSEM (Page 923) Semaphores for various PI services
TMCRTO (Page 924) Create a tool with specification of a name, a duplo number
TMFDPL (Page 925) Empty location search for loading
TMFPBP (Page 926) Empty location search
TMGETT (Page 927) T number for the specified tool name with duplo number
TMMVTL (Page 928) Prepare magazine location for loading, unload tool
TMPOSM (Page 929) Position magazine location or tool
TMPCIT (Page 930) Set increment value for workpiece counter
TMRASS (Page 931) Reset active status
TRESMO (Page 931) Reset monitoring values
TSEARC (Page 932) Complex search using search screen forms
TMCRMT (Page 935) Create multitool
TMDLMT (Page 935) Delete multitool
POSMT (Page 936) Position multitool
FDPLMT (Page 937) Search/check an empty location within the multitool

12.16.4.3 PI service: ASUB

Function: Assign interrupt

A program stored on the NCK is assigned an interrupt signal of a channel. The program
must be executable and the path and program name must be specified completely and
correctly. For detailed information, please refer to:

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 915

References

Programming Manual, Job Planning; Section: "File and Program Management" > "Program
Memory".

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.ASUB Assign interrupt 1)
Unit INT 1 ... 10 Channel
Addr1 STRING Path name
Addr2 STRING Program name
WVar1 WORD 1 ... 8 Interrupt number
WVar2 WORD 1 ... 8 Priority
WVar3 WORD 0/1 LIFTFAST 2)
WVar4 WORD 0/1 BLSYNC 3)
1) As an alternative for the interrupt assignment, the SETINT command can be used. See 2)
2) References: Programming Manual, Job Planning; Section: "Flexible NC programming" > "Interrupt
routine (ASUB)" > "Fast retraction from the contour (SETINT, LIFTFAST, ALF)"
3) References: Programming Manual, Job Planning; Section: "Flexible NC programming" > "Interrupt
routine (ASUB)" > "Assign and start interrupt routine (SETINT, PRIO, BLSYNC)"

 Note

The ASUB PI service must only executed in the RESET state of the specified channel.
References:
Programming Manual, Job Planning; Section: "Flexible NC-Programming" > "Interrupt
routine (ASUB)"

12.16.4.4 PI service: CANCEL
Function: Execute Cancel

Triggers the "Cancel" function equivalent to the corresponding "Cancel alarm" button on the
user interface (operator panel front).

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.CANCEL Cancel

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
916 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.4.5 PI service: CONFIG
Function: Reconfiguration

The reconfiguration command activates machine data which has been entered sequentially
by the operator or the PLC, almost in parallel.

The command can only be activated when the controller is in RESET state or the program is
interrupted (NC stop at block limit). An FB 4 error checkback message is output if these
conditions are not fulfilled (state = 3).

Parameterization

Parameterization
Signal Type Range of values Meaning
PIService ANY PI.CONFIG Reconfiguration
Unit INT 1
WVar1 INT 1 Classification

12.16.4.6 PI service: DIGION
Function: Digitizing on

Selecting digitizing in the parameterized channel.

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.DIGION Digitizing on
Unit INT 1 to 10 Channel

12.16.4.7 PI service: DIGIOF
Function: Digitizing off

Deactivating digitizing in the parameterized channel.

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.DIGIOF Digitizing off
Unit INT 1 to 10 Channel

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 917

12.16.4.8 PI service: FINDBL
Function: Activate search
A channel is switched to search mode and the appropriate acknowledgement then
transmitted. The search is then executed immediately by the NC. The search pointer must
already be in the NC at this point in time. The search can be interrupted at any time by an
NC RESET. Once the search is successfully completed, the normal processing mode is
reactivated automatically. NC start then takes effect from the located search target.
It is the sole responsibility of the operator to ensure a collision-free approach path.

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.FINDBL block search
Unit INT 1 to 10 Channel

Preprocessing mode:
1 Without calculation
2 With calculation

WVar1 WORD 1, 2, 3

3 With main block consideration

12.16.4.9 PI service: LOGIN
Function: Create password
Transfers the parameterized password to the NC. The passwords generally consist of eight
characters. If required, blanks must be added to the string of the password.

Example
Password: STRING[8] := 'SUNRISE';

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.LOGIN Create password
Unit INT 1 NC
Addr1 STRING 8 characters Password

12.16.4.10 PI service: LOGOUT
Function: Reset password
The password last transferred to the NC is reset.

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.LOGOUT Reset password
Unit INT 1 NC

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
918 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.4.11 PI service: NCRES
Function: Trigger NC-RESET

Triggers an NC-RESET. Parameters "Unit" and "WVar1" must always be set to 0.

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.NCRES Trigger NC-RESET
Unit INT 0 -
WVar1 WORD 0 -

12.16.4.12 PI service: SELECT

Function: Select processing for a channel

A program stored on the NC is selected for one channel for execution. This is possible only if
the file may be executed. The path names and the program names are to be written in
correct notation. For detailed information, please refer to:

References

Programming Manual, Job Planning; Section: "File and Program Management" > "Program
Memory".

Possible block types

Block types
Workpiece directory WPD
Main program MPF
Subprogram SPF
Cycles CYC
Asynchronous subprograms ASP
Binary files BIN

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.SELECT Program selection
Unit INT 1 ... 10 Channel
Addr1 STRING Path name
Addr2 STRING Program name

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 919

12.16.4.13 PI service: SETUDT
Function: Set function current user data active

The current user data, such as tool offsets, basic frames and settable frames are set to
active in the next NC block (only in stop state).

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.SETUDT Activate user data
Unit INT 1 to 10 Channel

User data type
1 Active tool offset
2 Active basic frame
3 Active settable frame
4 Active global basic frame

WVar1 WORD 1 to 5

5 Active global settable frame
WVar2 WORD 0 Reserved
WVar3 WORD 0 Reserved

12.16.4.14 PI service: SETUFR
Function: Activate user frames

User frames are loaded to the NC. All necessary frame values must be transferred to the NC
first with FB 3 "Write variables".

Parameterization

Parameterization
Signal Type Range of values Meaning
PIService ANY PI.SETUFR Activate

user frames
Unit INT 1 to 10 Channel

12.16.4.15 PI service: RETRAC

Function: Select JOG retract

Selects the JOG retract mode. The retraction axis or the geometry axis of the WCS with
which the retraction is executed can be determined by the NC or specified explicitly. The
mode remains active until it is ended with RESET.

 Note

The PI service can only be activated in the "Reset" state in the JOG mode.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
920 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.RETRAC Select JOG retract mode
Unit INT 1 to 10 Channel

Retraction axis:
Determination of the retraction axis by the NC
Case 1:
JOG retract was already selected once, but not
completed yet ⇒
The retraction axis selected last is selected again.
Case 2:
JOG retract is selected first time ⇒
The retraction axis is determined by the NC:
 - Standard: 3. geometry axis
 - Grinding and turning tools: 1. Geometry axis

0

Note: The active retraction axis can be read via the
OPI variable retractState.bit 2/3

1 Retraction axis is 1st geometry axis of the WCS
2 Retraction axis is 2nd geometry axis of the WCS

WVar1 WORD 0 to 3

3 Retraction axis is 3rd geometry axis of the WCS
WVar2 WORD 0 Reserved. The value must be pre-assigned with 0.

12.16.4.16 PI service: CRCEDN

Function: Creates new cutting edge

If the T number of an existing tool is entered in parameter "T Number" the PI service, then a
tool edge for the existing tool is created (in this case, the parameter "D number", i.e. the
number of the edge to be created, has a value range of 00001 - 00009).

If a positive T number is specified as a parameter and the tool for the T number entered
does not exist, the PI service is aborted.

If a value of 00000 is entered as the T number (model of absolute D numbers), the D number
values can range from 00001 - 31999. The new cutting edge is set up with the specified D
number.

If the specified cutting edge already exists, the PI service is aborted in both cases.

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.CRCEDN Create new cutting edge
Unit INT 1 ... 10 TOA

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 921

Signal Type Range of values Meaning
WVar1 INT T number of tool for which cutting

edge must be created. A setting of
00000 states that the cutting edge
should not refer to any particular tool
(absolute D number).

WVar2 INT 1 ... 9 or
01 - 31999

Edge number of tool cutting edge

12.16.4.17 PI service: CREACE

Function: Create tool cutting edge

Creation of the cutting edge with the next higher / next unassigned D number for the tool with
the transferred T number in TO, TS (if present). The cutting edge for the OEM cutting edge
data is set up simultaneously in the TUE block (if one is present).

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.CREACE Create tool cutting edge
Unit INT 1 ... 10 TOA
WVar1 INT T number

12.16.4.18 PI service: CREATO

Function: Create tool

Creation of a tool with specification of a T number. The tool is entered as existing in the tool
directory area (TV). The first "cutting edge" D1 (with zero contents) is created for tool offsets
in the TO block. D1 (with zero contents) is also created for the OEM "cutting edge" data in
the TUE block - if one is present. If a TU block exists, it will contain the data set for the tool.

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.CREATO Create tool
Unit INT 1 ... 10 TOA
WVar1 INT T number

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
922 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.4.19 PI service: DELECE

Function: Delete a tool cutting edge

If the T number of an existing tool is specified in parameter "T number" in the PI service,
then a cutting edge is deleted for this particular tool (in this case, parameter "D number"
(number of cutting edge to be created) has a value range of 00001 - 00009). If a positive T
number is specified as a parameter and the tool for the T number entered does not exist,
then the PI service is aborted. If a value of 00000 is entered as the T number (model of
absolute D numbers), then the D number values can range from 00001 - 31999. If the
specified cutting edge does not exist, then the PI service is aborted in both cases.

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.DELETE Delete cutting edge
Unit INT 1 ... 10 TOA
WVar1 INT T number of tool for which cutting

edge must be created. A setting of
00000 states that the cutting edge
should not refer to any particular tool
(absolute D number).

WVar2 INT 1 ... 9
or
01 ... 31999

Edge number of cutting edge that must
be deleted

12.16.4.20 PI service: DELETO

Function: Delete tool

Deletes the tool assigned to the transferred T number with all cutting edges (in TO, in some
cases TU, TUE and TG (type 4xx), TD and TS blocks).

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.DELETO Delete tool
Unit INT 1 ... 10 TOA
WVar1 INT T number

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 923

12.16.4.21 PI service: MMCSEM

Semaphores for various PI services, for use by HMI and PLC

Ten semaphores are available for each channel. These protect critical functions for the
HMI/PLC. If a function has a critical section with respect to the data to be read by the NC,
several HMI/PLC units can synchronize by setting the semaphores with the corresponding
function number.

Semaphores are managed by the HMI/PLC. A semaphore value of 1stipulates a Test & Set
operation for the semaphores of the specified function number. The return value of the PI
service represents the result of this operation:

● Checkback value Done := TRUE: Semaphore has been set, critical function can be called

● Checkback value Error := TRUE with state = 3: Semaphore was already set, critical
function cannot be called at the present time. This must be repeated later.

 Note

On completion of the operation (reading data of this PI service) it is essential that the
semaphore is enabled again.

Parameter

● WVar1 = <function number>

Function number PI service
1 TMCRTO (create tool)
2 TMFDPL (search for empty location for loading)
3 TMMVTL (prepare magazine location for loading, unload tool)
4 TMFPBP (search for location)
5 TMGETT (search for tool number)
6 TSEARC (search for tool)
7 ... 10 Reserved

● WVar2 = <value>

Value Meaning
0 Reset semaphore
1 Test and set semaphore

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.MMCSEM Set semaphore
Unit INT 1, 2 to 10 Channel
WVar1 INT 1 ... 10 FunctionNumber
WVar2 WORD 0, 1 SemaphoreValue

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
924 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.4.22 PI service: TMCRTO

Function: Create tool

Create a tool with specification a name, a duplo number, e.g. with:

● $TC_TP1[y] = duplo number;

● $TC_TP2[y] = "tool name"

Or optionally using a T number, e.g. with y = T number

The tool is entered as existing in the tool directory area (TV). The first cutting edge "D1" (with
zero contents) is created for tool offsets in the TO block. "D1" (with zero contents) is also set
up for the monitoring data in the TS block, and simultaneously with zero contents for the
OEM cutting edge data in the TUE block - if one is present. The TD block contains the
identifier, duplo number and number of cutting edges (=1) for the T number that is entered
optionally or allocated by the NC.

If a TU block exists, it will contain the data block for the tool. After execution of the PI
service, the T number of the tool created is available in the TV block under TnumWZV.

 Note

Before and after this PI service, the MMCSEM PI service must be called up with the
associated parameter WVar1 for this PI service. See Section "PI service: MMCSEM
(Page 923)".

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.TMCRTO Create tool
Unit INT 1 - 10 TOA
WVar1 INT T number
WVar2 INT Duplo number
Addr1 STRING Max. 32 characters Tool name
T number > 0 means a T number must be specified
T number = -1 means that the NCK should allocate a T number
The example shows T number = -1 ⇒ T number assigned by NCK

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 925

12.16.4.23 PI service: TMFDPL

Function: Search for empty location for loading, depending on the parameter assignment

● Location_number_to = -1, Magazine_number_to = -1

Searches all magazines in the specified area (= channel) for an empty location for the
tool specified with a T number. After execution of the PI service, the magazine and
locations numbers found during the search are listed in the configuration block of the
channel (component magCMCmdPar1 (magazine number) and magCMCmdPar2
(location number)). Location_number_ID and magazine_number_ID can be set as search
criteria or not (= -1). The PI service is acknowledged positively or negatively depending
on the search result.

● Location_number_to = -1, Magazine_number_to = Magazine_number

An empty location for the tool specified with a T number is searched for in the specified
magazine. Location_number_ID and magazine_number_ID can be set as search criteria
or not (= -1). The PI is acknowledged positively or negatively depending on the search
result.

● Location_number_to = Location_number, Magazine_number_to = Magazine_number

The specified location is checked, to confirm that it is free to be loaded with the specified
tool. Location_number_ID and magazine_number_ID can be set as search criteria or not
(= -1). The PI service is acknowledged positively or negatively depending on the search
result.

Command parameters 1 and 2 are located at source.

Loading: If source is an internal loading magazine, then the command parameters are

located at the target (a real magazine).
Unloading: Source is always a real magazine.

 Note

Before and after this PI service, the MMCSEM PI service must be called up with the
associated parameter WVar1 for this PI service. See Section "PI service: MMCSEM
(Page 923)".

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.TMFDPL Empty location

for loading
Unit INT 1 - 10 TOA
WVar1 INT T number
WVar2 INT Location_number

_to
WVar3 INT Magazine_number_to

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
926 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Range of values Meaning
WVar4 INT Location_number

_ID
WVar5 INT Magazine_number_ID

12.16.4.24 PI service: TMFPBP

Function: Empty location search

This service searches the specified magazine(s) for an empty location which meets the
specified criteria such as tool size and location type.

If the search is successful, the result can be read from the following OPI variables:

● magCMCmdPar1 (magazine number)

● magCMCmdPar2 (location number)

 Note

The PI service can only be requested with FB 7. See Section "FB 7: PI_SERV2 (PI
service request) (Page 947)".

 Note

Before and after this PI service, the MMCSEM PI service must be called up with the
associated parameter WVar1 for this PI service. See Section "PI service: MMCSEM
(Page 923)".

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.TMFPBP Empty location search
Unit INT 1 to 10 TOA
WVar1 INT Magazine number of the magazine from which the search is

to be performed
WVar2 INT Location number of the location in the magazine from

WVar1
WVar3 INT Magazine number of the magazine up to which the search

is to be performed
WVar4 INT Location number of the location in the magazine from

WVar3
WVar5 INT Magazine number reference
WVar6 INT Location number reference
WVar7 INT 0 to 7 Number of required half locations to left
WVar8 INT 0 to 7 Number of required half locations to right
WVar9 INT 0 to 7 Number of required half locations in upward direction
WVar10 INT 0 to 7 Number of required half locations in downward direction

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 927

Signal Type Range of values Meaning
WVar11 INT Number of required location type

Specifies the required search direction
0 Search strategy as set in $TC_MAMP2
1 Forward
2 Backward

WVar12 INT 0 to 4

3 Symmetrical

Examples for setting of the search area

WVar1 :
(from)

WVar2 :
(location)

WVar3 :
(to)

WVar4 :
(location)

Search area

#M1 #P1 #M1 #P1 Only location #P1 in magazine #M1 is checked
#M1 #P1 #M2 #P2 Locations starting at magazine #M1, location #P1 up to magazine #M2,

location #P2 are searched
#M1 -1 #M1 -1 All locations in magazine #M1 - and no others - are searched
#M1 -1 -1 -1 All locations starting at magazine #M1 are searched
#M1 #P1 -1 -1 All locations starting at magazine #M1 and location #P1 are searched
#M1 #P1 #M1 -1 Locations in magazine #M1 starting at magazine #M1 and location #P1 in

this magazine are searched
#M1 #P1 #M2 -1 Locations starting at magazine #M1, location #P1 up to magazine #M2 are

searched
#M1 -1 #M2 #P2 Locations starting at magazine #M1 up to magazine #M2, location #P2 are

searched
#M1 -1 #M2 -1 Locations starting at magazine #M1 up to and including magazine #M2 are

searched
-1 -1 -1 -1 All magazine locations are searched

12.16.4.25 PI service: TMGETT

Function: Determine T number for the specified tool name with duplo number

Determining the T number for a specified tool name with duplo number. Whether a T number
from the PI service was found, is displayed in the variable resultNrOfTools in the TF block. If
the specified tool does not exist, then the number 0 is returned. If the number 1 is returned,
then the T number is displayed in the variable resultToolNr in the TF block. Since the PI
service returns a result in the variable resultToolNr, the service is to be backed up using the
semaphore mechanism (PI service _N_MMCSEM) with the function number for
_N_TMGETT.

 Note

Before and after this PI service, the MMCSEM PI service must be called up with the
associated parameter WVar1 for this PI service. See Section "PI service: MMCSEM
(Page 923)".

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
928 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.TMGETT Determining the T

number
Unit INT 1 ... 10 TOA
Addr1 STRING Max. 32 characters Name of the tool, for

which the T number is
searched

WVar1 INT Duplo number of the
tool, for which the T
number is searched

12.16.4.26 PI service: TMMVTL

Function: Prepare magazine location for loading, unload tool

This PI service is used both to load and unload tools. Whether the PI service initiates a
loading or unloading operation depends on the assignment between the real locations and
the "from" parameters and "to" parameters: Loading ⇒ 'From' = Loading point/station,
unloading ⇒ 'To' = loading point/station

The TMMVTL PI service is used for all motions.

1. Loading and unloading (loading point ↔ magazine)

2. Loading and unloading (loading point ↔ buffer storage, e.g. spindle)

3. Relocation within a magazine

4. Relocation between different magazines

5. Relocation between magazine and buffer storage

6. Relocation within buffer storage

The following variables from the TM block are used to monitor case 1, 3, 4, 5:

● magCmd (area no. = TO unit, line = magazine number)

● magCmdState <- "acknowledgement"

The following variables from the TMC block are used to monitor case 2, 6):

● magCBCmd (area no. = TO unit)

● magCBCmdState <- "acknowledgement"

Loading

Prepares the specified real magazine for the specified channel for loading, i.e. the magazine
traverses to the selected location for loading at the specified loading point/station
(location_number_from, magazine_number_from) and inserts the tool.

When location_number_to = -1, an empty location for the tool specified by a T number is first
sought in the specified magazine and the magazine then traversed. After execution of the PI
service, the number of the location found is listed in the TM area in component
magCMCmdPar2 for the real magazine of the channel.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 929

With location_number_to = -2 and a valid magazine number, loading takes place into the
currently queued magazine position of the specified magazine. After execution of the PI
service, the number of the location for tool loading is listed in the TM area in component
magCMCmdPar2 for the real magazine of the channel.

Unloading
The tool specified by the tool number is unloaded at the specified loading point/station
(location_number_to, magazine_number_to), i.e. the magazine is traversed to the position for
unloading and the tool is then removed. The magazine location for the tool is marked as
being free in the TP block. The tool can be specified either using a T number or by means of
the location and magazine numbers. An unused specification has the value -1.

 Note

Before and after this PI service, the MMCSEM PI service must be called up with the
associated parameter WVar1 for this PI service. See Section "PI service: MMCSEM
(Page 923)".

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.TMMVTL Make magazine location ready

for loading, unloading tool
Unit INT 1 ... 10 TOA
WVar1 INT T number
WVar2 INT Location_number_from
WVar3 INT Magazine_number_from
WVar4 INT Location_number_to
WVar5 INT Magazine_number_to

12.16.4.27 PI service: TMPOSM

Function: Position magazine location or tool, depending on the parameter assignment
A magazine location, which has either been specified directly or qualified via a tool located
on it, is traversed to a specified position (e.g. in front of a load location) via the PI service.
The PI service makes a magazine location, which can be qualified in various ways, traverse
in front of a specified load location. The load location must be specified in the PI parameters
"location number_from" and "magazine number_from" (compulsory!).

The magazine location to be traversed can be qualified by the following:
● T number of the tool

The location where the tool is positioned traverses;
the "tool name", "duplo number", "location number_from" and
"magazine number_from" parameters are irrelevant (i.e. values "" , "-0001", "-0001","-
0001").

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
930 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Tool name and duplo number

The location where the tool is positioned traverses;
the "T number", "location number_from" and "magazine number_from" parameters are
irrelevant (i.e. value "-0001" each).

● Direct specification of the location in the "location_number_from" and
"magazine_number_from" parameters

The tool-qualifying parameters T number, "tool name" and "duplo number" are irrelevant
(i.e. values "-0001", "", "-0001").

Parameterization

Signal Type Range of values Meaning
PIService ANY PI.TMPOSM Position magazine

location or tool
Unit INT 1 ... 10 TOA
Addr1 STRING max. 32 characters Tool name
WVar1 INT T number
WVar2 INT Duplo number
WVar3 INT Location_number_from
WVar4 INT Magazine_number_fro

m
WVar5 INT Location number_ref
WVar6 INT Magazine number_ref

12.16.4.28 PI service: TMPCIT

Function: Set increment value for workpiece counter

Incrementing the workpiece counter of the spindle tool

Parameterization

Signal Type Range of

values
Meaning

PIService ANY PI.TMPCIT Set increment value for workpiece counter
Unit INT 1 ... 10 TOA
WVar1 WORD 0 ... max. Spindle number; corresponds to the type index in the

location data with spindle location type of the buffer
magazine in channel.000 = main spindle

WVar2 WORD 0 ... max. Increment value; indicates the number of spindle
revolutions after which the workpiece counter is
incremented

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 931

12.16.4.29 PI service: TMRASS

Function: Reset active status

Resetting the active status on worn tools
This PI service is used to search for all tools with the tool status active and disabled. The
active status is then canceled for these tools. Potentially appropriate times for this PI service
are the negative edge of NC/PLC interface signal "tool disable ineffective", an end of
program, or a channel RESET. This PI service is intended mainly for the PLC, since it knows
when the disabled tool is finally no longer to be used.

Parameterization

Signal Type Range of

values
Meaning

PIService ANY PI. TMRASS Reset active status
Unit INT 1 ... 10 TO area

12.16.4.30 PI service: TRESMO

Function: Reset monitoring values

This PI service resets the monitoring values of the designated edges of the designated tools
to their setpoint (initial) values.
This is only performed for tools with active monitoring.

See also the RESETMON command.

Parameterization

Signal Type Range of

values
Meaning

PIService ANY PI. TRESMO Reset monitoring values
Unit INT 1 ... 10 TO area

ToolNumber
0: Applies to all tools

> 0: Applies only to this tool

WVar1 WORD - max ... max

< 0: Applies to all sister tools of the specified T No.
D number

< 0: Monitoring of specified edge of specified tools is
reset.

WVar2 WORD 0 ... max.

0: Monitoring of all edges of specified tools is reset.
Monitoring types
Type of monitoring to be reset.
This parameter is binary-coded.

1: Tool-life monitoring is reset.
2: Count monitoring is reset.

WVar3 WORD 0 ...15

4: Wear monitoring is reset.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
932 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Range of
values

Meaning

8: Sum-offset monitoring is reset.
Combinations of monitoring types can be reset by
adding the values above.

0: All active tool-monitoring functions ($TC_TP9) are
reset.

12.16.4.31 PI service: TSEARC

Function: Complex search using search screen form, depending on the parameter
assignment

The PI service allows you to search for tools with specified properties within a search domain
(in one or more magazines starting and ending at a specific location). The specified
properties refer only to data of the tools and their cutting edges.

The PI service is only available if tool management is activated.

You can define a search direction and the number of hits for the PI service (e.g. one tool for
the next tool with matching properties or all tools with the specified properties).

As a result of this service, the user who made the call receives a list of the internal T
numbers of the tools found.

The search criteria can only be specified as AND operation. If an application needs to define
an OR operation for the search criteria, it must first execute a series of queries with AND
criteria and then combine/evaluate the results of the individual queries.

To assign the parameters of the PI service, the properties of the required tools are first
defined via variable service in the TF block. For this purpose, the relevant comparison
criteria (which tool data is to be compared?) are highlighted in the TF block in the operand
screen forms (parMaskT..), the comparison operator data (parDataT..) assigned the
appropriate comparison types to be executed (==, <, >, < =, > =, &&) and the comparison
values entered in the operand data.

The PI service is then initiated and, after its successful return, the variable service from the
TF block is used to read out the number of hits in the variable resultNrOfTools and the result
list in the variable resultToolNr (i.e. the list of internal T numbers of the tools found in the
search (resultNrOfTools quantity)).

The PI service must be encapsulated with a semaphore from its preparation until the
successful return of the result. This is the only way to ensure exclusive access and the
exclusive use of the TF block in conjunction with the TSEARC PI service (see MMCSEM PI
service).

If the service is configured incorrectly, a malfunction occurs. In all other cases, it will return a
result, even if no tools are found (resultNrOfTools = 0).

The search domain can be defined as follows in the parameters
"MagNrFrom", "PlaceNrFrom", "MagNrTo", "PlaceNrTo":

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 933

MagNr
From

PlaceNr
From

MagNr
To

PlaceNr
To

Search area

WVar1 WVar2 WVar3 WVar4
#M1 #P1 #M2 #P2 Locations starting at magazine #M1, location

#P1 up to magazine #M2, location #P2 are
searched

#M1 -1 #M1 -1 All locations in magazine #M1 - and no others
- are searched

#M1 -1 -1 -1 All locations starting at magazine #M1 are
searched

#M1 #P1 -1 -1 All locations starting at magazine #M1 and
location #P1 are searched

#M1 #P1 #M1 -1 Locations in magazine #M1 starting at
magazine #M1 and location #P1 in this
magazine are searched

#M1 #P1 #M2 -1 Locations starting at magazine #M1, location
#P1 up to magazine #M2 are searched

#M1 -1 #M2 #P2 Locations starting at magazine #M1 up to
magazine #M2, location #P2 are searched

#M1 -1 #M2 -1 Locations starting at magazine #M1 up to and
including magazine #M2 are searched

-1 -1 -1 -1 All magazine locations are searched

For a symmetric search (see "SearchDirection" parameter), the search area may stretch
over only a single magazine (cases 2 and 5 from the above table). If another search domain
is specified, the service will malfunction. A reference location must be entered in the
parameters "MagNrRef" and "PlaceNrRef", with respect to which the symmetric search is
done.

The reference location is a buffer location (a location from the magazine buffer, i.e. change
position, gripper, etc.) or a load point (a location from the internal loading magazine). The
search is executed symmetrically with reference to the magazine location in front of the
specified reference location. A multiple assignment to the magazine being searched must be
configured in the TPM block for the reference location. If this is not the case, a malfunction
occurs. If the magazine location in front of the reference location is outside the search
domain, the service responds as if it has not found a matching location.

 Note

Before and after this PI service, the MMCSEM PI service must be called up with the
associated parameter WVar1 for this PI service. See Section "PI service: MMCSEM
(Page 923)".

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
934 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterization

Signal Type Range of

values
Meaning

PIService ANY PI.TSEARC Complex search using search screen forms
Unit INT 1 ... 10 TOA
WVar1 INT MagNrFrom Magazine number of magazine from which

search must begin
WVar2 INT PlaceNrFrom Location number of location in magazine

MagNrFrom, at which search must begin
WVar3 INT MagNrTo Magazine number of magazine at which search

must end
WVar4 INT PlaceNrTo Location number of location in magazine

MagNrTo, at which search must end
WVar5 INT MagNrRef Magazine number of (internal) magazine, with

reference to which the symmetrical search is to be
performed. (this parameter is only relevant with a
"symmetrical" search direction)

WVar6 INT PlaceNrRef Location number of location in magazine
MagNrRef, with reference to which the symmetrical search
is to be performed. This parameter is only relevant with a
"symmetrical" search direction
SearchDirection specifies the required search direction.
1: Forwards from the first location of the search domain
2: Backwards from the last location of the search

domain

WVar7 INT 1, 2, 3

3: symmetric to the real magazine location, which is
before the location specified with Magazine-
Number_ID and Location-Number_ID

KindofSearch
0: Find all tool with this property cutting edge

specifically
1: Search for the first tool found with this property

(cutting edge specifically)
2: Browse all cutting edges to find all tool with this

property

WVar8 INT 0, 1, 2, 3

3: Browse all tools to search for the first tool found with
this property

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 935

12.16.4.32 PI service: TMCRMT

Function: Create multitool

Creating a new multitool with specification of an identifier, optionally a multitool number,
number of locations and type of distance coding. Tool T numbers, magazine numbers and
multitool numbers are unique in the permissible number range 1 ... 32000. When you create
the multitool, all of the associated locations are also generated.

 Note

Before and after this PI service, the MMCSEM PI service must be called up with the
associated parameter WVar1 for this PI service. See Section "PI service: MMCSEM
(Page 923)".

Parameterization

Signal Type Range of

values
Meaning

PIService ANY PI.TMCRMT Create multitool
Unit INT 1 ... 10 TOA
Addr1 STRING Max. 32

characters
Multitool identifier

WVar1 INT 0 Reserved
Multitool number
1 to 32000: Multitool number specified by the user

WVar2 INT -1 ... 32000

-1: NCK allocates the multitool number itself
WVar3 INT 2 ... MD17504

$MN_MAX_
TOOLS_PER_
MULTITOOL

Number of locations in the multitool

WVar4 INT 1 ... 3 Type of distance coding

12.16.4.33 PI service: TMDLMT

Function: Delete multitool

Deletes the multitool in all data blocks in which it is stored. Tools equipped with multitool are
then no longer equipped and no longer loaded, but they are still defined.

Parameterization

Signal Type Range of

values
Meaning

PIService ANY PI.TMDLMT Delete multitool
Unit INT 1 ... 10 TOA

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
936 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Range of
values

Meaning

Addr1 STRING Max. 32
characters

Multitool identifier

WVar1 INT 0 Reserved
Multitool number
1 to 32000: Delete the specified multitool number

(Addr1 is not evaluated)

WVar2 INT -1 ... 32000

-1: Delete the multitool with the name specified
in Addr1

Delete any tools contained
0: Do not delete

WVar3 INT 0, 1

1: Delete

12.16.4.34 PI service: POSMT

Function: Position multitool

Positions the multitool at the programmed location or alternatively at the programmed tool,
which is located in one of the locations of the multitool. The tool itself can either be specified
using its T number or with its name plus duplo number. A multitool can only be positioned if it
is at a toolholder location and if no tool offset with regard to this toolholder is active.

Positioning is programmed by programming WVar1 (= the toolholder whose multitool should
be positioned) and either:

● With WVar2 (tool number), or

● With Addr1 and WVar3 (tool name / duplo number), or

● With WVar4 (multitool location number).

Parameterization

Signal Type Range of

values
Meaning

PIService ANY PI.POSMT Position multitool
Unit INT 1 ... 10 TOA
Addr1 STRING Max. 32

characters
Tool name of the tool to be positioned in the multitool
Note:
If no tool name is specified, then an empty string must be
entered (then WVar2 must be programmed)

WVar1 INT 1 ... 999 Number of the toolholder
Tool number (T number) of the tool to be positioned in the
multitool

WVar2 INT -1 ... 32000

-1: The tool number is irrelevant (Addr1 and WVar3
must then be programmed)

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 937

Signal Type Range of
values

Meaning

Duplo number of the tool to be positioned in the multitool WVar3 INT -1 ... 32000
-1: Duplo number is irrelevant (then WVar2 must be

programmed)
WVar4 INT 1 ... 999 Multitool location number of the location to which the

system should be positioned

12.16.4.35 PI service: FDPLMT

Function: Search/check an empty location within the multitool, depending on the parameter
assignment

Searches in the multitool for a free location to accept the specified tool or checks the
specified location in the multitool whether it is free for accepting the specified tool. The tool
can either be specified using its T number, or alternatively, using its identifier and its duplo
number.

Calling up the PI service is acknowledged positively or negatively depending on the search
result.

 Note

Before and after this PI service, the MMCSEM PI service must be called up with the
associated parameter WVar1 for this PI service. See Section "PI service: MMCSEM
(Page 923)".

Parameterization

Signal Type Range of

values
Meaning

PIService ANY PI.FDPLMT Search/check an empty location within the multitool
Unit INT 1 ... 10 TOA
Addr1 STRING Max. 32

characters
Tool name of the tool to be positioned in the multitool
Note:
If no tool name is specified, then an empty string must be
entered (then WVar2 must be programmed)
Tool number (T number) of the tool to be positioned in the
multitool

WVar1 INT -1 ... 32000

-1: The tool number is irrelevant (then Addr1 and
WVar2 must be alternatively programmed)

Duplo number of the tool to be positioned in the multitool WVar2 INT -1 ... 32000
-1: Duplo number is irrelevant (then WVar1 must be

alternatively programmed)

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
938 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Range of
values

Meaning

Number of the multitool in which the empty location
search/testing should take place

WVar3 INT -1 ... 32000

-1: Search across all multitools for an empty location –
or check across all multitools whether the
programmed location is free in one of them to accept
the programmed tool

Multitool location number of the location to which the
system should be positioned

WVar4 INT -1 ... 999

-1: Do not search for an empty location, but search for
an empty location within the multitool

Call example

Program selection in channel 1 (main program and workpiece program)

Entry of PI service for DB 16 and STR for DB 124 with the S7 SYMBOL editor:

Parameterization
Symbol Operand Data type
PI DB 16 DB 16
STR DB 124 DB 124

DATA_BLOCK DB 126 //Unassigned user DB, as instance for FB 4

FB 4

BEGIN

END_DATA_BLOCK

DATA_BLOCK DB 124

 struct

 PName: string[32]:= '_N_TEST_MPF ';

 Path: string[32]:= '/_N_MPF_DIR/'; //Main program

 PName_WST: string[32]:= '_N_ABC_MPF';

 Path_WST: string[32]:=

'/_N_WCS_DIR/_N_ZYL_WPD';

//Workpiece program

 end_struct

BEGIN

END_DATA_BLOCK

Function FC "PICall" : VOID

 U I 7.7; //Unassigned machine control panel key

 S M 0.0; //Activate req.

 U M 1.1; //Done completed message

 R M 0.0; //Terminate job

 U I 7.6; //Manual error acknowledgement

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 939

 U M 1.0; //Error pending

 R M 0.0; //Terminate job

 CALL FB 4, DB 126 (

 Req := M0.0,

 PIService := PI.SELECT,

 Unit := 1, // CHAN 1

 Addr1 := STR.Path,

 Addr2 := STR.PName, //Main-program selection

 //Addr1:=STR.Path_WST,

 //Addr2:=STR.PName_WST, //Workpiece-program selection

 Error := M1.0,

 Done := M1.1,

 State := MW2);

12.16.5 FB 5: GETGUD read GUD variable

Function
The PLC user program can read a GUD variable (GUD = Global User Data) from the NCK or
channel area using the FB GETGUD.

The FB has multi-instance capability. The call is permitted only in cyclic program OB1. An
assignment for all parameters with Req = 0 is also permitted in OB 100. Capital letters must
be used for the names of GUD variables.

Every FB 5 call must be assigned a separate instance DB from the user area.

A job is started when FB 5 is called by means of a positive edge change at control input Req.
This job includes the name of the GUD variable to be read in parameter "Addr" with data
type "STRING". The pointer to the name of the GUD variables is assigned symbolically to
the "Addr" parameter with <DataBlockName>.<VariableName>. Additional information about
this variable is specified in parameters "Area", "Unit", "Index1" and "Index2" (see table of
block parameters).

When parameter "CnvtToken" is activated, a variable pointer (token) can be generated for
this GUD variable as an option. This pointer is generated via the NC-VAR selector for
system variables of the NC. Only this method of generating pointers is available for GUD
variables. Once a pointer has been generated for the GUD variable, then it is possible to
read and write via FB 2 and FB 3 (GET, PUT) with reference to this variable pointer. This is
the only method by which GUD variables can be read. When FB 2 or FB 3 is parameterized,
only parameter Addr1 ... Addr8 need to be parameterized for this GUD variable pointer. GUD
variable fields are an exception. In these fields Line1 to Line8 must also be parameterized
with the field device from these variables. The successful completion of the read process is
displayed by the status parameter "Done"=TRUE.

The read process extends over several PLC cycles (generally 1 to 2).

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
940 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Any errors are displayed via the output parameters "Error" and "State".

 Note

In order to read a double variable from the NCK without adapting the format, an ANY pointer
of the REAL 2 type must be specified in the target area for read data (e.g.: P#M100.0 REAL
2). If the basic program recognizes REAL 2 as the target type when reading a "double"
variable, the data is applied to the PLC data area as a 64-bit floating point number.

FB 5 can only write GUD variables if basic program parameter "NCKomm" has been set to
"TRUE" (in OB 100: FB 1, DB 7; see "FB 1: RUN_UP Basic program, startup section
(Page 889)").

Declaration of the function

FUNCTION_BLOCK FB 5 //Server name

 KNOW_HOW_PROTECT

 VERSION : 3.0

VAR_INPUT

 Req : BOOL;

 Addr: ANY ; //Variables name string

 Area BYTE ; //Area: NCK = 0, channel = 2

 Unit : BYTE ;

 Index1: INT; //Field index 1

 Index2: INT; //Field index 2

 CnvtToken: BOOL; //Conversion into 10-byte token

 VarToken ANY ; //Struct with 10 bytes for the variable token

END_VAR

VAR_OUTPUT

 Error : BOOL;

 Done : BOOL;

 State : WORD ;

END_VAR

VAR_IN_OUT

 RD: ANY ;

END_VAR

BEGIN

END_FUNCTION_BLOCK

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 941

Description of formal parameters
The table below lists all formal parameters of the GETGUD function.

Signal Type Type Value range Comment
Req I BOOL Job start with positive signal edge
Addr I ANY [DBName].[VarName] GUD variable name in a variable of

data type STRING
Area address:
0: NCK variables

Area I BYTE

2: Channel variables
Unit I BYTE NCK area: Unit:=1

Channel area: Channel no.
Index1 I INT Field index 1 of variable

Variable has the value 0 if no field
index is used.

Index2 I INT Field index 2 of variable
Variable has the value 0 if no field
index is used.

CnvtToken I BOOL Activate generation of a 10 byte
variable token

VarToken I ANY [DBName].[VarName] Address to a 10byte token (see
example)

Error O BOOL Negative acknowledgment of job or
execution of job impossible

Done O BOOL Job successfully executed
State O WORD See error identifiers
RD I/O ANY P#Mm.n BYTE x...

P#DBnr.dbxm.n BYTE x
data to be read

Error identifiers
If it was not possible to execute a job, the failure is indicated by "logic 1" on status parameter
error. The error cause is coded at the block output State:

State Meaning Note
WORD H WORD L
0 1 Access error
0 2 Error in job Incorrect compilation of Var. in a job
0 3 Negative

acknowledgment, job not
executable

Internal error, try:
NC RESET

0 4 Data areas or data types
do not tally

Check data to be
read in RD

1 4 Insufficient local user
memory available

read variable is longer than specified
in RD

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
942 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

State Meaning Note
WORD H WORD L
0 6 FIFO full Job must be repeated,

since queue is full
0 7 Option not set BP parameter "NCKomm" is not set
0 8 Incorrect target area (SD) RD may not be local data
0 9 Transmission occupied Job must be repeated
0 10 Error in addressing Unit contains value 0
0 11 Address of variable

invalid
Address check (or variable name),
area, unit

1 ... 8 13 (0x0d) ANY data reference
incorrect

String/NcVar data required has not
been parameterized

0 15 (0x0f) String more than 32
characters

GUD variable name too long

Configuration steps
To be able to read a GUD variable, its name must be stored in a string variable. The data
block with this string variable must be defined in the symbol table so that the "Addr"
parameter can be assigned symbolically for FB GETGUD. A structure variable can be
defined optionally in any data area of the PLC to receive the variable pointer (see
specification in following example).

Pulse diagram

(1) Activation of function
(2) Positive acknowledgment: variables have been written
(3) Reset function activation after receipt of acknowledgment
(4) Signal change by means of FB
(5) Not permissible
(6) Negative acknowledgment: Error has occurred, error code in the output parameter "State"

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 943

Call example 1
Read a GUD variable from channel 1 with the name "GUDVAR1" (type definition of the
variables: INTEGER). The user-defined variable should be converted in a 10-byte variable
pointer for the subsequent writing with the F3 (see also the table "Assignment of the data
types" in "FB 2: Read GET NC variable (Page 897) ").

Call and parameterization of FB 5 with instance DB 111:

// Data block for GUD variable

DATA_BLOCK DB_GUDVAR //Assignment to symbol table

STRUCT

 GUDVar1 : STRING[32] := 'GUDVAR1'; //Name is defined by user

 GUDVar1Token :

 STRUCT

 SYNTAX_ID : BYTE ;

 area_and_unit : BYTE ;

 column : WORD ;

 line : WORD ;

 block type : BYTE ;

 NO. OF LINES : BYTE ;

 type : BYTE ;

 length : BYTE ;

 END_STRUCT;

END_STRUCT;

BEGIN

END_DATA_BLOCK

//Unassigned user DB, as instance for FB 5

DATA_BLOCK DB 111

 FB 5

BEGIN

END_DATA_BLOCK

//Unassigned user DB, as instance for FB 3

DATA_BLOCK DB 112

 FB 3

BEGIN

END_DATA_BLOCK

//A user-defined channel variable from channel 1 must be read

//with conversion into a variable pointer to allow subsequent

//writing of this variable.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
944 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Function FC "VariablenCall" : VOID

U I 7.7; //Unassigned machine control panel key

S M 100.0; //Activate req.

U M 100.1; //Done completed message

R M 100.0; //Terminate job

U I 7.6; //Manual error acknowledgment

U M 102.0; //Error pending

R M 100.0; //Terminate job

CALL FB 5, DB 111 (

 Req := M 100.0, //Starting edge for reading

 Area := B#16#2, //Channel variable

 Unit := B#16#1, //Channel 1

 Index1 := 0, //No field index

 Index2 := 0, //No field index

 CnvtToken := TRUE, //Conversion into 10-byte token

 VarToken := DB_GUDVAR.GUDVar1Token,

 Error := M 102.0,

 Done := M 100.1,

 State := MW 104

 RD := P#DB99.DBX0.0 DINT 1 // free memory area

);

After a successful FB-5 call the writing can be done via the returned address of the FB 5
parameter ("VarToken") with the help of FB3.

CALL FB 3, DB 112 (

 Req := M 200.0,

 NumVar := 1, //Write 1 GUD variable

 Addr1 := DB_GUDVAR.GUDVar1Token,

 Error := M 102.0,

 Done := M 100.1,

 State := MW 104

 SD1 := P#DB99.DBX0.0 DINT 1);

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 945

Call example 2
Read a GUD variable from channel 1 with the name "GUD_STRING" (type definition of the
variables: STRING with length 30 bytes). The user-defined variable should be converted in a
10-byte variable pointer for subsequent writing with the FB 3.

Call and parameterization of FB 5 with instance DB 111:

// Data block for GUD variable

DATA_BLOCK DB_GUDVAR //Assignment to symbol table

STRUCT

 GUDVarS : STRING[32] := 'GUD_STRING'; //Name is defined by user

 GUDVarSToken :

 STRUCT

 SYNTAX_ID : BYTE ;

 area_and_unit : BYTE ;

 column : WORD ;

 line : WORD ;

 block type : BYTE ;

 NO. OF LINES : BYTE ;

 type : BYTE ;

 length : BYTE ;

 END_STRUCT;

 string_of_GUD : STRING[30]; // must at least be so long as

 // the definition of 'GUD_STRING'!

 new_name : STRING[30] := 'GUD_123';

END_STRUCT;

BEGIN

END_DATA_BLOCK

//Unassigned user DB, as instance for FB 5

DATA_BLOCK DB 111

 FB 5

BEGIN

END_DATA_BLOCK

//Unassigned user DB, as instance for FB 3

DATA_BLOCK DB 112

 FB 3

BEGIN

END_DATA_BLOCK

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
946 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

//A user-defined channel variable from channel 1 must be read

//with conversion into a variable pointer to allow subsequent

//writing of this variable.

Function FC "VariablenCall" : VOID

U I 7.7; //Unassigned machine control panel key

S M 100.0; //Activate req.

U M 100.1; //Done completed message

R M 100.0; //Terminate job

U I 7.6; //Manual error acknowledgment

U M 102.0; //Error pending

R M 100.0; //Terminate job

CALL FB 5, DB 111 (

 Req := M 100.0, //Starting edge for reading

 Addr := DB_GUDVAR.GUDVarS,

 Area := B#16#2, //Channel variable

 Unit := B#16#1, //Channel 1

 Index1 := 0, //No field index

 Index2 := 0, //No field index

 CnvtToken := TRUE, //Conversion into 10-byte token

 VarToken := DB_GUDVAR.GUDVarSToken,

 Error := M 102.0,

 Done := M 100.1,

 State := MW 104

 RD := DB_GUDVAR.string_of_GUD);

After a successful FB-5 call the writing can be done via the returned address of the FB 5
parameter ("VarToken") with the help of FB3.

CALL FB 3, DB 112 (

 Req := M 200.0,

 NumVar := 1, //Write 1 GUD variable

 Addr1 := DB_GUDVAR.GUDVarSToken,

 Error := M 102.0,

 Done := M 100.1

 State := MW 104

 SD1 := DB_GUDVAR.new_name);

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 947

12.16.6 FB 7: PI_SERV2 (PI service request)

Function
Apart from a larger number of WVar parameters, the FB 7 function block has the same
functionality as the FB 4. It is therefore recommended that you use the FB 7 function block
instead of the FB 4.

For a detailed description of requesting a PI service, see Section "FB 4: PI_SERV PI service
request (Page 911)".

Declaration of the function

FUNCTION_BLOCK FB 7

Var_INPUT

 Req : BOOL;

 PIService : ANY ;

 Unit : INT;

 Addr1 : ANY ;

 Addr2 : ANY ;

 Addr3 : ANY ;

 Addr4 : ANY ;

 WVar1 : WORD ;

 WVar2 : WORD ;

 WVar3 : WORD ;

 WVar4 : WORD ;

 WVar5 : WORD ;

 WVar6 : WORD ;

 WVar7 : WORD ;

 WVar8 : WORD ;

 WVar9 : WORD ;

 WVar10 : WORD ;

 WVar11 : WORD ;

 WVar12 : WORD ;

 WVar13 : WORD ;

 WVar14 : WORD ;

 WVar15 : WORD ;

 WVar16 : WORD ;

END_VAR

VAR_OUTPUT

 Error : BOOL;

 Done : BOOL;

 State : WORD ;

END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
948 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Description of formal parameters

Signal Type Type Range of values Remark
Req I BOOL Job request
PIService I ANY [DBName].[VarName]

Standard is: "PI".[VarName]
PI service description

Unit I INT 1... Area number
Addr1 to
Addr4

I ANY [DBName].[VarName] Reference to strings specification
according to selected PI service

WVar1
to
WVar16

I WORD 1... Integer or word variables. Specification
according to selected PI service

Error O BOOL Negative acknowledgement of job or
execution of job impossible

Done O BOOL Job successfully executed
State O WORD See error identifiers

12.16.7 FB 9: MtoN Control unit switchover

Function
This block allows switchover between several control units (HMI operator panel fronts and/or
MCP machine control panels), which are connected to one or more NCU control modules via
a bus system.

References:
Function Manual, Extended Functions; Several Control Panels on Multiple NCUs,
Decentralized Systems (B3)

The Interface between the individual control units and the NCU (PLC) is the M : N interface
in the data block DB 19. The FB 9 works with the signals of these interfaces.

Apart from initialization, sign-of-life monitoring and error routines, the following basic
functions are also performed by the block for control unit switchover:

Tabulated overview of functions:
Basic function Significance
HMI queuing HMI wants to go online with an NCU
HMI coming HMI is connecting to an NCU
HMI going HMI is disconnecting from an NCU
Forced break HMI must break connection with an NCU
Operating focus changeover to
server mode

Change operating focus from one NCU to the other

Active/passive operating mode: Operator control and monitoring/monitoring only
MCP switchover As an option, MCP can be switched over with the HMI

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 949

Brief description of a few important functions
Active/passive operating mode:

An online HMI can operate in two different modes:

Active mode: Operator can control and monitor
Passive mode: Operator can monitor (HMI header only)

After switchover to an NCU, this initially requests active operating mode in the PLC of the
online NCU. If two control units are linked online simultaneously to an NCU, one of the two is
always in active mode and the other in passive mode. The operator can request active mode
on the passive HMI at the press of a button.

MCP switchover
As an option, an MCP assigned to the HMI can be switched over at the same time. To
achieve this, the MCP address must be entered in the "mstt_adress" parameter of the
NETNAMES.INI configuration file on the HMI and "MCPEnable" must be set to TRUE. The
MCP of the passive HMI is deactivated so that there is only ever one active MCP on an NCU
at one time.

Boot condition
To prevent the previously selected MCP being reactivated when the NCU is restarted, input
parameters MCP1BusAdr = 255 (address of 1st MCP) and "MCP1STOP" =TRUE
(deactivate 1st MCP) must be set when FB1 is called in OB100.

Approvals
When one MCP is switched over to another, any active feed or axis enables will be retained.

 Note

Keys actuated at the moment of switchover remain operative until the new MCP is activated
(by the HMI, which is subsequently activated). The override settings for feedrate and spindle
also remain valid. To deactivate actuated keys, the input image of the machine control
signals must be switched to nonactuated signal level on a falling edge of DB10.DBX104.0.
The override settings should remain unchanged. Measures for deactivating keys must be
implemented in the PLC user program (see example "Override Changeover").

The call is permitted only in cyclic program OB1.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
950 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Declaration of the function

FUNCTION_BLOCK FB 9

VAR_INPUT

 Ack : BOOL ; //Acknowledge interrupts

 OPMixedMode: BOOL:= FALSE; //Mixed operation with non-M-to-N-enabled

OP //deactivated

 ActivEnable: BOOL:= TRUE; // Not supported

 MCPEnable : BOOL:= TRUE; // Activate MCP switchover

END_VAR

VAR_OUTPUT

 Alarm1 : BOOL ; // Interrupt: Error in HMI bus address, bus

type!

 Alarm2 : BOOL ; // Interrupt: No confirmation HMI 1

offline!

 Alarm3 : BOOL ; // Interrupt: HMI 1 is not going offline!

 Alarm4 : BOOL ; // Interrupt: No confirmation HMI 2

offline!

 Alarm5 : BOOL ; // Interrupt: HMI 2 is not going offline!

 Alarm6 : BOOL ; // Interrupt: Queuing HMI is not going

online!

 Report : BOOL ; // Message: Signoflife monitoring

 ErrorMMC : BOOL ; // Error detection HMI

END_VAR

Description of formal parameters
The table below lists all formal parameters of the M:N function.

Formal parameters of M:N function
Signal Type Type Remark
Ack I BOOL Acknowledge interrupts
OPMixedMode I BOOL Mixed operation deactivated for OP without M:N capability
ActivEnable I BOOL Function is not supported. Control panel switchover

Interlocking via MMCx_SHIFT_LOCK in DB 19
Activate MCP switchover:
TRUE: MCP is switched over with operator panel.

MCPEnable I BOOL

FALSE: MCP is not switched over with operator panel.
This can be used to permanently link an MCP.
See also MMCx_MSTT_SHIFT_LOCK in DB 19.

Alarm1 Q BOOL Interrupt: Error in HMI bus address, bus type!
Alarm2 Q BOOL Interrupt: No confirmation HMI 1 offline!
Alarm3 Q BOOL Interrupt: HMI 1 is not going offline!
Alarm4 Q BOOL Interrupt: No confirmation HMI 2 offline!
Alarm5 Q BOOL Interrupt: HMI 2 is not going offline!

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 951

Formal parameters of M:N function
Signal Type Type Remark
Alarm6 Q BOOL Interrupt: Queuing HMI is not going online!
Report Q BOOL Message: Sign-of-life monitoring HMI
ErrorMMC Q BOOL Error detection HMI

 Note

The block must be called by the user program. The user must provide an instance DB with
any number for this purpose. The call is multi-instance-capable.

Example of a call for FB 9:

 CALL FB 9, DB 109 (

 Ack := Error_ack, //e.g., MCP RESET

 OPMixedMode := FALSE,

 ActivEnable := TRUE,

 MCPEnable := TRUE); // Enable for MCP switchover

 Note

Input parameter “MCPEnable” must be set to TRUE to enable the MCP switchover. The
default value of these parameters is set in this way and need not be specially assigned when
the function is called.

Interrupts, errors
The output parameters "Alarm1" to "Alarm6" and "Report" exist as information in the PLC
and are output in the event of M:N errors visualized on the HMI by the appearance of alarms
410900 - 410906.

If execution of an HMI function has failed (and an appropriate error message cannot be
displayed), status parameter "ErrorMMC" is set to 'logical 1' (e.g., booting error, when no
connection is made).

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
952 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Call example for FB 1 (Call in OB 100)

CALL "RUN_UP", "gp_par" (

 MCPNum := 1,

 MCP1In := P#I 0.0,

 MCP1Out := P#Q 0.0,

 MCP1StatSend := P#Q 8.0,

 MCP1StatRec := P#Q 12.0,

 MCP1BusAdr := 255, // Address of 1st MCP

 MCP1Timeout := S5T#700MS,

 MCP1Cycl := S5T#200MS,

 MCP1Stop := TRUE, // MCP switched off

 NCCyclTimeout := S5T#200MS,

 NCRunupTimeout := S5T#50S);

Example Override switchover

// Auxiliary flags used M100.0, M100.1, M100.2, M100.3

//Edge positive of MCP1Ready must check the override

//and measures for activation

// Initiate MCP block

//This example applies to the feedrate override.

//The interface and input bytes must be exchanged for spindle override.

U DB10.DBX 104.0; //MCP1Ready

EN M 100.0; //Edge trigger flag 1

JCN smth1;

S M 100.2; //Set auxiliary flag 1

R M 100.3; //Reset auxiliary flag 2

// Save override

 L DB21.DBB 4; //Feed override interface

 T EB 28; //Buffer storage (freely input

// or flag byte)

wei1:

U M 100.2; //Switchover takes place

O DB10.DBX 104.0; //MCP1Ready

JCN smth2;

U DB10.DBX 104.0; //MCP1Ready

FP M 100.1; //Edge trigger flag 2

JC smth2;

U M 100.2; //Switchover takes place

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 953

R M 100.2; //Reset auxiliary flag 1

JC smth2;

U M 100.3; //Comparison has taken place

SPB MCP; //Call MCP program

// Route the stored override to the interface of the switched MCP

// until the override values match

 L EB 28; //Buffer storage open

 T DB21.DBB 4; //Route override interface

 L EB 3; //Override input byte for feed

 <>i; //Match?

JC smth2; //No, jump

S M 100.3; //Yes, set auxiliary flag 2

// When override values match, call the MCP program again

MCP: CALL "MCP_IFM"(//FC 19

 BAGNo := B#16#1,

 ChanNo := B#16#1,

 SpindleIFNo := B#16#0,

 FeedHold := M 101.0,

 SpindleHold := M 101.1);

wei2: NOP 0;

12.16.8 FB 10: Safety relay (SI relay)

Function
The SPL block "Safety relay" for "Safety Integrated" is the PLC equivalent of the NC function
of the same name. The standard SPL "Safety relay" block is designed to support the
implementation of an emergency stop function with safe programmable logic. However, it
can also be used to implement other similar safety functions, e.g., control of a protective
door. The function contains 3 input parameters (In1, In2, In3). On switchover of one of these
parameters to the value 0, the output Out0 is deactivated without delay and outputs Out1,
Out2 and Out3 deactivated via the parameterized timer values (parameters TimeValue1,
TimeValue2, TimeValue3). The outputs are activated again without delay, if inputs In1 to In3
take the value 1 and a positive edge change is detected at one of the acknowledgement
inputs Ack1, Ack2. To bring the outputs to their basic setting (values = 0) after booting, the
parameter "FirstRun" must be configured as follows. The parameter "FirstRun" must be
switched to the value TRUE via a retentive data (memory bit, bit in data block) on the 1st run
after control booting. This data can be preset, e.g., in OB 100. The parameter is reset to
FALSE when FB 10 is executed for the first time. Separate data must be used for parameter
"FirstRun" for each call with its own instance.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
954 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Simplified block diagram in CSF
The figure below shows only one acknowledgment input Ack1 and one delayed deactivation
output Out1. The circuit for Ack2 and the other delayed outputs are identical. The parameter
FirstRun is also missing in the function diagram. The mode of operation is described above.

Declaration of the function

FUNCTION_BLOCK FB 10

VAR_INPUT

 In1 : BOOL := TRUE; //Input 1

 In2 : BOOL := TRUE; //Input 2

 In3 : BOOL := TRUE; //Input 3

 Ackn1 : : BOOL; //Ack 1 signal

 Ackn2 : :BOOL; //Ack 2 signal

 TimeValue1 : TIME := T#0ms ; //TimeValue for output 1

 TimeValue2 : TIME := T#0ms ; //TimeValue for output 2

 TimeValue3 : TIME := T#0ms ; //TimeValue for output 3

END_VAR

VAR_OUTPUT

 Out0 : BOOL; //Output without delay

 Out1 : BOOL; //Delayed output to false by timer 1

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 955

 Out2 : BOOL; //Delayed output to false by timer 2

 Out3 : BOOL; //Delayed output to false by timer 3

END_VAR

VAR_INOUT

 FirstRun : BOOL; //TRUE by user after 1st start of SPL

END_VAR

Description of formal parameters
The following table shows all formal parameters of the SI relay function:

Formal parameters of SI relay function
Signal Type Type Remark
In1 I BOOL Input 1
In2 I BOOL Input 2
In3 I BOOL Input 3
Ackn1 I BOOL Acknowledge input 1
Ackn2 I BOOL Acknowledge input 2
TimeValue1 I TIME Time value 1 for OFF delay
TimeValue2 I TIME Time value 2 for OFF delay
TimeValue3 I TIME Time value 3 for OFF delay
Out0 O BOOL Output, instantaneous (no delay)
Out1 O BOOL Output, delayed by TimeValue1
Out2 O BOOL Output, delayed by TimeValue2
Out3 O BOOL Output, delayed by TimeValue3
FirstRun I/O BOOL Activation of basic setting

 Note

The block must be called once by the user program (per SI relay) cyclically in the OB1 cycle
from when the SPL program starts. The user must provide an instance DB with any number
for this purpose. The call is multi-instance-capable.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
956 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.9 FB 11: Brake test

Function
The braking operation check should be used for all axes, which must be prevented from
moving in an uncontrolled manner by a holding brake. This check function is primarily
intended for the socalled "vertical axes".

The machine manufacturer can use his PLC user program to close the brake at a suitable
moment in time (guide value every 8 hours, similar to the SI test stop) and allow the drive to
produce an additional torque / additional force equivalent to the weight of the axis. In error-
free operation, the brake can produce the necessary braking torque/braking force and keep
the axis at a virtual standstill. When an error occurs, the actual position value exits the
parameterizable monitoring window. In this instance, the position controller prevents the axis
from sagging and negatively acknowledges the mechanical brake test.

The necessary parameterization of NC and Drive is described in:
References:
Functions Manual Safety Integrated

The brake test must always be started when the axis is at a standstill. For the entire duration
of the brake test, the enable signals of the parameterized axis must be set to enable (e.g. the
controller inhibit, feed enable signals). Furthermore, the signal at the axis/spindle
DB31,DBX28.7 (PLC-controlled axis) is to be set to status 1 by the user program for the
complete duration of the test.

Before activating the signal DB31,DBX28.7 (PLC-controlled axis) the axis is to be
switched as "neutral axis", e.g. DB31,DBX8.0 - 8.3 (assign NC axis to channel) is to be
set to channel 0 as well as DB31,DBX8.4 (activation signal when using this byte) is to be
set.

The return message:

● about the current status can be queried in DB31, ... DBB68.

● the Nc via the signal DB31,DBX63.1 (PLC controls axis) is to be awaited before the
block is started. The direction in which the drive must produce its torque/force is specified
by the PLC in the form of a "traversing motion" (e.g., via FC 18).

The axis must be able to reach the destination of this movement without risk of collision if the
brake is unable to produce the necessary torque/force.

 Note
Instructions for FC 18

If FC18 is called for the same axis in the remainder of the user program, the calls must be
mutually interlocked. For example, this can be achieved via a common call of this function
with an interlocked common data interface for the FC 18 parameters. A second option is to
call the FC18 repeatedly, in which case the inactive FC18 will not be processed by the
program. A multiple-use interlock must be provided.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 957

The brake test is divided into the following steps:

Brake test sequence
Step Expected feedback Monitoring time value
Start brake test DBX 71.0 = 1 TV_BTactiv
Close brake Bclosed = 1 TV_Bclose
Output traversing command DBX 64.6 Or DBX 64.7 TV_FeedCommand
Issue test travel command DBX 62.5 = 1 TV_FXSreached
Wait for the holding time DBX 62.5 = 1 TV_FXShold
Deselect brake test /
open brake

DBX 71.0 = 0 TV_BTactiv

Output test ok

Declaration of the function

Function_BLOCK FB 11

VAR_INPUT

 Start : BOOL ; //Start of brake test

 Ackn : BOOL ; //Acknowledge error

 Bclosed : BOOL ; //Brake closed input (single channel - PLC)

 Axis : INT; //Testing axis no.

 TimerNo : TIMER ; //Timer from user

 TV_BTactiv : S5TIME ; //TimeValue -> brake test active

 TV_Bclose : S5TIM; //TimeValue -> close brake

 TV_FeedCommand : S5TIME ; //TimeValue -> force FeedCommand

 TV_FXSreached : S5TIME ; //TimeValue -> fixed stop reached

 TV_FXShold : S5TIME ; //TimeValue -> test brake

END_VAR

VAR_OUTPUT

 CloseBrake : BOOL ; //Signal close brake

 MoveAxis : BOOL ; //Do move axis

 Done : BOOL ;

 Error : BOOL ;

 State : BYTE ; //Error byte

END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
958 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Description of formal parameters
The following table lists all of the formal parameters of the brake test function

Formal parameters of brake test function
Signal Type Type Remark
Start I BOOL Starts the brake test
Ack I BOOL Acknowledge fault
Bclosed I BOOL Checkback input whether Close Brake is activated

(singlechannel - PLC)
Axis I INT Axis number of axis to be tested
TimerNo I TIMER Timer from user program
TV_BTactiv I S5TIME Monitoring time value → brake test active, checking

of axis signal DBX 71.0
TV_Bclose I S5TIME Monitoring time value → close brake Check of input

signal Bclosed after output CloseBrake has been
set.

TV_FeedCommand I S5TIME Monitoring time value → Travel command given
Check travel command after MoveAxis has been set

TV_FXSreched I S5TIME Monitoring time value → fixed stop reached
TV_FXShold I S5TIME Monitoring time value → test brake
CloseBrake A BOOL Request, close brake
MoveAxis A BOOL Request, initiate traversing motion
Done A BOOL Test successfully completed
Error A BOOL Error has occurred
State A BYTE Error status

Fault IDs

State Significance
0 No error
1 Start conditions not fulfilled, e.g. the axis is not in closed-loop control / brake closed / axis

inhibited
2 No NC checkback in "Brake test active" signal on selection of brake test
3 No "Brake applied" checkback by input signal Bclosed
4 No travel command output (e.g., axis motion has not been started)
5 Fixed end stop will not be reached → axis RESET was initiated.
6 Traversing inhibit/Approach too slow → fixed stop cannot be reached. TV FXSreached

monitoring timeout
7 Brake is not holding at all (the end position is reached)/approach speed is too high
8 Brake opens during the holding time
9 Error when deselecting the brake test
10 Internal error
11 "PLC-controlled axis" signal not enabled in the user program

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 959

 Note

The block must be called by the user program. The user must provide an instance DB with
any number for this purpose. The call is multi-instance-capable.

Example of a call for FB 11:

 AN M 111.1; //Request to close brake, Z axis of FB

 = A 85.0; //Brake control, Z axis

 OPEN Axis3"; //Brake test, Z axis

 O I 73.0; //Brake test trigger, Z axis

 O M 110.7; //Brake test running

 FP M 110.0;

 UN M 111.4; //Error has occurred

 S M 110.7; //Brake test running

 S M 110.6; //Next step

 JCN m001

 L DBB 68;

 AW W#16#F;

 T MB 115; //flag channel state

 L B#16#10

 T DBB 8; //Request neutral axis

m001: U DBX 68.6; //Checkback signal, axis is neutral

 U M 110.6;

 FP M 110.1;

 R M 110.6;

 S M 110.5; //Next step

 S DBX 28.7; //Request PLC-monitored axis

 U DBX 63.1; //Checkback signal, axis monitored by PLC

 U M 110.5;

 FP M 110.2;

 R M 110.5;

 S M 111.0; //Start brake test for FB

 CALL FB 11, DB 211 (//Brake test block

 Start :=M 111.0, //Start brake test

 Ackn := I 3.7, //Acknowledge error with RESET key

 Bclosed := I 54.0, //Return message close brakes

//controlled

 Axis := 3, //Axis number of axis to be tested

//Z axis

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
960 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 TimerNo := T 110, //Timer number

 TV_BTactiv := S5T#200MS, //Monitoring time value:

//Brake test active DBX71.0

 TV_Bclose := S5T#1S, //Monitoring time value:

//Brake closed

 TV_FeedCommand := S5T#1S, //Monitoring time value:

//Traversing command output

 TV_FXSreache := S5T#1S, //Monitoring time value:

//Fixed stop reached

 TV_FXShold := S5T#2S, //Monitoring time value:

//Brake test time

 CloseBrake :=M 111.1, //Request to close brake

 MoveAxis :=M 111.2, Initiate //Request traversing motion //

 Done :=M 111.3, //Test successfully completed

 Error :=M 111.4, //Error has occurred

 State := MB 112); //Error status

 OPEN "Axis3"; //Brake test, Z axis

 U M 111.2; //Moveaxis

 FP M 111.5; //FC18 Start

 S M 111.7; //Start FC18

 O M 111.3; //Test successfully completed

 O M 111.4; //Error has occurred

 FP M 110.3;

 R DBX 28.7; //Request, PLC-monitored axis

 UN DBX 63.1; //Checkback signal, axis monitored by PLC

 U M 111.0; //Start brake test for FB

 U M 110.7; //Brake test running

 FP M 110.4;

 R M 111.0; //Start brake test for FB

 R M 110.7; //Brake test running

//optional begin

 JCN m002:

 L MB 115; //old channel status

 OW W#16#10;

 T DBB 8; //Request channel axis

m002: NOP 0;

//optional end

 CALL "SpinCtrl" (//Traverse Z axis

 Start :=M 111.2, //Start traversing motion

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 961

 Stop := FALSE,

 Funct := B#16#5, //Mode: Axis mode

 Mode := B#16#1, //Procedure: Incremental

 AxisNo := 3, //Axis number of axis to be traversed

//axis Z-axis

 Pos := -5.000000e+000, //Traversing distance: Minus 5 mm

 FRate := 1.000000e+003, //Feedrate: 1000 mm/min

 InPos :=M 113.0, //Position reached

 Error :=M 113.1, //Error has occurred

 State := MB 114); //Error status

 OPEN "Axis3"; //Brake test, Z axis

 U M 113.0; //Position reached

 O M 113.1; //Error has occurred

 FP M 113.2;

 R M 111.7; //Start FC18

12.16.10 FB 29: Signal recorder and data trigger diagnostics

Function
Signal recorder

The diagnostics FB allows various diagnostic routines to be performed on the PLC user
program. A diagnostic routine logs signal states and signal changes. In this diagnostic
routine, function number 1 is assigned to the "Func" parameter. Up to 8 signals of the
parameters "Signal_1" to "Signal_8" are recorded in a ring buffer each time one of the
signals changes. The current information of parameters "Var1" as BYTE value, and "Var2"
and "Var3" as INTEGER values are also stored in the ring buffer.

The number of past OB 1 cycles is also stored in the buffer as additional information. This
information enables the graphical evaluation of signals and values in OB 1 cycle grid. The
first time the diagnostics FB is called in a new PLC cycle, the "NewCycle" parameter must be
set to TRUE. If the diagnostics FB is called several times in the same OB 1 cycle, the
"NewCycle" parameter must be set to FALSE for the second and subsequent calls. This
prevents a new number of OB 1 cycles from being calculated.

The ring buffer, specified by the user, must have an ARRAY structure specified as in the
source code. The array can have any number of elements. A size of 250 elements is
recommended. The "ClearBuf" parameter is used to clear the ring buffer and set the BufAddr
pointer (I/O parameter) to the start. The instance DB related to the FB is a DB from the user
area and is to be transferred to the FB Diagnostics with the parameter "BufDB".

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
962 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Data trigger

The data trigger function is intended to allow triggering on specific values (or bits) at any
permissible memory cell. The cell to be triggered is "rounded" with a bit mask ("AndMask"
parameter) before the "TestVal" parameter is compared in the diagnostic block.

 Note

The source code for the function is available in the source container of the basic-program
library under the name "Diagnose.awl". The instance DB and the ring buffer DB are also
defined in this source block. The function call is also described in the function. The DB
numbers and the call must be modified.

Declaration of the function

FUNCTION_BLOCK FB 29

VAR_INPUT

Func : INT ; //Function number: 0 = No function,

//1 = Signal recorder, 2 = Data trigger

 Signal_1 : BOOL ; //Start of brake test

 Signal_2 : BOOL ;

 Signal_3 : BOOL ;

 Signal_4 : BOOL ;

 Signal_5 : BOOL ;

 Signal_6 : BOOL ;

 Signal_7 : BOOL ;

 Signal_8 : BOOL ;

 NewCycle : BOOL ;

 Var1 : BYTE ;

 Var2 : INT;

 Var3 : INT;

 BufDB : INT;

 ClearBuf : BOOL ;

 DataAdr : POINTER; //Area pointer to testing word

 TestVal : WORD ; //Value for triggering

 AndMask : WORD ; //AND mask to the testing word

END_VAR

VAR_OUTPUT

 TestIsTrue : BOOL ;

END_VAR

VAR_IN_OUT

 BufAddr : INT;

END_VAR

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 963

Structure for ring buffer

TITLE =

 //Ring buffer DB for FB 29

VERSION : 1.0

STRUCT

 Field: ARRAY [0 .. 249] OF STRUCT //can be any size of this struct

 Cycle : INT ; //Delta cycle to last storage in buffer

 Signal_1 : BOOL ; //Signal names same as FB 29

 Signal_2 : BOOL ;

 Signal_3 : BOOL ;

 Signal_4 : BOOL ;

 Signal_5 : BOOL ;

 Signal_6 : BOOL ;

 Signal_7 : BOOL ;

 Signal_8 : BOOL ;

 Var1 : BYTE ;

 Var2 : WORD ;

 Var3 : WORD ;

 END_STRUCT;

END_STRUCT;

BEGIN

END_DATA_BLOCK

Description of formal parameters
The table below lists all formal parameters of the Diagnostics function:

Formal parameters of diagnostics function
Signal Type Type Value range Remark

Function
0: Switch off
1: Signal recorder

Func I INT 0, 1, 2

2: Data trigger
Parameters for function 1
Signal_1 to
Signal_8

I BOOL Bit signals checked for change

NewCycle I BOOL See the "Signal recorder" description above
Var1 I BYTE Additional value
Var2 I INT Additional value
Var3 I INT Additional value
BufDB I INT Ring buffer DB no.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
964 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Formal parameters of diagnostics function
Signal Type Type Value range Remark
ClearBuf I BOOL Delete ring buffer DB and reset pointer

BufAddr
BufAddr I/O INT Target area for read data
Parameters for function 2
DataAdr I POINTER Pointer to word to be tested
TestVal I WORD Comparison value
AndMask I WORD See description
TestIsTrue A BOOL Result of comparison

Configuration steps
● Select function of diagnostics block.

● Define suitable data for the recording as signal recorder or data triggering.

● Find a suitable point or points in the user program for calling the diagnostics FB.

● Create a data block for the ring buffer, see call example.

● Call the diagnostics FB with parameters in the user program.

In function 1, it is advisable to clear the ring buffer with the "ClearBuf" parameter. When the
recording phase with function 1 is completed, read out the ring buffer DB in STEP7 with the
function "opening the data block in the data view". The content of the ring buffer DB can now
be analyzed.

Call example

FUNCTION FC 99: VOID

TITLE =

VERSION : 0.0

BEGIN

NETWORK

TITLE = NETWORK

CALL FB 29, DB 80 (

Func := 1,

 Signal_1 :=M 100.0,

 Signal_2 :=M 100.1,

 Signal_3 :=M 100.2,

 Signal_4 :=M 100.3,

 Signal_5 :=M 10.4,

 Signal_6 :=M 100.5,

 Signal_7 :=M 100.6,

 Signal_8 :=M 100.7,

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 965

 NewCycle := TRUE,

 Var1 := MB 100,

 BufDB := 81,

 ClearBuf :=M 50.0);

END_FUNCTION

12.16.11 FC 2: GP_HP Basic program, cyclic section

Function
The complete processing of the NCKPLC interface is carried out in cyclic mode. In order to
minimize the execution time of the basic program, only the control/status signals are
transferred cyclically; transfer of the auxiliary functions and G functions only takes place
when requested by the NCK.

In the block, handwheel selections, modes and other operating signals are transferred from
the operator panel front (HMI) to the NCK/PLC interface so that the modes support selection
from the MCP or HMI.
Transfer of HMI signals to the interface can be deactivated by setting the value of the
parameter "MMCToIF" to "FALSE" in FB 1 (DB 7).

The handwheel selection signals from the HMI are decoded and activated in the machine
axis or the geometry axis interface of the handwheel selected (only if parameter
"HWheelMMC := TRUE" in FB 1). = TRUE").

Declaration

FUNCTION FC 2: VOID
// no parameters

Call example
As far as the time is concerned, the basic program must be executed before the user
program. It is, therefore, called first in OB 1.

The following example contains the standard declarations for OB 1 and the calls for the basic
program (FC2), the transfer of the MCP signals (FC19), and the acquisition of error and
operating messages (FC10).

ORGANIZATION_BLOCK OB 1

VAR_TEMP

 OB1_EV_CLASS : BYTE ;

 OB1_SCAN_1 : BYTE ;

 OB1_PRIORITY : BYTE ;

 OB1_OB_NUMBR : BYTE ;

 OB1_RESERVED_1 : BYTE ;

 OB1_RESERVED_2 : BYTE ;

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
966 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 OB1_PREV_CYCLE : INT;

 OB1_MIN_CYCLE : INT;

 OB1_MAX_CYCLE : INT;

 OB1_DATE_TIME : DATE_AND_TIME;

END_VAR

BEGIN

CALL FC 2; //Call basic program as first FC

//INSERT USER PROGRAM HERE

CALL FC 19(//MCP signals to interface

BAGNo := B#16#1, //Mode group no. 1

ChanNo := B#16#1, //Channel no. 1

SpindleIFNo := B#16#4, //Spindle interface number = 4

FeedHold := m22.0, //Feed stop signal

 //modal

SpindleHold := db2.dbx151.0); //Spindle stop modal

 //in message DB

CALL FC 10 (//Error and operational messages

 ToUserIF := TRUE, //Signals transferred from DB2 to

interface

//to interface

 Ack := I6.1); //Acknowledgment of error messages

//via I 6.1

END_ORGANIZATION_BLOCK

12.16.12 FC 3: GP_PRAL Basic program, interruptdriven section

Function
Blocksynchronized transfers from the NCK to the PLC (auxiliary and G functions) are carried
out in the interruptdriven part of the basic program. Auxiliary functions are subdivided into
normal and highspeed auxiliary functions.

The highspeed functions of an NC block are buffered and the transfer acknowledged to the
NC. These are passed to the application interface at the start of the next OB1 cycle.

Highspeed auxiliary functions programmed immediately one after the other, are not lost for
the user program. This is ensured by a mechanism in the basic program.

Normal auxiliary functions are acknowledged to the NC only after one completed cycle
duration. This allows the application to issue a read disable to the NC.

The G Functions are evaluated immediately and passed to the application interface.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 967

NC process interrupts
If the interrupt is triggered by the NC (possible in each IPO cycle), a bit in the local data of
OB 40 ("GP_IRFromNCK") is set by the basic program, when the FB 1 parameter "UserIR":
= TRUE"). This data is not set on other events (process interrupts through I/Os). This
information makes it possible to branch into the associated interrupt routine in the user
program in order to initiate the necessary action.

To be able to implement highspeed, jobdriven processing of the user program for the
machine, the following NC functions are available in the interrupt processing routine (OB 40
program section) for the PLC user program:

● Selected auxiliary functions

● Tool-change function for tool-management option

● Position reached for positioning axes, indexing axes and spindles with activation via PLC

The functions listed above can or must be evaluated by the user program in OB 40 in order
to initiate reactions on the machine. As an example, the revolver switching mechanism can
be activated when a T command is programmed on a turning machine.

For further details on programming hardware interrupts (time delay, interruptibility, etc.) refer
to the corresponding SIMATIC documentation.

Auxiliary functions
Generally, high-speed or acknowledging auxiliary functions are processed with or without
interrupt control independently of any assignment.

Basic-program parameters in FB 1 can be set to define which auxiliary functions (T, H, DL)
must be processed solely on an interruptdriven basis by the user program.

Functions which are not assigned via interrupts are only made available by the cyclic basic
program as in earlier versions. The change signals of these functions are available in a PLC
cycle.

Even if the selection for the auxiliary function groups (T, H, DL) is made using interrupt
control, only one interrupt can be processed by the user program for the selected functions.

A bit is set channelspecifically in the local data "GP_AuxFunction" for the user program (if
"GP_AuxFunction[1]" is set, then an auxiliary function is available for the 1st channel).

In the related channel-DB the change signal and the function value are available for the user.
Das Änderungssignal dieser interrupt driven function is reset to zero in the cyclic basic
program section after the execution of at least one full OB1 cycle (max. approx. two OB1
cycles).

Tool change
With the tool-management option, the tool-change command for revolver and the tool
change in the spindle is supported by an interrupt. The local data bit "GP_TM" in OB 40 is
set for this purpose. The PLC user program can thus check the tool management DB (DB 72
or DB 73) for the tool change function and initiate the tool change operation.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
968 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Position reached
In the bit structure, "GP_InPosition" of the local data of OB 40 is specific to the machine axis
(each bit corresponds to an axis/spindle, e.g. GP_InPosition[5] corresponds to axis 5).

If a function has been activated via FC 18 (spindle control, positioning axis, indexing axis) for
an axis or spindle, the associated "GP_InPosition" bit can be used to implement
instantaneous evaluation of the "InPos" signal of the FCs listed above. This feature can be
used, for example, to obtain immediate activation of clamps for an indexing axis.

Declaration

FUNCTION FC 3 : VOID

// no parameters

Call example
As far as the time is concerned, the basic program must be executed before other interrupt-
driven user programs. It is, therefore, called first in OB 40.

The following example contains the standard declarations for OB 40 and the call for the
basic program.

ORGANIZATION_BLOCK OB 40

VAR_TEMP

 OB40_EV_CLASS : BYTE ;

 OB40_STRT_INF : BYTE ;

 OB40_PRIORITY : BYTE ;

 OB40_OB_NUMBR : BYTE ;

 OB40_RESERVED_1 : BYTE ;

 OB40_MDL_ID : BYTE ;

 OB40_MDL_ADDR : INT;

 OB40_POINT_ADDR : DWORD;

 OB40_DATE_TIME : DATE_AND_TIME;

//Assigned to basic program

GP_IRFromNCK : BOOL ; //Interrupt by NCK for user

GP_TM : BOOL ; //Tool management

GP_InPosition : ARRAY [1..3] OF BOOL; //Axis-oriented for positioning,

//Indexing axes, spindles

GP_AuxFunction : ARRAY [1..10] OF BOOL; //Channel-oriented for auxiliary functions

GP_FMBlock : ARRAY [1..10] OF BOOL; //Currently not used

//Further local user data may be defined from this point onwards

END_VAR

BEGIN

 CALL FC 3;

 //INSERT USER PROGRAM HERE

END_ORGANIZATION_BLOCK

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 969

12.16.13 FC 5: GP_DIAG Basic program, diagnostic alarm, and module failure

Function
Module defects and module failures are detected in this section of the basic program.

The FC5 block parameter can be used to define whether the PLC is to be placed in Stop
mode. The PLC is placed in STOP mode only for incoming events. Exceptions of the
parameter "PLC-Stop" are the Profibus-MCPs parameterized at FB 1 (must be connected to
the DP1 Bus).

Declaration

FUNCTION FC 5: VOID

 VAR_INPUT

 PlcStop: BOOL:= TRUE;

 END_VAR

Call example
As far as timing is concerned, the basic program can be executed after other user programs.
This is advisable since the FC5 circuitry will place the PLC in Stop mode.

This example contains the standard declarations for OB 82 and OB 86 and the call of the
basic program block.

ORGANIZATION_BLOCK OB 82

VAR_TEMP

 OB82_EV_CLASS : BYTE ;

 OB82_FLT_ID : BYTE ;

 OB82_PRIORITY : BYTE ;

 OB82_OB_NUMBR : BYTE ;

 OB82_RESERVED_1 : BYTE ;

 OB82_IO_FLAG : BYTE ;

 OB82_MDL_ADDR : INT ;

 OB82_MDL_DEFECT : BOOL ;

 OB82_INT_FAULT : BOOL ;

 OB82_EXT_FAULT : BOOL ;

 OB82_PNT_INFO : BOOL ;

 OB82_EXT_VOLTAGE : BOOL ;

 OB82_FLD_CONNCTR : BOOL ;

 OB82_NO_CONFIG : BOOL ;

 OB82_CONFIG_ERR : BOOL ;

 OB82_MDL_TYPE : BYTE ;

 OB82_SUB_NDL_ERR : BOOL ;

 OB82_COMM_FAULT : BOOL ;

 OB82_MDL_STOP : BOOL ;

 OB82_WTCH_DOG_FLT : BOOL ;

 OB82_INT_PS_FLT : BOOL ;

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
970 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 OB82_PRIM_BATT_FLT : BOOL ;

 OB82_BCKUP_BATT_FLT : BOOL ;

 OB82_RESERVED_2 : BOOL ;

 OB82_RACK_FLT : BOOL ;

 OB82_PROC_FLT : BOOL ;

 OB82_EPROM_FLT : BOOL ;

 OB82_RAM_FLT : BOOL ;

 OB82_ADU_FLT : BOOL ;

 OB82_FUSE_FLT : BOOL ;

 OB82_HW_INTR_FLT : BOOL ;

 OB82_RESERVED_3 : BOOL ;

 OB82_DATE_TIME : DATE_AND_TIME;

END_VAR

 BEGIN

 CALL FC 5

 (PlcStop := FALSE) ;

END_ORGANIZATION_BLOCK

ORGANIZATION_BLOCK OB 86

VAR_TEMP

 OB86_EV_CLASS : BYTE ;

 OB86_FLT_ID : BYTE ;

 OB86_PRIORITY : BYTE ;

 OB86_OB_NUMBR : BYTE ;

 OB86_RESERVED_1 : BYTE ;

 OB86_RESERVED_2 : BYTE ;

 OB86_MDL_ADDR : WORD ;

 OB86_RACKS_FLTD : ARRAY [0 .. 31]OF BOOL;

 OB86_DATE_TIME : DATE_AND_TIME;

END_VAR

 BEGIN

 CALL FC 5

 (PlcStop := TRUE) ;

END_ORGANIZATION_BLOCK

12.16.14 FC 6: TM_TRANS2 transfer block for tool management and multitool

Function
The TM_TRANS2 block is used for position changes of the tool, status changes and
multitool.

The FC 6 block includes the same functionality as for the FC 8, only that in addition the
multitool functionality is also integrated. This is the reason that only the parts of the multitool
functionality are explained in this chapter. The functionality that is included that goes beyond
this is described in "FC 8: TM_TRANS transfer block for tool management (Page 975)".

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 971

Declaration of the function
STL Representation

FUNCTION FC 6 : VOID

VAR_INPUT

 Start: BOOL;

 TaskIdent: BYTE ;

 TaskIdentNo: BYTE ;

 NewToolMag: INT;

 NewToolLoc: INT;

 OldToolMag: INT;

 OldToolLoc: INT;

 Status: INT;

 MtoolPlaceNum: INT;

END_VAR

VAR_OUTPUT

 Ready BOOL;

 Error: INT;

END_VAR

BEGIN

END_FUNCTION

Description of formal parameters
The table below lists all formal parameters of the TM_TRANS2 function. Parameters shown
in bold differ from FC 8.

Signal Type Type Value range Remark
Start I BOOL See description of block FC 8
TaskIdent I BYTE See description of block FC 8
TaskIdentNo I BYTE See description of block FC 8
NewToolMag I INT See description of block FC 8
NewToolLoc I INT See description of block FC 8
OldToolMag I INT See description of block FC 8
OldToolLoc I INT See description of block FC 8
Status I INT See description of block FC 8
MtoolPlaceNum I INT Multitool location No.
Ready O BOOL See description of block FC 8
Error O INT See description of block FC 8

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
972 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.15 FC 7: TM_REV Transfer block for tool change with revolver

Function
After a revolver has been changed, the user will call the block FC TM_REV. The revolver
number (corresponding to interface number in DB 73) must be specified in parameter
"ChgdRevNo" for this purpose. As this block is called, the associated "Interface active" bit in
data block DB73.DBW0 of FC 7 is reset after parameter "Ready" = TRUE is returned.

Block FC TM_REV may be started (with "Start" parameter = "TRUE") only if an activation
signal for the appropriate interface (DB73.DBW0) for this transfer has been supplied by the
tool management function.

When this job is executed correctly, the output parameter "Ready" contains the value TRUE.
The user must then set the"Start" parameter to FALSE or not call the block again.

If the parameter "Ready" == FALSE AND the parameter "Error" <> 0, the job must be
repeated in the next PLC cycle. The "Start" parameter must be set to TRUE for this. The
transfer job has not yet been completed. See "Call example" and "Pulse diagram" below.

The "Start" parameter does not need a signal edge for a subsequent job.

 Note

A cancellation of the transfer (e.g. reset) is not permitted. The "Start" parameter must retain
TRUE until the "Ready" or "Error" parameters <> 0.

 Note

Further PI services for tool management: FB 4, FC 8 and FC 22

References

For detailed information about tool management, refer to:

Function Manual, Tool Management

Manual revolver switching
If the revolver is rotated in manual operation, neither a tool change nor an offset selection is
associated with this operation. From a data perspective, the programmed tool moves to the
toolholder and the old tool back to its place in the revolver during a tool selection also for the
revolver, even if this is modeled differently by HMI Operate.

The first step is the removal of the tool from the toolholder back to its location in the revolver.
To do this, an asynchronous transfer is performed with FC8 (as an alternative to FC6).

The parameter assignment appears as follows:

TaskIdent = 4

TaskIdentNo = Channel no.

NewToolMag = Magazine no. of the revolver

NewToolLoc = Original location of the tool

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 973

OldToolMag = Magazine no. of the buffer storage (spindle) = 9998

OldToolLoc = Buffer storage no. of the spindle

Status = 1

If the revolver is now turned to an arbitrary position at which a tool is located, this tool must
be activated. This is done easiest by the new T programming in the part program. However,
if this is to be performed, for example, at the end of the revolver switching by the PLC, the
PLC must start an ASUB for this purpose. The current revolver position must be transferred
to the ASUB. In this way, the tool at this location is determined in the ASUB and is selected
(see Jobshop example in the toolbox).

Declaration of the function
STL representation

FUNCTION FC 7 : VOID

//NAME :TM_REV

VAR_INPUT

Start: BOOL;

ChgdRevNo: BYTE ;

END_VAR

VAR_OUTPUT

Ready: BOOL;

Error : INT;

END_VAR

BEGIN

END_FUNCTION

Description of formal parameters
The table below lists all formal parameters of the TM_REV function.

Signal Type Type Range of

values
Remark

Start I BOOL 1 = Start of transfer
ChgdRevNo I BYTE 1... Number of revolver interface
Ready O BOOL 1 = Transfer complete

Error checkback
0 : No error has occurred
1: No revolver present
2: Illegal revolver number in parameter

"ChgdRevNo"

Error O INT 0 ... 3

3: Illegal job ("interface active" signal for
selected revolver = "FALSE")

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
974 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Pulse diagram

(1) Activation of function by means of a positive edge
(2) Positive acknowledgement: Tool management has been transferred
(3) Reset function activation after receipt of acknowledgement
(4) Signal change using FC
(5) This signal chart is not permissible. The job must generally be terminated since the new tool

positions must be conveyed to the tool management in the NCK.
(6) Negative acknowledgement: Error has occurred, error code in the output parameter Error

Call example

CALL FC 7(//Tool management transfer block

//for Revolver

Start := m 20.5, //Start := "1 " => transfer trigger

ChgdRevNo := DB61.DBB1,

Ready := m 20.6,

Error := DB61.DBW12);

u m 20.6; //Poll ready

r m 20.5; //Reset start

spb m001; //Jumps, if everything OK

l db61.dbw 12; //Error information

ow w#16#0; //Evaluate error

JC error; //Jumps to troubleshooting, if <> 0

m001: // Start of another program

error:

r m 20.5; //Reset start, if an error has occurred

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 975

12.16.16 FC 8: TM_TRANS transfer block for tool management

Function
The user calls this block FC TM-TRANS when the position of the tool or the status of the
transfer operation changes. The parameter "TaskIdent" specifies the transfer job for the
block FC 8 at the tool management interface:

● For loading/unloading positions

● For spindle change positions

● For revolver change positions as transfer identifier

● Asynchronous transfer

● Asynchronous transfer with location reservation

The interface number is indicated in parameter "TaskIdentNo".

Example for loading point 5:

Parameter "TaskIdent":= 1 and "TaskIdentNo":= 5.

Furthermore, the current tool positions and status data (list of "Status" parameter in the
following text) are also transferred for this transfer function.

 Note

FC8 informs the NCK of the current positions of the old tool.

The NCK knows where the old and the new tool have been located until the position change.

In the case of a transfer without a socalled "old tool" (e.g. on loading), the value 0 is
assigned to parameters "OldToolMag", "OldToolLoc".

Block FC TM_TRANS may be started only with "Start" parameter = "TRUE" if an activation
signal for the appropriate interface (DB 71, DB 72, DB 73 in word 0) for this transfer has
been supplied by the tool management function.

When this job is executed correctly, the output parameter "Ready" contains the value TRUE.

The user must then set the"Start" parameter to FALSE or not call the block again.

If the "Ready" parameter = FALSE, the error code in the "Error" parameter must be
interpreted (see Call example FC 8 and timing diagram).

If the error code = 0, then this job must be repeated in the next PLC cycle (e.g. "Start"
remains set to "TRUE"). This means that the transfer operation has not yet been completed.

If the user assigns a value of less than 100 to the "Status" parameter, then the associated
interface in data block DB 71 or DB 72 or DB 73, word 0 is deactivated (process completed).
The appropriate bit for the interface is set to 0 by FC 8.

The "Start" parameter does not need a signal edge for a subsequent job. This means that
new parameters can be assigned with "Start = TRUE" immediately when "Ready = TRUE" is
received.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
976 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Asynchronous transfer
To ensure that changes in the position of a tool are automatically signaled from PLC to tool
management (e.g. power failure during an active command or independent changes in the
position by the PLC), block FC 8 TM_TRANS with "TaskIdent": = 4 or 5 is called. This call
does not require interface activation by tool management.

If parameter "TaskIdent" = 5 the tool management reserves the location in addition to
changing the position. The location is only reserved if the tool has been transported from a
real magazine to a buffer storage.

A relevant NC channel must be parameterized in the "TaskIdentNo" parameter.

The previous position of the tool is specified in parameters "OldToolMag", "OldToolLoc"; the
current position of the tool is specified in parameters "NewToolMag", "NewToolLoc". Status =
1 must be specified.

With status 5, the specified tool remains at location "OldToolMag", "OldToolLoc". This
location must be a buffer (e.g. spindle). The real magazine and location must be specified in
the parameters "NewToolMag", "NewToolLoc"; the location is at the position of the buffer.
This procedure must always be used if the tool management is to be informed of the position
of a specific magazine location. This procedure is used for alignment in search strategies.

 Note

A cancellation of a transfer (e.g. through an external signal RESET) is not permitted. The
"Start" parameter must always retain the 1 signal until the "Ready" and/or "Error" parameters
<> 0.

An error code <> 0 indicates incorrect parameterization.

 Note

For further details on tool management (also with regard to the PLC) refer to the Function
Manual Tool Management. In addition, PI services for tool management via FB 4, FC 7 and
FC 22 are available.

Declaration of the function
STL representation

FUNCTION FC 8: VOID

//NAME :TM_TRANS

VAR_INPUT

 Start: BOOL;

 TaskIdent: BYTE ;

 TaskIdentNo: BYTE ;

 NewToolMag: INT;

 NewToolLoc: INT;

 OldToolMag: INT;

 OldToolLoc: INT;

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 977

 Status: INT;

END_VAR

VAR_OUTPUT

 Ready BOOL;

 Error : INT;

END_VAR

BEGIN

END_FUNCTION

Description of formal parameters
The table below lists all formal parameters of the TM_TRANS function:

Signal Type Type Range of values Remark
Start I BOOL 1 = Start of transfer

Interface or task identifier
1: Loading/unloading location
2: Spindle change position
3: Revolver change position
4: Asynchronous transfer

TaskIdent I BYTE 1 ... 5

5: Asynchronous transfer with location
reservation

TaskIdentNo I BYTE 1 ... Number of associated interface or channel
number. The upper nibble can specify the
interface number for asynchronous transfer
(e.g. B#16#12, 1st interface, 2nd channel).
Current magazine number of tool to be replacedNewToolMag I INT 1, 0 ...
-1: Tool remains at its location

NewToolLoc = any value
Only permissible if TaskIdent = 2

NewToolLoc I INT 0 ... max.
location number

Current location number of new tool

Current magazine number of tool to be replacedOldToolMag I INT -1, 0 ...
-1: Tool remains at its location

OldToolLoc = any value.
Only permissible if TaskIdent = 2

OldToolLoc I INT Max. location
number

Current location number of tool to be replaced

Status I INT 1 ... 7,
103 ... 105

Status information about transfer operation

Ready O BOOL 1= transfer completed
Error checkback
0: No error has occurred
1: Unknown "TaskIdent"

Error O INT 0 ... 65535

2: Unknown "TaskIdentNo"

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
978 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Type Range of values Remark
3: Illegal task

("signal "Interface (SS) active" of selected
revolver = "FALSE")

Other values: The number corresponds to
the error message of the tool
management function in the
NCK caused by this transfer.

Pulse diagram

(1) Activation of function by means of a positive edge
(2) Positive acknowledgement: Tool management has been transferred
(3) Reset function activation after receipt of acknowledgement
(4) Signal change using FC
(5) This signal chart is not permissible. The job must generally be terminated since the new tool

positions must be conveyed to the tool management in the NCK.
(6) Negative acknowledgement: Error occured, error code in the output parameter Error

Status list
Status = 1:
The WZV operation is completed (loading/unloading/reloading, prepare change, change).

The parameters "NewToolMag", "NewToolLoc", "OldToolMag", "OldToolLoc" of the FC 8
block are to be parameterized to the actual positions of the tools involved. Except in the case
of preparing change these are normally the specified target position of the tools of the
associated WZV interface, see also "Explanations of the formal parameters".

1. In the case of loading/unloading/reloading, the tool has arrived at the required target
address. If the bit in the interface in DB 71.DBX (n+0).3 "position at loading point" is
enabled, status 1 cannot be used for the function termination. Status 5 must be used for
correct termination.

2. In the case of "Prepare change", the new tool is now available. The tool may, for
example, be positioned in a buffer (gripper). In some cases, the target (magazine,
location) of the old tool has been moved to the toolchange position after placement of the
new tool in a buffer. However, the old tool still remains in the spindle. The preparations
for a tool change are thus complete. After this acknowledgement, the "Change" command
can be received. The positions in parameters "NewToolMag", "NewToolLoc",
"OldToolMag" and "OldToolLoc" correspond to the current tool positions.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 979

3. In the case of "Change" (spindle or revolver), the tools addressed in the interface have
now reached the required target addresses.
The tool-change operation is thus completed.

Status = 2: The "new" tool cannot be made available.

This status is only admissible in conjunction with the "Prepare Change" command. When this
status is applied, the PLC must be prevented from making a change with the proposed tool.
The proposed (new) tool is disabled by the tool management function in the NCK. A new
command is then output by the tool management with a duplo tool. The positions in
parameters "NewToolMag", "NewToolLoc", "OldToolMag", and "OldToolLoc" correspond to
the original tool positions.

Status = 3: An error occurred.

The tool positions must not have been changed. Any changes to the magazine positions
which have taken place in the meantime must be notified beforehand, for example, with
status = 105 via FC 8 transfer block Only then will the tool positions be taken into account by
the tool management function.

Status = 4: It would be better to position the "old" tool in the magazine position specified in
parameters "OldToolMag" and "OldToolLoc".

This status is permissible only in conjunction with preparation for tool change (change into
spindle). After this status has been transferred to the tool management in the NCK, the tool
management tries to consider the specified magazine position in the next command. But this
is done only when this position is free. Parameters "NewToolMag" and "NewToolLoc" are not
taken into account.

Status = 5: The operation is complete.

The "new" tool is in the position specified in parameters "NewToolMag", "NewToolLoc". In
this case, the specified tool is not really in this position, but is still in the same magazine
location. However, this magazine location has been moved to the position set in the
parameters (e.g. tool change position). This status may be used only for revolvers, chain-
type magazines and disk magazines. Status 5 enables the tool management function to
adjust the current position of a magazine and to improve the search strategy for subsequent
commands. This status is permissible only in conjunction with loading, unloading, and
reloading operations and with preparations for a tool change.

The "OldToolMag" and "OldToolLoc" parameters must be parameterized with the data of a
buffer.

● Loading, reloading:

On loading or reloading, a location for the tool is already reserved in the NCK. The
machine operator must then insert the tool at the target location. Notice: The location
reservation is canceled when the control system is switched on again.

● Tool-change preparation:

Tool motions still to be executed are not carried out until after the tool has been changed.

● Positioning to load point:

If the bit in the interface in DB 71.DBX (n+0).3 "position at loading point" is enabled,
status 1 cannot be used for the function termination.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
980 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Status = 6: The WZV job has been completed.

This status has the same function as status 1, but, in addition, a reservation of the source
location is carried out. This status is only permitted when reloading. The command is ended
and the source location of the tool is reserved if the target location is in a buffer magazine.

Status = 7: Initiate repetition of the command "Prepare Tool".

This status is only admissible in conjunction with the "Change tool" command. This status is
intended for use when the "new" tool has changed its position (e.g. via an asynchronous
command of the "new" tool). After "Ready = 1" has been provided by FC 8, the "Prepare
Change" command is repeated automatically with the same tool. For the automatic
repetition, a new tool search is carried out. The positions in parameters "NewToolMag",
"NewToolLoc", "OldToolMag", and "OldToolLoc" correspond to the original tool positions.

Status = 103: The "new" tool can be inserted.

This status is permitted only in the tool change preparation, when the PLC may reject the
new tool (e.g. in case of MD20310 $MC_TOOL_MANAGEMENT_MASK, bit 4=1 for the
possibility, request changed parameter from PLC once again). The tool positions have
remained unchanged. This status is thus necessary, when the processing is to be continued
in the NCK without an unnecessary stop.

References:
Function Manual Tool Management

Status = 104: The "new" tool is in the position specified in parameters "NewToolMag",
"NewToolLoc".

This status is only permissible if the tool is still in the magazine in the same location. The
"old" tool is in the position (buffer) specified in parameters "OldToolMag", "OldToolLoc". In
this case, however, the new tool is not really in this position, but is still in the same magazine
location. However, this magazine location has been moved to the position set in the
parameters (e.g. tool change position). This status may be used only in conjunction with
revolvers, chaintype magazines and disk magazines for the "Tool change preparation"
phase. Status enables the tool management to adjust the current position of a magazine and
to improve the search strategy for subsequent commands.

Status = 105: The specified buffer has been reached by all tools involved
(standard case if the operation has not yet been completed).

The tools are in the specified tool positions (parameters "NewToolMag", "NewToolLoc",
"OldToolMag", "OldToolLoc").

Status definition
A general rule for the acknowledgement status is that the status information 1 to 7 leads to
the termination of the command. If FC 8 receives one of the states, the "Interface active bit"
of the interface specified in FC 8 is reset to "0" (see also interface lists DB 71 to DB 73), thus
completing the operation. The response if different in the case of status information 103 to
105. When the FC 8 receives one of these items of status information, the “Interface active
bit” of this interface remains at “1”. Further processing is required by the user program in the
PLC (e.g. continuation of magazine positioning). This item of status information is generally
used to transfer changes in position of one or both tools while the operation is still in
progress.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 981

Call example

CALL FC 8(//Tool-management transfer block

 Start := m 20.5, //Start := "1 " => transfer trigger

 TaskIdent := DB61.DBB 0,

 TaskIdentNo := DB61.DBB 1,

 NewToolMag := DB61.DBW 2, //Current position of new tool

 NewToolLoc := DB61.DBW 4,

 OldToolMag := DB61.DBW 6, //Current position of old tool

 OldToolLoc := DB61.DBW 8,

 Status := DB61.DBW 10, //Status

 Ready := m 20.6,

 Error := DB61.DBW 12);

u m 20.6; //Poll ready

r m 20.5; //Reset start

spb m001; //Jumps, if everything OK

l DB61.dbw 12; //Error information

ow w#16#0; //Evaluate error

JC error; //Jumps to troubleshooting

m001: //Normal branch

error: //Troubleshooting

r m 20.5: //Reset start

12.16.17 FC 9: ASUB startup of asynchronous subprograms

Function
The FC ASUB can be used to trigger any functions in the NC. Before an ASUB can be
started from the PLC, it must have been selected and parameterized by an NC program or
by FB 4 (PI service ASUB). The channel and the interrupt numbers for the parameters in FC
9 must match here.

Once prepared in this way, it can be started at any time from the PLC. The NC program
running on the channel in question is interrupted by the asynchronous subprogram. Only one
ASUB can be started in the same channel at a time. If the start parameter is set to logical 1
for two FC 9s within one PLC cycle, the ASUBs are started in the sequence in which they
are called.

The start parameter must be set to logic 0 by the user once the ASUB has been terminated
(Done) or if an error has occurred.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
982 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

For the purpose of job processing, every FC ASUB requires its own WORD parameter "Ref"
from the global user memory area. This parameter is for internal use only and must not be
changed by the user. The parameter "Ref" is initialized with the value 0 in the first OB 1 cycle
and, for this reason, every FC 9 must be called absolutely. Alternatively, the user can
initialize parameter "Ref" with a value of 0 during startup. This option makes conditional calls
possible. When a conditional call is activated by parameter "Start" = 1, it must remain active
until parameter "Done" has made the transition from 1 to 0.

 Note

The FB 4 call must be terminated before the FC 9 can be started. FC 9 cannot be started if
"Emergency stop" is set. Neither can FC 9 be started if the channel reset is active.

Declaration of the function

FUNCTION FC 9: VOID

//NAME :ASUP

VAR_INPUT

 Start: BOOL;

 ChanNo: INT;

 IntNo: INT;

END_VAR

VAR_OUTPUT

 Active: BOOL;

 Done : BOOL;

 Error : BOOL;

 StartErr: BOOL;

END_VAR

VAR_IN_OUT

 Ref: WORD ;

END_VAR

Description of formal parameters
The table below lists all formal parameters of the ASUB function.

Signal Type Type Range of values Remark
Start I BOOL
ChanNo I INT 1 ... 10 No. of the NC channel
IntNo I INT 1 ... 8 Interrupt No.
Active O BOOL 1 = Active
Done O BOOL 1 = ASUB completed
Error O BOOL 1 = Interrupt switched off

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 983

Signal Type Type Range of values Remark
StartErr O BOOL 1 = Interrupt number not assigned or

deleted
Ref I/O WORD Global variable

(MW, DBW,..)
1 word per FC 9 (for internal use)

Pulse diagram

(1) Activation of function
(2) ASUB is active
(3) Positive acknowledgement: ASUB completed
(4) Reset function activation after receipt of acknowledgement
(5) Signal change using FC
(6) Not permitted If function activation is reset prior to receipt of acknowledgement, the output

signals are not updated without the operational sequence of the activated function being
affected.

(7) Negative acknowledgement: Error has occurred

Call example

CALL FC 9(//Start an asynchronous subprogram

//in channel 1 interrupt number 1

 Start := I 45.7,

 ChanNo := 1,

 IntNo := 1,

 Active := M 204.0,

 Done := M204.1,

 Error := M 204.4,

 StartErr := M 204.5,

 Ref := MW 200);

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
984 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.18 FC 10: AL_MSG error and operating messages

Function
FC AL_MSG evaluates the signals entered in DB 2 and displays them as incoming and
outgoing error and operational messages on the HMI.

The incoming signals (positive edge) are displayed immediately in the case of both error and
operational messages.

Outgoing signals (negative edge) are only canceled immediately in the case of operating
messages. Error messages remain stored on the HMI - even if the signals no longer exist -
until the "acknowledge" parameter is issued, WCS.e. until the user acknowledges the
messages.

The "ToUserIF" parameter can be used to transfer the group signals for the feed, read and
NC start disabling signals and feed stop signal to the existing axis, spindle and channel
interfaces. The group signals are transferred to the user interface directly from the status
information in DB 2 irrespective of an interrupt acknowledgment.

1. If parameter "ToUserIF": is set to FALSE, signals are not transferred to the user interface.
In this case, the user must take measures in his PLC program to ensure that these
signals are influenced in the interface.

2. If parameter "ToUserIF": is set to TRUE, all signals listed above are sent to the user
interface as a group signal in each case. The user PLC program can, therefore, influence
these signals only via DB 2 in connection with a message or interrupt output. The
appropriate information is overwritten in the user interface.

As an alternative to the procedure described under paragraph 2, the user can influence the
disable and stop signals without a message output by applying a disable or stop signal state
to the interface signals after FC AL_MSG has been called.

The following program illustrates this method:

CALL FC 10 (

 ToUserIF := TRUE,

 Ack := I 6.1);

u m 50.0; //Feed disable for channel 1

to DB 21;

s dbx 6.0; //Setting the blocking condition,

//Resetting is done via FC AL_MSG,

//if M 50.0 outputs the signal "0".

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 985

FB 1-Parameter "ExtendAlMsg"
With the activation of the parameter a new structuring of the DB 2 becomes effective (see
"Interface PLC/HMI (Page 831)"). Upon activation the bit fields are available to the user for
the disable and halt signals, which do not generate any alarms, messages. As a result, the
user need not implement the aforesaid measures. The desired functionality is given
automatically by a simple setting, resetting of signals in the new DB 2 areas.

The error and the operating messages are stored by the user in data block DB 2 (see
description of DB 2 in the lists of interface signals).

 Note

In DB 2, a "1" signal must be present for several OB1 cycles to ensure that a message can
also be displayed on the HMI. There is an upper limit for the number of interrupts and
messages that can be pending at the same time. This upper limit is dependent on the PLC
CPU. On PLC 317-2DP, the upper limit for messages pending simultaneously is 60.

See also Parameter Manual (Lists, Manual 2), chapter on PLC Alarms / Messages

Declaration of the function
STL Representation

FUNCTION FC 10 : VOID

 // NAME: AL_MSG

VAR_INPUT

 ToUserIF : BOOL ;

 Ack : BOOL ;

END_VAR

END_FUNCTION

Description of formal parameters
The table below lists all formal parameters of the AL-MSG function.

Signal Type Type Range of values Remark
ToUserIF I BOOL 1 = Transfer the signals to user interface

every cycle
Ack I BOOL 1 = Acknowledge error messages.

Call example

CALL FC 10 (//Error and operational messages

 ToUserIF := TRUE, //Signals from DB 2 are transferred to

//interface

 Ack := I6.1); //Acknowledgement of the error message done via

//Input E6.1.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
986 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.19 FC 12: AUXFU call interface for user with auxiliary functions

Function
FC AUXFU is generally called on an eventdriven basis in the basic program if the channel
transferred in the input parameter contains new auxiliary functions. The PLC user can extend
FC AUXFU with program instructions for processing his auxiliary function to avoid cyclic
polling of the channel DBs. This mechanism permits auxiliary functions to be processed on a
jobdriven basis. FC AUXFU is supplied as a compiled empty block in the basic program. In
this case, the basic program supplies parameter "Chan" with the channel number. The PLC
user knows which channel has new auxiliary functions available. The new auxiliary functions
can be determined by the auxiliary-function change signals in the channel concerned.

Declaration of the function

FUNCTION FC 12: VOID //Event control of auxiliary functions

VAR_INPUT

 Chan: BYTE ;

END_VAR

BEGIN

 BE;

END_FUNCTION

Explanation of formal parameters
The table below lists all formal parameters of the AUXFU function:

Signal Type Type Value range Remark
Chan I BYTE 0 ... 9 No. of NC channel -1

Example

FUNCTION FC 12: VOID //Event control of auxiliary functions

VAR_INPUT

 Chan: BYTE ; //Parameter is supplied by basic program

END_VAR

VAR_TEMP

 ChanDB: INT;

END_VAR

BEGIN

L Chan; //Channel index no., (0,1,2,..)

+ 21; //Channel DB offset

T ChanDB; //Save channel DB no.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 987

TO DB[ChanDB]; //Channel DB is opened indirectly

// Auxiliary-function change signals are now scanned, etc.

 BE;

END_FUNCTION

12.16.20 FC 13: BHGDisp Display control for handheld unit

Function
This block carries out the display control for the handheld unit (HHU or HT2). The
information to be output on the display is stored as 32 characters in string data ChrArray
(these are 64 characters when using an HT2). A fixed text assignment of 32 or 64 characters
is, therefore, required for this string when the data block is created.

16 characters are sent to BHG/HT2 for each job, which lasts for several OB 1-cycle. The
assignment of the characters in ChrArray to each line is unique. For line 1 the characters 1
to 16 and for the line 2 the characters 17 to 32 of the string data ChrArray are transferred. In
addition, for HT2 the line 3 with the characters 33 to 48 and line 4 made of characters 49 to
64 are shown.

The block checks, whether the minimum length of the ChrArray is available for operating the
BHG or the HT2. If less characters are present in the string data than are to be displayed,
then the line is filled with blanks.

By setting parameter Row to 0, it is possible to suppress the display (e.g. if several variables
in one or several PLC cycles need to be entered in the string without any display output). If
several lines are to be updated "simultaneously" (transfer of the characters to the lines lasts
for several OB 1 cycles) (Parameter Row > 1), then the lines are updated one by one each
with 16 characters per line.

Variable portions within the string can be inserted by means of the numerical converter
functionality (optional). For the numeric converter the parameter "Convert" must be set to
TRUE. The variable to be displayed is referenced via the pointer Addr. Parameter
"DataType" contains the format description of this parameter (see parameter table). The
number of bytes of the variable is linked to the format description. The address justified to
the right within the string is specified by parameter "StringAddr". The number of written
characters is shown in the parameter table.

Signals
Byte 1 is supplied by the output signals of the HHU and the character specifications are
supplied by the block. These may not be written by the PLC user program.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
988 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Additional parameters
HHU

The pointer parameters for the input and output data of the handheld unit must be
parameterized in the start OB 100 in FB 1, DB 7. Parameter "BHGIn" corresponds to the
input data of the PLC from the handheld unit (data received by PLC). Parameter "BHGOut"
corresponds to the output data of the PLC to the handheld unit (data transmitted by PLC).
These two pointers must be set to the starting point of the relevant data area (which is also
parameterized in SDB 210 with an MPI link).

For operating a BHG a "2" is to be entered at FB 1 parameter BHG.

HT2

For using a HT2 a "5" is to be entered at FB 1 parameter BHG. The pointer parameter of the
input and output data are also to be supplied, as described above.

In the parameters BHGRecGDNo and BHGRecGBZNo the value is to be entered, which is
configured at the S2 of the DIP-Fix-switch (rotary coding switch) of the connection module of
the HT2.

 Note

Numerical conversion

If the numerical converter is used to display information, then it is better to avoid performing
a conversion in every PLC cycle for the sake of reducing the PLC cycle time.

The conversion routine can be used independently of the display control. This is to be
queried in parameter row "0", although the convert parameter should be set. Consequently,
only the string is processed, and the converter routine is executed.

High display resolution

If, for example, the actual axis value is to be displayed with a higher resolution, the following
should be noted:
Variables will continue to be read with FB 2 or FB 5. REAL 2 is used instead of ANY pointer
BYTE 8 as the criterion for output as a 64-bit floating point number (e.g. P#M100.0 REAL 2).
When specifying the 64-bit floating point number on the HHU/HT2, an output format of up to
14 places, split freely between places before and after the decimal point, can be selected
instead of fixed formats.

Declaration of the function
STL representation

DATA_BLOCK "strdat" // DB-Number defined in the symbol file

 STRUCT //32 characters are defined

 disp: STRING [32]:= 'character_line1 character_line2';

 END_STRUCT;

BEGIN

END_DATA_BLOCK

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 989

FUNCTION FC 13 : VOID

 VAR INPUT

 Row : BYTE ; //Display line (see table)

 ChrArray : STRING ; //Transfer at least string[32/64]

 Convert : BOOL; //Activate numerical conversion

 Addr: POINTER; //Points to the variable being converted

 DataType : BYTE ; //Data type of the variables

 StringAddr : INT; //right-justified string address (1...32/64)

 Digits : BYTE ; //Number of decimal places (1...3)

END VAR

VAR OUTPUT

 Error : BOOL; //Conversion or string error

END VAR

Description of formal parameters
The table below lists all formal parameters of the BHGDisp function:

Signal Type Type Value range Remark

Display-line
"binary" evaluation:
0: no display output
1: Line 1
2: Line 2
3: Line 1 and line 2 to be

changed
4: Line 3
5: Line 1 and line 3 to be

changed
8: Line 4

Row I BYTE 0 ... B#16#F

B#16#F automatic change of
all 4 lines

ChrArray I STRING >= string[32]
[DBName].[VarName]

This string contains the
entire display content
For HT2 the string with 64
characters must be created.

Convert I BOOL Activation of numerical
conversion

Addr I Pointer Points to the variable
to be converted
Data type of the tag
1: BOOL, 1 character
2: BYTE, 3 characters

DataType I BYTE 1 ... 8, B#16#13

3: CHAR, 1 character

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
990 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Type Value range Remark
4: WORD, 5 characters
5: INT, 6 characters
6: DWORD, 7 characters
7: DINT, 8 characters
8: REAL, 9 characters

(7 digits plus a sign and a
decimal point; for places
after the decimal point,
refer to the Digits
Parameter)

B#16#13: String, up to 32/64
characters, Addr
must be a pointer to
a STRING.

B#16#30 REAL64,
(12 characters: 10
digits plus a sign
and a decimal point;
for places after the
decimal point, refer
to the Digits
Parameter)

StringAddr I INT 1 ... 32/64 Right-justified address within
variable ChrArray

Digits I BYTE for REAL data type:
1 ... 4

for REAL64 data type:
1 ... 9

Number of places after the
decimal point:

Error O BOOL Error:
• created chr/array too small,
• conversion error,
• numerical overflow,
• StringAddr faulty

Ranges of values

Ranges of values of data types
Data type Representable numerical range
BOOL 0, 1
BYTE 0 ... 255
WORD 0 ... 65535
INT - 32768 to + 32767
DWORD 0 ... 9999999
DINT - 9999999 to + 9999999

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 991

Ranges of values of data types
Data type Representable numerical range
REAL (Digits := 1) - 999999.9 to + 999999.9
REAL (Digits := 2) - 99999.99 to + 99999.99
REAL (Digits := 3) - 9999.999 to + 9999.999
REAL (Digits := 4) - 999.9999 to + 999.9999
... ...
REAL (Digits := 9) - 0.9999999 to + 0.9999999

Call example
//DB with the name strdat is declared in symbol table, data element disp is declared as
String[32] (in HT2:
//String[64]) and completely assigned with characters

CALL FC 13 (

 Row := MB 26,

 ChrArray := "strdat".disp,

 Convert := M 90.1,

 Addr := P#M 20.0, //Number to be converted

 DataType := MB 28, //Data type of the variables

 StringAddr := MW 30,

 Digits := B#16#3, //3 decimal places

 Error := M 90.2);

12.16.21 FC 17: YDelta Star-Delta changeover

Function
The block for the star-delta changeover controls the timing of the defined switching logic
such that the changeover can be performed in either direction even when the spindle is
running. This block may be used only for digital main spindle drives and must be called
separately for each spindle.

The changeover operation is implemented via 2 separate contactors in a sequence involving
4 steps:

Step 1: Deleting the interface signal DB31,DBX21.5 (motor selection done) in the related

axis-DB and registering the changeover process via A with DB31,DBX21.3 (motor
selection).

Step 2: As soon as the checkback message IS DB31, ... DBX93.7 (Pulse enabled) = 0 and
the acknowledgment of the announced motor selection from the drive have appeared,
the currently energized contactor drops out.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
992 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Step 3: The other contactor is energized after the time period set by the user in parameter
"TimeVal" has elapsed.

Step 4: After a further delay, the changeover is signaled to the drive with NST DB31, ...
.DBX21.5 (motor selection done):

Figure 12-28 Star-delta changeover

For more information on motor speed adjustments see:
References:
Functions Manual Basic Functions; Spindles (S1); Chapter "Configurable gear adjustments"
Functions Manual Basic Functions; Speeds, Reference/Actual value syst., Regulation (G2)

Error message
If the parameter "SpindleIFNo" is not in the permissible range, the PLC is stopped with
output of interrupt message number 401702.

Special features
When parameterizing "TimeVal" with the value 0, a default value of 100 ms is used. With a
value of less than 50 ms, the minimum setting of 50 ms is applied.

The block must be called unconditionally.

 Note

Switchover does not take place if the spindle is in an axis mode such as M70, SPOS.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 993

Boundary conditions
Star-delta changeover on digital main spindle drives initiates a process, which contains
closed-loop control sequences. Since the closed-loop control system supports automatic
star-delta changeover, certain restrictions should be noted:

● Due to the automatic deactivation of the pulse on the drive, the NST DB31,DBX93.7
(Pulse enabled) deactivates simultaneously the IS DB31,DBX61.7 (current controller
active) and DB31,DBX61.6 (speed controller active).

● If a changeover from star to delta takes place while the spindle is rotating and the spindle
position controller is switched on, IS "Position controller active" (DB31, ... DBX61.5), this
triggers alarm 25050 "Contour monitoring".

● Once the star-delta changeover has been initiated with FC 17, it cannot be delayed by
the user, e.g. by waiting until the star/delta contactors change over during the course of
operation. The user can implement this signal interaction with PLC logic.

Declaration of the function
STL representation

VAR_INPUT

 YDelta: BOOL; //Star = 0, delta = 1

 SpindleIFNo: INT; //Machine axis number

 TimeVal: S5TIME ; //Time value

 TimerNo : INT; //User timer for changeover time

END_VAR

VAR_OUTPUT

 Y: BOOL; //Star contactor

 Delta: BOOL; //Delta contactor

END_VAR

VAR_IN_OUT

 Ref: WORD ; //Block status word (instance)

END_VAR

Description of formal parameters
The table below lists all formal parameters of the YDelta function:

Signal Type Type Value range Comment
YDelta I BOOL = Star

= Triangle
The changeover edge of the signal
initiates the changeover operation.

SpindleIFNo I INT 1 ... Number of the axis interface
declared as a spindle

TimeVal I S5time 0 ... Switchover time
TimerNo I INT 10 ... Timer for programming the wait

time
Y O BOOL Energizing of star contactor

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
994 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Type Value range Comment
Delta O BOOL Energizing of delta contactor
Ref I/O WORD Instance for status information

Internal use

Call example

CALL FC 17 (

 YDelta := I 45.7, //Star delta

 SpindleIFNo := 4,

 TimeVal := S5T#150ms,

 TimerNo := 10, //Timer 10

 Y := Q 52.3, //Star contactor

 Delta := Q 52.4, //Delta contactor

 Ref := mw 50); //Instance

12.16.22 FC 18: SpinCtrl Spindle control

Function
FC SpinCtrl can be used to control spindles and axes from the PLC.

References
/FB1/Function Manual, Basic Functions; Spindles (S1)
Function Manual, Extended Functions; Positioning Axes (P2)
Function Manual, Extended Functions; Indexing Axes (T1)

This block supports the following functions:
● Position spindle
● Rotate spindle
● Oscillate spindle
● Indexing axes
● Positioning axes

Each function is activated by the positive edge of the appropriate initiation signal (start, stop).
This signal must remain in the logic "1" status until the function has been acknowledged
positively or negatively by InPos="1" or Error = "1". The output parameters are deleted when
the relevant trigger signal is reset and the function terminated.

To be able to control an axis or spindle via the PLC, it must be activated for the PLC. This
can, for example, be achieved by calling the FC "SpinCtrl" with activation of the "Start" or
"Stop" parameter. In this case, the FC "SpinCtrl" requests control over the spindle/axis from
the NC.

The NC feeds back the status of this spindle/axis in byte 68 in the associated spindle/axis
interface (DB31, ...) (see interface lists). Once the axis/spindle is operating under PLC
control, the travel command for the active status can be evaluated via the relevant axis
interface.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 995

On completion ("InPos" is TRUE, "Start" changes to zero), the axis/spindle check function is
switched to a neutral status by FC "SpinCtrl".

Alternatively, the PLC user program can also request the check for the PLC prior to calling
FC "SpinCtrl".

By calling this function several times in succession, a better response by the spindle/axis can
be obtained as the changeover process in the FC can be omitted.

Activation through the PLC user program is executed in the corresponding spindle interface
in byte 8.

After return of the check, the spindle can again be programmed by the NC program.

WARNING
Changed response behavior of the axis/spindle

If several block calls (FC 18) have been programmed for the same axis/spindle in the PLC
user program, then the functions concerned must be interlocked by conditional calls in the
user program. The conditional call of a started block (parameter Start or Stop = TRUE)
must be called cyclically until the signal state of output parameter "Active" or "InPos"
changes from 1 to 0.

 Note
Please note:

FC 18 must be called cyclically until signal "InPos" or, in the case of an error "Error",
produces an edge transition of 1 to 0. Only when the "InPos"/"Error" signal has a 0 state can
the axis/spindle concerned be "started" or "stopped" again (the next "start" must be delayed
by at least one PLC cycle). This also applies when the assignment in data byte 8 on the axial
interface has been changed.
Abort:

The function cannot be aborted by means of parameter "Start" or "Stop", but only by means
of the axial interface signals (e.g. delete distance-to-go). The axial interface also returns
status signals of the axis that may need to be evaluated (e.g. exact stop, traverse
command).
InPos on spindle - rotation/oscillation:

For the function "Rotate spindle" and also for "Oscillate spindle" the meaning of the "InPos"
parameter is defined as follows:
Setpoint speed is output → function started without errors.
Reaching the desired spindle speed must be evaluated via the spindle interface.
Simultaneity:

Several axes can be traversed simultaneously or subject to a delay by FC 18 blocks. The
upper limit is defined by the maximum number of axes. The NCK handles the PLC function
request (FC 18) via independent interfaces for each axis/spindle.
Axis disable:

With the axis disabled, an axis controlled via FC 18 will not move. Only a simulated actual
value is generated (behavior as with NC programming).

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
996 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Functions

1. Position spindle:

The following signals are relevant:

Start: Initiation signal

Funct: "1" = Position spindle

Mode: Positioning mode 1, 2, 3, 4

AxisNo: Number of machine axis

Pos: Position

FRate: Positioning speed, if FRate = 0, the value from MD35300

$MA_SPIND_POSCTRL_VELO (position control activation

speed) is taken

InPos: Is set to "1" when position is reached with "Exact stop

fine"

Error : With positioning error = "1"

State : Error code

2. Rotate spindle:

The following signals are relevant:

Start: Initiation signal for start rotation

Stop: Initiation signal for stop rotation

Funct: "2" = Rotate spindle

Positioning mode 5 (direction of rotation M4) Mode:

Positioning mode < >5 (direction of rotation M3)

AxisNo: Number of machine axis

FRate: Spindle speed

InPos: Function has started without an error

Error : With positioning error = "1"

State : Error code

3. Oscillate spindle:

The following signals are relevant:

Start: Initiation signal for start oscillation

Stop: Initiation signal for stop oscillation

Funct: "3" = Oscillate spindle

AxisNo: Number of machine axis

Pos: Set gear stage

InPos: Setpoint speed is output

Error : With positioning error = "1"

State : Error code

The oscillation speed is taken from machine data:
MD35400 $MA_SPIND_OSCILL_DES_VELO

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 997

MD35010
$MA_GEAR_STEP_
CHANGE_ENABLE = 0

Function MD35010
$MA_GEAR_STEP_
CHANGE_ENABLE = 1

Function

Pos = 0 Oscillating Pos = 0
Pos = 1 Oscillating Pos = 1 Oscillation with gear stage

change M41
Pos = 2 Oscillating Pos = 2 Oscillation with gear stage

change M42
Pos = 3 Oscillating Pos = 3 Oscillation with gear stage

change M43
Pos = 4 Oscillating Pos = 4 Oscillation with gear stage

change M44
Pos = 5 Oscillating Pos = 5 Oscillation with gear stage

change M45

4. Traverse indexing axes:

The following signals are relevant:

Start: Initiation signal
Funct: "4" = Indexing axis

 Note

With Funct: "4" = Indexing axis

The modulo conversion can be compared with approaching the indexing position via POS[AX]
= CIC (value) in the part program.

Mode: Positioning mode 0, 1, 2, 3, 4

AxisNo: Number of machine axis

Pos: Indexing position

FRate: Positioning speed; if FRate = 0,

the value is taken from machine data POS_AX_VELO

(unit as set in machine data).

InPos: Is set to "1" when position is reached with "Exact stop

fine"

Error : With positioning error = "1"

State : Error code

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
998 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

5. to 8. Position axes:

The following signals are relevant:

Start: Initiation signal

Funct: "5 to 8" = Position axes

Mode: Positioning mode 0, 1, 2, 3, 4

AxisNo: Number of machine axis

Pos: Position

FRate: Positioning speed; if FRate = 0,

the value is taken from machine data POS_AX_VELO

(unit as set in machine data).

InPos: Is set to "1" when position is reached with "Exact stop

fine"

Error : With positioning error = "1"

State : Error code

9. Rotate spindle with automatic gear stage selection:

The following signals are relevant:

Start: Initiation signal for start rotation

Stop: Initiation signal for stop rotation

Funct: "9" = Rotate spindle with gear stage selection

Mode: Positioning mode 5 (direction of rotation M4)

 Positioning mode < >5 (direction of rotation M3)

AxisNo: Number of machine axis

FRate: Spindle speed

InPos: Setpoint speed is output

Error : With positioning error = "1"

State : Error code

10./11. Rotate spindle with constant cutting rate:

The "Constant cutting rate" function must be activated by the NC program in order for this to
be executed.

The following signals are relevant:

Start: Initiation signal for start rotation

Stop: Initiation signal for stop rotation

Funct: "B#16#0A = Rotate spindle with constant cutting rate

(m/min)

Funct: "B#16#0B = Rotate spindle with constant

cutting rate (feet/min)

Mode: Positioning mode 5 (direction of rotation M4)

Positioning mode < >5 (direction of rotation M3)

AxisNo: Number of machine axis

FRate: Cutting rate

InPos: Setpoint speed is output

Error : With position error = "1"

State : Error code

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 999

Declaration of the function

FUNCTION FC 18: VOID //SpinCtrl

VAR_INPUT

Start: BOOL;

Stop: BOOL;

Funct: BYTE ;

Mode: BYTE ;

AxisNo: INT;

Pos: REAL;

FRate: REAL;

END_VAR

VAR_OUTPUT

InPos: BOOL;

Error : BOOL;

State : BYTE ;

END_VAR

Description of formal parameters
The table below lists all formal parameters of the SpinCtrl function.

Signal Type Type Range of values Remark
Start I BOOL Start spindle control from the PLC
Stop I BOOL Stop spindle control from the PLC
Funct I BYTE 1 to B#16#0B 1: Position spindle

2: Rotate spindle
3: Oscillate spindle
4: Indexing axis
5: Positioning axis metric
6: Positioning axis inch
7: PosAxis metric with handwheel override
8: PosAxis inch with handwheel override
9: Rotate spindle with
automatic gear stage selection
A: Rotate spindle with constant cutting rate
(m/min)
B: Rotate spindle with constant cutting rate
(feet/min)

Mode I BYTE 0 to 5 0: Pos to absolute pos
1: Pos incrementally
2: Pos shortest path
3: Pos absolute, positive approach direction
4: Pos absolute, negative approach direction
5: Direction of rotation as for M4

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1000 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Type Range of values Remark
AxisNo I INT 1 - 31 No. of axis/spindle to be traversed
Pos I REAL ∓ 0.1469368 I -38

to
∓ 0.1701412 I +39

Rotary axis: Degrees
Indexing axis: Indexing position
Linear axis: mm or inches

FRate I REAL ∓ 0.1469368 I -38
to
∓ 0.1701412 I +39

Rotary axis and spindle: rev/min
See under table containing info about FRate

InPos O BOOL 1 = Position reached,
or function executed

Error O BOOL 1 = Error
State O BYTE 0 to 255 Error code

FRate
The feedrate in FC 18 can also be specified as:

● Cutting rate with unit m/min or feet/min

● Constant grinding wheel surface speed in m/s or feet/s

These alternative velocity settings can be used only if this function is activated by the NC
program. Checkback signals for successful activation can be found in byte 84 on the axis
interface.

Error identifiers
If a function could not be executed, this is indicated by the "Error" state parameter being set
to 'logic 1'. The error cause is coded at block output "State":

State Meaning

Errors caused by PLC handling:

1 B#16#1 Several functions of the axis/spindle were activated simultaneously

20 B#16#14 A function was started without the position being reached

30 B#16#1e The axis/spindle was transferred to the NC while still in motion

40 B#16#28 The axis is programmed by the NC program, NCK internal error

50 B#16#32 Permanently assigned PLC axis. Traverses (JOG) or is referencing

60 B#16#3C Permanently assigned PLC axis. Channel status does not permit a

start

Errors that occur due to handling of the NCK. The alarm numbers are described in the

Diagnostics Manual:

100 B#16#64 False position programmed for axis/spindle

(corresponds to alarm number 16830)

101 B#16#65 Programmed speed is too high

102 B#16#66 Incorrect value range for constant cutting rate

(corresponds to alarm number 14840)

104 B#16#68 Following spindle: Illegal programming

(corresponds to alarm number 22030)

105 B#16#69 No measuring system available

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1001

State Meaning

(corresponds to alarm number 16770)

106 B#16#6a Positioning process of the axis still active

(corresponds to alarm number 22052)

107 B#16#6b Reference mark not found

(corresponds to alarm number 22051)

108 B#16#6c No transition from speed control to position control (corresponds

to alarm number 22050)

109 B#16#6d Reference mark not found

(corresponds to alarm number 22051)

110 B#16#6e Velocity/speed is negative

111 B#16#6f Setpoint speed is zero

112 B#16#70 Invalid gear stage

115 B#16#73 Programmed position has not been reached

117 B#16#75 G96/G961 is not active in the NC

118 B#16#76 G96/G961 is still active in the NC

120 B#16#78 Axis is not an indexing axis

(corresponds to NCK alarm 20072)

121 B#16#79 Indexing position error (corresponds to NCK alarm 17510)

125 B#16#7d DC (shortest distance) not possible (corresponds to NCK alarm

16800)

126 B#16#7e Absolute value minus not possible (corresponds to NCK alarm 16820)

127 B#16#7f Absolute value plus not possible (corresponds to NCK alarm 16810)

128 B#16#80 No transverse axis available for diameter programming

(corresponds to NCK alarm 16510)

130 B#16#82 Software limit switch plus (corresponds to NCK alarm 20070)

131 B#16#83 Software limit switch minus (corresponds to NCK alarm 20070)

132 B#16#84 Working area limit plus (corresponds to NCK alarm 20071)

133 B#16#85 Working area limit minus (corresponds to NCK alarm 20071)

134 B#16#85 Frame not permitted for indexing axis

135 B#16#87 Indexing axis with "Hirth-toothing" is active

(corresponds to NCK alarm 17501)

136 B#16#88 Indexing axis with "Hirth toothing" is active and axis not

referenced (corresponds to NCK alarm 17503)

137 B#16#89 Spindle operation not possible for transformed spindle/axis

(corresponds to NCK alarm 22290)

138 B#16#8A The corresponding effective coordinate-system-specific working area

limit plus violated for the axis (corresponds to NCK alarm 20082)

139 B#16#8B The corresponding effective coordinate-system-specific working area

limit minus violated for the axis (corresponds to NCK alarm 20082)

System or other serious interrupts:

200 B#16#c8 Corresponds to system alarm number 450007

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1002 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Pulse diagram

(1) Activation of function by means of a positive signal edge with start or stop
(2) Positive acknowledgement: Function executed / Position reached
(3) Reset function activation after receipt of acknowledgement
(4) Signal change using FC

Timing diagram (fault scenario)

(1) Activation of function by means of a positive signal edge with start or stop
(2) Negative acknowledgement: Error has occurred
(3) Reset function activation after receipt of acknowledgement
(4) Signal change using FC

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1003

Call examples

1. Position spindle:

//Positive acknowledgement resets Start:

U M112.0; //InPos

R M 100.0; //Start

//Negative acknowledgement, after error evaluation (state: MB114) reset with T12

start

U M113.0; // Error

U I 6.4; //Key T12

R M 100.0; //Start

//Start with T13

U I 6.3; //Key T13

AN F 112.0; //Restart only when InPos or Error = 0

AN F 113.0;

CALL FC 18(

 Start := M100.0,

 Stop := FALSE,

 Funct := B#16#1, //Position spindle

 Mode := B#16#2, //Shortest path

 AxisNo := 5,

 Pos := MD104,

 FRate := MD108,

 InPos := M112.0,

 Error := M113.0,

 State := MB114);

2. Start spindle rotation:

CALL FC 18(

 Start := M100.0,

 Stop := FALSE,

 Funct := B#16q#, //Rotate spindle

 Mode := B#16#5, //Direction of rotation as for M4

 AxisNo := 5,

 Pos := 0.0,

 FRate := MD108,

 InPos := M112.0,

 Error := M113.0,

 State := MB114);

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1004 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3. Start spindle oscillation:

CALL FC 18(

 Start := M100.0,

 Stop := FALSE,

 Funct := B#16#3, //Oscillate spindle

 Mode := B#16#0,

 AxisNo := 5,

 Pos := 0.0,

 FRate := MD108,

 InPos := M112.0,

 Error := M113.0,

 State := MB114);

4. Traverse indexing axis

CALL FC 18(

 Start := M100.0,

 Stop := FALSE, //Not used

Funct :=B#16#4, //Traverse indexing axis

 Mode := B#16#0, //Position absolutely

 AxisNo := 4,

 Pos := MD104, //Default setting in REAL: 1.0;2.0;..

 FRate := MD108,

 InPos := M112.0,

 Error := M113.0,

 State := MB114);

5. Position axes

CALL FC 18(

 Start := M100.0,

 Stop := FALSE, //Not used

 Funct := B#16#5, //Position axes

 Mode := B#16#1, //Position incrementally

 AxisNo := 6,

 Pos := MD104,

 FRate := MD108,

 InPos := M112.0,

 Error := M113.0,

 State := MB114);

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1005

12.16.23 FC 19: MCP_IFM transmission of MCP signals to interface

Function
With the FC MCP_IFM (M-variant) from the machine control panel a range of 19 inches, e.g.
MCP 483 are transferred to the corresponding signals of the NCK/PLC interface:

● Modes

● Axis selections

● WCS/MCS switchover commands

● Traversing keys

● Overrides

● Key switch

The following specifications apply to the feed override, axis travel keys and INC keys
depending on the active mode or on the coordinate system selected:

● Feed override:

– The feed override is transferred to the interface of the selected channel and to the
interface of the axes.

– The feed override signals are transferred to the NC channel in addition to the "Rapid
traverse override" (DBB 5) interface byte if the "Feed override for rapid traverse
effective" HMI signal is set (exception: Switch setting "Zero"). "Rapid traverse override
effective" is also set with this HMI signal.

● Machine functions for INC and axis travel keys:

– When the MCS is selected, the signals are transferred to the interface of the selected
machine axis.

– When the WCS is selected, the signals are transferred to the geometry axis interface
of the parameterized channel.

– When the system is switched between MCS and WCS, the active axes are generally
deselected.

The LEDs on the machine control panel derived from the selections in the
acknowledgement.

Feedrate and spindle Start/Stop are not transferred to the interface, but output modally as a
"FeedHold" or "SpindleHold" signal. The user can link these signals to other signals leading
to a feed or spindle stop (this can be implemented, e.g. using the appropriate input signals in
FC 10: AL_MSG). The associated LEDs are activated at the same time.

If the machine control panel fails, the signals it outputs are preset to zero; this also applies to
"FeedHold" and "SpindleHold" output signals.

Multiple calls of FC 19 or FC 24, FC 25, FC 26 are permitted in a single PLC cycle. In this
case, the first call in the cycle drives the LED displays. Furthermore, all actions of the
parameterized block are carried out in the first call. In the following calls, only a reduced level
of processing of the channel and mode group interface takes place. The geometry axes are
supplied with directional data only in the first block call in the cycle.

Single block processing can be selected/deselected only in the first call in the cycle.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1006 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The second machine control panel can be processed if parameter "ModeGroupNo" has been
increased by B#16#10. When parameterizing, the HHU number is contained in the lower
nibble (lower 4 bits).

"BAGNo" = 0 or B#16#10 means that the mode group signals are not processed.

"ChanNo" = 0 means that the channel signals are not processed.

The INC selections are transferred to the mode group interface. The activation for this
specification is done via the DB10.DBX57.0 (INC inputs in BAG area active) through this
block once after power up.

Two machine control panels can still be handled in parallel by this module. The module call
for the second machine control panel in OB1 cycle must come after the call of the first MCP.
Support for two MCPs is provided in the control panel blocks up to certain limits (support is
not provided as standard for mutual interlocking of axis selections with identical assignments
on two MCPs).

Flexible axis configuration
It is possible to be flexible in the assignment of axis selections or direction keys for machine
axis numbers.

Better support is now provided by the MCP blocks for the use of two MCPs, which are to run
in parallel, in particular for an application using two channels and two mode groups. Note
that the axis-numbers are also specified in the parameterized mode group number of the
MCP block in the axis tables of the relevant MCP.

To afford this flexibility, tables for axis numbers are stored in DB 10.

For the first machine control panel (MCP) the table starts at byte 8 (symbolic name:
MCP1AxisTbl[1..22]) and for the second machine control panel (MCP) starting at byte 32
(symbolic name: MCP2AxisTbl[1..22]) for the second MCP. The machine axis numbers must
be entered byte-wise here.

It is permissible to enter a value of 0 in the axis table. Checks are not made to find illegal
axis numbers, meaning that false entries can lead to a PLC Stop.

For FC 19, the maximum possible number of axis selections can also be restricted. This
upper limit is set for the first Machine control panel in DB10.DBW30 (symbolic name:
MCP1MaxAxis) or for the second Machine control panel in DB10.DBW54 (symbolic name:
MCP2MaxAxis) set.

The default setting is 0, corresponding to the maximum number of configured axes. The axis
numbers and the limit can also be adapted dynamically. Afterwards, a new axis must be
selected on FC 19. Axis numbers may not be switched over while the axes are traversing the
relevant direction keys.
The compatibility mode is preset with axis numbers 1 to 9 for both MCPs and restricted to
the configured number of axes.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1007

Example
More than nine axes are to be controlled with FC19 using a special application. We
recommend that you proceed as follows:

● Reserve free key on MCP.

● Evaluate this key as a flipflop.

● Evaluate the flipflop output as pos. and neg. edge.

● For pos. edge write one set of axis numbers in the axis table (DB10) and switch on LED
via this key.

● For neg. edge write one set of axis numbers in the axis table (DB10) and switch on LED
via this key.

Declaration of the function

FUNCTION FC 19: VOID //symbolic name: MCP_IFM

 VAR_INPUT

 BAGNo : BYTE ;

 ChanNo: BYTE ;

 SpindleIFNo: BYTE ;

 END_VAR

 VAR_OUTPUT

 FeedHold : BOOL;

 SpindleHold : BOOL;

 END_VAR

BEGIN

END_FUNCTION

Description of formal parameters
The table below shows all formal parameters of the "MCP_IFM" function:

Signal Type Type Range of values Remark
BAGNo I BYTE 0 - b#16#0A and

b#16#10 -
b#16#1A

Number of the mode group to which the mode
signals are transferred
BAGNo >= b#16#10 means access to the
second machine control panel

ChanNo I BYTE 0 - B#16#0A Channel no. for the channel signals
SpindleIFNo I BYTE 0 - 31

(B#16#1F)
Number of the axis interface declared as a spindle

FeedHold O BOOL Feed stop from MCP, modal
SpindleHold O BOOL Spindle stop from MCP, modal

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1008 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MCP selection signals to the user interface

Table 12- 1 Key switch

Source:
MCP - Switch

Destination:
Interface DB

Position 0 DB10.DBX56.4
Position 1 DB10.DBX56.5
Position 2 DB10.DBX56.6
Position 3 DB10.DBX56.7

Table 12- 2 Operating modes and machine functions

Source:
MCP - Key

Destination:
Interface DB (parameter BAGNo)
Display for BAG 1

AUTOMATIC DB11.DBX0.0
MDA DB11.DBX0.1
JOG DB11.DBX0.2
REPOS DB11.DBX1.1
REF DB11.DBX1.2
TEACH IN DB11.DBX1.0
INC 1 ... 10 000, INC Var. DB11.DBX2.0 - 2.5

Table 12- 3 Direction keys rapid traverse override

Source:
MCP - Key

Destination:
Interface DB (parameter ChanNo)

Direction key + DB21,DBX12.7
Direction key - DB21,DBX12.6
Rapid traverse override DB21,DBX12.5
Direction key + DB21,DBX16.7
Direction key - DB21,DBX16.6
Rapid traverse override DB21,DBX16.5
Direction key + DB21,DBX20.7
Direction key - DB21,DBX20.6
Rapid traverse override DB21,DBX20.5

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1009

Source:
MCP - Key

Destination:
Interface DB (all axis DBs)

Direction key + DB31,DBX4.7
Direction key - DB31,DBX4.6
Rapid traverse override DB31,DBX4.5

The transfer is dependent upon the selected axis. The associated interface bits are deleted
for axes which are not selected.

Table 12- 4 Override

Source:
MCP - Switch

Destination:
Interface DB (parameter ChanNo)

Feedrate override DB21,DBB4

Source:
MCP - Switch

Destination:
Interface DB (all axis DBs)

Feedrate override DB31,DBB0 (selected axis number) The feed
override of the 1st MCP is applied to all axes.

Spindle override DB31,DBB19 (parameter SpindleIFNo)

Table 12- 5 Channel signals

Source:
MCP - Keys

Destination:
Interface DB (parameter ChanNo)

NC start DB21,DBX7.1
NC stop DB21,DBX7.3
RESET DB21,DBX7.7
Single block DB21,DBX0.4

Table 12- 6 Feedrate, spindle signals

Source:
MCP - Keys

Destination:
FC output parameters

Feed stop
Feed enable

Parameter: "FeedHold" linked with memory, LEDs
are controlled

Spindle stop
Spindle enable

Parameter: "SpindleHold" linked with memory,
LEDs are controlled

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1010 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Checkback signals from user interface for controlling displays

Table 12- 7 Operating modes and machine functions

Destination:
MCP - LED

Source:
Interface DB (parameter BAGNo)
Display for BAG 1

AUTOMATIC DB11.DBX6.0
MDA DB11.DBX6.1
JOG DB11.DBX6.2
REPOS DB11.DBX7.1
REF DB11.DBX7.2
TEACH IN DB11.DBX7.0

Destination:
MCP - LED

Source:
Interface DB (parameter BAGNo)
Display for BAG 1

INC 1 ... 10 000, INC Var. DB11.DBX8.0 - 8.5

Table 12- 8 Channel signals

Destination:
MCP - LED

Source:
Interface DB (parameter ChanNo)

NC start DB21,DBX35.0
NC stop DB21,DBX35.2 or DB21,DBX35.3
Single block DB21,DBX0.4

 Note

Direction key LEDs are controlled by operating the direction keys.

Axis selection and WCS/MCS LEDs are controlled by operating the relevant pushbutton
switch.

Call example

CALL FC 19(//Machine control panel M variants Signals to interface

 BAGNo := B#16#1, //Mode group no. 1

 ChanNo := B#16#1, //Channel no. 1

 SpindleIFNo := B#16#4, //Spindle interface number = 4

 FeedHold := m22.0, //Feed stop signal modal

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1011

 SpindleHold := db2.dbx151.0); //Spindle stop modal in

 //message DB

With these parameter settings, the signals are sent to the first mode group, the first channel
and all axes. In addition, the spindle override is transferred in the 4th axis/spindle interface.
The feed hold signal is passed to bit memory 22.0 and the spindle stop signal to data block
DB2, data bit 151.0.

Reconnecting the axis selections
To ensure a flexible assignment of the axis selection keys to the appropriate axis or spindle,
FC 19 needs not be modified or reprogrammed. The axis number simply has to be entered in
axis table DB10.DBB8 and followed as required: The axis number simply has to be entered
in axis table DB10.DBB8 and followed as required:

Example:

The spindle is defined as the 4th axis and must be selected via axis key 9.

Solution:

The value 4 must be entered in DB10 byte (8+(9-1)) for the 4th axis.

CALL FC 19(//Signals to interface

 BAGNo := B#16#1, //Mode group no. 1

 ChanNo := B#16#1, //Channel no. 1

 SpindleIFNo := B#16#4, //Spindle interface number = 4

 FeedHold := m30.0, //Feed stop signal modal

 SpindleHold := m30.1); //Spindle stop modal

12.16.24 FC 21: transfer PLC NCK data exchange

Function
When the Transfer block is called, data are exchanged between the PLC and NCK according
to the selected function code. Data are transferred as soon as FC 21 is called, not only at the
start of the cycle.

The "Enable" signal activates the block.
FC 21 is processed only when "Enable" = "1".

The following functions for the data exchange between PLC and NCK are supported:

1. Signal synchronized actions at the NCK - channel

2. Signals synchronized actions from NCK - channel
3. Fast data exchange PLC-NCK (Read function in NCK)
4. Fast data exchange PLC-NCK (Write function in NCK)
5. Update control signals to NCK - channel
6. Update control signals to axes (data byte 2 of the user interface)
7. Update control signals to axes (data byte 4 of the user interface)

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1012 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Declaration of the function
STL representation

VAR_INPUT

 Enable : BOOL ;

 Funct: BYTE ;

 S7Var : ANY ;

 IVar1 : INT ;

 IVar2 : INT ;

END_VAR

VAR_OUTPUT

 Error : BOOL ;

 ErrCode : INT ;

END_VAR

Explanation of formal parameters
The table below shows all formal parameters of the "Transfer" function.

Signal Type Type Value range Comment
Enable I BOOL 1 = FC 21 active

1: Synchronized actions at
channel

2: Synchronized actions from
channel

3: Read data
4: Write data
5: Control signals to channel

Funct I BYTE 1 ... 7

6, 7: Control signals to axis
S7Var I ANY S7 data storage area Depends on "Funct"
IVAR1 I INT 0 ... Depends on "Funct"
IVAR2 I INT 1 ... Depends on "Funct"
Error O BOOL
ErrCode O INT Depends on "Funct"

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1013

Function 1, 2: Signals synchronized actions to / from Channel
Synchronized actions can be disabled or enabled by the PLC.
The data area is stored on the user interface in DB21,DBB300 ...307 (to channel) and
DB21,DBB308 ...315 (from channel). The parameter "S7Var" is not evaluated for this
function, but must be assigned an actual parameter (see call example). The data are
transferred to/from the NC as soon as FC 21 is processed.

The following signals are relevant:

Signal Type Type Value range Comment
Enable I BOOL 1 = FC 21 active

1: Synchronized actions at
channel

Funct I BYTE 1, 2

2: Synchronized actions from
channel

S7Var I ANY S7 data storage area Not used
IVAR1 I INT 1..MaxChannel Channel number
Error O BOOL

1: "Funct" invalid ErrCode O INT
10: Channel no. invalid

Call example:

FUNCTION FC 100 : VOID

VAR_TEMP

 myAny: ANY ;

END_VAR

BEGIN

NETWORK

//Deactivate synchronized actions with ID3, ID10 and ID31 in NC channel 1 :

SYAK: OPEN DB21;

 SET;

 S DBX 300.2; //ID3

 S DBX 301.1; //ID10

 S DBX 303.6; //ID31

 L B#16#1;

 T MB11;

 SPA TRAN;

//Synchronized actions from NCK channel 1:

SYVK: L B#16#2;

 T MB11;

TRAN: CALL FC 21 (

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1014 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Enable := M 10.0, //if TRUE, FC 21 active

 Funct := MB 11,

 S7Var := #myAny, //Not used

 IVAR1 := 1, //Channel no.

 IVAR2 := 0,

 Error := M 10.1,

 ErrCode := MW 12);

END_FUNCTION

Function 3, 4: Rapid data exchange PLC-NCK
General

A separate, internal data area is provided to allow the highspeed exchange of data between
the PLC and NCK. The size of the internal data field is preset to 4096 bytes. The accesses
(read/write) from PLC take place via the FC 21. The occupation of this range (structure) must
be defined identically in the NC part program and the PLC user program.

These data can be accessed from the NC parts program by commands $A_DBB[x],
$A_DBW[x], $A_DBD[x], $A_DBR[x] (see Parameter Manual System variables).

The concrete address is the data field is specified by a byte offset (0 to 4095) in parameter
IVAR1. In this case, the alignment must be selected according to the data format, i.e. a
Dword starts at a 4byte limit and a word at a 2byte limit. Bytes can be positioned on any
chosen offset within the data field, singlebit access operations are not supported and
converted to a byte access operation by FC 21. Data type information and quantity of data
are taken from the ANY parameter, transferred via S7Var.

Without additional programming actions, data consistency is only ensured for 1 and 2 byte
access in the NCK and in the PLC. For the 2-byte consistency this is true only for the data
type WORD or INT, but not for the data type BYTE.

In the case of longer data types or transfer of fields, which should be transferred
consistently, a semaphore byte must be programmed in parameter IVAR2 that can be used
by FC 21 to determine the validity or consistency of a block. This handling must be
supported by the NC, i.e. in the part program, by writing or deleting the semaphore byte. The
semaphore byte is stored in the same data field as the actual user data.

The semaphore byte is identified by a value between 0 and 4095 in IVAR2.

The PLC reads and describes the semaphore byte via FC 21 in the same call, which should
transfer the user data. The PLC programmer only needs to set up a semaphore variable. For
access from the NC via the parts program, the semaphore feature must be programmed
using individual instructions according to the flow chart shown below. The sequence is
different for reading and writing variables.

Only individual variables or ARRAYs can be supported directly by the semaphore technique.
Structure transfers must be subdivided into individual jobs. The user must ensure data
consistency of this structure by programming a semaphore system.

If IVAR2 is set to -1, data are transferred without a semaphore.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1015

Data exchange with semaphore in PLC (schematic of FC21)

Basic structure in NCK:

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1016 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Variable value ranges

The following signals are relevant:

Signal Type Type Value range Comment
Enable I BOOL = FC 21 active

3: Read data Funct I BYTE 3, 4
4: Write data

S7Var I ANY S7 data area, except
local data

Source/destination data storage area

IVAR1 I INT 0 ... 4095 Position offset
IVAR2 I INT -1 ... 4095 Semaphore byte

Transfer without semaphore: -1
Error O BOOL

20: Alignment error
21: illegal position offset
22: Illegal semaphore byte
23: No new data to be read
24: Cannot write data

ErrCode O INT

25: Local data parameterized for
S7Var

Call example:

1. Read double word of position offset 4 with semaphore in byte 0 and store in MD100:

Data type Dword (4 bytes)

Position offset 4

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1017

CALL FC 21 (

 Enable := M 10.0, //if TRUE, FC 21 active

 Funct := B#16#3, //Read data

 S7Var := P#M 100.0 DWORD 1,

 IVAR1 := 4,

 IVAR2 := 0,

 Error := M 10.1,

 ErrCode := MW12);

UN M10.1; //Enable while 1, until value is read

R M10.0;

Examples: Examples of NCK programming from synchronized actions:

Data transfer from NC to PLC, with data written via synchronized actions;
Byte 0 serves as the semaphore
ID=1 WHENEVER $A_DBB[0] == 0 DO $A_DBR[4] = $AA_IM[X] $A_DBB[0] = 1

Data transfer from PLC to NC, with data read via synchronized actions;
Byte 1 serves as the Semaphore:
ID=2 WHENEVER $A_DBB[1] == 1 DO $R1 = $A_DBR[12] $A_DBB[1] = 0

2. Read word of position offset 8 without semaphore and store in MW 104:

CALL FC 21 (

 Enable :=M 10.0, //if TRUE, FC 21 active

 Funct :=B#16#3, //Read data

 S7Var :=P#M 104.0 WORD 1,

 IVAR1 :=8,

 IVAR2 :=-1,

 Error :=M 10.1,

 ErrCode :=MW12);

Function 5: Update control signals to channel
The purpose of this function is to transmit important control signals at high speed in between
cyclic data transfers. Data bytes 6 and 7 of user interfaces DB21, ... are transferred to the
NC. The channel is specified in parameter "IVAR1". This enable, for example, the feed
disable, read-in disable to be transferred outside of the PLC cycle.

The following signals are relevant:

Signal Type Type Value range Comment
Enable I BOOL 1= FC 21 active
Funct I BYTE 5 5: Control signals to channel
S7Var I ANY S7 data storage area Not used

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1018 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal Type Type Value range Comment
IVAR1 I INT 1. Max. channel Channel number
Error O BOOL

1: "Funct" invalid ErrCode O INT
10: Channel no. invalid

Function 6: Update control signals to axes
The purpose of function 6 is to transmit important control signals at high speed in between
cyclic data transfers. The data byte 2 of application interface DB31, ... is transferred to the
NC. The transfer is performed for all activated axes. This allows the controller enable to be
transferred outside the PLC cycle, for example.

The following signals are relevant:

Signal Type Type Value range Comment
Enable I BOOL 1= FC 21 active
Funct I BYTE 6 6: Control signals to axes
S7Var I ANY S7 data storage area Not used
IVAR1 I INT 0
Error O BOOL
ErrCode O INT 1: "Funct" invalid

Function 7: Update control signals to axes
The purpose of function 7 is to transmit important control signals at high speed in between
cyclic data transfers. The data byte 4 of application interface DB31, ... is transferred to the
NC. The transfer is performed for all activated axes. This enables, for example, the feed stop
to be transferred outside the PLC cycle.

The following signals are relevant:

Signal Type Type Value range Comment
Enable I BOOL 1= FC 21 active
Funct I BYTE 7 7: Control signals to axes
S7Var I ANY S7 data storage area Not used
IVAR1 I INT 0
Error O BOOL
ErrCode O INT 1: "Funct" invalid

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1019

12.16.25 FC 22: TM_DIR Direction selection for tool management

Function
The block TM_DIR provides the shortest path for positioning a magazine or a revolver based
on the actual and setpoint position.

As long as a 1 signal is applied to the Start input, all output parameters are updated
cyclically. Changes can be made to input parameters (e.g. position values) in subsequent
PLC cycles.
The output signals are undefined when the start signal is at 0 level.

In the case of direction selection with special positioning input "Offset" > 0, a new setpoint
position is calculated from the setpoint and special positions and the number of magazine
locations according to the following formula:

New setpoint position = (setpoint pos. - (special pos. -1)) neg. modulo # locations

The new setpoint position corresponds to the location number at which the magazine must
be positioned so that the setpoint position requested by the user corresponds to the location
number of the special position. The directional optimization is active both with and without
special positioning.

The block must be called once with the appropriate parameter settings for each magazine.

WARNING
The block may only be called in conjunction with the tool management.

 Note

For further details on tool management (also with regard to PLC) refer to the Description of
Functions Tool Management. Furthermore, PI services are provided for tool management via
the FB 4, FC 7 and FC 8 (see also the corresponding Sections in this documentation).

Declaration of the function
STL representation

FUNCTION FC 22 : VOID

// NAME: TM_DIR

VAR_INPUT

 MagNo: INT ;

 ReqPos: INT;

 ActPos: INT;

 Offset: BYTE ;

 Start: BOOL ;

END_VAR

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1020 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

VAR_OUTPUT

 Cw: BOOL ;

 Ccw: BOOL ;

 InPos: BOOL ;

 Diff: INT;

 Error : BOOL ;

END_VAR

BEGIN

END_FUNCTION

Description of formal parameters
The table below shows all formal parameters of the "TM_DIR" function.

Signal Type Type Range of values Remark
MagNo I INT 1 ... Magazine number
ReqPos I INT 1 ... Setpoint location
ActPos I INT 1 ... Actual location
Offset I BYTE 0 ... Offset for special positioning
Start I BOOL Start of calculation
Cw A BOOL 1 = Move magazine clockwise
Ccw A BOOL 1 = Move magazine

counterclockwise
InPos A BOOL 1 = In position
Diff A INT 0 ... Differential path (shortest path)
Error A BOOL 1 = error

Call example

CALL FC 22 (//Tool management direction selection

 MagNo := 2, //Magazine number

 ReqPos := mw 20, //Target position

 ActPos := mw 22, //Current position

 Offset := b#16#0, //Offset for special positioning

 Start := m 30.4, //Start trigger

 //Return parameters

 Cw := m 30.0, //Move magazine

 //in anticlockwise direction

 Ccw := m 30.1, //Move magazine

 //in anticlockwise direction

 InPos := m 30.2, //Magazine in position

 Diff := mw 32, //Differential path

 Error := m30.3 //Error has occurred

);

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1021

12.16.26 FC 24: MCP_IFM2 transmission of MCP signals to interface

Function
With FC MCP_IFM2 (M variant slimline machine control panel, e.g. MCP 310), the following
are transferred from the machine control panel (MCP) to the corresponding signals of the
NCK/PLC interface:

● Modes

● Axis selections

● WCS/MCS switchover

● Traversing keys

● Overrides or override simulation signals

● Keyswitch setting

The following specifications apply to the feed override, axis travel keys and INC keys
depending on the active mode or on the coordinate system selected:

● Feed override:

– The feed override is transferred to the interface of the selected channel and to the
interface of the axes.

– The feed override signals are transferred to the NC channel in addition to the "Rapid
traverse override" (DBB 5) interface byte if the "Feed override for rapid traverse
effective" HMI signal is set (exception: Switch setting "Zero"). "Rapid traverse override
effective" is also set with this HMI signal.

● Machine functions for INC and axis travel keys:

– When the MCS is selected, the signals are transferred to the interface of the selected
machine axis.

– When the WCS is selected, the signals are transferred to the geometry axis interface
of the parameterized channel.

– When the system is switched between MCS and WCS, the active axes are generally
deselected.

The associated LEDs on the machine control panel are derived from the acknowledgements
from the relevant selections.

Feedrate and spindle Start/Stop are not transferred to the interface, but output modally as a
"FeedHold" or "SpindleHold" signal. The user can link these signals to other signals leading
to a feed or spindle stop (this can be implemented, e.g. using the appropriate input signals in
FC 10: AL_MSG). The associated LEDs are activated at the same time.

The spindle direction (+, -) is not switched directly either, but made available as output
parameter "SpindleDir" permitting, for example, FC 18 to be parameterized. A spindle enable
signal is also switched via parameter "SpindleHold". One possible method of moving a
spindle directly is to preselect it as an axis so that it can be traversed via (axis) direction
keys.

If the machine control panel fails, the signals it outputs are preset to zero; this also applies to
"FeedHold" and "SpindleHold" output signals.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1022 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Multiple calls of FC 24 or FC 19, FC 25, FC 26 are permitted in a single PLC cycle. In this
case, the first call in the cycle drives the LED displays. Furthermore, all actions of the
parameterized block are carried out in the first call. In the following calls, only a reduced level
of processing of the channel and mode group interface takes place. The geometry axes are
supplied with directional data only in the first block call in the cycle.

Single block processing can be selected/deselected only in the first call in the cycle.

The second machine control panel can be processed if parameter "ModeGroupNo" has been
increased by B#16#10. When parameterizing, the HHU number is contained in the lower
nibble (lower 4 bits).

"BAGNo" = 0 or B#16#10 means that the mode group signals are not processed.

ChanNo = 0 means that the channel signals are not processed.

The INC selections are transferred to the mode group interface. The activation for this
specification is done via the DB10.DBX57.0 (INC inputs in BAG area active) through this
block once after power up.

Furthermore, two machine control panels can be handled in parallel by this block. The
module call for the second machine control panel in OB1 cycle must come after the call of
the first MCP Support for two MCPs is provided in the control panel blocks up to certain
limits (support is not provided as standard for mutual interlocking of axis selections with
identical assignments on two MCPs).

Keyswitch setting

As of software version 4.5 SP2, the keyswitch signals in the FC 24 are also transferred to the
user interface (DBX56.5 to 7). This transfer is made independent of whether a keyswitch is
mounted on the MCP.

 Note

For further information see "FC 19: MCP_IFM transmission of MCP signals to interface
(Page 1005) ".

Flexible axis configuration
It is possible to be flexible in the assignment of axis selections or direction keys for machine
axis numbers.

Better support is now provided by the MCP blocks for the use of two MCPs, which are to run
in parallel, in particular for an application using two channels and two mode groups. Note
that the axis-numbers are also specified in the parameterized mode group number of the
MCP block in the axis tables of the relevant MCP.

To afford this flexibility, tables for axis numbers are stored in DB 10.
For the first machine control panel (MCP), the table starts at byte 8 (symbolic name:
MCP1AxisTbl[1..22]) and for the second machine control panel (MCP) starting at byte 32
(symbolic name: MCP2AxisTbl[1..22]) for the second MCP. The machine axis numbers must
be entered byte by byte here. It is permissible to enter a value of 0 in the axis table. Checks
are not made to find illegal axis numbers, meaning that false entries can lead to a PLC Stop.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1023

For FC 24, the maximum possible number of axis selections can also be restricted.
This upper limit is set for the first machine control panel in DB10.DBW30 (symbolic name:
MCP1MaxAxis) or for the second machine control panel in DB10.DBW54 (symbolic name:
MCP2MaxAxis) for the respective MCP.

The default setting is 0, corresponding to the maximum number of configured axes. The axis
numbers and the limit can also be adapted dynamically. Afterwards, a new axis must be
selected on FC 24. Axis numbers may not be switched over while the axes are traversing the
relevant direction keys. The compatibility mode is preset with axis numbers 1 to 6 for both
MCPs and restricted to the configured number of axes.

Declaration of the function

FUNCTION FC 24: VOID

// NAME: MCP_IFM2

VAR_INPUT

 BAGNo : BYTE ;

 ChanNo: BYTE ;

 SpindleIFNo: BYTE ;

END_VAR

VAR_OUTPUT

 FeedHold : BOOL;

 SpindleHold : BOOL;

 SpindleDir: BOOL;

END_VAR

BEGIN

END_FUNCTION

Description of formal parameters
The table below shows all formal parameters of the "MCP_IFM2" function:

Signal Type Type Range of values Remark
BAGNo I BYTE 0 - b#16#0A

and
b#16#10 - b#16#1A

Number of the mode group to which the
mode signals are transferred
BAGNo >= b#16#10 means access to the
second machine control panel

ChanNo I BYTE 0 - B#16#0A Channel no. for the channel signals
SpindleIFNo I BYTE 0 - 31

(B#16#1F)
Number of the axis interface declared as a
spindle

FeedHold O BOOL Feed stop from MCP, modal
SpindleHold O BOOL Spindle stop from MCP, modal

Direction of spindle rotation
0: Corresponds to + (left)

SpindleDir O BOOL

1: Corresponds to - (right)

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1024 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Call example

CALL FC 24(//Slimline machine control panel M

variants

 //Signals to interface

 BAGNo := B#16#1, //Mode group no. 1

 ChanNo := B#16#1, //Channel no. 1

 SpindleIFNo := B#16#4, //Spindle interface number = 4

 FeedHold := m22.0, //Feed stop signal modal

 SpindleHold := db2.dbx151.0, //Spindle stop modal in message data block

 SpindleDir:= m22.1); //Spindle direction return

With these parameter settings, the signals are sent to the first mode group, the first channel
and all axes. In addition, the spindle override is transferred in the 4th axis/spindle interface.
The feed hold signal is passed to bit memory 22.0 and the spindle stop signal to data block
DB2, data bit 151.0. The spindle direction feedback signal supplied via parameter
"SpindleDir" can be used as a direction input for an additional FC 18 call.

12.16.27 FC 25: MCP_IFT transfer of MCP/OP signals to interface

Function
With the FC MCP_IFM (M variant) from the machine control panel a range of 19 inches, e.g.
MCP 483 are transferred to the corresponding signals of the NCK/PLC interface:

● Modes

● Direction keys of four axes

● WCS/MCS switchover commands

● Overrides

● Key switch

The following specifications apply to the feed override, axis travel keys and INC keys
depending on the active mode or on the coordinate system selected:

● Feed override:

– The feed override is transferred to the interface of the selected channel and to the
interface of the axes.

– The feed override signals are transferred to the NC channel in addition to the "Rapid
traverse override" (DBB 5) interface byte if the "Feed override for rapid traverse
effective" HMI signal is set (exception: Switch setting "Zero"). "Rapid traverse override
effective" is also set with this HMI signal.

● Machine functions for INC and axis travel keys:

– When the MCS is selected, the signals are transferred to the interface of the selected
machine axis.

– When the WCS is selected, the signals are transferred to the geometry axis interface
of the parameterized channel.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1025

The associated LEDs on the machine control panel derived from the acknowledgements of
the relevant selections.

Feedrate and spindle Start/Stop are not transferred to the interface, but output modally as a
"FeedHold" or "SpindleHold" signal. The user can link these signals to other signals leading
to a feed or spindle stop (this can be implemented, e.g. using the appropriate input signals in
FC 10: AL_MSG). The associated LEDs are activated at the same time.

If the machine control panel fails, the signals it outputs are preset to zero; this also applies to
"FeedHold" and "SpindleHold" output signals.

Multiple calls of FC 25 or FC 19, FC 24, FC 26 are permitted in a single PLC cycle. In this
case, the first call in the cycle drives the LED displays. Furthermore, all actions of the
parameterized block are carried out in the first call. In the following calls, only a reduced level
of processing of the channel and mode group interface takes place. The geometry axes are
supplied with directional data only in the first block call in the cycle.

Single block processing can be selected/deselected only in the first cycle.

The second machine control panel can be processed if parameter "ModeGroupNo" has been
increased by B#16#10. When parameterizing, the HHU number is contained in the lower
nibble (lower 4 bits).

"BAGNo" = 0 or B#16#10 means that the mode group signals are not processed.

ChanNo = 0 means that the channel signals are not processed.

Flexible axis configuration
It is possible to be flexible in the assignment of axis selections or direction keys for machine
axis numbers.

Support is now provided by the MCP blocks for the use of two MCPs, which are operated
simultaneously, in particular for an application using two channels and two mode groups.
The module call for the second machine control panel in OB1 cycle must come after the call
of the first MCP Note that the axis numbers are also specified in the parameterized mode
group number of the MCP block in the axis tables of the relevant MCP.

To achieve this flexibility, tables for axis numbers are stored in DB 10.
For the first machine control panel (MCP), the table starts at byte 8 (symbolic name:
MCP1AxisTbl[1..22]) and for the second machine control panel (MCP) starting at byte 32
(symbolic name: MCP2AxisTbl[1..22]) for the second MCP. The machine axis numbers are
entered here bytewise. It is permissible to enter a value of 0 in the axis table. Checks are not
made to find illegal axis numbers, meaning that false entries can lead to a PLC Stop.

The restriction of the possible number of axes at FC 25 is done via the 0-values in the axis
table. The axis numbers can also be adapted dynamically. During the manual traversing of
axes using the direction keys, the axis numbers must not be switched over. The compatibility
mode is preset with axis numbers 1 to 4 for both MCPs and restricted to the configured
number of axes.

 Note

For further information see "FC 19: MCP_IFM transmission of MCP signals to interface
(Page 1005) ".

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1026 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Declaration of the function

FUNCTION FC 25: VOID

// NAME: MCP_IFT

VAR_INPUT

 BAGNo : BYTE ;

 ChanNo: BYTE ;

 SpindleIFNo: BYTE ;

END_VAR

VAR_OUTPUT

 FeedHold : BOOL;

 SpindleHold : BOOL;

END_VAR

BEGIN

END_FUNCTION

Description of formal parameters
The table below shows all formal parameters of the "MCP_IFT" function:

Signal Type Type Range of values Remark

B#16#00 - B#16#0A 1st MCP: Mode group interface in which the
mode signals are transferred

BAGNo I BYTE

B#16#10 - B#16#1A 2nd MCP: Mode group interface in which the
mode signals are transferred

ChanNo I BYTE B#16#00 - B#16#0A Channel no. for the channel signals
SpindleIFNo I BYTE B#16#00 - B#16#1F Axis interface in which the spindle data is

transferred
FeedHold O BOOL Feed stop from MCP, modal
SpindleHold O BOOL Spindle stop from MCP, modal

Call example

CALL FC 25(//Machine control panel T variants

 //Signals to interface

 BAGNo := B#16#1, //Mode group no. 1

 ChanNo := B#16#1, //Channel no. 1

 SpindleIFNo := B#16#4, //Spindle interface number = 4

 FeedHold := m22.0, //Feed stop signal modal

 SpindleHold := db2.dbx151.0); //Spindle stop modal in message data block

With these parameter settings, the signals are sent to the first mode group, the first channel
and all axes. In addition, the spindle override is transferred in the 4th axis/spindle interface.
The feed hold signal is passed to bit memory 22.0 and the spindle stop signal to data block
DB2, data bit 151.0.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1027

12.16.28 FC 26: HPU_MCP transmission of HT8 signals to interface

Function declaration

FUNCTION FC 26: VOID

// NAME: HPU_MCP

VAR_INPUT

BAGNo : BYTE ;

ChanNo: BYTE ;

END_VAR

BEGIN

END_FUNCTION

Parameter

Parameter Type Type Range of values Remark

1. MCP:
B#16#00 - B#16#0A

BAGNo I BYTE

2. MCP:
B#16#10 - B#16#1A

Upper nibble: Number of the MCP whose
signals are to be transferred.
0 = 1. MCP, 1 = 2. MCP
Lower nibble: Number of the mode group, in
which the mode group-specific interface signals
are to be transferred. The mode group-specific
signals are not processed, if the mode-group
number is 0.

ChanNo I BYTE B#16#00 - B#16#0A Number of the channel, in which the channel-
specific interface signals are to be transferred.
The channel-specific signals are not processed,
if the channel number is 0.

Type: I = input parameter, O = output parameter

Call examples
Call of the FC 26 for the first MCP, the first mode group and the first channel of the NC.

CALL FC 26(//Machine control panel of HT8

 BAGNo := B#16#01, //1.MCP, 1.BAG

 ChanNo := B#16#01); //Channel 1

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1028 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Call of the FC 26 for the second MCP, the second mode group and the third channel of the
NC.

CALL FC 26(//Machine control panel of HT8

 BAGNo := B#16#12, //2.MCP, 2.BAG

 ChanNo := B#16#03); //Channel 3

General function description
The function FC 26 "HPU_MCP (nachine control panel-signals of the hand-held unit HT8"
transfers the HT8-specific signals of the following functions between the HT8-input/output
data areas parameterized in the function block FB 1 (Parameter: MCPxIn and MCPxOut)
and the NC/PLC-interface:

● Modes

● Machine function INC

● Coordinate system WCS or MCS

● Axial traverse key

● Axis selection

● Feed override

● Rapid traverse override

● Keyswitch information

 Note
Mode switchover through HT 8 and/or HMI

The function FC 2 "GP_HP Basic program, cyclic part" transfers the signals of the block-
switchover in such a way that an alternative selection of MCP of HT 8 and of the HMI is
possible. The transfer of the HMI signals to the NC/PLC interface can also be switched
off in the function block FB 1 with the parameter "MMCToIF" = FALSE .
Active axes:

Using HT 8 a maximum of 6 axes can be addressed at the same time. The selection of
the axes is to be realized by the user/machine manufacturer in the PLC user program.

Flexible axis configuration
The function FC 26 enables a flexible assignment of the machine axes to the traversing keys
or to the axis selection. 2 tables are available in DB 10 for this purpose:

● Machine axis table 1. MCP: DB10.DBB8 to DBB13 (Table of the machine axis number)
Symbolic name: MCP1AxisTbl[1..22]

● Machine axis table 2. MCP: DB10.DBB32 to DBB37 (Table of the machine axis number)
Symbolic name: MCP2AxisTbl[1..22]

In the tables the axis numbers n (with n = 1, 2, ...) of the active machine axis are to be
entered byte-wise. The value 0 must be entered in the unused table locations.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1029

The table length can be specified to the FC 26:

● 1st MCP: DB10.DBB30 (upper limit of the machine axis table)

● 2nd MCP: DB10.DBB54 (upper limit of the machine axis table)

A value of 4, for example, means that FC 26 takes into account only the first 4 table entries
or machine axes. The maximum value for the FC 26 is 6. For value 0 or values greater than
6 the maximum value is taken implicitly.

 Note

Please note the following constraints:
• A check of the permissible machine axis numbers is not done. Invalid machine axis

numbers can lead to a PLC stop.
• The machine axis numbers can be changed dynamically. The table may not be written, if

currently a machine axis is being moved via a traversing key.

Transfer of the traversing key signals depending upon the active coordinate system
The traversing key signals for 6 axes lie in the HT 8 input data area below:

● EB n + 2, Bit 0 - Bit 5 (positive traversing direction)

● EB n + 3, Bit 0 - Bit 5 (negative traversing direction)

The switchover of the coordinate system is done via the input signal:

● EB n + 0, Bit 0 (MCS/WCS)

The input signal is evaluated in FC 26 with the help of the edge trigger flag. The active
coordinate system is shown in the following output signal:

● AB n + 0, Bit 0 (MCS/WCKS) with 0 = MCS, 1 = WCS

In case of active MCS the traversing key signals of the axes 1 - 6 are transferred in the axis-
specific interfaces (DB31,DBX4.6 and DBX4.7 (traversing key +/-)) of the axes specified
in the machine axis tables (DB10.DBB8 to DBB13 or DBB32 to DBB37).

In case of active WCS it is assumed that the axes 1 - 3 of the machine axis table are
geometric axes. For this reason the traversing key signals:

● Of the axes 1 - 3 (EB n + 2 / 3, Bit 0 - Bit 2) are transferred in the interface of the
geometric axes in DB21,DBB 12 + (n * 4), with n = 0, 1, 2), Bit 6 and Bit 7 (traversing
keys +/-) of the channel specified with the parameter "ChanNo" .
The assignment of the traversing key signals of the axes 1, 2 and 3 to the geometric axes
1, 2 and 3 of the channel is permanent and may not be changed.

● Of the axes 4 - 6 (EB n + 2 / 3, Bit 3 - Bit 5) are transferred in the axis-specific interface
(DB31,DBX4.6 and DBX4.7 (traversing keys +/-)) of the axes 4 - 6 entered in the
machine axis table (DB10.DBB11 to DBB13 or DBB35 to DBB37).

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1030 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

No traversing of machine axes in WCS
In case of active WCS (AB n + 0, Bit 0 = 1) the traversing of the machine axes can be
locked. For this, the following output signals are to be set in the PLC user program:

● AB n + 3, Bit 7 = 1 (For WCS: no machine axes)

Requirement to the FC 26, not to transfer any traversing key signals for the machine
axes. The traversing key signals for the axes 1 - 3 of the machine axis table are
transferred to the geometric axes 1 - 3 of the specified channel. The traversing key
signals for the axes 4 - 6 of the machine axis table are not transferred.

● AB n + 2, Bit 6 (axes 7 - n selected)

Requirement at the FC 26 not to transfer any traversing key signals, since the axes 1 - 6
of the machine axis table are switched over. The axes 1 - 3 are thus not geometric axes,
but instead also machine axes.

Feed override
The value of the HT8 override switch is transferred as feed override in the chanel-specific
interface DB 21,DBB4 (feedrate override) of the programmed channel (parameter:
"ChanNo") and in the axis-specific interfaces DB31,DBB0 (feedrate override) of the axes
programmed in the table DB10.DBB8 to DBB13 (machine axis number).

Rapid traverse override
Is for the programmed channel (parameter: "ChanNo") the signal DB21,DBX25.3 = 1
(feedrate override for rapid traverse) set, the value of the HT8 override switch is set as rapid
traverse override in this channel-specific. Interface in DB 21,DBB5 (rapid traverse
override) and in addition the signal DB21,DBX6.6 = 1 (rapid traverse override active) is
set.

Machine function INC
The HT8 signals of the machine functions INC are transferred differently depending upon the
active coordinate system MCS or WCS:

● Active coordinate system: MCS

The selected machine function INC is transferred for all 6 axes in the axis-specific
interfaces in DB31,DBX5.0 to DBX5.5 (machine function) of the axes programmed in
the table in DB10.DBB8 to DBB13 (machine axis numbers) .

● Active coordinate system: WCS

For the axes 1 to 3 the signals of the machine function INC are transferred in the
channel-specific. Interface in DB21,DBX13.0 to DBX13.5 (machine function) of the
programmed channel (Parameter: "ChanNo").

For the axes 4 to 6 the signals of the machine function INC are transferred in the
channel-specific. interfaces in DB31,DBX5.0 to DBX5.5 (machine function) of the
axes programmed in the table in DB10.DBB11 to DBB13 (machine axis numbers).

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1031

The selection signals of the INC machine functions are transferred in the mode group-
specific interface DB11 DBB 2 + (n * 20), Bit 0 to Bit 5 (with n = 0, 1, 2, ...). The FC 26
informs the NCK about the activation of the mode group-interface for the INC machine
function once after the power-up with DB10.DBX57.0 (INC inputs active in the mode group
area).

Handwheel selection
The hand-wheel selection signals are evaluated by HMI and transferred to the corresponding
NC/PLC interface signals of the machine or geometric axes:

● Geometry axes: DB21, ... DBB 12 + (n * 4), Bit 0 to Bit 2 (with n = 0, 1, 2)

● Machine axes: DB31,DBX4.0 to DBX4.2

Requirement: FB 1 parameter: "HWheelMMC" = TRUE

Multiple call in one PLC cycle
Multiple calls of FC 26 are permitted in a single PLC cycle. Upon the first call in the PLC
cycle:

● All actions of the parameterized blocks are executed

● The LED signals are written in the output area

● In case of selected WCS, the traversing key signals of the geometric axes are written

● The signals for the selection and deselection of the individual block are processed

Upon further calls of the FC 26 only a reduced processing of the channel and mode group-
interface is done.

Processing of two MCP
If the function FC 26 is called twice for two MCP in the cyclic sequence of the PLC program
(organization block OB 1), the call for the second MCP must be made after the call for the
first MCP.

 Note

If an axis can be traversed from two MCP, then the implementation of a mutual interlocking
is the responsibility of the user (machine manufacturer).

Failure of the MCP of HT8
In case of failure of the MCP of HT8 all the input signals are set to the value 0.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1032 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.28.1 Overview of the NC/PLC interface signals of HT 8

Operating modes and machine functions

Source: MCP Destination: Programmed mode group (Parameter BAGNo)

Display for BAG 1
AUTOMATIC DB11.DBX0.0
MDI DB11.DBX0.1
JOG DB11.DBX0.2
REPOS DB11.DBX1.1
REF DB11.DBX1.2
TEACH IN DB11.DBX1.0
INC 1 ... 10 000, INC Var. DB11.DBX2.0 - DBX 2.5

Traversing keys and rapid traverse override

Source: MCP Aim: Geometry axis of the prog. channel (Parameter: ChanNo)
Traversing key + DB21,DBX12.7
Traversing key - DB21,DBX12.6
Rapid traverse override DB21,DBX12.5
Traversing key + DB21,DBX16.7
Traversing key - DB21,DBX16.6
Rapid traverse override DB21,DBX16.5
Traversing key + DB21,DBX20.7
Traversing key - DB21,DBX20.6
Rapid traverse override DB21,DBX20.5

Source: MCP Aim: Prog. axes corresponding to the table in DB 10, DBB 8 - 13

(1. MCP) or DBB 32 - 37 (2. MCP)
Traversing key + DB31,DBX4.7
Traversing key - DB31,DBX4.6
Rapid traverse override DB31,DBX4.5

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1033

Override

Source: MCP Aim: Programmed channel (Parameter: ChanNo)
Feed override DB21,DBB4

Source: MCP Aim: Prog. axes corresponding to the table in DB 10, DBB 8 - 13

(1. MCP) or DBB 32 - 37 (2. MCP)
Feed override DB31,DBB0

Channel signals

Source: MCP Aim: Programmed channel (Parameter: ChanNo)
NC start DB21,DBX7.1
NC stop DB21,DBX7.3
RESET DB21,DBX7.7
Single BLock DB21,DBX0.4

12.16.28.2 Overview of the NC/PLC interface signals of HT 8

Operating modes and machine functions

Destination: MCP Source: Interface-DB (Parameter BAGNo)

Display for BAG 1
AUTOMATIC DB11.DBX6.0
MDA DB11.DBX6.1
JOG DB11.DBX6.2
REPOS DB11.DBX7.1
REF DB11.DBX7.2
TEACH IN DB11.DBX7.0

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1034 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.29 FC 19, FC 24, FC 25, FC 26 source code description

Task
Machine control panel to application interface (FC 19 M variant, FC 24 slim variant, FC 25 T
variant, FC 26 HT8 variant)

Associated blocks
DB 7, no. of MOGs, channels, axes

DB 7, pointer of machine control panel

DB 8, storage for the next cycle

Resources used
None.

General
The blocks FC 19 (M version), FC 24 (slim-line version), FC 25 (T version) and FC 26 (HT8
version) transfer the signals of the machine control panel to and from the application
interface. In the input parameters, "ModeGroupNo" selects the mode group to be processed
by the block. The "ModeGroupNo" parameter also selects the number of the machine control
panel (Bit 4). "ChanNo" selects the channel to be processed.

Not FC 26:

The "SpindleIFNo" parameter defines the axis interface of the spindle. The spindle override
is transferred to this spindle interface. The parameters are checked for incorrect
parameterization.

Not FC 26:

Output parameters "FeedHold" and "SpindleHold" are generated from the 4 feed/spindle
disable and feed/spindle enable keys and are returned with "logical 1" for disable.

Information for the next cycle is stored in DB8, bytes 0 to 3 or bytes 62 to 65, depending on
the machine control panel number. This information is the edge trigger flag, feed value and
selected axis number. The blocks are provided with user data via the pointer parameters in
DB 7 "MCP1In" and "MCP1Out" ("MCP2In" and "MCP2Out"). The pointers are addressed
indirectly via a further pointer from the VAR section of DB7 in order to avoid absolute
addressing. This additional pointer is determined symbolically in FB1.

Block Description
All 4 components have a similar structure and are classified for the individual subtasks:

In the Input network, various parameters are copied to local variables. The machine control
signals (user data for input/output area) are also copied between locations using the various
pointers in DB 7 (gp_par). These local variables are handled in the block for reasons of
efficiency. Some values are initialized for the startup.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1035

MCS/WCS switchover with edge evaluation, axis selections, direction keys and rapid
traverse overlay is determined in the Global_IN network for further processing in the block
User-specific changes must take place in this part of the program, which are mainly oriented
at the axis selection.

Only the keyswitch information is copied in Network NC .

The mode group network transfers the modes of the keys as dynamic signals to the NCK.
The INC checkback signals from the NC are stored temporarily for the corresponding LEDs.
If the mode group number is 0, this network is not processed. A too large number generates
the message 401901 or 402501 and changes over after stop.

In the Channel network the NC Start, Stop, Reset and Single Block functions are activated
by corresponding checkback signals. The direction keys of the geometry axes are supplied if
a corresponding preselection is made, otherwise they are cleared. If the channel number is
0, this network is not processed. A too large number generates the message 401902 or
402502 and changes over after stop.

The Spindle network transfers the spindle override to the interface configured via
"SpindleIFNo".

The Network Axes transfers the feed override to the selected axis interface. The direction
keys are assigned to the selected axis/spindle. If an axis has been selected previously, the
direction information is set to 0.

The output parameters are prepared and the LED signals of the INC machine function are
generated in the Global_OUT network .

The Output network transfers the output signals of the machine control panel from the
VAR_TEMP image to the logical address. The data for the next cycle are also saved.

Axis selection extension
The Global_IN network must be modified if more than nine axes are selected. If other keys
and LEDs are to be used on the machine control panel here, proceed as follows:

1. The command UD DW#16#Value (comment: Clear all axis LEDs for display) deletes all
defined LEDs for axis selections. The bit mask is currently processing the nine axis
selection LEDs.

2. The command UW W#16# (comment: ”Masking all the axis selection buttons”) checks
whether the direction has changed. The bit string must be adjusted here.

3. The branch destination list (SPL) must be expanded with new jump labels. The new jump
labels should be inserted in descending order before label m009. The selection
information should be extended for the new jump labels, as described for labels m009
and m008.

 Note

The blocks are made available as STL sources if required. But they do not match the
current status of the block. Some details of the actual implementation in C have been
developed further. For this reason we recommend that you specify your additional
requirements for the blocks and that you pass these onto project management via the
sales department.

P3: Basic PLC program for SINUMERIK 840D sl
12.16 Block descriptions

 Basic Functions
1036 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.16.30 FC 1005: AG_SEND transfers data to Ethernet CP

Function
The FC block AG_SEND transfers data to the Ethernet CP for transfer via a configured
connection.
The specified functions correspond to the functions of the library "SIMATIC_NET_CP" of the
S7-300 CPU in STEP 7. In general, the online help of these functions applies for these
functions and therefore a detailed description is not provided here.
The functions AG_SEND, AG_RECV can be used for data exchange with another station via
the integrated "CP 840D sl".

Description of formal parameters
The following table shows the formal parameters of the function AG_SEND.

Signal Type Type Value range Remark
ACT I BOOL Job initiated
ID I INT Connection ID
LADDR I WORD Module start address (special

SINUMERIK feature; see description
below the table)

SEND I ANY Specifies the address and length. The
address of the data area alternatively
refers to:
• Bit memory address area
• Data block area

LEN I INT Number of bytes, which should be sent
with the job from the data area

DONE O BOOL Job successfully completed
ERROR O BOOL Error display
STATUS O WORD Status display

When using the functions AG_SEND and AG_RECV, data is transported to the
communication partner via the Ethernet bus of the CP. The communication partner is
configured in STEP 7 in the "NetPro" tool.
The special feature when calling the functions involves the specification of parameter
"LADDR" at the named blocks. In the case of SINUMERIK 840D sl, value W#16#8110 must
be connected to parameter "LADDR".
In the basic program, this function is available under the FC number 1005 (this FC
corresponds to the FC number FC 5 in the library "SIMATIC_NET_CP").
The block can also be used in a SIMATIC-CPU 3xx with CP343-1.
The protocols TCP and UDP are supported. TCP is the preferred protocol.

 Note

With the function AG_SEND, parameter ACT must be TRUE until a result is signaled in
DONE or ERROR.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.16 Block descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1037

12.16.31 FC 1006: AG_RECV receives data from the Ethernet CP

Function
The FC block AG_RECV receives data transferred via a configured connection from the
Ethernet CP.

The specified functions correspond to the functions of the library "SIMATIC_NET_CP" of the
S7-300 CPU in STEP 7. In general, the online help of these functions applies for these
functions and therefore a detailed description is not provided here.

The functions AG_SEND, AG_RECV can be used for data exchange with another station via
the integrated "CP 840D sl".

Description of formal parameters
The following table shows the formal parameters of the function AG_RECV.

Signal Type Type Value range Remark
ID I INT Connection ID
LADDR I WORD Module start address (special

SINUMERIK feature; see
description below the table)

RECV I ANY Specifies the address and length.
The address of the data area
alternatively refers to:
• Bit memory address area
• Data block area

NDR O BOOL New data accepted
ERROR O BOOL Error display
STATUS O WORD Status display
LEN O INT Number of bytes accepted into the

data area from the Ethernet CP

When using the functions AG_SEND and AG_RECV, data is transported to the
communication partner via the Ethernet bus of the CP. The communication partner is
configured in STEP 7 in the "NetPro" tool.

The special feature when calling the functions involves the specification of parameter
"LADDR" at the named blocks. In the case of SINUMERIK 840D sl, value W#16#8110 must
be connected to parameter "LADDR".

In the basic program, this function is available under the FC number 1006 (this FC
corresponds to the FC number FC 6 in the library "SIMATIC_NET_CP").

The block can also be used in a SIMATIC-CPU 3xx with CP343-1.

The protocols TCP and UDP are supported. TCP is the preferred protocol.

P3: Basic PLC program for SINUMERIK 840D sl
12.17 Signal/data descriptions

 Basic Functions
1038 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.17 Signal/data descriptions

12.17.1 Interface signals NCK/PLC, HMI/PLC, MCP/PLC

References
The NCK/PLC, HMI/PLC and MCP/PLC interface signals are contained in the Lists
document.

Lists sl (Book2)

The reference code contained therein (according to the signal names) refer to the respective
function description, in which the signal is described.

The NCK signals that are evaluated by the basic program and transferred in conditioned
form to the user interface are presented in the following sections.

12.17.2 Decoded M signals
The M functions programmed in the part program, ASUB or synchronized actions are
channel specifically transferred from the NC to the PLC:

● M functions from channel 1: DB 21

● M functions from channel 2: DB 22

● etc.

The signal length is one PLC cycle.

 Note

The spindle-specific M functions below are not decoded: M3, M4, M5, and M70.

Address in DB 21, ... Variable Type Comment
DBX 194.0 ... 7 M_Fkt_M0 ... M7 BOOL M signals M0 ... M7
DBX 195.0 ... 7 M_Fkt_M8 ... M15 BOOL M signals M8 ... M15
DBX 196.0 ... 7 M_Fkt_M16 ... M23 BOOL M signals M16 ... M23
DBX 197.0 ... 7 M_Fkt_M24 ... M31 BOOL M signals M24 ... M31
DBX 198.0 ... 7 M_Fkt_M32 ... M39 BOOL M signals M32 ... M39
DBX 199.0 ... 7 M_Fkt_M40 ... M47 BOOL M signals M40 ... M47
DBX 200.0 ... 7 M_Fkt_M48 ... M55 BOOL M signals M48 ... M55
DBX 201.0 ... 7 M_Fkt_M56 ... M63 BOOL M signals M56 ... M63
DBX 202.0 ... 7 M_Fkt_M64 ... M71 BOOL M signals M64 ... M71
DBX 203.0 ... 7 M_Fkt_M72 ... M79 BOOL M signals M72 ... M79

 P3: Basic PLC program for SINUMERIK 840D sl
 12.17 Signal/data descriptions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1039

Address in DB 21, ... Variable Type Comment
DBX 204.0 ... 7 M_Fkt_M80 ... M87 BOOL M signals M80 ... M87
DBX 205.0 ... 7 M_Fkt_M88 ... M95 BOOL M signals M88 ... M95
DBX 206.0 ... 3 M_Fkt_M96 ... M99 BOOL M signals M96 ... M99

 Note

The M02/M30 auxiliary function output to the PLC does not state that the part program has
been terminated. To determine definitely the end of a part program in the channel, the
following interface signal must be evaluated:

DB21,DBX33.5 (M02/M30 active)

The channel status must be RESET. The auxiliary function output could arise from an
asynchronous subroutine (ASUB) or a synchronized action and has nothing to do with the
real end of the parts program in this case.

12.17.3 G Functions
The M functions programmed in the part program, ASUB or synchronized actions are
channel specifically transferred from the NC to the PLC:

● G functions from channel 1: DB 21

● G functions from channel 2: DB 22

● etc.

The signal length is one PLC cycle.

POWER ON

After POWER ON, the value zero, i.e. active G groups undefined, is specified in the NC/PLC
interface for all G groups.

Part program end or abort

After part program end or abort, the last state of the G group is retained.

NC START

After NC-START the values of the 8 G-groups specified in the machine data:
MD22510 $NC_ GCODE_GROUPS_TO_PLC
are overwritten according to the default setting set via the machine data as well as the
values programmed in the part program.

Address in DB 21, ... Variables Type Basic position Comment
DBB 208 G_FKT_GR_1 BYTE 0 Active G function of group 1
DBB 209 G_FKT_GR_2 BYTE 0 Active G function of group 2
DBB 210 G_FKT_GR_3 BYTE 0 Active G function of group 3
DBB 211 G_FKT_GR_4 BYTE 0 Active G function of group 4

P3: Basic PLC program for SINUMERIK 840D sl
12.17 Signal/data descriptions

 Basic Functions
1040 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Address in DB 21, ... Variables Type Basic position Comment
DBB 212 G_FKT_GR_5 BYTE 0 Active G function of group 5
DBB 213 G_FKT_GR_6 BYTE 0 Active G function of group 6
DBB 214 G_FKT_GR_7 BYTE 0 Active G function of group 7
DBB 215 G_FKT_GR_8 BYTE 0 Active G function of group 8
DBB 216 G_FKT_GR_9 BYTE 0 Active G function of group 9
DBB 217 G_FKT_GR_10 BYTE 0 Active G function of group 10
DBB 218 G_FKT_GR_11 BYTE 0 Active G function of group 11
DBB 219 G_FKT_GR_12 BYTE 0 Active G function of group 12
DBB 220 G_FKT_GR_13 BYTE 0 Active G function of group 13
DBB 221 G_FKT_GR_14 BYTE 0 Active G function of group 14
DBB 222 G_FKT_GR_15 BYTE 0 Active G function of group 15
DBB 223 G_FKT_GR_16 BYTE 0 Active G function of group 16
DBB 224 G_FKT_GR_17 BYTE 0 Active G function of group 17
DBB 225 G_FKT_GR_18 BYTE 0 Active G function of group 18
DBB 226 G_FKT_GR_19 BYTE 0 Active G function of group 19
DBB 227 G_FKT_GR_20 BYTE 0 Active G function of group 20
DBB 228 G_FKT_GR_21 BYTE 0 Active G function of group 21
DBB 229 G_FKT_GR_22 BYTE 0 Active G function of group 22
DBB 230 G_FKT_GR_23 BYTE 0 Active G function of group 23
DBB 231 G_FKT_GR_24 BYTE 0 Active G function of group 24
DBB 232 G_FKT_GR_25 BYTE 0 Active G function of group 25
DBB 233 G_FKT_GR_26 BYTE 0 Active G function of group 26
DBB 234 G_FKT_GR_27 BYTE 0 Active G function of group 27
DBB 235 G_FKT_GR_28 BYTE 0 Active G function of group 28
DBB 236 G_FKT_GR_29 BYTE 0 Active G function of group 29
DBB 237 G_FKT_GR_30 BYTE 0 Active G function of group 30
DBB 238 G_FKT_GR_31 BYTE 0 Active G function of group 31
DBB 239 G_FKT_GR_32 BYTE 0 Active G function of group 32
DBB 240 G_FKT_GR_33 BYTE 0 Active G function of group 33
DBB 241 G_FKT_GR_34 BYTE 0 Active G function of group 34
DBB 242 G_FKT_GR_35 BYTE 0 Active G function of group 35
DBB 243 G_FKT_GR_36 BYTE 0 Active G function of group 36
DBB 244 G_FKT_GR_37 BYTE 0 Active G function of group 37
DBB 245 G_FKT_GR_38 BYTE 0 Active G function of group 38
DBB 246 G_FKT_GR_39 BYTE 0 Active G function of group 39
...
DBB 271 G_FKT_GR_64 BYTE 0 Active G function of group 64

A complete listing of all the G functions is given in:
References:
Programming Manual Fundamentals; Chapter: "List of G-Functions/Preparatory functions"

 P3: Basic PLC program for SINUMERIK 840D sl
 12.18 Programming tips with STEP 7

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1041

12.17.4 Message signals in DB 2
DB 2 allows the user to display the messages for individual signals on the operator panel. As
the lists of interface signals show, signals are divided into predefined groups. When a
message occurs, disappears or is acknowledged, the number entered in the message
number column is transferred to the HMI. Text can be stored in the HMI for each message
number.

References:

● Lists sl (Book2), see Section "PLC-Messages (DB 2)".

● Startup manual; Chapter "Alarm and message texts"

 Note

The number of user areas can be parameterized via FB 1.

After the configuration has been modified (FB 1: MsgUser), DB 2/3 must be deleted.

12.18 Programming tips with STEP 7
Some useful tips on programming complex machining sequences in STEP7 are given below.
This is essentially handling of the data type POINTER or ANY.

Fundamental tips on the structure of the data type POINTER and ANY see:
References:
STEP 7-Manual; Chapter: "Designing user programs" > "Register of CPU and saving of
data"

12.18.1 Copying data

Copying variants
For the high-speed copying of data from one DB into another it is recommended

● for larger data quantities to use the system function SFC BLKMOV or SFC FILL, because
here a high-speed copying takes place.

● the routine given below is for smaller data quantities, because the supply of ANY
parameter to the SFCs consumes additional time.

Example

Code Comment

 // DB xx.[AR1] is the source

 // DI yy.[AR2] is the destination

 OPEN DB 100; //Source DB

 LAR1 P#20.0; //Source start address on data byte 20

 OPEN DI 101; //Destination DB

P3: Basic PLC program for SINUMERIK 840D sl
12.18 Programming tips with STEP 7

 Basic Functions
1042 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Code Comment

 LAR2 P#50.0; //Destination start address on data byte 50

 //AR1, AR2, DB, DI loaded beforehand

 L 4; //Transfer 8 bytes

 M001:

 L DBW [AR1,P#0.0]; //Copy word-oriented

 T DIW [AR2,P#0.0];

 +AR1 P#2.0;

 +AR2 P#2.0;

 TAK;

 LOOP M001;

12.18.2 ANY and POINTER
The following programming examples show the programming mechanism. They demonstrate
how input/output and transit variables (VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT) are
accessed by data types "POINTER" or "ANY" within an FC or FB. The access operations are
described in such a way that a part symbolic method of programming can be used.

12.18.2.1 Use of POINTER and ANY in FC

Function
FC 99 has inputs parameters that are defined as POINTER or ANY.

The example shows a body program via which the subcomponents of the POINTER or ANY
can be accessed. In this case, the DB parameterized with POINTER or ANY is opened and
the address offset stored as a crossarea pointer in address register AR1, Thus allowing
access to data elements of variables (generally structures and arrays) that are addressed via
the POINTER, ANY.

This access operation is described at the end of the relevant program sequence in the
example. With data type ANY, it is also possible to execute a check or branch when the
variable is accessed based on the data type and the number of elements involved.

Example

Code Comment

FUNCTION FC 99: VOID

VAR_INPUT

 Row : BYTE ;

 Convert : BOOL ; //Activate numerical conversion

 Addr: POINTER; //Points to variable

 Addr1 : ANY ;

END_VAR

VAR_TEMP

 P3: Basic PLC program for SINUMERIK 840D sl
 12.18 Programming tips with STEP 7

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1043

Code Comment

 dbchr : WORD ;

 Number: WORD ;

 type : BYTE ;

END_VAR

BEGIN

NETWORK

TITLE =

 //POINTER

 L P##Addr;

 LAR1 ; //Retrieve pointer

 L W [AR1,P#0.0]; //Retrieve DB number

 T #dbchr;

 L D [AR1,P#2.0]; //Offset part of pointer

LAR1 ;

AUF DB [#dbchr]; //Open DB of variables

L B [AR1,P#40.0]; //Retrieve byte value using pointer with

 //address offset 40

 //ANY

 L P##Addr1;

 LAR1 ; //Retrieve ANY

 L B [AR1,P#1.0]; //Retrieve type

 T #typ;

 L W [AR1,P#2.0]; //Retrieve amount

 T #Amount;

 L W [AR1,P#4.0]; //Retrieve DB number

 T #dbchr;

 L D [AR1,P#6.0]; //Offset part of pointer

LAR1 ;

 OPEN DB [#dbchr]; //Open DB of variables

 L B [AR1,P#0.0]; //Retrieve byte value using ANY

12.18.2.2 Use of POINTER and ANY in FB

Function
FB 99 has inputs parameters that are defined as POINTER or ANY.

The example shows a body program via which the subcomponents of the POINTER or ANY
can be accessed. In this case, the DB parameterized with POINTER or ANY is opened and
the address offset stored as a crossarea pointer in address register AR1, thus allowing
access to data elements of variables (generally structures and arrays) that are addressed via
the POINTER, ANY.

This access operation is described at the end of the relevant program sequence in the
example. With data type ANY, it is also possible to execute a check or branch when the
variable is accessed based on the data type and the number of elements involved.

P3: Basic PLC program for SINUMERIK 840D sl
12.18 Programming tips with STEP 7

 Basic Functions
1044 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example

Code Comment

FUNCTIONBLOCK FB 99

VAR_INPUT

 Row : BYTE ;

 Convert : BOOL ; //Activate numerical conversion

 Addr: POINTER; //Points to variable

 Addr1 : ANY ;

END_VAR

VAR_TEMP

 dbchr : WORD ;

 Number: WORD ;

 type : BYTE ;

END_VAR

BEGIN

NETWORK

TITLE =

 //POINTER

 L P##Addr;

 LAR1 ; //Retrieve pointer from instance DB

 L DIW [AR1,P#0.0]; //Retrieve DB number

 T #dbchr;

 L DID [AR1,P#2.0]; //Offset part of pointer

 LAR1 ;

 OPEN DB [#dbchr]; //Open DB of variables

 L B [AR1,P#40.0]; //Retrieve byte value using pointer with

 //address offset 40

 //ANY

 L P##Addr1;

 LAR1 ; //Retrieve ANY from instance DB

 L DIB [AR1,P#1.0]; //Retrieve type

 T #typ;

 L DIW [AR1,P#2.0]; //Retrieve amount

 T #Amount;

 L DIW [AR1,P#4.0]; //Retrieve DB number

 T #dbchr;

 L DID [AR1,P#6.0]; //Offset part of pointer

 LAR1 ;

 OPEN DB [#dbchr]; //Open DB of variables

 L B [AR1,P#0.0]; //Retrieve byte value using ANY

 P3: Basic PLC program for SINUMERIK 840D sl
 12.18 Programming tips with STEP 7

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1045

12.18.2.3 POINTER or ANY variable for transfer to FC or FB

POINTER or ANY variable
With version 1 or later of STEP 7 it is possible to define a pointer or ANY in VAR_TEMP.

The following two examples show how an ANY can be supplied.

Example 1: Transfer ANY parameter via a selection list to another FB (FC)
Several ANY parameters are defined in an FB (FC). A specific ANY parameter must now be
chosen from a selection list for transfer to another FB (FC). This can only be done by means
of an ANY in VAR_TEMP. 1 to 4 can be set in parameter "WhichAny" in order to select
Addr1 to Addr4.

 Note

Address register AR2 is used in the block. However, this address register AR2 is also used
for multiinstance DBs. For this reason, this FB should not be declared as multi-instance DB.

Code Comment

FUNCTIONBLOCK FB 100

CODE_VERSION1 //starting from STEP 7 Version 2 for deactivating the

//multi-instance DB

VAR_INPUT

WhichAny : INT ;

 Addr1 : ANY ; //Observe predetermined order

 Addr2 : ANY ;

 Addr3 : ANY ;

 Addr4 : ANY ;

END_VAR

VAR_TEMP

 dbchr : WORD ;

 Number: WORD ;

 type : BYTE ;

 Temp_addr : ANY ;

END_VAR

BEGIN

NETWORK

TITLE =

L WhichAny;

DEC 1;

L P#10.0; //10 bytes per ANY

*I;

LAR2;

L P##Addr1;

P3: Basic PLC program for SINUMERIK 840D sl
12.18 Programming tips with STEP 7

 Basic Functions
1046 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Code Comment

+AR2; //Add ANY start addresses

L P##Temp_addr;

LAR1 ; //Retrieve pointer from VAR_TEMP

L DID [AR2,P#0.0]; //Transfer pointer value to VAR_TEM

T LD [AR1,P#0.0];

L DID [AR2,P#4.0];

T LD [AR1,P#4.0];

L DIW [AR2,P#8.0];

T LW [AR1,P#8.0];

CALL FB 101, DB 100

 (ANYPAR := #Temp_addr); //ANYPAR is data type ANY

Example 2: Transfer an ANY parameter constructed earlier to another FB (FC)
An ANY parameter that has already been compiled must be transferred to another FB (FC).
This can be done only by means of an ANY stored in VAR_TEMP.

Code Comment

FUNCTIONBLOCK FB 100

VAR_INPUT

 DBNumber: INT ;

 DBOffset : INT ;

 Data type: INT ;

 Number: INT ;

END_VAR

VAR_TEMP

 dbchr : WORD ;

 Temp_addr : ANY ;

END_VAR

BEGIN

NETWORK

TITLE =

L P##Temp_addr;

LAR1 ; //Retrieve pointer from VAR_TEMP

L B#16#10; //ANY identifier

T LB [AR1,P#0.0];

L Data type;

T LB [AR1,P#1.0];

L Amount;

T LW [AR1,P#2.0];

L DBNumber;

T LW [AR1,P#4.0];

L DBOffset;

 P3: Basic PLC program for SINUMERIK 840D sl
 12.18 Programming tips with STEP 7

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1047

Code Comment

SLD 3; //Offset is a bit offset

T LD [AR1,P#6.0];

CALL FB 101, DB 100

 (ANYPAR := #Temp_addr); //ANYPAR is data type ANY

12.18.3 Multiinstance DB

Function
From Version 2 in STEP 7, you can provide multi-instance enabled FBs, i.e. with multi-
instance DBs. The primary characteristic of multiinstance DBs is that a data module can be
used for various instances of FBs (see STEP 7 documentation), The quantity structure of the
DBs can be optimized this way.

Multi-instance DBs should be activated only when they are actually going to be used since
they increase the runtime and code size of the FBs.

 Note

When complex programs are implemented in multiinstance enabled FBs that use a pointer
and address register, it is important for the programmer to observe certain rules.

With multiinstance DBs, the start address of the variable (VAR_INPUT, VAR_OUTPUT,
VAR_IN_OUT, VAR) is transferred with the DI data block register and address register AR2.
When variables are accessed within the multiinstance enabled FB, the compiler
independently controls the access operation via address register AR2. However, when
complex program sections also have to work with address registers in the same FB (e.g. to
copy data), then the old contents of AR2 must be saved before the register is changed. The
contents of AR2 must be restored to their original state before an instance variable
(VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR) is accessed. The AR2 register of the
instance is to be saved most usefully in a local variable (VAR_TEMP).

The command "Load pointer to an instance variable" returns a pointer value from the start of
the instance data. To be able to access this variable via a pointer, the offset stored in AR2
must be added.

Example

Code Comment

FUNCTION_BLOCK FB 99

VAR_INPUT

 varin: INT ;

END_VAR

VAR

 variable1: ARRAY[[0..9] of INT;

P3: Basic PLC program for SINUMERIK 840D sl
12.18 Programming tips with STEP 7

 Basic Functions
1048 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Code Comment

 variable2: INT ;

END_VAR

BEGIN

L P##variable1; //Pointer at start of ARRAY

 //The value 8500 0010 is now in the accumulator

 //and a cross-area pointer is in the AR2

//Pointer. If one is to work across areas

//then, during the addition of these

//two pointers, an area is to be disabled.

AD DW#16#00FF_FFFF, //Skipping of an area

LAR1 //Load into AR1

TAR2;

+AR1 AR2; //AR2 instance offset to be added

 //You can now indirectly access the ARRAY

//of variable 1 via AR1.

L DIW [AR1, P#0.0]; //E.g. access to the first element

END_FUNCTION_BLOCK

12.18.4 Strings
The STRING data type is required by certain services of the basic program. For this reason,
some additional facts about the string structure and general handling procedures for
parameter assignments are given below.

Structure of strings
A data of type STRING is generally stored (defined) in a data block. There are two methods
of defining a string:

1. Only the data type STRING is assigned to a variable. The STEP7 compiler automatically
generates a length of 254 characters.

2. Data type STRING is assigned to a variable together with a string length in square
parenthesis (e.g. [32]). With this method, the STEP7 compiler generates a string length
corresponding to the input.

Two bytes more than prescribed by the definition are always stored for variables of the
STRING data type. The STEP 7 compiler stores the maximum possible number of
characters in the 1st byte. The 2nd byte contains the number of characters actually used.
Normally, the useful length of the assigned strings is stored by the STEP 7 compiler. The
characters (1 byte per character) are then stored from the 3rd byte onwards.

String parameters are generally assigned to blocks of the basic program by means of a
POINTER or ANY. Such assignments must generally by made using symbolic programming
methods. The data block, which contains the parameterizing string, must be stored in the
symbol list. The assignment to the basic program block is then made by means of the
symbolic data block name followed by a full stop and the symbolic name of the string
variable.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.18 Programming tips with STEP 7

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1049

12.18.5 Determining offset addresses for data block structures

Function
Another task, which occurs frequently, is symbolic determination of an offset address within
a structured DB, e.g. an ARRAY or STRUCTURE is stored somewhere within the DB. After
loading the address register symbolically with the start address, you might like to access the
individual elements of the ARRAY or STRUCTURE via an address register. One way of
loading the address register symbolically is to use an FC whose input parameter is a pointer.
The address of the ARRAY or STRUCTURE is then assigned symbolically to the input
parameter of this FC in the program. The program code in the FC now determines the offset
address from the input parameter, and passes the offset address in the address register
(AR1) to the calling function. Symbolic addressing is thus possible even with indirect access.

Example

Code Comment

FUNCTION FC 99: VOID

VAR_INPUT

 Addr: POINTER; //Points to variable

END_VAR

BEGIN

NETWORK

TITLE =

L P##Addr;

LAR1 ; //Retrieve pointer from Addr

L D [AR1,P#2.0]; //Offset part of pointer of variable

LAR1 ;

END_FUNCTION

12.18.6 FB calls

Function
For optimizing the flow speeds, it is useful to call all function block calls with many static
parameters, such as the blocks FB 2, 3, 4, 5, and 7 provided by the basic program in start-up
with the related instance parameters. In the start-up (OB 100), the preassignment of the
parameters must be done, which can then no longer be changed in the cyclic part (OB 1).
These fixed parameter values are no longer parameterized in the cyclic call, because they
have already been written in the Instance DB.

P3: Basic PLC program for SINUMERIK 840D sl
12.18 Programming tips with STEP 7

 Basic Functions
1050 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example Parameterization of FB 2 with instance DB 110
The following example shows how a useful distribution in OB 100 and OB 1 portion is to be
implemented.

First, the usual call in the cyclic program is displayed.

 CALL FB 2, DB 110 (

 Req := M 100.0,

 NumVar := 2, //Read 2 variables

 Addr1 := NCVAR.C1_RP_rpa0_0

 Line1 : W#16#1

 Addr2 := NCVAR.C1_RP_rpa0_0

 Line2 . W#16#2

 Error := M1.0,

 NDR := M1.1,

 State := MW 2,

 RD1 := P#M 4.0 REAL 1,

 RD2 := P#M 24.0 REAL 1,

The modified version of the program call starts from here.
Here the call in OB 100 is displayed:

 CALL FB 2, DB 110 (

 Req := FALSE,

 NumVar := 2, //Read 2 variables

 Addr1 := NCVAR.C1_RP_rpa0_0

 Line1 : W#16#1

 Addr2 := NCVAR.C1_RP_rpa0_0

 Line2 . W#16#2

 RD1 := P#M 4.0 REAL 1,

 RD2 := P#M 24.0 REAL 1,

Here the call still remaining in OB 1 is displayed:

 CALL FB 2, DB 110 (

 Req := M0.0,

 Error := M1.0,

 NDR := M1.1,

 State := MW 2,

 Note

Owing to this measure, a shorter cycle time is achieved in OB 1, because the static
parameter values need not be copied in the instance DB in each OB-1 cycle.

 P3: Basic PLC program for SINUMERIK 840D sl
 12.19 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1051

The savings of this variant:

The cyclic copying effort of 3 integer values and 4 ANY parameters with respect to the
instance DB, which results from 3 time loading of a constant in the instance data block. In
case of each ANY transfer, constants are loaded in the data block 4 times with subsequent
transfer.

12.19 Data lists

12.19.1 Machine data

12.19.1.1 Display machine data

Number Identifier: $MM_ Description
9032 HMI_MONITOR Determining the PLC data for HMI monitor information

12.19.1.2 NC-specific machine data

Number Identifier: $MN_ Description
10100 PLC_CYCLIC_TIMEOUT Cyclic PLC monitoring time
14504 MAXNUM_USER_DATA_INT Number of user data (INT)
14506 MAXNUM_USER_DATA_HEX Number of user data (HEX)
14508 MAXNUM_USER_DATA_FLOAT Number of user data (FLOAT)
14510 USER_DATA_INT User data (INT)
14512 USER_DATA_HEX User data (HEX)
14514 USER_DATA_FLOAT[n] User data (FLOAT)

 Note

Machine data in integer/hex format is operated in the NC as DWORD. A machine data in
floating point format is managed in the NC as FLOAT (8-byte IEEE). They are stored only in
the NC/PLC interface and can be read by the PLC user program from DB 20 even during
PLC booting.

P3: Basic PLC program for SINUMERIK 840D sl
12.19 Data lists

 Basic Functions
1052 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

12.19.1.3 Channelspecific machine data

Number Identifier: $MC_ Description
28150 MM_NUM_VDIVAR_ELEMENTS Number of elements for writing PLC variables

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1053

P4: PLC for SINUMERIK 828D 13
13.1 Overview

13.1.1 PLC firmware
The PLC of the SINUMERIK 828D is an integrated PLC based on the SIMATIC S7-200
command set.

The PLC user program is essentially programmed using a Windows PC with the "PLC
Programming Tool". In addition, the PLC can be diagnosed and edited via the operator
interface of the control. A "Ladder-Add-On-Tool" is available in the control for this purpose.

Note the following special features:

● The PLC user program is completely programmed in ladder logic (LAD).

● A subset of the programming language of the S7-200 is supported.

● When loading to the CPU, in addition to the code for execution, the complete project data
(including symbols and comments) is loaded into the control. This means that the control
always has the project that matches the currently running PLC user program.

● When loading from the CPU, the complete project data (including symbols and
comments) is loaded into the PLC Programming Tool and can be processed/edited using
this.

● The user must manage the data and process information according to type. The declared
data type must be used consistently each time that the data is accessed.

13.1.2 PLC user interface
The user interface is set-up by the PLC firmware, which also organizes the exchange of all
signals and data between the PLC on one side and the NCK and HMI on the other side.

The user interface comprises the parts:

● Data interface with cyclic exchange (see "Data interface (Page 1120)")

● Function interface with function or task-related data exchange (see "Function interface
(Page 1125)").

The structured data of these interfaces (retentive and non-retentive) are made available to
the user by the firmware by assigning to data blocks: The NC (NCK, tool manager, NC
channel, axes, spindles, …) and the HMI are "Communication partners" of the PLC user
program.

P4: PLC for SINUMERIK 828D
13.1 Overview

 Basic Functions
1054 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 13-1 Overview of the user interface of the PLC 828D

 P4: PLC for SINUMERIK 828D
 13.1 Overview

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1055

13.1.2.1 Data that are cyclically exchanged
Data which is exchanged between the PLC and NC on one side as well as between the PLC
and HMI on the other side.

Data to the PLC are provided by the firmware at the cyclic start of the user program. This
ensures, for example, that the signals from the NCK remain constant throughout a cycle.

The firmware transfers data from the PLC to the NKC or HMI at the cycle end of the user
program.

Interface PLC ↔ NCK
The cyclic data include, e.g. status signals ("program running", "program interrupted") and
control signals (start, stop) and auxiliary and G functions.

Data are structured in signals for:

● Modes

● Channels

● Axes/spindles

● General NCK signals

Interface PLC ↔ HMI
These are signals for:

● Program selection via lists

● Messenger control command

● General signals from/to HMI

● Signals from/to the maintenance planner

● Signals from operator panel (retentive area)

● General selection/status signals from/to HMI (retentive area)

13.1.2.2 Alarms and messages
The user interface in DB1600 offers the option of displaying fault and operating messages on
the HMI.

The firmware evaluates the signals that have been entered and sends these as coming and
going alarms and messages to the HMI where they are displayed. The HMI manages the
fault texts.

13.1.2.3 Retentive data
For the retentive data there are the user data blocks DB9000 - DB9063 and the data area
DB1400.DBW0 - DBW127. There the user can store all data that should remain valid after
POWER OFF/ON. The retentive data is stored in the non-volatile memory, however, not for
data backup.

P4: PLC for SINUMERIK 828D
13.1 Overview

 Basic Functions
1056 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.1.2.4 Non-retentive data
Non-retentive data (e.g. bit memories, timers and counters) are deleted every time the
control is booted.

13.1.2.5 PLC machine data
The PLC machine data are in the NCK machine data area. At POWER ON, this data is
transferred by the PLC firmware into DB4500 of the PLC user interface where it can be
evaluated by the PLC user program.

References
SINUMERIK 828D Parameter Manual

13.1.3 PLC key data
The integrated PLC has a program memory of 24000 PLC operations which are completely
executed in one fixed PLC cycle.

A maximum of 500 operations can be executed in the INT0 interrupt program that can be
optionally used. It is executed servo-synchronous and allows the fastest possible reaction to
process events. This is the reason that interrupt-capable PLC I/O modules are not required.

Data Number Special features
Main program (MAIN) 1
Subprograms (SBRx) 256
Interrupts 2
Time controlled interrupt 1 Servo-synchronous interrupt program
Alarms/messages 248
Bit memory 4096 Non-retentive
Counters 64 Non-retentive
Timers,
of which:

128 Non-retentive

10 ms increment interval 112
100 ms increment interval 16

User data block each with a max. of
512 bytes

64 Address range DB9000 to DB9063

Data transmission NCK ↔ PLC Via fixed parameterizable interface

 P4: PLC for SINUMERIK 828D
 13.2 PLC Programming Tool

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1057

13.1.4 PLC I/O, fast onboard inputs/outputs
For information on the properties of the rapid onboard inputs/outputs and their response
times, see Section "Fast on-board inputs and outputs (Page 1064)".

For information on the I/O modules, the machine control panels as well as the assignment of
the onboard inputs/outputs to the PLC, see:
References:
Manual PPU SINUMERIK 828D

13.1.5 PLC Toolbox

13.1.5.1 Star/delta changeover
For star/delta changeover, the following block is provided in the PLC Toolbox:

● StarDelta

 Note

This block can be used to perform a star/delta changeover - also for 1PH8 spindle motors
with SMI connected to a SINAMICS S120.

13.2 PLC Programming Tool
The "PLC Programming Tool" is the tool with which PLC programs can be generated in a
user-friendly fashion. This is a Windows program and must be installed on a Windows PC.
This PC must be equipped with an Ethernet port for online access to the control and must be
connected to the control via the factory network or the service interface.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1058 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

References:
Commissioning Manual SINUMERIK 828D

When calling the PLC Programming Tool – without specifying an existing project – then
implicitly a new project is created with the "Project1" default name. This project can be
immediately used to generate the PLC user program and then saved under any name and
loaded into the control system.

Existing projects can be opened in the typical Windows fashion, also typical for Windows, a
user-friendly online help is available by pressing F1.

13.3 Programming

13.3.1 Introduction

13.3.1.1 Important terms
When calling the PLC Programming Tool, a new project is implicitly created or a specified
one is opened.

However, what is a project, a program, a data block? What are data classes?

The most important terms will now be briefly explained. For additional and more detailed
information, see:

References:

● PLC Programming Tool online help

● S7-200 System Manual

Project
A project is the largest possible organizational unit for the user when working with the PLC. It
is comparable with a container, and can:

● Accept program and data blocks, symbol and status tables, cross-references as well as
interface and debug settings.

● Be saved on a data carrier or loaded from there.

● Be loaded into the CPU or retrieved from there.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1059

Data classes
Data classes are especially the properties of actual values of such data blocks that the user
explicitly brings into the project. (Data blocks that are inherent to the system are not meant,
e.g. the user interface.)

The data classes "Manufacturer", "Individual" and "User" were introduced into
SINUMERIK 828D in order to:

● Be able to assign the DB actual values to specific user groups.

● Be able to load values belonging to a user group (i.e. data class) into or out of the CPU.

● Simplify troubleshooting and maintenance.

All programs (with the exception of the two interrupt programs INT100 and INT101) and all
data block structures (i.e. the inner structure, the "Type" of data blocks) and data block initial
values have the "Manufacturer" data class.

The interrupt programs INT100 and INT101 are of the "Individual" type.

Program
A program (also a program organization unit "POU") is a block for a sequence of commands
(including comments) that the users assemble one after the other using the LAD Editor to
solve their particular task. The users have three types of these POUs at their disposal:

● The main program (MAIN)

There is only one of these. The system calls this in the PLC cycle.

● 256 optional subprograms (SBR_xyz)

Subprograms are used to structure and encapsulate functions.

Once coded, they can be called a multiple number of times.

● Three optional interrupt programs

These are executed with a higher priority at a different location in the PLC cycle and are
reserved for special tasks.

Data block
A data block is a block for data (initial values, actual values) and comments with the
following properties:

● The data is saved in precisely the same sequence as specified by the user. This means
that the inner structure of the data block is defined and if several data blocks are created
with the same inner structure (i.e. the same type), then a certain data is always located at
a specific location. This location is called offset and is the relative length in bytes from the
beginning of the data block (DB) up to the actual piece of data.

● Initial values can be assigned to the data that they assume after being loaded into the
PLC for the first time.

● The actual values of the data can also be read online from the control, changed and also
saved with the project.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1060 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 13-2 Example of a project structure

Symbol tables
The symbol table is used for symbolic addresses. Frequently, symbols simplify programming
and increase the transparency of programs. In the compiled program, which is loaded into
the target system, all of the symbols are converted into absolute addresses. The data
relating to the symbol table is loaded into the target system.

Status table
In the status tables, you can observe how the process values change as the program is
executed. Status tables are not loaded into the target system. They are only intended to be
able to monitor the activities of the target system (or the simulated target system).

NC variables
NC variables are listed variables and drive parameters that can be selected and
parameterized individually. The highlighted address information is stored in the data block
DB9910 and loaded into the PLC user program. This allows access to selected variables.
This allows PLC interfaces to be freely configured.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1061

Cross references
The following are displayed in tabular form in the cross reference window:

● The symbolic or absolute addresses and the locations where they are used

● The bytes that are being used

● The bits that are being used

The cross references and the data on the elements used are not loaded into the target
system.

13.3.1.2 Create/open a project

Creating a new project
● Double-click the "PLC Programming Tool" button.

or

● In the Windows start menu, select the command "PLC Programming Tool" > "PLC
Programming Tool".

The PLC Programming Tool is started and a new project is opened.

Opening an existing project
● In the PLC Programming Tool, the menu "File", select one of the following commands:

– "Open"

Navigate to an existing project and open it.

– "File name"

If you just recently worked in a project, this project is listed in the "File" menu and you
can directly open it without first having to select it in the dialog box.

● You can also navigate to the required directory in Windows Explorer and open the project
directly from there without having to first start PLC Programming Tool. Your project is in a
single file with the *.ptp extension.

 Note

If you have created a project, then you can start to write your program. However, you should
have executed the following tasks beforehand:
• Range check according to the target system

You can select the target system type before you write your program so that the PLC
Programming Tool can check the parameter range corresponding to the target system. (If
you have selected a CPU type for your project, the operations that cannot be used for
your target system are marked with a red x in the operation tree.)

• Setting-up the work environment
You can set up your work environment in various ways ("Windows look and feel"). More
detailed information is provided in the online help under "Setting-up the Programming
Tool display".

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1062 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.3.1.3 Program organization using the the Programming Tool
The PLC Programming Tool organizes your program in the Program Editor in individual tabs
per POU. As standard, when creating a new project, the main program MAIN and a
subprogram SBR_0 are created. MAIN is always in the first tab, all subprograms and
interrupt programs that you have generated then follow.

MAIN
MAIN cannot be renamed and is permanently assigned to the "Manufacturer" data class.

Subprograms
Subprograms are useful if you wish to execute a function a multiple number of times. In
order that you do not have to include the logic in the main program at each location where
you wish to execute the function, you write the logic once in a subprogram and you then call
this subprogram as often as required while executing the main program. Meaningful names
can be assigned to subprograms; these are also assigned to the "Manufacturer" data class.

Advantages:

● The functional sequence in the main program is very transparent.

● Subprograms are easy to port. You can easily demarcate a function and without many
resources, call it from other programs with other parameter values.

 Note

The use of global variables restrict the portability of subprograms as the assignment of
addresses in the variable memory of a program can always be in conflict with the
assignment of addresses in another program. Subprograms, which access local variables
for all address assignments, are on the other hand extremely easy to port, because there
is no danger of conflicting addresses.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1063

Interrupt programs
Interrupt programs are used to be able to handle special process conditions or requirements.
The PLC828 makes a differentiation as follows:

Condition Program Description
Shortest response time: Executed in
the servo cycle

INT_0 For extremely fast responses to events, which absolutely required
this. In INT_0, the direct access commands, that either access an
internal, I/O image updated in the servo cycle or only the
hardware of the onboard I/O, can be practically used.
Data class: "Manufacturer"
Note:
The size of block INT_0 is limited to 500 operations.

Executed before MAIN, after reading
the inputs

INT_100 Especially to marshal data that is read accessed in the additional
cycle.
Data class: "Individual"

Executed after MAIN, before writing to
the outputs

INT_101 Especially when marshaling data that was previously written in the
PLC cycle, but which should be output to other or additional
outputs.
Data class: "Individual"

Interrupt programs cannot be renamed.

The interrupt program is inserted in the project
by double clicking the corresponding name in
the operation tree: "Libraries" > "Interrupt
programs".
The PLC firmware then automatically makes
the call.

Exiting program organizational units
As a result of the described program organization (each POU occupies its own tab), it is
quite clear where MAIN and the individual sub and interrupt programs end; this is the reason
that they do not require any special end delimiter.

See also
Addressing (Page 1068)

Type of memory (Page 1065)

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1064 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.3.1.4 Fast on-board inputs and outputs
The PLC of the PPU module can use eight rapid inputs and six rapid outputs that are
provided "onboard" via the connectors X242 (DIN1-DIN4, DOUT1-DOUT4) and X252 (DIN9-
DIN12, DOUT9-DOUT10). They therefore do not require any I/O modules and can be
processed extremely fast. Per default, these inputs/outputs are assigned to the NC. The
assignment to the NC or PLC is carried out via the following machine data:

MD10366 $MN_HW_ASSIGN_DIG_FASTIN[<n>]
(HW assignment for external digital inputs)

MD10368 $MN_HW_ASSIGN_DIG_FASTOUT[<n>]
(HW assignment for external digital outputs)

<n>: Index for addressing the external digital I/O bytes (0 to 3) or the external analog I/O

bytes (0 to 7)

NC/PLC assignment

Plug-in
connector

Machine data I/O assignment

MD10366[0] = MD10368[0] = 10101H DIN1 - DIN4 and DOUT1 - DOUT4 to NC X242
MD10366[0] = MD10368[0] = 10001H DIN1 - DIN4 and DOUT1 - DOUT4 to PLC
MD10366[1] = MD10368[1] = 10101H DIN9 - DIN12 and DOUT9 - DOUT10 to NC X252
MD10366[1] = MD10368[1] = 10001H DIN9 - DIN12 and DOUT9 - DOUT10 to PLC

Addressing

Onboard I/Os Address

DIN1 - DIN4 I256.0 ... I256.3 Onboard inputs:
DIN9 - DIN12 I256.4 ... I256.7
DOUT1 - DOUT4 Q256.0 ... Q256.3 Onboard outputs:
DOUT9 - DOUT10 Q256.4 ... Q256.5

Access

These inputs/outputs not assigned an image memory; reading and writing is performed
directly from or to the hardware. For the fastest possible access (servo-synchronous), use of
the direct operation commands in the interrupt program INT0 is recommended:

Command Symbol
Direct NO contact -| I |-
Direct NC contact -| /I |-
Directly set bit value -(SI)-
Directly reset bit value -(RI)-
Directly assign bit value -(I)-

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1065

Response times

This results in the following response times depending on the position control cycle, place of
execution and used digital inputs/outputs:

Position control cycle clock 1.5 ms 3 ms
 Processing via: Response time 1)
 Subprogram SBRx in cyclic operation (MAIN, OB1),

digital inputs/outputs: I/O module PP 72/48...
12.5 ms 14 ms

 Interrupt program INT0 (servo-synchronous),
digital inputs/outputs: Onboard inputs/outputs of the PPU

3 ms 4.5 ms

1) Signal at the input terminal → processing in the PLC program → signal at the output terminal

13.3.2 Target system memory

13.3.2.1 Type of memory

Type Description Access in the

bit format
Access in the
type format

Access in the
word format

Access in the
double word
format

can be
retentive

I Digital inputs and process
image input

read / write read / write read / write read / write no

Q Digital outputs and
process image output

read / write read / write read / write read / write no

M Internal bit memory read / write read / write read / write read / write no
SM Special bit memory

(SM0.0 - SM0.6 are write-
protected)

read / write read / write read / write read / write no

V Variable memory read / write read / write read / write read / write yes
T Actual values of timers

and time bits
Time bit
read / write

no actual value of
time
read / write

no no

C Actual values of the
counters and count bits

Counter bit
read / write

no actual value of
the counter
read / write

no no

AC Accumulators no read / write read / write read / write no
L Local data memory read / write read / write read / write read / write no

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1066 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.3.2.2 Addressing range of the target system
Address range of a memory type is the addressing range for this type of memory that spans
the lowest and highest possible address numbers. The lowest and highest possible address
number depends on the particular memory type.

If you execute commands which communicate with the PLC, then the PLC Programming
Tool recognizes your CPU model. When generating your program, you must ensure that you
only use the address range valid for this CPU. If you attempt to load a program that
accesses addresses ranges which are not valid for this CPU, then an error message is
output.

Address ranges

Access method Type of memory Min. and max. address numbers

I 0.0 - 255.7 1)
256.0 - 256.3 2)

Q 0.0 - 255.7 1)
256.0 - 256.3 2)

M 0.0 - 511.7
SM 0.0 - 0.6
T 0 - 15 (100 ms)

16 – 127 (10 ms)
C 0 – 63

Bit (byte.bit)

L 0.0 - 59.7
IB 0 - 255 1)
QB 0 - 255 1)
MB 0 – 511
SMB 0
LB 0 - 59

Byte

AC 0 - 3
IW 0 - 254 1)
QW 0 - 254 1)
MW 0 – 510
T 0 - 15 (100 ms)

16 - 127 (10 ms)
C 0 – 63
LW 0 – 58

Word

AC 0 – 3
ID 0 - 252 1)
QD 0 - 252 1)
MD 0 - 508
LD 0 - 56

Double word

AC 0 - 3

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1067

Access method Type of memory Min. and max. address numbers
User interface DB 1000 - 7999 3)
User data blocks DB 9000 - 9063 3)
Special data blocks DB 9900 - 9999 3)

1) Range of the process image variables! The assignment of these variables to the physical

inputs and outputs can be taken from the system overview in the SINUMERIK 828D
Commissioning Manual.

2) These addresses directly serve (i.e. without image memory) the eight onboard inputs and
the six onboard outputs if these are assigned to the PLC.

3) Only the DB numbers are specified in the table for reasons of simplicity. Their addressing
depends on the DB structure and is realized according to the following scheme:

Access Example Explanation
Bit DB3801.DBX1000.7 Bit 7 of the byte with offset 0 in subrange 1 for axis 2 in user range 38
Byte DB3801.DBB0 Byte with offset 0 in subrange 0 for axis 2 in user range 38
Word DB4500.DBW2 Word with offset 2 in subrange 0 in range 0 in user range 45
Double Word DB2500.DBD3004 Double word with offset 4 in subrange 3 in range 0 in user range 25

The access type is part of the address notation and must not be considered to be the same
as the data type or confused with this (see "Data types (Page 1070)").

 Note

The permitted offset for an address is dependent on the access:
• Bit or byte access: Any offset permitted.

Byte-size variables are placed one beside another seamlessly in a DB.
• Word access: Offset must be divisible by 2.

Word variables (2 bytes) are always saved on even offsets.
• Double word access: Offset must be divisible by 4.

Double word variables (4 bytes) are always saved on offsets which are divisible by 4.

See also "Data types (Page 1070)".

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1068 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

User interface is an interface comprising data blocks that the firmware creates on the target
system. It is used to exchange data between the PLC on one side and the NCK and HMI on
the other side (→ List Manual SINUMERIK 828D).

This DB neither has to be loaded from the CPU nor into the CPU because it is created by the
firmware and therefore belongs to the system.

User data blocks are exclusively created by the user. If it is intended to indirectly access
blocks of the same structure, then these should be located one after the other regarding the
numbering.

Special data blocks are permanently specified as far as their structure is concerned from the
system and can be found in the PLC Programming Tool in "Libraries". However, whether
they are integrated in the user program, assigned to a data class and loaded into the CPU is
the responsibility of the users and their design philosophy (if e.g. a maintenance planner is
not used, then these do not have to be integrated as far as the DB is concerned).

13.3.2.3 Addressing

Direct addressing
For direct addressing, the memory type as well as the address number must be specified
(also refer to "Addressing range of the target system (Page 1066)").

The CPU memory (V, I, Q, M and SM) can be accessed bit by bit as well as in the byte, word
and double-word format. The direct address comprises the memory type and a valid address
number.

To access a bit in a memory area, enter the byte address and the number of the bits.
Separate the byte from the bit using a decimal point.

Examples:

DB9900.DBX20.0 Bit 0 in byte 20 of DB9900
MB21, Flag byte 21
QD16, Output double word 16
I1.7, Bit 7 in input byte 1

Indirect addressing
Indirect addressing can only be used for data blocks with the same structure (the same
type). These are used so that when accessing data blocks, the number of the data block can
be variably addressed. The data block number must be located in one of the accumulators
AC0 ... AC3 (see "Data blocks (Page 1074)").

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1069

Absolute and symbolic addressing
You can specify the addresses in the operations in your program either absolutely or
symbolically.

An absolute address specifies the memory type and the address number.

A symbolic address (briefly: symbol) specifies the address using a name (a combination of
alphanumeric characters).

Global symbols are assigned in the symbol tables to their absolute address values and are
valid throughout the project (global). This assignment can be made at any time.

Local symbols are assigned in the local variable table of the particular program and are only
valid in this program (local).

Examples for displaying addresses in the program editor:

I0.0 An absolute address specifies the memory type and address

number.
#Input1 The # character is located in front of a local symbol.
INPUT1 Global symbol

 Red question marks designate an address that has still not been
defined (you must specify the address before you can compile the
program).

Both addressing types – absolute and symbolic – are coupled to the particular view:

Menu "View" > "Symbolic addressing (Ctrl +Y)"

This setting should always be set using the menu "View > "Symbol table (Ctrl +T)".

Recommendation: Decide on one of the two addressing types and then keep this.

Global and local range of validity
Symbolic addresses that were assigned in the symbol table are globally valid. Symbolic
addresses that were assigned in a local variable table are locally valid.

Local variables
Local variables are assigned in the local variable table of the particular POU and are limited
to the validity range of the POU in which they were set-up. Each program organizational unit
has its own local variable table.

Example:

You define a variable with the name INPUT1 in the local variable table of a subprogram with
the SBR1 name.

If you refer to INPUT1 from SBR1, then the program editor identifies INPUT1 as a local
variable from SBR1.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1070 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

However, if you refer to INPUT1 at another location in the program (e.g. in MAIN or in a
second program), the program editor does not recognize INPUT1 as a local variable and
treats INPUT1 as a non-defined global symbol.

 Note
Assigning names to local and global symbols

If you use the same name for an address at the local and at the global level, then the local
use has priority. This means that if the program editor defines a definition for the name in the
local variable table of a certain program block, then this definition is used. If a definition is not
found, then the program editor checks the symbol table.

Example:

You define the global symbol "PumpOn" You also define "PumpOn" as local variable in
SBR2, however, not in SBR1.

If the program is compiled, the local definition for "PumpOn" in SBR2 is used. The global
definition is used for "PumpOn" in SBR1.

 Note
Using local and global symbols

Local variables use the temporary, local memory of the target system. Subprograms that
only use local variables and transfer parameters, are easy to port and can be flexibly used.

If you wish to use a parameter in several program organizational units, then it makes sense
to define this parameter as global symbol in the symbol table - and not in the local variable
table. This reason for this is that then you would have to include the parameter in every local
variable table of the individual POUs.

 Note
Initialization of local variables

As local variables occupy temporary memories, you must initialize the local variables in the
POU each time that the POU is called. You cannot assume that a local variable keeps a data
value from one POU call to the next.

13.3.2.4 Data types
When defining symbols in the global symbol table, a data type does not have to be explicitly
specified, as it is implicitly specified by the data associated with the symbol.

If you assign values in the local variable table, then you must specify a data type for every
local variable.

By explicitly specifying a data type for a value, you give the PLC Programming Tool clear
commands how much memory must be assigned for the value (e.g. the value 100 can be
stored as BYTE, WORD or DWORD) and how the value is to be represented (e.g. should 0
be interpreted as BOOL or as numerical value?).

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1071

The operations and parameterized subprograms are recognized using a precise definition.
This definition is also called signature. For all standardized operations, the data types
permissible for the addresses of the operation are specified in the signature. For
parameterized subprograms, the signature of the subprogram is generated by the user in the
local variable table.

Data type check
The PLC Programming Tool implements a simple data type checking. If a data type is
specified for a local or global variable, the software checks that the data type of the address
corresponds to the signature of the operation.

Elementary data types Description Memory area
BOOL (bit) Boolean 0 ... 1
BYTE Byte, unsigned 0 ... 255
WORD Integer number (16 bit) -32768 ... +32767
DWORD (Double Word) Integer number (32 bit) -2147483648 ... +2147483647
REAL 32-bit floating point +/- 10-37 ... +/- 10+38

Complex data types Description Memory area
TON Switch-on delay 100 ms T0 ... T15

10 ms from T16
TOF Switch-off delay 100 ms T0 ... T15

10 ms from T16
TONR Switch-on delay, latching 100 ms T0 ... T15

10 ms from T16
CTU Up counter C0 ... C63
CTD Down counter C0 ... C63
CTUD Up-down counter C0 ... C63

The PLC Programming Tool has two data type checking stages:

1. Elementary data type check

For the elementary data type check, if a symbol or a variable is assigned a data type, then all
data types are automatically assigned, which correspond to the bit size of the user-defined
data type. If, for instance, you specify DINT as data type, then the local variable is also
automatically assigned the DWORD data type, because both data types are 32-bit types.
The REAL data type is not automatically assigned although it also involves a 32-bit data
type. The REAL data type is defined so that it does not have any equivalent data types: it is
always clear. The elementary data type check is only performed when using local variables.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1072 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

User-defined data types Equivalent data type
BOOL BOOL
BYTE BYTE
WORD WORD, INT
INT WORD, INT
DWORD DWORD, INT
DINT DWORD, DINT
REAL REAL

2. No data check

This mode is only available for global variables where no data types can be specified. If a
data type check is not active, all data types of the same size are automatically assigned to
the symbol.

Example:

If a symbol is assigned to address DB1400.DBD4, the following data types are automatically
assigned by the programming software: DWORD, DINT and REAL.

User-defined address Assigned equivalent data type
DB1400.DBX0.0 BOOL
DB1400.DBB0 BYTE
DB1400.DBW2 WORD, INT
DB1400.DBD4 DWORD, DINT, REAL

Advantages of the data type check
The data type check helps you to avoid programming errors that have been widely
propagated through the program. If a command supports numbers with signs, the PLC
Programming Tool flags the use of unsigned numbers in command operands.

Example:

The comparison < I is an operation with sign. -1 is less than 0 for addresses with sign.
However, if the operation < I supports unsigned data types, then the programming itself must
ensure that the following does not occur: While a program is being executed, an unsigned
value of 40.000 is actually less than 0 for the operation < I. If it cannot be guaranteed that
the unsigned numbers for signed operations do not exceed the positive and negative limit
values, then unpredictable events can occur in your program or in the mode of operation of
the control.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1073

Working with operations to convert the data type
Conversion operations convert one data type into another. The PLC Programming Tool
supports the following conversion commands to transfer values between the elementary data
types.

Conversion of data
types

Conversion operations Complete data type
check, permissible
addresses

Data check, permissible
addresses

INT in BCD I_BCD IN: INT
OUT: INT

IN: WORD, INT
OUT: WORD, INT

BCD in INT BCD_I IN: INT
OUT: INT

IN: WORD, INT
OUT: WORD, INT

DINT in REAL DI_R IN. DINT
OUT: REAL

IN: DWORD, DINT
OUT: REAL

REAL in DINT
(ROUND)

TRUNC IN: REAL
OUT: DINT

IN: REAL
OUT: DWORD, DINT

13.3.2.5 Constants

Range of constants

 Range without sign Range with sign
Size of the data Decimal: Hexadecimal: Decimal: Hexadecimal:
B (Byte) 0 ... 255 0 ... FF -128 ... +127 80 ... 7F
W (Word) 0 ... 65535 0 ... FFFF -32768 ... +32767 8000 ... 7FFF
D (Double word) 0 ... 4294967295 0 ... FFFF FFFF -2147483648 ...

+2147483647
8000 0000 ... 7FFF FFFF

Size Decimal real number (positive) Decimal real number (negative)
D (Double word) +1.175495E-38 ... +3.402823E+38 -1.175495E-38 ... -3.402823E+38

Format identifier of constants
In many operations, your program can use constants in the byte, word or double word
format. Format identifiers specify how a constant value is to be displayed (in the binary,
decimal, hexadecimal or ASCII format).

Constants in the program are considered as decimal numbers if a format identifier is not
specified:

2# for dual numbers
16# for hexadecimal numbers

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1074 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Examples of binary constants

Example Numerical basis Separator Constant
2#1101 2 # 1101

Examples of hexadecimal constants:

Example Numerical basis Separator Constant
16#3FB3 16 # 3FB3

 Note

Underscore characters can increase the readability in imported ASCII files.

Example: 16#A_B_C_D

13.3.2.6 Data blocks

Data block types
A distinction should is made between three types of data blocks (see also "Addressing range
of the target system (Page 1066)"):

● Data blocks of the user interface

These are used to communicate from the user program with the individual control
components and are created by the system. The user accesses the interface using read
and write access operations.

 Note

According to the notation type and addressing, although they are data blocks, these DBs
do not make a distinction between initial and actual values and they are also not part of
the PLC user project. The information provided in the section "Properties of data blocks"
does not apply to these DBs.

● Special data blocks

They are used for special tasks (e.g. tool manager, service planner) and are available
pre-configured in the PLC Programming Tool. If the particular functionality is to be used,
the corresponding DBs must be incorporated in the user program.

● User data blocks

Users define there structure and incorporate them in the user program.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1075

Data block properties
A data block is a block for data (initial values, actual values) and comments with the
following properties:

● The data is saved in precisely the same sequence as specified by the user. This means
that the inner structure of the data block is defined and if several data blocks are created
with the same inner structure (i.e. the same type), then a certain data is always located at
a specific location. This location is called offset and is the relative length in bytes from the
beginning of the data block (DB) up to the actual piece of data.

● Initial values can be assigned to the data. When loaded into the CPU for the first time, the
actual values of the DB are initialized with these initial values. The initial values are also
stored in the CPU.

● The actual values of the data can also be read online from the control, changed and also
saved with the project.

The data block structures are, just like the POUs, part of the project. They are compiled,
saved, imported or exported with the project. Further, they are loaded with the project into or
out of the target system. Data blocks only contain actual values. These can be loaded into or
out of the target system independent of the project. It is therefore essential that the structure
of the data block to be loaded in the target system is exactly the same as that of the project
opened in the PLC Programming Tool. Data blocks are listed like POUs in their own symbol
table.

If you change the CPU type for your project, then the existing data blocks are not lost.
However, if you select a CPU in which the data blocks are not available, then you must
observe that the variables from the data block are now displayed in their absolute address
(e.g. DB9000.DBB0). Only when the target system is started is a check made as to whether
this address is valid and the program is then possibly not executed.

You can rename your data blocks and change their properties, by clicking with the right
mouse button in the operation tree on the corresponding data block. Select "Properties". The
"Properties data block" dialog box opens. Here, you can change the name, block number
and data class as well as add an author and comments.

 Note

If you just want to rename your data block, click the right mouse button in the operation tree
on the object you want to rename and chose "Rename".

You can also easily edit your data block in another program (e.g. Microsoft Excel).

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1076 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Editing data blocks in the PLC Programming Tool
To edit data blocks in the PLC Programming Tool:

● In the navigation bar, click the "Data block" button.

● Select the "View" > "Data block" menu command.

● In the operation tree, double-click the "Data block" button and then on the data block to
be edited:

Assigning addresses and initial values in the data block
You define the structure of the DB (the sequence of the individual DB variables) in the
declaration view. Initial values can be assigned to the variables of the data block that are
saved with the data class or the project and with which the actual values of the DBs are
initialized when loaded into the CPU for the first time.

When you define a variable, you assign its name and data type. The default initial value is
set to zero/OFF, however, this can also be changed. You can optionally insert comments.
The PLC Programming Tool automatically assigns the address. Each address is aligned by
its size which means that gaps can occur.

Example:

The maximum size of a data block is limited (512 bytes), if it is exceeded the PLC
Programming Tool marks the excess variable addresses using a red wavy line. The PLC
Programming Tool returns an error when compiling the project.

Assigning actual values
Actual values are saved with their data class (Manufacturer, Individual or User). They are
only displayed and can be changed in the data view, while on the other hand, the structure of
the variables (name, data type, initial value and comment) is write-protected in the data view.

After loading the actual values of the data block (not the complete project), these values
become effective in the target system.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1077

Example:

The structure of the data block in the project must match the structure of the data block in
the target system. If you have modified the structure of the data block, or re-created the DB,
then the complete project has to be loaded again.

You can access the data view in the following ways:

● Click in the standard function bar on the symbol "Display data block values".

or

● Select the menu command "View" > "Display data block values".

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1078 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Accepting initial values
If you accept the initial values, then all of the actual values of a data block are overwritten. If
you haven't selected an initial value for a variable, then the PLC Programming Tool sets it to
zero/OFF. Other data blocks are not changed in the process.

In order to reset all actual values in the actual data block to the initial values:

● In the table, right-click and select "Accept initial values" in the context menu.

or

● Select the menu command "Edit" > "Accept initial values".

Loading and saving the data blocks
Save involves writing the DB (depending on the selection, structure + initial values +
additional blocks and tables or actual values or both together) from the PC work memory to
the hard disk or to another external storage medium. After the project has been opened,
these values are again available.

Load into CPU involves writing the DB (depending on the selection, structure + initial values
+ additional blocks and tables or actual values or both together) from the PC work memory
into the PLC828.

Load from CPU is the inverse operation.

Load operations are selected from the data class perspective.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1079

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1080 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Direct addressing for data blocks
● Absolute addressing

The direct, absolute address of the variables in their data block number comprises the
absolute input from the number of the data block (e.g. DB9000) a period and the address
of the variables.

The selection is made using the menu command "View" > "DB address representation
(Ctrl+B)":

Example:

DB9000.DBB0

● Symbolic addressing

The variables of the data blocks can be assigned names in the symbol table. When using
the variable it is sufficient to specify this name from the symbol table.

If no name is assigned to the DB variable in the symbol table, then the symbolic address
comprises the DB name (e.g. myDB_9000) and the name of the variables in the data
block (e.g. Vcorrection1).

Address Name of the

variables in the data
block

Entry in the
symbol table

Absolute
representation

Symbolic representation

DB9000.DBX0.0 Vcorrection1 FeedCorrAx1 DB9000.DBX0.0 FeedCorrAx1
DB9000.DBX0.0 Vcorrection1 DB9000.DBX0.0 myDB_9000. Vcorrection1

Figure 13-3 Symbolic address representation

The menu command "View" > "Symbolic addressing" (Ctrl+Y)" is used to switch over
between absolute and symbolic representation.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1081

Indirect addressing for data blocks
You may be able to simplify the programming if data blocks with the same structure are used
in your program. You can indirectly address the data blocks using the accumulators AC0 to
AC3. The accumulators are used to inform the program which data block is to be handled.
The value in the AC is then treated as index.

For example, for axis DBs, the program text can be somewhat reduced by not having to write
a dedicated program for each axis, but instead access the appropriate axis via the various
data blocks and the index (AC). The value in AC is treated as an index. This is the reason
why it starts at 0 for the first axis. Indirect addressing is only possible using ACs. It is not
possible to display the actual data value in the program status of the PLC Programming
Tool. The absolute address cannot be determined. V addresses cannot be used for indirect
addressing.

Figure 13-4 Indirect addressing

Absolute input Symbolic input
DB3800[AC1].DBX2.1 ToAxis[AC1].ControlEnable
DB9000[AC0].DBW0 Prototyp1[AC0].MyWord1

It is not permissible to use constants for indexing:
DB3800[1].DBX2.1 ToAxis[5].ControlEnable

Indirect addressing using V addresses is also not permitted:
V3800[5]0002.1 V380[5]0002.1
V3800[AC0]0002.1 V38[AC0]0002.1

Using Cut, Copy and Paste in the data block editor
You can save data (rows, columns and cells) of your data block in the Microsoft clipboard to
edit them in a different program. You can proceed as follows:

● In the context menu (right mouse button) using the commands "Cut"/"Copy" and "Paste".

● Using the keyboard by pressing the shortcut keys <Ctrl+X>/<Ctrl+C> and <Ctrl+V>.

● In the main menu using the "Edit" > "Cut"/"Copy" and "Edit" >"Paste".

Cut: Selected data is copied into the clipboard and is deleted
Copy: Selected data is copied into the clipboard and is not deleted
Paste: If data is in the clipboard, then this data is pasted.
Delete: Selected data block/section is deleted, it is not saved in the clipboard.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1082 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

You can easily edit your data block in this way, e.g. in Microsoft Excel.

Using special data blocks
The PLC Programming Tool offers you the possibility of using special data blocks for tool
change, maintenance planning and the device manager. You will find these in the operation
tree under "Libraries" > "Special data blocks".

These data blocks have a fixed structure. They can be used with a double click or using
Copy and Paste (in the operation tree):

TM_CTS (DB9900) Constant transfer step table for tool change
TM_VTS (DB9901) Variable transfer step table for tool change
TM_ACK (DB9902) Acknowledgment step table for tool change
SP_INI (DB9903) Start data for maintenance planner
SP_ACT (DB9904) Actual data for maintenance planner
EE_IFC (DB9905) Interface for device manager
CTRL_E (DB9906) Energy saving profiles (CTRL ENERGY)
SENTRON (DB9907) Interface for Sentron PAC
ISM_TS (DB9908) Interface for spindle temperature sensors

Individually selected NC variables can be used with the following data block. The data block
is available only after compilation of the NC variables in the operation tree from "Data block"
> "User data blocks".

You can use it by double-clicking or via copy and paste (in the operation tree).

NC_DATA (DB9910) Selected NC data

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1083

Resolving errors
The PLC Programming Tool marks errors made when data is being entered (e.g. in the LAD
Editor, the NC variables or the symbol table). For example, an illegal syntax or the use of
invalid values can result in input errors. You must correct all errors that have occurred before
you can compile error-free and load the program into the CPU.

Every data block is involved in the compilation run of the project.

Compilation is started:

● Using the menu command "Target system" > "Compile"

or

● By clicking on the symbol.

If any errors occur during compilation, then they are displayed in the output window. Position
the cursor to an error message in the output window and double-click it so that you see the
line in the data block with the error.

Loading the data block into the target system
Here, reference is made to Section "Data classes (Page 1089)" in which loading and saving
(not only data blocks) is explained in detail.

● After making structural changes to a data block, this must be loaded into the target
system with the PLC in the stop state. The changes take effect only when subsequently
going into the RUN mode. If the target system identifies that a data block is new or has
been changed, then it sets the initial values for this data block as the first actual values.

Under all circumstances, you should activate the three checkboxes of the data classes.
Why? If the modified DB is also called from the data class "Individual", then program
errors occur as a result of the fact that it is deselected: Namely then, INT100 or INT101
access the "old" structure of the DB.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1084 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● After making changes to the actual values of a data block, these must then be

subsequently loaded into the target system. The structure of the data block in the target
system must match the structure of the data block in the project. There are two ways of
loading the actual values into the CPU:

– By clicking on the "Write all" symbol.

– By loading the DB in the RUN mode:

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1085

Loading a data block from the target system
Here, reference is made to Section "Data classes (Page 1089)" in which loading and saving
(not only data blocks) is explained in detail.

● You must first open a project in the PLC Programming Tool before you can load the
program block (project) and therefore its structure from the target system. As the
structure and initial values of the data blocks are permanently assigned the
"Manufacturer" data class, then only the checkbox of this data class has to be activated.

● If you only want to load the actual values of a data block from the PLC, then first open the

corresponding project in the PLC Programming Tool or load it from the PLC. You can
now load the actual values. You cannot load the data block if the structure of the data
block in the target system does not match that of the data block of the project that has
been opened, or if the project that has been opened does not have a data block.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1086 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.3.2.7 Special bit memories and their functions
Special bit memories SMB0 (SM0.0 ... SM0.6) contain seven bits that are updated by the
PLC firmware at the end of each cycle. You can implement various functions in your program
with these bits.

Special bit memories
(write protected)

Description

SM0.0 This bit is always switched on.
SM0.1 This bit is switched on in the first cycle. It is used, for example, to call an

initialization subprogram.
SM0.2 This bit is switched on for the length of a cycle, if retentive data has been

lost. It can be used either as an error bit memory or as a mechanism for
calling up special startup sequences.

SM0.3 This bit is switched on for the length of a cycle if the RUN operating mode
has been set after switching on (power on). This permits a warm-up time for
the system before starting operation.

SM0.4 This bit ensures a cycle that is switched-on for 30 seconds and switched-off
for 30 seconds. And more precisely for a cycle time of 1 minute. This way
you have an easy to program delay or a cycle time of 1 minute.

SM0.5 This bit ensures a cycle that is switched-on for 0.5 seconds and switched-off
for 0.5 seconds. And more precisely for a cycle time of 1 second. This
means that you have an easy way of programming a delay time or a cycle
time of 1 second.

SM0.6 This bit represents a clock cycle. It is switched-on for one cycle and
switched-off for the next cycle. So you can use this bit as a cycle counter
input.

SM0.7 Reserved

13.3.2.8 Editing NC variables in the PLC Programming Tool

Call NC variables
To edit NC variables in the PLC Programming Tool:

● In the navigation bar, click the "NC variables" button.

or

● Select the "View" > "NC variables" menu command.

● In the operation tree, double-click the "NC variables" button and then the variables list to
be edited:

– NC_0 (NC variables)

– NC_1 (drive parameters)

The selected variables list opens in the PLC Programming Tool.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1087

Selecting an NC variable
The "NC variables" variables list is divided into two areas. The upper area shows the NC
variables or the drive parameters of the selected variables list available for selection. The
lower area shows the variables selected from the variables list. The tab at the lower edge
can be used to switch between the variable lists.
Example of the "NC variables" variables list:

To select an NC variable from the variables list:
● Double-click the row with the desired variables.

or
● Select "Copy"/"Paste" from the context menu of the right mouse button.
The NC variable is added to the lower area of the variables list.
A variable name for the selected NC variable is always generated automatically from the
data block. The variable name is not mandatory and can be changed as required. A variable
name can contain maximum 23 characters. A shorter name is recommended automatically
for longer names.

 Note

The variables list contains NC variables that cannot be processed for all CPU types. In this
case, the reading or writing of the NC variable in the PLC user program produces error
messages.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1088 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameterizing a selected NC variable
The selected NC variable does not yet have any complete addressing and must be
parameterized. For example, the channel or axis number as well as the row or column in the
"Variable parameters" dialog must be added as addressing:

● Double-click the selected NC variable.

or

● Select "Variable parameters" from the context menu of the right mouse button.

The dialog for entering the missing parameters opens.

For comprehensive information concerning the NC variables and their possible parameters,
click Help in the "Variable parameters" dialog.

Reference:
PLC Programming Tool online help

 Note

If an NC variable represents an array, it suffices to transfer this NC variable once to the
variables list. In this case, the individual elements are addressed using the row index. Enter
a zero for the row in the "Variable parameters" dialog. When this NC variable is used, the
desired row for the row index must be entered in the user interface in addition to the
variables index. This allows several NC variables to be addressed with one entry in the
variables list.

For example, the following can be entered into the DB120x RW_NCDx user interface

Address Description Program name Value
DB120x.DBB1000 Variable index A_VarIdx 5
DB120x.DBW1004 Line index A_RowIdx R number + 1

Compiling NC variables
The list of the selected NC variables must be compiled for their subsequent use in the PLC
user program and in the PLC firmware. The special DB9910 data block (selected NC data) is
generated.

The compilation of the list is started as follows:

● In the standard toolbar, click the "Program block" symbol.

or

● Select the "Target system" > "Compile" menu command.

The DB9910 data block is generated and stored with the "Read-only" attribute and the
"Manufacturer" data class in the PLC user project. The data block is listed for further
processing in the operation tree.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1089

 Note

If the list of the selected NC variables is changed, a new compilation is required so that the
DB9910 data block can be updated. The compilation is performed automatically for "Export"
or "load into CPU".

13.3.3 Operation set
The PLC of SINUMERIK 828D provides the following operation groups:

● Bit logic operations

● Fixed-point arithmetic

● Interrupt operations

● Floating-point arithmetic

● Program control operations

● Shift/rotate operations

● Transfer operations

● Conversion operations

● Comparison operations

● Logical operations

● Counters

● Timers

● Subprograms

You can take details from the online help of the PLC Programming Tools and the S7-200
System Manual.

13.3.4 Data classes

13.3.4.1 Defining data classes

Overview
Data classes are user-related organizational units for programs and data blocks as project
subcontainer.

They are special in that they mutually demarcate the contents: The data and programs
assigned to them can be handled as group, i.e. as data class. This applies when loading into
the control and from the control as well as for data backup using export and import.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1090 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

① Load into CPU
② Load from CPU
③ Open Project
④ Save project (under)

Figure 13-5 Project structure in the PLC Programming Tools and the structure of the data class
transport paths

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1091

From the user's perspective, there are three data classes:

● Manufacturer:

– POUs (MAIN, all subprograms and the interrupt program INT0);

– The data blocks: Internal structure (type information) plus initial values;

– The data blocks: Actual values, if assigned by the user;

● Individual:

– The interrupt programs INT100 and INT101

– The data blocks: Actual values, if assigned by the user;

● User:

– The data blocks: Actual values, if assigned by the user;

All of the existing data classes are always automatically selected in the dialog box for
loading. This means that all of the data and blocks belonging to the project are always
loaded, if they have not been deselected by the user.

Example
With a standard (series) machine, where the machine manufacturer also commissioned the
PLC user program, a PLC input (I/O module) fails. The input is rewired to a free input. The
INT100 interrupt program can be used so that the service/erection technician doesn't have to
change the PLC user program of the machine manufacturer due to the rewiring, which is a
complex and tedious task: This runs in front of the main program (MAIN) and writes the
rewired input to the original input in the image. INT100 is assigned to data class "Individual"
and is loaded into the CPU with this data class.

The project block of the machine manufacturer has the data class "Manufacturer" and is
loaded into the CPU with this data class.

If machine manufacturers update their PLC user programs, the correction program is not
influenced. The corrections remain independent of this and are still effective.

The interrupt program INT100 can
be independently loaded in its data
class and the correction function
described above executed.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1092 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.3.4.2 Assigning a block to a data class
A data block is assigned to a data class in its property dialog box.

Procedure
1. In the operation tree, right click on the corresponding block and select "Properties":

2. Assign the block to one of the three possible data classes:

Here, for DB9000, in addition to the data class "User", the "Non-Retain" property was also
selected. Data blocks with this attribute are reset to the initial values after each power off and
power on.

See also
Defining data classes (Page 1089)

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1093

13.3.4.3 Load data class(es) into the CPU

Procedure
1. In the window "Load into CPU", select the data class(es) whose blocks are to be loaded:

2. Select the option "Blocks (MAIN, SUBR, INT, DB)", if program or data block changes are

to be loaded into the target system.

3. Select the option "Data blocks (only actual values)" if actual values of one or several data
blocks are to be loaded into the target system.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1094 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4. Select one of the following options in the message window "Load into CPU":

– "Bring target system into the stop condition"

→ If structurally modified programs or initial values of data blocks are to be loaded into
the target system.

or

– "Load in the RUN operating state"

→ If neither program nor data block structures have changed.

The following message must be output after loading:

5. Confirm this message.

6. After "Loading in stop condition" – if required – switch the control back to RUN.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1095

13.3.4.4 Load data class(es) from CPU

Procedure
1. In the window "Load from CPU", select the data class(es) whose blocks are to be loaded:

2. Select the option "Blocks (MAIN, SUBR, INT, DB)", if program or data block changes are

to be loaded from the target system.

3. Select the option "Data blocks (only actual values)" if actual values of one or several data
blocks are to be loaded from the target system.

4. If required, save the opened project in the PLC Programming Tool, it is then overwritten
when "Load from CPU":

A new project with the name of the project located in the target system is created.

5. After a warning that the existing project will be possibly changed as a result of "Load from
CPU", the requested data is loaded from the target system (also refer to the diagram
"Project structure in the PLC Programming Tool and the structure of the data classes
transport paths" in Defining data classes (Page 1089)").

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1096 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.3.4.5 Comparison between online and offline projects
The data classes, whose blocks are to be compared, can be selected in the dialog box
"Compare..."(menu "Target system" > "Compare...").

If data classes only exist in the offline project or only in the CPU (online project), these are
correspondingly marked. The differences that exist between the offline and online existing
program blocks (SBRs, INTs) or data blocks (DBs) are shown as a result of the comparison:

Example:

The differences between the actual values saved (offline) in the project (e.g. +22) and the
actual values available in the target system (online) (e.g. +11) are displayed in the lower field
"data blocks".

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1097

13.3.4.6 Delete in the target system
Delete is only permitted in the "STOP" operating state.

Deleting "Manufacturer" results in a start error at the transition into the "RUN" operating
state. The target system then returns into the safe "STOP" operating state.

See also
Defining data classes (Page 1089)

13.3.5 Rewire addresses

Function
Addresses in the PLC user program can be centrally changed - e.g. IW0 to IW8 - using the
"rewire" function. This means that user programs can be quickly adapted to the modified I/O
expansion stage.

Example:

The customer writes a PLC user program for a series of machines. Due to the different
machine expansion stage, the I/O expansion stage of several machines differs, which is the
reason that addresses must be individually changed in the user program. Under certain
circumstances, this can involve several hundred addresses. Using the "rewire" dialog box,
for these machines, it is now possible to enter a list of the addresses to be changed, e.g.
inputs and outputs. This is executed using the "rewire" function, and the addresses are
changed in the user program.

P4: PLC for SINUMERIK 828D
13.3 Programming

 Basic Functions
1098 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Procedure
Use the dialog box "rewire", to rewire addresses:

Please proceed as follows:

1. Open the dialog box "Rewire" in the LAD editor using the context menu ("Rewire …") or
using the menu bar ("Edit > Rewire …").

2. In the list "Program blocks" (list of all of the POUs available in the project), select the
POUs in which the rewire operation is to be executed.

 P4: PLC for SINUMERIK 828D
 13.3 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1099

3. Enter the old and the new addresses for rewiring in the "Replacements" list.

Permitted addresses include:

– Inputs

– Outputs

– Bit memory

– Special bit memory

– Variable memory / data blocks

– Timers

– Counters

Editing the list of addresses

The following functions are supported using the context menu (right mouse button):

– Cut (Ctrl+X)

– Copy (Ctrl+C)

– Paste (Ctrl+V)

– Select all (Ctrl+A)

– Paste row (Ctrl+I)

– Delete selection

This means that it is possible to copy the list or parts of the list from other or into other
applications, e.g. Microsoft Excel.

"Old address"

In this column, enter the name or the address which you wish to rewire.

"New address"

In this column, enter the new name or the new address. Please ensure that the type of
the new address corresponds to that of the old address, e.g. old address IW0 and new
address IW4, not IB4, or old address DB9000.DBB0 and new address MB0, not MW0.

Checking the validity of addresses

If the name of the address (symbol) does not exist in the open project, then this is marked
with a green wavy line.

If the type of the old address does not match that of the new address, or if only one
address was entered (old or new address), then this address is marked using a red wavy
line.

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1100 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

4. Select or deselect the option "All accesses within the specified addresses".

If the option is enabled, then the addresses ranges (BYTE, WORD, DWORD) are
rewired.

Example:

You specify IW0 and IW4 as address ranges. The, addresses I0.0 ... I1.7 are rewired to
addresses I4.0 ... I5.7. Addresses from the rewired range (e.g. I0.1) can then no longer
be individually entered into the table.

5. Click on the button "Rewire" to start the function.

 Note

If you wish to exit the dialog box, without activating the function "Rewire", then use the
"Exit" button.

After executing the rewire function, the results are displayed in the list "Results of rewiring".
The list contains the address list with the columns "Old address" and "New address". These
list the individual blocks and the number of wiring operations that were carried out in each
block. Using the context menu (right mouse button), the results can be copied into other
applications, e.g. Microsoft Word.

 Note
The following must be taken into account when rewiring:
• Name or number of a POU cannot be changed using the "Rewire" function. For this

purpose, in the operation tree in the POU context menu (click with the right mouse button,
e.g. on SBR_0) using the functions "Rename" or "Properties ...".

• Timers can only be rewired to remain timers (e.g. old address T0, new address T16) and
counters can only be rewired to remain counters (e.g. old address C0, new address C1).

13.4 Test and diagnostic functions

13.4.1 Program status
Once you have established communication between your programming device, on which the
PLC Programming Tool is installed, and a PLC and have loaded a program into the PLC,
you can work with the diagnostic functions of the PLC Programming Tool and test new
programs as well as monitor programs that are already being processed.

These help topics are subsequently described.

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1101

13.4.1.1 Status definition
"Status" refers to the display of the actual values of addresses while executing the program
in the target system. You can display status information in a status chart or by switching-on
the program status in the program editor.

An example for status information in the status chart and in the program editor of the PLC
Programming Tool is shown in the following diagram:

 Note

Please note that unnecessary project components (e.g. the operation tree and the output
window) have been omitted, in order to provide more space to display the required
components (LAD program editor, status chart, function bar to test and symbol for the status
chart in the navigation bar). Using the menu "View", you can set-up the environment in the
PLC Programming Tool corresponding to your particular tasks, i.e. you can display just the
project components that you require.

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1102 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.4.1.2 Preconditions of the status update
Before you can update the status to monitor and test your program, you must execute the
following tasks:

● Your program must be able to be compiled error-free.

● You must have set up communication between the PLC Programming Tool and the target
system.

● Your program must have been loaded error-free into the target system.

● After you have loaded the program into the target system, then you should again bring
this into the RUN mode. Otherwise, the address status is displayed, however, the target
system cannot execute the program so that you are not shown the logic operations that
you expect.

13.4.1.3 Influence of the operating state on the target system
The type of monitoring and test functions that you execute depends on the mode of your
target system.

Even if your program is not executed in the STOP mode, the operating system of the target
system still monitors the target system (status of RAM and I/O) and transfers the data status
to the PLC Programming Tool. If the target system is in the STOP mode, then you can
execute the following functions:

● You can display the actual values of the addresses in the table status or in the program
status. (This is the same as the function "Single read", as the program is not executed.)

● You can write values in the table status.

● You can execute a certain number of cycles and display the effect in a status chart and/or
in the program status.

If the target system is in the RUN mode, you cannot execute the functions "First cycle" or
"Several cycles". You can write values into a status chart and also execute the following
functions (not in the STOP mode):

● In the table status, you can carry out the continuous updates. (If you wish to only execute
an update, you must switch-off the table status so that you can execute the command
"Single read".)

● You can execute continuous updates in the program status.

13.4.1.4 Communication and cycle
In a continuous cycle, the target system reads the inputs, executes the program, writes to
the outputs and executes system functions as well as the communication. This cycle runs
with an extremely high speed of many times per second. Even if the PLC Programming Tool
issues status requests in a fast sequence, it is important that you clearly understand that you
cannot monitor each individual event that takes place in the target system. When using the
program status or the table status to read data values from a target system program,
interrogate the data by taking samples. The update rate of the status values read from the
target system depends on the communication baud rate.

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1103

13.4.1.5 Status update

Program status in LAD
If you monitor the program status in the program editor in LAD, the status is updated at the
end of each cycle. If an address is processed by several operations, the intermediate values
of the addresses are not displayed by the status. Only the values of the addresses at the end
of each program cycle are displayed in the LAD program status.

Update status (procedure)
You can update the status in various ways:

● Open the program editor window and enable the program status (menu "Test" >
"Program status") in order to view the continuous status update in the RUN operating
status of the target system.

Bear in mind that "continuous" does not mean in real time; instead, it means that the
programming device quickly polls the PLC for status information and displays it on your
screen, updating the display as quickly as your communications permit. Some rapidly
fluctuating values may not be identified and displayed on your screen. It is also possible
that the values change too quickly for you to read them. You can update the status once
if you switch the target system to the STOP operating state. Even if the target system is in
the STOP operating state, you can use the "Multiple cycles" command to view one or
more cycles. Using the "First cycle" function, you can view a single cycle - whereby the bit
memory of the first cycle is activated.

● Open the status chart window and enable the chart status to view continuous updates
when the target system is in the RUN operating status.

● Disable the chart status and use the "Single read" function if you wish to update the
status and you do not want to switch the target system into the STOP mode.

If you switch the target system into the STOP operating state and enable chart status,
then this also enables you to update the status. Furthermore, you can use the "Multiple
cycles" and "First cycle" functions while you are viewing a status chart.

13.4.1.6 Simulating process conditions
You can simulate process conditions by writing new values to addresses. To do so, use the
status chart.

13.4.1.7 Checking cross references and the elements used
If you test your program, it is possible that you wish to supplement, delete or change the
parameters.

In the window "Cross-references", you can determine how the parameters are presently
assigned in your program. This helps you to avoid assigning values twice.

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1104 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.4.2 Program status in the LAD program editor

13.4.2.1 Display program status

 Note

If, in the STOP mode, you have loaded a program into the target system, you must switch
the target system back into the RUN mode before you can display continuous updates of the
program status!

Procedure
To enable the program status, proceed in one of the following ways:

● Select the menu command "Test" > "Program status".

or

● To test, click in the function bar on the "Program status" button.

The program status is displayed in the program editor.

Boolean operations (contacts, coils) are displayed as colored blocks if the operand value is 1
(the bit is enabled).

The value of non-boolean addresses is displayed and updated as quickly as the
communication permits it.

 Note

If you enable the program status, many other functions in the PLC Programming Tool are
deactivated. For instance, you cannot change your program unless you disable the program
status again. Other functions, e.g. switching the display from one program editor to another,
mean that the program status is automatically disabled. If you wish to display the status
again, you must reselect the command "Program Status".

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1105

 Note

If you have problems when enabling the program status, please consider the following
prerequisites:
• You must have set up communication (so that you can load your program into the PLC).
• You must have selected the correct CPU version so that you can load your program into

the PLC.
• Your program must be able to be compiled error-free.
• Your program must be able to be loaded error-free into the target system.
• Your PLC must be in the RUN mode in order to be able to display continuous updates of

the status. Otherwise, only changes at the inputs and outputs (if they are available) are
displayed. As the program is not executed in the PLC, changes at the inputs and outputs
do not have the same effects as you would expect on the program logic in the displayed
program status.

• If you display another program area, which is not executed (e.g. an interrupt program or
subprogram or an area, which was skipped due to a jump operation), the status is not
displayed as the code is not interrogated.

13.4.2.2 Pause Program Status

Procedure
To pause the program status, proceed in one of the following ways:

● Select the "Test" > "Stop program status" menu command.

or

● To test, click the "Stop program status" button in the function bar.

The program status display is stopped in the program editor.

This can be necessary if values change too quickly for you to read them. In the execution
status this can also make a single execution of a program section, e.g. a subprogram,
visible. To do this, set the networks which are not being processed in the program editor and
pause the status display with the execution status activated. The next time the networks are
executed in the program editor, the status display is updated. The status update then stops.

For further information on the variant status, see Section "Execution status (Page 1107)".

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1106 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.4.2.3 Display properties
The program status can be executed for CPUs in the execution status mode and for all
CPUs in the end-of-scan status mode.

For information on the representation form, see Section "Adapting the program status display
(Page 1111)".

If you display the program status in LAD, the boolean operations are displayed as colored
blocks, if the value of the address is 1 (bit is enabled). The actual data value from other
addresses is displayed next to the address (or instead of the address). The display is
updated, if changes are read from the target system.

View example of the cycle end status in LAD:

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1107

13.4.2.4 Execution status

Function
If the execution status is activated for the program status, the status values at the time of
execution of the operations of a program cycle are acquired. The states of the local data
memory and the accumulators are displayed. The status values are updated and displayed
only if the PLC is in the RUN mode.

 Note

The execution status may only be run as the program status once for each CPU at any one
time. If you attempt to run the execution status in a different application, such as in a second
Programming Tool, which is connected to the same PLC, an error will be displayed.

 Note

If the same operand is used as the input and output parameter in a command, the value of
this operand can only be determined by the execution status at one time. In this case, it is
the value after execution of the command. The value after execution of the command is also
displayed for the input parameter and not the actual input value.

View example in the execution status:

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1108 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Color settings

Property Default color
The busbar is marked in color if the program is being scanned.
The signal flow in the diagrams is color-coded.
The command is color-coded if the contact is switched on.
The command is color-coded if the output is switched on.
Boxes and subprograms are color-coded if the command is enabled and is being executed without
error.

Blue

Timers and counters are color-coded if they have valid data.
For jump and jump mark commands the signal flow is color-coded if it is active. If it is not active,
this is color-coded differently.

Green

A color-code indicates that there is no signal flow, that the command is not being sampled (it is
skipped or not called) or that the PLC is in STOP mode.

Gray

If an command was executed incorrectly, the command is color-coded. Red

User color settings are possible, see Section "Adapting the program status display
(Page 1111)".

13.4.2.5 Cycle-end status

Function
If the execution status is deactivated for the program status, the cycle-end status processes
the status results. The status results are fetched and displayed at the end of the program
cycle. These results may not indicate all changes to the values in the PLC, because
subsequent program commands can write a value and overwrite it again before the end of
the program scan cycle is reached. The end-of-scan status shows the values that are
scanned at the end of multiple scan cycles. The states of the local data memory and the
accumulators are not displayed. If you switch the PLC into the STOP mode, a status update
is also possible.

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1109

View example in the end-of-scan status:

Color settings

Property Default color
Contacts and coils are marked in color if they are live or logically true. Blue

User color settings are possible, see Section "Adapting the program status display
(Page 1111)".

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1110 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note
The color marking for "Signal flow" does not mean that there is always a signal flow!

In the program status in LAD, the values are only displayed at the end of the cycle. This
means that it can be sometimes difficult to evaluate just what the "signal flow" display really
means. Boolean contacts and coils are shown color-coded in the program status in LAD
corresponding to the value of the bit addresses. If the bit value is 1 (bit is enabled), then the
operation is marked in color. However, this does not necessarily mean that the operation
was actually executed. There are several conditions that can result in an unclear signal flow
display:
• If, when evaluating the status, the target system is in the STOP mode, contacts can be

activated, however, coils and boxes are not switched-on because the program is not
being executed.

• If the program contains a jump operation, then it is possible that the networks that you are
investigating, do not display the expected results because the target system skipped
these operations while executing the program.

• It is a similar situation if you consider a subprogram. The boolean addresses can be
activated, however, the subprogram logic can only be executed if the subprogram is
activated. If the subprogram was not called from the main program, then no logic of the
networks was executed regardless of what the bit values of the operations display.

13.4.2.6 Display types of the status values
You can receive the status values of the program status continuously or as a snapshot.

Continuous
Open the program editor window and enable the program status in order to view continuous
updates of the program execution status when the PLC is in the RUN mode.

 Note

"Continuous" should not be understood as "real time"; it means that the programming device
scans the PLC for status information continuously and displays it on your screen, updating
the display as quickly as your communication setup permits. Some rapidly fluctuating values
may not be recorded and displayed on your screen. It is also possible that the values change
too quickly for you to read them.

Snapshot
If the PLC is in the STOP mode, you can use the "Debug" > "Multiple Scans…" menu
command to display the status values of one or more scan cycles or with the "Debug" >
"First Scan" menu command to display the status values of the first scan cycle.

For information about stopping the status values of the program status, see Section "Pause
Program Status (Page 1105)".

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1111

13.4.2.7 Adapting the program status display

Adapting the program status display in the program editor
Procedure:

1. Select the "Tools > Options" menu command.

2. Open the "Status" tab.

You can now edit the following settings:

● Zoom factor

To edit the scaling.

Shortcut key: You can use the shortcut key to quickly set the zoom factor in the program
status:

– Press the Ctrl key and the plus key in the numerical block of the keyboard to increase
the display size.

– Press the Ctrl key and the minus key in the numerical block of the keyboard to reduce
the display size.

● Field width and height

To edit the grid settings.

You can increase the field width so that information can be displayed which otherwise
would be cut-off. You can reduce the field height so that there is sufficient space so that
your networks can be shown on the screen.

● Signal flow

You can change the color, which shows that boolean addresses are activated (bit value is
1).

● Address display

You can display the addresses either within or outside the operations. You can also
display the status value without changing the name or the address.

● Execution status

You can activate the execution status.

 Note

If the execution status is activated for a CPU that does not support this status, the end-of-
scan status is automatically executed.

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1112 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Adapting the arrangement of the window in the PLC Programming Tool
In order to create more space for the window of the program editor, or to be able to display it
with another window, e.g. the status chart, the symbol table or the cross references, you can
adapt the arrangement and size of all of the windows shown in the PLC Programming Tool
as follows:

1. Select the window whose display you wish to adapt.

2. Reduce/increase the size and position the window using the mouse or using the
appropriate key combinations of your keyboard.

or

Use the commands from the menus "View" and "Window" that are available for the
window display.

13.4.3 Displaying the status in a status chart

13.4.3.1 Properties of a status chart

Application
After you have loaded your program into the target system, you can generate one or several
status charts to monitor and test program execution.

The program is continuously executed if the target system is in the RUN operating state. You
can enable the chart status so that the status values in the chart are continuously updated
(not interrupted). As an alternative, using the "Single read" function, you can generate a
"Snapshot" of the status values in the table without having to enable the status chart.

While you look at a status chart, you can also switch the target system into the STOP
operating state and only execute the first or a certain number of cycles in which you monitor
program execution.

 Note

Please note that you cannot change your chart if the chart status is enabled! Disable the
chart status if you wish to edit the chart.

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1113

Opening / enabling a status chart
Opening a status chart is not the same as enabling a status chart. You can open and
evaluate or change a status chart: However, if you do not execute the command "Single
read" (in the menu "Test" or in the function bar) or enable the chart status (in the menu
"Test" or in the function bar) no status information will be displayed in the "Actual value"
column.

Figure 13-6 Example of a status chart

"Single read" function
If you use the function "Single read" (this is only available when the chart status is disabled)
to evaluate a status chart, the actual values of the target system are accepted and displayed
in the column "Actual value". However, the values are not updated while the target system
executes the program.

"Chart status" function
If you enable the chart status (in the menu "Test" or in the function bar), the actual values of
the target system are regularly updated. If changes are received from the target system, then
the column "Actual value" is updated.

"New value" column
You can assign (write) certain values in the target system using the column (new value).

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1114 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.4.3.2 Open status chart
Open a status chart to evaluate or change the contents of the chart.

Procedure
● Click on the button "Status chart" in the navigation bar.

or

● Select the menu command "View" > "Status chart".

or

● Open the directory of the status chart in the operation tree and double click on the symbol
of a chart.

● If your project includes more than one status chart, using the tab for the status charts at
the lower edge of the window, you can switch over between the individual charts:

 Note

If you open a status chart, then the status is still not displayed. You must enable the status
chart so that the status information is updated (see "Enabling the status table (Page 1118)").

13.4.3.3 Working with several status charts

Inserting additional additional status charts
To insert additional status charts:

● In the operation tree, right click on the "Status chart" folder and in the pop-up menu,
select the command "Insert status chart".

or

● Open the window "Status chart" and call the "Edit" menu of right click and select the
command "Insert contents" > "Table".

Switching between the status charts
After you have inserted a new status chart, a new tab is displayed at the lower edge of the
window "Status chart":

If you wish to switch between the status tables:

● Click on the tab of the required status chart.

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1115

Displaying hidden tabs
Sometimes, a tab is hidden by the buttons on the righthand side that are used to scroll. If a
tab cannot be seen, proceed as follows:

● Drag the demarcation line between the tab area and the scroll buttons to display
additional tabs.

13.4.3.4 Creating a status chart
You can enter addresses in a status chart in order to monitor and control values from your
program. Values of timers and counters can be displayed as bits or words. If you wish to
display the value of a timer or a counter, then the state of the output is displayed (on or off).
If you wish to display the value of a timer or a counter as word, then the actual value used.

Procedure
To create a status chart, proceed as follows:

1. Enter the addresses of the required value in the "Address" column.

All memory types are valid with the exception of accumulators and data constants.

To edit an address field:

– Select the required field using the cursor keys or the mouse.

– If you enter data, existing data are deleted and the new characters are entered.

– The field is selected if you double click with the mouse or press key <F2>. You can
then move the cursor using the cursor keys to the position that you wish to edit.

2. If the element involves a bit (e.g. I, Q or M), then the bit format is displayed in the second

column. If the element involves a byte, word or double word, select the field in the column
"Format" and double click or press the space bar or ENTER in order to scroll through the
valid formats until the correct format is displayed.

 Note

You can select addresses in the symbol table and copy these into the status chart in
order to more quickly generate your table.

You can display the status a multiple number of times. You can classify the elements in
logical groups to display each group in an individual table. In this way, you avoid having
to scroll through extremely long lists.

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1116 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.4.3.5 Editing the status chart

Displays

To scroll through the possible data formats for a specific address:
• Select the field "Data format" and repeatedly press the enter key.

To display all available data formats:
• Open the drop-down list field.

Changing

To set the width of a column:
• Position the mouse pointer at the edge of a column until the appearance of the cursor

changes and then drag to increase or decrease the width of the column.

Selecting

To select a complete row (to cut or copy):
• Click the number of the row once.

To select the complete status chart:
• Click the upper lefthand corner once above the row numbers.

Inserting

To insert a new row:
1. Select a field or a row in the status chart
2. Open the menu "Edit" or click with the right mouse button on the field (in order that the

contact menu is displayed).
3. Select the command "Insert contents" > "Row".
The new row is inserted in the status chart above the cursor position. The subsequent rows
are shifted downwards by one row.

To insert a new row with the following address and the same data format:
• Select an address field and press the enter key.

To insert a row at the lower end of the status chart:
• Locate the cursor in a field in the last row and press the <arrow downwards> key.

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1117

Delete

To delete a field or a row:
1. Select the field or the row and click with the right mouse button.
2. Select the menu command "Delete" > "Selection"
If you delete a row, then the following rows shift upwards by one row.

Navigating

To jump into the next field of the table:
• Press the <TAB> key.

13.4.3.6 Data formats
The data format that you assign to a value defines how the value can be represented in the
status chart.

DB9002 is shown symbolically addressed in the diagram. The possible display formats for
variables, type INTEGER or WORD are shown using an example of block variable iData7.

 Note

Bit and binary values are both introduced by the number 2 and the # symbol.

Hexadecimal values are introduced by the number 16 and the # symbol.

Bit values have one digit. Binary values have eight digits.

Signed and unsigned values use the basis 10 (decimal).

P4: PLC for SINUMERIK 828D
13.4 Test and diagnostic functions

 Basic Functions
1118 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.4.3.7 Enabling the status table
Enable the status chart so that the status information can be updated.

Procedure
If you wish to continually update the status information in the status chart, enable the chart
status:

● To do this, select the menu command "Test" > "Chart status".

or

● Click on the appropriate button in the function bar.

If you only require a "snapshot" of the values, execute the function "Single read":

● Select the menu command "Test" > "Single read".

or

● Click on the appropriate button in the function bar.

 Note

When the chart status is enabled, then the "Single read" function is deactivated.

 Note

If the chart is still empty, then enabling the status chart has not effect: You must first create
your status chart by entering program values (addresses) in the "Address" column and you
must enter a data type in the "Format" column for each address (see "Creating a status chart
(Page 1115)" and "Data formats (Page 1117)").

13.4.3.8 Working with test functions in the status chart
You access the test functions (Single read, Write all,) using the menu "Test" or using the
function bar with the test functions.

Single read
Use single read if you require a "snapshot", i.e. a single update of the program status of all
values.

As default, the chart status continually interrogates the target system for status updates. If
you click on a status chart and the chart status is disabled, then the button for single read is
activated.

Write all
After you have entered the values in the column "New value" in the status chart, write the
required changes to the target system using the command "Write all".

 P4: PLC for SINUMERIK 828D
 13.4 Test and diagnostic functions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1119

13.4.4 Execute cycles
You can specify that the target system should process a certain number of cycles of your
program (from 1 cycle up to 65535 cycles). If you specify that the target system should
execute a certain number of cycles, then you can monitor the processing of the process
variables.

In the first cycle, the value of SM0.1 = 1 (ON).

Executing a single cycle
1. The target system must be in STOP operating state. If it is not already in STOP, switch

the target system into the STOP operating state.

2. Select the menu command "Test" > "First cycle".

Executing several cycles
1. The target system must be in STOP operating state. If it is not already in STOP, switch

the target system into the STOP operating state.

2. To execute several cycles, select the menu command "Test" > "Several cycles".

This opens the dialog box "Execute cycles":

3. Specify how many cycles should be executed, and confirm with "OK".

 Note

Ensure that you switch the target system back into the RUN operating state if you wish to
return to normal program processing:
• To do this, press the button "RUN" in the function bar.

or
• Select the menu command "Target system" > "RUN" window.

P4: PLC for SINUMERIK 828D
13.5 Data interface

 Basic Functions
1120 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.5 Data interface
Data is cyclically exchanged on one hand between the PLC and NC and and on the other
hand between the PLC and HMI. This especially means that the data received from HMI and
destined for the NC must be marshaled by the user program in order that these become
effective.
Data to the PLC are provided by the firmware at the start of the user program cycle. This
ensures, for example, that the signals from the NCK remain constant throughout a cycle.
Data from the PLC are transferred by the firmware to the NKC or HMI at the end of the user
program cycle.
All data of this interface are listed in the manual for SINUMERIK 828D, PPU.

13.5.1 PLC-NCK interface
These cyclic data include, e.g. status signals ("Program running", "Program interrupted"),
control signals (Start, Stop) and auxiliary and G functions.

Data are structured in signals for:
● Mode signals
● NC channel signals
● Axis and spindle signals
● General NCK signals
● Fast data exchange PLC-NCK

13.5.1.1 Mode signals

DB3000, 3100
The mode signals specified by the machine control panel or the HMI are transferred to the
NCK.
There actual states are signaled to the PLC from the NCK.

 P4: PLC for SINUMERIK 828D
 13.5 Data interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1121

13.5.1.2 NC channel signals

DB2500, 3200, 3300, 3500
The signals are structured as follows:

● Control/status signals with normal cyclic transfer, see "Mode signals (Page 1120) ".

● Auxiliary and G functions

These are entered in the interface DBs in two ways.

First, they are entered with the change signals.

The M signals M0 to M99 are additionally decoded and the associated interface bits are
set for one cycle.

For G commands, only the groups selected via machine data are entered in the interface
data block.

The S values are also entered together with the related M signals (M03, M04, M05) in the
spindlespecific interface. The axisspecific feedrates are also entered in the appropriate
axisspecific interface.

P4: PLC for SINUMERIK 828D
13.5 Data interface

 Basic Functions
1122 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.5.1.3 Axis and spindle signals

DB3200, 3300, 3700, 3800, 3900
The axis-specific and spindle-specific signals are divided into the following groups:

● Shared axis/spindle signals

● Axis signals

● Spindle signals

● Drive signals

The signals are transferred cyclically with the following exceptions. The exceptions include
axial F value, M and S value.

An axial F value is entered via the M, S, F distributor if it is transferred to the PLC during the
NC machining process.

The M and S value are also entered via the M, S, F distributor if one or both values requires
processing.

 P4: PLC for SINUMERIK 828D
 13.5 Data interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1123

13.5.1.4 General NCK signals

DB2600, 2700, 2800, 2900, 4500, 5300
● Setpoints to digital/analog inputs/outputs of the NCK

● Actual values from the digital/analog inputs/outputs of the NCK

● Keyswitch and Emergency Stop signals

● Ready and status signals of the NCK

P4: PLC for SINUMERIK 828D
13.5 Data interface

 Basic Functions
1124 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.5.1.5 Fast data exchange PLC-NCK

DB4900
Data block DB4900 with a size of 1024 bytes is used for fast information exchange between
the PLC and NCK.

The assignment of the area (structure) must be identically negotiated in the NC part program
and PLC user user program.

This data can be accessed from the NC part program using the commands $A_DBB[x],
$A_DBW[x], $A_DBD[x] and $A_DBR[x]; 0 ≤ x ≤ 1023 (see Parameter Manual, System
variables).

In this case, the alignment of the data must be selected corresponding to its format, i.e. a
Dword starts at a 4byte limit and a word at a 2byte limit. Bytes can be located at any offset
within the data field.

Data consistency is guaranteed for byte, word and Dword accesses. When transferring
several data, the consistency must be guaranteed on the user-side using semaphores, which
can be used to detect the validity or consistency of a block.

13.5.2 PLC-HMI interface

DB1700, 1800, 1900
These signals have already been specified in the diagrams of Chapter PLC-NCK interface
(Page 1120).

A reference is again made to what has been stated under Data interface (Page 1120):

Data received from the HMI and destined for the NC are not automatically entered into the
NC interface range. In fact, these signals and data must be marshaled by the user program.

It involves the following signals:

● Program selection via lists

● Messenger control command

● General signals from/to HMI

● Signals from/to the maintenance planner

● Signals from operator panel (retentive area)

● General selection/status signals from/to HMI (retentive area)

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1125

13.6 Function interface

13.6.1 Read/write NC variables

13.6.1.1 User interface
The PLC user program can read or write a maximum of eight NC variables simultaneously
via the NC/PLC interface "Read/write NC variable".

The following steps must be performed as part of a job (read/write):

1. Job specification (Page 1125)

2. Job management: Start job (Page 1127)

3. Job management: Waiting for end of job (Page 1127)

4. Job management: Job completion (Page 1128)

5. Job evaluation (Page 1129)

Flow diagram of a job: See "Job management: Flow diagram (Page 1128)"

13.6.1.2 Job specification

Variable-specific job interface
Each variable that is to be processed in a job, must be specified in the variable-specific job
interface via its parameters. The general identifiers are discussed in more detail later for
each variable that can be accessed from the interface.

DB120x 1) Reading/writing NC data (PLC → NCK)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB1000 Variable index
DBB1001 Area number
DBW1002 Line index, NCK variable x
DBW1004 Column index, NCK variable x
DBW1006 ---
DBD1008 Write: Data to NC variable x (data type of the variables: 1…4 bytes)2)
DBD1012 ---
DBD1016 Write: Data to NC variable x (REAL) 3)
DBD1020 Write: Data to NC variable x (DWORD/DINT) 3)
DBW1024 Write: Data to NC variable x (WORD/INT) 3)
DBB1026 Write: Data to NC variable x (BYTE) 3)

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1126 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB120x 1) Reading/writing NC data (PLC → NCK)
DBB1027 --- --- --- --- --- --- --- Write:

Data to
NC

variable x
3)

1) DB120x, with x = 0 ... 7 corresponds to variable 1 ... 8.
2) Only for predefined variables of the "Read/write NC variable" user interface
3) Only for variables from DB9910 NC_DATA

 Note
Channel-specific variables

When reading/writing channel-specific variables, only the variables of exactly one channel
may be addressed in a job.
Drive-specific variables

When reading/writing drive-specific variables, only the variables of exactly one SERVO drive
object may be addressed in a job. The SERVO drive object must be assigned to a machine
axis of the NC. The line index corresponds to the logical drive number.
Error case

In the event of an error, reading/writing variables from different drive objects, or
simultaneously from a channel and a drive object, an error message is output:

DB1200.DBX3000.1 == 1 (error occurred)

Example: Reading a variable of the "Location type" as the fourth variable
DB1203.DBB1000: 7
DB1203.DBB1001: -
DB1203.DBW1002: <Location number>
DB1203.DBW1004: <Magazine number>
DB1203.DBW1006: -
DB1203.DBD1008: -

Example: Writing a variable as the fourth variable
To write a data item to the NC, the value must be entered into the double word DBD1008:
DB1203.DBB1000: <Variable index>
DB1203.DBB1001: <Area number>
DB1203.DBW1002: <Column index>
DB1203.DBW1004: <Line index>
DB1203.DBW1006: -
DB1203.DBD1008: <value>

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1127

13.6.1.3 Job management: Start job
The following data must be written by the user to the global job interface:

DB120x 1) Reading/writing NC data (PLC → NCK)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 0 Job type Job: Start
DBB 1 Number of variables to be processed in the job
1) DB120x, with x = 0 ... 7 corresponds to variable 1 ... 8.

Job type

● Read variable: DB1200.DBX0.1 = 0

● Write variable: DB1200.DBX0.1 = 1

Start job

The start signal must be set to start the job via a specified number of variables:

DB1200.DBX0.0 = 1

 Note

A new job can only be started if the previous job was completed. See Section "Job
management: Waiting for end of job (Page 1127)".

The execution of a job may take several PLC cycles and vary depending on the utilization.
Therefore, the time for this function cannot be defined.

13.6.1.4 Job management: Waiting for end of job
The end of the job is always signaled back by the NC for the whole job in the global event
interface. The signals can only be read by the PLC user.

DB120x 1) Reading/writing NC data (NCK → PLC)
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 2000 Error in job Job

completed
1) DB120x, with x = 0 ... 7 corresponds to variable 1 ... 8.

Job status

● End of job without error

DB1200.DBX2000.0 == 1 AND DB1200.DBX2000.1 == 0

● End of job with error

DB1200.DBX2000.0 == 1 AND DB1200.DBX2000.1 == 1

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1128 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Possible error causes

● Number of variables (DB1200.DBB1) out of the valid range

● Variable index (DB1200.DBB1000) out of the valid range

● Simultaneous reading/writing of NC data from different servo drive objects

13.6.1.5 Job management: Job completion

Requirement

In order to complete the job, the start signal of the job must be reset from the PLC user
program after detection of the end of the job:

DB1200.DBX0.0 = 0

Feedback signal

As feedback, the NC resets the status signals:

● DB1200.DBX2000.0 == 0

● DB1200.DBX2000.1 == 0

The job is now completed.

13.6.1.6 Job management: Flow diagram

① Start job:
DB1200.DBX0.0 (start) = 1

② Waiting for end of job:
DB1200.DBX2000.0 (job completed) == 1 AND
DB1200.DBX2000.1 (error in job) == 0
⇒ Reset job request:
DB1200.DBX0.0 = 0 (start)

③ With DB1200.DBX0 0 == 0 (start), the job is completed by the basic PLC program:
DB1200.DBX2000.0 (job completed) = 0

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1129

④ Waiting for end of job:
DB1200.DBX2000.0 (job completed) == 0 AND
DB1200.DBX2000.1 (error in job) == 1
⇒ Perform error handling
⇒ Reset job request:
DB1200.DBX0.0 (start) = 0

⑤ With DB1200.DBX0.0 == 0 (start), the job is completed by the basic PLC program:
DB1200.DBX2000.1 (error in job) = 0

⑥ If DB1200.DBX0.0 (start) is reset before the end of job is signaled by the basic
PLC program, the job is executed without further feedback.

13.6.1.7 Job evaluation

Key statement
The variable-specific result interface must be evaluated for each variable processed in the
job.

DB120x 1) NC services (NC → PLC)

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 DBB3000
 Error has

occurred
Variable

valid
DBB3001 Access result (see "Access result" below)
DBW3002 ---
DBD3004 Read: Data from NC variable x (data type of the variables: 1…4 bytes)2)
DBD3008 ---
DBD3012 ---
DBD3016 Read: Data from NC variable x (REAL)3
DBD3020 Read: Data from NC variable x (DWORD / DINT)3)
DBW3024 Read: Data from NCK variable x (WORD / INT)3)
DBB3026 Read: Data from NCK variable x (BYTE)3)
DBB3027 --- --- --- --- --- --- --- Read:

Data from
NC variable

x 3)
1) DB120x, with x = 0 ... 7 corresponds to variable 1 ... 8.
2) Only for predefined variables of the "Read/write NC variable" user interface
3) Only for variables from DB9910 NC_DATA

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1130 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note
Channel-specific variables

When reading/writing channel-specific variables, only the variables of exactly one channel
may be addressed in a job.
Drive-specific variables

When reading/writing drive-specific variables, only the variables of exactly one SERVO drive
object may be addressed in a job. The SERVO drive object must be assigned to a machine
axis of the NC. The line index corresponds to the logical drive number.
Error case

In the event of an error, reading/writing variables from different drive objects, or
simultaneously from a channel and a drive object, an error message is output:

DB1200.DBX3000.1 == 1 (error occurred)

Access result

DBB3001

Value Meaning
0 No error
3 Access to object is not permitted
5 Invalid address

10 Object does not exist

Examples: Job status

Job without error

● DB1200.DBX3000.0 == 1 (variable valid) AND

● DB1200.DBX3000.1 == 0 (no error occurred)

Result:

● DB1200.DBB3001 == 0 (access result: "No error")

● DB1200.DBD3004 == <read value>

Job with error

● DB1200.DBX3000.0 == 0 (variable not valid) AND

● DB1200.DBX3000.1 != 0 (error occurred)

Result:

● DB1200.DBB3001: For possible error causes, see "Access result" above

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1131

13.6.1.8 Operable variables

Variable cuttEdgeParam

Compensation value parameters and cutting edge list with D numbers for a tool
The meanings of the individual parameters depend on the type of the tool in question.
Currently, 25 parameters are reserved for each tool edge (but only a part of them is loaded
with values). To be able to remain flexible for future extensions, it is not recommended to
use a fixed value of 25 parameters for calculation, but the variable value
'numCuttEdgeParams' (variable index 2).

For a detailed description of tool parameters, refer to Chapter W1: Tool offset (Page 1389).

 Variable cuttEdgeParam [r/w]
DB120x.DBB1000 1
DB120x.DBB1001 -
DB120x.DBW1002 (Cutting edge No. - 1) * numCuttEdgeParams + ParameterNr (WORD)
DB120x.DBW1004 T number (1...32000) (WORD)
DB120x.DBD1008 Write: Data to NCK variable x (data type of the variables: REAL)
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

Variable numCuttEdgeParams

Number of P elements of a cutting edge

 Variable numCuttEdgeParams [r]
DB120x.DBB1000 2
DB120x.DBB1001 -
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: WORD)

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1132 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Variable linShift

Translation of a settable work offset (channel-specific settable frames)
They only exist if MD18601 MM_NUM_GLOBAL_USER_FRAMES > 0.

There are the frame indices:

0: ACTFRAME = actual resulting work offset
1: IFRAME = actual settable work offset
2: PFRAME = actual programmable work offset
3: EXTFRAME = actual external work offset
4: TOTFRAME = actual total work offset = total of ACTFRAME and EXTFRAME
5: ACTBFRAME = actual total base frame
6: SETFRAME = actual 1st system frame (PRESET, scratching)
7: EXTSFRAME = actual 2nd system frame (PRESET, scratching)
8: PARTFRAME = actual 3rd system frame (TCARR and PAROT with orientable tool

carrier)
9: TOOLFRAME = actual 4th system frame (TOROT and TOFRAME)
10: MEASFRAME = result frame for workpiece and tool gauging
11: WPFRAME = actual 5th system frame (workpiece reference points)
12: CYCFRAME = actual 6th system frame (cycles)

The max. frame index is 12.

The value of numMachAxes is contained in the variable with variable index 4.

 Variable linShift [r]
DB120x.DBB1000 3
DB120x.DBB1001 -
DB120x.DBW1002 Frame index * numMachAxes + axis number
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1133

Variable numMachAxes

Number of the highest existing channel axis
If there are no gaps between channels, this corresponds to the number of existing axes in
the channel.

 Variable numMachAxes [r]
DB120x.DBB1000 4
DB120x.DBB1001 -
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: WORD)

Variable rpa

R-variables

 Variable rpa [r/w]
DB120x.DBB1000 5
DB120x.DBB1001 -
DB120x.DBW1002 R number + 1
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NCK variable x (data type of the variables: REAL)
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

Variable actLineNumber

Line number of the actual NC block (from 1)

0: Prior to program start
-1: Not available due to error
-2: Not available due to DISPLOF

 Variable actLineNumber [r]
DB120x.DBB1000 6
DB120x.DBB1001 -
DB120x.DBW1002 -

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1134 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Variable actLineNumber [r]
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: INT)

Variable magazine data: Location data

Location type ($TC_MPP2)

Location type: $TC_MPP2

Address Description Valid values
DB120x.DBB1000 Variables index 7
DB120x.DBB1001 - -
DB120x.DBW1002 Location number 1 … 31999
DB120x.DBW1004 Magazine number 1 … 9999
DB120x.DBD1008 - -

Result: Value of the NCK variable x > 0 Location type for virtual location
Data type: WORD 0 "match all" (buffer)

DB120x.DBW3004

 9999 undefined (no virtual location)

Location status ($TC_MPP4)

Location state: $TC_MPP4

Address Description Valid values
DB120x.DBB1000 Variables index 8
DB120x.DBB1001 - -
DB120x.DBW1002 Location number 1 … 31999
DB120x.DBW1004 Magazine number 1 … 9999
DB120x.DBD1008 - -

1 Blocked
2 free (<> occupied)
4 reserved for tool in buffer
8 reserved for tool to be loaded

16 occupied in left half location
32 occupied in right half location
64 occupied in upper half location

DB120x.DBW3004 Result: Value of the NCK variable x

128 occupied in lower half location

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1135

T No. of tool at this location ($TC_MPP6)

T number of the tool at this location: $TC_MPP6

Address Description Valid values
DB120x.DBB1000 Variables index 9
DB120x.DBB1001 - -
DB120x.DBW1002 Location number 1 … 31999
DB120x.DBW1004 Magazine number 1 … 9999
DB120x.DBD1008 - -
DB120x.DBW3004 Result: T number of the tool at this

location
T number of the tool

Variable r0078[1]
CO: Current actual value, torque-generating [Arms]

Index: [1] = Smoothed with p0045

 Variable r0078[0...1] [r]
DB120x.DBB1000 10
DB120x.DBB1001 Number of the drive module
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

Variable r0079[1]
CO: Torque setpoint at the output of the speed controller (before clock cycle interpolation)
[Nm]

Index: [1] = Smoothed with p0045

 Variable r0079[0...1] [r]
DB120x.DBB1000 11
DB120x.DBB1001 Number of the drive module
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1136 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Variable r0081
CO: Torque utilization in percent

 Variable r0081 [r]
DB120x.DBB1000 12
DB120x.DBB1001 Number of the drive module
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

Variable r0082[1]
CO: Active power actual value [kW]

Index: [1] = Smoothed with p0045

 Variable r0082[0…2] [r]
DB120x.DBB1000 13
DB120x.DBB1001 Number of the drive module
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 -
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

Variables: Temperature compensation

Variable TEMP_COMP_ABS_VALUE (SD43900)
Position-independent temperature compensation value

 Variable TEMP_COMP_ABS_VALUE [r/w]
DB120x.DBB1000 14
DB120x.DBB1001 No. of the axis (1, 2, ...)
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NCK variable x (data type of the variables: REAL)
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1137

Variable TEMP_COMP_SLOPE (SD43910)
Gradient for position-dependent temperature compensation

 Variable TEMP_COMP_SLOPE [r/w]
DB120x.DBB1000 15
DB120x.DBB1001 No. of the axis (1, 2, ...)
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NCK variable x (data type of the variables: REAL)
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

Variable TEMP_COMP_REF_POSITION (SD43920)
Reference position for position-dependent temperature compensation

 Variable TEMP_COMP_REF_POSITION [r/w]
DB120x.DBB1000 16
DB120x.DBB1001 No. of the axis (1, 2, ...)
DB120x.DBW1002 -
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NCK variable x (data type of the variables: REAL)
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

Variable TOOL_TEMP_COMP (SD42960[...])
Temperature compensation referred to the tool

 Variable TEMP_COMP_REF_POSITION [r/w]
DB120x.DBB1000 17
DB120x.DBB1001 -
DB120x.DBW1002 Index + 1 (1, 2, 3)
DB120x.DBW1004 -
DB120x.DBD1008 Write: Data to NCK variable x (data type of the variables: REAL)
DB120x.DBW3004 Read: Data from NCK variable x (data type of the variables: REAL)

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1138 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.6.1.9 Specifying selected NC variables
The selected NC variables are specified via the DB9910 data block (selected NC variable).
The length of the data block depends on the number of NC variables selected in the
variables list. The variables list can contain maximum 42 selected NC variables. The
DB9910 data block contains the data for variable addressing and data type conversion for
each NC variable.

DB9910 (read selected NC variable)
 (Interface: PLC → NC)
DBB 0 Variable index Variable 1
DBB 1 Syntax ID
DBB 2 Range
DBB 3 Unit
DBW 4 Column index
DBW 6 Line index
DBB 8 Block
DBB 9 Number of lines
DBB 10 Type
DBB 11 Length

....
DBB 492 Variable index Variable 42
DBB 493 Syntax ID
DBB 494 Range
DBB 495 Unit
DBW 496 Column index
DBW 498 Line index
DBB 500 Block
DBB 501 Number of lines
DBB 502 Type
DBB 503 Length

Variable index
The variable index refers to the name of the NC variable. The variable index consists of a
start value 100 and the offset of the NC variable in the list (0 to 41).

The variable index is entered as DBB1000 A_VarIdx in the DB120x RW_NCDx user
interface.

The comment contains the following data record with space as separator:
● Range
● Block
● VariablenName
● VarType
● Column
● VarAnzByte

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1139

Extended user interface
The data test in data blocks means the value of a variable can be written to an address in
the data block that has the same type, e.g. a REAL value can be written only to a REAL
address (e.g. with MOV_R). The "Read/write NC variable " user interface contains currently
only one address of the DWORD type for the value to be written (DBD1008). This means a
REAL value can be written only via a temporary variable, flag or accumulator. The same is
also true for reading (DBD3004). For this reason, the "Read/write NC variable" user interface
is extended. For reading and writing one address for each type is added: REAL,
DWORD/DINT, WORD/INT, BYTE and BOOL (DBD1016 … DBB1027 or
DBD3016 … DBB3027). These new addresses are used by the PLC firmware only for those
variables selected with the NC variables editor (see "Editing NC variables in the PLC
Programming Tool (Page 1086)") and entered DB9910 NC_DATA when compiled (variable
index ≥ 100). The NC variables currently defined in the "Read/write NC variable" user
interface continue to use the old addresses (DBD1008 or DBD3004).

13.6.2 Program instance services (PI services)

13.6.2.1 User interface

Job specification
PI services are specified via their job interface (DB1200 from offset 4000) via their
parameter.

DB1200 PI service [r/w]
 PLC → NCK interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 4000 Start
DBB 4001 PI index
DBB 4002
DBB 4003
DBW 4004 PI parameter 1
DBW 4006 PI parameter 2
DBW 4008 PI parameter 3
DBW 4010 PI parameter 4
DBW 4012 PI parameter 5
DBW 4014 PI parameter 6
DBW 4016 PI parameter 7
DBW 4018 PI parameter 8
DBW 4020 PI parameter 9
DBW 4022 PI parameter 10

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1140 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

PI index
DB1200.DBB4001 specifies the specific PI service.

PI parameter n
From DB1200.DBW4004, PI parameter n must be specified for the specific service.

Start
DB1200.DBX4000.1 = 1: Job is started for the specified number of variables.

Job feedback
The PLC firmware provides feedback as to whether the started PI service was successful or
not successful in the result interface (DB1200 from offset 5000).

The job end is signaled using one of two signals:

DB1200.DBX5000.0 == 1 or DB1200.DBX5000.1 == 1

The signals are written by the PLC operating system; therefore, they can only be read by the
user. A job has been completed if both acknowledgement signals are zero. They become
zero if the user resets the signal "Start" (DB1200.DBX4000.1) after the job end.

DB1200 PI service [r]
 NCK → PLC interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 5000 Error in job Job

completed
DBB 5001
DBB 5002

Job completed
DB1200.DBX5000.0 = 1 job processing completed without error.

DB1200.DBX5000.0 = 0 otherwise is zero, if the user resets "Start".

Error in job
DB1200.DBX5000.1 = 1 job had an error, execution terminated.

DB1200.DBX5000.1 = 0 otherwise is zero, if the user resets "Start".

Possible error causes
● Index of the PI service (DB1200.DBB4001) outside the valid range

● Parameter error

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1141

PI services: Cycle diagram

① User sets the signal "Start", job execution starts.
② After the PLC firmware signals "Job completed", the user resets the signal "Start".
③ By resetting the signal "Start", the PLC firmware resets the signal "Job completed".
④ After the PLC firmware signals "Error in job", the user resets the signal "Start".
⑤ By resetting the signal "Start", the PLC firmware resets the signal "Error in job".
⑥ If the user accidentally resets the signal "Start" before one of the signals "Job completed" or

"Error in job" is received, then the result signals for this job are not updated. However, the job is
executed.

13.6.2.2 PI services

PI service ASUB

Function
With the "ASUB" PI service, it is possible to assign one program each to the interrupt
numbers 1 and 2 from the PLC. These programs must be present in the NC in the machine
manufacturer directory (CMA) with fixed program names:

Interrupt: Directory Program name

1 _N_CMA_DIR PLCASUP1_SPF
2 _N_CMA_DIR PLCASUP2_SPF

If the above mentioned programs are not available, they must be created in the machine
manufacturer directory (CMA) of the NC. A power on reset must then be performed on the
NC.

The PI service must only be executed once after a restart. The assignment of the interrupt to
the program is retained.

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1142 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

PI service: ASUB
Address Description Valid values
DB1200.DBW4001 PI index 1, 2
DB1200.DBW4004 LIFTFAST 0, 1
DB1200.DBW4006 BLSYNC 0, 1

PI index Function Interrupt priority

1 Assignment: Interrupt 1 to _N_CMA_DIR/PLCASUP1_SPF 1
2 Assignment: Interrupt 2 to _N_CMA_DIR/PLCASUP2_SPF 2

Supplementary conditions

● The PI service may only be executed when the channel is in the RESET state.

● If a "run-up" is configured as the initiating event for the event-driven program call, the PI
service must only be started after the end of the event-driven program.

PI service LOGOUT

Reset password
The password last transferred to the NCK is reset.

PI index Function
3 Reset password

Relevant PI parameters for PI service 3
None

PI service _N_DASAVE

Service to safe data from SRAM to FLASH

PI index Function
4 Data save from SRAM to FLASH

Relevant PI parameters for PI service 4
None

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1143

PI service TMMVTL

Function
Using the PI service TMMVTL, it is possible to initiate a job from the PLC to relocate a tool.
After an error-free PI start, the TM executes an empty location search in the target magazine
for the tool in the specified source location. The PLC then receives a job to relocate the tool
via DB41xx.DBB0.

PI service: TMMVTL

Address Description Valid values
DB1200.DBW4001 PI index 5
DB1200.DBW4004 Tool number -1, 1 … 31999
DB1200.DBW4006 Source location number -1, 1 … 31999
DB1200.DBW4008 Source magazine number -1, 1 … 9999
DB1200.DBW4010 Target location number -1, 1 … 31999
DB1200.DBW4012 Target magazine number -1, 1 … 9999

● The tool can be specified either using a T number or by means of the location and
magazine numbers. An unused specification has the value -1.

● With the target location number = -1, a search is made in the complete magazine for an
empty location for the tool according to the search strategy that has been selected. If a
target location is specified, then a check is made as to whether the location with the
specified target location number is free and suitable for the particular tool.

● For a target magazine number = -1, a search is made in a buffer for the tool
corresponding to the assignment obtained from $TC_MDP2.

Examples

● When using buffers to return the tool (for example Toolboy and/or shifter), an explicit
empty location search in the magazine may be needed during the asynchronous return
transport. In this case,the PLC does not have to note the original location, this PI service
searches for a suitable location.

● A tool should be moved from a background magazine to the foreground magazine.

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1144 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.6.3 PLC user alarms

13.6.3.1 User interface

 Note

Although the name user "alarms" is used in the following, it is only defined as to whether it
involves a message or an alarm when entering the particular cancel criterion in bits 6 and 7
of machine data MD14516[x].

The user alarms are created in the HMI and are prepared for automatic processing. The user
interface of the DB1600 permits:

● these 248 user alarms of numbers 700000 to 700247 to be activated,

● to be provided with an additional numerical parameter, and

● to be activated and acknowledged as well as

● to evaluate the system reactions initiated by it.

Activation interface of the user alarms
Each user alarm is activated using its assigned activation bit. These bits are set in the
activation interface (DB1600 from offset 0):

A new user alarm is activated with a 0/1 edge of the particular bit.

DB1600 Activating alarm [r/w]
Data block PLC → HMI interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
 Activation of Alarm No.
DBB 0 700007 700006 700005 700004 700003 700002 700001 700000
 Activation of Alarm No.
DBB 1 700015 700014 700013 700012 700011 700010 700009 700008
 Activation of Alarm No.
DBB 2 700023 700022 700021 700020 700019 700018 700017 700016
 Activation of Alarm No.
DBB 3 700031 700030 700029 700028 700027 700026 700025 700024
 Activation of Alarm No.
DBB 4 700039 700038 700037 700036 700035 700034 700033 700032
 Activation of Alarm No.
DBB 5 700047 700046 700045 700044 700043 700042 700041 700040
 ….
…
 Activation of Alarm No.
DBB 30 700247 700246 700245 700244 700243 700242 700241 700240

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1145

Variables interface of the user alarms
Each user alarm can be given a variable as parameter. One double word each is reserved
for this purpose in the variable interface from offset 1000. As a consequence, valid offsets
must be divisible by 4.

DB1600 Variable for alarm [r32/w32]
Data block PLC → HMI interface

DBD 1000 Variable for alarm 700000
DBD 1004 Variable for alarm 700001
DBD 1008 Variable for alarm 700002
 ...
DBD 1980 Variable for alarm 700245
DBD 1984 Variable for alarm 700246
DBD 1988 Variable for alarm 700247

Alarm response and cancel criterion

Alarm response and cancel criterion
These two terms involve the conception and configuration of user alarms. The following
attributes can be specified for each alarm:

● Alarm response: How the controller responds when an error occurs.

● Cancel criterion: What must be done to cancel the alarm again or acknowledge it. The
cancel criterion simultaneously defines the alarm priority.

The setpoints are configured in the following machine data and their actual values are
signaled together in one byte of the user interface: The setpoints are configured bit-coded in:
MD14516[x], 0 ≤ x ≤ 247; whereby x = user alarm number - 700000

Active alarm response and cancel criterion
The present active alarm responses (i.e. the actual responses) and the active cancel criteria
can be globally read out from the interface:

DB1600 Active alarm response [r]

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 2000 POWER

ON
Interrupt

with
DB1600

DBX3000.0

 PLC STOP Emergency
stop

Feedrate
disable for

all axes

Read-in
disable

NC start
disable

DBB 2001

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1146 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB1600 Active alarm response [r]
DBB 2002
DBB 2003

One bit is set if for at least one active alarm the corresponding response or the
corresponding cancel criterion is configured. It is canceled, if this response/cancel criterion is
no longer configured for any of the alarms present.

The codings of the cancel criteria and the corresponding priorities are:

Bit 7 Bit 6 User alarm is acknowledged by Type Priority
0 0 Resetting of the activation bit Message Low
0 1 Acknowledgement in DB1600.DBX3000.0 (refer

below)
Alarm Medium

1 0 Power on Alarm High
1 1 Reserved (internally evaluated as {1, 0})

 Note

If none of bits 0 to 4 are set for an alarm/message in the machine data, then this defines that
it involves a so-called "display message" that has no effect on the system. This especially
indicates that also bits 6 and 7 of the corresponding machine data are evaluated.

Active alarm responses and cancel criteria of the user alarms
The present active alarm responses (i.e. the actual responses) and the active cancel criteria
can be globally read-out of the interface.

DB1600 Active alarm response [r]
Data block
 Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 2000 POWER

ON
Interrupt

with
DB1600

DBX3000.0

 PLC STOP Emergency
stop

Feedrate
disable for

all axes

Read-in
disable

NC start
disable

DBB 2001
DBB 2002
DBB 2003

One bit is set if for at least one active alarm the corresponding response or the
corresponding cancel criterion is configured. It is canceled, if this response/cancel criterion is
no longer configured for any of the alarms present.

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1147

Acknowledgement interface of the user alarms

Requirement
Requirement to acknowledge a user alarm is that the corresponding activation bit is reset.

● Messages with cancel criterion {0,0} then disappear automatically from the display.

● Alarms with cancel criterion {0,1} are canceled by the acknowledgement bit Ack.

● Alarms with cancel criterion {1,0} are not influenced when the acknowledgement bit is set
and can only be canceled by a Power On.

DB1600 Alarm acknowledgement [r/w]

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB3000 Ack
DBB3001
DBB3002
DBB3003

Interface to HMI.
The PLC can transfer eight messages or alarms for display on the HMI, which are displayed
in the sequence that they occur.

When additional messages/alarms occur, the first seven are kept in the HMI, and the latest
message or the latest alarm is displaced from one that has just occurred according to the
following rules:

● System message/alarm displaces user message/alarm

● Messages/alarms with a higher priority displace those of a lower priority.

The first seven messages/alarms are kept in the display because it is very probable that
these define the cause of the problem and the following are just of a secondary nature.
However, if one or several messages/alarms are acknowledged and therefore cleared, then
a corresponding number of alarms/messages that have been received move up in the HMI.

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1148 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.6.4 PLC axis control

13.6.4.1 Overview

Target
The PLC can control eight axes or spindles via data blocks of the user interface; the
axis/spindle is specified by its DB number:

● DB380x PLC → NCK interface

● DB390x NCK → PLC interface

● DB390x Axis index: 0 ≤ x ≤ 7, whereby axis index = axis number-1

The following functions are supported:

● Positioning axes

● Spindle positioning

● Rotate spindle

● Oscillate spindle

● Indexing axes

References:

● Function Manual, Extended Functions; Positioning Axes (P2) and Indexing axes (T1)

● Function Manual, Basic Functions; Spindles (S1)

Precondition
The axis to be controlled must be assigned to the PLC. An axis can be interchanged
between NC and PLC using the user interface "Axis interchange"
(DB3800.DBB8/DB3900.DBB8).

Function start
Each function is activated by the positive edge of the corresponding "Start" signal. This
signal must remain a logical "1" until the function has been positively or negatively
acknowledged (e.g. using Position reached = "1" or Error = "1"). The signal "Positioning axis
active" = "1" indicates that the function is active and that the output signals are valid.

Interrupt
It is notpossible to interrupt the function by resetting the start signal, but only via other
interface signals (using the axis-specific signal Delete distance to go/spindle reset, DB380x
DBX2.2).

The axis interface returns axis status signals that may need to be evaluated (e.g. exact stop,
travel command, → DB390x).

If the axis/spindle is being traversed via the NC program when the PLC axis control is called
(travel command present), then the function is only started after this movement has ended.
No error code is output in this situation.

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1149

Axis disable
With the axis disable set, an axis controlled via PLC axis control will not move. Only a
simulated actual value is generated. (Behavior as with NC programming).

13.6.4.2 User interface: Preparing the NC axis as PLC axis
Firstly, the axis/spindle must be requested from the PLC. This is realized via the following
user interface:

Common signals to axis/spindle (excerpt)
Request axis or spindle:

DB3800 ... 3807 Signals to axis/spindle [r/w]
Data block PLC → NCK interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 0008 Request

PLC axis/
spindle

 Activation
signal when
this byte is
changed

 Request
NC axis/
spindle

Every change to a request bit at the interface (DB380x.DBX0008.7 or bit
DB380x.DBX0008.0) must be signaled to the NC using a 0→1 edge of the activation signal
(bit DB380x.DBX0008.4). This activation signal should be reset again after one cycle.

General signals from axis/spindle (excerpt)
State interrogation is possible via the interface DB390x.DBB8. However, for simulation, the
axis machine data MD30350 MA_SIMU_AX_VDI_OUTPUT must be set.

DB3900 ... 3907 Signals from axis/spindle [r]
Data block NCK → PLC interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 0008 PLC axis/

spindle
Neutral

axis/
spindle

Axis
interchange

possible

New type
requested
from PLC

 NC axis/
spindle

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1150 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Request and relinquish PLC axis

13.6.4.3 User interface: Functionality
The two tables provide an overview of the available interface signals. The precise description
of the signals and the explanation of what signals are relevant for the individual functions are
explained in the following.

Signals to PLC axis

DB3800...3807 Signals to PLC axis [r/w]
Data block PLC → NCK interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB3000 Start

positioning
axis

Start
spindle

positioning

Start
spindle
rotation

Start
spindle

oscillation

- - - -

DBB3001 - - Stop
spindle
rotation

Stop
spindle

oscillation

- - - -

DBB3002 Automatic
gear

selection

Constant
cutting rate

Direction of
rotation as

for M4

- Handwheel
override

Traversing
dimension,
inches (not

metric)

Distance
condition,
shortest
distance

(DC)

Distance
condition,

incremental
(IC))

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1151

DB3800...3807 Signals to PLC axis [r/w]
DBB3003 Indexing

position
- - - - - Distance

condition,
abs. pos.
direction
(ACP)

Distance
condition,
abs. neg.
direction
(ACN)

DBD3004 Position (REAL, with indexing axis: DINT)
DBD3008 Feedrate velocity (REAL), if < 0, the value is taken from machine data POS_AX_VELO

The bits of the distance conditions and the direction of rotation definition define the particular
positioning or traversing mode, only one of the bits must be set:

Meaning Distance condition to be set
Positioning absolute No mode bit set
Positioning incremental DBB3002.0 = 1
Positioning shortest distance DBB3002.1 = 1
Positioning absolute, positive approach direction DBB3003.1 = 1
Positioning absolute, negative approach direction DBB3003.0 = 1
Direction of rotation as for M4 DBB3002.5 = 1

The remaining bits are used to specify and start the particular function, these function bits as
well as position and velocity are explained in more detail for the individual functions.

Signals from PLC axis

DB3900...3907 Signals from PLC axis [r]
Data block PLC → NCK interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB3000 Positioning

axes active
Position
reached

 - - - Error while
traversing

Axis cannot
be started

DBB3001 - - - - - - - -
DBB3002 - - - - - - -
DBB3003 Error number

The following requirements must be satisfied in order to use the functions listed below:

● The axis or spindle is correctly assigned to the PLC.

● Controller and pulse enable are set.

● After setting all of the control signals, only one of the start signals is set in
DB380x.DBB3000.

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1152 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.6.4.4 Spindle positioning

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0|1
DBX3002.1 Shortest path 0|1
DBX3003.0 Absolute, negative direction 0|1
DBX3003.1 Absolute, positive direction 0|1

Only one of the bits must be set, if all bits are 0, then
this means absolute positioning.

DBD3004 Setpoint position/setpoint distance REAL For "incremental": Setpoint distance
DBD3008 Feedrate REAL If = 0, the value from MD35300

$MA_SPIND_POSCTRL_VELO (position control
activation speed) is taken

DBX3000.6 Start 0|1 Reset does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset 0|1 Interrupt signal, exits the function

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active Also 1 when override = 0 or position setpoint reached

when start = 1
DBX3000.6 Position reached 1: Position setpoint reached with "Exact stop fine"
DBX3000.0 Spindle cannot be started
DBX3000.1 Error while traversing 1: Error during traversing, evaluate error number in DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary 1: if n < nmin

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1153

① Function activated by user with a positive edge of Start.
② Positioning axis active message shows that the function is active and that the output signals are

valid, Position reached and Axis stationary may be withdrawn. For path specification = 0, the
signals are not canceled.

③ When the position is reached this is signaled (Position reached), Spindle stationary is set.
④ The user then withdraws Start.
⑤ The Positioning axis active signal is then reset.
⑥ The user immediately resets the Start signal with receipt of the Positioning axis active signal.
⑦ Positioning is aborted by setting Spindle reset. This signal must be present for at least one PLC

cycle.
⑧ The spindle comes to a standstill (Spindle stationary), the Fault signal is set. (In this case, fault

number 115 is output.)

13.6.4.5 Rotate spindle

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0
DBX3002.1 Shortest distance 0
DBX3002.5 Direction of rotation as for M4 0|1
DBX3003.0 Absolute, negative direction 0
DBX3003.1 Absolute, positive direction 0

Direction of rotation as for M4:
1: Direction of rotation specified by M4
0: Direction of rotation specified by M3

DBD3008 Feedrate velocity REAL Spindle speed

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1154 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB380x PLC → NCK control signals Valid
values

Remark

DBX3000.5 Start spindle rotation 0|1
DBX3001.5 Stop spindle rotation 0|1

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active 1: for start or stop == 1
DBX3000.6 Position reached 1: Function was started without an error
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary

① Function activated by user with a positive edge of Start.
② Signals Positioning axis active and Position reached are signaled back, Position reached is in

this case irrelevant.
③ The user stops spindle rotation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1155

13.6.4.6 Oscillate spindle

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0
DBX3002.1 Shortest distance 0
DBX3002.5 Direction of rotation as for M4 0
DBX3003.0 Absolute, negative direction 0
DBX3003.1 Absolute, positive direction 0

It is not permissible that any of the bits are set.

DBD3004 Setpoint gear stage:
Values 0, 1, 2, 3, 4, 5

REAL MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 0
0-5: Oscillation
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 1
0: Oscillation
1: Oscillation with gear stage change M41
2: Oscillation with gear stage change M42
3: Oscillation with gear stage change M43
4: Oscillation with gear stage change M44
5: Oscillation with gear stage change M45

DBD3008 Feedrate velocity REAL When oscillating, no significance! The oscillation speed
is taken from machine data MD35400,
$MA_SPIND_OSCILL_DES_VELO.

DBX3000.5 Start spindle oscillation 0|1
DBX3001.5 Stop spindle oscillation 0|1

It is not permissible that the start directly follows a stop.
Stop must first be reset (both 0).

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active 1: for start or stop == 1
DBX3000.6 Position reached 1: after start
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBX3000.0 Axis cannot be started 1: Error when starting, evaluate error number in DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1156 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

① Function activated by user with a positive edge of Start.

Note: This is only possible when the Positioning axis active signal is reset!
② Signals Positioning axis active and Position reached are signaled back, Position reached is in

this case irrelevant and is therefore not shown.
③ The user stops spindle oscillation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.
⑦ Stop is reset in the user program and Start is again set, incorrectly, in the same PLC cycle. This

means that Positioning axis active is not reset, but...
⑧ ...the Axis cannot be started signal is set (error number 106).

13.6.4.7 Indexing axis

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0|1
DBX3002.1 Shortest distance 0|1
DBX3002.5 Direction of rotation as for M4 0
DBX3003.0 Absolute, negative direction 0|1
DBX3003.1 Absolute, positive direction 0|1

Only one of the bits must be set, if all bits are 0, then
this means absolute positioning.

DBD3003.7 Indexing position 1 Indexing axis ON
DBD3004 Setpoint position/setpoint distance DINT for "incremental": Setpoint distance

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1157

DB380x PLC → NCK control signals Valid
values

Remark

DBD3008 Feedrate velocity REAL if = 0, the value is taken from machine data
POS_AX_VELO (unit as set in machine data).

DBX3000.7 Start positioning axis 0|1 Reset does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset 0|1 Interrupt signal, exits the function

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active Also 1, if override = 0 or setpoint position reached.
DBX3000.6 Position reached 1: Setpoint position reached with "Exact stop fine".
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary

① Function activated by user with a positive edge of Start.

Note: This is only possible when the Positioning axis active signal is reset!
② Signals Positioning axis active and Position reached are signaled back, Position reached is in

this case irrelevant.
③ The user stops spindle oscillation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1158 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.6.4.8 Positioning axis metric

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0|1
DBX3002.1 Shortest distance 0|1
DBX3002.5 Direction of rotation as for M4 0
DBX3003.0 Absolute, negative direction 0|1
DBX3003.1 Absolute, positive direction 0|1

Only one of the bits must be set, if all bits are 0, then
this means absolute positioning.

DBD3002.2 Traversing dimension inch 0 Traversing dimension, metric
DBD3002.3 Handwheel override 0 Override OFF
DBD3004 Setpoint position/setpoint distance REAL for "incremental": Setpoint distance
DBD3008 Feedrate velocity REAL if = 0, the value is taken from machine data

POS_AX_VELO (unit as set in machine data).
DBX3000.7 Start positioning axis 0|1 Reset does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset 0|1 Interrupt signal, exits the function

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active Also 1, if override = 0 or setpoint position reached.
DBX3000.6 Position reached 1: Axis has reached the setpoint position.
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1159

① First function activation using positive edge of Start.
② Positioning axis active = 1 shows that the function is active and that the output signals are valid,

Position reached and Axis stationary are possibly withdrawn.
③ Positive acknowledgement Position reached = 1 and Positioning axis active = 1
④ Reset of function activation after receipt of acknowledgment
⑤ Signal change via function
⑥ Positioning is interrupted by delete distance to go, signal duration min. 1 PLC cycle.
⑦ The signals Position reached and Error are reset, the Error number can be read (in this case,

30).

13.6.4.9 Positioning axis inch

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0|1
DBX3002.1 Shortest distance 0|1
DBX3002.5 Direction of rotation as for M4 0
DBX3003.0 Absolute, negative direction 0|1
DBX3003.1 Absolute, positive direction 0|1

Only one of the bits must be set, if all bits are 0, then
this means absolute positioning.

DBD3002.2 Traversing dimension inch 1 Traversing dimension inch
DBD3002.3 Handwheel override 0 Override OFF
DBD3004 Setpoint position/setpoint distance REAL for "incremental": Setpoint distance
DBD3008 Feedrate velocity REAL if = 0, the value is taken from machine data

POS_AX_VELO (unit as set in machine data).

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1160 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB380x PLC → NCK control signals Valid
values

Remark

DBX3000.7 Start positioning axis 0|1 Reset does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset 0|1 Interrupt signal, exits the function

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active Also 1, if override = 0 or setpoint position reached.
DBX3000.6 Position reached 1: Axis has reached the setpoint position.
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number

① First function activation using positive edge of Start.
② Positioning axis active = 1 shows that the function is active and that the output signals are valid,

Position reached and Axis stationary are possibly withdrawn.
③ Positive acknowledgement Position reached = 1 and Positioning axis active = 1
④ Reset of function activation after receipt of acknowledgment
⑤ Signal change via function
⑥ Positioning is interrupted by delete distance to go, signal duration min. 1 PLC cycle.
⑦ The signals Position reached and Error are reset, the Error number can be read (in this case,

30).

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1161

13.6.4.10 Positioning axis metric with handwheel override

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0|1
DBX3002.1 Shortest distance 0|1
DBX3002.5 Direction of rotation as for M4 0
DBX3003.0 Absolute, negative direction 0|1
DBX3003.1 Absolute, positive direction 0|1

Only one of the bits must be set, if all bits are 0, then
this means absolute positioning.

DBD3002.2 Traversing dimension inch 0 Traversing dimension, metric
DBD3002.3 Handwheel override 1 Override ON
DBD3004 Setpoint position/setpoint distance REAL for "incremental": Setpoint distance
DBD3008 Feedrate velocity REAL if = 0, the value is taken from machine data

POS_AX_VELO (unit as set in machine data).
DBX3000.7 Start positioning axis 0|1 Reset does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset 0|1 Interrupt signal, exits the function

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active Also 1, if override = 0 or setpoint position reached.
DBX3000.6 Position reached 1: Axis has reached the setpoint position.
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1162 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

① First function activation using positive edge of Start.
② Positioning axis active = 1 shows that the function is active and that the output signals are valid,

Position reached and Axis stationary are possibly withdrawn.
③ Positive acknowledgement Position reached = 1 and Positioning axis active = 1
④ Reset of function activation after receipt of acknowledgment
⑤ Signal change via function
⑥ Positioning is interrupted by delete distance to go, signal duration min. 1 PLC cycle.
⑦ The signals Position reached and Error are reset, the Error number can be read (in this case,

30).

13.6.4.11 Positioning axis inch with handwheel override

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0|1
DBX3002.1 Shortest distance 0|1
DBX3002.5 Direction of rotation as for M4 0
DBX3003.0 Absolute, negative direction 0|1
DBX3003.1 Absolute, positive direction 0|1

Only one of the bits must be set, if all bits are 0, then
this means absolute positioning.

DBD3002.2 Traversing dimension inch 1 Traversing dimension inch
DBD3002.3 Handwheel override 1 Override ON
DBD3004 Setpoint position/setpoint distance REAL for "incremental": Setpoint distance
DBD3008 Feedrate velocity REAL if = 0, the value is taken from machine data

POS_AX_VELO (unit as set in machine data).

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1163

DB380x PLC → NCK control signals Valid
values

Remark

DBX3000.7 Start positioning axis 0|1 Reset does not result in a stop!
DBX2.2 Delete distance-to-go, spindle reset 0|1 Interrupt signal, exits the function

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active Also 1, if override = 0 or setpoint position reached.
DBX3000.6 Position reached 1: Axis has reached the setpoint position.
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number

① First function activation using positive edge of Start.
② Positioning axis active = 1 shows that the function is active and that the output signals are valid,

Position reached and Axis stationary are possibly withdrawn.
③ Positive acknowledgement Position reached = 1 and Positioning axis active = 1
④ Reset of function activation after receipt of acknowledgment
⑤ Signal change via function
⑥ Positioning is interrupted by delete distance to go, signal duration min. 1 PLC cycle.
⑦ The signals Position reached and Error are reset, the Error number can be read (in this case,

30).

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1164 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.6.4.12 Rotate spindle with automatic gear stage selection

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0
DBX3002.1 Shortest distance 0
DBX3002.5 Direction of rotation as for M4 0|1
DBX3003.0 Absolute, negative direction 0
DBX3003.1 Absolute, positive direction 0

Direction of rotation as for M4:
1: Direction of rotation specified by M4
0: Direction of rotation specified by M3

DBD3002.7 Automatic gear stage selection 1 Automatic gear stage selection ON
DBD3008 Feedrate velocity REAL Spindle speed
DBD3000.5 Start spindle rotation 0|1
DBX3001.5 Stop spindle rotation 0|1

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active 1: for start or stop == 1,
DBX3000.6 Position reached 1: Setpoint speed is output
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1165

① Function activated by user with a positive edge of Start.
② Signals Positioning axis active and Position reached are signaled back, Position reached is in

this case irrelevant.
③ The user stops spindle rotation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

13.6.4.13 Rotate spindle with constant cutting rate [m/min]

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0
DBX3002.1 Shortest distance 0
DBX3002.5 Direction of rotation as for M4 0|1
DBX3003.0 Absolute, negative direction 0
DBX3003.1 Absolute, positive direction 0

Direction of rotation as for M4:
1: Direction of rotation specified by M4
0: Direction of rotation specified by M3

DBD3002.2 Traversing dimension inch 0 Traversing dimension, metric
DBD3002.6 Const. Cutting rate 1 Constant cutting rate ON
DBD3008 Feedrate velocity REAL Spindle speed
DBD3000.5 Start spindle rotation 0|1
DBX3001.5 Stop spindle rotation 0|1

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1166 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active 1: for start or stop == 1,
DBX3000.6 Position reached 1: Setpoint speed is output
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary

① Function activated by user with a positive edge of Start.
② Signals Positioning axis active and Position reached are signaled back, Position reached is in

this case irrelevant.
③ The user stops spindle rotation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1167

13.6.4.14 Rotate spindle with constant cutting rate [feet/min]

DB380x PLC → NCK control signals Valid

values
Remark

DBX3002.0 Incremental 0
DBX3002.1 Shortest distance 0
DBX3002.5 Direction of rotation as for M4 0|1
DBX3003.0 Absolute, negative direction 0
DBX3003.1 Absolute, positive direction 0

Direction of rotation as for M4:
1: Direction of rotation specified by M4
0: Direction of rotation specified by M3

DBD3002.2 Traversing dimension inch 1 Traversing dimension inch
DBD3002.6 Const. Cutting rate 1 Constant cutting rate ON
DBD3008 Feedrate velocity REAL Spindle speed
DBD3000.5 Start spindle rotation 0|1
DBX3001.5 Stop spindle rotation 0|1

DB390x NCK → PLC status signals Remark
DBX3000.7 Positioning axes active 1: for start or stop == 1
DBX3000.6 Position reached 1: Setpoint speed is output
DBX3000.1 Error 1: Error when traversing, evaluate error number in DBB3003!
DBB3003 Error number
DBX1.4 Axis/spindle stationary

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1168 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

① Function activated by user with a positive edge of Start.
② Signals Positioning axis active and Position reached are signaled back, Position reached is in

this case irrelevant.
③ The user stops spindle rotation by resetting Start and setting Stop.
④ The spindle stops and the Spindle stationary signal is set.
⑤ The user then resets Stop.
⑥ Reset of Stop causes Positioning axis active to be reset.

13.6.4.15 Error messages
If a function could not be executed, the following signals are set depending on the error:

● DB390x .DBX3000.0 == 1 (axis cannot be started)

● DB390x.DBX3000.1 == 1 (error during travel)

The exact error cause is indicated as:

● DB390x.DBB3003 (error number)

Error number

Decimal Hex

Meaning

1 01 Several functions of the axis/spindle were activated simultaneously
20 14 A function was started without the position being reached
30 1E The axis/spindle was transferred to the NC while still in motion
40 28 The axis is programmed by the NC program, NCK internal error

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1169

Error number

Decimal Hex

Meaning

50 32 Permanently assigned PLC axis: Traverses (JOG) or is referencing
60 3C Permanently assigned PLC axis: Channel status does not permit a start
100 64 False position programmed for axis/spindle (alarm number1) 16830)
101 65 Programmed speed is too high
102 66 Incorrect value range for constant cutting rate (alarm number1) 14840)
104 68 Following spindle: Illegal programming (alarm number1) 22030)
105 69 No measuring system available (alarm number1) 16770)
106 6A Positioning process of the axis still active (alarm number1) 22052)
107 6B Reference mark not found (alarm number1) 22051)
108 6C No transition from speed control to position control (alarm number1) 22050)
109 6D Reference mark not found (alarm number1) 22051)
110 6E Velocity/speed is negative
111 6F Setpoint speed is zero
112 70 Invalid gear stage
115 73 Programmed position has not been reached
117 75 G96/G961 is not active in the NC
118 76 G96/G961 is still active in the NC
120 78 Axis is not an indexing axis (alarm number1) 20072)
121 79 Indexing position error (alarm number1) 17510)
125 7D DC (shortest distance) not possible (alarm number1) 16800)
126 7E Absolute value minus not possible (alarm number1) 16820)
127 7F Absolute value plus not possible (alarm number1) 16810)
128 80 No transverse axis available for diameter programming (alarm number1) 16510)
130 82 Software limit switch plus (alarm number1) 20070)
131 83 Software limit switch minus (alarm number1) 20070)
132 84 working area limitation plus (alarm number1) 20071)
133 85 working area limitation minus (alarm number1) 20071)
134 85 Frame not permitted for indexing axis
135 87 Indexing axis with "Hirth toothing" is active (alarm number1) 17501)
136 88 Indexing axis with "Hirth toothing" is active and axis not referenced (alarm number1) 17503)
137 89 Spindle operation not possible for transformed spindle/axis (alarm number1) 22290)
138 8A The corresponding effective coordinate-system-specific working area limit plus violated for the axis

(alarm number1)20082)
139 8B The corresponding effective coordinate-system-specific working area limit minus violated for the axis

(alarm number1)20082)
200 C8 System alarm number1) 450007

1) The detailed alarm description is contained in: Alarms diagnostics manual; SINUMERIK 828D, SINAMICS S120

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1170 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.6.5 Starting ASUBs

13.6.5.1 General
An ASUB (asynchronous subprogram) is an NC program that can be started by the PLC at
any time, i.e. it is an NC interrupt program, because the running NC program is interrupted
by the ASUB.

Requirement is that the ASUB is selected and parameterized using an NC program or using
the PI service ASUB (Page 914). By executing the PI service ASUB with the appropriate PI
index, one of the two interrupts INT1 or INT2 is assigned the ASUB intended for the purpose.

Only one ASUB can be started at one time. If, in a PLC cycle, both start signals of the
function interface described below are set to a logical 1, then the ASUBs are started in the
sequence in which they are called. The user must set the start signal to a logical 0 if an
acknowledgement was set in the interface for the job result.

 Note

A start signal must not be set in the following cases:
• PI service "ASUB" has not been completed yet.
• DB2600.DBX0.1 == 1 (emergency stop)
• Request for a channel reset by the PLC is active.

The ASUB can only be started again when the channel is in the "Reset" state AND
DB3300.DBX3.7 == 1 (channel state reset).

13.6.5.2 Job start

DB3400 ASUB: Job [r/w]
 PLC → NCK interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DBB 0000 INT1 start
DBB 0001 INT2 start
DBB 0002
DBB 0003
Start INT1, start INT2
Bit 0 = 1: Request to start the ASUB which is assigned to the relevant INT.
Bit 0 = 0: End of the ASUB request after acknowledgement in the result interface DBB1000, DB1001.

 P4: PLC for SINUMERIK 828D
 13.6 Function interface

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1171

13.6.5.3 Job result

DB3400 ASUB: Result [r]
 NCK → PLC interface
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INT1 DBB 1000
 ASUB

cannot be
executed 1)

Interrupt
no. not

assigned 2)

ASUB is
being

executed

ASUB
completed

3)
INT2 DBB 1001

 ASUB
cannot be
executed 1)

Interrupt
no. not

assigned 2)

ASUB is
being

executed

ASUB
completed

3)
DBB 1002
DBB 2003
1) Negative acknowledgement: E.g. for emergency stop or channel reset request.
2) Negative acknowledgement: Number has not been assigned yet. Remedy: Execute PI service "ASUB".
3) Positive acknowledgement: ASUB successfully completed. Reset start signal (DB000, DB001).

P4: PLC for SINUMERIK 828D
13.6 Function interface

 Basic Functions
1172 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

13.6.5.4 Signal flow

Signal flow

① Function activated by user with a positive edge of Start.
② ASUB is being executed is signaled back.
③ The acknowledgement ASUB completed indicates the successful execution, ASUB is being

executed is withdrawn.
④ The signal to initiate the function is reset after receiving the acknowledgement from the user.
⑤ Signal change by the firmware.
⑥ Not permitted! If function activation is reset prior to receipt of acknowledgement, the output

signals are not updated – without the operational sequence of the activated function being
affected.

⑦ ASUB cannot be executed: Negative acknowledgement, error occurred.

Figure 13-7 Example: Signal flow

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1173

R1: Referencing 14
14.1 Brief Description

Function
The "Reference Point Approach" function is used to synchronize the measuring system of a
machine axis with machine zero. The machine axis is traversed to machine zero and the
measuring system set to zero.

If it is not possible to approach machine zero directly, a reference point within the traversing
range of the machine axis is used whose position with reference to machine zero precisely
known.

After the reference point approach, the measuring system of the machine axis is not set to
zero but to the corresponding reference point value.

Measuring systems and referencing methods
The "Reference point approach" function enables machine axes to be referenced using the
following measuring systems and referencing methods:

● Measuring systems

– Incremental rotary measuring system with at least one zero mark
– Incremental linear measuring system
– Rotary measuring system with distancecoded reference marks (supplied by

Heidenhain)
– Linear measuring system with distancecoded reference marks (supplied by

Heidenhain)
– Absolute rotary measuring system
– Absolute linear measuring system

● Referencing methods

– Referencing with incremental measuring systems with BERO and one-edge and two-
edge detection

– Referencing with incremental measuring systems with replacement of homing cam
with BERO

– Referencing with incremental measuring systems with BERO with configured
approach velocity for spindle applications

– Referencing with measuring systems with distancecoded reference marks by
overtravelling 2 or 4 zero marks

– Referencing of passive measuring systems using measuring system adjustment
– Referencing in followup mode
– Referencing with cam switch at the drive

R1: Referencing
14.2 Axisspecific referencing

 Basic Functions
1174 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Start
The reference point approach of a machine axis can be started manually or via the part
program:

● Manual: Operation mode JOG and MDA, machine function REF

● Part program: Part program command G74

14.2 Axisspecific referencing
In axis-specific reference point approach, reference point approach must be initiated
individually for each machine axis that is to be referenced.

Selecting mode and machine function
Before starting reference point approach of the machine axes, you must first place the
relevant mode group in JOG or MDA mode:

DB11, ... DBX0.2 (active JOG mode)

DB11, ... DBX0.1 (active JOG mode)

Then machine function REF (reference point approach) must be selected:

DB11, ... DBX1.2 (REF machine function)

Start of reference point approach
In axis-specific reference point approach, each machine axis must be started individually.

Reference point approach is started with the axis-specific traversing keys:

DB31, ... DBX4.6 (Traversing key minus)

DB31, ... DBX4.7 (Traversing key minus)

Direction enable
To avoid faulty operation, the direction release must be parameterized:

MD34010 $MA_REFP_CAM_DIR_IS_MINUS (approach reference point in minus direction)

The direction enable specifies which traversing key starts the reference point approach:

Value Description
0 Reference point approach in plus direction
1 Reference point approach in minus direction

 R1: Referencing
 14.2 Axisspecific referencing

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1175

Jog mode
The following machine data element can be used to specify whether reference point
approach is completed when the direction key is pressed once or whether the operator is
required to keep the direction key pressed (jogging) for safety reasons:

MD11300 $MN_JOG_INC_MODE_LEVELTRIGGRD (INC and REF in jog mode)

If the machine operator releases the direction key, the machine axis is decelerated to zero
speed. Reference point approach is not aborted. Reference point approach is continued the
next time the direction key is pressed.

Referencing status
The referencing status of the machine axis is reset with the start of the reference point
approach:

DB31, ... DBX60.4 (referenced / synchronized 1)

DB31, ... DBX60.5 (referenced / synchronized 2)

DB21, ... DBX36.2 (all axes with obligatory reference point are referenced)

Distance-coded measuring systems
In distance-coded measuring systems, reference point approach can be started with any
traversing key.

Sequence
The machine operator or machine manufacturer (via the PLC user program) is responsible
for ensuring that the machine axes are referenced in the proper order.

● Machine operator

The machine axes must be started by the machine operator in the specified order.

● Machine manufacturer

The PLC user program of the machine manufacturer allows machine axes to be started
only in the proper order.

Simultaneous reference point approach of several machine axes
Several machine axes can be referenced simultaneously, depending on the control:

SINUMERIK 840D: max. 8 machine axes

Completion of reference point approach
Acknowledgment that reference point approach of a machine axis has been successfully
completed is given by setting the referencing status:

DB31, ... DBX60.4 (referenced / synchronized 1)

DB31, ... DBX60.5 (referenced / synchronized 2)

R1: Referencing
14.3 Channelspecific referencing

 Basic Functions
1176 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Cancellation of reference point approach
In axis-specific reference point approach, the machine axis is traversed in the channel that
was assigned as the master channel of the machine axis.

MD30550 $MA_ AXCONF_ASSIGN_MASTER_CHAN

For aborting the reference point approach, either mode group reset or channel reset for the
master channel of the machine axis must be activated:

DB11, ... DBX0.7 (mode group reset)

DB21, ... DBX7.7 (channel reset)

All machine axes that have not yet successfully completed reference point approach when
the action is cancelled remain in status "Not referenced":

DB31, ... DBX60.4 (referenced / synchronized 1)

DB31, ... DBX60.5 (referenced / synchronized 2)

14.3 Channelspecific referencing
In channel-specific reference point approach, all machine axes of the channel are referenced
in the parameterized sequence when reference point appraoch is initiated.

Selecting mode and machine function
Before starting reference point approach of the machine axes, you must first set the mode
group to JOG or MDA mode:

DB11, ... DBX0.2 (active JOG mode)

DB11, ... DBX0.1 (active MDA mode)

Then machine function REF (reference point approach) must be selected:

DB11, ... DBX1.2 (REF machine function)

Parameterizing the axis sequence
The following machine data element is used to specify the sequence in which the machine
axes of the channel are referenced:

MD34110 $MA_REFP_CYCLE_NR = Number

Number Description
-1 The machine axis does not have to be referenced for NC START in the channel.
0 The machine axis does not participate in channel-specific reference point approach.
1 - 15 Sequence number in channel-specific reference point approach.

The machine axes are referenced in ascending order of numbers.

Machine axes with the same number will be referenced simultaneously.

 R1: Referencing
 14.3 Channelspecific referencing

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1177

Simultaneous reference point approach of several machine axes
Several machine axes can be referenced simultaneously, depending on the control:

SINUMERIK 840D: Max. 8 machine axes
SINUMERIK 810D: Max. 5 machine axes

Start of reference point approach
Channel-specific reference point approach is started with:

DB21, ... DBX1.0 (activate referencing)

The status of channel-specific reference point approach is indicated by the channel with:

DB21, ... DBX33.0 (activate referencing)

Referencing status
The referencing status of the machine axis is reset with the start of the reference point
approach:

DB31, ... DBX60.4 (referenced / synchronized 1)

DB31, ... DBX60.5 (referenced / synchronized 2)

Completion of reference point approach
As soon as channel-specific reference approach has been successfully completed for all
machine axes involved, this is acknowleged with:

DB21, ... DBX36.2 (all axes with obligatory reference point are referenced)

Cancellation of reference point approach
In channel-specific reference point approach the machine axis is traversed in the channel to
which that axis is currently assigned as channel axis.

For aborting the reference point approach either mode group reset or channel reset for the
corresponding channel must be activated:

DB11, ... DBX0.7 (mode group reset)

DB21, ... DBX7.7 (channel reset)

All machine axes for which the reference point approach is not yet successfully completed
when the action is cancelled remain in status "Not referenced":

DB31, ... DBX60.4 (referenced / synchronized 1)

DB31, ... DBX60.5 (referenced / synchronized 2)

R1: Referencing
14.4 Reference point appraoch from part program (G74)

 Basic Functions
1178 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.4 Reference point appraoch from part program (G74)
Referencing of machine axes can be activated for the first time or repeated from the part
program

Referencing must be repeated, for example, after:

● converting the actual value of the machine axis: PRESETON function

● Machine axis is parked:

DB31, ... DBX1.5 (position measuring system 1) = 0

DB31, ... DBX1.6 (position measuring system 2) = 0

● DB31, ... DBX2.1 (servo enable) = 0

● Exceeding the encoder limit frequency of the position measuring system

Programming
Syntax

G74Machine axis { Machine axis }

Function

Machine axes can be referenced from a part program with part program instruction G74

Parameter: Machine axes

The name of the machine axis must be specified. The machine axis must be a channel axis
of the channel in which the part program is processed.

Effective:

G74 is non-modal.

Special features

G74 must be programmed in a separate part program block.

Reset response
Mode group reset or channel reset aborts the reference point approach for all programmed
machine axes:

DB11, ... DBX0.7 (mode group reset)

DB21, ... DBX7.7 (channel reset)

All machine axes for which the reference point approach is not yet successfully completed
when the action is cancelled remain in status "Not referenced":

DB31, ... DBX60.4 (referenced / synchronized 1)

DB31, ... DBX60.5 (referenced / synchronized 2)

 R1: Referencing
 14.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1179

14.5 Referencing with incremental measurement systems

14.5.1 Hardware signals
Depending on the machine design and the properties of the incremental measuring system
used, different hardware signals must be connected.

Reference cam

● Connection
The reference cam signal can be connected to a digital input of an external PLC I/O
module or to a fast input on the NCU X142 interface.

● NC/PLC interface signal
The reference cam signal must be transferred from the PLC user program to the axial
NC/PLC interface:
DB31, ... DBX12.7 (deceleration of reference point approach)

Zero mark selection

If during the reference point approach of the axis or spindle several zero marks of the
measuring system are detected (e.g. measuring gear between the motor and encoder), then
the specific zero mark must be selected with an additional BERO signal.

● Connection
The BERO must be connected to a fast digital input on the NCU X122 or X132 interface.

● Activation
In order that the BERO signal is evaluated, the digital input to which the BERO is
connected must be selected in drive parameter p0493 for the axis/spindle.

Equivalent zero mark

If the used measuring system does not provide a zero mark signal, an equivalent zero mark
can be created via a BERO signal.

● Connection
The BERO must be connected to a fast digital input on the NCU X122 or X132 interface.

● Activation
In order that the BERO signal is evaluated, the digital input to which the BERO is
connected must be selected in drive parameter p0494 or p0495 for the axis/spindle.

Overview

Signal Connection: Dig. input via Set
Reference cam Ext. PLC I/O module or NCU:

X142
PLC user program:
DB31, ... DBX12.7

Zero mark selection NCU: X122 or X132 Drive parameter: p0493
External zero mark or equivalent
zero mark

NCU: X122 or X132 Drive parameter: p0494 or
p0495

R1: Referencing
14.5 Referencing with incremental measurement systems

 Basic Functions
1180 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

References
● NCU interfaces: SINUMERIK 840D sl Manual, NCU7x0.3 PN,

Section "Connecting" > "Digital I/Os"

● Drive parameters: SINAMICS S120/S150 List Manual

14.5.2 Zero mark selection with BERO

Function
Referencing of incremental measuring systems is based on the unique position of the
encoder zero mark relative to the overall traversing range of the machine axis. If because of
machine-specific conditions, several encoder zero marks are detected in the traversing
range of the machine axis (for examples, see figure below), a BERO must be mounted on
the machine for clear determination of the reference point. The position of the reference
point is then derived from the combination of BERO signal and encoder zero mark.

Figure 14-1 Measuring gear between the motor and encoder or reduction gear between the motor

and spindle

Parameterization

NC: Referencing mode

"Referencing of incremental, rotary or linear measuring systems: Zero pulse on the encoder
track" should be parameterized as referencing mode:

MD34200 $MA_ENC_REFP_MODE[<axis>] = 1

Drive: Zero mark selection

The digital input on the NCU interface to which the BERO is connected must be set in
parameter p0493.

 Note
BERO signal: Zero mark selection

The processing of the BERO signal is performed exclusively in the drive. Connection and
parameterization, see Section "Hardware signals (Page 1179)".

 R1: Referencing
 14.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1181

14.5.3 Time sequence
Reference point approach with incremental measuring systems can be divided into three
phases:

● Phase 1: "Phase 1: Traversing to the reference cam (Page 1182)"

● Phase 2: "Phase 2: Synchronization with the zero mark (Page 1184)"

● Phase 3: "Phase 3: Traversing to the reference point (Page 1189)"

Figure 14-2 Time sequence when referencing with incremental measuring systems (example)

R1: Referencing
14.5 Referencing with incremental measurement systems

 Basic Functions
1182 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.5.4 Phase 1: Traversing to the reference cam

Phase 1: Graphic representation

Figure 14-3 Phase 1: Traversing to the reference cam

Phase 1: Start
To start the reference point approach, see Sections "Axisspecific referencing (Page 1174)"
and "Axisspecific referencing (Page 1174)".

Phase 1: Sequence
In Phase 1, depending on the position of the machine axis with reference to the reference
cam, we distinguish between three cases:

1. The machine axis is positioned before the reference cam

2. The machine axis is positioned on the reference cam

3. The machine axis has no reference cam

Case 1: The machine axis is positioned before the reference cam

After the start of reference point approach, the machine axis is accelerated in the
parameterized direction and to the parameterized reference point approach velocity :

 R1: Referencing
 14.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1183

● MD34010 $MA_REFP_CAM_DIR_IS_MINUS (approach reference point in minus
direction)

● MD34020 $MA_REFP_VELO_SEARCH_CAM (reference point approach velocity)

The reaching of the reference cam must detected by querying a digital input in the PLC user
program and communicated to the NC via the following interface signal:

DB31, ... DBX12.7 = 1 (reference point approach deceleration)

With detection of the NC/PLC interface signal, the machine axis is decelerated to zero
speed. Whereby at least the distance smin is traversed. This ensures that the machine axis
leaves the reference cam in Phase 2 with the parameterized reference point creep velocity.

Phase 1 is now complete. Reference point approach is continued with Phase 2.

Figure 14-4 Minimum distance for deceleration

Case 2: The machine axis is positioned on the reference cam

The machine axis remains at its starting position.
Phase 1 is now complete. Reference point approach is continued with Phase 2.

Case 3: The machine axis has no reference cam

Machine axes without reference cams remain at their starting position.

These include, for example:

● Machine axes that only have one zero mark along their entire traversing range

● Rotary axes that only have one zero mark per revolution

Zero must be entered in the following machine data for machine axes without a reference
cam:

MD34000 $MA_REFP_CAM_IS_ACTIVE = 0 (axis with reference cam)

Phase 1 is now complete. Reference point approach is continued with Phase 2.

R1: Referencing
14.5 Referencing with incremental measurement systems

 Basic Functions
1184 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Phase 1: Properties
● Feed override active.

● Feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are active.

● The machine axis is stopped if the reference cam is not reached within the parameterized
maximum distance:

MD34030 $MA_REFP_MAX_CAM_DIST (max. distance to the reference cam)

See also
Channelspecific referencing (Page 1176)

14.5.5 Phase 2: Synchronization with the zero mark

Phase 2: Graphic representation

Figure 14-5 Phase 2: Synchronization with the zero mark

 R1: Referencing
 14.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1185

Phase 2: Start
Phase 2 is automatically started when Phase 1 has been completed without an alarm.

Initial situation:

The machine axis is positioned on the reference cam.

Zero mark search direction:

The direction of the zero mark search results from the settings in the machine data:

● MD34010 $MA_REFP_CAM_DIR_IS_MINUS (approach reference point in minus
direction)

● MD34050 $MA_REFP_SEARCH_MARKER_REVERSE (direction reversal on reference
cam)

Phase 2: Sequence
The synchronization in Phase 2 can be performed via the falling or rising edge of the
reference cam. The parameterization is performed via:

MD34050 $MA_REFP_SEARCH_MARKER_REVERSE[<axis>] = <value>

Value Meaning

0 Synchronization with falling reference cam edge
1 Synchronization with rising reference cam edge

 Note

If the actual velocity of the machine axis at approach of the reference cam has not yet
reached the target velocity of Phase 2 within the parameterized tolerance limits, Phase 1 will
be restarted. This will be the case, for example, if the machine axis is positioned on the
reference cam when reference point approach is started.

MD35150 $MA_SPIND_DES_VELO_TOL (spindle speed tolerance)

Case 1: Synchronization with falling reference cam edge

During synchronization with falling reference cam edge, the machine axis accelerates to the
parameterized reference point creep velocity opposite to the parameterized reference point
approach direction (traversing direction of Phase 1)

After leaving the reference cam, the machine axis waits for the next encoder zero mark:
DB31, ... DBX12.7 == 0

As soon as the encoder zero mark is detected, Phase 2 comes to an end. The machine axis
continues at constant velocity and reference point approach is continued with Phase 3.

● MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

R1: Referencing
14.5 Referencing with incremental measurement systems

 Basic Functions
1186 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 14-6 Synchronization with falling reference cam edge

Case 2: Synchronization with rising reference cam edge

During synchronization with rising reference cam signal edge, the machine axis accelerates
to the parameterized reference point approach velocity against the parameterized reference
point approach direction (traversing direction of the Phase 1):

● MD34020 $MA_REFP_VELO_SEARCH_CAM (reference point approach velocity)

● MD34010 $MA_REFP_CAM_DIR_IS_MINUS (reference point approach in minus
direction)

After leaving the reference cam, the machine axis decelerated to standstill:
DB31, ... DBX12.7 == 0

The machine axis then travels back to the reference cam at the parameterized reference
point creep velocity:

MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

After reaching the reference cam (DB31, ... DBX12.7 = 1), the machine axis waits for the
next encoder zero mark.

As soon as the encoder zero mark is detected, Phase 2 comes to an end. The machine axis
continues at constant velocity and reference point approach is continued with Phase 3.

Figure 14-7 Synchronization with rising reference cam edge

 R1: Referencing
 14.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1187

Electronic reference cam shift
The electronic reference cam shift is used to compensate for expansions of the reference
cam caused by temperature so that synchronization is always to the same encoder zero
mark:

MD34092 $MA_ REFP_CAM_SHIFT (electronic reference cam shift for incremental
measuring systems with equidistant zero marks)

With the electronic reference cam shift, synchronization is not performed immediately to the
next encoder zero mark after detection of the reference cam edge, but only after the
parameterized offset distance has been traversed.

Due to the determination of the distance traversed in the interpolation cycle since the
detection of the reference cam edge, the effective shift distance is sshift:

sshift_min = MD34092 $MA_ REFP_CAM_SHIFT
sshift_max = MD34092 $MA_ REFP_CAM_SHIFT +

MD34040 $MA_REFP_VELO_SEARCH_MARKER * interpolation cycle

The electronic reference cam shift acts in the direction of zero mark search.

① Reference cam shift

Figure 14-8 Electronic reference cam shift

Requirement

The electronic reference cam shift is only active for machine axes with reference cam:

MD34000 $MA_REFP_CAM_IS_ACTIVE == 1

Reference cam adjustment

Encoder with equidistant zero marks

Always ensure that the reference cam of encoders that supply zero marks at equidistances
is accurately adjusted so that the correct zero mark is always detected during reference point
approach.

R1: Referencing
14.5 Referencing with incremental measurement systems

 Basic Functions
1188 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Dynamic response

The following factors influence the dynamic response from the arrival of the reference cam to
the machine up to the detection of reference cam signals transferred from the PLC user
program to the NC:

● Switching accuracy of the reference cam switch

● Delay of the reference cam switch (NC contact)

● Delay at the PLC input

● PLC cycle time

● Cycle time for updating the NC/PLC interface

● Interpolation cycle

● Position control cycle

Notes on setting

● Reference cam

Aligning the signal edge of the reference cam directly between two zero marks has
proven to be the most practical method.

● Electronic reference cam shift

WARNING

Risk of collision

If the reference cam adjustment is faulty or inaccurate, an incorrect zero mark can be
evaluated. The controller then calculates an incorrect machine zero. As a result, the
machine axis will approach the wrong positions. Software limit switches, protected areas
and working area limitations act on incorrect positions and are therefore incapable of
protecting the machine. The path difference is +/- of the path covered by the machine
axis between two zero marks.

Information needed for parameterizing the electronic reference cam shift is to be found in
the read-only machine data:

MD34093 $MA_REFP_CAM_MARKER_DIST (distance between reference cam/reference
mark)

The indicated value is equivalent to the distance between departure from the reference
cam and detection of the reference mark. If the values are too small, there is a risk that
the determination of the reference point will be non-deterministic, due to temperature
effects or fluctuations in the operating time of the cam signal.

Phase 2: Properties
● Feedrate override is not active.

Machine axis moves internally when feedrate override = 100%.

If a feedrate override of 0% is specified, an abort occurs.

● Feed stop (channel-specific and axis-specific) is active.

 R1: Referencing
 14.5 Referencing with incremental measurement systems

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1189

● NC stop and NC start are not active.

● If the machine axis does not arrive at Phase 2 within the parameterized distance of the
reference mark (encoder zero mark), the machine axis will be stopped:

MD34060 $MA_REFP_MAX_ MARKER_DIST (max. distance to the reference mark)

14.5.6 Phase 3: Traversing to the reference point

Phase 3: Graphic representation

Figure 14-9 Phase 3: Traversing to the reference point

Phase 3: Start
At the end of Phase 2 the machine axis travels at reference point creep velocity. Therefore,
as soon as Phase 2 is completed successfully without an alarm, Phase 3 is started without
interruption.

Initial situation

The encoder zero mark has been detected.

R1: Referencing
14.5 Referencing with incremental measurement systems

 Basic Functions
1190 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Phase 3: Sequence
The machine axis moves at the assigned reference point positioning velocity:
MD34070 $MA_REFP_VELO_POS (reference point positioning velocity)
from the encoder zero mark detected in Phase 2 to the reference point.

The path sref to be covered is calculated from the sum of the reference point distance plus
reference point offset:

MD34080 $MA_REFP_MOVE_DIST (reference point distance)

MD34090 $MA_REFP_MOVE_DIST_CORR (reference point offset)

(reference point approach velocity)

Reference cam

Velocity

(reference point creep velocity)

(reference point positioning velocity)

Zero mark

Distance

MD34100 $MA_REFP_SET_POS [0 ... 3]

MD34080 $MA_REFP_MOV_DIST +
MD34090 $MA_REFP_MOVE_DIST_CORR

MD34040 $MA_REFP_VELO_SEARCH_MARKER

MD34070 $MA_REFP_VELO_POS

MD34020 $MA_ REFP_VELO_SEARCH_CAM

Figure 14-10 Reference point position

When the reference point is reached, the machine axis is stopped and the actual-value
system is synchronized with the reference point value n specified by the NC/PLC interface.

MD34100 $MA_ REFP_SET_POS[<n>] (reference point value)

The selection of the reference point value is performed via the NC/PLC interface:

DB31, ... DBX2.4 ... 7 (reference point value 1 ... 4)

The actual-value system is synchronized to the reference point value that was selected at
the time the reference cam was reached in Phase 1 (DB31, ... DBX12.7 == 1).

The machine axis is now referenced. The interface signal is set as feedback to the PLC user
program, depending on the active measuring system:

DB31, ... DBX60.4/5 (referenced/synchronized 1/2) = 1

Features of Phase 3
● Feed override active.

● Feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are active.

 R1: Referencing
 14.6 Referencing with distance-coded reference marks

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1191

Special feature of Phase 3
In the following cases, the machine axis stops first after detection of the zero mark and then
traverses back to the reference point:

● Because of the reference point positioning velocity, the sum of reference point distance
and reference point offset is less than the required braking distance:
MD34080 + MD34090 < "required braking distance due to MD34070"

● The reference point is located, opposite to the current travel direction, "behind" the
reference cam.

(reference point approach velocity)

Reference cam

Velocity

(reference point creep velocity)

Distance

MD34100 $MA_REFP_SET_POS [0 ... 3]

MD34040 $MA_REFP_VELO_SEARCH_MARKER

MD34020 $MA_ REFP_VELO_SEARCH_CAM

Figure 14-11 Reference point distance plus reference point offset less than braking distance

14.6 Referencing with distance-coded reference marks

14.6.1 General overview

Distancecoded reference marks
Measuring systems with distance-coded reference marks consist of two parallel scale tracks:

● Incremental grating

● Reference mark track

The distance between any two consecutive reference marks is defined. This makes it
possible to determine the absolute position of the machine axis when two consecutive
reference marks are crossed. For example, if the distance between the reference marks is
approx. 10 mm, a traverse path of approx. 20 mm is all that is required to reference the
machine axis.

Referencing can be performed from any axis position in the positive or negative direction
(exception: end of travel range).

R1: Referencing
14.6 Referencing with distance-coded reference marks

 Basic Functions
1192 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.6.2 Basic parameter assignment

Linear measuring systems.
The following data must be set to parameterize linear measuring systems:

● The absolute offset between the machine zero point and the position of the first reference
mark of the linear measuring system:

MD34090 $MA_REFP_MOVE_DIST_CORR (reference point/absolute offset)

See also below: Determining the absolute offset

● Orientation of the length measuring system (equidirectional or inverse) relative to the
machine system coordinate system:

MD34320 $MA_ENC_INVERS (length measuring system inverse to the machine system)

Figure 14-12 DIADUR graduated glass scale with distance-coded reference marks

(dimensions in mm for 20 mm scale division)

Rotary measuring system
For rotary measuring systems, the same applies as for linear measuring systems (see
above).

Determining the absolute offset
The following procedure is recommended for the determination of the absolute offset
between the machine zero point and the position of the first reference mark of a machine
axis:

1. Enter the value zero for the absolute offset:

MD34090 $MA_REFP_MOVE_DIST_CORR = 0

2. Perform reference point approach.

Note:Reference point approach should be performed at a point in the machine where the
exact position of the machine axis relative to machine zero can be determined easily with
a laser interferometer, for example.

3. Determine the actual position of the machine axis via the operator interface screen.

 R1: Referencing
 14.6 Referencing with distance-coded reference marks

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1193

4. Measure the current position of the machine axis with reference to the machine zero
point.

5. Calculate absolute offset and enter in MD34090.

The absolute offset is calculated with respect to the machine coordinate system and
depending on the orientation of the measuring system (equidirectional or inverse) as:

Orientation of the measuring system Absolute offset
Equidirectional Measured position + displayed actual position
Opposite direction Measured position - displayed actual position

WARNING
Reference point deviation

After determining the absolute offset and the entry in MD34090, the reference point
traversing for the machine axis must be carried out once more.

Referencing methods
Referencing with distance-coded reference marks can be performed in one of two ways:

● Evaluation of two consecutive reference marks:

MD34200 $MA_ENC_REFP_MODE (referencing mode) = 3

Advantage:

– Short travel path

● Evaluation of four consecutive reference marks:

MD34200 $MA_ENC_REFP_MODE = 8

Advantage:

– Plausibility check by NC is possible

– Increase in reliability of referencing result

R1: Referencing
14.6 Referencing with distance-coded reference marks

 Basic Functions
1194 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.6.3 Time sequence

Time sequence
Referencing with distance-coded reference marks can be divided into two phases:

● Phase 1: Travel across the reference marks with synchronization

● Phase 2: Travel to a fixed destination point

Figure 14-13 Distance-coded reference marks

14.6.4 Phase 1: Travel across the reference marks with synchronization

Phase 1: Start
To start the reference point approach, see Sections "Axisspecific referencing (Page 1174)"
and "Channelspecific referencing (Page 1176)".

Reference cam
In measuring systems with distance-coded reference marks, reference cams are not
required for the actual referencing action. For functional reasons, however, a reference cam
is required for channel-specific reference point approach and reference point approach from
the part program (G74) before the traversing range end of the machine axis.

 R1: Referencing
 14.6 Referencing with distance-coded reference marks

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1195

Phase 1: Sequence
Sequence without contact witha reference cam

Once the reference point approaching process is started, the machine axis accelerates to
the reference point shutdown speed set by means of parameter assignment:

MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

Once the number of reference marks set by means of parameter assignment has been
crossed, the machine axis is stopped again and the actual value system of the machine axis
is synchronized to the absolute position calculated by the NC.

Sequence when starting from the reference cam

If the machine axis is at the reference cam at the start of the reference point traversing, it
accelerates to the parameterized reference point creep velocity against the parameterized
reference point approach direction:

MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

MD34010 $MA_CAM_DIR_IS_MINUS (reference point approach in minus direction)

That ensures that the machine axis does not reach the travel range limit before it has
crossed the parameterized number of reference marks.

Once the number of reference marks set by means of parameter assignment has been
crossed, the machine axis is stopped again and the actual value system of the machine axis
is synchronized to the absolute position calculated by the NC.

Sequence when contact is made with reference cam during referencing

Once the reference point approaching process is started, the machine axis accelerates to
the reference point shutdown speed set by means of parameter assignment:

MD34040 $MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity)

Before the machine axis travels over the parameterized number of reference marks, it makes
contact with the reference cam. It is then reversed and reference mark search is restarted in
the opposite direction.

Once the number of reference marks set by means of parameter assignment has been
crossed, the machine axis is stopped again and the actual value system of the machine axis
is synchronized to the absolute position calculated by the NC.

Plausiblity check of the reference mark distance
An error occurs if, during reference point traversing for two subsequent reference marks, the
NC determines a distance greater than twice the parameterized reference mark distance.

MD34300 $MA_ENC_REFP_MARKER_DIST (reference mark distance)

The machine axis will then traverse in opposite direction at half the parameterized reference
point creep velocity (MD34040) and the search for reference mark is restarted.

If a faulty reference mark distance is detected again, the machine axis is stopped and the
reference point traversing is aborted (alarm 20003 "fault in the measuring system").

R1: Referencing
14.6 Referencing with distance-coded reference marks

 Basic Functions
1196 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Abort criterion
If the parameterized number of reference marks is not detected within the parameterized
distance, the machine axis is stopped and reference point traversing is aborted.

MD34060 $MA_REFP_MAX_ MARKER_DIST (max. distance to the reference mark)

Features of Phase 1
After Phase 1 is successfully completed, the actual value system of the machine axis is
synchronized.

14.6.5 Phase 2: Traversing to the target point

Phase 2: Start
Phase 2 is automatically started when Phase 1 has been completed without an alarm.

Initial situation:

● The machine axis is positioned directly behind the last of the parameterized number of
reference marks.

● The actual value system of the machine axis is synchronized.

Phase 2: Sequence
In Phase 2, the machine axis completes reference point approach by traversing to a defined
target position (reference point). This action can be suppressed in order to shorten the
reference point approach:

MD34330 $MA_STOP_AT_ABS_MARKER = <value>

Value Meaning
0 Travel to target position
1 No travel to target position

Travel to target position (normal case)

The machine axis accelerates to the parameterized reference point position velocity and
travels to the parameterized target point (reference point):

MD34070 $MA_REFP_VELO_POS (reference point positioning velocity)

MD34100 $MA_REFP_SET_POS (reference point value)

The machine axis is referenced. To identify this, the NC sets an interface signal for the
measuring system that is currently active:

DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2) = 1

 R1: Referencing
 14.6 Referencing with distance-coded reference marks

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1197

No travel to target position

The machine axis is now referenced. To identify this, the NC sets an interface signal for the
measuring system that is currently active:

DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2) = 1

Features of Phase 2
Phase 2 will display different characteristics, depending on whether a reference cam is
parameterized for the machine axis.

Machine axis without reference cam

MD34000 $MA_REFP_CAM_IS_ACTIVE (axis with reference cam) = 0

Properties:

● Feed override active.

● The feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are active.

Machine axis with reference cam

MD34000 $MA_REFP_CAM_IS_ACTIVE (axis with reference cam) = 1

Properties:

● Feedrate override is not active.

Machine axis moves internally when feedrate override = 100%.

If a feedrate override of 0% is specified, an abort occurs.

● The feed stop (channel-specific and axis-specific) is active.

● NC stop and NC start are not active.

● If the parameterized number of reference marks is not detected within the parameterized
distance after the exit of the reference cam, the machine axis will be stopped.

MD34060 $MA_REFP_MAX_ MARKER_DIST (max. distance to the reference mark)

Special features of rotary measuring systems
On rotary distance-coded measuring systems, the absolute position can only be determined
uniquely within one revolution. Depending on the mechanical mounting of the encoder, the
overtravel of the absolute position in the hardware does not always coincide with the
traversing range of the rotary axis.

R1: Referencing
14.7 Referencing by means of actual value adjustment

 Basic Functions
1198 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Special features of modulo rotary axes
With module rotary axes, the reference point position is mapped on the parameterized
modulo range:

MD30330 $MA_MODULO_RANGE (size of the modulo range)

MD30340 $MA_MODULO_RANGE_START (start position of the modulo range)

 Note

The reference point position is mapped onto the assigned (ghost) modulo range even with
axis function "Determination of reference point position rotary, distance-coded encoder within
the configured modulo range":

MD30455 $MA_MISC_FUNCTION_MASK (axis functions), BIT1 = 1

14.7 Referencing by means of actual value adjustment

14.7.1 Actual value adjustment to the referencing measurement system

Function
When actual value adjustment to the referencing measuring system is performed, the
resulting absolute actual position after successful referencing of the measuring system of a
machine axis is transferred directly to all other measuring systems of the machine axis, and
the machine axis is designated as referenced:

DB31, ... DBB60.4 / 60.5 (referenced/synchronized 1/2) = 1

Advantage

When the machine axis switches from an explicitly referenced measuring system to the
measuring system referenced by actual value adjustment, continuous servo control is
assured (servo enable active) because the matched actual position prevents a sudden
change in actual value.

 Note

In order to improve positioning precision by determining the measuring-system-specific
encoder fine information, we recommend explicitly re-referencing the measuring system
previously referenced by actual value adjustment after switching over.

Activation
The activation of the actual value adjustment to the referencing measuring system is
machine-specifically carried out via:

MD34102 $MA_REFP_SYNC_ENCS = 1

 R1: Referencing
 14.7 Referencing by means of actual value adjustment

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1199

14.7.2 Actual value adjustment for measuring systems with distance-coded reference
marks

Function
In order to improve positioning precision by determining the measuring-system-specific
encoder fine information, we recommend explicitly re-referencing the measuring system
previously referenced by actual value adjustment after switching over the measuring system.

If an encoder with distance-coded reference marks is used for the passive measuring
system, referencing can be avoided if the following conditions are met:

1. Active measuring system: indirect measuring system (motor measuring system) with
absolute encoder, for example

2. Passive measuring system: Direct measuring system with distancecoded reference
marks

3. Travel movement of the machine axis with the referenced indirect measuring system
before measuring system switchover in which the number of reference marks required for
referencing are crossed. This automatically references the passive direct measuring
system.

Parameterization
In addition to the specific machine data required to reference the individual measuring
systems, the following machine data must be set:

● Enable actual value adjustment:

MD34102 $MA_REFP_SYNC_ENCS = 1

● Direct measuring system with distancecoded reference marks:

– MD34200 $MA_ENC_REFP_MODE[measuring system] = 3

Distancecoded reference marks

– MD30242 $MA_ENC_IS_INDEPENDENT[measuring system] = 2

During actual value adjustment, the passive direct measuring system is adjusted to
the actual position of the active indirect measuring system, but is not marked as
referenced. After the parameterized number of reference marks have been crossed,
the passive direct measuring system is automatically referenced. Referencing is
performed in every operating mode.

Sequence
1. Initial situation: Neither of the measuring systems are referenced:

DB31, ... DBX60.4 = 0 (referenced / synchronized 1)

DB31, ... DBX60.5 = 0 (referenced / synchronized 2)

2. Reference the indirect measuring system according to the measuring system type:

DB31, ... DBX60.4 = 1 (referenced / synchronized 1)

DB31, ... DBX60.5 = 0 (referenced / synchronized 2)

R1: Referencing
14.8 Referencing in follow-up mode

 Basic Functions
1200 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

3. Traverse the machine axis across the parameterized number of reference marks.

This automatically references the direct measuring system:

DB31, ... DBX60.4 = 1 (referenced / synchronized 1)

DB31, ... DBX60.5 = 1 (referenced / synchronized 2)

14.8 Referencing in follow-up mode

Function
Incremental measuring systems and measuring systems with distance-coded reference
marks can be referenced even when the machine axis is in follow-up mode. Prerequisite for
this is the correct parameterization of the reference point approach according to the used
measuring system (see Section "Referencing with incremental measurement systems
(Page 1179)" and "Referencing with distance-coded reference marks (Page 1191)").

When referencing in follow-up mode the machine axis is moved not by the NC but by means
of an external travel motion over the encoder zero mark and the parameterized number of
distance-coded reference marks. The measuring system is referenced when the encoder
zero mark or parameterized number of distance-coded reference marks are detected.

 Note
Reproducibility of the referencing result

In NC-guided reference point approach, reproducibility of the referencing result is ensured
through adherence to the assigned traverse velocities during the referencing operation.
During referencing in follow-up mode, responsibility for achieving reproducibility of the
referencing results lies with the machine manufacturer / user.

Unique zero mark
Referencing of an incremental measuring system is based on the explicit position of the
encoder zero mark relative to the overall traversing range of the machine axis.

Because the reference cam signal is not evaluated by the NC during referencing in follow-up
mode, unique identification of the reference point when referencing in follow-up mode will
only result with:

● Only one encoder zero mark in the traversing range of the machine axis.

● Linear measuring systems with distance-coded reference marks.

● Modulo rotary axes (absolute position within one revolution).

 R1: Referencing
 14.8 Referencing in follow-up mode

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1201

Zero mark selection when several zero mark signals occur
If several encoder zero marks are detected in the traversing range of the machine axis due
to machine-specific factors, e.g. reduction gear between encoder and load, a BERO must be
mounted on the machine and connected via a digital input of the NCU interface in order to
clearly determine the reference point.

 Note
BERO signal: Zero mark selection

The processing of the BERO signal is performed exclusively in the drive. Connection and
parameterization, see Section "Hardware signals (Page 1179)".

Enable
The "Referencing in follow-up mode" function is enabled with:

MD34104 $MA_REFP_PERMITTED_IN_FOLLOWUP = TRUE

Starting the referencing operation
If the machine axis is in follow-up mode (DB31, ... DBX61.3 == TRUE) at the start of
reference point approach, the measuring system is referenced in follow-up mode.

If the machine axis is not operating in the follow-up mode at the start of reference point
traversing, the "normal" from the NC-controlled reference point travels is carried out.

Referencing in follow-up mode can be started in the following modes:

● JOG-REF: Traversing keys

● AUTOMATIC: Part program command G74

Sequence of the referencing operation (JOG-REF mode)
1. Activate follow-up mode of machine axis:

DB31, ... DBX1.4 (follow-up mode) = 0

DB31, ... DBX2.1 (controller enable) = 0

2. Take into account activation of follow-up mode:

DB31, ... DBX61.3 (follow-up active) = 1

3. Switch to JOG-REF mode.

4. External motion of machine axis across encoder zero mark or parameterized number of
distance-coded reference marks. The referencing operation is started internally in the NC
as soon as the machine axis is moved:

DB31, ... DBX61.4 (axis/spindle stationary) = 0

5. The measuring system is referenced after the encoder zero mark or the assigned number
of distance-coded reference marks have been successfully detected:

DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2) = 1

R1: Referencing
14.8 Referencing in follow-up mode

 Basic Functions
1202 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Aborting the reference operation

An active referencing operation can be aborted by:

● Deselecting follow-up mode

● NCK Reset

Response when measuring systems are already referenced

A measuring system that has already been referenced can only be re-referenced in
AUTOMATIC mode using part program statement G74.

Sequence of referencing operation (AUTOMATIC mode)
1. Switch to AUTOMATIC mode.

2. Start the part program.

3. Activate follow-up mode of machine axis:

DB31, ... DBX1.4 (follow-up mode) = 0

DB31, ... DBX2.1 (controller enable) = 0

4. Take into account activation of follow-up mode:

DB31, ... DBX61.3 (follow-up active) = 1

5. The referencing operation is started internally in the NC as soon as part program
statement G74 is processed.

6. External motion of machine axis across encoder zero mark or parameterized number of
distance-coded reference marks.

7. The measuring system is referenced after the encoder zero mark or the assigned number
of distance-coded reference marks have been successfully detected:

DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2) = 1

8. The block change occurs after the referencing operation has been successfully
completed.

Aborting the reference operation

An active referencing operation can be aborted by:

● Deselecting follow-up mode

● NCK Reset

Response when measuring systems are already referenced

A measuring system that you have already referenced can be re-referenced.

 R1: Referencing
 14.9 Referencing with absolute encoders

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1203

14.9 Referencing with absolute encoders

14.9.1 Information about the adjustment

Machine axes with absolute encoder
The advantage of machine axes with absolute encoder is that after a one time adjustment
procedure, the necessary reference point traversing with incremental measuring systems
(e.g. build-up of control, de-selection of "Parking" of machine axes etc.) can be skipped and
the actual value system of the machine axis can be immediately synchronized to the
determined absolute position.

Adjustment
Adjustment of an absolute encoder involves matching the actual value of the encoder with
the machine zero once and then setting it to valid.

The current adjustment status of an absolute encoder is displayed in the following axis-
specific machine data of the machine axis, to which it is connected:

MD34210 $MA_ENC_REFP_STATE (status of absolute encoder)

Value Meaning
0 Encoder not calibrated
1 Encoder adjustment enabled
2 Encoder is calibrated

Adjustment methods
The following adjustment methods are supported:

● Adjustment by entering a reference point offset

● Adjustment by entering a reference point value

● Automatic adjustment with probe

● Adjustment with BERO

Readjustment
Readjustment of the absolute encoder is required after:

● Gear change between load and absolute encoder

● Removal/installation of the absolute encoder

● Removal/installation of the motor with the absolute encoder

● Data loss in the static NC memory

R1: Referencing
14.9 Referencing with absolute encoders

 Basic Functions
1204 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Battery failure

● Setting actual value (PRESETON)

WARNING

Data backup

During the back-up of machine data of a machine A, the encoder status of the machine
axis (MD34210) is also backed up.

During loading of this data record into a machine B of the same type, e.g. in the context
of a serial start-up or after a case of maintenance, the referenced machine axes will be
automatically regarded as adjusted / referenced by the NC. It is the special responsibility
of the machine manufacturer / user to undertake a readjustment in such cases.

See also explanations regarding machine data:

MD30250 $MA_ACT_POS_ABS (absolute encoder position at the time of switch-off)

 Note

The controller can detect a required readjustment of the absolute encoder only during the
following events:
• Gear change with change of gear ratio
• Addressing the zero-mark monitoring
• New encoder serial number after change of the absolute encoder

The controller then sets the status of the absolute encoder to "0":

MD34210 $MA_ENC_REFP_STATE = 0 (encoder not adjusted)

The following alarm is displayed:
Alarm 25022 "Axis <axis name> encoder <number> warning 0"
If the zero-mark monitoring responds, the following alarm is also displayed:
Alarm 25020 "Axis <axis name> zero-mark monitoring of active encoder"

In all other cases (e.g. PRESETON) it is the sole responsibility of the user to display the
misalignment of the absolute encoder by manually setting the status to "0" and to carry
out a readjustment.

 R1: Referencing
 14.9 Referencing with absolute encoders

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1205

14.9.2 Calibration by entering a reference point offset

Function
During adjustment by entering the reference point offset, the difference between the position
displayed on the operator interface and the true actual position in the machine is determined
and made known to the NC as reference point offset.

Procedure
1. Determining the position of the machine axis with reference to the machine zero point via

e.g.:

– position measurement (e.g. laser interferometer)

– Moving the machine axis to a known position (e.g., fixed stop)

2. Reading the displayed actual position of the machine axis on the operator interface.

3. Calculating the reference point offset (difference between the actual positions determined
under point 1 and 2) and entering in machine data:

MD34090 $MA_REFP_MOVE_DIST_CORR (reference point offset)

4. Marking the absolute value encoder as adjusted:

MD34210 $MA_ENC_REFP_STATE = 2

 Note

The encoder adjustment does not become active until the next time the encoder is
activated (e.g., when the controller is powered up).

5. Initiate POWER ON reset.

6. Controlling the position of the machine axis displayed on the operator interface.

 Note

Backlash compensation

If backlash compensation is parameterized for a measuring system with absolute value
encoder, the following must be observed:

No backlash is permitted during machine axis travel to the adjusted machine position.

Activate reference point offset permanently

The entered reference point offset (MD34090) will be permanently active only after initial
POWER ON - Reset. If the machine axis is moved after the absolute encoder adjustment
without an interim POWER ON - Reset, the reference point offset entered in the machine
data can be overwritten, for example, as part of internal overrun offset.

Checking the actual position

Following adjustment of the absolute encoder, we recommend that you verify the actual
position of the machine axis the next time you power up the controller (POWER ON).

R1: Referencing
14.9 Referencing with absolute encoders

 Basic Functions
1206 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.9.3 Adjustment by entering a reference point value

Function
During adjustment by entering the reference point value, the absolute position of the
machine axis with reference to the machine zero point is determined by e.g.:

● Position measurement (e.g. laser interferometer)

● Moving the machine axis to a known position (e.g. fixed stop)

This determined position value will be made known to the NC as the reference point value.
The NC then calculates the reference point offset from the difference between the encoder
absolute value and the reference point value.

Procedure
1. Set reference mode to "Take over of the reference point value"

MD34200 $MA_ENC_REFP_MODE = 0

2. Traversing machine axis in the JOG mode to the (e.g. Laser interferometer) position to be
measured or already known (e.g. fixed stop).

 Note

The machine axis can only be traversed in the direction enabled for referencing with the
travel keys:

MD34010 $MA_REFP_CAM_DIR_IS_MINUS (approach reference point in minus
direction)

To avoid an invalid position because of backlash in the drive train, the known position
must be approached at low velocity.

3. Communicate the position of the machine axis relative to machine zero to the NC as the
reference point value:

MD34100 $MA_REFP_SET_POS = Position

4. Releasing encoder adjustment:

MD34210 $MA_ENC_REFP_STATE = 1

5. Activate NCK-Reset for acceptance of the entered machine data values.

6. Switch to JOG-REF mode.

 R1: Referencing
 14.9 Referencing with absolute encoders

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1207

7. Operate the travel key used for referencing in step 2.

The machine axis does not move when the traversing key is actuated!

The NC calculates the reference point offset from the entered reference point value and
that given by the absolute value encoder. The result is entered into the machine data:

MD34090 $MA_REFP_MOVE_DIST_CORR (reference point offset)

The status of the absolute value encoder is set to "Encoder is adjusted":

MD34210 $MA_ ENC_REFP_STATE = 2

The actual value system of the machine axis is synchronized.

The machine axis is now referenced. As identification, the NC sets the appropriate
interface signal based on which measuring system is currently active:
DB31, ... DBB60.4 / 60.5 (referenced/synchronized 1 / 2) = 1

8. Initiate POWER ON reset.

 Note

Activate reference point offset permanently

The entered reference point offset (MD34090) will only be permanently active after
POWER ON - Reset.

If the machine axis is moved after the absolute encoder adjustment without an interim
POWER ON - Reset, the reference point offset entered in the machine data can be
overwritten, for example, within internal overrun corrections.

Checking the actual position

Following adjustment of the absolute encoder, we recommend that you verify the actual
position of the machine axis the next time you power up the controller (POWER ON).

R1: Referencing
14.9 Referencing with absolute encoders

 Basic Functions
1208 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.9.4 Automatic calibration with probe

Function
In automatic adjustment with a probe, a known position in the machine is approached with
the machine axis from a part program. The position value is stored in the NC as a reference
point value. The position is reached when the probe switches, and the NC then calculates
the reference point offset from the difference between the encoder value and reference point
value.

 Note

Part program for automatic adjustment

The part program for automatic adjustment using a probe must be created by the machine
manufacturer / user for the specific requirements of the machine.

Freedom from collision

Because actual-value-related monitoring is not active for the machine axes being referenced,
the machine operator must take special care to ensure that collisions do not occur in the
machine while the machine axes are being moved!

Part program
The part program for automatic adjustment of absolute encoders with probe must perform
the points listed below for each axis in the order indicated:

1. Approach the adjustment position of machine axis, which is detected from the probe
response.

The position must be approached several times from the same direction, but at a velocity
which is gradually reduced on each approach, to ensure that the measured value
obtained is as accurate as possible. The measured value is stored in system variable
$AA_IM.

2. Calculating and writing the reference point offset:

3. Set the absolute encoder status to "Encoder is adjusted":

MD34210 $MA_ ENC_REFP_STATE = 2

Sequence
Proceed as follows for automatic adjustment with probe:

1. Enable part program start even for non-referenced machine axes:

MD20700 $MC_REFP_NC_START_LOCK = 0

2. Enter the machine axis position relative to machine zero when probe is switched as the
reference point value for all relevant machine axes:

MD34100 $MA_REFP_SET_POS = reference point value

 R1: Referencing
 14.9 Referencing with absolute encoders

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1209

3. Activate NCK-Reset for the acceptance of the entered machine data values.

4. Start part program.

5. After completion of the part program, re-secure the partial program start for machine axes
which are not referenced:

MD20700 $MC_REFP_NC_START_LOCK = 1

6. Initiate POWER ON - Reset so that the reference point offset written by the part program
is permanently active:

MD34090 $MA_REFP_MOVE_DIST_CORR (reference point offset)

 Note

Activate reference point offset permanently

The entered reference point offset (MD34090) will only be permanently active after
POWER ON - Reset.

If the machine axis is moved after the absolute encoder adjustment without an interim
POWER ON - Reset, the reference point offset entered in the machine data can be
overwritten, for example, as part of internal overrun offset.

Checking the actual position

Following adjustment of the absolute encoder, we recommend that you verify the actual
position of the machine axis the next time you power up the controller (POWER ON).

14.9.5 Adjustment with BERO

Function
For adjustment using BERO, a reference point approach to a defined machine position is
performed the same as for incremental measuring systems. In this case the BERO replaces
the encoder zero mark that the absolute encoder does not have. After successful completion
of reference point approach, the NC automatically calculates the reference point offset from
the difference between the encoder absolute value and the parameterized reference point
value.

Parameterization

NC: Referencing mode

The referencing mode should be set to "Referencing of incremental, rotary or linear
measuring systems: Zero pulse on the encoder track":

MD34200 $MA_ENC_REFP_MODE[<axis>] = 1

NC: Reference point value

The reference point value is parameterized via:

MD34100 $MA_REFP_SET_POS[<axis>] = <reference point value>

R1: Referencing
14.9 Referencing with absolute encoders

 Basic Functions
1210 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Drive: Equivalent zero mark

The digital input on the NCU interface to which the BERO is connected must be set in
parameter p0494 or p0495.

Execution
Reference point approach can be started manually in JOG-REF mode or in AUTOMATIC or
MDA mode via a part program (G74).

After successful completion of the reference point approach, the absolute encoder is
adjusted and the actual-value system of the machine axis is synchronized.

As feedback for the PLC user program, the NC sets the NC/PLC interface signal for the
machine axis, depending on the active measuring system:

DB31, ... DBB60.4/60.5 (referenced/synchronized 1/2) = 1

 Note

If the BERO is removed after adjustment of the absolute encoder, the referencing mode
must be re-parameterized to "Referencing with absolute encoder".

MD34200 $MA_ENC_REFP_MODE[<axis>] = 0

14.9.6 Reference point approach with absolute encoders

Traversing movement release
If for a mchine axis with adjusted absolute value encoder as active measuring system,
reference point traversing is activated (manual in the mode JOG-REF or automatic according
to part program instruction G74), the machine axis travels depending on the parameterized
release traversing movement.

MD34330 $MA_REFP_STOP_AT_ABS_MARKER = <Value>

Value Meaning
0 Traversing is enabled.

When reference point approach is initiated, the machine axis moves to the reference point
position. Reference point approach is completed when the reference point position is
reached.

1 Traversing is not enabled.
After the activation of the reference point travel, the machine axis does not travel and the
reference point travel is immediately completed.

 R1: Referencing
 14.9 Referencing with absolute encoders

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1211

14.9.7 Reference point approach in rotary absolute encoders with external zero mark

Function
To be able to use the reference point approach with a zero mark, as is usual in incremental
encoders (refer to Section "Referencing with incremental measurement systems
(Page 1179)"), also with absolute encoders, the missing HW zero marks are created in
software form once every encoder revolution, always at the same position within the rotation.

Difference compared to referencing with incremental encoders
An absolute encoder with replacement zero mark should not be considerd as a complete
equivalent of an incremental encoder. All the properties of the absolute encoder are retained.
The following table lists the different properties of incremental and absolute encoders:

Table 14- 1 Properties of incremental and absolute encoders

Property Incremental encoder Absolute encoder
MD30240 $MA_ENC_TYPE Encoder type

= 1 = 4
MD30250 $MA_ACT_POS_ABS Internal encoder position

Value is updated only in MD34210 ≥ 1 Value is updated only in MD30270 = 0
MD30270 $MA_ENC_ABS_BUFFERING Traversing range extension

No effect = 0 (default): Active
MD34090 $MA_REFP_MOVE_DIST_CORR Reference point offset

Value input allowed Value is updated exclusively via control
MD34200 $MA_ENC_REFP_MODE Supported referencing types

= 1, 2, 3, 4, 5, 6, 7 = 0, 1, 2
MD34210 $MA_ENC_REFP_STATE = 0, 1, 2 Adjustment status

Automatic encoder misalignment during
shut down while in motion.

Automatic encoder misalignment during
parameter set change with position jump or
during serial number change.

MD34220 $MA_ENC_ABS_TURNS_MODULO Absolute position modulo range
= 0 = 1 - 4096

MD34230 $MA_ENC_SERIAL_NUMBER Encoder serial no.
= 0 The value must be updated from the PLC

during each encoder change, otherwise loss
of adjustment plus alarm.

Transfer of series startup files Without any restrictions. Due to encoder properties
MD30250, MD30270, MD34090, MD34210,
MD34220, MD34230
only possible with limitations.

Activation time 0 seconds several seconds
Zero mark 1 per encoder revolution None
Zero-mark monitoring Hardware Software

R1: Referencing
14.9 Referencing with absolute encoders

 Basic Functions
1212 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Property Incremental encoder Absolute encoder
0.0 Last position within MD34220. Position after POWER ON without

actual value buffering MD34210 = 0 MD30270 = 1
Last standstill position before
deactivation.

Last position including small movements
during POWER OFF.

Position after POWER ON with
actual value buffering

MD34210 = 1 MD30270 = 0
Referenced after POWER ON depends on adjustment status

Requirement
The function can be used only with rotary absolute encoders:

● MD31000 $MA_ENC_IS_LINEAR = 0

● MD30240 $MA_ENC_TYPE = 4

Parameterization
● reference point approach with zero marks:

MD34200 $MA_ENC_REFP_MODE = 1

● A reference point offset should not be input in the following MD:

MD34090 $MA_REFP_MOVE_DIST_CORR

This MD describes, in connection with absolute encoders, the offset between machine
and absolute encoder zero, and it therefore has a different meaning.

● The load-side zero mark search rate MD34040 $MA_REFP_VELO_SEARCH_MARKER
should not exceed the limiting frequency of the absolute trace of the encoder
MD36302 $MA_ENC_FREQ_LIMIT_LOW
.

If the speed is too high, absolute information cannot be read any more, and thus, no
equivalent zero marks are generated.

● If no zero marks are found within:

MD34060 $MA_REFP_MAX_MARKER_DIST

otherwise, an alarm will be triggered.

● A start of the zero mark search with the override of a BERO (MD34200 = 5) is not
supported. MD34200 = 0 is to be used as a equivalent.

● The following MD must be set if the absolute encoder retains even the referenced status
through POWER OFF, besides the last position:

MD34210 $MA_ENC_REFP_STATE = 2

 R1: Referencing
 14.9 Referencing with absolute encoders

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1213

Data backup and standard commissioning
Some properties of an absolute encoder restrict the transfer of series startup files to other
machines. The following machine data must be checked and corrected if necessary after
loading the series startup:
● MD30250 $MA_ACT_POS_ABS (internal encoder position)
● MD30270 $MA_ENC_ABS_BUFFERING (traversing range extension)
● MD34090 $MA_REFP_MOVE_DIST_CORR (absolute offset)
● MD34210 $MA_ENC_REFP_STATE (adjustment status)
● MD34220 $MA_ENC_ABS_TURNS_MODULO (Modulo range)
● MD34230 $MA_ENC_SERIAL_NUMBER (encoder serial number)

14.9.8 Automatic encoder replacement detection

Function
Automatic encoder replacement detection is required for absolute encoders in order to detect
if the encoder has been replaced and therefore needs to be readjusted.

The NC reads the encoder-specific serial number of the encoder from the drive every time
the control is powered up. If the serial number has changed the NC resets the encoder
status to "Encoder not calibrated".

MD34210 $MA_ENC_REFP_STATE = 0

The status of the measuring system is indicated as "Not referenced":

DB31, ... DBB60.4 / 60.5 (referenced/synchronized 1/2) = 0

Serial number display
The NC stores the serial numbers read in the build-up specific to the machine in the machine
data:

MD34230 $MA_ENC_SERIAL_NUMBER (encoder serial number)

 Note

Currently, only the serial numbers of absolute encoders with an EnDat interface can be read.
For all other encoders the display shows that no serial number has been read.

Automatic encoder replacement detection can therefore only be used with the specified
encoder types.

Avoiding readjustments
In some special cases, for example, when a machine axis (built-on rotary axes) is removed
and then mounted again, readjustment is not necessary / desirable.

To avoid readjustment, zero must be parameterized as a serial number to be ignored for the
measuring system of the machine axis in question.

R1: Referencing
14.9 Referencing with absolute encoders

 Basic Functions
1214 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MD34232 $MA_EVERY_ENC_SERIAL_NUMBER = 0

If the NC now reads zero as the serial number, the encoder status is not reset and the serial
number indicated in the machine data is kept.

Example sequence of operation:

1. The NC reads the serial number of the absolute encoder for the measuring system of the
machine axis in question and the serial number is not equal to zero.

2. The absolute encoder is calibrated in the correct manner.

3. When the controller is powered up subsequently, the NC reads "zero" as the serial
number of the absolute encoder.

Serial number "zero" is ignored and the encoder status remains the same, that is
"calibrated".

4. When the controller is powered up, the NC again reads the serial number it read under
Item 1 and that is still indicated in the machine data. The encoder status continues to be
"Adjusted".

 Note

PROFIBUS drives

As not every drive connected via PROFIBUS-DP is able to deliver the encoder serial
number in time for build-up of control or at all, the range of the encoder serial number
with PROFIBUS drives is pre-set with zero to avoid unnecessary new NC internal
adjustments:

MD34232 $MA_EVERY_ENC_SERIAL_NUMBER = 0

A manual parameterizing to 1 is ineffective.

14.9.9 Enabling the measurement system
The measuring system of a machine axis is activated in the following cases:

● Power up of the control (POWER ON)

● Activation of the measuring system via interface signal (deselection of "parking"):

DB31, ... DBB1.5 / 1.6 (position measuring system 1/2)

DB31, ... DBB2.1 (servo enable)

● Violation of the assigned encoder limit frequency (spindles):

MD36300 $MA_ENC_FREQ_LIMIT

When the measuring system is activated, the NC synchronizes the actual value system of
the machine axis with the current absolute value. Traversing is disabled during
synchronization for axes but not for spindles.

 R1: Referencing
 14.9 Referencing with absolute encoders

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1215

Parameterizing the encoder limit frequency (spindles)
The EQN 1325 absolute encoder made by Heidenhain has an incremental track and an
absolute track.

If a spindle is driven at a speed above the encoder limit frequency of the incremental track,
the substantially lower limit frequency of absolute track must be parameterized as the
encoder limit frequency.

MD36300 $MA_ENC_FREQ_LIMIT

Otherwise an incorrect absolute position would be read because the parameterized encoder
limit frequency is not reached when the measuring system is activated. This would cause a
position offset in the actual value system of the machine axis.

Determining the encoder limit frequency

The encoder limit frequency to be parameterized is derived from the smaller of the two
following limit speeds:

● Encoder

The limit speed or encoder limit frequency is listed in the data sheet of the encoder (e.g.,
limit speed = 2000 [rpm])

● NC

Due to the NC-internal evaluation process, the maximum limit speed for which error-free
calculation of the absolute value by the NC is possible is 4 encoder revolutions per
interpolation cycle.

For an interpolation cycle of, for example, 12 ms: Limit speed = 4 / 12 ms = 20,000 rpm

The limiting frequency corresponding to the limiting speed is calculated to be:

MD31020 $MA_ENC_RESOL (Encoder lines per revolution)
MD10050 $MN_SYSCLOCK_CYCLE_TIME (System clock cycle)
MD10070 $MN_IPO_SYSCLOCK_TIME_RATIO (Factor for interpolator cycle)

 Note

The position control switching speed relevant for spindles is set according to the encoder
limiting frequency of the absolute value encoder of the spindle:

MD35300 $MA_SPIND_POSCTRL_VELO (position control switching speed)

MD36300 $MA_ENC_FREQ_LIMIT (Encoder limit frequency)

R1: Referencing
14.10 Automatic restoration of the machine reference

 Basic Functions
1216 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.9.10 Referencing variants not supported
The following referencing variants are not supported when used with absolute encoders:

● Referencing/calibrating with encoder zero mark

● Distance-coded reference marks

● BERO with two-edge evaluation

14.10 Automatic restoration of the machine reference
Without a defined machine reference when traversing machine axes, no position-dependent
functions such as transformations or tool frames can be executed. In various machine
situations, these functions must be available immediately with the encoder activation, e.g.
after the control is turned on or after terminating "parking (Page 66)", to traverse the axes.
However, the machine axes should not or cannot be traversed again for referencing.

Absolute encoders

For measuring systems with adjusted absolute encoders, the machine reference is restored
immediately without any additional measures when the encoder value is read.

Incremental encoders

With incremental measuring systems, the machine reference can be restored without
traversing the axes through "Automatic referencing" or "Restoration of the actual position".

Supplementary conditions

WARNING
During the time in which the measuring system of the machine axis is switched off, it must
not be moved mechanically. Otherwise this results in an offset between the last buffered
actual position and the real actual position of the machine axis. This would lead to an
incorrect synchronization of the measuring system resulting in danger to personnel and
machine.

The machine manufacturer must provide such measures as holding brakes, etc. on the
machine so that the actual position is not changed, and this must be ensured by the user.
The responsibility for this rests exclusively with the machine manufacturer / user.

If axis motion cannot be prevented mechanically in the shutdown state, either an absolute
encoder must be used or the axis must be referenced again with reference point approach
after switching on.

 R1: Referencing
 14.10 Automatic restoration of the machine reference

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1217

 Note
SMExx sensor modules

Automatic referencing or restoration of the actual position to the last buffered position after
restarting the control is only possible in conjunction with SMExx (externally mounted) sensor
modules. When using SMCxx (cabinet) or SMIxx (integrated) sensor modules, the actual
position cannot be restored after restarting the control (power on). The measuring system of
the machine axis must be referenced again.

14.10.1 Automatic referencing

Function
During automatic referencing, the actual position of the active measuring system of the
machine axis is set to the last buffered position and "referenced" set as encoder state after
switching on the control. This makes it possible to start programs in the AUTOMATIC and
MDI modes directly after run-up of the control.

Requirements
● The active measuring systems when the control is switched on must already have been

referenced once before switching off.

● At the time the control is switched off, the machine axis must be at standstill with "Exact
stop fine" (DB31, ... DBX60.7 == 1) are located.

 Note

If the machine axis is not at standstill with "Exact stop fine" when switching off, the actual
position will be initialized with " 0" when switching on. "Not referenced" is displayed as the
encoder state.

Parameter assignment
The automatic referencing is enabled by setting the encoder state to "Automatic referencing
is enabled, but the encoder has not been referenced":

MD34210 $MA_ENC_REFP_STATE[<encoder>] = 1

After the measuring system has been referenced, the encoder state displays that automatic
referencing will be executed the next time the encoder is activated:

MD34210 $MA_ENC_REFP_STATE[<encoder>] == 2

R1: Referencing
14.10 Automatic restoration of the machine reference

 Basic Functions
1218 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

NC/PLC interface signals
After automatic referencing, the encoder state "Referenced" is displayed for the active
measuring system:

DB31, ... DBX60.4/.5 == 1 (referenced/synchronized 1/2)

Supplementary conditions

Encoder activation with MD34210 $MA_ENC_REFP_STATE[<encoder>] == 1

An encoder state equal to "1" at the time of the encoder activation means that "Automatic
referencing" has been enabled. However, the measuring system has either not been
referenced yet or the machine axis was not switched off at standstill in the "Exact stop fine"
state. The following is set for the machine axis or the active measuring system:

● Actual position = 0

● Active measuring system, encoder state = "Not referenced":

DB31, ... DBX60.4 / .5 = 0 (referenced/synchronized 1/2)

References
Description of Functions, Basic functions, Section "R1 Referencing" > "Referencing with
incremental measurement systems (Page 1179)" > ""

14.10.2 Restoration of the actual position

Function
When restoring the actual position to the last buffered position, the encoder state of the
active measuring system is set to "Restored". The axis can only be traversed manually.

AUTOMATIC mode

To enable NC start for the automatic execution of programs in the AUTOMATIC mode, the
measuring system of the machine axis must be re-referenced.

MDI mode and overstore

In the MDI mode and for the overstore function, machining can also be performed, without
referencing the axes, with restored positions. To do this, NC start with restored positions
must be enabled explicitly for a specific channel:

MD20700 $MC_REFP_NC_START_LOCK = 2

Requirement
The active measuring systems when the control is switched on must already have been
referenced once before switching off.

 R1: Referencing
 14.10 Automatic restoration of the machine reference

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1219

Parameter assignment

Release: Restoration of the actual position

The enable to restore the actual position is performed by setting the encoder state to "The
last buffered axis position before switching off will be restored, no automatic referencing":

MD34210 $MA_ENC_REFP_STATE[<encoder>] = 3

Release: NC START for "MDI" and "Overstore" modes

The enable of NC START for execution of part programs or part program blocks in the "MDI"
and "Overstore" modes with the state "Position restored" is performed via:

MD34110 $MA_REFP_CYCLE_NR ≠ -1 (axis sequence for channel-specific referencing)

MD20700 $MC_REFP_NC_START_LOCK = 2 (NC START lock without reference point)

NC/PLC interface signals
The restored actual position is not considered to be equivalent to an actual position after
reference point approach. Therefore, the state "Position restored" and not
"Referenced/synchronized" is displayed for the measuring system of the machine axis.

Actual position restored:

● DB31, ... DBX60.4/.5 = 0 (referenced/synchronized 1/2)

● DB31, ... DBX71.4/.5 = 1 (position restored, encoder 1/2)

Measuring system referenced:

● DB31, ... DBX60.4/.5 = 0 → 1 (referenced/synchronized 1/2)

● DB31, ... DBX71.4/.5 = 1 → 0 (position restored, encoder 1/2)

 Note

The monitoring of the traversing range limits (software limit switches, working area
limitation, etc.) is already active in the "Position restored" state.

Supplementary conditions

Spindles

If the encoder limit frequency is exceeded, a spindle is reset to the "Not
referenced/synchronized" state:

● DB31, ... DBX60.4/.5 = 1 → 0 (referenced/synchronized 1/2)

● DB31, ... DBX71.4/.5 = 1 → 0 (position restored, encoder 1/2)

References
Description of Functions, Basic functions, Section "R1 Referencing" > "Referencing with
incremental measurement systems (Page 1179)" > ""

R1: Referencing
14.11 Supplementary conditions

 Basic Functions
1220 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.11 Supplementary conditions

14.11.1 Large traverse range

Linear axes with a traversing range > 4096 encoder revolutions, rotatory absolute encoder
EQN 1325 and a parameterized absolute encoder range of
MD34220 $MA_ENC_ABS_TURNS_MODULO = 4096:

The maximum possible travel range corresponds to that of incremental encoders.

Endlessly turning rotary axes with absolute encoders:

● Any number of integer transmission ratios are permitted.

● We recommend that you parameterize endlessly turning rotary axes with absolute
encoders as modulo rotary axes (traversing range 0...360 degrees):
MD30310 $MA_ROT_IS_MODULO = 1

Otherwise, the rotary axis may require a very large traversing path to reach absolute zero
when the measuring system is activated.

Machine axes with absolute encoders:

In order that the controller correctly determines the current actual position after the restart of
the measuring system, the machine axis may only be moved less than half the absolute
encoder range when the measuring system is switched off:

MD34220 $MA_ENC_ABS_TURNS_MODULO

 R1: Referencing
 14.12 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1221

Notes on uniqueness of encoder positions

 Note
Linear absolute encoders

The absolute value of linear position encoders, e.g. Heidenhain LC181, is always unique for
the scale lengths available.
Rotary absolute encoders

The absolute value of rotary absolute encoders is only unique within the range of the specific
maximum encoder revolutions.

For example, the EQN 1325 rotary absolute encoder by Heidenhain supplies a unique
absolute value in the range of 0 to 4,096 encoder revolutions.

Depending on how the encoder is connected that will result in:
• Rotary axis with encoder on load: 4096 load revolutions
• Rotary axis with encoder on motor: 4096 motor revolutions
• Linear axis with encoder on motor: 4096 motor revolutions

Example:
An EQN 1325 rotary absolute encoder is mounted on the motor of a linear axis. For an
effective leadscrew pitch of 10 mm this will result in a unique absolute value within the travel
range -20.48 to +20.48 m.

14.12 Data lists

14.12.1 Machine data

14.12.1.1 NC-specific machine data

Number Identifier: $MN_ Description
11300 JOG_INC_MODE_LEVELTRIGGRD INC/REF in jog/continuous mode

14.12.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20700 REFP_NC_START_LOCK NC start disable without reference point

R1: Referencing
14.12 Data lists

 Basic Functions
1222 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.12.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30200 NUM_ENCS Number of encoders
30240 ENC_TYP Actual value encoder type
30242 ENC_IS_INDEPENDENT Encoder is independent
30250 ACT_POS_ABS Absolute encoder position at time of deactivation.
30270 ENC_ABS_BUFFERING Absolute encoder: Traversing range extension
30300 IS_ROT_AX Rotary axis/spindle
30310 ROT_IS_MODULO Modulo conversion for rotary axis / spindle
30330 MODULO_RANGE Magnitude of the modulo range
30340 MODULO_RANGE_START Starting position of modulo range
30355 MISC_FUNCTION_MASK Axis functions
31122 BERO_DELAY_TIME_PLUS BERO delay time in plus direction
31123 BERO_DELAY_TIME_MINUS BERO delay time in minus direction
34000 REFP_CAM_IS_ACTIVE Axis with reference cam
34010 REFP_CAM_DIR_IS_MINUS Reference point approach in minus direction
34020 REFP_VELO_SEARCH_CAM Homing approach velocity
34030 REFP_MAX_CAM_DIST Maximum distance to reference cam
34040 REFP_VELO_SEARCH_MARKER Reference point creep velocity
34050 REFP_SEARCH_MARKER_REVERSE Direction reversal to reference cam
34060 REFP_MAX_MARKER_DIST Maximum distance to reference mark;

Max. distance to 2 reference mark for distance-coded
scales

34070 REFP_VELO_POS Reference point positioning velocity
34080 REFP_MOVE_DIST Reference point distance/destination point for

distancecoded system
34090 REFP_MOVE_DIST_CORR Reference point/absolute offset, distancecoded
34092 REFP_CAM_SHIFT Electronic reference cam shift for incremental

measurement systems with equidistant zero marks.
34093 REFP_CAM_MARKER_DIST Reference cam/reference mark distance
34100 REFP_SET_POS Reference point value
34102 REFP_SYNC_ENCS Actual value adjustment to the referencing

measurement system
34104 REFP_PERMITTED_IN_FOLLOWUP Enable referencing in followup mode
34110 REFP_CYCLE_NR Axis sequence for channelspecific Homing
34120 REFP_BERO_LOW_ACTIVE Polarity change of the BERO cam
34200 ENC_REFP_MODE Referencing mode
34210 ENC_REFP_STATE Status of absolute encoder
34220 ENC_ABS_TURNS_MODULO Absolute encoder range for rotary encoders
34230 ENC_SERIAL_NUMBER Encoder serial number
34232 EVERY_ENC_SERIAL_NUMBER Expansion of encoder serial number

 R1: Referencing
 14.12 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1223

Number Identifier: $MA_ Description
34300 ENC_REFP_MARKER_DIST Basic distance of reference marks for distance-coded

encoders
34310 ENC_MARKER_INC Interval between two reference marks with distance-

coded scales
34320 ENC_INVERS Linear measuring system inverse to machine system:
34330 REFP_STOP_AT_ABS_MARKER Distancecoded linear measuring system without

destination point
35150 SPIND_DES_VELO_TOL Spindle speed tolerance
36302 ENC_FREQ_LIMIT_LOW Encoder limit frequency resynchronization
36310 ENC_ZERO_MONITORING Zero mark monitoring

14.12.2 Signals

14.12.2.1 Signals to BAG

Signal name SINUMERIK 840D sl SINUMERIK 828D
Mode group RESET DB11.DBX0.7 DB3000.DBX0.7
Machine function REF DB11.DBX1.2 DB3000.DBX1.2

14.12.2.2 Signals from BAG

Signal name SINUMERIK 840D sl SINUMERIK 828D
Active machine function REF DB11.DBX5.2 DB3100.DBX1.2

14.12.2.3 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate referencing DB21,DBX1.0 DB3200.DBX1.0
OEM channel signal (HMI → PLC) REF DB21,DBX28.7 -

14.12.2.4 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Referencing active DB21,DBX33.0 DB3300.DBX1.0
Reset DB21,DBX35.7 DB3300.DBX3.7
All axes referenced DB21,DBX36.2 DB3300.DBX4.2

R1: Referencing
14.12 Data lists

 Basic Functions
1224 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

14.12.2.5 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Follow-up mode (request) DB31,DBX1.4 DB380x.DBX1.4
Position measuring system 1 / position measuring system
2

DB31,DBX1.5-6 DB380x.DBX1.5-6

Reference point value 1 to 4 DB31,DBX2.4-7 DB380x.DBX2.4-7
Traversing keys minus/plus DB31,DBX4.6-7 DB380x.DBX4.6-7
Deceleration of reference point approach DB31,DBX12.7 DB380x.DBX1000.7

14.12.2.6 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Referenced, synchronized 1/2 DB31,DBX60.4-5 DB390x.DBX0.4-5
Follow up active DB31,DBX61.3 DB390x.DBX1.3
Traversing command minus/plus DB31,DBX64.6-7 DB390x.DBX4.6-7
Restored 1/2 DB31,DBX71.4-5 DB390x.DBX11.4-5

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1225

S1: Spindles 15
15.1 Brief Description

The primary function of a spindle is to set a tool or workpiece in rotary motion in order to
facilitate machining.

Depending on the type of machine, the spindle must support the following functions in order
to achieve this:

● Input of a direction of rotation for the spindle (M3, M4)

● Input of a spindle speed (S, SVC)

● Spindle stop, without orientation (M5)

● Spindle stop with orientation / Spindle positioning
(SPOS, M19 and SPOSA)

● Gear change (M40 to M45)

● Spindleaxis functionality (spindle becomes rotary axis and vice versa)

● Thread cutting (G33, G34, G35)

● Tapping without compensating chuck (G331, G332)

● Tapping with compensating chuck (G63)

● Revolutional feedrate (G95)

● Constant cutting rate (G96, G961, G97, G971)

● Programmable spindle speed limits (G25, G26, LIMS=)

● Position encoder assembly on the spindle or on the spindle motor

● Spindle monitoring for min. and max. speed as well as
max. encoder limit frequency and end point monitoring of spindle

● Switching the position control (SPCON, SPCOF, M70) on/off

● Programming of spindle functions:

– From the part program

– Via synchronized actions

– Via PLC with FC18 or via special spindle interfaces for simple spindle activation

S1: Spindles
15.2 Modes

 Basic Functions
1226 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.2 Modes

15.2.1 Overview

Spindle modes
The spindle can have the following modes:

● Control mode

● Oscillation mode

● Positioning mode

● Synchronous mode, synchronous spindle

References:
Function Manual, Extension Functions, Synchronous Spindle (S3)

● Rigid tapping

References:
Programming Manual, Fundamentals; Chapter: Motion commands

Axis mode
The spindle can be switched from spindle mode to axis mode (rotary axis) if the same motor
is used for spindle and axis operation.

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1227

15.2.2 Mode change
Switching between spindle and axis operation can be done as follows:

● Control mode → Oscillation mode

The spindle changes to oscillation mode if a new gear stage has been specified using
automatic gear step selection (M40) in conjunction with a new S value or by M41 to M45.
The spindle only changes to oscillation mode if the new gear step is not equal to the
current actual gear step.

● Oscillation mode → Control mode

When the new gear is engaged, the interface signal:
DB31, ... DBX84.6 (Oscillation mode)
is reset and the interface signal:
DB31, ... DBX16.3 (Gear changed)
is used to go to control mode.
The last programmed spindle speed (S value) is reactivated.

● Control mode → Positioning mode

To stop the spindle from rotation (M3 or M4) with orientation or to reorient it from standstill
(M5), SPOS, M19 or SPOSA are used to switch to positioning mode.

● Positioning mode → Control mode

M3, M4 or M5 are used to change to control mode if the orientation of the spindle is to be
terminated. The last programmed spindle speed (S value) is reactivated.

S1: Spindles
15.2 Modes

 Basic Functions
1228 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Positioning mode → Oscillation mode

If the orientation of the spindle is to be terminated, M41 to M45 can be used to change to
oscillation mode. When the gear change is complete, the last programmed spindle speed
(S value) and M5 (control mode) are reactivated.

● Positioning mode → Axis mode

If a spindle was stopped with orientation, the assigned axis name is used to program a
change to axis mode. The gear step is retained.

● Control mode → Axis mode

Switching from control mode to axis mode can be also achieved by the programming of
M70. In this case, a rotating spindle is decelerated in the same way as for M5, position
control activated and the zero parameter set selected.

● Axis mode → Control mode

To terminate axis mode, M3, M4 or M5 can be used to change to control mode. The last
programmed spindle speed (S value) is reactivated.

● Axis mode → Oscillation mode

To terminate axis mode, M41 to M45 can be used to change to oscillation mode (only if
the programmed gear step is not the same as the actual gear step). When the gear
change is complete, the last programmed spindle speed (S value) and M5 (control mode)
are reactivated.

15.2.3 Control mode

When open-loop control mode?
The spindle is in open-loop control mode with the following functions:

● Constant spindle speed:

– S... M3/M4/M5 and G93, G94, G95, G97, G971

– S... M3/M4/M5 and G33, G34, G35

– S... M3/M4/M5 and G63

● Constant cutting speed:

– G96/G961 S... M3/M4/M5

The spindle need not be synchronized.

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1229

Requirements
A spindle position actual value encoder is absolutely essential for M3/M4/M5 in connection
with:

● Revolutional feedrate (G95)

● Constant cutting speed (G96, G961, G97, G971)

● Thread cutting (G33, G34, G35)

● Tapping without compensating chuck (G331, G332)

● Activate position control (SPCON, M70)

A spindle position actual value encoder is not required for M3/M4/M5 in connection with:

● Inverse-time feedrate coding (G93)

● Feedrate in mm/min or inch/min (G94)

● Tapping with compensating chuck (G63)

Speed control mode
Speed control mode is particularly suitable if a constant spindle speed is required, but the
position of the spindle is not important (e.g. constant milling speed for even appearance of
the workpiece surface).

● Speed control mode is activated in the part program with M3, M4, M5 or with SPCOF.

● The following NC/PLC interface signal is set:

DB31, ... DBX84.7 (control mode)

● NC/PLC IS:
DB31, ... DBX61.5 (position controller active)
is reset if position control is not used.

● Acceleration in speed control mode is defined independently of the gear stage in the
machine data:

MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL

The value should reflect the physical circumstances, if possible.

Position control mode
Position control is particularly suitable if the position of the spindle needs to be tracked over
a longer period or if synchronous spindle setpoint value linkage is to be activated.

● Position control mode is switched on in the part program with: SPCON(<spindle number>)

● The following NC/PLC interface signal is set:

DB31, ... DBX61.5 (position controller active)

● Acceleration in position control mode is defined independent of the gear stage in the
machine data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

S1: Spindles
15.2 Modes

 Basic Functions
1230 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Independent spindle reset
The spindle response after a reset or the end of the program (M2, M30) is set with the
machine data:

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET (individual spindle reset)

Value Meaning
0 When the spindle is reset or at the end of the program, the spindle immediately decelerates

to a stop at the active acceleration rate. The last programmed spindle speed and direction of
rotation are deleted.

1 Upon reset or at the end of the program, the last programmed spindle speed (S-value) and
the last programmed direction of spindle rotation (M3, M4, M5) are retained. The spindle is
not braked.

If prior to reset or end of program the constant cutting speed (G96, G961) is active, the
current spindle speed (in relation to 100% spindle override) is internally accepted as the
spindle speed last programmed.

The spindle can only be stopped with the NC/PLC interface signal:

DB31, ... DBX2.2 (delete distance-to-go / spindle reset)

The direction of rotation is deleted in the event of all alarms generating a spindle quick stop.
The last programmed spindle speed (S value) is retained. Once the source of the alarm has
been eliminated, the spindle must be restarted.

Spindle actual speed display and spindle behavior with G96, G961
DB31, ... DBX61.4 (axis/spindle stationary)

The speed at which the spindle is deemed to be "stationary" is set with the machine data:

MD36060 $MA_STANDSTILL_VELO_TOL

The value should be measured in such a way that the following NC/PLC interface signal is
reliably present at a standstill:

DB31,... DBX61.4 (axis/spindle stationary)

If DB31,... DBX61.4 (axis/spindle stationary) is signaled and there is no closed-loop position
control active for the spindle, an actual speed of zero is displayed at the user interface, and
zero is read with the system variable $AA_S[<n>].

Spindle response at constant cutting speed G96, G961

● At the start of machining (transition from G0 to Gx) and after NC stop, G60 (exact stop,
modal) and G9 (exact stop, non-modal) the system waits until the actual speed has
reached the speed setpoint tolerance range before starting the path.

DB31, ... DBX83.5 (nact = nset)

● The NC/PLC IS:
DB31, ... DBX83.5 (nact = nset)
and
DB31, ... DBX83.1 (setpoint speed limited) are also set to defined values
even if significant speed changes are specified (transverse axis travels towards position
0).

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1231

● If the speed drops below the minimum speed
or when NC/PLC IS:
DB31, ... DBX61.4 (axis/spindle stationary)
is detected, NC/PLC IS:
DB31, ... DBX83.5 (nact = nset)
 is reset (e.g. for an emergency machine strategy).

● A path operation which has started (G64, rounding), is not interrupted.

In addition, the spindle response is influenced by the following machine data:

MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START (feed enable with spindle in setpoint
range).

Spindle behavior at the end of gear stage change

● NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
informs the NC that the new gear stage
(NC/PLC IS DB31, ... DBX16.0-16.2 (actual gear stage A to C))
applies and oscillation mode is terminated.

In this case, it does not matter whether NC/PLC IS:
DB31, ... DBX18.5 (oscillation mode)
is still set.

The actual gear stage should correspond to the set gear stage.

The actual gear stage signaled is relevant for selection of the parameter set.

● Once the gear stage change (GSW) has been acknowledged via the PLC (DB31, ...
DBX16.3), the spindle is in speed control mode (DB31, ... DBX84.7 = 1).

If a direction of rotation (M3, M4, M5 or FC18: "Start spindle rotation") or a spindle speed
(S value) was programmed before the gear stage change, then the last speed and
direction of rotation will be reactivated after the gear stage change.

15.2.4 Oscillation mode
Oscillation mode is activated for the spindle during the gear step change.

The mode of operation is described in detail in the topic "Gear step change with oscillation
mode (Page 1280)".

S1: Spindles
15.2 Modes

 Basic Functions
1232 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.2.5 Positioning mode

15.2.5.1 General functionality

When is positioning mode used?
The spindle positioning mode stops the spindle at the defined position and activates the
position control, which remains active until it is de-activated.

For the following functions the spindle is in positioning mode:

● SPOS[<n>]=...

● SPOS[<n>]=ACP(...)

● SPOS[<n>]=ACN(...)

● SPOS[<n>]=AC(...)

● SPOS[<n>]=IC(...)

● SPOS[<n>]=DC(...)

● SPOSA[<n>]=ACP(...)

● SPOSA[<n>]=ACN(...)

● SPOSA[<n>]=AC(...)

● SPOSA[<n>]=IC(...)

● SPOSA[<n>]=DC(...) equal to SPOSA[<n>]=...

● M19 or M[<n>]=19

The address extension [<n>] with <n> = spindle number may not apply for the main spindle.

SPOS[<n>]=AC(...)
Spindle positioning to an absolute position (0 to 359.999 degrees). The positioning direction
is determined either by the current direction of spindle rotation (spindle rotating) or the
distance-to-go.

SPOS[<n>]=IC(...)
Spindle positioning to an incremental position (+/- 999999.99 degrees) in relation to the last
programmed position. The positioning direction is defined by the sign of the path to be
traversed.

SPOS[<n>]=DC(...)
Spindle positioning across the shortest path to an absolute position (0 to 359.999 degrees).
The positioning direction is determined either by the current direction of spindle rotation
(spindle rotating) or automatically by the control (spindle stationary).

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1233

SPOS[<n>]=...
Same functional sequence as SPOS [<n>]=DC(...).

SPOS[<n>]=ACP(...)
Approaches the position from the positive direction.

When positioning from a negative direction of rotation, the speed is decelerated to zero and
accelerated in the opposite direction to execute the positive approach.

SPOS[<n>]=ACN(...)
Approaches the position from the negative direction.

When positioning from a positive direction of rotation, the speed is decelerated to zero and
accelerated in the opposite direction to execute the negative approach.

M19 (DIN 66025)
M19 can be used to position the spindle. The position and the position approach mode are
read here from the following setting data:

SD43240 $SA_M19_SPOS[<n>] (spindle position for spindle positioning with M19)

SD43250 $SA_M19_SPOSMODE[<n>] (spindle position for spindle positioning with M19)

The positioning options of M19 are identical to those of:

SPOS = <approach mode> <position/path>

M19 is output as an auxiliary function to the NC/PLC interface as an alternative to M3, M4,
M5, and M70. The M19 block remains active in the interpolator for the duration of positioning
(like SPOS).

Part programs using M19 as a macro (e.g. DEFINE M19 AS SPOS = 0) or as a subprogram,
continue to remain executable. For the sake of compatibility with previous controls, the
internal processing of M19 (NCK positions the spindle) can be disabled as shown in the
following example:

MD22000 $MC_AUXFU_ASSIGN_GROUP[0] = 4 ; Auxiliary function group: 4
MD22010 $MC_AUXFU_ASSIGN_TYPE[0] = "M" ; Auxiliary function type: "M"
MD22020 $MC_AUXFU_ASSIGN_EXTENSION[0] = 0 ; Auxiliary functions Extension: 0
MD22030 $MC_AUXFU_ASSIGN_VALUE[0] = 19 ; Auxiliary function value: 19

S1: Spindles
15.2 Modes

 Basic Functions
1234 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Implicitly generated auxiliary function M19
To achieve uniformity in terms of how M19 and SPOS or SPOSA behave at the NC/PLC
interface, auxiliary function M19 can be output to the NC/PLC interface in the event of SPOS
and SPOSA.

The two following options are available for activating this function:

● Channel-specific activation for all the spindles in the channel via the machine data:

MD20850 $MC_SPOS_TO_VDI (Output of M19 to the PLC with SPOS/SPOSA)

Bit Value Meaning

0 If bit 19 is also set to "0" in the MD35035
$MA_SPIND_FUNCTION_MASK, no auxiliary function M19 is
generated in SPOS and SPOSA. This therefore eliminates the
acknowledgement time for the auxiliary function.

0

1 The auxiliary function M19 is generated and output to the PLC
during the programming of SPOS and SPOSA in the part
program. The address extension corresponds to the spindle
number.

● Spindle-specific and cross-channel activation via the machine data:

MD35035 $MA_SPIND_FUNCTION_MASK (spindle functions)

Bit Value Meaning

0 If bit 0 is also set to "0" in the MD20850 $MC_SPOS_TO_VDI, no
auxiliary function M19 is generated in SPOS and SPOSA. This
therefore eliminates the acknowledgement time for the auxiliary
function.

19

1 The implicit auxiliary function M19 is generated and output to the
PLC during the programming of SPOS and SPOSA. The address
extension corresponds to the spindle number.

 Note

Activation via MD35035 should be preferred when using a spindle in multiple channels
(axis/spindle exchange).

The auxiliary function M19 is implicitly generated if either of the MD configurations = 1.

After activation, the minimum duration of an SPOS/SPOSA block is increased to the time for
output and acknowledgement of the auxiliary functions by the PLC.

The properties of the implicitly generated auxiliary function output M19 are "Quick" and
"Output during motion". These properties are fixed settings and are independent of the M19
configuration in the auxiliary function-specific machine data (MD..._$M..._AUXFU_...).

There is no auxiliary function M19 implicitly generated in the case of spindle positioning
commands via FC 18.

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1235

End of positioning
The positioning can be programmed with:

FINEA[S<n>]: End of motion on reaching "Exact stop fine" (DB31, ... DBX60.7)
COARSEA[S<n>]: End of motion on reaching "Exact stop coarse" (DB31, ...

DBX60.6)
IPOENDA[S<n>]: End of motion on reaching "IPO stop"

In addition, an end-of-motion criterion for block changes can be set in the braking ramp (100-
0%) with IPOBRKA for single-axis interpolation.

References:
Function Manual, Extended Functions; Positioning Axes (P2)

Block change
The program advances to the next block if the end-of-motion criteria for all spindles or axes
programmed in the current block, plus the block change criterion for path interpolation, are
fulfilled. This applies to both part-program and technology-cycle blocks.

SPOS, M19 and SPOSA have the same functionality but differ in their block change
behavior:

● SPOS and M19

The block change is carried out if all functions programmed in the block have reached
their end-of-block criterion (e.g. all auxiliary functions acknowledged by the PLC, all axes
have reached their end points) and the spindle has completed its positioning motion.

● SPOSA

The program moves to the next block if all the functions (except for spindle) programmed
in the current block have reached their end-of-block criterion. If SPOSA is the only entry in
the block, block change is performed immediately. The spindle positioning operation may
be programmed over several blocks (see WAITS).

Coordination
A coordination of the sequence of motions can be achieved with:

● PLC

● MD configuration

● Programming in the part program

PLC

If the NC/PLC interface signal:
DB31, ... DBX83.5 (spindle in the setpoint range)
is not available, then the channel-specific NC/PLC interface signal:
DB21, ... DBX 6.1 (read-in inhibit)
can be set in order to wait for a spindle to reach a certain position.

S1: Spindles
15.2 Modes

 Basic Functions
1236 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MD configuration

Setting:
MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START = 1
is used to perform path interpolation taking the tolerance:
MD35150 $MA_SPIND_DES_VELO_TOL
into account only if the spindle has rotated up to the preselected speed.

The setting
MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START = 2
is used to stop traveling path axes before the start of machining at the last G0.

Machining continues:

● With the next traversing command.

● If the spindle speed is reached.

● When MD35510 $MA_SPIND_STOPPED_AT_IPO_START = 1
(path feed enable, if spindle stationary).

Programming in the part program

Coordination actions in the part program have the following advantages:

● The part program author can decide at what point in the program the spindle needs to be
up to speed, e.g. in order to start machining a workpiece.

● This avoids unnecessary delays.

Coordination in the part program involves programming the WAITS command:

WAITS: for main spindle (master spindle)
WAITS[<n>]: for spindles with number <n>
WAITS[<n>,<m>,...]: for several spindles up to the maximum number of

spindles

CAUTION
Coordination error

The part program author must ensure that one of the following maintenance conditions
occurs for WAITS.
• Position reached
• Spindle stationary
• Spindle up to programmed speed

In cases where one spindle is used in several channels, the part program author must
ensure that WAITS starts at the earliest in the phase in which the spindle from another
channel has already started to accelerate or decelerate towards the required new speed or
direction of rotation.

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1237

The control waits before executing subsequent blocks until:

● Position(s) programmed with SPOSA are reached.

● Spindle standstill is reached with M5:

DB31, ..., DBX 61.4 (spindle stationary)

taking into account the tolerance:

MD36060 $MA_STANDSTILL_VELO_TOL

WAITS is terminated and the next block loaded when the first occurrence of the signal is
detected.

● In M3/M4 (speed control mode), the speed in the setpoint range is:

DB31, ..., DBX83.5 (spindle in setpoint range)

taking into account the tolerance:

MD35150 $MA_SPIND_DES_VELO_TOL

WAITS is terminated and the next block loaded when the first occurrence of the signal is
detected.

This WAITS function applies in the programmed channel.

WAITS can be used to wait for all spindles known to this channel, although spindles may
also have been started in other channels.

Special cases
● Tolerance for spindle speed:

If the machine data setting is:
MD35150 $MA_SPIND_DES_VELO_TOL = 0
the NC/PLC interface signal:
DB31, ... DBX83.5 (spindle in setpoint range)
is always set to 1.

WAITS is terminated as soon as the spindle has reached the setpoint-side target after a
change in speed or direction (M3/M4).

● Missing enable signals:

If the WAITS function waits for the "Spindle in setpoint range" signal in speed control
mode and the spindle stops or fails to rotate because an enable signal (axial feed enable,
controller, pulse enable, etc.) is missing, the block is not terminated until the "Spindle in
setpoint range" signal is active, once enable signals are being received again.

S1: Spindles
15.2 Modes

 Basic Functions
1238 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Response to NC and mode-group stop:

If an NC or mode-group stop is triggered during WAITS, the wait operation is resumed
after the NC start with all the above conditions.

 Note

In particular when using spindles across different channels, care should be taken when
programming not to start WAITS too early in one channel, i.e. at a time when the spindle
in the other channel is still rotating at its "old" speed.
In such cases, the "Spindle in setpoint range" signal is activated and WAITS is stopped
too soon.
To prevent this happening, it is strongly recommended to set a WAITM before WAITS.

Feedrate
The positioning speed is configured in the machine data:

MD35300 $MA_SPIND_POSCTRL_VELO (position control switching speed)

The configured positioning speed can be modified by programming or by synchronized
actions:
FA[S<n>]=<value>

where: <n>: Spindle number
 <value>: Positioning speed in degrees/min

With FA[S<n>]=0, the configured speed takes effect.

Acceleration
The accelerations are configured in the machine data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode)

MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL (acceleration in the speed control
mode)

The configured dynamic response during positioning can be modified by programming or by
synchronized actions:
ACC[S<n>]=<value>

where: <n>: Spindle number
 <value>: Acceleration as a percentage of the configured acceleration

With ACC[S<n>]=0, the configured acceleration takes effect.

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1239

Aborting the positioning process
The positioning action is aborted:

● By the NC/PLC interface signal:

DB31, ... DBX2.2 (delete distance-to-go / spindle reset).

● With every reset (e.g. operator panel front reset).

● Through NC stop.

The abort response in independent of the machine data:

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET (individual spindle reset)

Special features
The spindle override switch is active.

15.2.5.2 Positioning from rotation

Initial situation
The spindle can be in speed control mode or in position control mode when positioning starts
(SPOS, M19 or SPOSA command in the program).

One must distinguish between the following cases:

Case 1: Spindle in speed control mode, encoder limit frequency exceeded
Case 2: Spindle in speed control mode, encoder limit frequency not exceeded
Case 3: Spindle in position control mode
Case 4: Spindle speed ‹ Position-control activation speed

S1: Spindles
15.2 Modes

 Basic Functions
1240 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Procedure

Figure 15-1 Positioning from rotation

 Note

The speed arising from the configuration of the encoder limit frequency for the
resynchronization of the encoder (MD36302 $MA_ENC_FREQ_LOW) must be greater than
the position-control activation speed (MD35300 $MA_SPIND_POSCTRL_VELO).

Phase 1
Positioning from phase 1a:

The spindle is rotating at a higher speed than the encoder limit frequency. The spindle is not
synchronized.

Positioning from phase 1b:

The spindle is rotating at a lower speed than the encoder limit frequency. The spindle is
synchronized.

 Note

If the position control is active, the speed can only amount to 90% of the maximum speed of
the spindle or the encoder limit frequency (10% control reserve required).

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1241

Positioning from phase 1c:

The spindle rotates at the programmed spindle speed whereby the speed is lower than the
configured position-control activation speed:

MD35300 $MA_SPIND_POSCTRL_VELO

The spindle is synchronized.

Phase 2
Spindle speed > Position-control activation speed

When the SPOS, M19 or SPOSA command is activated, the spindle begins to slow down to the
position-control activation speed with the configured acceleration:

MD35200 $MA_GEAR_STEP_SPEEDCTL_ACCEL

The spindle is synchronized once the encoder limit frequency threshold is crossed.

Spindle speed < Position-control activation speed

SPOS, M19 or SPOSA are programmed to switch the spindle to position control mode (if it is not
already in that mode).

The configured acceleration in position control mode is activated:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

The travel path to the target point is calculated.

The spindle travels to the programmed end point optimally in terms of time. This means that
the end point is approached at the highest possible speed (maximum MD35300
$MA_SPIND_POSCTRL_VELO). Depending on the appropriate secondary conditions,
phases 2 - 3 - 4 - 5 or 4a - 5a are executed.

Phase 3
Spindle speed > Position-control activation speed

When the configured position-control activation speed
(MD35300 $MA_SPIND_POSCTRL_VELO) is reached:

● Position control is activated (if not already active).

● The distancetogo (to the target point) is calculated.

● There is a switch to the configured configured acceleration in position control mode (or
this acceleration is retained):

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

Spindle speed < Position-control activation speed

The spindle was accelerated up to the configured position-control activation speed
(MD35300 $MA_SPIND_POSCTRL_VELO) to reach the end point. This is not exceeded.

The braking start point calculation detects when the programmed spindle position can be
approached accurately at the acceleration configured in position control mode (MD35210
$MA_GEAR_STEP_POSCTRL_ACCEL).

S1: Spindles
15.2 Modes

 Basic Functions
1242 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Phase 4
Spindle speed > Position-control activation speed

The spindle brakes from the calculated "braking point" with machine data:
MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL
to the target position.

Spindle speed < Position-control activation speed

At the time identified by the braking start point calculation in phase 3, the spindle brakes to a
standstill with the acceleration configured in position control mode (MD35210
$MA_GEAR_STEP_POSCTRL_ACCEL).

Phase 4a:

When the SPOS command is activated the proximity of the end point is such that the spindle
can no longer be accelerated to the configured position-control activation speed (MD35300
$MA_SPIND_POSCTRL_VELO).

The spindle brakes to a standstill with the acceleration configured in position control mode
(MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL).

Phase 5
Spindle speed > Position-control activation speed

Position control remains active and holds the spindle in the programmed position.

 Note

The maximum encoder limit frequency of the spindle position actual-value encoder is
monitored by the control (it may be exceeded); in position control mode, the setpoint speed
is reduced to 90% of the measuring system limit speed.

The following NC/PLC interface signal is set:

DB31, ... DBX83.1 (programmed speed too high)

If "MS limit frequency exceeded" is still pending following a reduction in the setpoint speed,
an alarm is output.

Spindle speed < Position-control activation speed (Phase 5, 5a)

The spindle is stationary and it has reached the position. The position control is active and
stops the spindle in the programmed position.

If the distance between the spindle actual position and the programmed position (spindle
setpoint position) is less than the configured exact stop fine and coarse limits, the following
NC/PLC interface signals are set:

DB31, ... DBX60.7 (Position reached with coarse exact stop)

DB31, ... DBX60.7 (Position reached with fine exact stop)

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1243

The exact stop limits are defined with the machine data:

MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

MD36000 $MA_STOP_LIMIT_COARSE (exact stop coarse)

 Note

The positioning procedure is considered complete when the end-of-positioning criterion is
reached and signaled.

The condition is "Exact stop fine". This applies to SPOS, M19 or SPOSA from the part program,
synchronized actions and spindle positioning by the PLC using FC 18.

15.2.5.3 Positioning from standstill

Procedure
A distinction is made between two cases with regard to positioning from standstill:

● Case 1: The spindle is not synchronized.

This is the case if the spindle is to be positioned after switching on the control and drive
or after a gear step change (e.g. for a tool change).

MD31040 $MA_ENC_IS_DIRECT = 0

● Case 2: The spindle is synchronized.

This is the case if, after switching on the control and drive, the spindle is to be rotated
through a minimum of one revolution with M3 or M4 and then stopped with M5
(synchronization with the zero mark) before the first positioning action.

S1: Spindles
15.2 Modes

 Basic Functions
1244 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 15-2 Positioning with stationary spindle

Phase 1
Case 1: Spindle not synchronized

With the programming of SPOS, M19 or SPOSA the spindle accelerates with the acceleration
from the machine data:

MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL (Acceleration in the speed control
mode)

This direction of rotation is defined by the machine data:

MD35350 $MA_SPIND_POSITIONING_DIR (Direction of rotation while positioning to
standstill)

Exception:

If ACN, ACP, IC is used for positioning, the programmed direction of travel is activated.

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1245

The spindle is synchronized at the next zero mark of the spindle position actual-value
encoder and switches to the position control mode.

Whether the zero mark is found in the traversed path (except for IC), is monitored:

MD34060 $MA_REFP_MAX_MARKER_DIST (maximum distance to the reference mark)

If the speed defined in machine data:
MD35300 $MA_SPIND_POSCTRL_VELO (Positioning speed)
is reached before the spindle is synchronized, the spindle will continue to rotate at the
positioning activation speed (it is not accelerated further).

Case 2: Spindle synchronized

SPOS, M19 or SPOSA will switch the spindle to position control mode.

The acceleration from the following machine data is active:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode)

The direction of rotation is defined by the programmed motion (ACP, ACN, IC, DC) or via the
pending distance-to-go.

The speed entered in
MD35300 $MA_SPIND_POSCTRL_VELO (position control activation speed)
is not exceeded in the machine data.

The travel path to the end position is calculated.

The spindle travels to the programmed end point optimally in terms of time. This means that
the end point is approached at the highest possible speed (maximum MD35300
$MA_SPIND_POSCTRL_VELO). Depending on the appropriate secondary conditions, the
phases 1 - 2 - 3 - 4 or 1- 3a - 4a are executed.

Phase 2
Case 1: Spindle not synchronized

When the spindle is synchronized, position control is activated.

The spindle rotates at the maximum speed stored in machine data:
MD35300 $MA_SPIND_POSCTRL_VELO
until the braking start point calculation identifies the point at which the programmed spindle
position can be approached accurately with the defined acceleration.

Case 2: Spindle synchronized

To reach the end point, the spindle is accelerated up to the speed defined in machine data:
MD35300 $MA_SPIND_POSCTRL_VELO.

This is not exceeded.

The braking start point calculation identifies when the programmed spindle position can be
approached accurately at the acceleration defined in machine data:
MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL.

At the point, which is determined by the braking start point calculation in Phase 1, the spindle
decelerates to a standstill with the acceleration given in the following machine data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

S1: Spindles
15.2 Modes

 Basic Functions
1246 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Phase 3
At the point, which is determined by the braking start point calculation in Phase 2, the spindle
decelerates to a standstill with the acceleration given in the following machine data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

Phase 3a:

When the SPOS command is activated the proximity of the end point is such that the spindle
can no longer be accelerated up to machine data:
MD35300 $MA_SPIND_POSCTRL_VELO.

The spindle is braked to a standstill with the acceleration given in the following machine
data:

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

Phase 4, 4a
The spindle is stationary and it has reached the position. The position control is active and
stops the spindle in the programmed position.

NC/PLC IS:
DB31, ... DBX60.6 (Position reached with exact stop coarse)
and
DB31, ... DBX60.7 (Position reached with exact stop fine)
are set if the distance between the spindle actual position and the programmed position
(spindle setpoint position) is less than the settings for the exact stop fine and coarse limits.

This is defined in the machine data:

MD36010 $MA_STOP_LIMIT_FINE

MD36000 $MA_STOP_LIMIT_COARSE

Phase 3:

At the point, which is determined by the braking start point calculation in Phase 2, the spindle
decelerates to a standstill with the acceleration given in the following machine data:

MD35210 $MA_GEAR_STEP_ POSCTRL_ACCEL

Phase 4:

The spindle is stationary and it has reached the position. The position control is active and
stops the spindle in the programmed position.

NC/PLC IS:
DB31, ... DBX60.6 (Position reached with exact stop coarse)
and
DB31, ... DBX60.7 (Position reached with exact stop fine)
are set if the distance between the spindle actual position and the programmed position
(spindle setpoint position) is less than the settings for the exact stop fine and coarse limits.

This is defined in the machine data:

MD36010 $MA_STOP_LIMIT_FINE

MD36000 $MA_STOP_LIMIT_COARSE

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1247

15.2.5.4 "Spindle in position" signal for tool change

Function
The motion sequence for a tool change, especially for milling machines, mainly comprises
positioning the spindle and then the subsequent (for optimization runs, also at the same
time) approach to the tool change position with the path axes. In this case, the mandatory
requirement is that the spindle is reached before approaching the tool change position.

If the tool change cycle is interrupted by the machine operator (e.g. with an NC stop, NC
stop axes plus spindles, mode group stop, etc.), then it must be completely ruled out that the
spindle moves into the tool changer at an incorrect position.

This is the reason that for spindle positioning, when the last programmed spindle position is
reached with "Exact stop fine" the following NC/PLC interface signal is output to check the
position:

DB31, ... DBX85.5 (spindle in position)

 Note

The signal is only output for the "Spindle positioning" function.

This includes:
• SPOS, SPOSA and M19 in the part program
• SPOS and M19 in synchronized actions
• Spindle positioning, using FC18
• Spindle positioning via PLC interface (DB31, ... DBX30.4)

Setting the signal
Requirements for output of signal DB31, ... DBX85.5 (spindle in position) are as follows:

● The reference state of the spindle:

DB31, ... DBX60.4/5 (referenced/synchronized 1/2) = 1

 Note

When positioning the spindle, the zero mark is automatically searched for. This is the
reason that for an error-free sequence, the referenced signal is always available at the
end of positioning movement.

● "Exact stop fine" must have been reached:

DB31, ... DBX60.7 (exact stop fine) = 1

Additionally, the last programmed spindle position must have been reached on the
setpoint side.

S1: Spindles
15.2 Modes

 Basic Functions
1248 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Deleting the signal
When signal DB31, ... DBX60.7 is withdrawn (exact stop fine), then signal DB31, ... DBX85.5
(spindle in position) is also always reset.

Additional properties
● If the spindle is already at the programmed position after a positioning, then the NC/PLC

interface signal DB31, ... DBX85.5 (spindle in position) remains set.

● If, after a positioning ("Spindle in position" signal was output) the spindle is traversed, e.g.
in the JOG mode, then the NC/PLC interface signal DB31, ... DBX85.5 (spindle in
position) is deleted.

If the spindle is returned to its original position in this mode, then the NC/PLC interface
signal DB31, ... DBX85.5 (spindle in position) is set again. The last position selection is
kept.

15.2.6 Axis mode

15.2.6.1 General functionality

Functionality
If for certain machining tasks, e.g. on lathes with end-face machining, it is not sufficient to
traverse the spindle exclusively under speed control via M3, M4, M5 or to position with SPOS, M19
or SPOSA, the spindle can be switched to position-controlled axis mode and traversed as a
rotary axis.

Examples of rotary axis functions:

● Programming with axis name

● Zero offsets (G54, G55, TRANS, etc.)

● G90, G91, IC, AC, DC, ACP, ACN

● Kinematic transformations (e.g. TRANSMIT)

● Path interpolation

● Traversing as positioning axis

References:
Function Manual, Extended Functions; Section "Rotary axes (R2)"

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1249

Preconditions
● The same spindle motor is used for spindle mode and axis mode.

● The same position measurement system or separate position measurement systems can
be used for spindle mode and axis mode.

● An actual position value encoder is a mandatory requirement for axis mode.

● The spindle must be referenced for use of the axis mode, e.g. referenced with G74.

Example:

Program code Comment

M70 ; Switch spindle over to axis mode

G74 C1=0 Z100 ; Reference axis

G0 C180 X50 ; Traverse axis position-controlled

Configurable M function
The M function used to switch the spindle to axis mode can be configured channel-
specifically via the following machine data:

MD20094 $MC_SPIND_RIGID_TAPPING_M_NR

 Note

The controller detects the transition to axis mode automatically from the program sequence
(see "Implicit transition to axis mode (Page 1251)"). The explicit programming of the
configured M function for switching the spindle to axis mode in the part program is therefore
not necessary. However, the M function can continue to be programmed, e.g. to increase the
readability of the part program.

Special features
● The feed override switch is active.

● The NC/PLC interface signal does not terminate the axis mode per default:
DB21, ... DBX7.7 (reset).

● The NC/PLC interface signals:
DB31, ... DBB16 to DBB19 and DBB82 to DBB91
are not important if:
DB31, ... DBX60.0 (axis / no spindle) = 0

● Axis mode can be activated in all gear steps.

If the actual position value encoder is installed on the motor (indirect measuring system),
the positioning and contouring accuracy can vary for the different gear steps.

S1: Spindles
15.2 Modes

 Basic Functions
1250 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● The gear step cannot be changed when the axis mode is active.
The spindle must be switched to control mode.
This is done with M41 ... M45 and M5, SPCOF.

● In axis mode, the first parameter set is active (machine data index = zero).
References
Function Manual, Basic Functions; Section "Velocities, setpoint / actual value systems,
closed-loop control (G2)" > "Closed-loop control" > "Parameter sets of the position
controller"

Dynamic response
The dynamic limits of the axis apply in axis mode. For example:

● MD32000 $MA_MAX_AX_VELO[<axis>] (maximum axis velocity)

● MD32300 $MA_MAX_AX_ACCEL[<axis>] (maximum axis acceleration)

● MD32431 $MA_MAX_AX_JERK[<axis>] (maximum axial jerk for path motion)

Feedforward control

The feedforward control mode active for the axis is retained.

A detailed description of the "Dynamic feedforward control" function can be found in:

References
Function Manual, Extended Functions; Section "Compensations (K3)" > "Dynamic
feedforward control (following error compensation)"

Example: Resolution switchover for analog actuator
Switching to axis mode

Programming Comment

SPOS=...

M5 ; Controller enable off (by PLC)

→ is output on PLC
M70 ; Switch actuator (by PLC on account of M70)

Controller enable on (by PLC)

C=... ; NC traverses with axis parameter set

Switching to spindle mode

Programming Comment

C=...

M71 ; → Output to PLC
Closed-loop controller enable off (by PLC)

Switch actuator (by PLC)

Switched to spindle parameter set (1-5) internally in

the NC, controller enable on (by PLC)

M3/4/5 or SPOS=... ; NC traverses with spindle parameter set

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1251

Change to spindle mode
The appropriate parameter set 1 ... 5 is selected for the active gear stage.

Except for tapping with compensating chuck, the feedforward control is switched on when
the following applies:
MD32620 $MA_FFW_MODE (feedforward control type) ≠ 0

Parameter set Axis mode Spindle mode

1 Valid -
2 - Valid
3 - Valid
4 - Valid
5 - Valid
6 - Valid

Spindle mode: Parameter set according to the gear stage

15.2.6.2 Implicit transition to axis mode

Function
The control system detects the transition to axis mode automatically from the program
sequence and generates the requisite M70 sequence within the control system. The situation
will dictate which steps are performed. At most, these will include:

1. Stopping the spindle

2. Switching on of the position control, treatment of feedforward control, and parameter
block changeover

3. Position synchronization of the block preparation (internal preprocessing stop, if
necessary)

This function is always active. Explicit programming of M70 in the part program is, therefore,
essentially not necessary.

S1: Spindles
15.2 Modes

 Basic Functions
1252 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Procedure
Sequence of the implicit transition to axis mode (M70 is not programmed in the part
program):

● Transition from speed control mode (M3, M4, M5, SPCOF, ...) to axis mode:

The transition is detected internally by the control, and an intermediate block is inserted in
front of the block which requests the axis mode. The block created contains the M70
functionality. The execution duration for this block is more or less the same as the time
required to execute a programmed M70 block. Differences may arise in the event of short
switchovers when the spindle is stationary (no braking time) if the implicit generation and
output of the auxiliary function M70 to the PLC is dispensed with (see MD35035).

● Transition from positioning mode (M19, SPOS, SPOSA) to axis mode:

The transition is executed immediately and without the generation of an intermediate
block. Configured accordingly (see MD35035), the auxiliary function M70, which is
generated implicitly, is output to the PLC when the block in which the spindle has its axis
mode is loaded.

Output of auxiliary functions to PLC
The implicit transition to axis mode can be notified to the PLC in the form of an auxiliary
function output.

Activation/Deactivation

The activation/deactivation of this functionality is done using machine data:

MD35035 $MA_SPIND_FUNCTION_MASK (spindle functions)

Bit Value Meaning

0 No auxiliary function output to the PLC in the case of M70 functionality which is
generated inside the control.

20

1 In the case of M70 functionality which is generated inside the control, the auxiliary
function M70 is generated and output to the PLC. The address extension
corresponds to the spindle number.

 Note

An auxiliary function M70 which is programmed in the part program is always output to the
PLC.

Properties

The properties of the implicitly generated auxiliary function output M70 are "Quick" and
"Output during motion". These properties are fixed settings and are independent of the M70
configuration in the auxiliary-function-specific machine data (MD..._$M..._AUXFU_...).

M70 is only generated once during transition to axis mode. No further M70 auxiliary functions
are generated and output in adjacent blocks in which the spindle is operated as an axis. M70
is not implicitly generated and output again until axis mode is exited via, for example, SPOS,
M3, M4, M5, SPCOF, etc. and following a renewed transition to axis mode.

 S1: Spindles
 15.2 Modes

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1253

Constraints
Synchronized actions

When the spindle is programmed as an axis in synchronized actions, it is essential to
continue making provisions in the application to ensure there are criteria for the transition to
axis mode.

If the spindle is in speed control mode, the instruction M70 or SPOS must be programmed prior
to programming as an axis. Otherwise alarm signals occur during axis programming.

FC 18

As with synchronized actions, transition to axis mode must also be undertaken on the
application side in FC 18, e.g. through preparatory positioning instructions. Otherwise, the
FC 18 call is acknowledged with an error bit in the FC 18 status word.

No auxiliary function M70 is implicitly generated in the event of transition to axis mode
through programming via FC 18.

Examples
Example 1:

Part program: Transition from rotating spindle to axis mode

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment

N05 M3 S1000

N10 ...

N15 POS[C]=77 ; Before loading N15, an M70 intermediate block is generated

in which the spindle is stopped, and M70 is output to the

PLC.

…

Example 2:

Part program: Transition from positioning mode to axis mode

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment

N05 SPOS=0

N10 ...

N15 C77 ; Output of the implicit M70 to the PLC, no intermediate

block.

…

S1: Spindles
15.2 Modes

 Basic Functions
1254 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example 3:

Synchronized actions: Transition from spindle positioning mode to axis mode

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment

WHEN COND1==TRUE DO SPOS=180

WHEN COND2==TRUE DO POS[C]=270 ; Output of the implicit M70 to the PLC.

Example 4:

Synchronized actions: Transition from speed control mode to axis mode with M70

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment

WHEN COND11==TRUE DO M3 S1000

WHEN COND12==TRUE DO M70 ; Output of M70 to the PLC.

WHEN COND13==TRUE DO POS[C]=270 ; No generation of an implicit M70 because

axis mode already exists.

Example 5:

Synchronized actions: Invalid transition from speed control mode to axis mode

Configuration: MD35035 $MA_SPIND_FUNCTION_MASK, bit 20 = 1

Program code Comment

WHEN COND21==TRUE DO M3 S1000

WHEN COND22==TRUE DO POS[C]=270 ; Alarm 20141!

15.2.7 Initial spindle state

Spindle basic setting
The following machine data is used to specify a spindle mode as basic setting:

MD35020 $MA_SPIND_DEFAULT_MODE

Value Spindle basic setting
0 Speed control mode, position control deselected
1 Speed control mode, position control activated
2 Positioning mode
3 Axis mode

 S1: Spindles
 15.3 Reference / synchronize

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1255

Time when the spindle basic setting takes effect
The time when the spindle basic setting takes effect is set in the machine data:

MD35030 $MA_SPIND_DEFAULT_ACT_MASK

Value Effective time
0 POWER ON
1 POWER ON and program start
2 POWER ON and RESET (M2 / M30)

15.3 Reference / synchronize

Why synchronize?
In order to ensure that the controller detects the exact position of the spindle when it is
switched on, the controller must be synchronized with the position measuring system of the
spindle.

The following functions are possible only with a synchronized spindle:

● Thread cutting

● Tapping without compensating chuck

● Axis programming

For further explanations about synchronization of the spindle, see Section "R1: Referencing
(Page 1173)".

Why reference?
In order to ensure that the controller detects the exact machine zero when it is switched on,
the controller must be synchronized with the position measurement system of the rotary axis.
This process is known as referencing. The sequence of operations required to reference an
axis is known as search for reference.

Only a referenced axis can approach a programmed position accurately on the machine.

For further explanations about referencing the rotary axis, see Section "R1: Referencing
(Page 1173)".

S1: Spindles
15.3 Reference / synchronize

 Basic Functions
1256 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Installation position of the position measurement system
The position measurement systems can be installed as follows:

● Directly on the motor in combination with a Bero proximity switch on the spindle as a
zero-mark encoder

● On the motor via a measuring gearbox in combination with a Bero proximity switch on the
spindle as a zero-mark encoder

● Directly on the spindle

● On the spindle via a measuring gearbox in combination with a Bero proximity switch on
the spindle as a zero-mark encoder (only with ratios not equal to 1:1)

Where two position measuring systems are provided, they can be installed either in the
same location or separately.

Synchronization procedure
When the spindle is switched on, it can be synchronized as follows:

● The spindle is started with a spindle speed (S value) and a spindle rotation (M3 or M4) and
synchronized with the next zero mark of the position measurement system or with the
next Bero signal.

● The spindle is to be positioned from standstill using SPOS, M19 or SPOSA. The spindle
synchronizes with the next zero mark of the position measurement system or with the
next Bero signal. It is then positioned to the programmed position.

● The spindle can be synchronized from the motion (after M3 or M4) using SPOS, M19 or SPOSA.

The responses are as follows:

– With SPOS=<Pos>, SPOS=DC(<Pos>) and SPOS=AC(<Pos>), the direction of motion is
retained and the position is approached.

– With SPOS = ACN(<Pos>) or SPOS = ACP(<Pos>), the position is always approached with
a negative or positive direction of motion. If necessary, the direction of motion is
inverted prior to positioning.

 S1: Spindles
 15.3 Reference / synchronize

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1257

● Crossing the zero mark in JOG mode by means of direction keys in speed control mode.

 Note

It does not make any difference whether the synchronization procedure is initiated from
the part program, FC 18 or synchronized actions.

 Note

During synchronization of the spindle, all four possible reference point values are
effective depending on the measuring system selected. The measurement system offset
has the same effect.

The following machine data must be observed:
• MD34080 $MA_REFP_MOVE_DIST

(Reference point distance / destination point for a distance-coded system)
• MD34090 $MA_REFP_MOVE_DIST_CORR

(Reference point offset / absolute offset, distance-coded)
• MD34100 $MA_REFP_SET_POS

(Reference point value, with distance-coded system without any significance)

If a non-referenced spindle with SPOS=IC(...) and a path < 360 degrees is positioned, it
may be the case that the zero mark is not crossed and the spindle position is still not
synchronized with the zero mark. This can happen:
• After POWER ON
• By setting the axial NC/PLC interface signals:

DB31, ... DBX17.5 (resynchronize spindle when positioning 2)
DB31, ... DBX17.4 (resynchronize spindle when positioning 1)

Special features for synchronization with BERO
The position falsification caused by the signal delay with BERO can be corrected internally in
the NC by entering a signal runtime compensation.

The signal runtime compensation is set by means of the machine data:

● MD31122 $MA_BERO_DELAY_TIME_PLUS

(BERO delay time for a positive direction of motion)

● MD31123 $MA_BERO_DELAY_TIME_MINUS

(BERO delay time for a negative direction of motion)

S1: Spindles
15.3 Reference / synchronize

 Basic Functions
1258 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The effect depends on the setting in machine data:

MD34200 $MA_ENC_REFP_MODE (referencing mode)

MD34200 = 7 The setting MD34200 $MA_ENC_REFP_MODE = 7 only executes

position synchronization at a velocity/speed which is fixed in machine
data:
MD34040 $MA_REFP_VELO_SEARCH_MARKER (reduced velocity)
The zero mark is not automatically sought, it has to be requested
explicitly with the 0-1 edge of the NC/PLC interface signal:
DB31, ... DBX16.4/5 (resynchronize spindle 1/2*)
*) 1/2 stands for the selected measuring system.
The velocity defined in MD34040 is also effective when referencing in
JOG-REF mode and through the part program with G74.

MD34200 = 2 Setting MD34200 $MA_ENC_REFP_MODE = 2 executes position
synchronization without specifying a specific velocity/speed.

 Note

Signal propagation delays are preset on delivery so that the content generally does not have
to be changed.

Referencing sequence
If the spindle is to be programmed in axis mode directly after controller power-up, it must be
ensured that the axis is referenced.

When the controller is switched on, the spindle can be referenced (condition is one zero
mark per revolution).

For information about the referencing procedure, see Section "R1: Referencing
(Page 1173)".

The rotary axis is referenced at the same time as the spindle is synchronized (see section
"Synchronization procedure") if the position measuring system used for the spindle is also
used for the rotary axis.

 S1: Spindles
 15.3 Reference / synchronize

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1259

Position measurement systems, spindle
The spindle can be switched from spindle mode to axis mode (rotary axis) if a single motor is
used for spindle mode and axis mode.

The spindle (spindle mode and axis mode) can be equipped with one or two position
measurement systems. With two position measurement systems, it is possible to assign one
position measurement system to the spindle and the other to the rotary axis, or to assign two
position measurement systems to the spindle. Where two position measurement systems
are provided, both are updated by the controller, but only one can be active.

The active position measuring system is selected using the NC/PLC interface signal:
DB31, ... DBX1.5 (position measuring system 1)
or
DB31, ... DBX1.6 (position measuring system 2)

The active position measurement system is required for the following functions:

● Position control of the spindle (SPCON)

● Spindle positioning (SPOS, M19 and SPOSA)

● Thread cutting (G33, G34, G35)

● Tapping without compensating chuck (G331, G332)

● Revolutional feedrate (G95)

● Constant cutting rate (G96, G961, G97, G971)

● Spindle actual speed display

● Axis mode

● Synchronous spindle setpoint coupling

Resynchronizing the position measuring system for the spindle
In the following cases, the spindle position measurement system must be resynchronized:

● The position encoder is on the motor, a Bero proximity switch is mounted on the spindle
and a gear stage change is performed. Synchronization is triggered internally once the
spindle is rotating in the new gear stage (see Synchronization procedure).

● The machine has a selector switch for a vertical and horizontal spindle. Two different
position encoders are used (one for the vertical spindle and one for the horizontal
spindle), but only one actual value input is used on the controller. When the system
switches from the vertical to the horizontal spindle, the spindle must be resynchronized.

This synchronization is initiated with the NC/PLC interface signal:

DB31, ... DBX16.4 (resynchronize spindle 1)
 or
 DB31, ... DBX16.5 (resynchronize spindle 2)

The spindle must be in open-loop control mode.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1260 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Position restoration with POWER ON
For spindles with incremental position measuring systems, it is possible to buffer the actual
values after a POWER OFF and after POWER ON, to restore the position last buffered
before switching-off, in order that position-dependent functions, e.g. transformation can be
restored (see Section "Automatic restoration of the machine reference (Page 1216)"). One
application is, e.g. tool retraction after POWER OFF when machining with tool orientation
(see Section "Tool withdrawal after POWER ON with orientation transformation
(Page 600)").

The following NC/PLC interface signals display the state of the position measuring system
after position restoration:

DB31, ... DBX71.4 ("Restored 1") for position measuring system 1

DB31, ... DBX71.5 ("Restored 2") for position measuring system 2

Once the tool has been retracted in the JOG mode, axes whose positions have been
restored are referenced. As a consequence, signals DB31, ... DBX71.4/5 ("Restored 1/2")
are deleted and signals DB31, ... DBX60.4/5 ("Referenced/synchronized 1/2") are set.

 Note

If machine data MD20700 $MC_REFP_NC_START_LOCK is set to a value of "2", then an
NC start is also possible with "restored" axis positions (in the MDA mode or when
overstoring).

15.4 Configurable gear adaptation

15.4.1 Gear stages for spindles and gear change change

Why do we need gear stages?
Gear stages are used on spindles to step down the speed of the motor in order to generate a
high torque at low spindle speeds or to step up in order to maintain a high speed.

No. of gear stages
Five gear stages can be configured for each spindle.

The number of used gear stages is defined in machine data:

MD35090 $MA_NUM_GEAR_STEPS

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1261

Parameterization of the gear stages
The gear stages 1 to 5 can be parameterized via the following machine data:

Machine data Meaning
MD35012 $MA_GEAR_STEP_CHANGE_POSITION[<n>] Gear stage change position
MD35110 $MA_GEAR_STEP_MAX_VELO[<n>] Maximum speed for automatic

gear stage change
MD35120 $MA_GEAR_STEP_MIN_VELO[<n>] Minimum speed for automatic

gear stage change
MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[<n>] Maximum speed of gear stage
MD35135 $MA_GEAR_STEP_PC_MAX_VELO_LIMIT[<n>] Maximum speed of gear stage in

position control
MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT[<n>] Minimum speed of gear stage
MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL[<n>] Acceleration in speed control

mode
MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL[<n>] Acceleration in position control

mode
MD35300 $MA_SPIND_POSCTRL_VELO[<n>] Position control activation speed
MD35310 $MA_SPIND_POSIT_DELAY_TIME[<n>] Positioning delay time
MD35550 $MA_DRILL_VELO_LIMIT[<n>] Maximum speed for tapping

without compensating chuck

Type of gear stage change
The type of gear stage change is set in machine data:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE

Bit Value Meaning

0 The spindle motor is attached to the spindle directly (1:1) or with a non-variable
transmission ratio (basic setting).
The machine data of the first gear stage is effective.

0

1 Spindle motor with up to five gear stages.
The gear stage change takes place:
• In oscillation mode
• At indefinite change position

0 Meaning as in Bit 0 = 0. 1
1 Meaning as in Bit 0 = 1, however, the gear stage change takes place at the

configured spindle position.
The change position is set in machine data:
MD35012 $MA_GEAR_STEP_CHANGE_POSITION
The position is approached in the current gear stage before the gear stage change.
If Bit 1 is set, then Bit 0 is ignored!

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1262 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Bit Value Meaning
3 1 The gear stage change dialog between NCK and PLC is simulated.
5 1 The second gear stage data set is used while tapping with G331/G332 (see the

following paragraph "Second gear stage data set"). The bit must be set for the master
spindle used during the tapping.

Requirement for a gear stage change
In principle, the gear stage change is only performed if the requested gear stage is not the
same as the active gear stage.

Parameter set selection during gear stage change
The servo parameter set is also changed over with the gear stage if:

MD35590 $MA_PARAMSET_CHANGE_ENABLE = 0 or 1

For further information, see Section "Parameter set selection during gear step change
(Page 1275)".

Request gear stage change
A gear stage change can be requested:

● In the part program using:

– M40 S...

Automatic gear stage selection to the programmed speed S...

– M41 ... M45

Direct selection of gear stages 1 ... 5

– M70

For MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE = 1 ... 5

(see "Configurable gear step in M70 (Page 1292)")

– G331 S...

For MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, Bit 5 = 1

● In synchronized actions using:

– DO M40 S...

Automatic gear stage selection to the programmed speed S...

– DO M41... M45

Direct selection of gear stages 1 ... 5

– DO M70

For MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE = 1 ... 5

● Through the PLC using the FC18 function block

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1263

● In the reset state through description of NC/PLC interface:

DB31, ... DBX16.0-16.2 (actual gear stage A to C)

The mechanically active gear stage can be communicated to the NC especially after a
POWER ON.

 Note

If the spindle motor is attached to the spindle directly (1:1) or with a non-variable
transmission ratio (MD35010 = 0), then the M40 and M41 ... M45 auxiliary functions are
not relevant to this spindle.

Gear stage change
Gear stage selection between two gear stages with specification of a maximum spindle
speed is shown in the example below:

Figure 15-3 Gear stage change with selection between two gear stages

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1264 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Process sequence of the gear stage change
If the new gear stage is preselected, the following sequence is implemented:

1. Changeover sequence

The two following NC/PLC interface signals are set:

DB31, ... DBX82.0-82.2 (setpoint gear stage A to C)

DB31, ... DBX82.3 (change over gear stage)

In accordance with the point at which NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed)
is set, the spindle decelerates to a standstill at the acceleration for oscillation or at the
acceleration for speed control / position control.

Oscillation can be activated at the latest when the spindle reaches a standstill:
DB31, ... DBX61.4 (axis/spindle stationary)
with NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed).

In principle, the new gear stage can also be engaged without oscillation

When the new gear stage is engaged, the following NC/PLC interface signals are set by
the PLC program:

DB31, ... DBX16.0-16.2 (actual gear stage A to C)

DB31, ... DBX16.3 (gear is changed)

2. End of gear stage change

The gear stage change is treated as completed (spindle operation type "oscillation mode"
is deselected), if the following NC/PLC interface signal is set:

DB31, ... DBX16.3 (gear is changed)

The new actual gear stage is changed to the servo and interpolation parameter set when
the motor is stationary.

With NC/PLC interface signal:
DB31, ... DBX16.3 (gear is changed)
is used to communicate to the NC that the new gear stage is valid and the oscillation
mode can be completed.

NC/PLC IS:
DB31, ... DBX82.3 (change gear)
is reset by the NCK,
which causes the PLC program to reset NC/PLC IS:
DB31, ... DBX16.3 (gear changed).

In this case, it does not matter whether NC/PLC IS:
DB31, ... DBX18.5 (oscillation mode)
is still set.

The actual gear stage, which should correspond to the set gear stage, is relevant
for selecting the parameter set.

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1265

If this is not the case, then Alarm 22010 :
MD11410 $MN_SUPPRESS_ALARM_MASK, Bit 3 = 0
is output.

Following acknowledgement of gear stage change via the PLC
with NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
the spindle is in speed control mode (DB31, ... DBX84.7).

For further information on the signal exchange between PLC and NC, see Section "A2:
Various NC/PLC interface signals and functions (Page 33)".

Second gear stage data set
The automatic gear stage change M40 can be extended by a second configurable gear
stage data set.

The second gear stage data set is used exclusively in connection with tapping without
compensation chuck (G331, G332) so that an effective adjustment of spindle speed and
motor torque can be achieved.

The activation is undertaken by setting the following bit for the master spindle:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, Bit 5 = 1

The number of used gear stages of the second gear stage data set is defined with the
machine data:

MD35092 $MA_NUM_GEAR_STEPS2

The second gear stage block data set is deactivated if:

MD35092 $MA_NUM_GEAR_STEPS2 = 0 (basic setting)

The first gear stage data set then selects the gear stage when M40 is active.

 Note

The number of gear stages in the second data set can vary from the first. If no appropriate
gear stage is found for a programmed speed for M40, then no gear stage change is carried
out (exceptions, see "M40: Automatic gear stage selection for speeds outside the configured
switching thresholds (Page 1321)").

For more information about a typical program sequence in thread cutting without
compensating chuck G331/G332 see:
References:
Programming Manual - Fundamentals; Motion Commands

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1266 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The gear stages 1 to 5 of the second gear stage data set can be parameterized via the
following machine data:

Machine data Meaning
MD35112 $MA_GEAR_STEP_MAX_VELO2[n] Maximum speed for automatic gear stage

change
MD35122 $MA_GEAR_STEP_MIN_VELO2[n] Minimum speed for automatic gear stage

change
MD35212 $MA_GEAR_STEP_POSCTRL_ACCEL2[n] Acceleration in position control mode

 Note

The number of servo parameter sets concerning the mechanical factors remain unchanged.
Furthermore, five mechanical gear stages for the spindle and one for the axis operation can
be configured.

The speed limitations are configured only once for each gear stage with the following
machine data, independently of the different switching thresholds:

Machine data Meaning
MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[n] Maximum speed of gear stage
MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT[n] Minimum speed of gear stage

For tapping without compensating chuck (G331, G332) the speed can be limited to the linear
acceleration range of the motor additionally. For this, the maximum speed of the linear motor
characteristics range is specified in the following machine data as a function of the gear
stage:

MD35550 $MA_DRILL_VELO_LIMIT[n]

Specify gear stage in the part program
Automatic selection with active M40

The gear stage is automatically selected by the control. The gear stage in which the
programmed spindle speed (S...) is possible is checked in this context. If a gear stage
results from this that is not equal to the current (actual) gear stage, then the following
NC/PLC interface signals are set:

DB31, ... DBX82.3 (change over gear stage)

DB31, ... DBX82.0-82.2 (setpoint gear stage A to C)

While the appropriate gear stage is being determined, a gear stage change is only requested
if the new speed is not within the permissible speed range of the active gear stage.

The speed is limited to the maximum speed of the current gear stage or raised to the
minimum speed of the current gear stage and the appropriate NC/PLC interface signal is set:

DB31, ... DBX83.1 (speed setpoint limited)

DB31, ... DBX83.2 (speed setpoint increased)

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1267

Figure 15-4 Example for two gear stages with overlapping speed ranges for automatic gear stage

change (M40)

 Note

In the case of M40, the spindle must be in open-loop control mode for automatic gear stage
selection with an S word. Otherwise the gear stage change is rejected and the following
alarm is set:

Alarm 22000 "gear stage change is not possible"

 Note

An active reduction gear is not considered in the selection for the automatic gear stage
change.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1268 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Permanently defining the gear stage with M41 to M45

The gear stage can be permanently defined in the part program with M41 to M45.

If a gear stage is specified via M41 to M45 that is not equal to the current (actual) gear stage,
then the following NC/PLC interface signals are set:

DB31, ... DBX82.3 (change over gear stage)

DB31, ... DBX82.0-82.2 (setpoint gear stage A to C)

The programmed spindle speed (S...) then refers to this permanently defined gear stage:

● If a spindle speed is programmed and it is higher than the maximum speed of the
permanently defined gear stage (MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT), then
the speed is decreased to this limit and the following NC/PLC interface signal is set:

DB31, ... DBX83.1 (speed setpoint limited)

● If a spindle speed is programmed and it is lower than the minimum speed of the
permanently defined gear stage (MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT), then
the speed is increased to this minimum and the following NC/PLC interface signal is set:

DB31, ... DBX83.2 (speed setpoint increased)

Block change

When programming the gear stage change in the part program, the gear stage change set
remains active until it is aborted by PLC.

This corresponds to the effect as if the following NC/PLC interface signal were set:

DB21, ... DBX6.1 (read-in disable)

Specification of gear stage via PLC with FC18
The gear stage change can also be performed by function block FC18 during a part
program, in the reset state or in all operating modes.

If the speed and direction of rotation is specified with FC18, the NC can be requested to
select the gear stage as appropriate for the speed. This corresponds to an automatic gear
stage change with M40.

The gear stage is not changed if:

● The spindle is positioned via FC18.

● The spindle is traversed in the axis mode.

For further information on the FC18 function block, see Section "P3: Basic PLC program for
SINUMERIK 840D sl (Page 809)".

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1269

Specification of a gear stage in synchronized actions
The gear stage change can be requested by synchronized actions using:

● DO M40 S...

Automatic gear stage selection to the programmed speed S...

● DO M41... M45

Direct selection of gear stages 1 ... 5

● DO M70

For MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE = 1 ... 5

(see "Configurable gear step in M70 (Page 1292)")

The gear stage is not changed if:

● The spindle is positioned via synchronized actions.

● The spindle is traversed in the axis mode.

 Note

For further details, please refer to the section "Specification of a gear stage in part
program".

Exception:

The block change is not affected by the specification of a gear stage in synchronized
actions.

Manual specification of a gear stage
Outside a part program that is running, the gear stage can also be changed without a
request from the NC or the machine. This is the case, for example, when a gear stage is
changed manually.

To select the appropriate parameter set, the NC must be informed of the current gear stage.
To enable this, the control or the part program must be in the reset state.

Supplementary conditions

Transfer of the gear stage to the NC is initiated when
NC/PLC IS:
DB31, ... DBX16.0-16.2 (actual gear stage A to C) changes.

These three bits must be set continuously during operation.

Successful transfer is acknowledged with NC/PLC IS:
DB31, ... DBX82.0-82.2 (set gear stage A to C)
to the PLC.

NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
must not be set.

If position control is active when a new gear stage is specified by the PLC with
DB31, ... DBX16.0-16.2, then it is switched off for the duration of this changeover sequence.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1270 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

NC stop during gear stage change
The spindle cannot be stopped with NC/PLC IS:
DB21, ... DBX7.4 (NC stop)
if:

● The spindle is not yet in oscillation mode for the gear stage change.

● NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
is not set.

 Note

Options for aborting:

DB31, ... DBX2.2 (delete distance-to-go / spindle reset)
or
DB31, ... DBX16.3 (gear changed)
with corresponding acknowledgement from actual gear stage:
DB31, ... DBX16.0-16.2 (actual gear stage).

Spindle response after a gear stage change
How the spindle behaves once the gear stage has been changed depends on the following
initial conditions:

● If the spindle was in the stop state before the gear stage change (M5, FC18: "Stop rotate
spindle"), in positioning or axis mode, M5 (spindle stop) is active after completion of the
gear stage change.

● If a direction of rotation
(M3, M4, FC18: "Start spindle rotation"), then the last speed and direction of rotation will
become active again after the gear stage change. In the new gear stage, the spindle
accelerates to the last spindle speed programmed (S...).

● If position control was active before the gear stage change (SPCON), then it is reactivated
after the gear stage change.

The next block in the part program can be executed.

Special features
The following points must be observed on gear stage change:

● The gear stage change is not terminated by selecting
NC/PLC IS:
DB31, ... DBX20.1 (run-up switchover to V/f mode).

Setpoint 0 is output.

The gear stage change is acknowledged as usual
via the NC/PLC interface signal:

DB31, ... DBX16.3 (gear is changed)

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1271

● The "Ramp-function generator rapid stop" signal must be reset by the PLC before the
gear stage change is completed by the PLC.

● The process sequence of the gear stage change is ended during NC reset without any
alarm output.

The gear stage output with NC/PLC IS:
DB31, ... DBX16.0-16.2 (actual gear stage A to C)
is applied by the NC.

Star/delta switchover with FC17
Digital main spindle drives can be switched in both directions between star and delta using
FC17, even when the spindle is running. This automatic switchover is controlled by a defined
logic circuit in FC17 which provides the user with a configurable switchover time for the
relevant spindle.

For further information on the FC17 function block, see Section "P3: Basic PLC program for
SINUMERIK 840D sl (Page 809)".

15.4.2 Spindle gear stage 0

Technical background
For machine's where the spindle load gear can be changed over, situations can occur where
the gear train between the motor and load (workpiece/tool) is interrupted. This state can
occur, e.g. when pressing Reset or Emergency Stop while performing a gear stage change
or when the machine is commissioned for the first time while it is being installed. The control
must identify this state where the gear train is open and the next gear stage change request
must be unconditionally executed.

Function
When the gear is disengaged, the binary-coded value "0" (≙ gear stage 0) is transferred to
the NC from the PLC using the interface signal bits DB31, ... DBX16.0-2 (actual gear stage A
to C):

DB31, ... DBX16.0-2 = 0

The value is used by the control to identify the state where the gear train is open.

Effects on the gear stage change
Gear stage change in the part program

The actual gear stage signaled from the PLC is read by the NC when starting a part
program. If, at this instant in time, a value of "0" is read for the actual gear stage, then the
next gear stage change is executed and the gear stage change dialog is performed by the
PLC. If a value greater than "0" is read, then already in the program a comparison is made
between the requested and active gear stage. If both gear stages are the same, the gear
stage is not changed and a possibly programmed path motion is not interrupted.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1272 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Gear stage change in synchronized actions, FC18 and DBB30

The actual gear stage signaled from the PLC is always evaluated by the NC when the gear
stage is changed. The gear stage is always changed if a value of "0" is read from the NC.
When reading a value greater than "0", a comparison is made between the requested and
active gear stage. The gear stage is only changed with the PLC if the two values are not
equal and the NC/PLC interface signal DB31, ... DBX82.3 (change over gear) is then output.

Boundary conditions
● Output of DB31, ... DBX16.0-2 = 0

When the gear is disengaged, the PLC must enter gear stage 0 in the NC/PLC interface
DB31, ... DBX16.0-2 (actual gear stage A to C).

● Enabling the gear stage change

The precondition for a gear stage change after reaching gear stage 0 is the general
enable of the gear stage change via via machine data:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE (assign parameters to the gear stage
change)

MD35090 $MA_NUM_GEAR_STEPS (number of gear stages set up)

MD35092 $MA_NUM_GEAR_STEPS2 (2nd gear stage data set: Number of gear stages
that have been created) if MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, bit 5 = 1
(tapping without compensating chuck)

● PLC user program/ POWER ON ASUB

The PLC user program or POWER ON ASUB should ensure that when the gear is
disengaged (gear stage 0) before spindle motion, a gear stage change request is
programmed. For instance, this can be realized with M41 in the ASUB. Spindle motion
such as e.g. in JOG or in axis operation does not generate any gear stage change itself.

Example
Example for the sequence to select the first gear stage after POWER ON

1. POWER ON.

2. The PLC user program determines, in the mechanical environment, the "Gear is
disengaged" state.

3. The PLC transfers the "Gear is disengaged" state to the NC by setting:

DB31, ... DBX16.0-2 = 0

4. Part program start or POWER ON ASUB.

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1273

5. N05 (part program, refer below) is executed:

The gear stage is changed to gear stage 1.

From the NC:

– the following NC/PLC-interface signal is set:

DB31, ... DBX82.3 (change over gear stage)

– the setpoint gear stage 1 is signaled to the PLC:

DB31, ... DBX82.0 = 1

DB31, ... DBX82.1 = 0

DB31, ... DBX82.2 = 0

6. Mechanical gear stage change, acknowledgement

If the gear stage is selected, then from the PLC:

– the following NC/PLC-interface signal is set:

DB31, ... DBX16.3 (gear is changed)

– Actual gear stage 1 signaled to the NC:

DB31, ... DBX16.0 = 1

DB31, ... DBX16.1 = 0

DB31, ... DBX16.2 = 0

7. N80 is executed:

Due to the optimization of the gear stage change frequency in the part program, the gear
stage is not changed.

Part program:

Program code Comment

N05 M41 ; Select 1st gear stage

...

N80 M41 ; No gear stage change, if the 1st gear stage is selected.

Configuring data for spindle 1 (AX5):

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE[AX5] = 1 (enable gear stage change)

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1274 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.4.3 Determining the spindle gear stage
The actual stage of a spindle can be read using system variables:

● For the display in the user interface, in synchronized actions or with a preprocessing stop
in the part program via the system variables:

Currently selected spindle gear stage
$VC_SGEAR reads the actual gear stage signaled from the
PLC.

$VC_SGEAR[<n>]

Range of values: 0 ... 5

Active spindle gear stage
$AC_SGEAR reads the setpoint gear stage in the main run.
Range of values: 1 ... 5

$AC_SGEAR[<n>]

The data set for the spindle is activated corresponding to this
gear stage.

 Note

For a search, the actual gear stage ($VC_SGEAR[<n>]) can differ from the setpoint gear
stage ($AC_SGEAR[<n>]) as, during the search, no gear stage change takes place.
Therefore, using $VC_SGEAR[<n>] and $AC_SGEAR[<n>], it can be interrogated whether a
gear stage change should be made after a search.

● Without preprocessing stop in the part program via system variables:

$P_SGEAR[<n>] Setpoint gear stage

$P_SGEAR reads the gear stage programmed in the part
program (M41 ... M45), for M40 selected, or for M70, the
configured gear stage.

$P_SEARCH_SGEAR[<n>] Search: Gear-specific M function

$P_SEARCH_SGEAR contains the last programmed gear
stage M function collected with the block search.

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1275

15.4.4 Parameter set selection during gear step change

Servo parameter sets
The servo parameter sets 1 to 6 adapt the position controller to the changed properties of
the machine during a gear change of the spindle.

Parameter set selection during gear stage change
The gear stage parameter set (interpolation parameters) and, depending on the setting in the
following machine data, the servo parameter set are also modified during gear stage change.

MD35590 $MA_PARAMSET_CHANGE_ENABLE (parameter set change possible)

Value Meaning
0 In-system parameter set selection

The parameter sets of the servo are assigned permanently.
The following applies:
• For axes and spindles in the axis mode, the first parameter set is active in principle.

Exception:

For G33, G34, G35, G331 and G332, for the axes involved, the parameter set with the
following number is activated:

Master spindle gear stage + 1 (corresponds to parameter set No. 2 ... 6)
• For spindles in the spindle mode, the parameter set is set matching the gear stage.

1 Besides the in-system parameter set selection, there is also the option of an "external"
parameter set selection.
• By the PLC (DB31, ... DBX 9.0 - 9.2)
• Via programming of SCPARA in the part program or in synchronized actions
However, the in-system parameter set selection has priority.
Note: Value 1 is relevant only to axes.

2 The servo parameter set is specified exclusively by the PLC (DB31, ... DBX 9.0 - 9.2) or
through the programming of SCPARA in the part program or in synchronized actions (for axes
and spindles).
The 1st parameter set is selected after POWER ON.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1276 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Spindle mode
MD35590 $MA_PARAMSET_CHANGE_ENABLE = 0 or 1

The parameter set is selected according to the gear stage + 1.

The active gear stage is located in:

DB31, ... DBX16.0-16.2 (actual gear stage A to C)

The active parameter set is output in:

DB31, ... DBX69.0-69.2 (controller parameter set A to C)

One set of parameters, with the following assignment, is provided by the NC for each of the
five gear stages:

Data set for ... NC/PLC interface

DBX 69.2 / 69.1 / 69.0
Parameter set
Number

Parameter set
Index [n]

Axis mode Last active gear stage 1 0
Gear stage 1 001 2 1
Gear stage 2 010 3 2
Gear stage 3 011 4 3
Gear stage 4 100 5 4
Gear stage 5 101

110
111

6 5

Spindle in axis mode
If the spindle is in axis mode, the parameter set index "0" is selected in the servo (note
MD35590 $MA_PARAMSET_CHANGE_ENABLE!).

The gear stage change behavior depends on the setting in the machine data:

MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE (gear stage for axis mode in M70)

If there is no gear stage configured for axis mode (MD35014 = 0), no implicit gear stage
change takes place in M70 (default setting!). The last gear stage is saved internally and is
reactivated with the associated parameter set during the next spindle programming.

If, however, a gear stage is configured for axis mode (MD35014 = 1 ... 5), a gear stage
change to gears 1 ... 5 takes place during the execution of M70. When changing from axis
mode to spindle mode, the gear stage loaded with M70 remains activated. The gear stage
which is activated in spindle mode prior to M70 is not automatically loaded again.

See also "Configurable gear step in M70 (Page 1292)".

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1277

Load gearbox transmission ratio
It is possible to configure positive or negative load gearbox factors for each gear stage and
in axis mode.

The setting is undertaken separately for numerator and denominator via the machine data:

MD31050 $MA_DRIVE_AX_RATIO_DENOM[n] (load gearbox denominator)

MD31060 $MA_DRIVE_AX_RATIO_DENOM[n] (load gearbox numerator)

The setting range is the same size for positive and negative load gearbox factors.

It is not possible to enter the value "0".

 Note

If an indirect encoder is configured, and the load gearbox transmission ratio changes, then
the reference is lost and the NC/PLC interface signal:
DB31, ... DBX60.4/60.5 (referenced / synchronized 1 or 2)
is reset for the relevant measuring system.

References
For further information about control and servo parameter set, please refer to:

● Functions Manual - Basic Functions; Velocities, Setpoint-Actual Value Systems, Closed-
Loop Control (G2)

● Programming Manual, Job Planning; Section: Programmable servo parameter set

15.4.5 Intermediate gear

Application and functions
A configured intermediate gear can be used to adapt a variety of rotating tools. The
intermediate gear on the tool side has a multiplicative effect on the motor/load gearbox.

It is set via machine data:

MD31066 $MA_DRIVE_AX_RATIO2_NUMERA (intermediate gear numerator)

MD31064 $MA_DRIVE_AX_RATIO2_DENOM (intermediate gear denominator)

An encoder on the tool for the intermediate gear
is configured with machine data:
MD31044 $MA_ENC_IS_DIRECT2 (encoder on intermediate gear)
.

Change parameters for this machine data can be activated with "NewConfig" either using the
SinuCOM-NC commissioning software or via a softkey on the operator panel (HMI). The
existing motor/load gearboxes, on the other hand, are active after POWER ON.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1278 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Tool change
If the intermediate gear is changed at the same time as the tool, the user must also
reconfigure the transmission ratio of the numerator and denominator via the machine data of
the intermediate gear.

Example:

CAUTION
Engineering error

It remains the task of the user to stop within the appropriate period in order to make
changes to the machine data when required and then activate a "NewConfig".

In the case of an installed tool with a transmission ratio of 2:1, a suitable intermediate gear is
configured and is activated immediately in the part program with the command NEWCONF.

Program code

N05 $MA_DRIVE_AX_RATIO2-NUMERA[AX5] = 2

M10 $MA_DRIVE_AX_RATIO2-DENOM[AX5] = 1

N15 NEWCONF

Changeover
Changeover to a new transmission ratio is performed immediately by means of NewConfig.
From a technological viewpoint, the associated mechanical changeover process takes some
time, since, in mechanical terms, a different intermediate gear with rotating tool is being
installed.

 Note

At zero speed, changeover is jerk-free. The user is therefore responsible for taking
appropriate precautions.

Applications in which changeover takes place during motion and which require smoothed or
soft speed transition can be handled using existing setpoint speed filters.

For further explanations regarding control engineering dependencies, see Section "G2:
Velocities, setpoint / actual value systems, closed-loop control (Page 307)".

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1279

15.4.6 Nonacknowledged gear step change

Mode change
A gear stage change that has not been acknowledged cannot be interrupted by a change in
operating mode (e.g. switchover to JOG).

The switchover is delayed by the maximum period entered in machine data:
MD10192 $MN_GEAR_CHANGE_WAIT_TIME
.

If the gear stage change is not acknowledged within this time, the NC will output an alarm:

Further events
Events that initiate reorganization will also wait until a gear stage change is completed.

The time entered in machine data:
MD10192 $MN_GEAR_CHANGE_WAIT_TIME
determines how long the control waits before executing the gear stage change.
If this time elapses without the gear stage change being completed, the NC responds with an
alarm.

The following events have an analog response:

● User ASUB

● Mode change

● Delete distance-to-go

● Axis interchange

● Activate PI user data

● Enable PI service machine data

● Switch over skip block, switch over Dry Run

● Editing in the modes

● Compensation block alarms

● Overstore

● Rapid retraction with G33, G34, G35

● Subprogram level abort, subprogram abort

Response after POWER ON
The active gear stage on the machine can be specified by the PLC after POWER ON and in
the RESET state.

The NCK will then select the appropriate parameter set
and check back the NC/PLC interface signals:
DB31, ... DBX82.0-82.2 (set gear stage A to C)
to the PLC.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1280 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.4.7 Gear step change with oscillation mode

What is oscillation?
Oscillation in this context means that the spindle motor rotates alternately in the clockwise
and counter-clockwise directions. This oscillation movement makes it easy to engage a new
gear stage.

Oscillation mode
NC/PLC IS:
DB31, ... DBX82.3 (change gear)
displays that a gear stage change is required.

In principle, the new gear stage can also be engaged without oscillation

1. MD35010 $MA_GEAR_STEP_CHANGE_ENABLE must be set to 1.

2. NC/PLC interface signal DB31, ... DBX84.6 (oscillation mode) is set.

3. The acceleration is set in the machine data:

MD35410 $MA_SPIND_OSCILL_ACCEL

DB31, ... DBX18.5 (oscillation speed)
The spindle is in oscillation mode if a new gear stage was defined using automatic gear
stage selection (M40) or M41 to M45 (DB31, ... DBX82.3 (change gear) is set).

NC/PLC IS:
DB31, ... DBX82.3 (change gear)
is only enabled when a new gear stage is defined
that is not the same as the current actual gear stage.

If NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed)
is simply set by the PLC without a new gear stage being defined by the NC,
the spindle does not change to oscillation mode.

Oscillation mode is activated with NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed)
.

Depending on NC/PLC IS:
DB31, ... DBX18.4 (oscillation via PLC)
while the function is in operation, a distinction is made between:

● Oscillation via NCK

● Oscillation via PLC

● Oscillation with FC 18

References:
Function Manual, Basic Functions; PLC Basic Program (P3)

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1281

Oscillation time
The oscillation time for oscillation mode can be defined in a machine date for each direction
of rotation:

Oscillation time in M3 direction
(referred to as t1 in the following):

MD35440 $MA_SPIND_OSCILL_TIME_CW

Oscillation time in M4 direction
(referred to as t2 in the following):

MD35450 $MA_SPIND_OSCILL_TIME_CCW

Oscillation via NCK
Phase 1:

NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed)
accelerates the spindle motor to the speed (with oscillation acceleration) defined in machine
data:
MD35400 $MA_SPIND_OSCILL_DES_VELO (oscillation speed)
.

Start direction is defined through the following machine data:
MD35430 $MA_SPIND_OSCILL_START_DIR (start direction with oscillation)

The time t1 (or t2) is started
according to which start direction is given in the machine data:
MD35430 $MA_SPIND_OSCILL_START_DIR

The time - and not the fact that the oscillation speed is reached - is always decisive.

Phase 2:

If time t1 (t2) has elapsed, the spindle motor
accelerates in the opposite direction to the speed defined in machine data:
MD35400 $MA_SPIND_OSCILL_DES_VELO
.

Time t2 (t1) starts.

Phase 3:

If time t2 (t1) has passed, the spindle motor accelerates in the opposite direction (same
direction as in Phase 1) to the speed defined in machine data:
MD35400 $MA_SPIND_OSCILL_DES_VELO
.

Time t1 (t2) starts. The process continues with Phase 2.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1282 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Oscillation via PLC
NC/PLC IS:
DB31, ... DBX18.4 (oscillation via PLC)
and
DB31, ... DBX18.5 (oscillation speed)
accelerates the spindle motor to the speed (with oscillation acceleration) defined in machine
data:
MD35400 $MA_SPIND_OSCILL_DES_VELO (oscillation speed)
.

The direction of rotation is defined by NC/PLC IS:
DB31, ... DBX18.7 (set direction of rotation CCW)
and
DB31, ... DBX18.6 (set direction of rotation CW)
.

The oscillation movement and the two times t1 and t2 (for clockwise and counter-clockwise
rotation) must be simulated on the PLC.

Special features
Setting/Resetting the NC/PLC IS and machine data in oscillation mode:

● To decelerate the spindle, the PLC user need not set NC/PLC IS:
DB31, ... DBX4.3 (spindle stop)
.

The spindle is brought to a standstill internally by the control when a gear stage change is
requested.

● The gear stage change should always be terminated with NC/PLC IS:
DB31, ... DBX16.3 (gear changed)
.

● NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed)
should be used to support mechanical engagement of the gear.

It has no effect on the internal control mechanism for the gear stage change procedure
and should therefore only be set as necessary.

● If NC/PLC IS:
DB31, ... DBX18.5 (oscillation speed)
is reset, oscillation mode stops.

However, the spindle remains in "oscillation mode".

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1283

● The acceleration is defined in the following machine data:
MD35410 $MA_SPIND_OSCILL_ACCEL

● The spindle will cease to be synchronized if an indirect measuring system (motor
encoder) is used.

If the machine data is set to:
MD31050 $MA_ENC_IS_DIRECT = 0,
NC/PLC IS:
DB31, ... DBX60.4/5 = 0 (referenced/synchronized)
is automatically deleted.

The zero mark is synchronized the next time it is crossed.

End of oscillation mode
On termination of oscillation mode, the spindle returns to open-loop control mode and
automatically changes to the mode defined by SPCON or SPCOF.

All gear-specific limit values (min./max. speed, etc.) correspond to the set values of the
actual gear stage.

Functionality
Machine tools of conventional design require a gear stage of the spindle in oscillation mode.

If the machine data configuration is:
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 1
the following sequence is implemented:

● Deceleration of the spindle.

The braking action corresponds to an M5 movement.

● Output of VDI interface signals:
DB31, ... DBX84.6 (oscillation mode)
DB31, ... DBX82.3 (change gear)
DB31, ... DBX82.0-82.2 (set gear stage A to C).

If position control has been enabled, it is disabled:
DB31, ... DBX61.5 = 0.

● The load gearbox can now "disengage".

● NC/PLC IS:
DB31, ... DBX18.5 (oscillation enable)
 can be set by the PLC.

The spindle motor then performs an oscillation motion with preset values.
The oscillation motion is designed to facilitate and accelerate the re-engaging of the gear
wheels.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1284 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Writing of NC/PLC IS:
DB31, ... DBX16.0-16.2 (actual gear stage A to C)
by the PLC.

● Once the PLC has sent:
DB31, ... DBX16.3 (gear changed)
to the NCK, the last movement to be active is continued, if available.

For indirect encoders (motor encoders), the homing status is cleared:
DB31, ... DBX60.4/5 = 0.

Block change
If the spindle is switched to oscillation mode
with NC/PLC IS:
DB31, ... DBX82.3 (change gear),
the processing of the part program remains suspended.
A new block is not executed.

If oscillation mode is terminated with NC/PLC IS:
DB31, ... DBX16.3 (gear changed),
the processing of the part program is resumed.
A new block is executed.

Figure 15-5 Block change following oscillation mode

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1285

Oscillation mode
Typical time sequence for the gear stage change with a spindle:

t1: With the programming of S1300, NCK detects a new gear stage (second gear stage), sets NST

DB31, ... DBX82.3 (change gear) and blocks processing for the next part program block (=
internal feed disable*).

t2: The spindle is stationary, and oscillation starts (oscillation via the NCK). NST DB31, ... DBX18.5
(oscillation speed) must be set at the latest by t2.

t3: The new gear stage is engaged. The PLC user transfers the new (actual) gear stage to the
NCK and sets NST DB31, ... DBX16.3 (gear is changed).

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1286 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

t4: NCK then retracts NST DB31, ... DBX82.3 (change gear), ends the oscillation, releases the next
part program block for processing, and accelerates the spindle to the new S value (S1300).

* : The internal feed disable is set if:
• The spindle gear stage change has been programmed via the part program and
• A processing block is activated (i.e. G0 is not active)
The internal feed disable is not set during a gear stage change from synchronized actions or in
the case of specifications via the PLC with FC 18.

Figure 15-6 Gear stage change with stationary spindle

15.4.8 Gear stage change at fixed position

Application and advantages
Machine tools increasingly use standardized spindle drives, firstly to save technological dead
time on a gear stage change and secondly to gain the cost benefits of using standardized
components.

The "Gear stage change at fixed position" function supports the "directed gear stage
change" of load gearboxes that need to be activated in a different way than the NC. The gear
stage change can in this case only be performed at a defined spindle position. An oscillation
movement as required by conventional load gearboxes is thus no longer necessary.

Sequence for gear stage change at fixed position
The gear stage change at fixed position

Machine data configuration:
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 2
runs the following sequence:

● Positioning of the spindle from standstill or movement to the position configured in
machine data:
MD35012 $MA_GEAR_STEP_CHANGE_POSITION.

If the gear stage change is performed out of a movement, then the current direction of
rotation is maintained. The spindle is in positioning mode during the positioning action.

NC/PLC IS:
DB31, ... DBX84.5 (positioning mode)
is output.

If no reference is available:
DB31, ... DBX60.4/5 = 0
or NC/PLC IS:
DB31, ... DBX17.4/5 (resynchronize on positioning MS 1/2)
is set, the positioning action is extended by the time it takes to find the zero mark.

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1287

● After reaching the gear stage change position configured in machine data:
MD35012$MA_GEAR_STEP_CHANGE_POSITION
the machine waits for the time in machine data:
MD35310 $MA_SPIND_POSIT_DELAY_TIME
before switching to oscillation mode,
and the known gear stage change dialog starts.

● Output of NC/PLC interface signals:
DB31, ... DBX84.6 (oscillation mode)
DB31, ... DBX82.3 (change gear)
DB31, ... DBX82.0-82.2 (set gear stage A to C).

● Position control is not disabled when an active measuring system with indirect encoder
(motor encoder) is used:

MD31040 $MA_ENC_IS_DIRECT = 0

If a measuring system with a direct encoder (load encoder) is active, position control is
deactivated:
DB31, ... DBX61.5 = 0,
because the induction flux to the load is interrupted and closed-loop position control is no
longer possible.

● If position-controlled operation is not possible, it can be disabled by
resetting "Controller enable":
DB31, ... DBX2.1 = 0
.

● Mechanical switchover of the gear stage on the machine.

No oscillation movement is required from the drive.

NC/PLC IS:
DB31, ... DBX18.5 (oscillation enable)
and
DB31, ... DBX18.4 (oscillation via PLC)
should not be set.

In principle, oscillation movement is still possible at this point.

● Writing of NC/PLC IS:
DB31, ... DBX16.0-16.2 (actual gear stage A to C)
by the PLC.

● After signal:
DB31, ... DBX16.3 (gear stage changed),
the last movement to be active is continued, if available.

For indirect encoders (motor encoders), the referencing status is cleared:
DB31, ... DBX60.4/5 = 0.

The spindle is in speed control mode and NC/PLC IS:
DB31, ... DBX84.7 (open-loop control mode)
is output.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1288 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

GSC at fixed position
Typical time sequence for the gear stage change at fixed position:

t1: With the programming of S1300, NCK detects a new gear stage (second gear stage), NCK sets

NST DB31, ... DBX84.5 (positioning mode) and blocks processing for the next part program
block (= internal feed disable*).

t2: The spindle is stationary, and exact stop is signaled.
t3: Gear stage change - wait time

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1289

t4: The new gear stage is engaged. The PLC user transfers the new (actual) gear stage to the
NCK and sets NST DB31, ... DBX16.3 (gear is changed).

t5: NCK then retracts NST DB31, ... DBX82.3 (change gear), releases the next part program block
for processing, and accelerates the spindle to the new S value (S1300).

* : The internal feed disable is set if:
• The spindle gear stage change has been programmed via the part program and
• A processing block is activated (i.e. G0 is not active)
The internal feed disable is not set during a gear stage change from synchronized actions or in
the case of specifications via the PLC with FC 18.

Figure 15-7 Gear stage change with stationary spindle

gear stage change position MD35012
The gear stage change position is defined in machine data:
MD35012 $MA_GEAR_STEP_CHANGE_POSITION
for each gear stage.

Gear stage change wait time MD35310
After the positioning action the machine waits for the time configured in machine data:
MD35310 $MA_SPIND_POSIT_DELAY_TIME
until gear change request:
DB31, ... DBX84.6 (oscillation mode)
DB31, ... DBX82.3 (change gear)
and
DB31, ... DBX82.0-82.2 (set gear stage A to C)
are output.

Position identifiers / position
The position is always approached via the shortest path (corresponds to DC).

If no reference is available and the spindle is in standstill
(e.g. after Power On), then the direction of travel is determined by the following machine
data:
MD35350 $MA_SPIND_POSITIONING_DIR

If an adjustable gear stage change position is required, then this can be achieved by writing
the machine data and by a subsequent NewConfig.
The change of the MD value can be achieved by the part program or HMI.

If the system is unable to reach the preset position, then alarm 22020 is signaled and the
gear stage change dialog between NCK and PLC does not take place in order not to destroy
the gears. As this alarm is serious, the part program cannot continue and the cause must be
eliminated under all circumstances. Experience has shown that the abortion of positioning is
usually due to incorrect MD settings or incompatible PLC signals.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1290 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Speed
The positioning speed is taken from the machine data which is configured depending on the
gear stage:

MD35300 $MA_SPIND_POSCTRL_VELO

NC/PLC IS "Spindle speed override"/"Feedrate override" at
DB31, ... DBX17.0=0: DB31, ... DBB19)
as well as:
DB31, ... DBX17.0=1: DB31, ... DBB0
are effective as normal for positioning.
The positioning speed can be changed proportionally through the program statement
OVRA[Sn].

 Note

OVRA[Sn] is valid modally. After the gear stage change, a value appropriate for the machining
should be reset.

The part program statement FA[Sn] does not change the positioning speed during gear stage
change.

Acceleration
The acceleration values are determined by the machine data which is configured depending
on the gear stage:

MD35200 $MA_GEAR_STEP_SPEEDCTRL_ACCEL

and

MD35210 $MA_GEAR_STEP_POSCTRL_ACCEL

The acceleration can be changed proportionally by programming ACC[Sn].

 Note

ACC[Sn] is valid modally. After the gear stage change, a value appropriate for the machining
should be reset.

Speed-dependent acceleration
The "knee-shaped acceleration characteristic" is effective as in positioning with SPOS or
FC18.

Jerk
It is currently not possible to limit the change in acceleration.

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1291

End of positioning
The transition between the end of the positioning action (DB31, ... DBX84.5)
and the start of oscillation mode (DB31, ... DBX84.6) is defined on
reaching "Exact stop fine" (DB31, ... DB60.7) and the time value entered in machine data:
MD3510 $MA_SPIND_POSIT_DELAY_TIME
.

The determination of the transition condition has an effect firstly on the gear stage change
time and secondly on the accuracy of the approach to the preset gear stage change position.

Block change
The block change is stopped and the machining blocks are not started until the gear stage
has been changed by the PLC (DB31, ... DBX16.3).

End of gear stage change
Once the gear stage change has been completed, the spindle returns to open-loop control
mode and will automatically change to the closed-loop control mode defined by SPCON or
SPCOF.

All gear-specific limit values (min./max. speed of gear stage, etc.) correspond to the check-
back values of the actual gear stage.

Supplementary conditions
● The spindle must have at least one measuring system.

● Position-controlled operation must be possible and must have been activated.

● Generally, it must be possible to execute SPOS from the part program, from a
synchronized action or via FC18: “Start spindle positioning” without errors.

Unless all requirements can be met, the function described cannot be used successfully.

Activation
The function of gear stage change at fixed position
is activated by the configuration:
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 2

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1292 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.4.9 Configurable gear step in M70

Technical background
In some machines the spindle needs to be in a particular gear stage during axis mode.

Possible reasons:

● Only one optimization (Kv, feedforward control, filter) to suit a gear stage can be found in
the servo parameter set for axis mode (index 0). The machine data for this parameter set
should not be rewritten.

● There is only one mechanical transmission ratio which, unlike the others, possesses little
or no backlash compensation. The spindle can only follow a path motion or
transformations (e.g. TRANSMIT) together with other axes in this gear step.

Function
If the function is activated, a predefined gear step is loaded automatically during transition to
axis mode.

The gear step change is integrated into the M70 process and occurs after spindle
deceleration and before the loading of the servo parameter set with index 0 (note
MD35590 $MA_PARAMSET_CHANGE_ENABLE!).

The typical dialog between NC and PLC which occurs during gear step changes is executed
in a similar way to programmed gear step changes (M41 ... M45) performed.

Preconditions
Gear step changes during transition to axis mode require general enabling of the gear step
change via the machine data:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE (assign parameters to the gear step
change).

MD35090 $MA_NUM_GEAR_STEPS (number of gear steps set up)

Activation/Deactivation
The function is activated/deactivated via the machine data:

MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE (gear step for axis mode in M70)

Value Meaning
0 No implicit gear step change occurs in M70. The current gear step is retained (default

setting!).
1 ... 5 A gear stage change to gear stage 1 ... 5 occurs during the processing of M70.

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1293

Boundary conditions
Gear step change at fixed position (MD35010 $MA_GEAR_STEP_CHANGE_ENABLE = 2)

The "gear step change at fixed position" function is supported. The sequence in M70 is then
extended by the time it takes to position the spindle. The position is approached at the
current gear step.

Transition to axis mode without programming M70

The control system detects the transition to axis mode automatically from the program
sequence (see "Implicit transition to axis mode (Page 1251)") and generates the requisite
M70 sequence, including the gear step change, within the control system.

Transition to axis mode with FC 18

Implicit gear step change is not supported in transition to axis mode with the FC 18 ("Start
axis"). This requires the right gear step to be engaged by the PLC application before
switching to axis mode. The gear step change is also possible with the FC 18 ("Start gear
step change").

Change from axis mode to spindle mode

When changing from axis mode to spindle mode, the gear step loaded with M70 remains
activated. The gear stage which is activated in spindle mode prior to M70 is not automatically
loaded again. The servo parameter set is changed from parameter set 1 (index 0) to
parameter sets 2 ... 6 (index 1 ... 5) to suit the gear step (with
MD35590 $MA_PARAMSET_CHANGE_ENABLE < 2).

Example
Gear step 4 should be loaded in the case of spindle transition to axis mode.

Configuration: MD35014 $MA_GEAR_STEP_USED_IN_AXISMODE[<spindle name>] = 4

Program code Comment

N05 M3 S1000

N10 G1 X100 F1000

N15 M70 ; Gear step 4 is loaded.

N20 POS[C]=77

N25 ...

 Note

MD35014 can be changed in the NewConfig. Thus, the gear step being loaded can still be
changed in the part program before transition to axis mode, if necessary.

S1: Spindles
15.4 Configurable gear adaptation

 Basic Functions
1294 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.4.10 Suppression of the gear stage change for DryRun, program test and SERUPRO

Function
For test feed rate (DryRun), program test and SERUPRO, normally, a gear stage change is
not required. This is the reason that it can be suppressed for these functions. The
corresponding configuration is realized with bits 0 ... 2 in machine data:

MD35035 $MA_SPIND_FUNCTION_MASK

Dry run feedrate (DryRun)
Bit 0 = 0 When the DryRun function is active - for part program blocks - gear stages are changed

with M40, M41 to M45, or programming via FC18 and synchronized actions.
Bit 0 = 1 When the DryRun function is active - for part program blocks - a gear stage change is

suppressed with M40, M41 to M45, programming via FC18 and synchronized actions.

Program test and SERUPRO
Bit 1 = 0 For active program test / SERUPRO function - for part program blocks - gear stages are

selected with M40, M41 to M45, programming via FC18 and synchronized actions.
Bit 1 = 1 For active program test / SERUPRO function - for part program blocks - a gear stage

change is suppressed with M40, M41 to M45, programming via FC18 and synchronized
actions.

DryRun, program testing and SERUPRO
Bit 2 = 0 Gear stage change for programmed gear stage is not performed subsequently on

REPOS after deselection of functions DryRun, Program Test and SERUPRO.
Bit 2 = 1 Gear stage change for programmed gear stage is performed after deselection of

functions DryRun and SERUPRO if possible.

Sequence
If a gear stage change is suppressed, if necessary, the interpolator will limit the programmed
spindle speed to the permissible speed range of the active gear stage.

NC/PLC interface signals DB31, ... DBX83.2 (setpoint speed increased) and
DB31, ... DBX83.1 (setpoint speed limited) generated as a result of this limit are suppressed.

Monitoring by the PLC program is not necessary during DryRun and in dry run feedrate.

When the gear stage change is suppressed, no new gear stage setpoint (DB31,... DBX82.0-
82.2) is output to the PLC.

The gear stage change request DB31, ... DBX82.3 (change gear) is also suppressed.

This ensures that no gear stage change information has to be processed by the PLC
program.

 S1: Spindles
 15.4 Configurable gear adaptation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1295

Determining the last active gear stage
System variable $P_GEAR returns the gear stage programmed in the part program (which
may not have been output to the PLC).

System variable $AC_SGEAR can be used to read the last active gear stage from the part
program, synchronized actions and at the user interface.

Behavior after deselection
The DryRun function can be deselected within a running part program. Once it has been
deselected, the correct gear stage requested by the part program must be identified and
selected.

It cannot be assured that the remainder of the part program will run without errors until the
correct gear stage has been activated. Any necessary gear stage change is performed in the
system REPOS started on deselection if the spindle is in speed control mode. A complete
gear stage change dialog takes place with the PLC and the last programmed gear stage is
activated.

If, for REPOS, there is a mismatch between the gear stage programmed in the part program
and the actual gear stage supplied via the NC/PLC interface, then no gear stage change
takes place.

The same applies to the SERUPRO function.

Further explanations regarding the block search function SERUPRO, see:
References:
Function Manual, Basic Functions; Mode Group, Channel, Program Mode, Reset Response
(K1)

Boundary conditions
If the gear stage change is suppressed, the output spindle speed moves within the speed
range specified by the current gear stage.

The following restrictions apply to the subsequent activation of a gear stage change with
REPOS:

● The gear stage change is not activated subsequently if the spindle in the deselection or
target block is a command spindle (synchronized action) or PLC spindle (FC18).

● If the gear stage cannot be activated because the spindle is in position or axis mode or a
link is active, alarm 22011"Channel%1 block%3 spindle2% Change to programmed gear
stage not possible" is signaled.

Example
Gear stage change in DryRun

; 1. Activate 1st gear stage for output state

N00 M3 S1000 M41 ; 1st gear stage is selected

M0 ; Part program stops

S1: Spindles
15.5 Additional adaptations to the spindle functionality that can be configured

 Basic Functions
1296 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

; PI service: Activate dry run feedrate (DryRun)

 ; (Configuring)

N10 M42 ; 2nd gear stage requested, no gear stage

change takes place

N11 G0 X0 Y0 Z0 ; Positioning axes

N12 M0 ; Part program stops

; PI service: Deactivate dry run feedrate (DryRun)

 ; REORG and REPOS are performed

 ; now the gear stage change to the 2nd gear

stage takes place

N20 G1 Z100 F1000

...

N99 M30 ; Part program end

15.5 Additional adaptations to the spindle functionality that can be
configured

Spindle-specific functions are set using machine data:

MD35035 $MA_SPIND_FUNCTION_MASK (spindle functions)

MD35035 is bit coded:

Bit Meaning
0 ... 2 Gear stage change behavior for test feedrate (DryRun), program test and SERUPRO

See "Suppression of the gear stage change for DryRun, program test and SERUPRO
(Page 1294)".

4 The programmed speed S... including speed setpoints FC18 and synchronized actions can
be accepted in setting data SD43200 $SA_SPIND_S (speed for spindle start via PLC
interface).
See "Special spindle motion via the PLC interface (Page 1306)".

5 For bit 5 = 1, the content of setting data SD43200 $SA_SPIND_S acts as the speed setpoint
for JOG. You can use the JOG keys to operate the spindle at the speed defined in SD43200.
If the content is zero, other JOG speed setpoints are active(see SD41200
$SN_JOGSPIND_SET_VELO).

8 The programmed cutting velocity S... including setpoints via FC18 and synchronized
actions can be accepted in setting data SD43202 $SA_SPIND_CONSTCUT_S (cutting rate
for spindle start via the PLC interface).
See "Special spindle motion via the PLC interface (Page 1306)".

10 For the master spindle, the value of the 15th G group (feedrate type) can be accepted in
setting data SD43206 $SA_SPIND_SPEED_TYPE (spindle speed type for spindle start via
the PLC interface).
See "Special spindle motion via the PLC interface (Page 1306)".

 S1: Spindles
 15.6 Selectable spindles

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1297

Bit Meaning
Bit 12 = 0 Spindle override is not effective for the zero mark search with M19, SPOS or

SPOSA = 0.
12

Bit 12 = 1 Spindle override is effective for the zero mark search with M19, SPOS or
SPOSA = 0.

19 When programming SPOS and SPOSA, auxiliary function M19 can be implicitly generated and
output to the PLC.
See "Positioning mode (Page 1232)".

20 In the case of M70 functionality which is generated in the control, auxiliary function M70 can
be implicitly generated and output to the PLC.
See "Implicit transition to axis mode (Page 1251)".
Bit 22 = 0 The NC/PLC interface signal DB31, ... DBX17.6 (invert M3/M4) also affects the

function "interpolatory tapping (G331/G332)".
Note:
The following must be observed for this setting:
• For part programs with G331 and G332, it is necessary to set NC/PLC

interface signal DB31, ... DBX17.6 (invert M3/M4) before part program start
to a stable value.

• Existing application-based solutions, e.g. as are used in tapping cycles,
must, if required, be adapted. It is known, for example, in tapping cycles,
that the spindle direction of rotation can be inverted using MIRROR
depending on a cyclic-specific setting data.

22

Bit 22 = 1 The NC/PLC interface signal DB31, ... DBX17.6 (invert M3/M4) does not affect
the function "interpolatory tapping (G331/G332)".

Changes to MD35035 become effective after an NC reset.

15.6 Selectable spindles

Function
The "selectable spindles" function allows you to write part programs with reference to the
spindles used ("channel spindle, logical spindle") regardless of the actual assignment of
configured spindles ("physical spindles") to a channel.

The physical spindles loaded or unloaded by "axis replacement" no longer have to be
specified explicitly in the part program.

Spindle number converter (SD42800)
Each spindle is uniquely mapped to a machine axis using a configurable number:

MD35000 $MA_SPIND_ASSIGN_TO_MACHAX[AX...] = <spindle number>

This number always applies to one spindle, whereby it is of no importance in which channel
the spindle is actively handled.

S1: Spindles
15.6 Selectable spindles

 Basic Functions
1298 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The channel spindles can be switched over because an intermediate level is introduced
between the logical spindle numbers used in the part program and the physical spindles
existing in the channel.

Every logical spindle used in the part program is assigned a physical spindle in a table
comprising setting data:

SD42800 $SC_SPIND_ASSIGN_TAB[<n>] (spindle number converter) = ...

Index <n> corresponds to the programmed spindle number or the programmed address
extension. The contents of the particular SD is the physical spindle that is actually available.

The spindle number converter is effective in spindle programming by means of:

● The part program

● Synchronized actions

The spindle number converter has no effect with PLC commands, which use function block
FC18. The physical spindle must always be addressed there within the context of the axis.

Logical spindles can be changed over by changing SD42800. The changeover can be made
from the part program, from the PLC and/or HMI.

 Note

The logical master spindle is contained in setting data SD42800
$SC_SPIND_ASSIGN_TAB[0]. It is only used for display purposes.

This setting data is defined in the part program by SETMS (logical spindle).

Unused spindles are assigned the value 0 in SD42800.

System variables, which are involved in the spindle changeover:

$P_S, $P_SDIR, $P_SMODE, $P_GWPS, $AC_SDIR, §AC_SMODE, $AC_MSNUM, $AA_S

References:
Programming Manual, Job Planning

The converted, physical spindle number is always output as the address extension in the
auxiliary function output.

Supplementary conditions
● Switchable channel spindles are not a substitute for the Axis replacement function.

● You can only switch spindles, which have been assigned to the channel by means of
configuration.

● If spindles, which are presently active in another channel, are designated for switchover,
either the "Auto-Get" function is triggered for the physical spindle or alarm 16105
"Assigned spindles do not exist" is output, depending on the configuration variant.

● If SD42800 $SC_SPIND_ASSIGN_TAB[<n>] is specified by the PLC or from HMI, then
the channel whose table is changed should be in Reset status or the spindle to be
changed should not be used in the running part program.

A synchronized response can be achieved by means of a STOPRE preprocessor stop.

 S1: Spindles
 15.6 Selectable spindles

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1299

● The multiple mapping of logical to physical spindles is not prevented in the NC. However,
with the display of logical spindle in the user interface, there are ambiguities
corresponding to the change table.

● Spindle conversion operates on spindles via FC 18.

Activation
SD42800 $SC_SPIND_ASSIGN_TAB[<n>] is enabled by setting the following machine data
setting:

MD20092 $MC_SPIND_ASSIGN_TAB_ENABLE=1

Basic setting SD42800
After switching on the NC with the commissioning switch in setting 1 (delete SRAM)
SD42800 $SC_SPIND_ASSIGN_TAB[<n>] is in the basic setting.

The numbers of the logical and physical spindles are identical.

SD42800 $SC_SPIND_ASSIGN_TAB[1] = 1

SD42800 $SC_SPIND_ASSIGN_TAB[2] = 2

SD42800 $SC_SPIND_ASSIGN_TAB[3] = 3

SD42800 $SC_SPIND_ASSIGN_TAB[4] = 4

SD42800 $SC_SPIND_ASSIGN_TAB[5] = 5

...

Example
Spindle configurations:

● Assignment, spindle number and machine axis:

MD35000 $MA_SPIND_ASSIGN_TO_MACHAX [AX4] = 1
MD35000 $MA_SPIND_ASSIGN_TO_MACHAX [AX5] = 2
MD35000 $MA_SPIND_ASSIGN_TO_MACHAX [AX6] = 3
MD35000 $MA_SPIND_ASSIGN_TO_MACHAX [AX7] = 5

● Accepting a machine axis in a channel:

MD20070 $MC_AXCONF_MACHAX_USED[0] = 4
MD20070 $MC_AXCONF_MACHAX_USED[1] = 5
MD20070 $MC_AXCONF_MACHAX_USED[2] = 6
MD20070 $MC_AXCONF_MACHAX_USED[3] = 7

S1: Spindles
15.6 Selectable spindles

 Basic Functions
1300 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Specifying the master spindle:

MD20090 $MC_SPIND_DEF_MASTER_SPIND = 1

Spindle number converter:

MD20092 $MC_SPIND_ASSIGN_TAB_ENABLE=1 ;

Activate spindle number converter

SD42800 $SC_SPIND_ASSIGN_TAB[0]=1 ;

Master spindle as configured

SD42800 $SC_SPIND_ASSIGN_TAB[1]=1 ;

Basic setting of the table

SD42800 $SC_SPIND_ASSIGN_TAB[2]=2

SD42800 $SC_SPIND_ASSIGN_TAB[3]=3

SD42800 $SC_SPIND_ASSIGN_TAB[4]=0 ;

Logical spindle not assigned

M3 S1000 ;

Address extension=1, M1=3 S1=1000 is output

The spindle with configured No. "1" (No. of the physical master

spindle) rotates.

...

...

SD42800 $SC_SPIND_ASSIGN_TAB[1]=5 ; Assignment of logical spindle 1 to

physical spindle 5

SD42800 $SC_SPIND_ASSIGN_TAB[2]=3 ; Assignment of logical spindle 2 to

physical spindle 3.

Notice:physical spindle 3 has now been

assigned twice. When programming

logical spindles 2 and 3, physical

spindle 3 is always addressed. In the

basic machine displays, both spindles

rotate.

SETMS(2) ;

SD42800 $SC_SPIND_ASSIGN_TAB[0] = 2 defined internally by NCK.

...

M5 ;

Master spindle = address extension=2, the unset spindle number

is output. M3=5

The physical spindle configured with number "3" stops.

...

GET(S4) ;

Alarm 16105, as logical spindle "4" cannot be switched.

...

RELEASE(S1) ;

Channel spindle "1" = physical. Spindle "5" is enabled.

...

M30

 S1: Spindles
 15.7 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1301

15.7 Programming

15.7.1 Programming from the part program

Programming statements

Statement Description
SETMS: Master spindle is the spindle specified in the following machine data:

MD20090 $MC_SPIND_DEF_MASTER_SPIND (position of deletion of the master
spindle in the channel)
The spindle with the number <n> is the master spindle
(may differ from the initial setting:
MD20090 $MC_SPIND_DEF_MASTER_SPIND).
The master spindle must be defined for the following functions:

• G95: Revolutional feedrate

• G96 S.../G961 S...: Constant cutting rate in m/min or feet/min

• G97/G971: Cancel G96/G961 and freeze last spindle speed

• G63: Tapping with compensating chuck

• G33/G34/G35: Thread cutting

• G331/G332: Tapping without compensating chuck

• G4 S...: Dwell time in spindle revolutions

• Programming M3, M4, M5, S, SVC, SPOS, M19, SPOSA, M40, M41 to M45, and WAITS
without entering the spindle number

SETMS(<n>):

The current master spindle setting can be retained via RESET / part program end and
part program start. The setting is done via the machine data:
• MD20110 $MC_RESET_MODE_MASK
• MD20112 $MC_START_MODE_MASK

M3:
M<n>=3:

Clockwise spindle rotation for the master spindle
Clockwise spindle rotation for spindle number <n>

M4:
M<n>=4:

Counter-clockwise spindle rotation for the master spindle
Counter-clockwise spindle rotation for spindle number <n>

M5:
M<n>=5:

Spindle stop without orientation for the master spindle
Spindle stop without orientation for spindle number <n>

S...:
S<n>=...:

Spindle speed in rpm for the master spindle
Spindle speed in rpm for spindle number <n>

SVC=...:
SVC[<n>]=...:

Cutting rate in m/min or feet/min for the master spindle
Cutting rate in m/min or feet/min for the spindle <n>

S1: Spindles
15.7 Programming

 Basic Functions
1302 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Statement Description
SPOS=...:
SPOS[<n>]=...:

Spindle positioning for the master spindle
Spindle positioning for spindle number <n>
The block change is only performed when the spindle is in position.

SPOSA=...:
SPOSA[<n>]=...:

Spindle positioning for the master spindle
Spindle positioning for spindle number <n>
The block change is executed immediately. Spindle positioning continues, regardless of
further part program processing, until the spindle has reached its position.

SPOS=DC(...):
SPOS[<n>]=DC(...):
SPOSA=DC(...):
SPOSA[<n>]=DC(...):

The direction of motion is retained for positioning while in motion and the position
approached. When positioning from standstill, the position is approached via the
shortest path.

SPOS=ACN(...):
SPOS[<n>]=ACN(...):
SPOSA=ACN(...):
SPOSA[<n>]=ACN(...):

The position is always approached with negative direction of motion. If necessary, the
direction of motion is inverted prior to positioning.

SPOS=ACP(...):
SPOS[<n>]=ACP(...):
SPOSA=ACP(...):
SPOSA[<n>]=ACP(...):

The position is always approached with positive direction of motion.
If necessary, the direction of motion is inverted prior to positioning.

SPOS=IC(...):
SPOS[<n>]=IC(...):
SPOSA=IC(...):
SPOSA[<n>]=IC(...):

The travel path is specified. The direction of travel is determined from the sign in front of
the travel path. If the spindle is in motion, the direction of travel is inverted as necessary
to allow traversing in the programmed direction.
If the zero mark is crossed during traversing, the spindle is automatically synchronized
with the zero mark if no reference is available or if a new one has been requested via
an interface signal.

M19:
M[<n>]=19:

Positioning the master spindle to the position in SD43240
Positioning spindle number <n> to the position in SD43240
The block change is only performed when the spindle is in position.

M70:
M<n>=70:

Bring spindle to standstill and activate position control, select zero parameter set,
activate axis mode
for the master spindle
for spindle number <n>

SPCON:
SPCON(<n>):
SPCON(<n>,<m>):

Spindle position control ON
for the master spindle
for spindle number <n>
for spindle numbers <n> and <m>

PCOF:
SPCOF(<n>):
SPCOF(<n>,<m>):

Spindle position control OFF, activate speed control mode
for the master spindle
for spindle number <n>
for spindle numbers <n> and <m>

FPRAON(S<n>): Revolutional feedrate for spindle <n> ON, derived from the master spindle
FPRAON(S<n>,S<m>): Revolutional feedrate for spindle <n> ON, derived from spindle <m>

The revolutional feedrate value must be specified with FA[S<m>].
FPRAOF(S<n>): Revolutional feedrate for spindle <n> OFF

 S1: Spindles
 15.7 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1303

Statement Description
C30 G90 G1 F3600 Rotary axis C (spindle in axis mode) travels to the position 30 degrees at a speed of

3600 degrees/min = 10 rpm

G25 S...:
G25 S<n>:

Programmable minimum spindle speed limitation
for the master spindle
for spindle number <n>

G26 S...:
G26 S<n>:

Programmable maximum spindle speed limitation
for the master spindle
for spindle number <n>

LIMS=...:
LIMS[<n>]=...:

Programmable maximum spindle speed limitation with G96, G961, G97
for the master spindle
for spindle number <n>

VELOLIM[<spindle>]=...: Programmable limiting of the configured gear stage dependent maximum speed
Using machine data (MD30455 $MA_MISC_FUNCTION_MASK, bit 6), when
programming in the part program, it can be set as to whether VELOLIM is effective
independent of whether used as spindle or axis (bit 6 = 1) - or is able to be programmed
separately for each operating mode (bit 6 = 0). If they are to be separately effective,
then the selection is made using the name when programming:
• Spindle name S<n> for spindle operating modes
• Axis name, e.g. "C", for axis operation
The correction value refers to:
• Spindles in axis operation (if MD30455 Bit 6 = 0):

To the configured maximum axis velocity (MD32000 $MA_MAX_AX_VELO).
• Spindles in spindle or axis operation (if MD30455 bit 6 = 1):

To the maximum speed of the active gear unit stage
(MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[<n>])

For further explanations about the programming of VELOIM, see:
References:
Programming Manual, Work Preparation

WAITS: Synchronization command for master spindle
The subsequent blocks are not processed until the spindle programmed in a previous
NC block with SPOSA has reached its position (with exact stop fine).
WAITS after M5: Wait until the spindle is stationary.
WAITS after M3/M4: Wait until the spindle reaches its setpoint speed.

WAITS(<n>):
WAITS(<n>,<m>):

Synchronization command for spindle number <n>
Synchronization command for spindle numbers <n> and <m>

FA[S<n>]: Programming of positioning speed (axial feed) for spindle <n> in [deg/min]
With FA[S<n>]=0, the configured value takes effect once more:
MD35300 $MA_SPIND_POSCTRL_VELO

OVRA[S<n>]: Programming of the axial override value for spindle <n> in [%]
ACC[S<n>]: Programming of the axial acceleration capacity for spindle <n> in [%]

S1: Spindles
15.7 Programming

 Basic Functions
1304 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Statement Description
SPI(<n>): With SPI(<n>) a spindle number is converted into the data type AXIS according to

machine data
MD35000 $MA_SPIND_ASSIGN_TO_MACHAX[]
.
SPI is used if axis functions are to be programmed with the spindle.
The following commands are possible with SPI:
• Frame commands:

– CTRANS()
– CFINE()
– CMIRROR()
– CSCALE()

• Velocity and acceleration values for following spindles:
– FA[SPI(<n>)]
– ACC[SPI(<n>)]
– OVRA[SPI(<n>)]

• System variables:
– $P_PFRAME[SPI(<n>),TR]=<value>
– $P_PFRAME=

CTRANS(X,<axis value>,Y,<axis value>,SPI(<n>),<axis value>)
– $P_PFRAME=

CSCALE(X,<scale>,Y,<scale>,SPI(<n>),<scale>)
– $P_PFRAME=CMIRROR(S<n>,Y,Z)
– $P_UBFR=CTRANS(A,10) : CFINE (19,0.1)

For further explanations about the programming of SPI, see:
References:
Programming Manual, Work Preparation.

M40:
M<n>=40:

Automatic gear stage selection for the master spindle
Automatic gear stage selection for spindle number <n>

M41 to M45:
M<n>=41 to M<n>=45:

Select gear stage 1 to 5 for the master spindle
Select gear stage 1 to 5 for spindle number <n>.

 Note

M functions M3, M4, M5, and M70 are not output in DB21, ... DBB194 and DBB202 if a
spindle is configured in a channel. These M functions are offered as extended M functions in
DB21, ... DBB68 ff. and in the relevant axis DBs, DB31, ... DBB86 ff.

References
More detailed explanations for programming the spindle can be found in:

● Programming Manual, Fundamentals

 S1: Spindles
 15.7 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1305

15.7.2 Programming via synchronized actions
M functions M40 to M45 can also be programmed in synchronized actions.

Please note:

● The programming of M40 ... M45 in the part program has no effect on the current status
of the automatic gear step change of synchronized actions, and vice versa.

● When programming S values with M40, automatic gear step change is effective
separately for synchronized actions and the part program.

● M40 is deactivated after POWER ON.

The gear step is not adjusted if an S value is specified from a synchronized action.

● An M40 command programmed using synchronized actions always remains active for
synchronized actions (modal) and is not reset on reset.

● M41 ... M45 selects first to fifth gear steps in accordance with the programming in the part
program.

An axis replacement is necessary in order to run the function.

Once the gear step change has been performed, the spindle status is neutral (same
response to M3, M4, M5 programming).

References
For further explanations regarding the programming of the spindle as well as spindle
movements from synchronized actions, refer to:

● Programming Manual, Job Planning

● Function Manual, Synchronized Actions

15.7.3 Programming spindle controls via PLC with FC18 - only 840D sl
When the PLC specifies the direction of rotation and speed using FC18, the NCK can
determine and select a gear step to match the speed. This is equivalent to the M40
functionality when programming via the part program.

The correct start code must be set when FC18 is called in a PLC user program, in order to
activate gear step selection.

References
More detailed explanations regarding the programming of spindle controls by PLC with FC18
can be found in:

● Function Manual, Basic Functions, Basic PLC Program (P3)

S1: Spindles
15.7 Programming

 Basic Functions
1306 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.7.4 Special spindle motion via the PLC interface

 Note

The function is only available when using SINUMERIK Operate!

Why use a special spindle interface?
This function can be used to program the spindle via an axial PLC interface as an alternative
to the FC18. The simplicity of the settings results in slightly restricted functionality. This
functionality can be used preferably for simple control applications.

Functionality
Spindles can be started and stopped outside a part program that is being executed via the
internal DBB30 spindle interface:

● DB31, … DBX30.0 (spindle stop)

● DB31, … DBX30.1 (spindle start, clockwise)

● DB31, … DBX30.2 (spindle start, counter-clockwise)

● DB31, ... DBX30.3 (select gear stage)

Supplementary signal to the signal "spindle start, clockwise/counter-clockwise";
determines the gear stage that matches the speed analog to M40 in the part program.

● DB31, … DBX30.4 (spindle positioning start)

In order to start a spindle job, the channel handling the spindle must be in the acceptance
state. A spindle job is always started on the Low-High edge of an internal DBB30 signal.

Generally, the internal DBB30 start signals do not have any meaning in the static state and
do not prevent the spindle being programmed by FC18, synchronized actions, the part
program or JOG traversing (e.g. when the STOP signal is statically at "1").

Requirements
In order that spindle jobs are accepted via the DBB30 spindle interface, the following
conditions must be fulfilled (acceptance state):

● The channel state must be in the "interrupted" or "reset" mode:

– DB21, ... DBX35.6 = 1 (channel state "interrupted")

– DB21, ... DBX35.7 = 1 (channel state "reset")

● The program state must be in the "interrupted" or "canceled" mode:

– DB21, ... DBX35.3 = 1 (program state "interrupted")

– DB21, ... DBX35.4 = 1 (program state "interrupted")

These states will occur on RESET and in JOG mode.

 S1: Spindles
 15.7 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1307

At the start time, the spindle concerned must meet the following requirements:

● It must be in the state "Channel axis" or "Neutral axis" and must not be moved by means
of the JOG keys.

● When the spindle is specified, no positioning may be carried out by FC18 or synchronized
actions.

 Note
Spindle job outside the acceptance range

Low-high edges outside the acceptance range will be ignored. No alarm message is output
by the NCK. It can be conceivable that the acceptance range will be indicated to the operator
by a user-side PLC application.

Spindle jobs outside the acceptance range can also be carried out using FC18 or ASUB.

Multi-channel operation
In the case of multi-channel operation, the spindle started by the PLC becomes active in the
channel that handles the spindle at the appropriate moment.

The channel can be determined on the PLC side by reading the NC/PLC interface signals:

DB31, ... DBX68.0-68.3 (NC axis/spindle in channel A to D)

Spindle definitions
The spindle settings are retained after a change in mode (e.g. from JOG to AUTOMATIC).
The spindle definitions are applied to the part program at the start of the program and can be
modified again using part program operations.

Using the following settings in the machine data:
MD35035 $MA_SPIND_FUNCTION_MASK (spindle functions),
certain spindle definitions (speed or cutting speed, feedrate type) can be taken from the part
program, synchronized action and FC18 and entered in the corresponding setting data:

Bit 4 = 1 The programmed speed S... including speed setpoints via FC18 and synchronized

actions are accepted in the following setting data:
SD43200 $SA_SPIND_S (speed for spindle start via PLC interface)
Programmed S values that are not programmed speed values are not accepted in the
SD. These include, for example:
• S value at constant cutting speed (G96, G961)
• S value for rotation-related dwell time (G4)

S1: Spindles
15.7 Programming

 Basic Functions
1308 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Bit 8 = 1 The programmed cutting speed S... including setpoints via FC18 and synchronized
actions are accepted in the following setting data:
SD43202 $SA_SPIND_CONSTCUT_S (cutting speed for spindle start via PLC
interface)
Programmed S values that are not programmed cutting speed values are not
accepted in the SD. These include, for example:
• S value outside the constant cutting speed (G96, G961, G962)
• S value for rotation-related dwell time (G4)

Bit 10 = 1 For the master spindle, the value of the 15th G group (feedrate type) is accepted in
the following setting data SD43206 $SA_SPIND_SPEED_TYPE.
SD43206 $SA_SPIND_SPEED_TYPE (spindle speed type for spindle start via PLC
interface)
For all other spindles, the value in SD43206 remains unchanged.

Speed default
Speed defaults from part program, FC18 or synchronized actions are written to the following
setting data from all the usual sources:

SD43200 $SA_SPIND_S (speed for spindle start via PLC interface)

The setting data can be written to as follows:

● Through speed programming

● Through direct programming in the part program

● Through HMI software

 Note

The setting data is written immediately and asynchronously to part-program execution.

The following conditions apply when writing:

Programming through: Conditions:
Speed programming • MD35035 $MA_SPIND_FUNCTION_MASK Bit 4 = 1 must be

set.
• Constant cutting speed G96, G961 must not be active.
• The following NC/PLC interface signal must be set:

DB31, ... DBX 84.0 = 0 (constant cutting speed is active)
Direct programming in the part
program

A programmed S-value and the value of the directly written SD can
be outdated with respect to time. If this is the case, after
programming the SD, the statement STOPRE should be executed.

HMI Only positive values including zero can be accepted. Otherwise, a
corresponding message is generated.

 S1: Spindles
 15.7 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1309

Gear stage change and effect on speed

In the current version, no gear stage change is triggered if the setpoint speed is out of the
speed range of the gear stage (exceptions, see "M40: Automatic gear stage selection for
speeds outside the configured switching thresholds (Page 1321)"). The usual speed
limitations and the speed increase to the setpoint speed are active.

Setpoint speed for JOG

For the following MD configuration:
MD35035 $MA_SPIND_FUNCTION_MASK bit 5 = 1
the content from SD43200 $SA_SPIND_S is active as setpoint speed for JOG.

You can use the JOG keys to operate the spindle at the speed defined in SD43200.

If the content is zero, other JOG speed definitions are active
(see SD41200 $SN_JOGSPIND_SET_VELO).

Constant cutting speed setting
Defaults for constant cutting speed from part program, FC18 or synchronized actions are
written to the following setting data from all the usual sources:

SD43202 $SA_SPIND_CONSTCUT_S (cutting speed for spindle start via PLC interface)

Requirements

The requirement for the definition of a constant cutting speed to be active is:

● The spindle involved must be the master spindle in the channel that handles the spindle.

This condition is fulfilled if the following NC/PLC interface signal is set:

DB31, ... DBX84.0 = 1 (constant cutting speed is active)

Writing from the part program

When writing from the part program, the value for the constant cutting speed is interpreted
as follows:

• If G710 is active in the 12th G group: Metric

• If G700 is set in the 12th G group: Inch as [feet/min]

For G70, G71 and when writing from an external (HMI), the setting in the machine data:
MD10240 $MN_SCALING_SYSTEM_IS_METRIC
determines the interpretation of the written values.

For further explanations regarding the measuring system (metric/inch) see Section "G2:
Velocities, setpoint / actual value systems, closed-loop control (Page 307)".

Definition via FC18

If the constant cutting speed is defined via FC18, the setting of bit 6 in byte 2 in the "Signals
to concurring positioning axes" area determines how the speed value (bytes 8 ... 11) is
interpreted.

S1: Spindles
15.7 Programming

 Basic Functions
1310 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Setting via synchronized actions

For definition via synchronized actions, analog to the part program, the feedrate type defines
how the S value is interpreted.

Reading from part program and synchronized actions

The programmed cutting speed value can be determined in the part program and in the
synchronized actions by reading the following system variables:

● $P_CONSTCUT_S[<n>] (last programmed constant cutting speed)

● $AC_CONSTCUT_S[<n>] (actual constant cutting speed)

Defined range of values of the two new system variables: RV = {0, DBL_Max}

The programmed cutting speed value can also be read via the OPI interface.

Definition of the spindle speed type for the master spindle
Definition of the spindle speed type for the master spindle from part program, FC18 or
synchronized actions are written to the following setting data from all the usual sources:

SD43206 $SA_SPIND_SPEED_TYPE (spindle speed type for spindle start via PLC
interface)

The value range and the functionality correspond to the 15th G group (feedrate type).

Permissible values are G values: 93, 94, 95, 96, 961, 97 and 971.

Depending on the setting, for DB31, … DBX30.1/2 (spindle start, clockwise/counter-
clockwise) either the speed from SD43200 $SA_SPIND_S or the cutting speed from
SD43202 $SA_SPIND_CONSTCUT_S is active:

93, 94, 95, 97 and 971: The master spindle is started with the speed from SD43200.
96 and 961: The speed of the master spindle is obtained from the

specified cutting velocity (SD43202) and the radius of the
transverse axis.

Definitions for spindle positioning
The definitions for spindle positioning using DB31, … DBX30.4 (spindle positioning start) are
read from the following setting data:

SD43240 $SA_M19_SPOS (spindle position for spindle positioning with M19)

SD43250 $SA_M19_SPOSMODE (spindle position approach mode for spindle positioning
with M19)

 S1: Spindles
 15.7 Programming

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1311

15.7.5 External programming (PLC, HMI)

SD43300 and SD42600
The revolutional feedrate behaviour can be selected externally via the axial setting data:
SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE (Rotational feedrate for spindles)
in JOG operating mode using the channel-specific setting data
SD42600 $SC_JOG_FEED_PER_REV_SOURCE (Revolutional fedrate control in JOG
mode)
.

The following settings can be made via the setting data:

>0: The machine axis number of the rotary axis/spindle from which the revolutional feedrate

shall be derived.
-1: The revolutional feedrate is derived from the master spindle of the channel in which the

axis/spindle is active in each case.
0: Function is deselected.

FPRAON (S2)
Revolutional feedrate for spindle S2 ON, derived from the master spindle

FPRAON (S2, A)
Revolutional feedrate for spindle S2 ON, derived from axis A.
The revolutional feedrate value must be specified with FA[Sn].

FPRAOF (S2)
Revolutional feedrate for spindle S2 OFF.

SPI(n)
It is also possible to program SPI(n) instead of SPI(Sn).

S1: Spindles
15.8 Spindle monitoring

 Basic Functions
1312 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.8 Spindle monitoring

15.8.1 Permissible speed ranges
The permissible speed range of a spindle results from the parameterized or programmed
speed limit values and the active spindle function (G94, G95, G96, G961, G97, G971, G33,
G34, G35, G331, G332, etc.).

Figure 15-8 Ranges of spindle monitoring functions / speeds

 S1: Spindles
 15.8 Spindle monitoring

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1313

15.8.2 Axis/spindle stationary
Functions such as tool change, open machine doors, path feedrate enable, etc. are only
possible at the machine when the spindle is stationary.

Function
The "axis/spindle stationary" state is reached if a setpoint is no longer generated and the
spindle actual speed falls below the configured threshold value for "axis/spindle stationary":

MD36060 $MA_STANDSTILL_VELO_TOL (max. velocity/speed for "axis/spindle stationary")

If the spindle has come to a standstill, the following NC/PLC interface signal is set:

DB31, ... DBX61.4 (axis/spindle stationary)

Effectiveness
Monitoring for spindle stop is effective in all spindle modes and in axis mode.

Deactivate path feed
If a spindle is stopped in the open-loop control mode (M5), then path feed is deactivated if
the following machine data is set:

MD35510 $MA_SPIND_STOPPED_AT_IPO_START (feedrate enable for spindle stopped)

The path feed is re-enabled if the spindle comes to a standstill.

15.8.3 Spindle in setpoint range

Function
"Spindle in setpoint range" spindle monitoring checks whether:

● The programmed spindle speed is reached.

● The spindle is at a standstill:
DB31, ... DBX61.4 (axis/spindle stationary) = 1

● The spindle is still in the acceleration or deceleration phase.

In the spindle mode, open-loop control mode, the setpoint speed is compared with the actual
speed. If the actual speed deviates by more than the spindle tolerance that can be entered
via MD (refer below) then:

● The following axial NC/PLC interface signal is set to "0":

DB31, ... DBX83.5 (spindle in setpoint range) = 0

● The next machining block is not enabled (depending on the setting in
MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START, see "Axis/spindle stationary
(Page 1313)").

S1: Spindles
15.8 Spindle monitoring

 Basic Functions
1314 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Spindle setpoint speed
The spindle setpoint speed is derived from the programmed speed taking into account the
spindle correction and the active limits.

If the programmed speed is limited or increased, this is displayed using DB31, ... DBX83.1
(setpoint speed limited) or DB31, ... DBX83.2 (setpoint speed increased) (see also "Minimum
/ maximum speed of the gear stage (Page 1314)"). The means that reaching the tolerance
range of the setpoint speed is not prevented.

Tolerance range for setpoint speed
The tolerance range of the setpoint speed is defined by the spindle speed tolerance factor:

MD35150 $MA_SPIND_DES_VELO_TOL

Example:

MD35150 $MA_SPIND_DES_VELO_TOL = 0.1

⇒ The spindle actual speed may deviate ±10% from the setpoint speed.

The following NC/PLC interface signal is set to "1" if the spindle actual speed lies within the
tolerance range:

DB31, ... DBX83.5 (spindle in setpoint range) = 1

Special case:

If the spindle speed tolerance is set to "0", then DB31, ... DBX83.5 (spindle in the setpoint
range) is permanently set to "1" and no path control is performed.

Speed change
Path control only takes place at the start of the traverse block and only if a speed change
has been programmed. If the speed tolerance range is exited, e.g. due to an overload, the
path movement is not automatically brought to a standstill.

15.8.4 Minimum / maximum speed of the gear stage

Minimum speed
The minimum speed of the gear stage of a spindle is configured in the machine data:

MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT[<n>]

The speed setpoints, generated taking into account the override, do not fall below the
minimum speed.

If an S value is programmed, which is less than the minimum speed, the setpoint speed is
increased to the minimum speed and the following NC/PLC interface signal is set:

DB31, ... DBX83.2 (speed setpoint increased)

 S1: Spindles
 15.8 Spindle monitoring

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1315

The minimum gear stage speed is effective only in speed mode and can only be undershot
by:

● Spindle override 0%

● M5

● S0

● DB31, ... DBX4.3 (spindle stop)

● DB31, ... DBX2.1 (withdraw controller enable)

● DB21, ... DBX7.7 (reset)

● DB31, ... DBX2.2 (delete distance-to-go / spindle reset)

● DB31, ... DBX18.5 (oscillation speed)

● DB21, ... DBX7.4 (NC stop axes plus spindles)

● DB31, ... DBX1.3 (axis/spindle disable)

● DB31, ... DBX16.7 (delete S value)

Maximum speed
The maximum speed of the gear stage of a spindle is configured in machine data:

MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT[<n>]

The speed setpoints, generated taking into account the override, are limited to this speed.

The following NC/PLC interface signal is set in the case that the speed is limited:

DB31, ... DBX83.1 (speed setpoint limited)

15.8.5 Diagnosis of spindle speed limitation

Function
The limit or increase of the spindle speed is signaled by the output of the following NC/PLC
interface signals:

● DB31, ... DBX83.1 (setpoint speed limited)

● DB31, ... DBX83.2 (setpoint speed increased)

To diagnose the effective/limiting spindle parameters, one can have read access to the most
important parameters of spindle motion via system variables. The system variables are
indexed with the spindle number and they return only values that are relevant to the speed
control and spindle position modes.

S1: Spindles
15.8 Spindle monitoring

 Basic Functions
1316 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following system variables are available in the spindle mode:

System variable Meaning
$AC_SMAXVELO[<n>] Maximum possible spindle speed [rpm] resulting from the

active limiting data.
$AC_SMAXVELO_INFO[<n>] Specification of the speed limiting data as numerical value.

*)
$AC_SMINVELO[<n>] Minimum possible spindle speed [rpm], corresponds to the

minimum speed in the speed control mode.
$AC_SMINVELO_INFO[<n>] Specification of the speed increasing data as numerical

value. *)
$AC_SMAXACC[<n>] Acceleration value of spindle [r/s2].
$AC_SMAXACC_INFO[<n>] Acceleration limiting cause in the form of a numerical value.

*)
$AC_SPIND_STATE[<n>] Status bits of the spindle.
<n>: Spindle no. (n= 0: the variables are related to the current master spindle)

*) The text of the numerical value should be taken from from the description of the system variables.

Evaluation of diagnosis data:
The system variables for each spindle can be read via synchronized actions and in the part
program, giving due consideration to the preprocessing stop in the NCK .

Boundary conditions
The values delivered by the system variables depend on the spindle mode:

● Speed control mode:

All system variables deliver current values.

● Positioning mode:

The system variables $AC_SMAXVELO, $AC_SMAXACC and $AC_SPIND_STATE
deliver valid values. The system variables $AC_SMINVELO and $AC_SMINVELO_INFO
deliver the data that becomes effective on changing to the speed control mode.

● Axis mode (e.g. if the spindle is used by a transformation TRANSMIT, TRACYL,... or
follows a path motion as a special axis):

The system variable $AC_SPIND_STATE can also be used in the axis mode. Separate
system variables are available in the axis mode for dynamic data:

$AA_VMAXM, $AA_VMAXB and $AA_VLFCT.

The following control response is obtained for a type SERUPRO block search:

● The system variable $AC_SMAXVELO / $AC_SMAXACC delivers the maximum
representable speed / acceleration.

● $AC_SMAXVELO_INFO and $AC_SMAXACC_INFO deliver the VALUE "0" (no limitation
is active).

● $AC_SMINVELO and $AC_SMINVELO_INFO deliver data as in case of normal part
program processing.

● $AC_SPIND_STATE returns the states as they are set for SERUPRO.

 S1: Spindles
 15.8 Spindle monitoring

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1317

Example
Example of the visualization of the content of the system variables for Spindle 1. The
variables are written to the R parameters cyclically. These can be displayed on HMI in the R
Parameters area.

Program code

N05 IDS=1 WHENEVER TRUE DO $R10=$AC_SMAXVELO[1]

N10 IDS=2 WHENEVER TRUE DO $R11=$AC_SMAXVELO_INFO[1]

N15 IDS=3 WHENEVER TRUE DO $R12=$AC_SMINVELO[1]

N20 IDS=4 WHENEVER TRUE DO $R13=$AC_SMINVELO_INFO[1]

N25 IDS=5 WHENEVER TRUE DO $R14=$AC_SPIND_STATE[1]

See also
Spindle in setpoint range (Page 1313)

15.8.6 Maximum spindle speed

Machine-related parameterizable maximum spindle speed
The machine-related maximum spindle speed is parameterized via the following machine
data:

MD35100 $MA_SPIND_VELO_LIMIT (maximum spindle speed)

The speed limit value is monitored by the NC in the actual values, i.e. taking into account the
current gear stage.

 Note
Machine manufacturer

It is recommended that the reduction of the maximum spindle speed in machine data
MD35100 only be performed when the spindle is stationary. This is particularly important for
spindles that are active after NC reset (see machine data description of MD35040
SPIND_ACTIVE_AFTER_RESET). Otherwise alarm 22100 may be output.

References
• Manufacturer documentation: List Manual, "Detailed Machine Data Description"
• User documentation: Diagnostics Manual

S1: Spindles
15.8 Spindle monitoring

 Basic Functions
1318 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Responses to violation
If the actual speed of the spindle exceeds the parameterized maximum spindle speed by
more than the tolerance value (MD35150 $MA_SPIND_DES_VELO_TOL), this results in the
following responses on the NC side:

● DB31, ... DBX83.0 = 1 (speed limit exceeded)

● Alarm 22100 "Chuck speed exceeded" is displayed

● All axes and spindles of the channel are stopped

Process-related settable maximum spindle speed
Using the following setting data, it is possible to set a lower maximum spindle speed in
relation to machine data MD35100 because of the process:

SD43235 $SA_SPIND_USER_VELO_LIMIT (maximum spindle speed)

A change can be made via:

● Programming in the part program

● The user interface by the machine operator

The change becomes active immediately.

Limitation of the speed setpoint

The controller limits the spindle speed setpoint to the value specified in the setting data.

A limitation of the spindle speed setpoint due to setting data SD43235 is displayed via the
following system variable with the value "21":

$AC_SMAXVELO_INFO[<spindle number>] == 21

15.8.7 Maximum encoder limit frequency

CAUTION
Limit violation

The maximum encoder frequency limit of the actual spindle position encoder is monitored
by the control (the limit can be exceeded). It is the responsibility of the machine tool
manufacturer to ensure that the configuration of the spindle motor, gearbox, measuring
gearbox, encoder and machine data prevents the maximum speed of the actual spindle
position encoder being exceeded.

 S1: Spindles
 15.8 Spindle monitoring

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1319

Maximum encoder frequency exceeded.
If the spindle speed reaches a speed (large S value programmed), which exceeds the
maximum encoder limit frequency (the maximum mechanical speed limit of the encoder must
not be exceeded), the synchronization is lost. The spindle continues to rotate, but with
reduced functionality.

With the following functions, the spindle speed is reduced until the active measurement
system is operating below the encoder limit frequency again:
● Thread cutting (G33, G34, G35)
● Tapping without compensating chuck (G331, G332)
● Revolutional feedrate (G95)
● Constant cutting rate (G96, G961, G97, G971)
● SPCON (position-controlled spindle operation)

When the encoder limit frequency is exceeded
NC/PLC IS:
DB31, ... DBX60.4 (referenced/synchronized 1)
or
DB31, ... DBX60.5 (referenced/synchronized 2)
are reset for the measurement system in question and NC/PLC IS:
DB31, ... DBX60.2 (encoder limit frequency 1 exceeded)
or
DB31, ... DBX60.3 (encoder limit frequency 2 exceeded)
are set.

If the spindle is in axis mode, the maximum encoder limit frequency must not be exceeded.
The maximum velocity (MD32000 $MA_MAX_AX_VELO) must lie below the maximum
encoder limit frequency; otherwise, alarm 21610 is output and the axis is brought to a
standstill.

Maximum encoder limit frequency undershot
If the maximum encoder frequency limit has been exceeded and the speed subsequently
falls below the maximum encoder limit frequency (smaller S value programmed, spindle
offset switch changed, etc.), the spindle is automatically synchronized with the next zero
mark or the next Bero signal. The new synchronization will always be carried out for the
active position measuring system that has lost its synchronization and whose maximum
encoder limit frequency is currently undershot.

Special features
If the following functions are active, the maximum encoder frequency cannot be exceeded:
● Spindle positioning mode, axis mode
● Thread cutting (G33, G34, G35)
● Tapping without compensating chuck G331, G332 (does not apply to G63)
● Revolutional feedrate (G95)
● Constant cutting rate (G96, G961, G97, G971)
● SPCON

S1: Spindles
15.8 Spindle monitoring

 Basic Functions
1320 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.8.8 End point monitoring

End point monitoring
During positioning (the spindle is in positioning mode), the system monitors the distance
from the spindle (with reference to the actual position) to the programmed spindle position
setpoint (end point).

For this to work, in machine data:
MD36000 $MA_STOP_LIMIT_COARSE (Exact stop limit coarse)
and
MD36010 $MA_STOP_LIMIT_FINE (Exact stop limit fine)
two limit values can be defined as an incremental path starting from the spindle position
setpoint.

Regardless of the two limit values, the positioning of the spindle is always as accurate as
defined by the connected spindle measurement encoder, the backlash, the transmission
ratio, etc.

Exact stop window dependent on parameter set
Various parameter-set-dependent exact stop windows can be configured.
This makes it possible to work to different levels of accuracy in axis mode and spindle
positioning. The exact stop window can be configured separately for each gear step for
spindle positioning.

Figure 15-9 Exact stop zones of a spindle

 S1: Spindles
 15.8 Spindle monitoring

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1321

DB31, ... DBX60.7 and DB31, ... DBX60.6 (position reached with exact stop coarse / fine)
The two limit values defined by machine data:
MD36000 $MA_STOP_LIMIT_COARSE (Exact stop limit coarse)
and
MD36010 $MA_STOP_LIMIT_FINE (Exact stop limit fine)
are output to the PLC using NC/PLC IS:
DB31, ... DBX60.7 (Position reached with exact stop coarse)
and
DB31, ... DBX60.6 (Position reached with exact stop fine).

Block change for SPOS and M19
When positioning the spindle with SPOS or M19 the block is changed
dependent on end point monitoring with NC/PLC IS:
DB31, ... DBX60.6 (Position reached with exact stop fine).

All other functions programmed in the block must have achieved their end criterion (e.g., all
auxiliary functions acknowledged by the PLC).

With SPOSA, the block change does not depend on the monitoring of the end point.

15.8.9 M40: Automatic gear stage selection for speeds outside the configured
switching thresholds

Function
When M40 is active, an automatic gear stage selection is also made if the programmed
spindle speed S… lies outside the configured switching thresholds.

In this case, a distinction is made between the following cases:

● Programmed speed too high

The programmed speed is higher than the configured maximum speed of the numerically
largest gear stage:

S... > MD35110 $MA_GEAR_STEP_MAX_VELO[<n>]

In this case, the highest gear stage is selected (according to MD35090
$MA_NUM_GEAR_STEPS).

● Programmed speed too low

The programmed spindle speed is less than the configured minimum speed of the first
gear stage:

S... < MD35120 $MA_GEAR_STEP_MIN_VELO[1]

In this case, the first gear stage is selected.

S1: Spindles
15.8 Spindle monitoring

 Basic Functions
1322 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● Programmed speed = 0

When programming speed 0 (S0) the behavior depends on the configuration of the
minimum speed of the first gear stage MD35120 $MA_GEAR_STEP_MIN_VELO[1]:

– If MD35120 $MA_GEAR_STEP_MIN_VELO[1] = 0 is configured, then when
programming S0, the first gear stage is selected.

– If MD35120 $MA_GEAR_STEP_MIN_VELO[1] > 0 is configured, when programming
S0 no gear stage change is performed and the last gear stage remains active. This
means that it remains possible to stop the spindle with S0 (instead of M5) without
initiating a gear stage change.

Effectiveness
Selecting the highest gear stage or the first gear stage for automatic gear stage selection
(M40) is active when programming spindle speeds S… using the part program, in
synchronized actions or when entering via PLC FC18.

For speed programming from the part program for tapping with G331, the behavior is also
supported for the second data set to select the gear stage (precondition:
MD35010 $MA_GEAR_STEP_CHANGE_ENABLE, bit 5 = 1).

Boundary conditions
Enabling the gear stage change

The precondition for the function is that the gear stage change is generally enabled via
machine data:

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE (assign parameters to the gear stage
change)

MD35090 $MA_NUM_GEAR_STEPS (number of gear stages set up)

Example
Automatic gear stage selection M40 is the initial setting after NC reset.

Part program:

Program code Comment

...

N15 S3500 M3 ; S3500 is greater than MD35110 of the 2nd gear stage. The

2nd gear stage is selected.

...

N50 S0 M3 ; Spindle is stopped, S0 does not request a gear stage

change (special handling, S0).

...

N95 S5 M3 ; S5 is less than MD35120 of the 1st gear stage. The 1st

gear stage is selected.

...

 S1: Spindles
 15.9 Spindle with SMI 24 (Weiss spindle)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1323

Configuring data for spindle 1 (AX5):

MD35010 $MA_GEAR_STEP_CHANGE_ENABLE[AX5] = 1 ; Enable gear stage

change
MD35090 $MA_NUM_GEAR_STEPS[AX5] = 2 ; Number of existing gear

stages
MD35110 $MA_GEAR_STEP_MAX_VELO[1,AX5] = 500 ; Upper switching threshold

for gear stage 1
MD35120 $MA_GEAR_STEP_MIN_VELO[1,AX5] = 10 ; Lower switching threshold

for gear stage 1
MD35110 $MA_GEAR_STEP_MAX_VELO[2,AX5] = 2000 ; Upper switching threshold

for gear stage 2
MD35120 $MA_GEAR_STEP_MIN_VELO[2,AX5] = 500 ; Lower switching threshold

for gear stage 2

15.9 Spindle with SMI 24 (Weiss spindle)

15.9.1 General Information
In order to be able to process the sensor data of the spindle in the control, the sensors must
first be connected to I/O modules and transferred to the PLC via fieldbus (PROFIBUS DP or
PROFINET I/O).

For a spindle with SMI 24 (Weiss spindle), the sensor data are transferred to the drive using
DRIVE-CLiQ and are available there in drive parameters. When using cyclic drive telegram
139, sensor data from the drive are transferred to the control. They are then available there
in the following system data:

● System variable

● OPI variables

● NC/PLC interface signals

Requirement
● The spindle is connected to the drive via Sensor Module SMI 24 using DRIVE-CLiQ.

● Drive telegram 139 is configured for the spindle.

 Note
Drive telegram 139

In principle, a spindle with Sensor Module SMI 24 can also be operated with another
drive telegram. However, sensor data is only transferred to the control using drive
telegram 139.

S1: Spindles
15.9 Spindle with SMI 24 (Weiss spindle)

 Basic Functions
1324 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.9.2 Sensor data

Sensors in the spindle motor
The spindle sensors provide information about the clamping device and the angular position
of the motor shaft:

● Analog sensor S1: Clamped state

Voltage value in the range from 0 - 10 V depending on the position of the draw bar.

● Digital sensor S4: Piston end position

– 0 = piston not in position

– 1 = piston is in position, i.e. piston is free to move

● Digital sensor S5: Angular position of the motor shaft

– 0 = motor shaft not aligned

– 1 = motor shaft is in position (requirement: The spindle is stationary)

 Note
Spindle with sensor module SMI 24 and axis container

A spindle with sensor module SMI 24 and drive telegram 139 for the transmission of sensor
data to the control must not be part of an axis container whose axes are distributed over
several NCUs via an NCU link.

Transmission of sensor data
Sensor data is transferred to the control from sensor module SMI 24 in cyclic drive telegram
139 as process data 11 - 14. Drive telegram 139 is based on drive telegram 136, where
sensor data is transferred instead of the data of the 2nd encoder. A detailed description of
drive telegram 139 can be found in:

References:
SINAMICS S120/S150 List Manual; Function Diagrams, Section: PROFIdrive

System data: Sensor data
Sensor data can be read into the control via the following system data:

Meaning System variable

$VA_
NC/PLC
interface
DB31, ...

OPI variables Drive
parameters

Sensor configuration MOT_SENSOR_CONF[<axis>] DBB132 vaMotSensorConf r5000
Clamped state 1) MOT_CLAMPING_STATE[<axis>] DBW134 vaMotClampingState r5001
Measured value
analog sensor S1 2)

MOT_SENSOR_ANA[<axis>] DBW136 vaMotSensorAna r5002

 S1: Spindles
 15.9 Spindle with SMI 24 (Weiss spindle)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1325

Meaning System variable
$VA_

NC/PLC
interface
DB31, ...

OPI variables Drive
parameters

Status digital sensors MOT_SENSOR_DIGI[<axis>] DBW138 vaMotSensorDigi r5003
<axis>: Machine axis name: AX1 ... AXn or spindle name: S1 ... Sm

1) See Section "Clamped state (Page 1325)"
2) Sensor S1: 0 - 10 V

Analog actual value: 0 - 10000 increments, resolution 1 mV
Example:
SIMATIC S7 input module: 0 - 27648 increments, resolution 0.36 mV
Adaptation factor if you change to a spindle with SMI 24: 2,7648

Detailed system data description
For information about NC/PLC interfaces, see Section "Signals from axis/spindle (DB31, ...)
(Page 1679)".

References:

System variable: List Manual, System Variables
OPI variables: List Manual 2; Variables
Drive parameters: SINAMICS S120/S150 List Manual

15.9.3 Clamped state
Sensor S1 supplies an analog voltage value 0 V - 10 V depending on the position of the
clamping device. The voltage value is available in the system data for evaluation of the
clamped state on the user side.

 Note

The subsequently described evaluation of sensor S1 to generate the state value for the
clamped state and limiting the spindle speed are only realized if the following state values
are displayed in drive parameter r5000:
• r5000.0 == 1: Sensors available
• r5000.1 == 1: Sensor S1 (clamped state) available
• r5000.10 == 1: State values are generated, speed limits p5043 active

See also Section "Sensor data (Page 1324)", paragraph: "System data: sensor data"

S1: Spindles
15.9 Spindle with SMI 24 (Weiss spindle)

 Basic Functions
1326 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

State value
To simplify the evaluation, the clamped state in the system data is also available as state
value 0 - 11.

A voltage range corresponds to a certain clamped state. The voltage ranges can be set
using drive parameter p5041[0...5].

A voltage tolerance can also be set for the voltage ranges using drive parameter p5040.

 Note

The voltage range ± voltage tolerance must not overlap.

Speed limits
For the clamped states with state values 3 - 10, speed limit values can be specified using
drive parameter p5043[0...6]. In the other clamped states (state values 1, 2 and 11), a limit
value of 0 [rpm] permanently applies.

In the various clamped states, the controller limits the spindle speed to the applicable limit.

 Note
Changing the speed limits

A change of the speed limits in drive parameter p5043[0...6] is only effective in the controller
(limitation of the spindle speed to the new speed limit) after:
• Power-on reset or when the controller is switched-off/switched-on
• Deselection of the "Parking" state for the spindle (see Section "Deactivating all monitoring

functions: "Parking" (Page 113)")

Context: State value, voltage range and speed limit

Voltage range 2) State value 1) Clamped state

Upper limit Lower limit

Speed limit

0 Sensor S1 not available or state values
inactive

- - -

1 State initialization running - - 3)
2 Released with signal (error state) - p5041[0] + p5040 3)
3 Released p5041[0] p5041[1] p5043[0]
4 Clamping with tool - - p5043[1]
5 Releasing with tool - - p5043[2]
6 Releasing without tool - - p5043[3]
7 Clamped with tool AND S4 == 0 p5043[4]
8 Clamped with tool AND S4 == 1

p5041[2] p5041[3]
p5043[4]

 S1: Spindles
 15.9 Spindle with SMI 24 (Weiss spindle)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1327

Voltage range 2) State value 1) Clamped state

Upper limit Lower limit

Speed limit

9 Clamping without tool - - p5043[5]
10 Clamped without tool p5041[4] p5041[5] p5043[6]
11 Clamped with signal (error state) p5041[5] - p5040 - 3)

The state value can be read into the controller using the following system data:
• System variable: $VA_MOT_CLAMPING_STATE[<axis>]

• NC/PLC interface: DB31, ... DBW134

• OPI variables: vaMotClampingState

1)

• Drive parameters: r5001
2) p5041[0...5]: Voltage threshold values, p5040: Voltage threshold values tolerance
3) Speed limit permanently set: 0 [rpm]

15.9.4 Additional drive parameters

P5042:Transition time

The following times can be set in drive parameter p5042 for the clamped state identification:

● p5042[0]: Stabilization time for "clamped with tool"
The clamped state "clamped with tool" must be present in the spindle motor for at least
the set stabilization time before the state is signaled to the controller.

● p5042[1]: Maximum time for clamping
The transition from the "released" state to the "clamped with tool" or "clamped without
tool" state may take – as a maximum – the set time.

r5044: Speed limitation from the clamping cycle

The speed limit from p5043[6] which is active in the clamped state "clamped without tool" is
displayed in drive parameter r5044.

A value of 65535 means that the speed limit is not active.

S1: Spindles
15.10 Supplementary conditions

 Basic Functions
1328 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.10 Supplementary conditions

15.10.1 Changing control parameters
For spindles that are not in position-controlled mode, machine data changes also take effect
when the spindle is not stationary with the NEWCONF command.

In the case of changes to control parameters, speed setpoint jumps may occur when the
new values take effect. Control parameters are, for example:

● MD32200 $MA_POSCTRL_GAIN (servo gain factor)

● MD32210 $MA_POSCTRL_INTEGR_TIME (position controller integral time)

● MD32410 $MA_AX_JERK_TIME (time constant for the axial jerk filter)

15.11 Examples

15.11.1 Automatic gear step selection (M40)

Example
To illustrate the contents of the new block search variables:
Assumptions about automatic gear step selection (M40):

S0...500 1. Gear step
S501..1000 2. Gear step
S1001..2000 3. Gear step

Content of system variables:
$P_SEARCH_S ; Collected S value
$P_SEARCH_DIR ; Collected direction of rotation
$P_SEARCH_GEAR ; Collected gear step

Collected S value: Direction of

rotation:
Gear step:

 ; 0/last speed -5 40/last GS
N05 G94 M40 M3 S1000 ; 1000 3 40
N10 G96 S222 : 222 3 40
N20 G97 ; f (PlanAxPosPCS)* 3 40

 S1: Spindles
 15.12 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1329

N30 S1500 ; 1500 3 40
N40 SPOS=0** ; 1500 -19 40
N50 M19** ; 1500 -19 40
N60 G94 G331 Z10 S300 ; 300 -19 40
N70 M42 ; 300 -19 42
N80 M4 ; 300 4 42
N90 M70 ; 300 70 42
N100 M3 M40 ; 300 3 40
N999 M30

* f (PlanAxPosPCS): The speed depends on the current position of the transverse axis in the
workpiece coordinate system.

** ($P_SEARCH_SPOS and $P_SEARCH_SPOSMODE are programmed)

15.12 Data lists

15.12.1 Machine data

15.12.1.1 NC-specific machine data

Number Identifier: $MN_ Description
10192 GEAR_CHANGE_WAIT_TIME Wait time for acknowledgment of a gear stage change

during reorganization
10714 M_NO_FCT_EOP M function for spindle active after RESET
12060 OVR_SPIND_IS_GRAY_CODE Spindle override with Gray coding
12070 OVR_FACTOR_SPIND_SPEED Evaluation of spindle speed override switch
12080 OVR_REFERENCE_IS_PROG_FEED Override reference velocity
12082 OVR_REFERENCE_IS_MIN_FEED Defining the reference of the path override
12090 OVR_FUNCTION_MASK Selection of override specifications

15.12.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20090 SPIND_DEF_MASTER_SPIND Initial setting for master spindle on channel
20092 SPIND_ASSIGN_TAB_ENABLE Enabling/disabling of spindle converter
20850 SPOS_TO_VDI Output of M19 to the PLC with SPOS/SPOSA
22400 S_VALUES_ACTIVE_AFTER_RESET S function active after RESET

S1: Spindles
15.12 Data lists

 Basic Functions
1330 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

15.12.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
30300 IS_ROT_AX Rotary axis
30310 ROT_IS_MODULO Modulo conversion
31044 ENC_IS_DIRECT2 Encoder on intermediate gear
31050 DRIVE_AX_RATIO_DENOM Denominator load gearbox
31060 DRIVE_AX_RATIO_NUMERA Numerator load gearbox
31064 DRIVE_AX_RATIO2_DENOM Intermediate gear denominator
31066 DRIVE_AX_RATIO2_NUMERA Intermediate gear numerator
31070 DRIVE_ENC_RATIO_DENOM Measuring gear denominator
31080 DRIVE_ENC_RATIO_NUMERA Measuring gear numerator
31122 BERO_DELAY_TIME_PLUS BERO delay time in plus direction
31123 BERO_DELAY_TIME_MINUS BERO delay time in minus direction
32200 POSCTRL_GAIN KV factor
32800 EQUIV_CURRCTRL_TIME Equivalent time constant current control circuit for

feedforward control
32810 EQUIV_SPEEDCTRL_TIME Equivalent time constant speed control circuit for

feedforward control
32910 DYN_MATCH_TIME Time constant for dynamic matching
34040 REFP_VELO_SEARCH_MARKER Reference point creep speed
34060 REFP_MAX_MARKER_DIST Monitoring of zero mark distance
34080 REFP_MOVE_DIST Reference point distance/destination point for

distancecoded system
34090 REFP_MOVE_DIST_CORR Reference point offset/absolute offset, distancecoded
34100 REFP_SET_POS Reference point value
34200 ENC_REFP_MODE Homing mode
35000 SPIND_ASSIGN_TO_MACHAX Assignment of spindle to machine axis
35010 GEAR_STEP_CHANGE_ENABLE Type of gear step change
35012 GEAR_STEP_CHANGE_POSITION Gear step change position
35014 GEAR_STEP_USED_IN_AXISMODE Gear step for axis mode with M70
35020 SPIND_DEFAULT_MODE Basic spindle setting
35030 SPIND_DEFAULT_ACT_MASK Activate initial spindle setting
35035 SPIND_FUNCTION_MASK Setting of spindle-specific functions
35040 SPIND_ACTIVE_AFTER_RESET Spindle active after reset
35090 NUM_GEAR_STEPS Number of installed gear steps
35092 NUM_GEAR_STEPS2 2nd gear step data set: Number of installed gear

steps
35100 SPIND_VELO_LIMIT Maximum spindle speed
35110 GEAR_STEP_MAX_VELO[n] Maximum speed for automatic gear stage change
35112 GEAR_STEP_MAX_VELO2[n] 2nd gear step data set: Maximum speed for automatic

gear stage change

 S1: Spindles
 15.12 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1331

Number Identifier: $MA_ Description
35120 GEAR_STEP_MIN_VELO[n] Minimum speed for automatic gear stage change
35122 GEAR_STEP_MIN_VELO2[n] 2nd gear step data set: Minimum speed for automatic

gear stage change
35130 GEAR_STEP_MAX_VELO_LIMIT[n] Maximum speed of gear step
35135 GEAR_STEP_PC_MAX_VELO_LIMIT[n] Maximum speed of gear step in position control
35140 GEAR_STEP_MIN_VELO_LIMIT[n] Minimum speed of gear step
35150 SPIND_DES_VELO_TOL Spindle speed tolerance
35160 SPIND_EXTERN_VELO_LIMIT Spindle speed limitation via PLC
35200 GEAR_STEP_SPEEDCTRL_ACCEL[n] Acceleration in speed control mode
35210 GEAR_STEP_POSCTRL_ACCEL[n] Acceleration in position control mode
35212 GEAR_STEP_POSCTRL_ACCEL2[n] 2nd gear step data set: Acceleration in position

control mode
35220 ACCEL_REDUCTION_SPEED_POINT Speed limit for reduced acceleration
35230 ACCEL_REDUCTION_FACTOR Reduced acceleration
35300 SPIND_POSCTRL_VELO position control activation speed
35350 SPIND_POSITIONING_DIR Positioning direction of rotation for a nonsynchronized

spindle
35400 SPIND_OSCILL_DES_VELO Oscillation speed
35410 SPIND_OSCILL_ACCEL Oscillation acceleration
35430 SPIND_OSCILL_START_DIR Oscillation start direction
35440 SPIND_OSCILL_TIME_CW Oscillation time for M3 direction
35450 SPIND_OSCILL_TIME_CCW Oscillation time for M4 direction
35500 SPIND_ON_SPEED_AT_IPO_START Feed enable with spindle in setpoint range
35510 SPIND_STOPPED_AT_IPO_START Feed enable with stationary spindle
35550 DRILL_VELO_LIMIT[n] Maximum speeds for tapping
35590 PARAMSET_CHANGE_ENABLE Parameter set definition possible from PLC
36060 STANDSTILL_VELO_TOL Threshold velocity "Axis/spindle stationary"
36200 AX_VELO_LIMIT Threshold value for velocity monitoring.

15.12.2 Setting data

15.12.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42600 JOG_FEED_PER_REF_SOURCE Revolutional feedrate control in JOG mode
42800 SPIND_ASSIGN_TAB Spindle number converter
42900 MIRROR_TOOL_LENGTH Mirror tool length offset
42910 MIRROR_TOOL_WEAR Mirror wear values of tool length compensation

S1: Spindles
15.12 Data lists

 Basic Functions
1332 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Number Identifier: $SC_ Description
42920 WEAR_SIGN_CUTPOS Mirror wear values of machining plane
42930 WEAR_SIGN Invert sign of all wear values
42940 TOOL_LENGTH_CONST Retain the assignment of tool length components

when changing the machining plane (G17 to G19)

15.12.2.2 Axis/spindle-specific setting data

Number Identifier: $SA_ Description
43200 SPIND_S Speed for spindle start via PLC interface
43202 SPIND_CONSTCUT_S Cutting rate for spindle start via PLC interface
43206 SPIND_SPEED_TYPE For spindle start via PLC interface
43210 SPIND_MIN_VELO_G25 Progr. Spindle speed limiting G25
43220 SPIND_MAX_VELO_G26 Progr. Spindle speed limiting G26
43230 SPIND_MAX_VELO_LIMS Progr. spindle speed limiting G96/G961
43235 SPIND_USER_VELO_LIMIT Maximum spindle speed
43240 M19_SPOS Spindle position for spindle positioning with M19
43250 M19_SPOSMODE Spindle positioning approach mode for spindle

positioning with M19
43300 ASSIGN_FEED_PER_REF_SOURCE Rotational feedrate for positioning axes/spindles

15.12.3 signals

15.12.3.1 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Feedrate override A to H DB31,DBX0.0-7 DB380x.DBX0.0-7
Axis/spindle disable DB31,DBX1.3 DB380x.DBX1.3
Followup mode DB31,DBX1.4 DB380x.DBX1.4
Position measuring system 1 DB31,DBX1.5 DB380x.DBX1.5
Position measuring system 2 DB31,DBX1.6 DB380x.DBX1.6
Override active DB31,DBX1.7 DB380x.DBX1.7
Controller enable DB31,DBX2.1 DB380x.DBX2.1
Spindle reset/delete distancetogo DB31,DBX2.2 DB380x.DBX2.2
Velocity/spindle speed limitation DB31,DBX3.6 DB380x.DBX3.6
Program test Axis/Spindle Enable DB31,DBX3.7 DB380x.DBX3.7
Actual gear step A to C DB31,DBX16.0-2 DB380x.DBX2000.0-2
Gear changed DB31,DBX16.3 DB380x.DBX2000.3

 S1: Spindles
 15.12 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1333

Signal name SINUMERIK 840D sl SINUMERIK 828D
Resynchronize spindle 1 DB31,DBX16.4 DB380x.DBX2000.4
Resynchronize spindle 2 DB31,DBX16.5 DB380x.DBX2000.5
no n-monitoring with gear change DB31,DBX16.6 DB380x.DBX2000.6
Delete S value DB31,DBX16.7 DB380x.DBX2000.7
Feedrate override for spindle valid DB31,DBX17.0 DB380x.DBX2001.0
Resynchronize spindle during positioning 1 DB31,DBX17.4 DB380x.DBX2001.4
Resynchronize spindle during positioning 2 DB31,DBX17.5 -
Invert M3/M4 DB31,DBX17.6 DB380x.DBX2001.6
Oscillation via PLC DB31,DBX18.4 DB380x.DBX2002.4
Oscillation enable (oscillation speed) DB31,DBX18.5 DB380x.DBX2002.5
Oscillation rotation direction clockwise (Set rotation
direction clockwise)

DB31,DBX18.6 DB380x.DBX2002.6

Oscillation rotation direction counterclockwise (Set rotation
direction counterclockwise)

DB31,DBX18.7 DB380x.DBX2002.7

Spindle override A to H DB31,DBX19.0-7 DB380x.DBX2003.0-7

15.12.3.2 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Spindle/No Axis DB31,DBX60.0 DB390x.DBX0.0
Encoder limit frequency exceeded 1 DB31,DBX60.2 DB390x.DBX0.2
Encoder limit frequency exceeded 2 DB31,DBX60.3 -
Homed/synchronized 1 DB31,DBX60.4 DB390x.DBX0.4
Homed/synchronized 2 DB31,DBX60.5 DB390x.DBX0.5
Position reached with exact stop coarse DB31,DBX60.6 DB390x.DBX0.6
Position reached with exact stop fine DB31,DBX60.7 DB390x.DBX0.7
Axis/spindle stationary (n < nmin) DB31,DBX61.4 DB390x.DBX1.4
Position controller active DB31,DBX61.5 DB390x.DBX1.5
Speed controller active DB31,DBX61.6 DB390x.DBX1.6
Current controller active DB31,DBX61.7 DB390x.DBX1.7
Restored 1 DB31,DBX71.4 -
Restored 2 DB31,DBX71.5 -
Setpoint gear stage A to C DB31,DBX82.0-2 DB390x.DBX2000.0-2
Change gear DB31,DBX82.3 DB390x.DBX2000.3
Speed limit exceeded DB31,DBX83.0 DB390x.DBX2001.0
Setpoint speed limited DB31,DBX83.1 DB390x.DBX2001.1
Setpoint speed increased DB31,DBX83.2 DB390x.DBX2001.2
Spindle in setpoint range DB31,DBX83.5 DB390x.DBX2001.5
Actual direction of rotation clockwise DB31,DBX83.7 DB390x.DBX2001.7

S1: Spindles
15.12 Data lists

 Basic Functions
1334 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Signal name SINUMERIK 840D sl SINUMERIK 828D
Rigid tapping active DB31,DBX84.3 DB390x.DBX2002.3
active spindle mode synchronous mode DB31,DBX84.4 DB390x.DBX2002.4
Active spindle positioning mode DB31,DBX84.5 DB390x.DBX2002.5
Active spindle mode oscillation mode DB31,DBX84.6 DB390x.DBX2002.6
Active spindle control mode DB31,DBX84.7 DB390x.DBX2002.7
Spindle actually reached in position DB31,DBX85.5 DB390x.DBX2003.5
M function for spindle DB31,DBB86-87 DB370x.DBD0000
S function for spindle DB31,DBB88-91 DB370x.DBD0004
Sensors available DB31,DBX132.0 DB390x.DBX7000.0
Sensor S1 available (clamped state) DB31,DBX132.1 DB390x.DBX7000.1
Sensor S4 available (piston end position) DB31,DBX132.4 DB390x.DBX7000.4
Sensor S5 available (angular position of the motor shaft) DB31,DBX132.5 DB390x.DBX7000.5
State value is generated, speed limitation p5043 is active DB31,DBX133.2 DB390x.DBX7001.2
Clamped state DB31,DBW134 DB390x.DBW7002
Analog value: Clamped state DB31,DBW136 DB390x.DBW7004
Sensor S4 (piston end position) DB31,DBX138.4 DB390x.DBX7006.4
Sensor S5 (angular position of the motor shaft) DB31,DBX138.5 DB390x.DBX7006.5

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1335

V1: Feedrates 16
16.1 Brief description

Types of feedrate
The feedrate determines the machining speed (axis or path velocity) and is observed in
every type of interpolation, even where allowance is made for tool offsets on the contour or
on the tool center point path (depending on G functions).

The following types of feedrate allow optimum adaptation to the various technological
applications (turning, milling, drilling, etc.):

● Rapid traverse feedrate (G0)

● Inverse-time feedrate (G93)

● Linear feedrate (G94)

● Revolutional feedrate (G95)

● Constant cutting rate (G96, G961)

● Constant speed (G97, G971)

● Feedrate for thread cutting (G33, G34, G35)

● Feedrate for tapping without compensating chuck (G331, G332)

● Feedrate for tapping with compensating chuck (G63)

● Feedrate for chamfer/rounding FRC, FRCM

● Non-modal feedrate FB

Axis assignment of the feedrates
Feedrates can be assigned to the axes variably to adjust to the different technological
requirements.

The following versions are possible:

● Separate feedrates for the working plane and the infeed axis

● Variable axis assignment for path feedrate

● Feedrate for positioning axes

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1336 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Feedrate control
The programmed feedrate can be changed during the machining or for test purposes to
enable adjustment to the changed technological conditions.

● Via the machine control panel

● Via the operator panel front

● Via the PLC

● Per program command

16.2 Path feedrate F

Path feedrate F
The path feedrate represents the geometrical total of the speed components in the
participating axes. It is therefore generated from the individual motions of the interpolating
axes.

The default uses the axial speeds of the geometry axes which have been programmed. The
FGROUP command can be used to include other geometry and/or synchronized axes in the
calculation of the path feedrate.

The path feedrate F determines the machining speed and is observed in every type of
interpolation even where allowance is made for tool offsets. The value programmed under
the address F remains in a program until a new F value or a new type of feedrate is
programmed.

Range of values for path feedrate F
See Description of Functions G2: "Speeds, Setpoint / Actual Value Systems, Closed-Loop
Control", Section: "Velocities (Page 307)".

F value at PLC interface
The F value of the current path feedrate is always entered in the channel-specific PLC
interface for auxiliary functions (DB21, ... DBB158 to 193).

For explanations about the associated interface signals (change signal, F value), see
Description of Functions "H2: Auxiliary function outputs to PLC (Page 369)".

Feedrate with transition circle
References:
Programming Manual, Fundamentals

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1337

Feedrate for internal radius and external radius path sections
For circular blocks or spline blocks with curvature in the same direction and tool radius offset
activated (G41/G42), the programmed feedrate can act on the center point path or on the
contour (depending on the internal radius or external radius path sections).

A group of G functions is provided for this purpose:

● CFTCP

Programmed feedrate acting on the center point path.

● CFC

Programmed feedrate acting on the contour.

● CFCIN

Programmed feedrate acting only on the contour with a concave spline.

References:
Programming Manual, Fundamentals

Maximum tool path velocity
The maximum path velocity results from the maximum velocities of the linear or rotary axes
involved (MD32000 $MA_MAX_AX_VELO), i.e. the axis with the lowest maximum velocity
determines the maximum path velocity. This cannot be exceeded.

If G0 is programmed, traversing is at the path velocity resulting from the MD32000
$MA_MAX_AX_VELO limitation.

Limit velocity for path axes
In addition, the FL[<axis>] statement can be used to program a limit velocity for path axes
(geometry and synchronized axes).

This enables separate feedrates to be programmed for the working plane and infeed axis.
This means that a feedrate is specified for the path-related interpolation and for the infeed
axis. The axis perpendicular to the selected machining plane is designated as the infeed
axis. The infeed axis-specific feedrate can be programmed to limit the axis velocity and
therefore the path velocity. No coordinate rotations through frames should be included, i.e.
the infeed axis must be an axis of the standard coordinate system. This function can be used
to compensate for the fact that a cutter has a lower cutting performance on the face side
than across the cutter circumference.

Programming example:

Program code Comment

... G94 ... ; Selection of feedrate type (mm/min)

X30 Y20 F200 ; Path feedrate = 200 mm/s

FL[Z]=50 Z-30 ; Max. feedrate for Z axis: 50 mm/s

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1338 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Low-resolution encoders
When using low-resolution encoders, more continuous path or axis motions can be achieved
with smoothed actual values. The larger the time constant, the better the smoothing of the
actual values, and the longer the overtravel.

MD34990 $MA_ENC_ACTVAL_SMOOTH_TIME[<axis>] (smoothing time constant for actual
values)

Smoothed actual values are used for:
● Thread cutting (G33, G34, G35)
● Feedrate per revolution ((G95, G96, G97, FPRAON)
● Display of speed, actual position and velocity

16.2.1 Feedrate type G93, G94, G95

Effectiveness
The feedrate types G93, G94, G95 are active for the G functions of group 1 (except G0) in
the automatic modes.

G94 or G95 can be used for traversing in JOG mode.

References:
Function Manual, Extended Functions; Manual and Handwheel Travel (H1)

Inverse-time feedrate (G93)
The inverse-time feedrate is used when it is easier to program the duration, rather than the
feedrate, for retraction of a block.

The inverse-time feedrate is calculated from the following formula:

F: Inverse-time feedrate in rpm
v: Required path velocity in mm/min or inch/min

with

s: Path length in mm/inch

Programming example:

Program code Comment

N10 G1 G93 X100 Y200 F2 ; The programmed path is traversed in 0.5 min.

...

 Note

G93 may not be used when G41/G42 is active. If the block length varies greatly from block
to block, a new F value should be programmed in each block for G93.

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1339

Linear feedrate (G94)
The linear feedrate is programmed in the following units relative to a linear or rotary axis:

● [mm/min, degrees/min] on standard metric systems

● [inch/min, degrees/min] on standard imperial systems

Revolutional feedrate (G95)
The revolutional feedrate is programmed in the following units relative to a master spindle:

● [mm/rev] on standard metric systems

● [inch/rev] on standard imperial systems

● [degrees/rev] on a rotary axis

The path velocity is calculated from the actual speed of the spindle according to the following
formula:

V: Path velocity in mm/min or inch/min
n: Speed of the master spindle in rpm

with

F: Programmed revolutional feedrate in mm/rev or inch/rev

 Note

The programmed F value is deleted when the system switches between the feedrate types
G93, G94 and G95.

Tooth feedrate

Primarily for milling operations, the tooth feedrate FZ... (feed distance per tooth), which is
more commonly used in practice, can be programmed instead of the revolutional feedrate
F...:

The controller uses the $TC_DPNT (number of teeth per revolution) tool parameter
associated with the active tool offset data record to calculate the effective revolutional
feedrate for each traversing block from the programmed tooth feedrate.

F: Revolutional feedrate in mm/rev or inch/rev
FZ: Tooth feedrate in mm/tooth or inch/tooth

with

$TC_DPNT: Tool parameter: Number of teeth/rev

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1340 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example: Milling cutter with 5 teeth ($TC_DPNE = 5)

Program code Comment

N10 G0 X100 Y50

N20 G1 G95 FZ=0.02 ; Tooth feedrate 0.02 mm/tooth

N30 T3 D1 ; Load tool and activate tool offset data record.

M40 M3 S200 ; Spindle speed 200 rpm

N50 X20 ; Milling with:

FZ = 0.02 mm/tooth

→ effective revolutional feedrate:
F = 0.02 mm/tooth * 5 teeth/rev = 0.1 mm/rev

or

F = 0.1 mm/rev * 200 rpm = 20 mm/min

…

Revolutional feedrate in JOG mode

In JOG mode, the response of the axis/spindle also depends on the following setting data:

SD41100 $SN_JOG_REV_IS_ACTIVE (revolutional feedrate for JOG active)

If this setting data is active, an axis/spindle is always moved with revolutional feedrate:
MD32050 $MA_JOG_REV_VELO (revolutional feedrate with JOG)
or
MD32040 $MA_JOG_REV_VELO_RAPID (revolutional feedrate with JOG with rapid traverse
overlay)
depending on the master spindle.

If the setting data is inactive:

● The response of the axis/spindle depends on the setting data:

SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE (revolutional feedrate for position
axes/spindles)

● The response of a geometry axis on which a frame acts is to rotate, depending on the
channel-specific setting data:

SD42600 $SC_JOG_FEED_PER_REV_SOURCE

DB31, ... DBX62.2 (revolutional feedrate active)

A programmed, active revolutional feedrate (G95) is displayed using the following NC/PLC
interface signal.

DB31, ... DBX62.2 (revolutional feedrate active)

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1341

16.2.2 Type of feedrate G96, G961, G962, G97, G971

Constant cutting rate (G96, G961)
The constant cutting rate is used on turning machines to keep the cutting conditions
constant, independently of the work diameter of the workpiece. This allows the tool to be
operated in the optimum cutting performance range and therefore increases its service life.

Selection of G96, G961:

When programming G96, G961, the corresponding S value is interpreted as the cutting rate
in m/min or ft/min along the transverse axis. If the workpiece diameter decreases during
machining, the speed is increased until the constant cutting speed is reached.

When G96, G961 is first selected in the part program, a constant cutting rate must be
entered in mm/min or ft/min.

With G96, the control system will automatically switch to revolutional feedrate (as with G95),
i.e. the programmed feedrate F is interpreted in mm/rev or inch/rev.

When programming G961, linear feedrate is selected automatically (as with G94). A
programmed feedrate F is interpreted in mm/min or inch/min.

Determining the spindle speed

Based on the programmed cutting rate (either SG96 or SG961) and the actual cartesian position
of the transverse axis (radius), the control system calculates the spindle speed at the TCP
using the following formula:

n: Spindle speed
SSpeed: Programmed cutting rate
π Circle constant
r: Radius (distance, center of rotation to TCP)

The following is assumed when determining the radius:

● The transverse axis position 0 in the WCS represents the center of rotation.

● Position offsets (such as online tool offset, external zero offset, $AA_OFF, DRF offset
and compile cycles) and position components through couplings (e.g. following axis for
TRAIL) are not taken into account when determining the radius.

Frames (e.g. programmable frames such as SCALE, TRANS or ROT) are taken into account
in the calculation of the spindle speed and can bring about a change in speed, if the effective
diameter at the TCP changes.

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1342 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Diameter programming and reference axis for several transverse axes in one channel:

One or more transverse axes are permitted and can be activated simultaneously or
separately:

● Programming and displaying in the user interface in the diameter

● Assignment of the specified reference axis with SCC[<axis>] for a constant cutting rate
G96, G961, G962

For more information, see Description of Functions "P1: Transverse axes (Page 797)".

Example
SG96 = 230 m/min

● Where r = 0.2 m → n = 183.12 rpm

● Where r = 0.1 m → n = 366.24 rpm

⇒ The smaller the workpiece diameter, the higher the speed.

For G96, G961 or G962, a geometry axis must be defined as the transverse axis.

The transverse axis, whose position affects the speed of the mater spindle, is defined using
channel-specific machine data:

MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function)

The function G96, G961 or G962 requires that the machine zero and the workpiece zero of
the transverse axis are in the turning center of the spindle.

Constant speed (G97, G971)
G97, G971 deactivates the "Constant cutting rate function" (G96, G961) and saves the last
calculated spindle speed. With G97, the feedrate is interpreted as a revolutional feedrate (as
with G95). When programming G971, linear feedrate is selected (as with G94). The feedrate
F is interpreted in mm/min or inch/min.

When G97, G971 is active, an S value can be reprogrammed to define a new spindle speed.
This will not modify the cutting rate programmed in G96, G961.

G97, G971 can be used to avoid speed variations in motions along the transverse axis
without machining (e.g. cutting tool).

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1343

 Note

G96, G961 is only active during workpiece machining (G1, G2, G3, spline interpolation, etc.,
where feedrate F is active).

The response of the spindle speed for active G96, G961 and G0 blocks can be defined in the
channel-specific machine data:

MD20750 ALLOW_G0_IN_G96 (G0 logic for G96, G961)

When constant cutting rate G96, G961 is selected, no gear stage change can take place.

The spindle speed override switch acts on the spindle speed calculated.

A DRF offset in the transverse axis does not affect the spindle speed setpoint calculation.

At the start of machining (after G0) and after NC stop, G60, G09, ... the path start waits for
"nAct= nSet".

The interface signals "nAct = nSet" and "Set speed limited" are not modified by internal
speed settings.

When the speed falls below the minimum speed or if the signal "Axis/spindle stationary" is
recognized, "nAct =nSet" is reset.

A path operation which has started (G64, rounding), is not interrupted.

Spindle speed limitation with G96, G961
A maximum spindle speed can be specified for the "Constant cutting rate" function:

● In the setting data:

SD43230 $SA_SPIND_MAX_VELO_LIMS (spindle speed limitation for G96/G961)

● In the part program (for the master spindle) with the programming command LIMS

The most recently changed value (LIMS or SD) is active.

LIMS is effective with G96, G961, G97 and can be specified on up to four speed limitations
in the part program in one block. Spindle number <Sn> = 1, 2, 3, or 4 of the master spindle
that is possible in the particular instance can be programmed in part program command
LM[<Sn>].

When the block is loaded in the main run, all programmed values are transferred to the
setting data SD43230 $SA_SPIND_MAX_VELO_LIMS.

Depending on the machine data:
MD10710 PROG_SD_RESET_SAVE_TAB[n] (setting data to be updated),
the speed limit set with LIMS remains stored after the control is switched off.
When G96, G961, G97 are reactivated, this speed limitation is also activated.

The maximum permissible spindle speed defined via G26 or via the setting data:
SD43220 $SA_SPIND_MAX_VELO_G26 (maximum spindle speed)
cannot be exceeded.

In the event of incorrect programming that would cause one of the speed limits (G26 or
SD43220 $SA_SPIND_MAX_VELO_G26) to be exceeded, the following interface signal is
set.

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1344 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ... DBX83.1 (programmed speed too high)

In order to ensure smooth rotation with large part diameters, the spindle speed is not
permitted to fall below a minimum level.
This speed can be set via the setting data:
SD43210 $SA_SPIND_MIN_VELO_G25 (minimum spindle speed)
and, depending on the gear step, with the machine data:
MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT (minimum speed of the gear step)
.

The minimum spindle speed can be changed in the part program with G25. In the event of
incorrect programming that would cause one of the speed limits (G25 or SD43210
$SA_SPIND_MIN_VELO_G25) to be undershot, the following interface signal is set.

DB31, ... DBX83.2 (speed setpoint too low)

For more information on the spindle-speed limitations, see function description S1:
"Spindles", Section: "Spindle monitoring (Page 1312)".

 Note

The speed limits changed with G25/G26/LIMS in the part program are taken into the setting
data and therefore remain saved after the end of program.

However, if the speed limits changed with G25/G26/LIMS are no longer to apply after the
end of program, the following definitions must be inserted in the GUD block of the machine
manufacturer:

REDEF $SA_SPIND_MIN_VELO_G25 PRLOC

REDEF $SA_SPIND_MAX_VELO_G26 PRLOC

REDEF $SA_SPIND_MAX_VELO_LIMS PRLOC

Master spindle changeover with G96, G961
If the master spindle is switched over when G96, G961 are active, the speed of the former
master spindle is retained. This corresponds to a transition from G96 to G97. The master
spindle newly defined with SETMS executes the "Constant cutting rate" function generated
in this way.

Alarms
Constant cutting rate G96, G961, G962

● If no F value is programmed, alarm 10860 "No feedrate programmed" is output. The
alarm is not generated with G0 blocks.

● Alarm 14800 "Programmed path velocity smaller than or equal to zero" is output while
programming a negative path velocity.

● If, with an active G96, G961 or G962, no transverse axis is defined in the machine data:
MD20100 $MC_DIAMETER_AX_DEF (geometry axis with transverse axis function),
alarm 10870 "No transverse axis defined" is output.

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1345

● If a negative maximum spindle speed is programmed with the LIMS program command
when G96, G961 are active, alarm 14820 "Negative maximum spindle speed
programmed for G96, G961" is output.

● If no constant cutting rate is programmed when G96, G961 is selected for the first time,
alarm 10900 "No S value programmed for constant cutting rate" is output.

16.2.3 Feedrate for thread cutting (G33, G34, G35, G335, G336)

16.2.3.1 Feedrate with G33

G33
The function G33 can be used to machine threads with constant pitch of the following type:

Speed S, feedrate F, thread pitch
A revolutional feedrate [mm/revolution] is used for G33 threads. The revolutional feedrate is
defined by programming the thread pitch [mm/revolution].

The speed of the axes for the thread length is calculated from the programmed spindle
speed S and the thread pitch.

Feedrate F [mm/min] = speed S [rev/min] * pitch [mm/rev]

At the end of the acceleration ramp, the position coupling between the spindle actual value
(spindle setpoint with SPCON on master spindle) and the axis setpoint is established. At this
moment, the position of the axis in relation to the zero mark of the spindle (including zero
mark offsets) is as if the axis had accelerated abruptly at the start of the block when the
thread start position (zero mark plus SF) was crossed. Compensation is made for the
following error of the axis.

Minimum spindle speed
In order to ensure smooth rotation at low speeds, the spindle speed is not permitted to fall
below a minimum level.

This speed can be set:

● With the setting data:

SD43210 $SA_SPIND_MIN_VELO_G25 (minimum spindle speed)

● For each gear stage with the machine data:

MD35140 $MA_GEAR _STEP_MIN_VELO_LIMIT (minimum speed for gear stage
change)

The minimum spindle speed can be changed in the part program with G25.

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1346 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

NC stop, single block
NC stop and single block (even at the block boundary) are only active after completion of
thread chaining. All successive G33 blocks and the first following non-G33 block are
traversed as a block.

Premature abortion without destruction
Thread cutting can be aborted without destruction before the end point is reached. This can
be done by activating a retraction motion.

Thread cutting with ROT frame
With ROT frame and G33, G34, G35, alarm 10607 "Thread with frame not executable" is
activated if the rotation causes a change in the thread length and thus the pitch. Rotation
around the thread axis is permissible.

Alarm 10607 "Thread with frame not executable" can be suppressed by setting bit 12 in
machine data MD11410 $MN_SUPPRESS_ALARM_MASK, if the ROT instruction is used
intentionally in the application.

All other frames are accepted by the NC without alarm. Attention is drawn to the pitch-
changing effect of SCALE.

16.2.3.2 Programmable run-in and run-out path for G33, G34 and G35

Function
The run-in and run-out path of the thread can be specified with the DITS and DITE statements.
The thread axis is accelerated or braked within the specified path.

1 1

① Run-in/run-out path, depending on the machining direction

Short run-in path

Due to the collar on the thread run-in, little room is left for the tool start ramp.
This must therefore be specified shorter via DITS.

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1347

Short run-out path

Due to the collar on the thread run-out, little room is left for the deceleration ramp, leading to
the risk of collision between the workpiece and the tool edge. The deceleration ramp can be
specified shorter using DITE. Due to the inertia of the mechanical system, however, a
collision can still occur.

Remedy: Program a shorter thread, reduce the spindle speed.

 Note

DITE acts at the end of the thread as a rounding clearance. This achieves a smooth change
in the axis motion.

Effects

The programmed run-in and run-out path only increases the rate of acceleration on the path.
If one of the two paths is set larger than the thread axis needs with active acceleration, the
thread axis is accelerated or decelerated with maximum acceleration.

 Note

The axis can be overloaded if the specified path is too short.

Activation
The DITS and DITE statements are always active for thread cutting.

Example

Program code Comment

N...

N59 G90 G0 Z100 X10 SOFT M3 S500

N60 G33 Z50 K5 SF=180 DITS=1 DITE=3 ; Start of corner rounding with Z=53

N61 G0 X20

 Note

Only paths, and not positions, are programmed with DITS and DITE.

The programmed run-in/run-out path is handled according to the current dimension setting
(inches, metric).

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1348 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Setting data SD42010 (acceleration behavior of axis when thread cutting)
When a block containing DITS and/or DITE is inserted in the main run, the programmed run-
in/run-out path is taken into the setting data:

● SD42010 $SC_THREAD_RAMP_DISP[0] = programmed value of DITS

● SD42010 $SC_THREAD_RAMP_DISP[1] = programmed value of DITE

If no run-in/run-out path is programmed before or in the first thread block, the current value
of the setting data is used.

SD42010 $SC_THREAD_RAMP_DISP[0] = <value>

SD42010 $SC_THREAD_RAMP_DISP[1] = <value>

<value> Meaning
0 > <value> ≥ -1 The feed axis is accelerated with the acceleration according to the current

programming BRISK/SOFT
<Value> = 0 The feed axis is accelerated in steps (BRISK).
<Value> > 0 The maximum thread run-up or deceleration distance is specified.

Note
Too short a distance can result in an acceleration overload of the axis.

With reset / program end, the setting data is reset to the values -1, -1.

MD10710 $MN_PROG_SD_RESET_SAVE_TAB can be used to specify that the value of the
setting data written with DITS and DITE can be saved retentively at reset / program end and
therefore retained after power on.

16.2.3.3 Linear increasing/decreasing thread pitch change with G34 and G35

Function
The thread pitch increase (G34) defines the numerical increase in the pitch value. A larger
pitch results in a larger distance between the threads on the workpieces. The velocity of the
thread axis therefore increases with assumed constant spindle speed.

The opposite therefore applies for the decrease in thread pitch (G35).

The following definitions are made for the thread pitch change:

● G34: Increase in thread pitch corresponds to progressive change

● G35: Decrease in thread pitch corresponds to degressive change

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1349

Both G34 and G35 functions imply the functionality of G33 and also provide the option of
programming an absolute pitch change value for the thread under F. If the start and end
pitch of a thread is known, the thread pitch change can be determined using the following
equation:

The meaning is as follows:
F: The thread pitch change to be programmed [mm/rev2]
ke: Thread pitch of axis target point coordinate, thread axis [mm/rev]
ka: Initial thread pitch (programmed under I, J or K) [mm/rev]
lG: Thread length [mm]

The absolute value of F must be applied to G34 or G35 depending on the required pitch
increase of decrease.

When the thread length lG, pitch change F and initial pitch ka are known, the pitch increase at
the end of block ke can be determined as follows by modifying the formula:

● For G34 (increasing pitch):

● For G35 (decreasing pitch):

 Note

If the formula results in a negative root expression, the thread cannot be machined!

In this case, the NC signals alarm 10605 or alarm 22275.

Application
The G34 and G35 functions can be used to produce self-shearing threads.

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1350 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
Thread cutting G33 with decreasing thread pitch G35

Program code Comment

N1608 M3 S10 ; Spindle speed

N1609 G0 G64 Z40 X216 ; Approach starting point

N1610 G33 Z0 K100 SF=R14 ; Thread with constant pitch 100 mm/rev

N1611 G35 Z-220 K100 F17.045455 ; Thread pitch decrease 17.045455 mm/rev2

 ; Thread pitch at end of block 50 mm/rev

N1612 G33 Z-240 K50 ; Traverse thread block without jerk

N1613 G0 X218

N1614 G0 Z40

N1616 M17

Monitoring during the block preparation
Any pitch changes that would overload the thread axis when G34 is active or would result in
an axis standstill when G35 is active, are detected in advance during block preparation.
Alarm 10604 "Thread pitch increase too high" or 10605 "Thread pitch decrease too high" is
signaled.

During thread cutting, certain practical applications require a correction of the spindle speed.
In this case, the operator will base his correction on the permissible velocity of the thread
axis.

To do this, it is possible to suppress the output of alarms 10604 and 10605 as follows:

MD11410 $MN_SUPPRESS_ALARM_MASK bit 10 = 1

Block preparation is then continued normally.

Monitoring during the execution
The following situations are monitored cyclically when the thread is machined (interpolation):

● Exceeding of maximum velocity of thread axis

● Reaching of axis standstill with G35

The following alarm is signaled when the monitoring function responds:

● Alarm 22269 "Maximum velocity of thread axis reached" or

● Alarm 22275 "Zero velocity of thread axis reached"

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1351

16.2.3.4 Fast retraction during thread cutting

Function
The "Fast retraction for thread cutting (G33)" function can be used to interrupt thread cutting
without causing irreparable damage in the following circumstances:

● NC stop (NC/PLC interface signal)

● Alarms that implicitly trigger NC stop

● Switching of a rapid input
References
Programming Manual, Job Planning; Section "Fast retraction from the contour"

The retraction motion can be programmed via:

● Retraction path and retraction direction (relative)

● Retraction position (absolute)

 Note
Tapping

The "Fast retraction" function cannot be used with tapping (G331/G332).

Programming

Syntax

Enable fast retraction, retraction motion via retraction path and retraction direction:
G33 ... LFON DILF=<value> LFTXT/LFWP ALF=<value>

Enable fast retraction, retraction motion via retraction position:

POLF[<axis name>]=<value> LFPOS
POLFMASK/POLFMLIN(<axis 1 name>,<axis 2 name>, etc.)
G33 ... LFON

Disable fast retraction for thread cutting:
LFOF

Meaning

LFON: Enable fast retraction for thread cutting (G33).
LFOF: Disable fast retraction for thread cutting (G33).

Define length of retraction path. DILF= :
The value preset during MD configuration
(MD21200 $MC_LIFTFAST_DIST) can be modified in the part program by
programming DILF.
Note:
The configured MD value is always active following NC-RESET.

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1352 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The retraction direction is controlled in conjunction with ALF with G functions
LFTXT and LFWP.
LFTXT: The plane in which the retraction motion is executed is calculated

from the path tangent and the tool direction (default setting).

LFTXT
LFWP:

LFWP: The plane in which the retraction motion is executed is the active
working plane.

The direction is programmed in discrete degree increments with ALF in the
plane of the retraction motion.
With LFTXT, retraction in the tool direction is defined for ALF=1.
With LFWP the direction in the working plane is derived from the following
assignment:
• G17 (X/Y plane)

ALF=1 ; Retraction in the X direction

ALF=3 ; Retraction in the Y direction
• G18 (Z/X plane)

ALF=1 ; Retraction in the Z direction

ALF=3 ; Retraction in the X direction
• G19 (Y/Z plane)

ALF=1 ; Retraction in the Y direction
ALF=3 ; Retraction in the Z direction

ALF= :

References:
Programming options with ALF are also described in "Traverse direction for
fast retraction from the contour" in the Programming Manual, Job Planning.

LFPOS: Retraction of the axis declared with POLFMASK or POLFMLIN to the absolute axis
position programmed with POLF.

POLFMASK: Release of axes (<axis 1 name>,<axis 1 name>, etc.) for independent
retraction to absolute position.

POLFMLIN: Release of axes for retraction to absolute position in linear relation
Note:
Depending on the dynamic response of all the axes involved, the linear
relation cannot always be established before the lift position is reached.
Define absolute retraction position for the geometry axis or machine axis in
the index
Effectiveness: Modal

POLF[]:

=<value>: In the case of geometry axes, the assigned value is
interpreted as a position in the workpiece coordinate
system. In the case of machine axes, it is interpreted as a
position in the machine coordinate system.
The values assigned can also be programmed as
incremental dimensions:
=IC<value>

<axis name>: Name of a geometry axis or machine axis

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1353

 Note

LFON or LFOF can always be programmed, but the evaluation is performed exclusively during
thread cutting (G33).

 Note

POLF with POLFMASK/POLFMLIN are not restricted to thread cutting applications.

Figure 16-1 Interruption of G33 through retraction motion

Dynamic response of the retraction motion
The retraction motion is executed with maximum axis dynamic response:

● MD32000 $MA_MAX_AX_VELO[<axis>] (velocity)

● MD32300 $MA_MAX_AX_ACCEL[<axis>] (acceleration)

● MD32431 $MA_MAX_AX_JERK[<axis>] (jerk)

Example

Program code Comment

N55 M3 S500 G90 G18 ; Set active machining plane.

...

N65 MSG ("thread cutting")

MM_THREAD:

N67 $AC_LIFTFAST=0 ; Reset before starting the thread.

V1: Feedrates
16.2 Path feedrate F

 Basic Functions
1354 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Program code Comment

N68 G0 Z5

N69 X10

N70 G33 Z30 K5 LFON DILF=10 LFWP ALF=7 ; Enable fast retraction for thread cutting.

 ; Retraction path = 10 mm

 ; Retraction plane Z/X (because of G18).

 ; Retraction direction -X (with ALF=3; retraction

direction +X).

N71 G33 Z55 X15

N72 G1 ; Deselect thread cutting.

N69 IF $AC_LIFTFAST GOTOB MM_THREAD ; If thread cutting has been interrupted.

N90 MSG ("")

...

N70 M30

N55 M3 S500 G90 G0 X0 Z0

...

N87 MSG ("tapping")

N88 LFOF ; Deactivate fast retraction before tapping.

N89 CYCLE... ; Tapping cycle with G33.

N90 MSG ("")

...

N99 M30

Behavior at power on and reset
After power on and reset, the following settings are activated:

● Initial settings for the retraction motion (LFON /LFOF) and retraction direction (LFTXT/LFWP):
MD20150 $MC_GCODE_RESET_VALUES

● Retraction path: MD21200 $MC_LIFTFAST_DIST

16.2.4 Feedrate for tapping without compensating chuck (G331, G332)

Function
A thread can be tapped without compensating chuck with the functions G331 (tapping) and
G332 (tapping retraction).

Requirement
The technical requirement for tapping without compensating chuck is a position-controlled
spindle with position measuring system.

 V1: Feedrates
 16.2 Path feedrate F

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1355

Speed S, feedrate F, thread pitch
A revolutional feedrate [mm/rev] is used for G331 and G332. The revolutional feedrate is
defined by programming the thread pitch [mm/rev].

The speed of the axes for the thread length is calculated from the programmed spindle
speed S and the thread pitch.

Feedrate F [mm/min] = speed S [rev/min] * pitch [mm/rev]

Override
The revolutional feedrate in G331 and G332 can be influenced by an override.

Depending on the configuration, the override affects either the spindle speed or the path
feedrate:

MD12090 $MN_OVR_FUNCTION_MASK

Bit Value Meaning

0 The override influences the spindle speed (initial setting).
Depending on the setting in the machine data:
MD12080 $MN_OVR_REFERENCE_IS_PROG_FEED
the override is related either to the programmed spindle speed or to the configured
spindle speed limitation.

0

1 The override influences the path feedrate
Depending on the setting in machine data:
MD12082 $MN_OVR_REFERENCE_IS_MIN_FEED
the override is related either to the programmed path feedrate or to the configured
path feedrate limitation.

 Note

The following overrides are not effective in G331 and G332:
• Programmable path feedrate override OVR
• Rapid traverse override

Inhibiting stop events for G331/G332
During tapping, a stop can be prevented if the block contains a path motion or a G4 as
follows:

MD11550 $MN_STOP_MODE_MASK, bit 0 = 0

The stop which was activated previously is possible again after G331/G332 has been
executed.

References
For further information on G331/G332, see Programming Manual Fundamentals.

V1: Feedrates
16.3 Feedrate for positioning axes (FA)

 Basic Functions
1356 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

16.2.5 Feedrate for tapping with compensating chuck (G63)

Function
G63 is a subfunction for tapping threads using a tap with compensating chuck. An encoder
(position encoder) is not required.

Speed S, feedrate F, thread pitch
With G63, a speed S must be programmed for the spindle and a feedrate F for the infeed
axis (axis for thread length).

The feedrate F must be calculated by the programmer on the basis of the speed S and the
thread pitch.

Feedrate F [mm/min] = speed S [rev/min] * pitch [mm/rev]

References
For more information on G63, see Programming Manual Fundamentals.

16.3 Feedrate for positioning axes (FA)

Function
The velocity of a positioning axis is programmed with axis-specific feedrate FA.

FA is modal.

The feedrate is always G94.

 Note

The maximum axis velocity (MD32000 $MA_MAX_AX_VELO) is not exceeded.

Programming
No more than five axis-specific feedrates can be programmed in each part program block.

Syntax:

FA[<positioning axis>] = <feedrate value>

<positioning axis>: Name of the channel axis

(MD20080 $MC_AXCONF_CHANAX_NAME_TAB)
<feedrate value>: Feedrate
 Value range: 0.001…999 999.999 mm/min, deg/min

or
0.001…39 999.9999 inch/min

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1357

Default setting
If no axial feedrate FA is programmed, the axial default setting is applied:

MD32060 $MA_POS_AX_VELO (initial setting for positioning axis velocity)

Output to PLC
The feedrate value can be output to the the PLC:

● To the channel-specific NC/PLC interface via:

DB21, ... DBB158 - DBB193

● To the axis-specific NC/PLC interface via:

DB31, ... DBB78 - DBB81

The output time is specified with the machine data:

MD22240 $MC_AUXFU_F_SYNC_TYPE (output time of F functions)

The output is suppressed in the default setting (MD22240 = 3), because drops in velocity
can occur through the output of F functions to the NC/PLC interface in continuous-path
mode.

For more information, see Description of Functions "H2: Auxiliary function outputs to PLC
(Page 369)".

Reset behavior
The behavior after the end of program or NC reset is specified by the machine data:

MD22410 $MC_F_VALUES_ACTIVE_AFTER_RESET (F function is active even after reset)

Value Meaning
0 The default values are effective after NC reset.
1 The last programmed FA values are effective after NC reset.

16.4 Feedrate control

16.4.1 Feedrate disable and feedrate/spindle stop

Function
The "Feed disable" or "Feed/spindle stop" brings the axes to a standstill with adherence to
the braking characteristics and the path contour (exception: G33 block).

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1358 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Channel-specific feedrate disable
The NC/PLC interface signal:
DB21, ... DBX6.0 (feedrate disable)
stops all axes (geometry and auxiliary axes) of a channel in all modes.

Effectiveness of the channel-specific feedrate disable:

• With active G33, G34, G35: Not effective

• With active G63: Effective

• With active G331, G332: Effective

"Feed stop" for geometry axes in JOG mode
The NC/PLC interface signals:
DB21, ... DBX12.3 (feed stop for geometry axis 1)
DB21, ... DBX16.3 (feed stop for geometry axis 2)
DB21, ... DBX20.3 (feed stop for geometry axis 3)
stop the relevant geometry axes if a channel in JOG mode.

Axis-specific "Feed stop"
The axis-specific NC/PLC interface signal:
DB31, ... DBX4.3 (feed stop)
stops the respective machine axis.

In automatic mode:

● If the "Feed stop" is performed for a path axis, all the axes traversed in the current block
and all axes participating in the axis group are stopped.

● If the "Feed stop" is performed for a positioning axis, only this axis is stopped.

Only the current axis is stopped in JOG mode.

Effectiveness of the axis-specific "Feed stop":

• With active G33, G34, G35: Effective (causes contour deviations)

• With active G63: Effective

• With active G331, G332: Effective

Axis/spindle disable
With active "Axis/spindle disable":
DB31, ... DBX1.3 = 1
The axial PLC interlocks "No controller enable" and "Feed stop" have no effect.

However, the axial and channel-specific override are effective.

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1359

"Spindle stop"
The NC/PLC interface signal:
DB31, ... DBX4.3 (spindle stop)
stops the respective spindle.

Effectiveness of the "Spindle stop" function

• With active G33, G34, G35: Effective (may cause contour deviations depending on
dynamic characteristics)

• With active G63: Effective

• With active G331, G332: Not effective

16.4.2 Feedrate override on machine control panel

Function
With the "Feedrate override via the machine control panel", the user can locally increase or
decrease the path feedrate at the machine as a percentage with immediate effect. To
achieve this, the programmed feedrates are multiplied with the override values available at
the NC/PLC interface.

The feedrate can be changed axis-specifically for positioning axes.

The "Spindle override" can be used to change the spindle speed and the cutting rate (G96,
G961).

With a feedrate change, the axial acceleration and velocity limits are maintained. There are
no contour errors along the path.

The feedrate override can be changed separately for path and position axes.

The overrides influence the programmed values or the limits (e.g. G26, LIMS for spindle
speed).

Channel-specific feedrate and rapid traverse
For feedrate and rapid traverse override, dedicated enable signals and correction/offset
factors are available in the NC/PLC interface:

DB21, ... DBX6.7 (feedrate override active)

DB21, ... DBB4 (feedrate override)

DB21, ... DBX6.6 (rapid traverse override active)

DB21, ... DBB5 (rapid traverse override)

The override factors can be specified from the PLC either in the binary or gray-coded format.
The format is communicated to the NC via the following machine data:

MD12020 $MN_OVR_FEED_IS_GRAY_CODE (path feedrate override switch gray-coded)

MD12040 $MN_OVR_RAPID_IS_GRAY_CODE (rapid traverse override switch gray-coded)

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1360 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following permanent assignment applies to binary code:

Binary code decimal Override factor
00000000 0 0.00 ≙ 0%
00000001 1 0.01 ≙ 1%
00000010 2 0.02 ≙ 2%
00000011 3 0.03 ≙ 3%
00000100 4 0.04 ≙ 4%

...
01100100 100 1.00 ≙ 100%

...
11001000 200 2.00 ≙ 200%

With Gray coding, the override factors corresponding to the switch position must be entered
in the following machine data:

MD12030 $MN_OVR_FACTOR_FEEDRATE [<n>] (evaluation of the path feedrate override
switch)

MD12050 $MN_OVR_FACTOR_RAPID_TRA [<n>] (evaluation of the rapid traverse override
switch)

An active feedrate override has an effect on all path axes that are assigned to the current
channel. An active rapid traverse override has an effect on all the axes that are traversed
with rapid traverse and that are assigned to the current channel.

No rapid traverse override switch available

If there is no dedicated rapid traverse override switch, you can choose between rapid
traverse override and feedrate override. The override to be active can be selected via the
PLC or operator panel front. When rapid traverse override is active, the feedrate override
values are limited to 100%.

● When the rapid traverse override is activated via the operator panel front, the basic PLC
program:

– Transfers the selection of the feedrate override for rapid traverse on the activation
signal for the rapid traverse override:

DB21, ... DBX6.6 = DB21, ... DBX25.3

– Transfers the feedrate override value in the rapid traverse override value:

DB21, ... DBB5 = DB21, ... DBB4

● When the rapid traverse override is selected via the PLC, the PLC user program:

– Must set the activation signal for the rapid traverse override:

DB21, ... DBX6.6 = 1

– Must transfer the feedrate override value in the rapid traverse override value:

DB21, ... DBB5 = DB21, ... DBB4

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1361

Effectiveness of the channel-specific feedrate and rapid traverse override:

• With active G33, G34, G35: Not effective

• With active G63: Not effective

• With active G331, G332: Not effective

Reference velocity for path feedrate override
The reference velocity for the "Path feedrate override via machine control panel" can be set
differently to the standard feedrate (= programmed feedrate).

MD12082 $MN_OVR_REFERENCE_IS_MIN_FEED

Axis-specific feedrate override
An enable signal and a byte for the feedrate override factor are in the NC/PLC interface for
each positioning axis.

DB31, ... DBX1.7 (override effective)

DB31, ... DBB0 (feedrate override)

The override factor can be specified from the PLC either in the binary or gray-coded format.
The format is communicated to the NC via the following machine data:

MD12000 $MN_OVR_AX_IS_GRAY_CODE (axis feedrate override switch gray-coded)

The following permanent assignment applies to binary code:

Binary code Decimal Override factor
00000000 0 0.00 ≙ 0%
00000001 1 0.01 ≙ 1%
00000010 2 0.02 ≙ 2%
00000011 3 0.03 ≙ 3%
00000100 4 0.04 ≙ 4%

...
01100100 100 1.00 ≙ 100%

...
11001000 200 2.00 ≙ 200%

With Gray coding, the override factors corresponding to the switch position must be entered
in the following machine data:

MD12010 $MN_OVR_ FACTOR_AX_ SPEED [<n>] (evaluation of the axis feedrate override
switch)

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1362 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Effectiveness of the axis-specific feedrate override:

• With active G33, G34, G35: Not effective

• With active G63: Not effective
(the override is set in the NC permanently to 100%)

• With active G331, G332: Not effective
(the override is set in the NC permanently to 100%)

Spindle override
One enable signal and one byte for the spindle override factor are available in the NC/PLC
interface for each spindle.

DB31, ... DBX1.7 (override effective)

DB31, ... DBB19 (spindle override)

The override factor can be specified from the PLC either in the binary or gray-coded format.
The format is communicated to the NC via the following machine data:

MD12060 $MN_OVR_SPIND_IS_GRAY_CODE (spindle override switch gray-coded)

The following permanent assignment applies to binary code:

Binary code decimal Override factor
00000000 0 0.00 ≙ 0%
00000001 1 0.01 ≙ 1%
00000010 2 0.02 ≙ 2%
00000011 3 0.03 ≙ 3%
00000100 4 0.04 ≙ 4%

...
01100100 100 1.00 ≙ 100%

...
11001000 200 2.00 ≙ 200%

With Gray coding, the override factors corresponding to the switch position must be entered
in the following machine data:

MD12070 $MN_OVR_FACTOR_SPIND_SPEED [<n>] (evaluation of the spindle override
switch)

Effectiveness of the "Spindle override":

• With active G33, G34, G35: Effective

• With active G63: Not effective

• With active G331, G332: Effective

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1363

Reference to spindle override
The spindle override can refer to the speed or the programmed speed limited by the machine
or setting data. The setting is realized via:

MD12080 $MN_OVR_REFERENCE_IS_PROG_FEED (override reference velocity)

Limiting the override factor
For binary-coded override factors, the maximum possible overrides for path feedrate, axis
feedrate and spindle speed can be limited:

MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary coded override switch)

Override active
For overrides that have been enabled, the specified override values entered via the machine
control panel become immediately active in all operating modes and machine functions.

Override inactive
An override factor of 100% is internally effective if an override is not activated. The override
factor at the NC/PLC interface is not evaluated.

An exception is the zero setting for a binary interface and the 1st switch setting for a gray-
coded interface. In these cases, the override factors entered at the NC/PLC interface are
evaluated. For a binary interface, the override factor is always 0%. For a gray-coded
interface, the value entered in machine data for the 1st switch position value is output as
override value. It should be populated with 0.

16.4.3 Programmable feedrate override

Function
The "Programmable feedrate override" function can be used to change the velocity level of
path and positioning axes via the part program.

Programming

Syntax Meaning
OVR=<value> Feedrate change for path feedrate F
OVRA[<axis>=<value> Feedrate change for positioning feedrate FA

The programmable range is between 0 and 200%.

Default setting: 100%

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1364 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Effectiveness
The NC/PLC interface signals DB21, ... DBB6 (rapid traverse or feedrate override active)
and DB31, ... DBX1.7 (axis-specific override active) do not refer to the programmable
feedrate override. The programmable feedrate override remains active when these signals
are deactivated.

The effective override is calculated from the product of the "Programmable feedrate
override" and the "Feedrate override on machine control panel (Page 1359)".

The default setting for the "Programmable feedrate override" is 100%.

The default setting is effective:

● If no feedrate override is programmed or

● After reset if the machine data:
MD22410 $MC_F_VALUES_ACTIVE_AFTER_RESET (F function is active even after
reset)
is not set.

 Note

OVR is not effective with G33, G34, G35.

16.4.4 Dry run feedrate

Function
The dry run feedrate is used when testing part programs without machining the workpiece in
order to allow the program or program sections to execute with an increased path feedrate,
for example.

Activation
The dry run feedrate can be selected in the automatic modes and activated from the PLC or
the operator panel front.

When activated from the operator panel front, the interface signal:
DB21, ... DBX24.6 (dry run feedrate selected)
is set and transferred from the basic PLC program to the interface signal:
DB21, ... DBX0.6 (activate dry run feedrate).

When selected on the PLC, the interface signal DB21, ... DBX0.6 (activate dry run feedrate)
must be set from the PLC user program.

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1365

Effectiveness
As long as the "Activate dry run feedrate" interface signal is set, instead of the programmed
feedrate, the feedrate value set via SD42100 DRY_RUN_FEED is effective in the way
specified via SD42101 $SC_DRY_RUN_FEED_MODE (see parameterization):

The dry run feedrate is always interpreted as linear feedrate (G94).

Parameterization

Activation of dry run feedrate

The time of activation depends on the setting in the machine data:

MD10704 $MN_DRYRUN_MASK (activation of dry run feedrate)

Value Meaning
0 The dry run feedrate may only be switched on and off at the end of the block (default

setting).
1 The dry run feedrate can also be activated during the program processing (in the part

program block).
Notice:
Activation during processing triggers an internal reorganization operation on the controller
which causes the axes to be stopped for a short time. This can affect the surface finish of
the workpiece being machined.

2 The dry run feedrate can be activated/deactivated at any time without the axes being
stopped. The function only takes effect with a block "later" in the program run.

Changing the dry run feedrate

The feedrate for the dry run is entered in the setting data:

SD42100 $SC_DRY_RUN_FEED (dry run feedrate)

The setting data can be changed via the operator panel front in the "Parameters" operating
area.

If the selection has been accepted by the NCK, the following NC/PLC interface signal is set:

DB21, ... DBX318.6 (dry run feedrate active)

"DRY" is displayed in the operator panel front status bar to indicate an active dry run
feedrate if:

● Selection took place during the program stop at the end of a block or

● The machine data MD10704 $MN_DRYRUN_MASK was set to "1" during the program
execution

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1366 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Mode of operation of the dry run feedrate

The mode of operation of the dry run feedrate entered in SD42100 can be set via the setting
data:

SD42101 $SC_DRY_RUN_FEED_MODE

Value Meaning
0 The programmed feedrate is compared to the dry run feedrate in SD42100 and then

traversing is performed with the higher of the two feedrates (default setting).
1 The programmed feedrate is compared to the dry run feedrate in SD42100 and then

traversing is performed with the lower of the two feedrates.
2 The dry run feedrate entered in SD42100 takes effect directly, irrespective of the

programmed velocity.
3 -9 Reserved
10 As for configuration 0, except for thread cutting (G33, G34, G35) and tapping (G331,

G332, G63). These functions are executed as programmed.
11 As for configuration 1, except for thread cutting (G33, G34, G35) and tapping (G331,

G332, G63). These functions are executed as programmed.
12 As for configuration 2, except for thread cutting (G33, G34, G35) and tapping (G331,

G332, G63). These functions are executed as programmed.

16.4.5 Multiple feedrate values in one block

Function
The function "Multiple feedrate values in one block" can be used to activate six different
feedrate values of an NC block, a dwell time or a retraction motion-synchronously,
depending on the external digital and/or analog inputs.

When the input for the sparking out time or retraction path is activated, the distance-to-go for
the path axes or the particular single axis is deleted and the dwell time or retraction is
started.

The retraction is started within an IPO cycle.

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1367

Signals
The input signals are combined in one input byte for the function. A fixed functional
assignment applies within the byte.

Table 16- 1 Input byte for the "Multiple feedrates in one block" function

Bit

7 6 5 4 3 2 1 0
Input no. I7 I6 I5 I4 I3 I2 I1 I0
Feedrate address F7 F6 F5 F4 F3 F2 ST SR

I7 to I2: Activation of feedrates F7 to F2
E1: Activation of the dwell time ST/STA (in seconds)
I0: Activation of the retraction motion SR/SRA

Priority of the signals
The signals are scanned in ascending order starting at I0. Therefore, the retraction motion
(SR) has the highest priority and the feedrate F7 the lowest priority.

SR and ST end the feedrate motions that were activated with F2 to F7.
SR also ends ST, i.e. the complete function.

The signal with the highest priority determines the current feedrate.

The response to loss of the respective highest-priority input (F2 - F7) can be defined with the
machine data:

MD21230 $MC_MULTFEED_STORE_MASK (storage behavior for the "Multiple feedrate
values in one block" function)

Bit Value Meaning

0 With the loss of the respective highest-priority input, the associated feedrate is not
retained (default setting).

2 ... 7

1 Set bit 2 to 7 ensures that the associated feedrate (F2 to F7) that was selected by
the respective highest-priority input signal is also retained when there is a loss of
the input signal and a lower-priority input is active.

The end-of-block criterion is satisfied when:

● The programmed end position is reached

● The retraction motion ends (SR)

● The dwell time elapses (ST)

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1368 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Hardware assignment
The input byte for the "Multiple feedrate values in one block" function can be assigned a
maximum of two digital input bytes or comparator input bytes of the NCK I/O:

MD21220 $MC_MULTFEED_ASSIGN_FASTIN (assignment of the input bytes of the NCK
I/O for "Multiple feedrate values in one block"), bit 0 ... 15

The input bits can also be inverted:

MD21220 $MC_MULTFEED_ASSIGN_FASTIN, bit 16 ... 31

Figure 16-2 Signal assignment for the "Multiple feedrate values in one block" function

The assignment of the digital input bytes and parameterization of the comparators are
described in:
References:
Function Manual, Extended Functions; Digital and Analog NCK I/O (A4)

Programming

Path motion

The path feedrate is programmed under the address F and remains valid until an input signal
is present. This value acts modally.

F2=... to F7=... can be used in addition to the path feedrate to program up to six further
feedrates in the block. The numerical expansion indicates the bit number of the input that
activates the feedrate when changed:

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1369

Example:

F7=1000 ;7 corresponds to input bit 7

The programmed values act non-modally. The path feedrate programmed under F applies in
the next block.

Dwell (sparking out time) and retraction path are programmed under separate addresses in
the block:

ST=... Dwell time (for grinding sparking out time)
SR=... Retraction path

These addresses apply non-modally.

Axial motion

The axial feedrates are programmed under address FA and remain valid until an input signal
is present. They act modally.

FMA[2,<axis>]=... to FMA[7,<axis>]=... can be used to program up to six further feedrates
per axis in the block.

The first expression in square brackets indicates the bit number of the input that activates
the feedrate when changed. The second expression indicates the axis to which the feedrate
applies.

Example:

FMA[3,Y]=1000 ; Axial feedrate for Y axis, corresponds to input bit 3

The values programmed under FMA act non-modally. The feedrate programmed under FA
applies to the next block.

Dwell (sparking out time) and retraction path can also be defined for a single axis:

STA[<axis>]=... Axial dwell time (sparking out time)
SRA[<axis>]=... Axial retraction path

The expression in square brackets indicates the axis for which the sparking out time and
retraction path apply.

Examples:

STA[X]=2.5 ; The sparking out time for the X axis is 2.5 seconds.
SRA[X]=3.5 ; The retraction path for the X axis is 3.5 (unit e.g. mm).

These addresses apply non-modally.

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1370 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note
Retraction path

The unit for the retraction path refers to the current valid unit of measurement (mm or inch).

The reverse stroke is always made in the opposite direction to the current motion. SR/SRA
always programs the value for the reverse stroke. No sign is programmed.

 Note
POS instead of POSA

If feedrates, sparking out time (dwell time) or return path are programmed for an axis on
account of an external input, this axis must not be programmed as POSA axis (positioning
axis over multiple blocks) in this block.

 Note
Status query

It is also possible to poll the status of an input for synchronous commands of various axes.

 Note
LookAhead

Look Ahead is also active for multiple feedrates in one block. In this way, the current
feedrate can be restricted by the Look Ahead value.

Application
The "Multiple feedrate values in one block" function is used primarily for grinding, but is not
restricted to it.

Typical applications are, for example:

● Analog or digital calipers

Depending on whether the external inputs are analog or digital, various feedrate values, a
dwell time and a retraction path can be activated. The limit values are defined via the
setting data.

● Switching from infeed to working feedrate via proximity switch

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1371

Example
Internal grinding of a conical ring, where the actual diameter is determined using calipers
and, depending on the limits, the feedrate value required for roughing, finishing or fine
finishing is activated. The position of the calipers also provides the end position. Thus, the
block end criterion is determined not only by the programmed axis position of the infeed axis
but also by the calipers.

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1372 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

16.4.6 Fixed feedrate values

Function
The "Fixed feedrate values" function can be used to activate fixed feedrates (max. four)
defined via the machine data instead of the programmed feedrate or the configured JOG
velocities.

The function is available in AUTOMATIC and JOG mode.

Behavior in AUTOMATIC mode

The contour travels at the activated fixed feedrate, instead of using the programmed
feedrate.

Behavior in JOG mode

The axis is traversed with the activated fixed feedrate instead of the configured JOG velocity
/ JOG rapid traverse velocity. The travel direction is specified via the interface signal.

Parameterization
The setting of the fixed feedrates is performed:

● For linear axes with the machine data:

MD12202 $MN_PERMANENT_FEED[<n>]

● For rotary axes with the machine data:

MD12204 $MN_PERMANENT_ROT_AX_FEED[<n>]

where <n> = 0, 1, 2, 3 (for fixed feedrate 1, 2, 3, 4)

 Note

The fixed feedrates are always linear feedrate values. Switchover to linear feedrate is
conducted internally even in case of revolutional feedrate.

Activation
The fixed feedrates are activated via NC/PLC interface signals:

● In AUTOMATIC mode for path/geometry axes using the channel-specific interface
signals:

DB21, ... DBX29.0 (activate fixed feedrate 1)

DB21, ... DBX29.1 (activate fixed feedrate 2)

DB21, ... DBX29.2 (activate fixed feedrate 3)

DB21, ... DBX29.3 (activate fixed feedrate 4)

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1373

● In JOG mode for machine axes using the axis-specific interface signals:

DB31, ... DBX3.2 (activate fixed feedrate 1)

DB31, ... DBX3.3 (activate fixed feedrate 2)

DB31, ... DBX3.4 (activate fixed feedrate 3)

DB31, ... DBX3.5 (activate fixed feedrate 4)

Supplementary conditions

Effectiveness

The function "Fixed feedrate values" is not active:

● For spindles

● For positioning axes

● When tapping

Override = 0

The traversing behavior for override = 0 depends on the setting in machine data:

MD12200 $MN_RUN_OVERRIDE_0

DRF offset

The DRF offset cannot be activated for a selected fixed feedrate.

16.4.7 Programmable feedrate characteristics

Function
To permit flexible definition of the feedrate characteristic, the feedrate programming
according to DIN 66025 has been extended by linear and cubic characteristics.

The cubic profiles can be programmed directly or as an interpolating spline.

Programming
You can program the following feedrate profiles:

● FNORM

Behavior in accordance with DIN 66025 (default setting).

An F-value programmed in the block is applied over the entire path of the block, and is
subsequently regarded as a fixed modal value.

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1374 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● FLIN

An F value programmed in the block is traversed linearly over the path from the current
value at the beginning of the block to the end of the block, and is subsequently regarded
as modal value.

● FCUB

The non-modal programmed F values (relative to the end of the block) are connected by
a spline. The spline starts and ends tangentially to the previous or following feedrate
setting. If the F address is missing in one block, then the last programmed F value is
used.

● FPO

The F address [syntax: F=FPO(...,...,...)] designates the characteristic of the feedrate
via a polynomial from the current value to the end of the block in which it was
programmed. The end value is treated as modal from there onwards.

Parameterization
If FLIN and FCUB are used in connection with compression COMPON, a tolerance can be
defined for the path feedrate:

MD20172 $MC_COMPRESS_VELO_TOL (max. permissible deviation of the path feedrate
with compression)

Supplementary conditions

FLIN/FCUB

The path velocity profile programmed with FLIN or FCUB is not active together with
revolutional feedrate for G95 as well as with constant cutting rate with G96/G961 and
G97/G971.

References
For further information on the programmable feedrate characteristics, see Programming
Manual, Job Planning.

16.4.8 Feedrate for chamfer/rounding FRC, FRCM
The machining conditions can change significantly during surface transitions to
chamfer/rounding. Hence, the chamfer/rounding contour elements require dedicated,
optimized feedrate values to achieve the desired surface quality.

Function
The feedrate for chamfer/rounding can be programmed via NC addresses.

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1375

Programming

Syntax:
... FRC/FRCM=<value>

Meaning:

FRC: Non-modal feedrate for chamfer/rounding
FRCM: Modal feedrate for chamfer/rounding
<value>: The feedrate is interpreted according to the active feedrate type:
 • G94, G961, G971: Feedrate in mm/min or inch/min or o/min

 • G95, G96, G97: Revolutional feedrate in mm/rev or inch/rev

 Note

FRC is only effective if a chamfer/rounding is programmed in the block or if RNDM has been
activated.

FRC overwrites the F or FRCM value in the current block.

The feedrate programmed under FRC must be greater than zero.

FRCM=0 activates the feedrate programmed under F for chamfering/rounding.

Parameterization

Assignment of the chamfer/rounding to the previous or following block

The feedrate type (G94, G95, G96, G961 ...) and therefore the conversion to the internal
format must be consistent within the block for F and FRC/FRCM. In this context, the
following machine data must be taken into account:

MD20201 $MC_CHFRND_MODE_MASK (chamfer/rounding behavior)

Bit Value Meaning

0 The technology of the chamfer/rounding (feedrate, feedrate type, M commands, etc.)
is determined by the following block (default setting).

0

1 The technology of the chamfer/rounding is determined by the previous block
(recommended setting).

Maximum number of empty blocks

The number of blocks without traversing information in the compensation plane (empty
blocks) permitted between two blocks with traversing information during active
chamfer/rounding, is limited. The maximum number is specified in the machine data:

MD20200 $MC_CHFRND_MAXNUM_DUMMY_BLOCKS (empty blocks for chamfer/radii)

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1376 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Supplementary conditions

FLIN/FCUB

Feedrate interpolation FLIN and FCUB is not possible for chamfer/rounding.

G0

FRC/FRCM is not active when a chamfer is traversed with G0. The programming is possible
in accordance with the F value without error message.

Change G94 ↔ G95

If FRCM is programmed, the FRCM value will need to be reprogrammed like F on change
G94 ↔ G95, etc. If only F is reprogrammed and if the feedrate type FRCM > 0 before the
change, an error message will be output.

Example

Example 1: MD20201 bit 0 = 0; take feedrate from following block (default setting!)

Program code Comment

N10 G0 X0 Y0 G17 F100 G94

N20 G1 X10 CHF=2 ; Chamfer N20-N30 with F=100 mm/min

N30 Y10 CHF=4 ; Chamfer N30-N40 with FRC=200 mm/min

N40 X20 CHF=3 FRC=200 ; Chamfer N40-N60 with FRCM=50 mm/min

N50 RNDM=2 FRCM=50

N60 Y20 ; Modal rounding N60-N70 with FRCM=50 mm/min

N70 X30 ; Modal rounding N70-N80 with FRCM=50 mm/min

N80 Y30 CHF=3 FRC=100 ; Chamfer N80-N90 with FRC=100 mm/min

N90 X40 ; Modal rounding N90-N100 with F=100 mm/min

(deselection of FRCM)

N100 Y40 FRCM=0 ; Modal rounding N100-N120 with G95 FRC=1 mm/rev

N110 S1000 M3

N120 X50 G95 F3 FRC=1

...

M02

Example 2: MD20201 bit 0 = 1; take feedrate from previous block (recommended setting!)

Program code Comment

N10 G0 X0 Y0 G17 F100 G94

N20 G1 X10 CHF=2 ; Chamfer N20-N30 with F=100 mm/min

N30 Y10 CHF=4 FRC=120 ; Chamfer N30-N40 with FRC=120 mm/min

N40 X20 CHF=3 FRC=200 ; Chamfer N40-N60 with FRC=200 mm/min

N50 RNDM=2 FRCM=50

N60 Y20 ; Modal rounding N60-N70 with FRCM=50 mm/min

N70 X30 ; Modal rounding N70-N80 with FRCM=50 mm/min

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1377

Program code Comment

N80 Y30 CHF=3 FRC=100 ; Chamfer N80-N90 with FRC=100 mm/min

N90 X40 ; Modal rounding N90-N100 with FRCM=50 mm/min

N100 Y40 FRCM=0 ; Modal rounding N100-N120 with F=100 mm/min

N110 S1000 M3

N120 X50 CHF=4 G95 F3 FRC=1 ; Chamfer N120-N130 with G95 FRC=1 mm/rev

N130 Y50 ; Modal rounding N130-N140 with F=3 mm/rev

N140 X60

...

M02

16.4.9 Non-modal feedrate FB

Function
The "Non-modal feedrate" function can be used to define a separate feedrate for a single
part program block. After this block, the previous modal path feedrate is active again.

Programming

Syntax:
... FB=<value>

Meaning:

FB: Separate feedrate for the current block
<value>: The feedrate is interpreted according to the active feedrate type:
 • G94, G961, G971: Feedrate in mm/min or inch/min or o/min

 • G95, G96, G97: Revolutional feedrate in mm/rev or inch/rev

 Note

The feedrate programmed under FB must be greater than zero.

If no traversing motion is programmed in the block (e.g. computation block), the FB has no
effect.

If no explicit feed for chamfering/rounding is programmed, then the value of FB also applies
for any contour element chamfering/rounding in this block.

Simultaneous programming of FB and FD (handwheel travel with feedrate override) or F
(modal path feedrate) is not possible.

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1378 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

16.4.10 Influencing the single axis dynamic response

Single axes
Single axes can be programmed in the part program, in synchronized actions and via the
PLC:

POS[<axis>]=...
POSA[<axis>]=...
SPOS[<axis>]=...
SPOSA[<axis>]=...
OS[<axis>]=...

• Part program:

OSCILL[<axis>]=...
EVERY ... DO
POS[<axis>]=...
SPOS[<spindle>]=...

• Synchronized actions:

MOV[<axis>]=...
• PLC: FC18

Dynamic response
The dynamic response of an axis is influenced by:

● MD32060 $MA_POS_AX_VELO (positioning axis velocity)

The effective positioning axis velocity can be changed:

– Part program / synchronized action: Axial feedrate FA or percentage feedrate override
OVRA

– PLC: Specification of FRate or overwriting the axial override

● MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)

The effective maximum axis acceleration can be changed:

– Part program indirectly: Writing the machine data with subsequent NewConfig

– Part program directly: Percentage acceleration override ACC

– Synchronized actions indirectly: Writing the machine data and initiating an ASUB for
the activation of NewConfig

– Synchronized actions directly: Percentage acceleration override ACC (cannot be preset
by the PLC).

Via the PLC, the same options apply as in synchronized actions.

● Part program commands: BRISKA, SOFTA, DRIVEA, JERKA

Cannot be programmed in synchronized actions (only indirectly via ASUB).

Cannot be specified by the PLC (only indirectly via ASUB).

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1379

● Active servo parameter set

The active parameter set can be changed:

– Part program / synchronized action: SCPARA

– PLC: DB31, … DBX9.0-2 (controller parameter set)

For detailed information on the servo parameter sets, see "Parameter sets of the position
controller (Page 353)".

 Note
Dynamic response changes

Dynamic response changes made in the part program do not affect command or PLC axis
motion. Dynamic response changes made in synchronized actions have no effect on
traversing motion programmed in the part program.
Feedforward control

The type of feedforward control and the path axes that should be traversed with feedforward
control can be directly programmed in the part program using FFWON/FFWOF. In
synchronized actions and from the PLC, programming is only possible indirectly via an
ASUB.

Percentage acceleration override (ACC)
In a part program or synchronized action, the acceleration specified in machine data:
MD32300 $MA_MAX_AX_ACCEL (maximum axis acceleration)
 can be changed in a range from 0% – 200% using the ACC command.

Syntax:
ACC[<axis>]=<value>

Meaning:

ACC: Keyword for the programming of the percentage acceleration override
<axis>: Name of the channel axis or spindle
<value>: Acceleration change in percent relative to MD32300
 Range of values: 0 ... 200

The actual axial acceleration value can be read via the system variable $AA_ACC. It is
determined by:

$AA_ACC[<axis>] = (MD32300 $MA_MAX_AX_ACCEL[<axis>]) * ACC[<axis>] / 100

MD32320 $MA_DYN_LIMIT_RESET_MASK can be used to specify the initial setting of the
value programmed with ACC for a channel reset or end of part program M30.

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1380 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note

The acceleration override programmed with ACC can be read using the system variable
$AA_ACC. However, $AA_ACC is read in the part program at a different time than when
reading in a synchronized action.

The system variables $AA_ACC only contain the value programmed in the part program with
ACC if, in the meantime, the acceleration override was not changed by programming ACC in a
synchronized action. The same applies for the reverse situation.

Percentage acceleration override and main run axes
Depending on whether the system variable $AA_ACC is read in the part program or
synchronized action, the value for the acceleration override programmed with ACC is output
for the NC axes or main run axes (command axes, PLC axes, asynchronous oscillating axes,
etc.).

For correct results, system variable $AA_ACC must therefore always be read at the same
location (part program or synchronized action) from where the acceleration override was
programmed with ACC.

Examples:

Writing ACC in a part program:

N80 G01 POS[X]=100 FA[X]=1000 ACC[X]=90 IPOENDA[X]

Writing ACC in a synchronized action:

N100 EVERY $A_IN[1] DO POS[X]=50 FA[X]=2000 ACC[X]=140 IPOENDA[X]

Writing ACC and reading $AA_ACC in a part program:

ACC[X]=50 ; writing

RO=$AA_ACC[X] ; reading

IF (RO <> $MA_MAX_AX_ACCEL[X] * 0.5) ; checking

 SETAL(61000)

ENDIF

Writing ACC and reading $AA_ACC in a synchronized action:

WHEN TRUE DO ACC[X]=25 R0=$AA_ACC[X] ; writing and reading

G4 F1

IF (RO <> $MA_ MAX_AX_ACCEL[X] * 0.25) ; checking

 SETAL(61001)

ENDIF

 V1: Feedrates
 16.4 Feedrate control

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1381

end-of-motion criterion for single axes
Similar to the block change criterion for path interpolation (G601, G602, G603) the end-of-
motion criterion for traversing motion of individual axes can be programmed in part programs
/ synchronized actions:

Program command End-of-motion criterion
FINEA[<axis>] "Exact stop fine"
COARSEA[<axis>] "Exact stop coarse"
IPOENDA[<axis>] "Interpolator stop" (IPO stop)

The most recently programmed value is kept after the end of program or NC reset.

The effective end-of-motion criterion can be read using the axis-specific system variable
$AA_MOTEND.

 Note

Depending on whether the system variable $AA_MOTEND is read in the part program or
synchronized action, it contains the value for the NC axes or the main run axes.

Example:

Part program:

N80 G01 POS[X]=100 FA[X]=1000 ACC[X]=90 COARSEA[X]

Synchronized action:

N100 EVERY $A_IN[1] DO POS[X]=50 FA[X]=2000 ACC[X]=140 IPOENDA[X]

References:
For further information on block changes and end-of-motion criteria for FINEA, COARSEA
and IPOENDA, see:
Function Manual, Extended Functions; Positioning Axes (P2), Section: Block change

Programmable servo parameter set (SCPARA)
In the part program / synchronized action, the servo parameter set can be specified using
SCPARA.

Syntax
SCPARA[<axis>] = <parameter set number>

Meaning

SCPARA: Keyword for the activation of the specified servo

parameter set
<axis>: Name of the channel axis
<parameter set number>: Number of the servo parameter set to be activated

V1: Feedrates
16.4 Feedrate control

 Basic Functions
1382 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 Note

The activation of the parameter set specified using SCPARA can be suppressed from the
PLC user program:

DB31,… DBX9.3 = 1 (parameter set specification disabled by SCPARA)

In this case, no message is displayed.

The number of the active parameter set can be read using the system variable $AA_SCPAR.

Supplementary conditions

Different end-of-motion criteria

Different end-of-motion criteria will affect how quickly or slowly part program blocks are
completed. This can have side effects for technology cycles and PLC user parts.

Parameter set change

The PLC user program must be expanded if the servo parameter set is to be changed both
inside a part program or synchronized action and the PLC.

Power On

After POWER ON, the following initial settings are made:

● Percentage acceleration override for all single-axis interpolations: 100%

● End-of-motion criterion for all single-axis interpolations: FINEA

● Servo parameter set: 1

Mode change

When the operating mode is changed from AUTOMATIC to JOG, the programmed dynamic
response changes remain valid.

Reset

With reset, the last programmed value remains for the part program specifications. The
settings for main-run interpolations do not change.

Block search

The last end-of-motion criterion programmed for an axis is collected and output in an action
block. The last block with a programmed end-of-motion criterion that was processed in the
search run serves as a container for all programmed end-of-motion criteria for all axes.

 V1: Feedrates
 16.5 Supplementary conditions

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1383

16.5 Supplementary conditions

Unit of measurement
The valid unit of measurement of the feedrates depends on the set measuring system and
the entered axis type:

MD10240 $MN_SCALING_SYSTEM_IS_METRIC (basic system of the control metric/inch)

MD30300 $MA_IS_ROT_AX (rotary or linear axis)

Initial setting for the feedrate type
The initial setting for the feedrate type is specified in the machine data:

MD20150 $MC_GCODE_RESET_VALUES (initial setting of the G groups)

The default setting is G94.

The initial setting of the feedrate type is only displayed when a part program is started.

Effectiveness after reset
Whether the last programmed F, FA, OVR, OVRA values are also active after reset depends
on the setting in the machine data:

MD22410 $MC_F_VALUES_ACTIVE_AFTER_RESET (F function is active even after reset)

Spindle positioning
With active G95, G96, G961, G97, G971, G33, G34, G35 spindle positioning should not be
performed, because the derived path feedrate following spindle positioning = 0. If the
programmed axis position has not then been reached, the block cannot be completed.

V1: Feedrates
16.6 Data lists

 Basic Functions
1384 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

16.6 Data lists

16.6.1 Machine data

16.6.1.1 NC-specific machine data

Number Identifier: $MN_ Description
10704 DRYRUN_MASK Activation of dry run feedrate
10710 PROG_SD_RESET_SAVE_TAB Setting data to be updated
11410 SUPPRESS_ALARM_MASK Mask for suppressing special alarms
11550 STOP_MODE_MASK Defines the stop behavior
12000 OVR_AX_IS_GRAY_CODE Axis feedrate override switch, graycoded
12010 OVR_FACTOR_AX_SPEED Evaluation of the axis feed override switch
12020 OVR_FEED_IS_GRAY_CODE Path feed override switch, graycoded
12030 OVR_FACTOR_FEEDRATE Evaluation of the path feed override switch
12040 OVR_RAPID_IS_GRAY_CODE Rapid traverse override switch, graycoded
12050 OVR_FACTOR_RAPID_TRA Evaluation of the rapid traverse override switch
12060 OVR_SPIND_IS_GRAY_CODE Spindle override switch, graycoded
12070 OVR_FACTOR_SPIND_SPEED Evaluation of the spindle override switch
12080 OVR_REFERENCE_IS_PROG_FEED Override reference velocity
12082 OVR_REFERENCE_IS_MIN_FEED Defining the reference of the path override
12090 OVR_FUNCTION_MASK Selection of override specifications
12100 OVR_FACTOR_LIMIT_BIN Limit for binarycoded override switch
12200 RUN_OVERRIDE_0 Traversing with override 0
12202 PERMANENT_FEED Fixed feedrates for linear axes
12204 PERMANENT_ROT_AX_FEED Fixed feedrates for rotary axes

16.6.1.2 Channel-specific machine data

Number Identifier: $MC_ Description
20100 DIAMETER_AX_DEF Geometry axes with transverse axis functions
20150 GCODE_RESET_VALUES Initial setting of the G groups
20172 COMPRESS_VELO_TOL Maximum permissible deviation from path feed for

compression
20200 CHFRND_MAXNUM_DUMMY_BLOCKS Empty blocks with phase/radii
20201 CHFRND_MODE_MASK Behavior for chamfer/rounding
20750 ALLOW_GO_IN_G96 G0 logic for G96, G961
21200 LIFTFAST_DIST Traversing path for fast retraction from the contour

 V1: Feedrates
 16.6 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1385

Number Identifier: $MC_ Description
21220 MULTFEED_ASSIGN_FASTIN Assignment of input bytes of NCK I/O for "Multiple

feedrate values in one block"
21230 MULTFEED_STORE_MASK Storage behavior for the "Multiple feedrate values in

one block" function
22240 AUXFU_F_SYNC_TYPE Output timing of F functions
22410 F_VALUES_ACTIVE_AFTER_RESET F function active after reset

16.6.1.3 Axis/Spindle-specific machine data

Number Identifier: $MA_ Description
30300 IS_ROT_AX Rotary axis/spindle
32000 MAX_AX_VELO Maximum axis velocity
32060 POS_AX_VELO Initial setting for positioning axis velocity
32300 MAX_AX_ACCEL Axis acceleration
32320 DYN_LIMIT_RESET_MASK Reset behavior of dynamic limits
34990 ENC_ACTIVAL_SMOOTH_TIME Smoothing time constant for actual values
35100 SPIND_VELO_LIMIT Maximum spindle speed
35130 GEAR_STEP_MAX_VELO_LIMIT Maximum speed of gear stage
35140 GEAR_STEP_MIN_VELO_LIMIT Minimum speed of gear stage
35160 SPIND_EXTERN_VELO_LIMIT Spindle-speed limitation via PLC

16.6.2 Setting data

16.6.2.1 Channel-specific setting data

Number Identifier: $SC_ Description
42000 THREAD_START_ANGLE Start angle for thread
42010 THREAD_RAMP_DISP Acceleration behavior of axis when thread cutting
42100 DRY_RUN_FEED Dry run feedrate
42101 DRY_RUN_FEED_MODE Dry run feed mode
42110 DEFAULT_FEED Default value for path feed
42600 JOG_FEED_PER_REV_SOURCE Revolutional feedrate control in the JOG mode
43300 ASSIGN_FEED_PER_RES_SOURCE Revolutional feedrate for positioning axes/spindles

V1: Feedrates
16.6 Data lists

 Basic Functions
1386 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

16.6.2.2 Axis/spindle-specific setting data

Number Identifier: $SA_ Description
43210 SPIND_MIN_VELO_G25 Programmed spindle speed limiting G25
43220 SPIND_MAX_VELO_G26 Programmed spindle speed limiting G26
43230 SPIND_MAX_VELO_LIMS Spindle speed limiting with G96

16.6.3 Signals

16.6.3.1 Signals to channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Activate dry run feedrate DB21,DBX0.6 DB3200.DBX0.6
Feedrate override DB21,DBB4 DB3200.DBB4
Rapid traverse override DB21,DBB5 DB3200.DBB5
Feed disable DB21,DBX6.0 DB3200.DBX6.0
Rapid traverse override active DB21,DBX6.6 DB3200.DBX6.6
Feedrate override active DB21,DBX6.7 DB3200.DBX6.7
Feed stop, geometry axis 1 DB21,DBX12.3 DB3200.DBX1000.3
Feed stop, geometry axis 2 DB21,DBX16.3 DB3200.DBX1004.3
Feed stop, geometry axis 3 DB21,DBX20.3 DB3200.DBX1008.3

16.6.3.2 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
Dry run feedrate selected DB21,DBX24.6 DB1700.DBX0.6
Feedrate override for rapid traverse selected DB21,DBX25.3 DB1700.DBX1.3
Activate fixed feedrate 1 for path/geometry axes DB21,DBX29.0 -
Activate fixed feedrate 2 for path/geometry axes DB21,DBX29.1 -
Activate fixed feedrate 3 for path/geometry axes DB21,DBX29.2 -
Activate fixed feedrate 4 for path/geometry axes DB21,DBX29.3 -
Dry run feedrate active DB21,DBX318.6 DB3300.DBX4002.6

 V1: Feedrates
 16.6 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1387

16.6.3.3 Signals to axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Feed/spindle override DB31,DBB0 DB380x.DBB0
Override active DB31,DBX1.7 DB380x.DBX1.7
Activate fixed feedrate 1 for machine axis DB31,DBX3.2 -
Activate fixed feedrate 2 for machine axis DB31,DBX3.3 -
Activate fixed feedrate 3 for machine axis DB31,DBX3.4 -
Activate fixed feedrate 4 for machine axis DB31,DBX3.5 -
Feed stop/spindle stop DB31,DBX4.3 DB380x.DBX4.3

16.6.3.4 Signals from axis/spindle

Signal name SINUMERIK 840D sl SINUMERIK 828D
Revolutional feedrate active DB31,DBX62.2 DB390x.DBX2.2
F function for positioning axis DB31,DBB81 -
Programmed speed too high DB31,DBX83.1 DB390x.DBX2001.1

V1: Feedrates
16.6 Data lists

 Basic Functions
1388 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1389

W1: Tool offset 17
17.1 Brief description

Calculating tool compensation data
The SINUMERIK 840D sl controller can be used to calculate the following tool compensation
data:

● Length compensation

● Radius compensation

● Storage of tool data in a flexible tool offset memory:

– Tool identification with T numbers from 0 to 32000
– Definition of a tool with a maximum of 9 cutting edges
– Cutting edge described by up to 25 tool parameters

● Tool selection selectable: Immediate or via selectable M function

● Tool radius compensation:

– Selection and deselection strategy configurable: Normal or contour-related
– Compensation active for all interpolation types:

Linear
Circle
Helical
Spline
Polynomial
Involute

– Compensation at outer corners selectable:
Transition circle/ellipse (G450) or equidistant intersection (G451)

– Parameter-driven adaptation of G450/G451 functions to the contour
– Free traversing on outer corners with G450 and DISC parameter
– Number of dummy blocks without axis motion selectable in the compensation plane
– Collision detection selectable:

Possible contour violations are detected predictively, if:
- Path is shorter than tool radius
- Width of an inside corner is shorter than the tool diameter

– Keep tool radius compensation constant
– Intersection procedure for polynomials

W1: Tool offset
17.1 Brief description

 Basic Functions
1390 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Toolholder with orientation capability
This function permits the machining of inclined surfaces with allowance for tool length
compensation, provided that the kinematics of the toolholder (without NC axes) permits a
static orientation of the tool. The more complex 5-axis transformation is not required for this
case.

Reference:
Function Manual, Special Functions; Multi-Axis Transformations (F2)

Appropriate selection of the tool data and toolholder data describes the kinematics for the
controller such that it can make allowance for the tool length compensation. The controller
can take some of the description data direct from the current frame.

 Note

Please refer to the following documentation for further information on tools and tool
compensations and a full technical description of the general and specific programming
features for tool compensation (TLC and TRC):

References:
Programming Manual, Fundamentals

Flat/unique D number structure
Compensations can be selected via unique D numbers with management function.

Special handling of tool compensations
The evaluation of signs can be controlled for tool length and wear by the setting data:

SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

SD42960 $SC_TOOL_TEMP_COMP (temperature compens. regarding tool).

The same applies to the response of the wear components when mirroring geometry axes or
changing the machining plane via setting data.

References:
Programming Manual, Fundamentals, Tool Offsets

 W1: Tool offset
 17.1 Brief description

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1391

G461/G462
In order to enable the solid machining of inside corners in certain situations with the
activation and deactivation of tool radius compensation, commands G461 und G462 have been
introduced and the approach/retraction strategy has thus been extended for tool radius
compensation.

● G461

If no intersection is possible between the last TRC block and a previous block, the
controller calculates an intersection by extending the offset curve of this block with a
circle whose center point coincides with the end point of the noncorrected block, and
whose radius is equal to the tool radius.

● G462

If no intersection is possible between the last TRC block and a previous block, the
controller calculates an intersection by inserting a straight line at the end point of the last
block with tool radius compensation (the block is extended by its end tangent).

Changing from G40 to G41/42
The change from G40 to G41/G42 and vice versa is no longer treated as a tool change for tools
with relevant tool point direction (turning and grinding tools).

Tool compensation environments
Functions which enable the following actions in relation to the current states of tool data are
available in SW 7.1:

● Save

● Delete

● Read

● Modify

Some of the functions were previously implemented in measuring cycles. They are now
universally available.

A further function can be used to determine information about the assignment of the tool
lengths of the active tool to the abscissa, ordinate and applicate.

W1: Tool offset
17.2 Tool

 Basic Functions
1392 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.2 Tool

17.2.1 General

Select tool
A tool is selected in the program with the T function.

Whether the new tool will be loaded immediately by means of the T function depends on the
setting in the machine data:

$MC_TOOL_CHANGE_MODE (new tool compensation with M function) determines whether
the new tool is loaded immediately on execution of the T function.

Change tool immediately
MD22550 $MC_TOOL_CHANGE_MODE = 0 (new tool compensation with M function).

The new tool is changed immediately with the T function.

This setting is used mainly for turning machines with tool revolver.

Change tool with M06
MD22550 $MC_TOOL_CHANGE_MODE = 1 (new tool compensation with M function).

The new tool is prepared for changing with the T function.

This setting is used mainly on milling machines with a tool magazine, in order to bring the
new tool into the tool change position without interrupting the machining process.

The old tool is removed from the spindle and the new tool is loaded into the spindle with the
entered M function in the machine data:

MD22560 $MC_TOOL_CHANGE_M_CODE (M function for tool change)

This tool change must be programmed with the M function M06, in accordance with DIN
66025.

The next tool is preselected with the machine data:

MD20121 $MC_TOOL_PRESEL_RESET_VALUE (Preselected tool at RESET)

Its tool length compensation values must be considered at RESET and powerup according to
machine data:

MD20110 $MC_RESET_MODE_MASK (Determination of control default settings after
RESET/TP end).

Value range of T
The T function accepts the following whole numbers:

● From T0 (no tool)

● To T32000 (tool number 32000).

 W1: Tool offset
 17.2 Tool

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1393

Tool cutting edge
Each tool can have up to 9 cutting edges. The 9 tool cutting edges are assigned to the D
functions D1 to D9.

Figure 17-1 Example of a tool T... with 9 cutting edges (D1 to D9)

D function
The tool cutting edge is programmed with D1 (edge 1) to D9 (edge 9). The tool cutting edge
always refers to the currently active tool. An active tool cutting edge (D1 to D9) without an
active tool (T0) is inactive. Tool cutting edge D0 deselects all tool compensations of the active
tool.

Selection of the cutting edge when changing tool
When a new tool (new T number) has been programmed and the old one replaced, the
following options are available for selecting the cutting edge:

● The cutting edge number is programmed.

● The cutting edge number is defined by the machine data:

MD20270 $MC_CUTTING_EDGE_DEFAULT (basic position of the tool cutting edge
without programming)

Value Meaning
= 0 No automatic cutting edge selection in accordance with M06
< > 0 Number of the cutting edge, which is selected in accordance with M06
= -1 The cutting edge number of the old tool is retained and is also selected for the new tool, in

accordance with M06.

W1: Tool offset
17.2 Tool

 Basic Functions
1394 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Activating the tool offset
D1 to D9 activate the tool compensation for a cutting edge on the active tool. Tool length
compensation and tool radius compensation can be activated at different times:

● Tool length compensation (TLC) is performed on the first traversing motion of the axis, on
which the TLC is to act.

This traversing motion must be a linear interpolation (G0,G1, POS,POSA) or polynomial
interpolation (POLY). If the POS/POSA axis is one of the active geometry axes, the tool length
compensation is applied with the first axis motion in which the WLK is supposed to act.

● Tool radius compensation (TRC) becomes active when G41/G42 is programmed in the
active plane (G17, G18 or G19).

The selection of tool radius compensation with G41/G42 is only permitted in a program
block with G0 (rapid traverse) or G1 (linear interpolation).

17.2.2 Compensation memory structure

Tool compensation memory size
Each channel can have a dedicated tool compensation memory (TO unit).

Which tool compensation memory exists for the relevant channel is set with the machine
data:

MD28085 $MC_MM_LINK_TOA_UNIT (Assignment of TO unit to a channel).

The maximum number of tool cutting edges for all tools managed by the NCK is set with the
machine data:

MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA (number of tool cutting edges in
NCK).

Tools
The TO memory consists of tools numbered T1 to T32000.

Each tool can be set up via TOA files or individually, using the "New tool" soft key.
Compensation values not required must be assigned the value zero. (this is the default
setting when the offset memory is created): The individual values in the offset memory (tool
parameters) can be read and written from the program using system variables.

 Note

The tools (T1 to T32000) do not have to be stored in ascending order or contiguously in the
tool compensation memory, and the first tool does not have to be assigned number T1.

 W1: Tool offset
 17.2 Tool

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1395

Tool cutting edges
Each tool can have up to 9 cutting edges (D1 to D9). The first cutting edge (D1) is set up
automatically when a new tool is loaded in the tool compensation memory. Other cutting
edges (up to 8) are set up consecutively and contiguously using the "New cutting edge" soft
key. A different number of tool cutting edges can assigned to each tool in this way.

Figure 17-2 Example of a tool compensation memory structure for 2 channels

17.2.3 Calculating the tool compensation

D No.
The D no. is sufficient for calculating the tool compensations (can be set via MD).

W1: Tool offset
17.2 Tool

 Basic Functions
1396 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programming
The above compensation block is to be calculated in the NC.

Part program call:

...

Dn

17.2.4 Address extension for NC addresses T and M

MD20096
Whether also with tool management not activated, the address extension of T and M is to be
interpreted as spindle number, can be set through the machine data:

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO (spindle number as address extension).

The same rules then apply to the reference between the D number and T number as when
the "Tool management" function is active.

Effect on the D number
A compensation data set is determined by the D number.

The D address cannot be programmed with an address extension.

The evaluation of the D address always refers to the currently active tool.

The programmed D address refers to the active tool in relation to the master spindle (same
as for tool management function), when machine data is set:

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO = TRUE (spindle number as address
extension).

Effect on the T number
If the "Tool management" function is active, the values programmed with reference to the
master spindle (or master toolholder) are displayed as programmed/active T numbers.

If tool management is not active, all programmed T values are displayed as
programmed/active, regardless of the programmed address extension.

Only the T value programmed in relation to the master spindle is shown as
programmed/active, when:

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO = TRUE (spindle number as address
extension).

 W1: Tool offset
 17.2 Tool

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1397

Example
The example below shows the effect of MD20096.

Two spindles are considered. Spindle 1 is the master spindle. M6 was defined as the tool
change signal.

T1 = 5

M1 = 6

T2 = 50

M2 = 6

D4

● If tool management is active, D4 refers to tool "5".

T2=50 defines the tool for the secondary spindle, whose tool does not influence the path
compensation. The path is determined exclusively by the tool programmed for the master
spindle.

● D4 relates to tool "50" without active tool management and with the machine data:

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO = FALSE (significance of address
extension on T, M tool change).

The address extensions of neither T nor M are evaluated in the NCK.

Each tool change command defines a new path compensation.

● D4 relates to tool "5" (as when tool management is active) without active tool
management and with the machine data:

MD20096 $MC_T_M_ADDRESS_EXT_IS_SPINO = TRUE.

Address extension 1 (T1= ..., M1= ...) addresses the master spindle.

 Note

Previously, when tool management was not activated, each tool change command
(programmed with T or M) caused the tool compensation to be recalculated in the path.
The address extension is not defined further by this operation. The significance of the
extension is defined by the user (in the PLC user program).

W1: Tool offset
17.2 Tool

 Basic Functions
1398 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.2.5 Free assignment of D numbers

"Relative" D numbers
In the NCK, it is possible to manage the D numbers as "relative" D numbers for the tool
compensation data sets. The corresponding D numbers are assigned to each T number. The
maximum number of D numbers was previously limited to 9.

Functions
Expansions to functions when assigning D numbers:

● The maximum permitted D numbers are defined via the machine data:

MD18105 $MN_MM_MAX_CUTTING_EDGE_NO (max. value of the D numbers (DRAM))

The default value is 9, in order to maintain compatibility with existing applications.

● The number of cuts (or the offset data sets) for each tool can be defined via the machine
data:

MD18106 $MN_MM_MAX_CUTTING_EDGE_PERTOOL (max. number of the D numbers
per tool (DRAM))

This allows you to customize the number of cutting edges to be configured for each tool
to the actual number of real cutting edges for monitoring purposes.

● It is also possible to rename D numbers in the NCK and thus to allocate any D numbers
to the cutting edges.

 Note

In addition to relative D number allocation, the D numbers can also be assigned as "flat"
or "absolute" D numbers (1-32000) without a reference to a T number (within the "Flat D
number structure" function).

Cutting edge number CE
When you rename D numbers, the information in the tool Catalog detailing the numbers
defined for these cutting edges is lost. It is, therefore, impossible to determine, following
renaming, which cutting edge of the Catalog is being referenced.

Since this information is required for retooling procedures, a cutting edge number CE has
been introduced for each cutting edge. This number remains stored when the D number is
renamed.

The D number identifies the cutting edge compensation in the part program. This
compensation number D is administered separately from the cutting edge number CE (the
number in the tool Catalog). Any number can be used. The number is used to identify a
compensation in the part program and on the display.

The CE number identifies the actual physical cutting edge during retooling. The cutting edge
number CE is not evaluated by the NCK on compensation selection during a tool change
(only available via the OPI).

 W1: Tool offset
 17.2 Tool

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1399

The cutting edge number CE is defined with system variable $TC_DPCE[t,d]:

● t stands for the internal T number.

● d stands for the D number.

Write accesses are monitored for collisions, i.e. all cutting edge numbers of a tool must be
different. The variable $TC_DPCE is a component of the cutting edge parameter data set
$TC_DP1 to $TC_DP25.

It is only practical to parameterize $TC_DPCE if the maximum cutting edge number
(MD18105) is greater than the maximum number of cutting edges per tool (MD18106).

In this case, the default cutting edge number is the same as the classification number of the
cutting edge. Compensations of a tool are created starting at number 1 and are incremented
up to the maximum number of cutting edges per tool (MD18106).

The cutting edge number CE is the same as the D number (in compatibility with the behavior
till now) if:

MD18105 ≤ MD18106.

A read operation returns CE=D. A write operation is ignored without an alarm message.

 Note

The compensation values $TC_DP1 to $TC_DP25 of the active tool compensation can be
read with system variable $P_AD[n], where n=1 to 25. The CE cutting edge number of the
active compensation is returned with n=26.

Commands
When the maximum cutting edge number:
MD18105 $MN_MM_MAX_CUTTING_EDGE_NO (Max. value of the D numbers (DRAM))
is greater than the maximum number of cutting edges per tool:
MD18106 $MN_MM_MAX_CUTTING_EDGE_PERTOOL (Max. number of D numbers per
tool (DRAM))
the following commands are available:

Command Meaning
CHKDNO Checks the uniqueness of the available D numbers.

The D numbers of all tools defined within a TO unit may not occur more than once.
No allowance is made for replacement tools.

GETDNO Determines the D number for the cutting edge of a tool.
If no D number matching the input parameters exists, d=0.
If the D number is invalid, a value greater than 32000 is returned.

SETDNO Sets or changes the D number of the CE cutting edge of tool T.
If there is no data block for the specified parameter, the value FALSE is returned.
Syntax errors generate an alarm. The D number cannot be set explicitly to 0.

W1: Tool offset
17.2 Tool

 Basic Functions
1400 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Command Meaning
GETACTTD Determines the associated T number for an absolute D number.

There is not check for uniqueness. If several D numbers within a TO unit are the
same, the T number of the first tool found in the search is returned.
This command is not suitable for use with "flat" D numbers, because the value 1 is
always returned in this case (no T numbers in database).

DZERO Marks all D numbers of the TO unit as invalid.
This command is used for support during retooling.
Compensation data sets tagged with this command are no longer verified by the
CHKDNO language command. These data sets can be accessed again by setting the
D number once more with SETDNO.

 Note

If the maximum cutting edge number is smaller than the maximum number of cutting edges
per tool (MD18105 < MD18106), the language commands described do not affect the
system.

This relation is preset in the NCK as standard, in order to maintain compatibility with existing
applications.

The individual commands are described in detail in:

References:
Programming Manual, Fundamentals

Activation
In order to work with unique D numbers and, therefore, with the defined language
commands, it must be possible to name D numbers freely for the tools.

The following conditions must be fulfilled for this purpose:

● MD18105 > MD18106

● The 'flat D number' function is not activated.

MD18102 $MN_MM_TYPE_OF_CUTTING_EDGE (type of D number programming
(SRAM)).

Examples
MD18105 $MN_MM_MAX_CUTTING_EDGE_NO = 1 (max. value of the D numbers
(DRAM))

A maximum of one compensation can be defined per tool (with D number = 1).

 Note

When the "Flat D numbers" function is active, only one D compensation can be defined in
the TO unit.

 W1: Tool offset
 17.2 Tool

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1401

MD18105 $MN_MM_MAX_CUTTING_EDGE_NO = 9999

Tools can be assigned unique D numbers.

For example:
● D numbers 1, 2, 3 are assigned to T number 1
● D numbers 10, 20, 30, 40, 50 are assigned to T number 2
● D numbers 100, 200 are assigned to T number 3
● etc.

CHKDNO; MD18105 $MN_MM_MAX_CUTTING_EDGE_NO = 9999

The following data are to be checked for unique D numbers:
● T number 1 with D numbers 1, 2, 3
● T number 2 with D numbers 10, 20, 30, 40, 50
● T number 3 with D numbers 100, 200, 30

(typing error during definition: 30 was entered instead of 300)

CHKDNO The FALSE state is returned when the above constellation is checked

because D=30 has been entered twice.
CHKDNO (2, 3, 30) The FALSE state is returned when the specified D number 30 is

checked because D=30 has been entered twice.
CHKDNO (2, 3, 100) The TRUE state indicates that D=100 has been entered just once.
CHKDNO (1, 3) The TRUE state is returned although there is a conflict between the

D=30 of the third tool and D=30 of the second tool.

MD18106 $MN_MM_MAX_CUTTING_EDGE_PERTOOL = 1 (max. number of the D
numbers per tool (DRAM))

Only tools with just one cutting edge are used. The value 1 of the machine data inhibits the
definition of a second cutting edge for a tool.

MD18106 $MN_MM_MAX_CUTTING_EDGE_PERTOOL = 12

A maximum of 12 cutting edges can be defined per tool.

Programming examples
Renaming a D number

The D number of cutting edge CE = 3 is to be renamed from 2 to 17. The following
specifications apply:
● Internal T number T = 1
● D number = 2
● Tool with one cutting edge with:

Program code Comment

$TC_DP2[1, 2] = 120

$TC_DP3[1, 2] = 5.5

$TC_DPCE[1, 2] = 3 ; Cutting edge number CE

W1: Tool offset
17.2 Tool

 Basic Functions
1402 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● MD18105 $MN_MM_MAX_CUTTING_EDGE_NO = 20 (max. value of the D numbers
(DRAM))

Within the part program, this compensation is programmed as standard with T1,D2.

You assign the current D number of cutting edge 3 to a variable (DNoOld) and define the
variable DNoNew for the new D number:

Program code

def int DNoOld, DNoNew = 17

DNoOld = GETDNO(1, 3)

SETDNO(1, 3, DNoNew)

The new D value 17 is then assigned to cutting edge CE=3.

Now the data for the cutting edge are addressed via D number 17, both via the system
variable and in programming with the NC address D.

This compensation is now programmed in the part program with T1,D17 and the data
are addressed as follows:

Program code Comment

$TC_DP2[1, 17] = 120

$TC_DP3[1, 17] = 5.5

$TC_DPCE[1, 17] = 3 ; Cutting edge number CE

 Note

If a further cutting edge has been defined for the tool, e.g. $TC_DPCE[1, 2] = 1 ; = CE, the
D-number 2 of the cutting edge 1 cannot have the same name as the D-number of the
cutting edge 3 i.e.: SETDNO(1, 1, 17) returns the status = FALSE as return value.

DZERO - Invalidate D numbers

The activation of this command invalidates all D numbers of the tools in the TO unit. It is no
longer possible to activate a compensation until valid D numbers are again available in the
NCK. The D numbers must be reassigned using the SETDNO command.

The following tools must be defined (all with cutting edge number 1):

T1, D1 D no. of cutting edge CE=1
T2, D10 D no. of cutting edge CE=1
T3, D100 D no. of cutting edge CE=1

The following command is then programmed:

Program code

DZERO

If one of the compensations is now activated (e.g. with T3 D100), an alarm is generated,
because D100 is not currently defined.

 W1: Tool offset
 17.2 Tool

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1403

The D numbers are redefined with:

Program code Comment

SETDNO(1, 1, 100) ; T=1, cutting edge 1 receives the (new) D number 100

SETDNO(2, 1, 10) ; T=2, cutting edge 1 receives the (old) D number 10

SETDNO(3, 1, 1) ; T=3, cutting edge 1 receives the (new) D number 1

 Note

In the event of a power failure, the DZERO command can leave the NCK in an undefined state
with reference to the D numbers. If this happens, repeat the DZERO command when the power
is restored.

Operating principle of a retooling program

Let us assume you want to ensure that the required tools and cutting edges are available.
The status of the tool-holding magazine of the NCK is arbitrary. The D numbers in the part
programs for the new machining operation generally do not match the D numbers of the
actual cutting edges. The retooling program can have the following appearance:

Program code Comment

DZERO ; All D numbers of the TO unit are tagged as invalid.

.... ; One or more loops over the locations of the magazine(s) to

check the tools and their cutting edge numbers.

If a tool is found, which is still enabled ($TC_TP8) and

has the required cutting edge number CE (GETDNO), the new

D number is allocated to the cutting edge (SETDNO).

.... ; Loading and unloading operations are performed.

It is possible to work with the tool status "to be

unloaded" and "to be loaded".

CHKDNO ; Loading/unloading and the operation for renaming D numbers

are complete.

Individual tools and/or D numbers can be checked, and

collisions can be handled automatically according to the

return value.

W1: Tool offset
17.2 Tool

 Basic Functions
1404 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.2.6 Compensation block in case of error during tool change

MD22550
If a tool preparation has been programmed in the part program and the NCK detects an error
(e.g., the data set for the programmed T number does not exist in the NCK), the user can
assess the error situation and perform appropriate tasks, in order to subsequently resume
machining.

The tool change may be programmed independently, depending on the machine data:

MD22550 $MC_TOOL_CHANGE_MODE (new tool compensation with M function).

MD22550 $MC_TOOL_CHANGE_MODE = 0

T= "T no." ; Tool preparation + tool change in one NC block,

; i.e., when T is programmed a new D compensation becomes

; active in the NCK (see

; machine data MD20270 $MC_CUTTING_EDGE_DEFAULT)

MD22550 $MC_TOOL_CHANGE_MODE = 1

T= "T no." ; Tool preparation

M06 ;Change tool

; (the number of the tool-change M code can be changed),

; i.e., when M06 is programmed a new D compensation becomes

; active in the NCK (see

; machine data MD20270 $MC_CUTTING_EDGE_DEFAULT)

The following problems can occur if tool management is not active:

● D compensation data set missing

● Error in part program

 Note

The "tool not in magazine" problem cannot be detected since the NCK did not have
access to any magazine information during tool compensation.

D compensation data set missing
Program execution is interrupted at the block containing the invalid D value (regardless of
the value of machine data MD22550). The operator must either correct the program or
reload the missing data set.

To do this, he needs the D number for the flat D number function, or otherwise the T number
as well. These parameters are transferred when the alarm is triggered.

 W1: Tool offset
 17.2 Tool

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1405

Error in part program
The options for intervention in the event of an error depend on how the tool change was
programmed, defined via the machine data:

MD22550 $MC_TOOL_CHANGE_MODE (new tool compensation with M function).

Tool change with T programming (MD22550 = 0)

In this case, the "Compensation block" function available in the NCK is used. The NC
program stops at the NC block in which a programmed T value error was detected. The
"Compensation block" is executed again when the program is resumed.

The operator can intervene as follows:

● Correct the part program.

● Reload the missing cutting edge compensation data from the HMI.

● Include the missing cutting edge compensation data in the NCK using "Overstore".

Following operator intervention, the START key is pressed and the block, which caused the
error, is executed again. If the error was corrected, the program is continued. Otherwise, an
alarm is output again.

Tool change with T and M06 programming (MD22550 = 1)

In this case, an error is detected in the NC block containing the tool preparation (T
programming), however this error is to be ignored initially. Processing continues until the tool
change request (usually M06) is executed. The program is to stop at this point.

The programmed T address can contain any number of program lines ahead of the M06
command, or the two instructions can appear in different (sub)programs. For this reason, it is
not usually possible to modify a block or a compensation block, which has already been
executed.

The operator has the same options for intervention as with = 0.

Reloading of missing data is possible. In this case, however, T must be programmed with
"Overstore".

If a program error has occurred, the line with the error cannot be corrected (Txx); only the
line at which the program stopped and which generated the alarm can be edited. Only when
machine data:

MD22562 $MC_TOOL_CHANGE_ERROR_MODE Bit0 = 1 (response on errors in tool
change).

The sequence is as follows:

Txx ; Error! Data set with xx does not exist.

; Detect state; detect xx;

; continue in program

....

M06 ; Detect bit memory "xx missing" → output alarm,
; stop program

; Correct block with, e.g., Tyy M06, start,

; block Tyy M06 interpreted and OK.

; Machining continues.

W1: Tool offset
17.2 Tool

 Basic Functions
1406 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The following occurs when this part of the program is executed again:

Txx ; Error! Data set with xx does not exist,

; Detect state; detect xx;

; continue in program

....

Tyy M06 ; Detect bit memory "xx missing" → cancel without further
response,

; as Tyy M06 is correct → program does not stop (correct).

If necessary, the original point of the T call can be corrected after the end of the program. If
the tool change logic on the machine cannot process this, the program must be aborted and
the point of the error corrected.

If only one data set is missing, it is transferred to the NCK, Txx is programmed in "Overstore"
and the program is subsequently resumed.

As in the case of "missing D number", the required parameter (T number) can be accessed
by the user for "missing T number" via the appropriate alarm (17191).

 Note

In order to enable program correction, it stops immediately at the faulty Txx block.

The program text operation is also stopped when machine data:

MD22562 $MC_TOOL_CHANGE_ERROR_MODE Bit0=1 (response on errors in tool
change).

17.2.7 Definition of the effect of the tool parameters

MD20360
The effect of the tool parameters on the transverse axis in connection with diameter
programming can be controlled selectively with the machine data:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

Details are described with the mentioned MD

DRF handwheel traversal with half distance
During DRF handwheel traversal, it is possible to move a transverse axis through only half
the distance of the specified increment as follows:

Specify the distance with handwheel via the machine data:

MD11346 $MN_HANDWHEEL_TRUE_DISTANCE = 1 (handwheel path or speed
specification)

 W1: Tool offset
 17.3 Flat D number structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1407

Define the DRF offset in the transverse axis as a diameter offset with the machine data:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK bit 9 = 1 (definition of tool parameters)

Deselecting an axial DRF compensation (DRFOF) also deletes an existing tool compensation
(handwheel override in tool direction).

 Note

For further information about superimposed movements with the handwheel, please refer to:

References:
Function Manual, Extended Functions; Manual and Handwheel Travel (H1)

Programming Manual, Fundamentals

(The Programming Manual describes the complete technical program options in order to
deselect the DRF offset axis-specifically.)

17.3 Flat D number structure

17.3.1 General

Simple tool management
Simple tool management (no replacement tools, no magazines) using D numbers is possible
for turning machines.

The function is available in the basic level of tool management (without tool management
function activated). Grinding tools cannot be defined using this function.

Activation
Which type of D number management is valid may be set via the machine data:

MD18102 $MN_MM_TYPE_OF_CUTTING_EDGE (type of D number programming).

Value Significance
0 As previously = default setting
1 Flat D number structure with absolute direct D programming

Cutting edges can be deleted individually via PI command or NC programming command.
Cutting edges with a specific number can also be created selectively using HMI.

W1: Tool offset
17.3 Flat D number structure

 Basic Functions
1408 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.3.2 Creating a new D number (compensation block)

Programming
Tool compensations can be programmed with system variables $TC_DP1 to $TC_DP25.
The contents have the same meaning as before.

The syntax changes: no T number is specified.

● "Flat D number" function active:

$TC_DPx[d] = value ;where x=parameter no., d=D number

i.e., data with this syntax can only be loaded to the NCK if the "Flat D number" function is
activated.

● "Flat D number" function inactive:

$TC_DPx[t][d] = value ;where t=T number, d=D number

A D number can only be assigned once for each tool, i.e., each D number stands for exactly
one compensation data block.

A new data block is stored in the NCK memory when a D number that does not exist is
created for the first time.

The maximum number of D or offset data blocks (max. 600) is set via the machine data:

MD18100 $MN_MM_NUM_CUTTING_EDGES_IN_TOA (tool compensations in TO area).

Data backup
Data backup is carried out in the same format, i.e., a backup file created with the "Flat D
number" function cannot be loaded on the NCK of a control that has not activated the
function.

This also applies in reverse for transfer.

D range
1 - 99 999 999

 W1: Tool offset
 17.3 Flat D number structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1409

17.3.3 D number programming

MD18102 = 1
If MD18102 $MN_MM_TYPE_OF_CUTTING_EDGE = 1, then D compensation is activated
without reference to a certain tool.

D0 still contains the previous significance, "Deselection of active compensation in NCK".

Address extension of D
It is not possible to extend the address of D. Only one active compensation data block is
possible for the tool path at a given time.

Programming
Programming in the part program is carried out as before. Only the value range of the
programmed D number is increased.

Example 1:

MD parameterization Meaning
MD22550 $MC_TOOL_CHANGE_MODE = 0 Tool change with programming of T.
MD18102 $MN_MM_TYPE_OF_CUTTING_EDGE = 1 D number programming without

reference to a certain tool.
MD20270 $MC_CUTTING_EDGE_DEFAULT = -1 D compensation remains unchanged

if tool is changed.

Program code Comment

...

D92

X0 ; Traverse with compensations from D92.

T17 ; Outputs T=17 to the PLC

X1 ; Traverse with compensations from D92.

D16

X2 ; Traverse with compensations from D16.

D32000

X3 ; Traverse with compensations from D32000.

T29000 ; Outputs T=29000 to the PLC.

X4 ; Traverse with compensations from D32000.

D1

X5 ; Traverse with compensations from D1.

...

W1: Tool offset
17.3 Flat D number structure

 Basic Functions
1410 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example 2:

MD22550 = 0

Program code Comment

T1

T2

T3

D777 ; No waiting, D777 is activated, T3= programmed and

active tool in the display, D777= programmed and

active compensation.

 Note

The tool change and the assignment of a D compensation to an actual tool are the
responsibility of the NC program and of the PLC program, if applicable.

Delete D no. via part program
● With flat D number:

$TC_DP1[d] = 0

Compensation data block with the number D in the TO unit is deleted.

The memory is then free for the definition of another D number.

● Without flat D number:

$TC_DP1[t][d] = 0

Cutting edge d of tool t is deleted.

● $TC_DP1[0] = 0

All D compensations of the TO unit are deleted.

Active compensation data blocks (D numbers) cannot be deleted. This means, that it may be
necessary to program D0 before deleting.

Tool MDs
The following machine data affect the way tools and cutting edges (D numbers) work in the
NCK:

Machine data Meaning
MD20270 $MC_CUTTING_EDGE_DEFAULT Standard tool cutting edge after tool

change
MD20130 $MC_CUTTING_EDGE_RESET_VALUE Tool cutting edge - Length

compensation on power-up
(RESET / TP end)

 W1: Tool offset
 17.3 Flat D number structure

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1411

Machine data Meaning
MD20120 $MC_TOOL_RESET_VALUE Tool - Length compensation on power-

up (RESET / TP end)
MD20121 $MC_TOOL_PRESEL_RESET_VALUE Preselect tool on RESET
MD22550 $MC_TOOL_CHANGE_MODE Tool change with M function instead of T

function
MD22560 $MC_TOOL_CHANGE_M_CODE M function for tool change
MD20110 $MC_RESET_MODE_MASK Definition of basic control settings after

RESET/TP-End)
MD20112 $MC_START_MODE_MASK Determination of basic control settings

after NC start

17.3.4 Programming the T number
When the "Flat D number structure" function is active, NC address T continues to be
evaluated, i.e., the programmed T number and the active T number are displayed. However,
the NC determines the D number without reference to the programmed T value.

The NC detects 1 master spindle per channel (via the spindle number, which can be set
using MD). Compensations and the M6 command (tool change) are only calculated in
reference to the master spindle.

An address extension T is interpreted as a spindle number (e.g., T2 = 1; tool 1 to be selected
on spindle 2); a tool change is only detected if spindle 2 is the master spindle.

17.3.5 Programming M6

MD22550 and MD22560
The NC detects 1 master spindle per channel (via the spindle number, which can be set
using MD). Compensations and the M6 command (tool change) are only calculated in
reference to the master spindle.

Whether the tool change command is performed with an M function is defined via the
machine data:

MD22550 $MC_TOOL_CHANGE_MODE (new tool compensation with M function).

T is used as the tool preparation command.

The name of the M function for the tool change is defined via the machine data:

MD22560 $MC_TOOL_CHANGE_M_CODE (M function for tool change).

The default is M6. An address extension of M6 is interpreted as a spindle number.

W1: Tool offset
17.3 Flat D number structure

 Basic Functions
1412 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example
Two spindles are defined, spindle 1 and spindle 2, and the following applies:

MD20090 = 2 ; Spindle no. 2 is the master spindle.

M6 ; Tool change desired, command refers implicitly to the master

spindle

M1 = 6 ; No tool change, since spindle no. 2 is the master spindle

M2 = 6 ; Tool is changed, since spindle no. 2 is the master spindle

17.3.6 Program test

MD20110
To have the active tool and the tool compensation included as follows, can be defined via the
machine data:

MD20110 $MC_RESET_MODE_MASK, Bit 3 (Definition of control default settings after
RESET/TP end).

Value Significance
Bit 3 = 1 From the last test program to finish in test mode
 = 0 From the last program to finish before activation of the program test

Prerequisite
The bits 0 and 6 must be set by the machine data:

MD20110 $MC_RESET_MODE_MASK, Bit 3 (Definition of control default settings after
RESET/TP end).

17.3.7 Tool management or "Flat D numbers"

Tool management
NCK active tool management works on the basis of the following assumptions:

1. Tools are managed in magazines.

2. Cutting edges are monitored; limits reached cause the tool to be disabled.

3. Idea of the sister tools: Tools are programmed for selection only on the basis of their
name. NCK then selects the concrete tool according to the strategy.

 Note

For SINUMERIK 828D, this function is only available as an option!

This means that it only makes sense to employ tool management when specific tools have
been defined and these are to be utilized by the NCK.

 W1: Tool offset
 17.4 Tool cutting edge

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1413

Flat D number
Flat D number means that tool management is carried out outside the NCK and there is no
reference made to T numbers.

No mixture of tool management and flat D number
It does not make sense to mix or distribute the tool management functions over the NCK and
PLC, since the main reason for tool management on the NCK is to save time.

This only works if the tasks that are time-critical are carried out on the NCK. This is not the
case for "Flat D number", however.

 Note

Activation of both of the functions "Flat D number structure" and "Tool management" is
monitored. If both are activated at the same time, "Tool management" takes priority.

17.4 Tool cutting edge

17.4.1 General

Tool cutting edge
The following data are used to describe a tool cutting edge uniquely:

● Tool type (end mill, drill, etc.)

● Geometrical description

● Technological description

Tool parameter
The geometrical description, the technological description and the tool type are mapped to
tool parameters for each tool cutting edge.

The following tool parameters are available for the relevant tool types:

Tool parameter Significance Note
1 Tool type
2 Cutting edge position for turning tools or for milling/grinding tools

with 2D TRC contour tool

W1: Tool offset
17.4 Tool cutting edge

 Basic Functions
1414 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Tool parameter Significance Note

Geometry - tool lengths
3 Length 1
4 Length 2
5 Length 3

Geometry - tool shape
6 Radius 1/Length 1 for 3D face milling
7 Length 2 for 3D face milling
8 Radius 1 for 3D face milling
9 Radius 2 for 3D face milling
10 Angle 1 / minimum threshold angle for 3D face milling

with 2D TRC contour tool
11 Angle 2 / minimum threshold angle for 3D face milling

with 2D TRC contour tool

Wear - tool length
12 Length 1
13 Length 2
14 Length 3

Wear - tool shape
15 Radius 1/Length 1 for 3D face milling
16 Length 2 for 3D face milling
17 Radius 1 for 3D face milling
18 Radius 2 for 3D face milling
19 Angle 1 /

minimum limit angle
for 3D face milling
with 2D TRC contour tool.

20 Angle 2 /
maximum limit angle

for 3D face milling
with 2D TRC contour tool.

Tool base dimension / adapter dimension
21 Basic length 1
22 Basic length 2
23 Basic length 3

Technology
24 Undercut angle only for turning tools
25 Reserved*

* "Reserved" means that this tool parameter is not used and is reserved for expansions.

 W1: Tool offset
 17.4 Tool cutting edge

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1415

3D-face milling
Milling cutter types 111, 120, 121, 130, 155, 156 and 157 are given special treatment for 3D-
face milling by evaluating tool parameters (1 -23).

References
For more information about various tool types, see:

● Functions Manual - Basic Functions; Tool Offset (W1), Chapter "Tool type (tool
parameters)"

● Programming Manual Fundamentals; Chapter: "Tool compensations" > "List of tool types"

● Functions Manual - Special Functions; 3D-tool radius compensation (W5)

17.4.2 Tool parameter 1: Tool type

Description
The tool type (3digit number) defines the tool in question. The selection of this tool type
determines further components such as geometry, wear and tool base dimensions in
advance.

Conditions
The following is applicable to the "Tool type" parameter:

● The tool type must be specified for each tool cutting edge.

● Only the values specified can be used for the tool type.

● Tool type "0" (zero) means that no valid tool has been defined.

W1: Tool offset
17.4 Tool cutting edge

 Basic Functions
1416 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Tool types and tool parameters
Different tool types and the most important tool parameters are listed in the following table.
The tool parameters available for a certain tool type are designated with "x".

 W1: Tool offset
 17.4 Tool cutting edge

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1417

 Note

The tool type has no significance in the turning tool groups.

Nonlisted numbers are also permitted, in particular with grinding tools (400-499).

Tool offset data
Tool offset data (TOA data) is stored in the system variables.

Example Slotting saw tool type (Type 700)

 Geometry Wear Base Einheit
Length compensation
Length 1 $TC_DP3 $TC_DP12 $TC_DP21 mm
Length 2 $TC_DP4 $TC_DP13 $TC_DP22 mm
Length 3 $TC_DP5 $TC_DP14 $TC_DP23 mm
Saw blade compensation
Diameter d $TC_DP6 $TC_DP15 mm
Slot width b $TC_DP7 $TC_DP16 mm
Projection k $TC_DP8 $TC_DP17 mm

W1: Tool offset
17.4 Tool cutting edge

 Basic Functions
1418 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 17-3 Geometry of slotting saw (analogous to angle head cutter)

The width of the saw blade is accounted for with tool radius compensation (G40 to G42 as
follows:

Comman
d

Significance

G40 No saw blade compensation
G41 Saw blade compensation left
G42 Saw blade compensation right

17.4.3 Tool parameter 2: Cutting edge position

Description
The cutting edge position describes the position of the tool tip P in relation to the cutting
edge center point S. It is entered in tool parameter 2.

The cutting edge position is required together with the cutting edge radius (tool parameter 8)
for the calculation of the tool radius compensation for turning tools (tool type 5xx).

 W1: Tool offset
 17.4 Tool cutting edge

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1419

Figure 17-4 Dimensions for turning tools: Turning tool

Cutting edge position parameter values

Figure 17-5 Tool parameter 2 (P2): Machining behind the turning center

Figure 17-6 Tool parameter 2 (P2): Machining in front of the turning center

W1: Tool offset
17.4 Tool cutting edge

 Basic Functions
1420 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 17-7 Tool parameter 2 (P2): Cutting edge position for vertical boring and turning mills

Special points to be noted
● If the cutting edge center point S is used instead of point P as a reference point to

calculate the tool length compensation, the identifier 9 must be entered for the cutting
edge position.

● The identifier 0 (zero) is not permitted as a cutting edge position.

17.4.4 Tool parameters 3 - 5: Geometry - tool lengths

Description
The lengths of the tools are required for the geometry tool length compensation. They are
input as tool lengths 1 to 3 in the tool parameters 3 to 5. The following length specifications
must be entered as a minimum for each tool type:

Tool type Required tool lengths
Tool type 12x, 140, 145, 150: Tool length 1
Tool type 13x: Tool length 1 to 3 (depending on plane G17-G19)
Tool type 2xx: Tool length 1
Tool type 5xx: Tool length 1 to 3

Example Twist drill (tool type 200) with tool length (tool parameter 3)

 W1: Tool offset
 17.4 Tool cutting edge

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1421

 Note

All three tool parameters 3 to 5 (tool length 1 to 3) are always calculated in the three
geometry axes, irrespective of the tool type.

If more tool lengths are input in the tool parameters 3 to 5 for a tool type than is required as
the minimum, then these extra tool lengths are settled in the geometry axes without any
alarm.

Special points to be noted
The active size of the tool is only defined when the geometry tool length compensation (tool
parameters 3 to 5) and the wear tool length compensation (tool parameters 12 to 14) are
added together. The base-dimension/adapter-dimension tool length compensation is also
added in order to calculate the total tool length compensation in the geometry axes.

References
For information about entering tool dimensions (lengths) in tool parameters 3 to 5 (tool
lengths 1 to 3) and how these are calculated in the three geometry axes, please refer to
→ Operating Manual.

W1: Tool offset
17.4 Tool cutting edge

 Basic Functions
1422 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.4.5 Tool parameters 6 - 11: Geometry - tool shape

Meaning
The shape of the tool is defined using the tool parameters 6 to 11. The data is required for
the geometry tool radius compensation.

In most cases, only tool parameter 6 (tool radius 1) is used.

Tool parameter Meaning Use
6 Tool length 1 Not used
7 Tool length 2 Not used

The tool radius must be entered for the following tool types
in tool parameter 6 (tool radius 1):
Tool type 1xx Milling tools
Tool type 5xx Turning tools

8 Tool radius 1

A tool radius does not have to be entered for drilling tools
(tool type 2xx).
The cutting edge position (tool parameter 2) also has to be
entered for turning tools (tool type 5xx).

9 Tool radius 2 Not used
10 Tool angle 1 Not used
11 Tool angle 2 Not used

2D TRC with contour tools
For the definition of contour tools with multiple tool cutting edges, the minimum and
maximum limit angle can be entered. Both limit angles each relate to the vector of the cutting
edge center point to the cutting edge reference point and are counted clockwise.

Tool angle 1 Minimum limit angle per tool cutting edge
Tool angle 2 Maximum limit angle per tool cutting edge

 W1: Tool offset
 17.4 Tool cutting edge

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1423

3D face milling
Tool parameters 6 to 11 are required for tool description of 3D face milling.

References
Please refer to the following documentation for information about entering tool shapes
(radius for tool radius compensation) in tool parameters 6 to 11 and how these are
calculated by geometry tool radius compensation in the three geometry axes:
● Programming Manual, Fundamentals; Section: "Tool compensations" > "2½ D tool

compensation"
● Functions Manual - Special Functions; 3D tool radius compensation (W5)

For 3D face milling, please refer to:
● Programming Manual, Job Planning; Section: "Transformations" > "Three, Four and Five

axis Transformation (TRAORI)"

17.4.6 Tool parameters 12 - 14: Wear - tool lengths

Description
While geometry tool length compensation (tool parameters 3 to 5) is used to define the size
of the tool, wear tool length compensation can be used to correct the change in the active
tool size.

The active tool dimensions can change due to:
● Differences between the tool fixture on the tool measurement machine and the tool fixture

on the machine tool
● Tool wear caused during service life by machining
● Definition of the finishing allowances

W1: Tool offset
17.4 Tool cutting edge

 Basic Functions
1424 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Active tool size
The geometry tool compensation (tool parameters 3 to 5) and the wear tool length
compensation (tool parameters 12 to 14) are added together (geometry tool length 1 is
added to wear tool length 1, etc.) to arrive at the size of the active tool.

17.4.7 Tool parameters 15 - 20: Wear - tool shape

Description
While geometry tool radius compensation (tool parameters 6 to 11) is used to define the
shape of the tool, wear tool radius compensation can be used to correct the change in the
active tool shape.

The active tool dimensions can change due to:

● Tool wear caused during service life by machining

● Definition of the finishing allowances

Active tool shape
The geometry tool radius compensation (tool parameters 6 to 11) and the wear tool radius
compensation (tool parameters 15 to 20) are added together (geometry tool radius 1 is
added to wear tool radius 1, etc.) to arrive at the shape of the active tool.

17.4.8 Tool parameters 21 - 23: Tool base dimension/adapter dimension

Description
Tool base dimension/adapter dimension can be used when the reference point of the
toolholder (tool size) differs from the reference point of the toolholder.

This is the case when:

 W1: Tool offset
 17.4 Tool cutting edge

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1425

● The tool and the tool adapter are measured separately but are installed on the machine in
one unit (the tool size and adapter size are entered separately in a cutting edge).

● The tool is used in a second tool fixture located in another position (e.g. vertical and
horizontal spindle).

● The tool fixtures of a tool turret are located at different positions.

Figure 17-8 Application examples for base-dimension/adapter-dimension TLC

Tool basic length 1 to 3 (tool parameters 21 to 23)
In order that the discrepancy between the toolholder reference point F and the toolholder
reference point F' can be corrected on the three geometry axes (three dimensional), all 3
basic lengths are active irrespective of the tool type. In other words, a twist drill (tool type
200) with a tool length compensation (length 1) can also have a tool base dimension/adapter
dimension in 3 axes.

References
Please refer to the following documentation for more information about base-
dimension/adapter-dimension tool length compensation:

● Programming Manual, Fundamentals

W1: Tool offset
17.4 Tool cutting edge

 Basic Functions
1426 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.4.9 Tool parameter 24: Undercut angle

Meaning
Certain turning cycles, in which traversing motions with tool clearance are generated,
monitor the tool clearance angle of the active tool for possible contour violations.

Value range
The angle (0 to 90° with no leading sign) is entered in tool parameter 24 as the tool
clearance angle.

Figure 17-9 Tool clearance angle of the turning tool during relief cutting

Machining type, longitudinal or transverse
The tool clearance angle is entered in different ways according to the type of machining
(longitudinal or face). If a tool is to be used for both longitudinal and face machining, two
cutting edges must be entered for different tool clearance angles.

Figure 17-10 Tool clearance angle for longitudinal and face machining

 W1: Tool offset
 17.4 Tool cutting edge

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1427

 Note

If a tool clearance angle (tool parameter 24) of zero is entered, relief cutting is not monitored
in the turning cycles.

References
Please refer to the following documentation for a detailed description of the tool clearance
angle:

● Programming Manual Cycles

17.4.10 Tools with a relevant tool point direction
The following must be observed for tools with relevant cutting edge position:

● The straight line between the tool edge center points at the block start and block end is
used to calculate intersection points with the approach and retraction block. The
difference between the tool edge reference point and the tool edge center point is
superimposed on this movement.

For approach and/or retraction with KONT, the movement is superimposed in the linear
subblock of the approach or retraction movement. Therefore, the geometric conditions for
tools with or without relevant cutting edge position are identical.

● In circle blocks and in motion blocks containing rational polynomials with a denominator
degree > 4, it is not permitted to change a tool with active tool radius compensation in
cases where the distance between the tool edge center point and the tool edge reference
point changes. With other types of interpolation, it is now possible to change when a
transformation is active (e.g. TRANSMIT).

● For tool radius compensation with variable tool orientation, the transformation from the
tool edge reference point to the tool edge center point can no longer be performed by
means of a simple zero offset. Tools with a relevant cutting edge position are therefore
not permitted for 3D peripheral milling (an alarm is output).

 Note

The subject is irrelevant with respect to face milling as only defined tool types without
relevant cutting edge position are permitted for this operation anyway. (A tool with a type,
which has not been explicitly approved, is treated as a ball end mill with the specified
radius. A cutting edge position parameter is ignored).

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1428 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.5 Tool radius compensation 2D (TRC)

17.5.1 General

 Note

For tool radius compensation (TRC) see:
References:
Programming Manual Fundamentals

Only the Programming Guide contains a complete technical description of the tool radius
compensation (TRC) and its special aspects.

Why TRC?
The contour (geometry) of the workpiece programmed in the part program should be
independent of the tools used in production. This makes it necessary to draw the values for
the tool length and tool radius from a current offset memory. Tool radius compensation can
be used to calculate the equidistant path to the programmed contour from the current tool
radius.

Figure 17-11 Workpiece contour (geometry) with equidistant path

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1429

TRC on the plane
TRC is active on the current plane (G17 to G19) for the following types of interpolation:

• Linear interpolation ... G0, G1

• Circular interpolation ... G2, G3, CIP

• Helical interpolation ... G2, G3

• Spline interpolation ... ASPLINE, BSPLINE, CSPLINE

• Polynomial interpolation ... POLY

17.5.2 Selecting the TRC (G41/G42)

Direction of compensation
TRC calculates a path, which is equidistant to the programmed contour. Compensation can
be performed on the left- or righthand side of the programmed contour in the direction of
motion.

Command Significance
G41 TRC on the lefthand side of the contour in the direction of motion
G42 TRC on the righthand side of the contour in the direction of motion
G40 Deselection of TRC

Intermediate blocks
In general, only program blocks with positions on geometry axes in the current plane are
programmed when TRC is active. However, dummy blocks can still also be programmed
with active TRC. Dummy blocks are program blocks, which do not contain any positions on a
geometry axis in the current plane:

● Positions on the infeed axis

● Auxiliary functions,

● etc.

The maximum number of dummy blocks can be defined in the machine data:

MD20250 $MC_CUTCOM_MAXNUM_DUMMY_BLOCKS (Max no. of dummy blocks with no
traversing movements for TRC).

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1430 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Special points to be noted
● TRC can only be selected in a program block with G0 (rapid traverse) or G1 (linear

interpolation).

● A tool must be loaded (T function) and the tool cutting edge (tool compensation) (D1 to D9)
activated no later than in the program block with the tool radius compensation selection.

● Tool radius compensation is not selected with a tool cutting edge/tool compensation of D0.

● If only one geometry axis is programmed on the plane when tool radius compensation is
selected, the second axis is automatically added on the plane (last programmed position).

● If no geometry axis is programmed for the current plane in the block with the tool radius
compensation selection, no selection takes place.

● If tool radius compensation is deselected (G40) in the block following tool radius
compensation selection, no selection takes place.

● If tool radius compensation is selected, the approach behavior is determined by the
NORM/KONT instructions.

17.5.3 Approach and retraction behavior (NORM/KONT/KONTC/KONTT)

NORM and KONT
The NORM and KONT instructions can be used to control approach behavior (selection of tool
radius compensation with G41/42) and retraction behavior (deselection of tool radius
compensation with G40):

Command Significance
NORM Normal setting at start point/end point (initial setting)
KONT Follow contour at start point/end point
KONTC Approach/retraction with constant curvature
KONTT Approach/retraction with constant tangent

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1431

Special points to be noted
● KONT only differs from NORM when the tool start position is behind the contour.

Figure 17-12 Example for selecting TRC with KONT or NORM in front of and behind the contour

● KONT and G450/G451 (corner behavior at outer corners) has a general effect and determines
the approach and retraction behavior with TRC.

● When tool radius compensation is deselected, the retraction behavior is determined by
the NORM/KONT instructions.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1432 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Supplementary conditions
The approach and retraction blocks are polynomials in the following two variants. Therefore,
they are only available for control variants, which support polynomial interpolation.

● KONTT

With KONTT, approach and retraction to/from the contour is with a constant tangent. The
curvature at the block transition is not usually constant.

● KONTC

With KONTC, not only the tangent but also the curvature is constant at the transition, with
the result that a jump in acceleration can no longer occur on activation/deactivation.

Although KONTC includes the KONTT property, the constant tangent version KONTT is available
on its own, because the constant curvature required by KONTC can produce undesired
contours.

Axes
The continuity condition is observed in all three axes. It is thus possible to program a
simultaneous path component perpendicular to the compensation plane for
approach/retraction.

Only linear blocks are permitted for the original approach and retraction blocks with
KONTT/KONTC. These programmed linear blocks are replaced in the control by the
corresponding polynomial curves.

Exception
KONTT and KONTC are not available in 3D variants of tool radius compensation (CUT3DC,
CUT3DCC, CUT3DF).

If they are programmed, the control switches internally to NORM without an error message.

Example for KONTC
The two figures below show a typical application for approach and retraction with constant
curvature:

The full circle is approached beginning at the circle center point. The direction and curvature
radius of the approach circle at the block end point are identical to the values of the next
circle. Infeed takes place in the Z direction in both approach/retraction blocks
simultaneously.

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1433

The associated NC program segment is as follows:

$TC_DP1[1,1]=121 ; Milling tool

$TC_DP6 [1,1]=10 ; Radius 10 mm

N10 G1 X0 Y0 Z60 G64 T1 D1 F10000

N20 G41 KONTC X70 Y0 Z0

N30 G2 I-70 ; Full circle

N40 G40 G1 X0 Y0 Z60

N50 M30

Explanation:

In this example, a full circle with a radius of 70 mm is machined in the X/Y plane. Since the
tool has a radius of 10 mm, the resulting tool center point path describes a circle with a
radius of 60 mm. The start/end points are at X0 Y0 Z60, with the result that a movement
takes place in the Z direction at the same time as the approach/retraction movement in the
compensation plane.

Figure 17-13 Approach and retraction with constant curvature during inside machining of a full circle:

Projection in the X-Y plane.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1434 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 17-14 Approach and retraction with constant curvature during inside machining of a full circle:

3D representation.

KONTT and KONTC compared
The figure below shows the differences in approach/retraction behavior between KONTT and
KONTC. A circle with a radius of 20 mm about the center point at X0 Y-40 is compensated with
a tool with an external radius of 20 mm. The tool center point therefore moves along a
circular path with radius 40 mm. The end point of the approach blocks is at X40 Y30. The
transition between the circular block and the retraction block is at the zero point. Due to the
extended continuity of curvature associated with KONTC, the retraction block first executes a
movement with a negative Y component. This will often be undesired. This response does
not occur with the KONTT retraction block. However, with this block, an acceleration step
change occurs at the block transition.

If the KONTT or KONTC block is the approach block rather than the retraction block, the contour
is exactly the same, but is simply machined in the opposite direction, i.e. the approach and
retraction behavior are symmetrical.

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1435

Figure 17-15 Differences between KONTT and KONTC

 Note

The figure shows that a straight line bordering on the contour quadrant, e.g. to X20 Y-20,
would be violated with KONTC on retraction/approach to X0, Y0.

17.5.4 Smooth approach and retraction

17.5.4.1 Function

Description
The SAR (Smooth Approach and Retraction) function is used to achieve a tangential
approach to the start point of a contour, regardless of the position of the start point.

The approach behavior can be varied and adapted to special needs using a range of
additional parameters.

The two functions, smooth approach and smooth retraction, are largely symmetrical. The
following section is, therefore, restricted to a detailed description of approach; special
reference is made to differences affecting retraction.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1436 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Sub-movements
There are maximum 4 sub-movements in case of soft retraction and approach with the
following positions:

● Start point of the movement P0

● Intermediate points P1, P2 and P3

● End point P4

Points P0, P3 and P4 are always defined. Intermediate points P1 and P2 can be omitted,
according to the parameters defined and the geometrical conditions.

On retraction, the points are traversed in the reverse direction, i.e. starting at P4 and ending
at P0.

17.5.4.2 Parameters
The response of the smooth approach and retraction function is determined by up to 9
parameters:

Non-modal G code for defining the approach and retraction contour
This G code cannot be omitted.

● G147: Approach with a straight line

● G148: Retraction with a straight line

● G247: Approach with a quadrant

● G248: Retraction with a quadrant

● G347: Approach with a semicircle

● G348: Retraction with a semicircle

Figure 17-16 Approach behavior depending on G147 to G347 and DISR (with simultaneous activation of

tool radius compensation)

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1437

Modal G code for defining the approach and retraction contour
This G code is only relevant if the approach contour is a quadrant or semicircle. The
approach and retraction direction can be determined as follows:

● G140:

Defining the approach and retraction direction using active tool radius compensation.
((G140 is the initial setting.)

With positive tool radius:

– G41 active → approach from left

– G42 active → approach from right

If no tool radius compensation is active (G40), the response is identical to G143. In this
case, an alarm is not output. If the radius of the active tool is 0, the approach and
retraction side is determined as if the tool radius were positive.

● G141:

Approach contour from left, or retract to the left.

● G142:

Approach contour from right, or retract to the right.

● G143:

Automatic determination of the approach direction, i.e., the contour is approached from
the side where the start point is located, relative to the tangent at the start point of the
following block (P4).

 Note

The tangent at the end point of the preceding block is used accordingly on retraction. If
the end point is not programmed explicitly on retraction, i.e., if it is to be determined
implicitly, G143 is not permitted on retraction, since there is a mutual dependency between
the approach side and the position of the end point. If G143 is programmed in this case, an
alarm is output. The same applies if, when G140 is active, an automatic switchover to G143
takes place as a result of an inactive tool radius compensation.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1438 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Modal G code (G340, G341), which defines the subdivision of the movement into individual blocks
from the start point to the end point

Figure 17-17 Sequence of the approach movement depending on G340/G341

G340: The approach characteristic from P0 to P4 is shown in the figure.

If G247 or G347 is active (quadrant or semicircle) and start point P3 is outside the
machining plane defined by the end point P4, a helix is inserted instead of a circle.
Point P2 is not defined or coincides with P3.
The circle plane or the helix axis is determined by the plane, which is active in the
SAR block (G17 - G19), i.e., the projection of the start tangent is used by the following
block, instead of the tangent itself, to define the circle.
The movement from point P0 to point P3 takes place along two straight lines at the
velocity valid before the SAR block.

G341: The approach characteristic from P0 to P4 is shown in the figure.
P3 and P4 are located within the machining plane, with the result that a circle is
always inserted instead of a helix with G247 or G347.

 Note

Active, rotating frames are included in all cases where the position of the active plane G17 -
G19 (circle plane, helix axis, infeed movements perpendicular to the active plane) is relevant.

DISR
DISRSpecifies the length of a straight approach line or the radius of an approach arc.

Retraction/approach with straight lines

On approach/retraction along a straight line, DISR specifies the distance from the cutter edge
to the start point of the contour, i.e., the length of the straight line with active TRC is
calculated as the total of the tool radius and the programmed value of DISR.

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1439

An alarm is displayed:

● If DISR is negative and the amount is greater than the tool radius (the length of the
resulting approach line is less than or equal to zero).

Retraction/approach with circles

Approach/retraction with circles DISR indicates always the radius of the tool center point
path. If tool radius compensation is activated, a circle is generated internally, the radius of
which is dimensioned such that the tool center path is derived, in this case also, from the
programmed radius.

An alarm is output on approach and retraction with circles:

● If the radius of the circle generated internally is zero or negative

● If DISR is not programmed

● If the radius value ≤ 0.

DISCL
DISCLspecifies the distance from point P2 from the machining plane.

If the position of point P2 is to be specified by an absolute reference on the axis
perpendicular to the circle plane, the value must be programmed in the form DISCL = AC(
....).

If DISCL is not programmed, points P1, P2 and P3 are identical with G340 and the approach
contour is mapped from P1 to P4.

The system checks that the point defined by DISCL lies between P1 and P3, i.e., in all
movements, which have a component perpendicular to the machining plane (e.g., infeed
movements, approach movements from P3 to P4), this component must have the same
leading sign. It is not permitted to change direction. An alarm is output if this condition is
violated.

On detection of a direction reversal, a tolerance is permitted that is defined by the machine
data:

MD20204 $MC_WAB_CLEARANCE_TOLERANCE (direction reversal on SAR).

However, if P2 is outside the range defined by P1 and P3 and the deviation is less than or
equal to this tolerance, it is assumed that P2 is in the plane defined by P1 and/or P3.

Example:

An approach is made with G17 starting at position Z=20 of point P1. The SAR plane defined
by P3 is at Z=0. The point defined by DISCL must, therefore, lie between these two points.
MD20204=0.010. If P2 is between 20.000 and 20.010 or between 0 and -0.010, it is assumed
that the value 20.0 or 0.0 is programmed. The alarm is output if the Z position of P2 is greater
than 20.010 or less than -0.010.

Depending on the relative position of start point P0 and end point P4 with reference to the
machining plane, the infeed movements are performed in the negative (normal for approach)
or positive (normal for retraction) direction, i.e., with G17 it is possible for the Z component of
end point P4 to be greater than that of start point P0.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1440 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programming the end point P4 (or P0 for retraction) generally with X... Y... Z...
Possible ways of programming the end point P4for approach
End point P4 can be programmed in the actual SAR block.
P4 can be determined by the end point of the next traversing block.
Further blocks (dummy blocks) can be inserted between the SAR block and the next
traversing block without moving the geometry axes.
The end point is deemed to have been programmed in the actual SAR block for approach if
at least one geometry axis is programmed on the machining plane (X or Y with G17). If only
the position of the axis perpendicular to the machining plane (Z with G17) is programmed in
the SAR block, this component is taken from the SAR block, but the position in the plane is
taken from the following block. In this case, an alarm is output if the axis perpendicular to the
machining plane is also programmed in the following block.

Example:

$TC_DP1[1,1]=120 ; Milling tool T1/D1

$TC_DP6[1,1]=7 ; Tool with 7 mm radius

N10 G90 G0 X0 Y0 Z30 D1 T1

N20 X10

N30 G41 G147 DISCL=3 DISR=13 Z=0 F1000

N40 G1 X40 Y-10

N50 G1 X50

...

...

N30/N40 can be replaced by:
 N30 G41 G147 DISCL=3 DISR=13 X40 Y-10 Z0 F1000

or:
 N30 G41 G147 DISCL=3 DISR=13 F1000

 N40 G1 X40 Y-10 Z0

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1441

Possible ways of programming the end point P0for retraction

The end position is always taken from the SAR block, no matter how many axes have been
programmed. We distinguish between the following situations:

1. No geometry axis is programmed in the SAR block.

In this case, the contour ends at point P2 (or at point P1, if P1 and P2 coincide). The
position in the axes, which describe the machining plane, is determined by the retraction
contour (end point of the straight line or arc). The axis component perpendicular to this is
defined by DISCL. If, in this case, DISCL = 0, the movement takes place completely within
the plane.

2. Only the axis perpendicular to the machining plane is programmed in the SAR block.

In this case, the contour ends at point P1. The position of the two other axes is
determined in the same way as in 1.

Retraction with SAR with simultaneous deactivation of TRC

If the SAR retraction block is also used to deactivate tool radius compensation, in the
case of 1. and 2., an additional path from P1 to P0 is inserted such that no movement is
produced when tool radius compensation is deactivated at the end of the retraction
contour, i.e., this point defines the tool center point and not a position on a contour to be
corrected.

3. At least one axis of the machining plane is programmed.

The second axis of the machining plane can be determined modally from its last position
in the preceding block. The position of the axis perpendicular to the machining plane is
generated as described in 1. or 2., depending on whether this axis is programmed or not.
The position generated in this way defines the end point P0.

No special measures are required for deselection of tool radius compensation, because
the programmed point P0 already directly defines the position of the tool center point at
the end of the complete contour.

The start and end points of the SAR contour (P0 and P4) can coincide on approach and
retraction.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1442 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Velocity of the preceding block (typically G0).
All movements from point P0 to point P2 are performed at this velocity, i.e., the movement
parallel to the machining plane and the part of the infeed movement up to the safety
clearance.

Programming the feedrate with FAD

FAD programmed with ...
G340 Feedrate from P2 or P3 to P4.
G341 Feedrate of the infeed movement perpendicular to the machining

plane from P2 to P3.

If FAD is not programmed, this part of the contour is traversed at the velocity, which is active
modally from the preceding block, in the event that no F command defining the velocity is
programmed in the SAR block.

Programmed response:

FAD=0 or negative → Alarm Output
FAD=... → Programmed value acts in accordance with the active G code of

group 15 (feed type; G93, G94, etc.)
FAD=PM(...) → Programmed value is interpreted as linear feed (like G94),

irrespective of the active G code of group 15
FAD=PR(...) → Programmed value is interpreted as revolutional feed (like G95),

irrespective of the active G code of group 15

Example:

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1443

$TC_DP1[1,1]=120 ;Milling tool T1/D1

$TC_DP6[1,1]=7 ;Tool with 7mm radius

N10 G90 G0 X0 Y0 Z20 D1 T1

N20 G41 G341 G247 DISCL=AC(5) DISR=13FAD 500 X40 Y-10 Z=0 F2000

N30 X50

N40 X60

...

Programming feed F
This feed value is effective from point P3 (or from point P2, if FAD is not programmed). If no F
command is programmed in the SAR block, the speed of the preceding block is valid. The
velocity defined by FAD is not used for following blocks.

17.5.4.3 Velocities

Velocities at approach
In both approach diagrams below, it is assumed that no new velocity is programmed in the
block following the SAR block. If this is not the case, the new velocity comes into effect after
point P4.

Figure 17-18 Velocities in the SAR subblocks on approach with G340

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1444 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 17-19 Velocities in the SAR subblocks on approach with G341

Velocities at retraction
During retraction, the rolls of the modally active feedrate from the previous block and the
programmed feedrate value in the SAR block are interchanged, i.e., the actual retraction
contour (straight line, circle, helix) is traversed with the old feedrate value and a new velocity
programmed with the F word applies from point P2 up to P0.

If even retraction is active and FAD is programmed, the path from P3 to P2 is traversed with
FAD, otherwise it is traversed with the old velocity. The last F command programmed in a
preceding block always applies for the path from P4 to P2. G0 has no effect in these blocks.

Traversing from P2 to P0 takes place with the F command programmed in the SAR block or,
if no F command is programmed, with the modal F command from a preceding block. This
applies on the condition that G0 is not active.

If rapid traverse is to be used on retraction in the blocks from P2 to P0, G0 must be activated
before the SAR block or in the SAR block itself. If an additional F command is programmed
in the actual SAR blocks, it is then ineffective. However, it remains modally active for
following blocks.

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1445

Figure 17-20 Velocities in the SAR subblocks on retraction

17.5.4.4 System variables
Points P3 and P4 can be read in the WCS as system variables during approach.

$P_APR: Read P3 (start point) in WCS
$P_AEP: Read P4 (contour start point) in WCS

=1 If the content of $P_APR and $P_AEP is valid, i.e., if these contain the
position values belonging to the last SAR approach block programmed.

$P_APDV

=0 The positions of an older SAR approach block are read.

Changing the WCS between the SAR block and the read operation has no effect on the
position values.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1446 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.5.4.5 Supplementary conditions

Supplementary conditions
● Any further NC commands (e.g. auxiliary function outputs, synchronous axis movements,

positioning axis movements, etc.) can be programmed in an SAR block.

These are executed in the first subblock on approach and in the last subblock on
retraction.

● If the end point P4 is not taken from the SAR block but from a subsequent traversing
block, the actual SAR contour (straight line, quadrant or semicircle) is traversed in this
block.

The last subblock of the original SAR block does not then contain traversing information
for geometry axes. It is always output, however, because further actions (e.g. single
axes) may have to be executed in this block.

● At least two blocks must always be taken into consideration:

– The SAR block itself

– The block, which defines the approach or retraction direction

Further blocks can be programmed between these two blocks.

The number of possible dummy blocks is limited with the machine data:

MD20202 $MC_WAB_MAXNUM_DUMMY_BLOCKS (maximum number of blocks with no
traversing motions with SAR).

● If tool radius compensation is activated simultaneously in an approach block the first
linear block of the SAR contour is the block in which activation takes place.

The complete contour generated by the SAR function is treated by tool radius
compensation as if it has been programmed explicitly (collision detection, calculation of
intersection, approach behavior NORM/KONT).

● The direction of the infeed motion and the position of the circle plane or the helix axis are
defined exclusively by the active plane (G17 - G19) - rotated with an active frame where
appropriate.

● On approach, a preprocessor stop must not be inserted between the SAR block and the
following block which defines the direction of the tangent.

Whether programmed explicitly or inserted automatically by the control, a preprocessor
stop results, in this case, in an alarm.

Behavior with REPOS
If an SAR cycle is interrupted and repositioned, it resumes at the point of interruption on
RMIBL. With RMEBL, the contact point is the end point of the last SAR block; with RMBBL, it is the
start point of the first SAR block.

If RMIBL is programmed together with DISPR (reapproach at distance DISPR in front of
interruption point), the reapproach point can appear in a subblock of the SAR cycle before
the interruption subblock.

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1447

17.5.4.6 Examples

Example 1
The following conditions must be true:

● Smooth approach is activated in block N20

● X=40 (end point); Y=0; Z=0

● Approach movement performed with quadrant (G247)

● Approach direction not programmed, G140 is valid, i.e. because TRC is active (G42) and
compensation value is positive (10), the contour is approached from the right

● Approach circle generated internally (SAR contour) has radius 20, so that the radius of
the tool center path is equal to the programmed value DISR=10

● Because of G341, the approach movement takes place with a circle in the plane, resulting
in a start point at (20, -20, 0)

● Because DISCL=5, point P2 is at position (20, -20, 5) and, because of Z30, point P1 is in
N10 at (20, -20, 30)

Figure 17-21 Contour example 1

Part program:

Program code Comment

$TC_DP1[1,1]=120 ; Tool definition T1/D1

$TC_DP6[1,1]=10 ; Radius

N10 G0 X0 Y0 Z30

N20 G247 G341 G42 NORM D1 T1 Z0 FAD=1000 F=2000 DISCL=5 DISR=10

N30 X40

N40 X100

N50 Y-30

...

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1448 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example 2
The following conditions must be true for approach:

● Smooth approach is activated in block N20

● Approach movement performed with quadrant (G247)

● Approach direction not programmed, G140 is valid, i.e. because TRC is active (G41), the
contour is approached from the left

● Contour offset OFFN=5 (N10)

● Current tool radius=10, and so the effective compensation radius for TRC=15; the radius
of the SAR contour is thus equal to 25, with the result that the radius of the tool center
path is equal to DISR=10

● The end point of the circle is obtained from N30, since only the Z position is programmed
in N20

● Infeed motion

– From Z20 to Z7 (DISCL=AC(7)) with rapid traverse

– Then on to Z0 with FAD=200

– Approach circle in X-Y-plane and following blocks with F1500

(In order that this velocity becomes effective in the following blocks, the active G-code
G0 in N30 must be overwritten with G1. Otherwise, the contour would continue to be
machined with G0.)

The following conditions must be true for retraction:

● Smooth retraction is activated in block N60

● Retraction movement performed with quadrant (G248) and helix (G340)

● FAD not programmed, since irrelevant for G340

● Z=2 in the start point; Z=8 in the end point, since DISCL=6

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1449

● When DISR=5, the radius of SAR contour=20; that of the tool center point path=5

● After the circle block, the retraction movement leads from Z8 to Z20 and the movement is
parallel to the XY plane up to the end point at X70 Y0

Figure 17-22 Contour example 2

Part program:

Program code Comment

; Tool definition T1/D1 $TC_DP1[1,1]=120

$TC_DP6[1,1]=10 ; Radius

; (P0app)

; (P3app)

N10 G0 X0 Y0 Z20 G64 D1 T1 OFFN = 5

N20 G41 G247 G341 Z0 DISCL = AC(7) DISR = 10 F1500 FAD=200

N30 G1 X30 Y-10 ; (P4app)

N40 X40 Z2

; (P4ret)

; (P3ret)

N50 X50

N60 G248 G340 X70 Y0 Z20 DISCL = 6 DISR = 5 G40 F10000

N70 X80 Y0 ; (P0ret)

N80 M 30

 Note

The contour generated in this way is modified by tool radius compensation, which is
activated in the SAR approach block and deactivated in the SAR retraction block.

The tool radius compensation allows for an effective radius of 15, which is the sum of the
tool radius (10) and the contour offset (5). The resulting radius of the tool center path in the
approach block is therefore 10, and 5 in the retraction block.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1450 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.5.5 Deselecting the TRC (G40)

G40 instruction
TRC is deselected with the G40 instruction.

Special points to be noted
● TRC can only be deselected in a program block with G0 (rapid traverse) or G1 (linear

interpolation).

● If D0 is programmed when tool radius compensation is active, compensation is not
deselected and error message 10750 is output.

● If a geometry axis is programmed in the block with the tool radius compensation
deselection, then the compensation is deselected even if it is not on the current plane.

17.5.6 Compensation at outside corners

G450/G451
The G functions G450/G451 can be used to control the response with discontinuous block
transitions at outside corners:

Command Meaning
G450 Discontinuous block transitions with transition circle
G451 Discontinuous block transitions with intersection of equidistant paths

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1451

Figure 17-23 Example of a 90 degree outside corner with G450 and G451

G450 (transition circle)
With the G function G450 active, on outside corners, the center point of the tool travels a
circular path along the tool radius. The circular path starts with the normal position
(perpendicular to the path tangent) at the end point of the previous path section (program
block) and ends in normal position at the start point of the new path section (program block).

Where outside corners are very flat, the response with G450 (transition circle) and G451
(intersection) becomes increasingly similar (see "Very flat outside corners").

If pointed outside corners are desired, the tool must be retracted from the contour (see
Section "DISC").

DISC
The G450 transition circle does not produce sharp outside contour corners because the path
of the tool center point through the transition circle is controlled so that the cutting edge
stops at the outside corner (programmed position). When sharp outside corners are to be
machined with G450, the DISC instruction can be used to program an overshoot. Thus, the
transition circle becomes a conic and the tool cutting edge retracts from the outside corner.

The range of values of the DISC instruction is 0 to 100, in increments of 1.

Value Meaning
DISC = 0 Overshoot disabled, transition circle active
DISC = 100 Overshoot large enough to theoretically produce a response similar to

intersection (G451).

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1452 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The programmable maximum value for DISC can be set via the machine data:

MD20220 $MC_CUTCOM_MAX_DISC (max. value for DISC).

Values greater than 50 are generally not advisable with DISC.

Figure 17-24 Example: Overshoot with DISC= 25

Figure 17-25 Overshoot with DISC depending on contour angle

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1453

G451 (intersection)
If G function G451 is active, the position (intersection) resulting from the path lines (straight
line, circle or helix only) located at a distance of the tool radius to the programmed contour
(center-point path of the tool), is approached. Spines and polynomials are never extended.

Very pointed outside corners
Where outside corners are very pointed, G451 can result in excessive idle paths. Therefore,
the system switches automatically from G451 (intersection) to G450 (transition circle, with DISC
where appropriate) when outside corners are very pointed.

The threshold angle (contour angle) for this automatic switchover (intersection point →
transition circle) can be specified in the machine data:

MD20210 $MC_CUTCOM_CORNER_LIMIT (Max. angle for compensation blocks with tool
radius compensation).

Figure 17-26 Example of automatic switchover to transition circle

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1454 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Very flat outside corners
Where outside corners are very flat, the response with G450 (transition circle) and G451
(intersection) becomes increasingly similar. In this case, it is no longer advisable to insert a
transition circle. One reason why it is not permitted to insert a transition circle at these
outside corners with 5-axis machining is that this would impose restrictions on speed in
contouring mode (G64). Therefore, the system switches automatically from G450 (transition
circle, with DISC where appropriate) to G451 (intersection) when outside corners are very flat.

The threshold angle (contour angle) for this automatic switchover (transition circle →
intersection point) can be specified in the machine data:

MD20230 $MC_CUTCOM_CURVE_INSERT_LIMIT (Max. angle for intersection calculation
with tool radius compensation).

Figure 17-27 Example of automatic switchover to intersection

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1455

17.5.7 Compensation and inner corners

Intersection
If two consecutive blocks form an inside corner, an attempt is made to find a point at which
the two equidistant paths intersect. If an intersection is found, the programmed contour is
shortened to the intersection (first block shortened at end, second block shortened at
beginning).

Figure 17-28 Example of a shortened contour

No intersection
In certain cases, no intersection is found between two consecutive blocks for inside corners
(see figure below).

Predictive contour calculation
If no intersection is found between two consecutive blocks, the control automatically checks
the next block and attempts to find an intersection with the equidistant paths of this block
(see figure below: intersection S). This automatic check of the next block (predictive contour
calculation) is always performed until a number of blocks defined via machine data has been
reached.

MD20240 $MC_CUTCOM_MAXNUM_CHECK_BLOCKS (blocks for predictive contour
calculation for TRC).

If no intersection is found within the number of blocks defined for the check, program
execution is interrupted and an alarm is output.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1456 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 17-29 If there is no intersection between N30 and block N40, the intersection between block N30

and block N50 is calculated.

Multiple intersections
It can be the case with inside corners that predictive contour calculation finds multiple
intersections of the equidistant paths in several consecutive blocks. In these cases, the last
intersection is always used as the valid intersection:

Figure 17-30 Example: Inside corner with TRC without contour violation (predicting 3 blocks)

For further information, see also Section "Collision detection and bottleneck detection
(Page 1457)", "Collision monitoring".

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1457

Special features
Where multiple intersections with the next block are found, the intersection nearest the start
of the next block applies.

17.5.8 Collision detection and bottleneck detection

Function
Collision detection (bottleneck detection) examines whether the equidistant paths of non-
consecutive blocks intersect. If an intersection is found, the response is the same as for
inside corners with multiple intersections: The last intersection to be found is valid.

The maximum number of blocks used for the predictive check is set via:

MD20240 $MC_CUTCOM_MAXNUM_CHECK_BLOCKS (blocks for predictive contour
calculation for TRC).

Syntax
CDON
CDOF
CDOF2

Meaning

CDON: Collision detection ON
CDOF: Collision detection OFF
CDOF2: Collision detection OFF, for 3D circumferential milling.

CDOF2 has the same significance as CDOF for all other types of machining (e.g. 3D face
milling).

Further information
With CDOF, an intersection is sought between two consecutive blocks. If an intersection is
found, no further blocks are examined. With outside corners, an intersection is always found
between two consecutive blocks.

Predictive examination of more than two adjacent blocks is thus possible with CDON and CDOF.

Omission of block

If an intersection is detected between two blocks which are not consecutive, none of the
motions programmed between these blocks on the compensation plane are executed. All
other motions and executable instructions (M commands, traversal of positioning axes, etc.)
contained in the omitted blocks are executed at the intersection position in the sequence in
which they are programmed in the NC program.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1458 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Warning 10763: "The path component of the block in the compensation plane will become
zero."

If a block has been omitted because of collision detection or bottleneck detection, warning
10763 is displayed. The NC program is not interrupted.

The display of the warning can be suppressed by:

MD11410 $MN_SUPPRES_ALARM_MASK, Bit 1 = 1 (mask supporting special alarm
generation)

Bottleneck detection and outside corners

When the intersections of non-consecutive blocks are checked, it is not the programmed
original contours that are examined, but the associated calculated equidistant paths. This
can result in a "bottleneck" being falsely detected at outside corners. The reason for this is
that the calculated tool path does not run equidistant to the programmed original contour
when DISC > 0.

Figure 17-31 Bottleneck detection and outside corners

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1459

17.5.9 Blocks with variable compensation value

Supplementary conditions
A variable compensation value is permissible for all types of interpolation (including circular
and spine interpolation).

It is also permitted to change the sign (and, therefore, the compensation side).

Figure 17-32 Tool radius compensation with variable compensation value

Calculation of intersection
When the intersections in blocks with variable compensation value are calculated, the
intersection of the offset curves (tool paths) is always calculated based on the assumption
that the compensation value is constant.

If the block with the variable compensation value is the first of the two blocks to be examined
in the direction of travel, then the compensation value at the block end is used for the
calculation; the compensation value at the block start is used otherwise.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1460 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 17-33 Intersection calculation with variable compensation value

Restrictions
If during machining on the inside of the circle the compensation radius becomes geater than
the programmed circle radius, then the machining is rejected with the following alarm:

Alarm 10758 "Curvature radius with variable compensation value too small"

Maintain stability of closed contour
If a radius of two circles is increased slightly, a third block may be necessary in order to
maintain the stability of the closed contour. This is the case if two adjacent blocks, which
represent two possible intersection points for a closed contour, are skipped due to the
compensation.

A stable closed contour can be achieved by choosing the first intersection point instead of
the second.

SD42496 $SC_CUTCOM_CLSD_CONT ≠ 0 (response of TRC for closed contour).

In that case, the second intersection point is always reached, even if the block is skipped. A
third block is then not required.

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1461

17.5.10 Keep tool radius compensation constant

Description
The "Keep tool radius compensation constant" function is used to suppress tool radius
compensation for a number of blocks, whereby a difference between the programmed and
the actual tool center path traveled set up by tool radius compensation in the previous blocks
is retained as the compensation.

It can be an advantage to use this method when several traversing blocks are required
during line milling in the reversal points, but the contours produced by the tool radius
compensation (follow strategies) are not wanted.

Activation
The "Keep tool radius compensation constant" function is activated with the G code CUTCONON
(CUTter compensation CONstant ON) and deactivated with the G code CUTCONOF (CUTter
compensation CONstant OFF).

CUTCONON and CUTCONOF form a modal G-code group.

The initial setting is CUTCONOF.

The function can be used independently of the type of tool radius compensation (21/2D, 3D
face milling, 3D circumferential milling).

Normal case
Tool radius compensation is normally active before the compensation suppression and is still
active when the compensation suppression is deactivated again.

In the last traversing block before CUTCONON, the offset point in the block end point is
approached. All following blocks, in which compensation suppression is active, are traversed
without compensation. However, they are offset by the vector from the end point of the last
offset block to its offset point. These blocks can have any type of interpolation (linear,
circular, polynomial).

The deactivation block of the compensation suppression, i.e. the block that contains
CUTCONOF, is compensated normally. It starts in the offset point of the start point. One linear
block is inserted between the end point of the previous block, i.e. the last programmed
traversing block with active CUTCONON, and this point.

Circular blocks, for which the circle plane is perpendicular to the compensation plane
(vertical circles), are treated as though they had CUTCONON programmed. This implicit
activation of compensation suppression is automatically canceled in the first traversing block
that contains a traversing motion in the compensation plane and is not such a circle. Vertical
circle in this sense can only occur during circumferential milling.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1462 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example:

N10 ; Definition of tool d1

N20 $TC_DP1[1,1] = 110 ; Type

N30 $TC_DP6[1,1]= ; Radius

N40

N50 X0 Y0 Z0 G1 G17 T1 D1 F10000

N60

N70 X20 G42 NORM

N80 X30

N90 Y20

N100 X10 CUTCONON ; Activate compensation suppression

N110 Y30 KONT ; On deactivation of contour suppression,

insert bypass circle, if necessary

N120 X-10 CUTCONOF

N130 Y20 NORM ; No bypass circle on deactivation of TRC

N140 X0 Y0 G40

N150 M30

Figure 17-34 Sample program for contour suppression

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1463

Special cases
● If tool radius compensation is not active (G40), CUTCONON has no effect. No alarm is

produced. The G code remains active, however.

This is significant if tool radius compensation is to be activated in a later block with G41 or
G42.

● It is permissible to change the G code in the 7th G-code group (tool radius compensation;
G40 / G41 / G42) with CUTCONON active. A change to G40 is active immediately.

The offset used for traversing the previous blocks is traveled.

● If CUTCONON or CUTCONOF is programmed in a block without traversing in the active
compensation plane, activation is delayed until the next block that has such a traversing
motion.

● If CUTCONON is programmed with active tool radius compensation and not canceled before
the end of the program, the traversing blocks are traversed with the last valid
compensation.

The same applies for reprogramming of G41 or G42 in the last traversing block of a
program.

● If tool radius compensation is activated with G41 or G42 and CUTCONON is also already
active, activation of compensation is delayed until the next traversing block with CUTCONOF.

● When reapproaching the contour with CUTCONOF, the 17th G-code group (approach and
retraction behavior with tool compensation; NORM / KONT) is evaluated, i.e. a bypass circle
is inserted if necessary for KONT. A bypass circle is inserted under the same conditions as
for activation of tool radius compensation with G41 or G42.

● The number of blocks with suppressed tool radius compensation is restricted:

MD20252 $MC_CUTCOM_MAXNUM_SUPPR_BLOCKS (Maximum number of blocks
with compensation suppression).

If it is exceeded, machining is aborted and an error message issued.

The restriction is necessary because the internal block processing in the last block before
CUTCONON must be resumed when repositioning.

● The response after reprogramming G41 or G42 when tool radius compensation is already
active is similar to compensation suppression.

The following deviations apply:

– Only linear blocks are permissible

– A single traversing block that contains G41 or G42 is modified so that it ends at the
offset point of the start point in the following block. Thus it is not necessary to insert a
dummy block. The same applies to the last block in a sequence of traversing blocks
where each contains G41 or G42.

– The contour is always reapproached with NORM, independent of the G code of the 17th
group (approach and retraction behavior with tool compensation; NORM / KONT).

● If G41 / G42 is programmed several times in consecutive traversing blocks, all blocks are
machined as for CUTCONON, except for the last one.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1464 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

● The type of contour suppression is evaluated only in the first traversing block of a
sequence of consecutive traversing blocks.

If both CUTCONON and G41 or G42 are programmed in the first block, the response to
deactivating contour suppression is determined by CUTCONON.

Changing from G41 to G42 or vice versa makes sense in this case as a means of changing
the compensation side (left or right of the contour) when restarting.

A change of compensation side (G41/G42) can also be programmed in a later block, even if
contour suppression is active.

● Collision detection and bottleneck detection is deactivated for all blocks with active
contour suppression.

17.5.11 Alarm behavior

Alarm during preprocessing
If a tool radius compensation alarm is output during preprocessing, main-run machining
stops at the next block end reached, i.e. usually at the end of the block currently being
interpolated (if Look Ahead is active, once the axes have come to a stop).

Alarms for preprocessing stop and active tool radius compensation
Tool radius compensation generally requires at least one of the following traversing blocks
(even more for bottlenecks) to determine the end point of a block. Since the preprocessing
stop of such a block is not available, traversing continues to the offset point in the last block.
Correspondingly, the offset point in the start point is approached in the first block after a
preprocessing stop.

The contour obtained may deviate considerably from the one that would result without
preprocessing stop. Contour violations in particular are possible. Therefore the following
setting data was introduced:

SD42480 $MC_STOP_CUTCOM_STOPRE (alarm response for TRC and preprocessing
stop).

The response of the tool radius compensation remains unchanged compared to the previous
status, and/or an alarm is output for preprocessing stop during active tool radius
compensation and the program is halted, depending on the value.

The user can acknowledge this alarm and continue the NC program with NC start or abort it
with RESET.

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1465

17.5.12 Intersection procedure for polynomials

Function
If two curves with active tool radius compensation form an outside corner, depending on the
G code of the 18th group (corner behavior with tool compensation; G450 / G451) and
regardless of the type of curves involved (straight lines, circles, polynomials):

● Either a conic is inserted to bypass the corner

Or

● The curves involved are extrapolated to form an intersection.

If no intersection is found with G451 activated, or if the angle formed by the two curves is too
steep, switchover to insert mode is automatic.

The intersection procedure for polynomials is released with the machine data:

MD20256 $MC_CUTCOM_INTERS_POLY_ENABLE (Intersection process possible for
polynomials)

 Note

If this machine data is set to inactive, a block (can be very short) is always inserted (even if
transitions are almost tangential). These short blocks always produce unwanted drops in
speed during G64 operation.

17.5.13 G461/G462 Approach/retract strategy expansion

Function
In certain special geometrical situations, extended approach and retraction strategies,
compared with the previous implementation, are required in order to activate or deactivate
tool radius compensation (see figure below).

 Note

The following example describes only the situation for deactivation of tool radius
compensation. The response for approach is virtually identical.

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1466 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Example

G42 D1 T1 ; Tool radius 20 mm

...

G1 X110 Y0

N10 X0

N20 Y10

N30 G40 X50 Y50

Figure 17-35 Retraction behavior with G460

The last block with active tool radius compensation (N20) is so short that an intersection no
longer exists between the offset curve and the preceding block (or a previous block) for the
current tool radius. An intersection between the offset curves of the following and preceding
blocks is therefore sought, i.e., between N10 and N30 in this example. The curve used for the
retraction block is not a real offset curve, but a straight line from the offset point at the end of
block N20 to the programmed end point of N30. The intersection is approached if one is found.
The colored area in the figure is not machined, although the tool used would be capable of
this.

G460
With G460, the approach/retraction strategy is the same as before.

 W1: Tool offset
 17.5 Tool radius compensation 2D (TRC)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1467

G461
If no intersection is possible between the last TRC block and a preceding block, the offset
curve of this block is extended with a circle whose center point lies at the end point of the
uncorrected block and whose radius is equal to the tool radius.

Figure 17-36 Retraction behavior with G461

The control attempts to cut this circle with one of the preceding blocks. If CDOF is active, the
search is terminated when an intersection is found, i.e., the system does not check for more
intersections with even earlier blocks.

If CDON is active, the search for more intersections continues after the first intersection is
found.

An intersection point, which is found in this way, is the new end point of a preceding block
and the start point of the deactivation block. The inserted circle is used exclusively to
calculate the intersection and does not produce a traversing movement.

 Note

If no intersection is found, the following alarm is output:

Alarm "10751 Collision danger"

W1: Tool offset
17.5 Tool radius compensation 2D (TRC)

 Basic Functions
1468 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

G462
If no intersection is possible between the last TRC block and a preceding block, a straight
line is inserted, on retraction with G462 (initial setting), at the end point of the last block with
tool radius compensation (the block is extended by its end tangent).

Figure 17-37 Retraction behavior with G462

The search for the intersection is then identical to the procedure for G461.

With G462, the corner generated by N10 and N20 in the sample program is not machined to the
full extent actually possible with the tool used. However, this behavior may be necessary if
the part contour (as distinct from the programmed contour), to the left of N20 in the example,
is not permitted to be violated even with y values greater than 10 mm.

If KONT is active (travel round contour at start or end point), behavior will differ according to
whether the end point is in front of or behind the contour.

End point in front of contour
If the end point is located in front of the contour, the retraction behavior is the same as for
NORM. This feature does not change, even if the last contour block with G451 is extended with
a straight line or a circle. Additional circumnavigation strategies to avoid a contour violation
in the vicinity of the contour end point are therefore not required.

End point behind contour
If the end point is behind the contour, a circle or straight line is always inserted depending on
G450/G451. In this case, G460-G462 has no effect.

If, in this situation, the last traversing block has no intersection with a preceding block, an
intersection with the inserted contour element or with the linear section from the end point of
the circumnavigation circle to the programmed end point can result.

If the inserted contour element is a circle (G450), and it intersects with the preceding block,
this is the same as the intersection, which would be produced with NORM and G461. In general,
however, a remaining section of the circle still has to be traversed. An intersection
calculation is no longer required for the linear section of the retraction block.

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1469

In the second case (if no intersection is found between the inserted contour element and the
preceding blocks), the intersection between the retraction straight line and a preceding block
is approached.

Therefore, when G461 or G462 is active, behavior deviating from G460 can only arise if NORM is
active or if behavior with KONT is identical to NORM due to the geometrical conditions.

 Note

The approach behavior is symmetrical to the retraction behavior.

The approach/retraction behavior is determined by the state of the G command in the
approach/retraction block. The approach behavior can therefore be set independently of the
retraction behavior.

Example:

Program for using G461 during approach:

N10 $TC_DP1[1,1]=120 ; Tool type mill

N20 $TC_DP6[1,1]=10 ; Radius

N30 X0 Y0 F10000 T1 D1

N40 Y20

N50 G42 X50 Y5 G461

N60 Y0 F600

N70 X30

N80 X20 Y-5

N90 X0 Y0 G40

N100 M30

17.6 Toolholder with orientation capability

17.6.1 General

Introduction
The orientation of the tool can vary (e.g. due to retooling) for one single class of machine
tools. When the machine is operating, the orientation that has been set is permanent,
however, and cannot be changed during traversing. For this reason, kinematic orientation
transformation (3-, 4- or 5axis transformations, TRAORI) is neither necessary nor does it make
sense for such machines. However, it is necessary to take account of the changes in the tool
length components caused by changing the orientation, without having to trouble the user
with mathematics involved. The control performs these calculations.

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1470 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Availability
For SINUMERIK 828D, the "toolholder with orientation capability" function is only available
for the milling versions.

Required data
The following requirements must be met if the control is to take tool compensations into
account for toolholders with orientation capability:

● Tool data (geometry, wear, etc.)

● Toolholder data (data for the geometry of the toolholder with orientation capability)

Toolholder selection
A toolholder defined in the control must be specified for the "Toolholder with orientation
capability" function. The NC program command below is used for this purpose:

TCARR = m

m: Number of the toolholder

The toolholder has an associated toolholder data block that describes its geometry.

Activating the toolholder and its block has an immediate effect, i.e. from the next traversing
block onwards.

Assignment tool/toolholder
The tool that was active previously is assigned to the new toolholder.

From the point of view of the control, toolholder number m and tool number T can be
combined freely. In the real application, however, certain combinations can be ruled out for
machining or mechanical reasons. The control does not check whether the combinations
make sense.

Description of the kinematics of the toolholder
The kinematics of the toolholder with orientation capability is described with a total of 33
parameter sets.

The data of the data block can be edited by the user.

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1471

Toolholder with orientation capability
Example: Cardan toolholder with two axes for the tool orientation

Figure 17-38 Cardan toolholder with two axes

Processing toolholder data blocks
Two options are available:

● Explicit entry in the toolholder data block from the part program

● Automatic acceptance of certain values (angles) from a frame

A requirement for this is that TCOFR (Tool Carrier Orientation FRame) is also specified
when the toolholder is selected.

The tool orientation used to calculate the tool length is determined again from the frame
active at this time when a toolholder is changed.

Orientation in Z direction
The G function TOFRAME defines a frame such that the Z direction in this frame is the same as
the current tool orientation.

If no toolholder or a toolholder without change in orientation is active, then the Z direction is
in the new frame:

● The same as the old Z direction with G17.

● The same as the old Y direction with G18.

● The same as the old X direction with G19.

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1472 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

TCOABS for active frame
The absolute toolholder orientation is set using:

TCOABS (Tool Carrier Orientation ABSolute)

The orientation taken into account for the tool length compensation is independent of the
orientation of the active frame.

Only one of the commands TCOABS or TCOFR can be valid.

Frame change
The user can change the frame following selection of the tool. This does not have any effect
on the tool length compensation components.

Angles in the toolholder data:

The programmed angles of rotation stored in the toolholder data is not affected by the angle
of rotation defined by the frames. When changing from TCOFR to TCOABS, the original
(programmed) angles of rotation in the toolholder data is reactivated.

Tool compensation types
TRC takes account of the current tool orientation when CUT2D or CUT3DFS is active.

All other tool compensation types

These are all the compensation types of G-code group 22, with the exception of CUT3DC and
CUT3DF. The response remains the same with respect to the plane used for compensation.
This is determined independent of the tool orientation from the active frame.

For CUT2DF and CUT3DFF, the compensation plane used for TRC is determined from the frame
independently of the current tool orientation. The active plane (G17/G18/G19) is considered.

CUT3DC and CUT3DF

3D tool compensation for circumferential milling

3D tool compensations for face milling with active 5-axis transformation are not affected by
the "Toolholder with orientation capability" function.

The orientation information is determined by the active kinematic 5-axis transformation.

Limited toolholder orientation
An alarm is output if an orientation that cannot be reached with the defined toolholder
kinematic is specified by the frame.

The following kinematics cannot achieve any orientation:

● If the two rotary axes which are necessary to define the kinematics are not perpendicular
to each other and if the tool axis which defines the tool direction is not perpendicular to
the second rotary axis

or

● Less than two axes have been defined

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1473

Non-rotary toolholders

The tool orientation used internally is dependent only on the basic orientation of the tool and
the active plane (G17 - G19).

Ambiguities
With two axes, a particular tool orientation defined by the frame can generally be set with two
different rotary angle pairs. Of these two, the control selects the setting with which the rotary
angle is as close as possible to the programmed rotary angle.

Storing angles in the toolholder data

In virtually any case where ambiguities may arise, it is necessary to store the approximate
angle expected from the frame in the toolholder data.

Parameter sets
A complete parameter set for a toolholder with orientation capability consists of 33 values.

The following system variables are available:

● $TC_CARR1 to $TC_CARR33

● In addition, $TC_CARR34 to $TC_CARR65 are freely available for the user and for fine
offsets.

The significance of the individual parameters is distinguished as follows:

Machine kinematics:

$TC_CARR1 to $TC_CARR20 and $TC_CARR23

$TC_CARR18 to $TC_CARR20 define a further vector l4, which is needed to describe the
machine with extended kinematics (both tool and workpiece can be rotated).

$TC_CARR21 and $TC_CARR22 contain the channel-axis names of the rotary axes, the
positions of which can be used to determine the orientation of the toolholder with orientation
capability, if necessary.

Kinematic type:

$TC_CARR23 using letter T, P or M

The following three options are available for the kinematic type, for which both upper and
lower case text are permissible:

T: Only the (Tool) can be rotated (basic value).
P: Only the workpiece (Part) can be rotated.
M: Both tool and workpiece can be rotated (Mixed mode).

Any character other than the three mentioned here will result in an alarm if it is tried to
activate the toolholder with orientation capability:

Alarm "14153 Channel %1 block %2 unknown toolholder type: %3"

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1474 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Rotary axis parameters:

$TC_CARR24 to $TC_CARR33

The system variables in $TC_CARR24 to $TC_CARR33 can be used to define offsets, angle
compensations, Hirth tooth system and axis limits.

 Note

The system variables are available with and without active tool management.

Components and presetting of the chain/data block
The values $TC_CARR1 to $TC_CARR20 and $TC_CARR24 to $TC_CARR33 in the
toolholder data block are of NC language format type REAL..

The values $TC_CARR21 and $TC_CARR22 for the axis name of the first rotary axis (v1)
and the second rotary axis (v2) are of NC language format type AXIS. They are all preset to
zero.

The value $TC_CARR23 is initialized with the uppercase letter "T" (only tool can be rotated).

$TC_CARRn[m]

$TC_CARR[0]= 0 has a special significance

System variables for toolholders with orientation capability
$TC_CARRn[m]

 n: Parameters 1...33
 m: Number of the toolholder 1 that can be oriented...Value of the machine data:

MD18088 $MN_MM_NUM_TOOL_CARRIER (maximum number of definable
toolholders)

Description NCK variable Language

format
Default setting

x component of offset vector l1 $TC_CARR1 REAL 0
y component of offset vector l1 $TC_CARR2 REAL 0
z component of offset vector l1 $TC_CARR3 REAL 0
x component of offset vector l2 $TC_CARR4 REAL 0
y component of offset vector l2 $TC_CARR5 REAL 0
z component of offset vector l2 $TC_CARR6 REAL 0
x component of rotary axis v1 $TC_CARR7 REAL 0
y component of rotary axis v1 $TC_CARR8 REAL 0
z component of rotary axis v1 $TC_CARR9 REAL 0

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1475

Description NCK variable Language
format

Default setting

x component of rotary axis v2 $TC_CARR10 REAL 0
y component of rotary axis v2 $TC_CARR11 REAL 0
z component of rotary axis v2 $TC_CARR12 REAL 0
Angle of rotation α1 (in degrees) $TC_CARR13 REAL 0
Angle of rotation α2 (in degrees) $TC_CARR14 REAL 0
x component of offset vector l3 $TC_CARR15 REAL 0
y component of offset vector l3 $TC_CARR16 REAL 0
z component of offset vector l3 $TC_CARR17 REAL 0
x component of offset vector l4 $TC_CARR18 REAL 0
y component of offset vector l4 $TC_CARR19 REAL 0
z component of offset vector l4 $TC_CARR20 REAL 0
Axis name of the rotary axis v1 $TC_CARR21 AXIS 0
Axis name of the rotary axis v2 $TC_CARR22 AXIS 0
Kinematic type $TC_CARR23 CHAR T
Offset of rotary axis v1 $TC_CARR24 REAL 0
Offset of rotary axis v2 $TC_CARR25 REAL 0
Angle offset of rotary axis v1 (Hirth tooth) $TC_CARR26 REAL 0
Angle offset of rotary axis v2 (Hirth tooth) $TC_CARR27 REAL 0
Angle increment of rotary axis v1 (Hirth tooth) $TC_CARR28 REAL 0
Angle increment of rotary axis v2 (Hirth tooth) $TC_CARR29 REAL 0
Minimum position of rotary axis v1 (SW limit) $TC_CARR30 REAL 0
Minimum position of rotary axis v2 (SW limit) $TC_CARR31 REAL 0
Maximum position of rotary axis v1 (SW limit) $TC_CARR32 REAL 0
Maximum position of rotary axis v2 (SW limit) $TC_CARR33 REAL 0

System variables for the user and for fine offsets

● $TC_CARR34 to $TC_CARR40

Contain parameters, which are freely available to the user.

● $TC_CARR41 to $TC_CARR65

Contain fine offset parameters that can be added to the values in the basic parameters.
The fine offset value assigned to a basic parameter is obtained when the value 40 is
added to the parameter number.

● $TC_CARR47 to $TC_CARR54 and $TC_CARR61 to $TC_CARR63

Not defined and produce an alarm if read or write access is attempted.

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1476 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Description NCK variable Language
format

Default setting

Toolholder name $TC_CARR34 String[32] ""
Axis name 1 $TC_CARR35 *) String[32] ""
Axis name 2 $TC_CARR36 *) String[32] ""
Identifier $TC_CARR37 *) INT 0
Position component X $TC_CARR38 *) REAL 0
Position component Y $TC_CARR39 *) REAL 0
Position component Z $TC_CARR40 *) REAL 0
x comp. fine offset of offset vector l1 $TC_CARR41 REAL 0
y comp. fine offset of offset vector l1 $TC_CARR42 REAL 0
z comp. fine offset of offset vector l1 $TC_CARR43 REAL 0
x comp. fine offset of offset vector l2 $TC_CARR44 REAL 0
y comp. fine offset of offset vector l2 $TC_CARR45 REAL 0
z comp. fine offset of offset vector l2 $TC_CARR46 REAL 0
x comp. fine offset of offset vector l3 $TC_CARR55 REAL 0
y comp. fine offset of offset vector l3 $TC_CARR56 REAL 0
z comp. fine offset of offset vector l3 $TC_CARR57 REAL 0
x comp. fine offset of offset vector l4 $TC_CARR58 REAL 0
y comp. fine offset of offset vector l4 $TC_CARR59 REAL 0
z comp. fine offset of offset vector l4 $TC_CARR60 REAL 0
Offset of fine offset of rotary axis v1 $TC_CARR64 REAL 0
Offset of fine offset of rotary axis v2 $TC_CARR65 REAL 0
Remarks:
*) The system variables $TC_CARR35 to $TC_CARR40 are used in the measuring cycles as well

as ShopMill and ShopTurn.

17.6.2 Kinematic interaction and machine design

Representation of the kinematic chain
The concept of the kinematic chain is used to describe the kinematic interaction between a
reference point and the tool tip.

The chain specifies all the data required for the toolholder data block in a schematic. To
describe the concrete case with a particular kinematic, the relevant components of the chain
must be assigned real vectors, lengths and angles. The chain represents the maximum
constellation. In simpler applications, individual components can be zero (e.g. kinematics
with one or no rotary axis).

The machine does not have to have axes that rotate the tool and/or workpiece table. The
function can be used even if the orientations are set manually by handwheels or
reconfiguration.

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1477

The machine design is described by the following parameters:

● Two rotary axes (v1 and v2), each with one angle of rotation (α1 or α2), which counts
positively for clockwise rotation facing the direction of the rotation vector.

● Up to four offset vectors (l1 to l4) for relevant machine dimensions (axis distances,
distances to machine or tool reference points).

Zero vectors
Vectors v1 and v2 can be zero. The associated angle of rotation (explicitly programmed or
calculated from the active frame) must then also be zero, since the direction of the rotating
axis is not defined. If this condition is not satisfied, an alarm is produced when the toolholder
is activated.

Less than two rotating axes
The option not to define a rotating axis makes sense when the toolholder to be described
can only rotate the tool in one plane. A sensible minimum data block may, therefore, contain
only one single entry not equal to 0 in the toolholder data; namely, a value in one of the
components of v1 or v2 for describing a rotating axis parallel to the axis where the angle of
rotation α1 or α2 is determined from one frame.

Further special cases
Vectors v1 and v2 can be colinear. However, the degree of freedom for orientation is lost, i.e.
this type of kinematic is the same as one where only one rotary axis is defined. All possible
orientations lie on one cone sheath. The conical sheath deforms to a straight line if tool
orientation t and v1 or v2 become colinear. Change of orientation is, therefore, not possible in
this special case. The cone sheath deforms to a circular surface (i.e. all orientations are
possible in one plane), if tool orientation t and v1 or v2 are perpendicular to each other.

It is permissible for the two vectors v1 and v2 to be zero. A change in orientation is then no
longer possible. In this special case, any lengths l1 and l2, which are not equal to zero, act as
additional tool length compensations, in which the components in the individual axes are not
affected by changing the plane (G17 - G19).

Kinematics data expansions
● Possibility of direct access to existing machine axes in order to define the toolholder

setting via the rotary axis positions.

● Extension of the kinematics with rotary workpiece and on kinematics with rotary tool and
rotary workpiece.

● Possibility to permit only discrete values in a grid for the rotary axis positions (Hirth tooth
system).

The extensions are compatible with earlier software versions and encompass the kinematic
data blocks from $TC_CARR18 to $TC_CARR23.

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1478 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Machine with rotary tool
On machines with rotary tool there is no change in the definition of the kinematics compared
to older software versions. The newly introduced vector l4, in particular, has no significance.
Should the contents of l4 not be zero, this is ignored.

The term "Toolholder with orientation capability" is actually no longer really appropriate for
the new kinematic types, with which the table can also be rotated, either alone or additionally
to the tool. However, it has been kept for reasons of compatibility.

The kinematic chains used to describe the machine with rotary tool (general case) are shown
in the figure below:

Figure 17-39 Kinematic chain to describe a tool with orientation

Vectors, which describe offsets in the rotary head, are positive in the direction from the tool
tip to the reference point of the toolholder.

The following kinematic type is defined for machines with a rotary tool:

$TC_CARR23 using letter T

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1479

Machine with rotary workpiece
On machines with rotary workpiece, the vector l1 has no significance. If it contains a value
other than zero, this is ignored.

The kinematic chain for machines with rotary workpiece is shown in the figure below.

Figure 17-40 Kinematic chain to describe a rotary table

Vectors, which describe offsets in the rotary table, are positive in the direction from the
machine reference point to the table.

The following kinematic type is defined for machines with a rotary workpiece:

$TC_CARR23 using letter P

 Note

On machines with rotary workpiece it is generally useful if the selected machine reference
point and the reference point of the table are identical. Selecting the reference points in this
way has the advantage that the position of the workpiece zero in the initial state (i.e. with
rotary axes not turned) does not change when the rotary table is activated. The (open)
kinematic chain (see figure) is then closed.

In this special case, therefore, the following formula applies: l2 = - (l3 + l4)

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1480 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Machines with extended kinematics
On machines with extended kinematics (both tool and workpiece are rotary), it is only
possible to turn each of the components with one axis.

The kinematic of the rotary tool is described with the first rotary axis (v1) and the two vectors
l1 and l2, that of the rotary table with the second rotary axis (v2) and the two vectors l3 and l4.
The two kinematic chain components for machines with rotary tool and rotary workpiece are
shown in the figure below.

Figure 17-41 Kinematic sequence with extended kinematics

The following kinematic type is defined for machines with a rotary tool and rotary workpiece:

$TC_CARR23 using letter M (extended kinematics)

 Note

On machines with extended kinematics it is generally useful, as with machines where only
the table can be rotated, for the machine reference point and the reference point of the table
to be identical. The (open) chain component to describe the table (see figure) is then closed.

In this special case, the following formula applies: l3 = - l4

Rotary tool types T and M
For machine kinematics with a rotary tool (types T and M), the toolholder component with
orientation capability, which describes the tool or head component (as opposed to the table
component), acts, in conjunction with the active tool, as a new overall tool.

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1481

Fine offset
The offset vectors l1 to l4 and the offsets of the rotary axes v1 and v2 can be represented as
the sum of a basic value and a fine offset. The fine offset parameters assigned to the basic
values are achieved by adding a value of 40 to the index of the basic value.

Example:

The parameter $TC_CARR5 is assigned to the fine offset $TC_CARR45.

 Note

For the significance of the system variables $TC_CARR41 to $TC_CARR65 available for the
fine offset see:

References:
Programming Manual, Job Planning; Tool Offsets:

Activation

The following setting adds the fine offset values to the basic values:

SD42974 $SC_TOCARR_FINE_CORRECTION = 1 (fine offset TCARR on/off)

Supplementary conditions

The amount is limited to the permissible fine offset.

The maximum permissible value is defined:

For: With machine data:

• The components of vectors l1 to l4: MD20188 $MC_TOCARR_FINE_LIM_LIN

• The offsets of the two rotary axes v1 and v2: MD20190 $MC_TOCARR_FINE_LIM_ROT

An illegal fine offset value is only detected when:

● A toolholder with orientation capability, which contains such a value, is activated

and

● at the same time the following setting data is set:

SD42974 $SC_TOCARR_FINE_CORRECTION

Description of a rotation
A data block for describing a rotation comprises one vector v1 /v2 to describe the direction of
rotation of the rotary axis in its initial state and an angle α1/α2. The angle of rotation is
counted positively for clockwise rotation facing the direction of the rotation vector.

The two toolholder angles α1 and α2 are determined using a frame, independent of the
active plane currently selected (G17 - G19).

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1482 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The tool orientation in the initial state (both angles α1 and α2 are zero) is (as in the default
case):
● G17: Parallel to Z.
● G18: Parallel to Y.
● G19: Parallel to Z

Assigning data to the toolholder
Example of a machine with rotary toolholder

The following settings are obtained at the mill head shown for a machine with toolholder with
orientation capability of kinematic type T:

Component of the offset vector l1 = (-200, 0, 0)
Component of the offset vector l2 = (0, 0, 0)
Component of the offset vector l3 = (-100, 0, 0)
Component of rotary axis v1 = (1, 0, 0)
Component of rotary axis v2 = (-1, 0, 1)
Tool base dimension of tool
reference point

(0, 0, 250)

 Note

The tool reference point for the tool base dimension is defined by the reference point at the
machine.

For further information about the reference points in the working area, see Section "K2: Axis
Types, Coordinate Systems, Frames (Page 647)".

Figure 17-42 Assignment of the toolholder data

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1483

Suitable assumptions were made for the following values in the data block:

● The two rotary axes intersect at one point.

All components of l2 are therefore zero.

● The first rotary axis lies in the x/z plane, the second rotary axis is parallel to the x axis.

These conditions define the directions of v1 and v2 (the lengths are irrelevant, provided
that they are not equal to zero).

● The reference point of the toolholder lies 200 mm in the negative x direction viewed from
the intersection of the two rotary axes.

This condition defines l1 .

Specify associated data block values
The following associated data block values are specified for the toolholder shown on a
machine with rotary toolholder:

Description NCK variable Value
x component of offset vector l1 $TC_CARR1 - 200
y component of offset vector l1 $TC_CARR2 0
z component of offset vector l1 $TC_CARR3 0
x component of offset vector l2 $TC_CARR4 0
y component of offset vector l2 $TC_CARR5 0
z component of offset vector l2 $TC_CARR6 0
x component of rotary axis v1 $TC_CARR7 1
y component of rotary axis v1 $TC_CARR8 0
z component of rotary axis v1 $TC_CARR9 0
x component of rotary axis v2 $TC_CARR10 -1
y component of rotary axis v2 $TC_CARR11 0
z component of rotary axis v2 $TC_CARR12 1
Angle of rotation α1 (in degrees) $TC_CARR13 0
Angle of rotation α2 (in degrees) $TC_CARR14 0
x component of offset vector l3 $TC_CARR15 -100
y component of offset vector l3 $TC_CARR16 0
z component of offset vector l3 $TC_CARR17 0

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1484 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Explanations
The toolholder kinematic chosen in the example is such that the two rotary axes form an
angle of 45 degrees, which means that the orientation cannot take just any value. In
concrete terms, this example does not permit the display of orientations with negative X
components.

x component of the tool base dimension: 0
y component of the tool base dimension: 0
z component of the tool base dimension: 250

 Note

The required data cannot be determined unequivocally from the geometry of the toolholder,
i.e. the user is free to a certain extent to decide the data to be stored. Thus, for the example,
it is possible to specify only one z component for the tool base dimension up to the second
axis. In this case, l2 would no longer be zero, but would contain the components of the
distance between this point on the second axis and a further point on the first axis. The point
on the first axis can also be selected freely. Depending on the point selected, l1 must be
selected such that the reference point (which can also be selected freely) is reached.

In general: vector components that are not changed by rotation of an axis can be distributed
over any vectors "before" and "after" rotation.

17.6.3 Inclined surface machining with 3 + 2 axes

Description of function
Inclined machining with 3 + 2 axes describes an extension of the concept of toolholders with
orientation capability and applies this concept to machines with a rotary table, on which the
orientation of tool and table can be changed simultaneously.

The "Inclined machining with 3 + 2 axes" function is used to machine surfaces with any
rotation with reference to the main planes X/Y (G17), Z/X (G18) and Y/Z (G19).

It is possible to produce any orientation of the tool relative to the workpiece by rotating either
the tool, the workpiece or both the tool and the workpiece.

The software automatically calculates the necessary compensating movements resulting
from the tool lengths, lever arms and the angle of the rotary axis. It is always assumed that
the required orientation is set first and not modified during a machining process such as
pocket milling on an inclined plane.

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1485

Furthermore, the following 3 functions are described, which are required for oblique
machining:

● Position programming in the direction of the tool orientation independent of an active
frame

● Definition of a frame rotation by specifying the solid angle

● Definition of the component of rotation in tool direction in the programmed frame while
maintaining the remaining frame components

Demarcation to 5-axis transformation
If the required functionality specifies that the TCP (Tool Center Point) does not vary in the
event of reorientation with reference to the workpiece, even during interpolation, the 5axis
software is required.

For more explanations on 5-axis transformations, see:

References:
Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

Specification of the toolholder with orientation capability
The toolholder with orientation capability is represented by a general 5axis kinematic
sequence described by a data block in the tool compensation memory with a total of 33
REAL values. For toolholders that have two rotary axes for setting the orientation (e.g. a
millhead), 31 of these values are constant.

In the current SW version, a data block in the tool compensation memory is described with a
total of 47 REAL values. For toolholders that have two rotary axes for setting the orientation,
45 of these values are constant.

The remaining two values are variable and are used to specify the orientation. The constant
values describe offsets and directions and setting options for the rotary axes; the variable
values describe the angles of the rotary axes.

17.6.4 Machine with rotary work table

System variables
To date, the angles stored in $TC_CARR13 and $TC_CARR14 were used for the calculation
of the active tool length with TCOABS. This still applies if $TC_CARR21 and $TC_CARR22 do
not refer to rotary axes. If $TC_CARR21 or $TC_CARR22 contains a reference to a rotary
axis in the channel, the axis position of the relevant axis at the start of the current block is
used as the angle, rather than the entry in $TC_CARR13 or $TC_CARR14.

A mixed operating mode is permissible, i.e. the angles can be determined from the entry in
the system variables $TC_CARR13 or $TC_CARR14 for one axis, and from the position of a
channel axis for the other.

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1486 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

This makes it possible for machines, on which the axes used to set the toolholder with
orientation capability are known within the NC, to access their position directly, whereas it
was previously necessary, for example, to read system variable $AA_IM[axis] and write the
result of the read operation to $TC_CARR13/14. In particular, this removes the implicit
preprocessing stop when reading the axis positions.

MD20180
The rotary axis position is used with its programmed or calculated value, when the machine
data:

MD20180 $MC_TOCARR_ROT_ANGLE_INCR[i] = 0 (rotary axis increment of the tool carrier
that can be oriented)

If the machine data is not zero however, the position used is the nearest grid point obtained
for a suitable integer value n from the equation:

φ = $MC_TOCARR_ROT_ANGLE_OFFSET[i] + n * $MC_TOCARR_ROT_ANGLE_INCR[i]

This functionality is required if the rotary axes need to be indexed and cannot, therefore,
assume freely-defined positions (e.g. with Hirth tooth systems). System variable
$P_TCANG[i] delivers the approximated valued and system variable $P_TCDIFF[i] the
difference between the exact and the approximated value.

Frame orientation TCOFR
With TCOFR (determination of the angle from the orientation defined by an active frame), the
increments are scaled after determination of the angle from the active frame rotation. If the
requested orientation is not possible due to the machine kinematic, the machining is aborted
with an alarm. This also applies if the target orientation is very close to an achievable
orientation. In particular the alarm in such situations cannot be prevented through the angle
approximation.

TCARR frame offset
A frame offset as a result of a toolholder change becomes effective immediately on selection
of TCARR=.... A change in the tool length, on the other hand, only becomes effective
immediately if a tool is active.

TCOFR/TCOABS frame rotation
A frame rotation does not take place on activation and a rotation which is already active is
not changed. As in case T (only the tool can be rotated), the position of the rotary axes used
for the calculation is dependent on the G code TCOFR/TCOABS and determined from the rotation
component of an active frame or from the entries $TC_CARRn.

Activation of a frame changes the position in the workpiece coordinate system accordingly,
without compensating motion by the machine itself. The ratios are shown in the figure below:

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1487

Figure 17-43 Zero offset on activation of a rotary table with TCARR

Example
On the machine in the figure, the rotary axis of the table is pointing in the positive Y direction.
The table is rotated by +45 degrees. PAROT defines a frame, which similarly describes a
rotation of 45 degrees about the Y axis. The coordinate system is not rotated relative to the
actual environment (marked in the figure with "Position of the coordinate system after
TCARR"), but is rotated by -45 degrees relative to the defined coordinate system (position after
PAROT). If this coordinate system is defined with ROT Y-45, for example, and if the toolholder is
then selected with active TCOFR, an angle of +45 degrees will be determined for the rotary
axis of the toolholder.

Rotary table
With rotary tables (kinematic types P and M), activation with TCARR similarly does not lead to
an immediate rotation of the coordinate system (see figure), i.e. even though the zero point
of the coordinate system is offset relative to the machine, while remaining fixed relative to
the zero point of the workpiece, the orientation remains unchanged in space.

Activation of kinematic types P and M
With kinematics of type P and M the selection of a toolholder activates an additive frame
(table offset of the toolholder with orientation capability), which takes into account the zero
point offset as a result of the rotation of the table.

The zero offset can be written to a dedicated system frame $P_PARTFR. For this, the bit 2
must be set in the machine data:

MD28082 $MC_MM_SYSTEM_FRAME_MASK (system frames (SRAM))

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1488 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The basic frame identified by following machine data is then no longer required for the zero
offset:

MD20184 $MC_TOCARR_BASE_FRAME_NUMBER (number of the basic frames for taking
the table offset)

Activation of kinematic type M
With kinematics of type M (tool and table are each rotary around one axis), the activation of
a toolholder with TCARR simultaneously produces a corresponding change in the effective tool
length (if a tool is active) and the zero offset.

Rotations
Depending on the machining task, it is necessary to take into account not only a zero offset
(whether as frame or as tool length) when using a rotary toolholder or table, but also a
rotation. However, the activation of a toolholder with orientation capability never leads
directly to a rotation of the coordinate system.

TOROT
If only the tool can be rotated, a frame whose Z axis points in the direction of the tool can be
defined with TOFRAME or TOROT.

PAROT
If the coordinate system needs to be fixed relative to the workpiece, i.e. not only offset
relative to the original position but also rotated according to the rotation of the table, then
PAROT can be used to activate such a rotation in a similar manner to the situation with a rotary
tool.

With PAROT, the translations, scalings and mirrorings in the active frame are retained, but the
rotation component is rotated by the rotation component of a toolholder with orientation
capability corresponding to the table.

PAROT and TOROT take into account the overall change in orientation in cases where the table
or the tool are oriented with two rotary axes. With mixed kinematics only the corresponding
component caused by a rotary axis is considered. It is thus possible, for example, when
using TOROT, to rotate a workpiece such that an oblique plane lies parallel to the XY plane
fixed in space, whereby rotation of the tool must be taken into account in machining where
any holes to be drilled, for example, are not perpendicular to this plane.

Language command PAROT is not rejected if no toolholder with orientation capability is active.
This causes no changes in the programmed frame.

 Note

For further information about the TCARR and TOROT as well as PAROT functions with regard to
channel-specific system frames, see Section "K2: Axis Types, Coordinate Systems, Frames
(Page 647)".

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1489

17.6.5 Procedure when using toolholders with orientation capability

Creating a toolholder
The number of available toolholder data sets in the NCK is defined with machine data:

MD18088 $MN_MM_NUM_TOOL_CARRIER (maximum number of definable tool carriers)

1. The value is calculated as follows:

MD18088 = "Number of TO units" * "Number of toolholder data sets of a TO unit"

MD18088/"number of TO units" is permanently allocated to each TO unit.

 Note

For further explanations on the definition and assignment of a TO unit by machine data:

MD28085 $MC_MM_LINK_TOA_UNIT (assignment of a TO unit to a channel (SRAM))

References:
Function Manual, Extended Functions; Memory Configuration (S7)

2. Zero setting of toolholder data:

You can use the command$TC_CARR1[0] = 0 to zero all values of all data sets.

Individual toolholder data sets can be deleted selectively with the NC command DELTC or
the PI service _N_DELTCAR.

3. Accessing the data of a toolholder:

– Part program

→ $TC_CARRn[m] = value

This describes the previous value of the system variables n for toolholder m with the
new value "value".

→ value = $TC_CARRn[m]

With "def real value" - the parameters of a toolholder m can be read if they have
already been defined (e.g. set MD18088). Otherwise, an alarm is signaled.

– OPI interface

The parameters of a toolholder with orientation capability can be read and written with the
NCKHMI (OPI) variable services using system variable $P_TCANG[<n>].

4. Data backup:

The system variables specified above are saved as part of the general NCK data backup.

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1490 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Selecting the toolholder
A toolholder with number m is selected with the TCARR = m NC program command (TCARRTool
Carrier).

TCARR = 0 deselects an active toolholder.

New tool or new toolholder

When a new tool is activated, it is always treated as if it was mounted on the active
toolholder.

A new toolholder is activated immediately when it is programmed. It is not necessary to
change tools or reprogram the active tool. The toolholder (number) and tool (number) are
independent and can be used in any combination.

Toolholder from G code of group 42
Absolute tool orientation TCOABS (Tool Carrier Orientation ABSolute):

Tool orientation is determined explicitly if the corresponding values are entered in system
variable $TC_CARR13 or $TC_CARR14 and G code TCOABS is activated in G-code group 42.

Frame tool orientation TCOFR (Tool Carrier Orientation FRame):

Tool orientation can also be determined automatically from the current orientation of an
active frame when selecting a tool, if one of the following G codes is active in G-code group
42 when the toolholder is selected:

● TCOFR or TCOFRZ

The toolholder with orientation capability is set so that the tool points in the Z direction.

● TCOFRX

The toolholder with orientation capability is set so that the tool points in the X direction.

● TCOFRY

The toolholder with orientation capability is set so that the tool points in the Y direction.

The effect of TCOFR is such that, when machining on an inclined surface, tool compensations
are considered implicitly as if the tool were standing vertically on the surface.

 Note

The tool orientation is not bound strictly to the frame orientation. When a frame is active and
G code TCOABS is active, you can select a tool, whereby the orientation of the tool is
independent of the orientation of the active frame.

Following tool selection, you can change the frame, which does not affect the components of
tool length compensation. It is then no longer certain that the tool is positioned perpendicular
to the machining plane. You should therefore first check that the intended tool orientation is
maintained on an inclined surface.

When TCOFR, etc., is active, the tool orientation used in the tool length calculation is always
determined from the active frame each time the toolholder is changed.

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1491

Toolholder from G code of group 53
The G codes of group 53 (TOFRAME, TOROT, etc.) can be used to define a frame such that an
axis direction (Z, Y or X) in this frame is equal to the current tool orientation.

The G code of group 6 (G17 - G19), which is active at the time TOFRAME is called, determines
the tool orientation.

If no toolholder is active, or if a toolholder is active but does not cause the tool orientation to
change, the Z direction in the new frame is:

● The same as the old Z direction with G17.

● The same as the old Y direction with G18.

● The same as the old X direction with G19.

These directions are modified accordingly for rotating toolholders. The same applies to the
new X and Y directions.

Instead of TOFRAME or TOROT, one of the G codes TOFRAMEX, TOFRAMEY, TOROTX, or TOROTY can be
used. The meanings of the axes are interchanged accordingly.

Group change
Changing the G code from group 42 (TCOABS, TCOFR, etc.) causes recalculation of the tool
length components.

The (programmed) angles of rotation stored in the toolholder data are not affected, with the
result that the angles originally stored in the toolholder data are reactivated on a change
from TCOFR to TCOABS.

Read rotary angle (α1 or α2):

The angles currently used to calculate the orientation can be read via system variable
$P_TCANG[n] where n = 1 or n = 2.

If two permissible solutions (i.e. a second valid pair of angles) are available for a particular
orientation, the values can be accessed with $P_TCANG[3] or $P_TCANG[4]. The number of
valid solutions 0 to 2 can be read with $P_TCSOL.

Tool radius compensation with CUT2D or CUT3DFS:

The current tool orientation is included in the tool radius compensation if either CUT2D or
CUT3DFS is active in G-code group 22 (tool compensation type).

For nonrotating toolholders, the behavior depends solely on the active plane of G code group
6 (G17 - G19) and is, therefore, identical to the previous behavior.

All other tool compensation types:

The behavior for all other tool compensation types is unchanged.

For CUT2DF and CUT3DFF in particular, the compensation plane used for TRC is determined
from the active frame, independent of the current tool orientation. Allowance is made for the
active plane (G17 - G19) and the behavior is, therefore, the same as before.

The two remaining G codes of group 22, CUT3DC and CUT3DF, are not affected by the
toolholder functionality because the tool orientation information in these cases is made
available by the active kinematic transformation.

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1492 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Two rotary axes
Two general solutions exist for two rotary axes. The control itself chooses these two solution
pairs such that the orientation angles resulting from the frame are as close as possible to the
specified angles.

The two following options are available for specifying the angles:

1. If $TC_CARR21 or $TC_CARR22 contains a reference to a rotary axis, the position of
this axis at the start of the block in which the toolholder is activated is used to specify the
angle.

2. If $TC_CARR21 or $TC_CARR22 does not contain a reference to a rotary axis, the
values contained in $TC_CARR13 or $TC_CARR14 are used.

Example
The control first calculates an angle of 10 degrees for one axis. The specified angle is 750
degrees. 720 degrees (= 2 * 360 degrees) are then added to the initial angle, resulting in a
final angle of 730 degrees.

Rotary axis offset
Rotary axis offsets can be specified with system variables $TC_CARR24 and $TC_CARR25.
A value not equal to zero in one of these parameters means that the initial state of the
associated rotary axis is the position specified by the parameter (and not position zero). All
angle specifications then refer to the coordinate system displaced by this value.

When the machining plane is changed (G17 - G19), only the tool length components of the
active tool are interchanged. The components of the toolholder are not interchanged. The
resulting tool length vector is then rotated in accordance with the current toolholder and, if
necessary, modified by the offsets belonging to the toolholder.

The two toolholder angles α1 and α2 are determined using a frame, independent of the active
plane currently selected (G17 - G19).

Limit values
Limit angles (software limits) can be specified for each rotary axis in the system variable set
($TC_CARR30 to $TC_CARR33) used to describe the toolholder with orientation capability.
These limits are not evaluated if both the minimum and maximum value is zero.

If at least one of the two limits is not equal to zero, the system checks whether the previously
calculated solution is within the permissible limits. If this is not the case, an initial attempt is
made to reach a valid setting by adding or subtracting multiples of 360 degrees to or from
the invalid axis position. If this is impossible and two different solutions exist, the first solution
is discarded and the second solution is used. The second solution is treated the same as the
first with reference to the axis limits.

If the first solution is discarded and the second used instead, the contents of $P_TCANG[1/2]
and $P_TCANG[3/4] are swapped, hence the solution actually used is also stored in
$P_TCANG[1/2] in this case.

The axis limits are monitored even if the axis angle is specified instead of being calculated.
This is the case if TCOABS is active when a toolholder with orientation capability is activated.

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1493

17.6.6 Programming

Selecting the toolholder
A toolholder is selected with the number m of the toolholder with:

TCARR = m

Access to toolholder data blocks
The following access is possible from the part program:

The current value of the parameter n for the tool holder m is written with the new "value"
with::

$TC_CARRn[m] = value

The parameters of a tool holder m can, as far as the toolholder data set is already defined,
read with:

value = $TC_CARRn[m] (Value must be a REAL variable)

The toolholder data set number must lie in the range, which is defined by the machine data:

MD18088 $MN_MM_NUM_TOOL_CARRIER (Total number of toolholder data sets that can
be defined)

This number of toolholder data sets, divided by the number of active channels, can be
defined for a channel.

Exception:

If settings, which deviate from the standard, are selected via the machine data:

MD28085 $MC_MM_LINK_TOA_UNIT (Assignment of TO unit to a channel).

Canceling all toolholder data blocks
All values of all toolholder data sets can be deleted from within the part program using one
command.

$TC_CARR1[0] = 0

Values not set by the user are preset to 0.

Activation
A toolholder becomes active when both a toolholder and a tool have been activated. The
selection of the toolholder alone has no effect. The effect of selecting a toolholder depends
on the G code TCOABS / TCOFR (modal G-code group for toolholders).

Changing the G code in the TCOABS / TCOFR group causes recalculation of the tool length
components when the toolholder is active. With TCOABS, the values stored in the toolholder
data for both angles of rotation α1 and α2 are used to determine the tool orientation.

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1494 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

With TCOFR, the two angles are determined from the current frame. The values stored in the
toolholder data are not changed, however. These are also used to resolve the ambiguity that
can result when the angle of rotation is calculated from one frame. Here, the angle that
deviates least from the programmed angle is selected from the various possible angles.

 Note

For more explanations on the programming of tool compensations with toolholder kinematic
and for the system variables see:

References:
Programming Manual, Job Planning

17.6.7 Supplementary conditions and control system response for orientation

Full orientation
For a given data set that describes a certain kinematic, all the conceivable special
orientations can only be displayed when the following conditions are satisfied:

● The two vectors v1 and v2 that describe the rotary axes must also be defined (i.e. both
vectors must not be equal to zero).

● The two vectors v1 and v2 must be perpendicular to each other.

● The tool orientation must be perpendicular to the second rotary axis.

Non-defined orientation
If these conditions are not satisfied and an orientation that cannot be achieved by an active
frame is requested with TCOFR, an alarm is output.

Vector/angle of rotation dependencies

If vector v1 or v2, which describes the direction of a rotary axis, is set to zero, the associated
angle of rotation α1 or α2 must also be set to zero. Otherwise, an alarm is produced. The
alarm is not output until the toolholder is activated, i.e. when the toolholder is changed.

Tool fine compensation combined with orientation

Tool fine compensations and toolholders cannot be combined. The activation of tool fine
compensation when a toolholder is active, and vice versa the activation of the toolholder
when tool fine compensation is active, produces an alarm.

 W1: Tool offset
 17.6 Toolholder with orientation capability

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1495

Automatic toolholder selection, RESET
For RESET or at program start, a toolholder can be selected automatically via the machine
data:

MD20126 $MC_TOOL_CARRIER_RESET_VALUE (Active toolholder at RESET)

It is handled similar to the controlled selection of a tool via the machine data:

MD20120 $MC_TOOL_RESET_VALUE (Tool length compensation Power up (RESET/TP-
End))

The behavior at RESET or at program start is controlled as in the case of tool selection via the
same bit 6 in the machine data:

MD20110 $MC_RESET_MODE_MASK (definition of initial control settings after RESET/TP-
End)

Or:

MD20112 $MC_START_MODE_MASK (definition of initial control system settings at NC-
START)

For further information, see Section "K1: Mode group, channel, program operation, reset
response (Page 451)".

SW 6.3 and higher

If TCOABS was active for the last selection before reset, the behavior is unchanged compared
to previous versions. A different active G code causes the toolholder with orientation
capability to be activated with the frame that was active before the last reset. Modified
toolholder data ($TC_CARR...) are also considered. If these data are unchanged, the
toolholder is activated in exactly the same state as before reset. If the toolholder data were
changed after the toolholder selection before reset, selection corresponding to the last frame
is not always possible. In this case, the toolholder with orientation capability is selected
according to the G-Code (group 42) values valid at this time and the active frame.

MD22530 output of auxiliary functions to PLC
That, optionally, a constant or an M code is output when the toolholder is selected, whose
number of the code is derived from the toolholder number. Can be set with the machine
data:

MD22530 $MC_TOCARR_CHANGE_M_CODE (M code at toolholder change)

For further information, see Section "K1: Mode group, channel, program operation, reset
response (Page 451)".

W1: Tool offset
17.6 Toolholder with orientation capability

 Basic Functions
1496 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Toolholder kinematics
The following supplementary conditions must be met for toolholder kinematics:

● Tool orientation in initial state, both angles α1 and α2 zero, as per default setting, even if:

– G17 parallel to Z

– G18 Parallel to Y

– G19 parallel to Z

● A permissible position in terms of the axis limits must be achievable.

● For any possible orientation to be set, the two rotary axes must be perpendicular to each
other.

For machines, on which the table is rotated by both axes, the tool orientation must also
be perpendicular to the first rotary axis.

For machines with mixed kinematics, the tool orientation must be perpendicular to the
axis which rotates the tool, i.e. also the first rotary axis.

The following applies to orientations specified in a frame:

● The orientation specified in a frame must be achievable with the defined toolholder
kinematics, otherwise an alarm is output.

This situation can occur if the two rotary axes required to define the kinematics are not
perpendicular to each other.

This applies if fewer than two rotary axes are defined and is the case:

– With kinematic type T with rotary tool, if the tool axis, which defines the tool direction,
is not perpendicular to the second axis.

– With kinematic types M and P with rotary workpiece, if the tool axis, which defines the
tool direction, is not perpendicular to the first axis.

● Rotary axes, which require a frame with a defined tool orientation in order to reach a
specific position, are only determined unambiguously in the case of one rotary axis. Two
general solutions exist for two rotary axes.

● In all cases where ambiguities may arise, it is particularly important that the approximate
angles expected from the frame are stored in the tool data, and that the rotary axes are in
the vicinity of the expected positions.

Response with ASUP, REPOS
The toolholder can be changed in an asynchronous subprogram (ASUB). When the
interrupted program is resumed with REPOS, the approach motion of the new toolholder is
taken into account and the program continues with this motion. The treatment here is
analogous to tool change in an ASUB.

For further information, see Section "K1: Mode group, channel, program operation, reset
response (Page 451)".

 W1: Tool offset
 17.7 Cutting edge data modification for tools that can be rotated

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1497

17.7 Cutting edge data modification for tools that can be rotated

17.7.1 Function
Using the function "cutting data modification for rotatable tools", the changed geometrical
relationships, that are obtained relative to the workpiece being machined when rotating tools
(predominantly turning tools, but also drilling and milling tools) can be taken into account.

17.7.2 Determination of angle of rotation
The current rotation of the tool is always determined from a currently active, orientable
toolholder (see Section "Toolholder with orientation capability (Page 1469)").

The angle of rotation of the toolholder with orientation capability is normally (but not
necessarily) defined with theTCOFR command from an active frame. This method can be used
to define the tool orientation independently of the actual kinematics with which the tool is
rotated, identically in each case with the help of two angles.

The two machine-independent orientation angles β (Beta) and γ (Gamma) are used to define
the tool rotation. β is the angle of rotation and the applicate (typically a B axis in G18) and γ a
rotation around the ordinate (Typically a C axis in G18). The rotation is first executed around
Y, finally around β, i.e. the y axis is rotated by the β axis:

W1: Tool offset
17.7 Cutting edge data modification for tools that can be rotated

 Basic Functions
1498 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.7.3 Cutting edge position, cut direction and angle for rotary tools

Turning tools
Turning tools means the following tools whose tool type ($TC_DP1) has values in the range
of 500 to 599. Grinding tools (tool types 400 to 499) are equivalent to turning tools.

Tools are treated independently of tool type such as turning tools if:

SD42950 $SC_TOOL_LENGTH_TYPE = 2

Cutting edge position and cut direction
Turning tools are limited by their main and secondary cutting edges. The tool parameter
"Cutting edge position" is defined via the position of these two cutting edges relative to the
coordinate axes. The ratios are displayed with diagram in the following figure:

Figure 17-44 Cutting edge position and cut direction for turning tools

The values 1 to 4 characterize the cases in which both cutting edges lie in the same
quadrant; the values 5 to 8 characterize the cases in which both cutting edges lie in
neighboring quadrants or there is a coordinate axis between the two cutting edges. The
cutting edge position is stored in the tool parameter $TC_DP2.

A cut direction can be defined for each turning tool. It is stored in the tool parameter
$TC_DP11. It has values between 1 and 4, and it characterizes a positive or negative
direction of the coordinate axes:

Value: Meaning:
1 Ordinate -
2 Ordinate +
3 Abscissa -
4 Abscissa +

 W1: Tool offset
 17.7 Cutting edge data modification for tools that can be rotated

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1499

Two different cut directions can be assigned to each cutting edge position:

Cutting edge position: 1 2 3 4 5 6 7 8
Cut direction: 2, 4 2, 3 1, 3 1, 4 1, 2 3, 4 1, 2 3, 4

Holder angle and clearance angle
The following figure depicts the two angles (holder angle and clearance angle) of a turning
tool with cutting edge position 3, that are necessary for describing the geometry of the tool
cutting edge. The cut direction in this example is 3, i.e. it denotes the negative Z direction
(abscissa direction for G18).

Figure 17-45 Angle and cut direction for a turning tool with cutting edge position 3

The cut direction specifies the reference direction of the holder angle. The clearance angle is
the angle measured between the inverse cut direction and the adjacent cutting edge
(positive). Holder angle and clearance angle are stored in the tool parameters $TC_DP10 or
$TC_DP24.

 Note

Cut direction and tool angle are relevant only in the cutting edge positions 1 to 8.

W1: Tool offset
17.7 Cutting edge data modification for tools that can be rotated

 Basic Functions
1500 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.7.4 Modifications during the rotation of turning tools

Tool orientation
Unlike milling tools, turning tools are not rotation-symmetric. This means that normally 3
degrees of freedom or three rotary axes are required to describe the tool orientation. The
concrete kinematics therefore, is independent of the machine only to the extent the desired
orientation can be set. If necessary, the third degree of freedom can be substituted by a
rotation of the tool coordinate system.

 Note

The division of the orientation into one component created by the toolholder with orientation
capability and a second componnet achieved via a rotation of the coordinate system is the
responsibility of the application. The control does not provide any further functionality in this
regard.

Shape of cutting edge
If a turning tool turns by an angle against the machining plane (i.e. around an axis in the
machining plane, typically a C axis) that is not a multiple of 180°, then the configuration of
the (circular) tool cutting edge in the machining plane becomes an ellipse. It is assumed that
the deviations from the circular form arising on account of such rotations is so insignificant
that they can be ignored (tilt angle < 5°), i.e. the control always ignores the tool orientation
and assumes a circular cutting edge.

This also means that with reference to the active plane, the control accepts only a rotation by
180° as a setting deviating from the initial position. This limitation is valid for the shape of
cutting edge only. The tool lengths are always considered correctly in random spatial
rotations.

Cutting edge position, cut direction and angle
A rotation by 180° around an axis in the machining plane means that while using the tool at
the same position, the spindle rotation direction with reference to the use of the unturned tool
must be inverted.

Cut direction and cutting edge position are also not modified like the cutting edge reference
point (see below) if the tool is rotated from the plane by +/- 90° (with a tolerance of app. 1°)
because then the configuration of the cutting edge is not defined in the current plane.

If the tool rotates in the plane (rotation around an axis vertical to the machining place or
around the Y axis for G18), the cutting edge position is determined from the resulting angle
for the clearance and holder angles. If these two angles are not specified for the tool (i.e.
$TC_DP10 and $TC_DP24 are both zero), then the new cutting edge position is determined
from the turning angle alone. The cutting edge position changes only in 90° steps, i.e. the
cutting edge position remains independent of the initial state either in the value range 1 to 4
or 5 to 8. The new cutting edge position is then determined exclusively from the angle of
rotation if the specified values for holder angle and clearance angle are not allowed
(negative values, resulting plate angle negative or more than 90°). Clearance angle and
holder angle are not modified in all these cases.

 W1: Tool offset
 17.7 Cutting edge data modification for tools that can be rotated

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1501

Depending on the rotation, the cut direction is modified in such a way that the resulting
clearance angle remains less than 90°. If the original cut direction and the original cutting
edge position do not match, then the cut direction is not modified during rotation of the tool
(see Section "Cutting edge position, cut direction and angle for rotary tools (Page 1498)").

The angle of rotation in the plane, as it was determined from the toolholder with orientation
capability, is available in the system variable $P_CUTMOD_ANG or $AC_CUTMOD_ANG.
This angle is the original angle without any final rounding to multiples of 45° or 90°.

Limit cases

If, for a turning tool, the cutting edge position, cut direction , clearance and holder angles
have valid values so that all cutting edge positions (1 to 8) are possible through suitable
rotations in the plane, then the cutting edge positions 1 to 4 are preferred to cutting edge
positions 5 to 8 in the cases in which one of the cutting edges (main or secondary cutting
edge) is away from the coordinate axis by less than half the input increment ((0.0005° for an
input specification of 3 decimal digits).

The following is applicable in all other cases (milling tools or turning tools without valid
cutting edge parameters) in which rotation is possible only in 90° steps: If the amount of the
rotation angle is smaller than 45° + 0.5 input increments (corresponds to 45.0005° for an
input specification of three decimal places), the cutting edge position and cut direction are
not changed, i.e. these cases are treated as rotations that are smaller than 45°. Rotations,
the amount of which deviates from 180° by less than 45° + 0.5 input increments are treated
identically as rotations in the range of 135° to 225°.

Cutting edge reference point
The cutting edge center point and the cutting edge reference point are defined for turning
tools. The position of these two points relative to each other is defined by the cutting edge
position.

The distance of the two points for cutting edge positions 1 to 4 is equal to √2 times the
cutting edge radius; for cutting edge positions 5 to 8 it is equal to 1 times the cutting edge
radius. In the first case, the cutting edge reference point relative to the cutting edge center
point lies in the machining plane on a bisecting line, while in the second case it lies on a
coordinate axis.

If your rotate the tool by a random angle around an axis vertical to the machining plane, the
the cutting edge reference point would also rotate if it had a fixed position relative to the tool.
The above-mentioned condition (position on an axis or a bisecting axis) is not fulfilled in most
cases. This is not desirable. Instead, the cutting edge reference point should always be
modified in such a way that the distance vector between cutting edge reference point and
cutting edge center point has one of the mentioned 8 directions. The cutting edge position
must be modified for this if necessary.

W1: Tool offset
17.7 Cutting edge data modification for tools that can be rotated

 Basic Functions
1502 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The ratios are shown with examples in the figure below:

Figure 17-46 Cutting edge reference point and cutting edge position (SL) for tool rotation

A tool with the cutting edge position 3, the clearance angle 22.5° and holder angle 112.5° is
rotated. For rotations up to 22.5°, the cutting edge position is maintained, the position of the
cutting edge reference point relative to the tool however, is compensated in such a way that
the relative position of both points are maintained in the machining plane. For bigger
rotations (up to 67.5°), the cutting edge position changes to value 8.

 Note

As the cutting edge reference point is defined by the tool length vector, modifying the cutting
edge reference point changes the effective tool length.

17.7.5 Cutting edge position for milling and tapping tools

Milling and tapping tools
Milling and tapping tools means the following tools whose tool type ($TC_DP1) has values in
the range of 100 to 299.

Tools are treated independently of tool type such as milling and tapping tools if:

SD42950 $SC_TOOL_LENGTH_TYPE = 1

Length of cutting edge
A cutting edge position is also introduced for the so defined milling and tapping tools which is
modified according to the following description, in case of rotations.

 W1: Tool offset
 17.7 Cutting edge data modification for tools that can be rotated

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1503

Any specified cutting edge position for tools that are not milling and tapping tools or turning
tools according to the mentioned definitions, is not evaluated.

The cutting edge position of the tapping and milling tools is stored in tool parameter
$TC_DP2 as in the case of turning tools. Based on the definition of the cutting edge position
for turning tools, this parameter can assume the values 5 to 8. Here, the cutting edge
position specifies the orientation (the direction of the rotation axis) of the tool:

Length of cutting edge Direction of rotation axis of tool
5 Abscissa +
6 Ordinate +
7 Abscissa -
8 Ordinate -

Example

Figure 17-47 Milling tool with cutting edge position 7

17.7.6 Modifications during rotation of milling and tapping tools
The cutting edge position is recalculated appropriately during a rotation of a milling or
tapping tool. Cut direction and tool angle (clearance angle or holder angle) are not defined
for milling and tapping tools so that the change in cutting edge position is derived exclusively
from the rotation. Thus, for milling and tapping tools, the cutting edge position always
changes when the amount of rotation with reference to the zero setting is more than 45°.

W1: Tool offset
17.7 Cutting edge data modification for tools that can be rotated

 Basic Functions
1504 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.7.7 Parameter assignment

Reaction to errors
Different fault conditions can occur during the activation of the "Cutting edge data
modification for rotary tools" function (via explicit call with CUTMOD or through a tool selection).

For each of these possible fault conditions, one can define whether the error is to trigger an
alarm output, whether such an alarm is only to be displayed (warning), or whether
additionally the interpretation of the part program must be cancelled. The setting is done via
the following machine data:

MD20125 $MC_CUTMOD_ERR

Two bits of the machine data are assigned to each fault condition:

Fault condition Bit Description

0 Alarm output for error "Invalid cut direction" No valid cut direction is defined for
the active tool. 1 Program stop for error "Invalid cut direction"

2 Alarm output for error "Not defined cutting edge angle" The cutting edge angle (clearance
angle and holder angle) of the
active tool are both zero.

3 Program stop for error "Not defined cutting edge angle"

4 Alarm output for error "Invalid clearance angle" The clearance angle of the active
tool has an impermissible value
(< 0° or > 180°).

5 Program stop for error "Invalid clearance angle"

6 Alarm output for error "Invalid holder angle" The holder angle of the active tool
has an impermissible value (< 0° or
> 90°).

7 Program stop for error "Invalid holder angle"

8 Alarm output for error "Invalid plate angle" The plate angle of the active tool
has an impermissible value (< 0° or
> 90°).

9 Program stop for error "Invalid plate angle"

10 Alarm output for error "Invalid cutting edge position -
holder angle combination"

The cutting edge position - holder
angle combination of the active tool
is not permitted (the holder angle
must be ≤ 90° for cutting edge
position 1 to 4; for cutting edge
positions 5 to 8 it must be ≥ 90°).

11 Program stop for error "Invalid cutting edge position -
holder angle combination"

12 Alarm output for error "Invalid rotation" Inadmissible rotation of the active
tool (the tool was rotated from the
active machining plane by ± 90°
(with a tolerance of about 1°).
Hence the cutting edge position is
no longer defined in the machining
plane.

13 Program stop for error "Invalid rotation"

 W1: Tool offset
 17.7 Cutting edge data modification for tools that can be rotated

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1505

Response to POWER ON
The "cutting edge data modification for rotary tools" function (CUTMOD) is initialized
automatically during POWER ON with the value stored in machine data:

MD20127 $MC_CUTMOD_INIT

If the value of this machine data is "-2", CUTMOD is set to the value that is set in machine
data:

MD20126 $MC_TOOL_CARRIER_RESET_VALUE (Active toolholder at RESET)

17.7.8 Programming
The "Cutting edge data modification for rotary tools" function is activated with the CUTMOD
command.

Syntax
CUTMOD=<value>

Meaning

CUTMOD Command to switch-in the function "cutting data modification for tools that can

be rotated"
The following values can be assigned to the CUTMOD command:
0 The function is deactivated.

The values supplied from system variables $P_AD... are the same as
the corresponding tool parameters.

> 0 The function is activated if a toolholder that can be orientated with the
specified number is active, i.e. the activation is linked to a specific
toolholder that can be orientated.
The values supplied from system variables $P_AD... may be modified
with respect to the corresponding tool parameters depending on the
active rotation.
The deactivation of the designated toolholder that can be orientated
temporarily deactivates the function; the activation of another toolholder
that can be orientated permanently deactivates it. This is the reason
that in the first case, the function is re-activated when again selecting
the same toolholder that can be orientated; in the second case, a new
selection is required - even if at a subsequent time, the toolholder that
can be orientated is re-activated with the specified number.
The function is not influenced by a reset.

<value>

-1 The function is always activated if a toolholder that can be orientated is
active.
When changing the toolholder or when de-selecting it and a subsequent
new selection, CUTMOD does not have to be set again.

W1: Tool offset
17.7 Cutting edge data modification for tools that can be rotated

 Basic Functions
1506 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

-2 The function is always activated if a toolholder that can be orientated is
active whose number is the same as the currently active toolholder that
can be orientated.
If a toolholder that can be orientated is not active, then this has the
same significance as CUTMOD=0.
If a toolholder that can be orientated is active, then this has the same
significance as when directly specifying the actual toolholder number.

< -2 Values less than 2 are ignored, i.e. this case is treated as if CUTMOD was
not programmed.
Note:
This value range should not be used as it is reserved for possible
subsequent expansions.

 Note
SD42984 $SC_CUTDIRMOD

The function that can be activated using the CUTMOD command replaces the function that can
be activated using the setting data SD42984 $SC_CUTDIRMOD. However, this function
remains available unchanged, because it doesn't make sense to use both functions in
parallel, it can only be activated if CUTMOD is equal to zero.

Effectiveness of the modified cutting data
The modified tool nose position and the modified tool nose reference point are immediately
effective when programming, even for a tool that is already active. A tool does not have to be
re-selected for this purpose.

Influence of the active machining plane
To determine modified tool nose position, cutting direction and holder or clearance angle, the
evaluation of the cutting edge in the active plane (G17 - G19) is decisive.

However, if setting data SD42940 $SC_TOOL_LENGTH_CONST (change of the tool length
component when selecting the plane), contains a valid value not equal to zero (plus or minus
17, 18 or 19), then its contents define the plane in which the relevant quantities are
evaluated.

 W1: Tool offset
 17.7 Cutting edge data modification for tools that can be rotated

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1507

System variables
The following system variables are available:

System variables Meaning
$P_CUTMOD_ANG /
$AC_CUTMOD_ANG

Supplies the (non-rounded) angle in the active machining plane that was
used as basis for the modification of the cutting data (tool nose position,
cut direction, clearance angle and holder angle) for the functions
activated using CUTMOD and/or $SC_CUTDIRMOD.
$P_CUTMOD_ANG refers to the actual state in the preprocessing,
$AC_CUTMOD_ANG to the actual main run block.

$P_CUTMOD /
$AC_CUTMOD

Reads the currently valid value that was last programmed using the
command CUTMOD (number of the toolholder that should be activated for
the cutting data modification).
If the last programmed CUTMOD value = -2 (activation with the currently
active toolholder that can be orientated), then the value -2 is not returned
in $P_CUTMOD, but the number of the active toolholder that can be
orientated at the time of programming.
$P_CUTMOD refers to the actual state in the preprocessing,
$AC_CUTMOD to the actual main run block.

$P_CUT_INV /
$AC_CUT_INV

Supplies the value TRUE if the tool is rotated so that the spindle direction
of rotation must be inverted. To do this, the following four conditions must
be fulfilled in the block to which the read operations refer:
1. If a turning or grinding tool is active

(tool types 400 to 599 and / or
SD42950 $SC_TOOL_LENGTH_TYPE = 2).

2. If the cutting influence was activated using the language command
CUTMOD.

3. If a toolholder that can be orientated is active, which was designated
using the numerical value of CUTMOD.

4. If the toolholder that can be orientated rotates the tool around an axis
in the machining plane (this is typically the C axis) so that the
resulting perpendicular of the tool cutting edge is rotated with respect
to the initial position by more than 90° (typically 180°).

The contents of the variable is FALSE if at least one of the specified four
conditions is not fulfilled. For tools whose tool nose position is not
defined, the value of the variable is always FALSE.
$P_CUT_INV refers to the actual state in the preprocessing and
$AC_CUT_INV to the actual main run block.

All main run variables ($AC_CUTMOD_ANG, $AC_CUTMOD and $AC_CUT_INV) can be
read in synchronized actions. A read access operation from the preprocessing generates a
preprocessing stop.

W1: Tool offset
17.7 Cutting edge data modification for tools that can be rotated

 Basic Functions
1508 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Modified cutting data

If a tool rotation is active, the modified data is made available in the following system
variables:

System variable Meaning
$P_AD[2] Cutting edge position
$P_AD[10] Holder angle
$P_AD[11] Cut direction
$P_AD[24] Clearance angle

 Note

The data is always modified with respect to the corresponding tool parameters ($TC_DP2[...,
...] etc.) if the function "cutting data modification for rotatable tools" was activated using the
command CUTMOD and a toolholder that can be orientated, which causes a rotation, is
activated.

17.7.9 Example
The following example refers to a tool with tool nose position 3 and a toolholder that can be
orientated, which can rotate the tool around the B axis.

The numerical values in the comments specify the end of block positions in the machine
coordinates (MCS) in the sequence X, Y, Z.

Program code Comment

N10 $TC_DP1[1,1]=500

N20 $TC_DP2[1,1]=3 ; Length of cutting edge

N30 $TC_DP3[1,1]=12

N40 $TC_DP4[1,1]=1

N50 $TC_DP6[1,1]=6

N60 $TC_DP10[1,1]=110 ; Holder angle

N70 $TC_DP11[1,1]=3 ; Cut direction

N80 $TC_DP24[1,1]=25 ; Clearance angle

N90 $TC_CARR7[2]=0 $TC_CARR8[2]=1 $TC_CARR9[2]=0 ; B axis

N100 $TC_CARR10[2]=0 $TC_CARR11[2]=0 $TC_CARR12[2]=1 ; C axis

N110 $TC_CARR13[2]=0

N120 $TC_CARR14[2]=0

N130 $TC_CARR21[2]=X

N140 $TC_CARR22[2]=X

N150 $TC_CARR23[2]="M"

 W1: Tool offset
 17.7 Cutting edge data modification for tools that can be rotated

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1509

Program code Comment

N160 TCOABS CUTMOD=0

N170 G18 T1 D1 TCARR=2 X Y Z

N180 X0 Y0 Z0 F10000 ; 12.000 0.000 1.000

N190 $TC_CARR13[2]=30

N200 TCARR=2

N210 X0 Y0 Z0 ; 10.892 0.000 -5.134

N220 G42 Z–10 ; 8.696 0.000 –17.330

N230 Z–20 ; 8.696 0.000 –21.330

N240 X10 ; 12.696 0.000 –21.330

N250 G40 X20 Z0 ; 30.892 0.000 –5.134

N260 CUTMOD=2 X0 Y0 Z0 ; 8.696 0.000 –7.330

N270 G42 Z–10 ; 8.696 0.000 –17.330

N280 Z–20 ; 8.696 0.000 –21.330

N290 X10 ; 12.696 0.000 –21.330

N300 G40 X20 Z0 ; 28.696 0.000 –7.330

N310 M30

Explanations:

In block N180, initially the tool is selected for CUTMOD=0 and non-rotated toolholders that can be
orientated. As all offset vectors of the toolholder that can be orientated are 0, the position
that corresponds to the tool lengths specified in $TC_DP3[1,1] and $TC_DP4[1,1] is
approached.

The toolholder that can be orientated with a rotation of 30° around the B axis is activated in
block N200. As the tool nose position is not modified due to CUTMOD=0, the old tool nose
reference point is decisive just as before. This is the reason that in block N210 the position is
approached, which keeps the old tool nose reference point at the zero (i.e. the vector (1, 12)
is rotated through 30° in the Z/X plane).

In block N260, contrary to block N200 CUTMOD=2 is effective. As a result of the rotation of the
toolholder that can be orientated, the modified tool nose position becomes 8. The
consequence of this is also the different axis positions.

The tool radius compensation (TRC) is activated in blocks N220 and/or N270. The different
tool nose positions in both program sections has no effect on the end positions of the blocks
in which the TRC is active; the corresponding positions are therefore identical. The different
tool nose positions only become effective again in the deselect blocks N260 and/or N300.

W1: Tool offset
17.8 Incrementally programmed compensation values

 Basic Functions
1510 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.8 Incrementally programmed compensation values

17.8.1 G91 extension

Requirements
Incremental programming with G91 is defined such that the compensation value is traversed
additively to the incrementally programmed value when a tool compensation is selected.

Applications
For applications such as scratching, it is necessary only to traverse the path programmed in
the incremental coordinates. The activated tool compensation is not traversed.

Sequence
Selection of a tool compensation with incremental programming

● Scratch workpiece with tool tip.

● Save the actual position in the basic frame (set actual value) after reducing it by the tool
compensation.

● Traverse incrementally from the zero position.

Activation
It is possible to set whether a changed tool length is traversed with FRAME and incremental
programming of an axis, or whether only the programmed path is traversed with the setting
data:

SD42442 $SC_TOOL_OFFSET_INCR_PROG (tool length compensations)

Zero offset / frames G91
It is possible to set whether a zero offset is traversed as standard with value = 1 with FRAME
and incremental programming of an axis, or whether only the programmed path is traversed
with value = 0 with the setting data:

SD42440 $SC_FRAME_OFFSET_INCR_PROG (zero offset in frames)

For further information, see Section "K2: Axis Types, Coordinate Systems, Frames
(Page 647)".

 W1: Tool offset
 17.8 Incrementally programmed compensation values

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1511

Supplementary condition
If the behavior is set such that the offset remains active even after the end of the program
and RESET
MD20110 $MC_RESET_MODE_MASK, bit6=1 (specification of the controller initial setting
after reset / TP end)
and if an incremental path is programmed in the first part program block, the compensation
is always traversed additively to the programmed path.

 Note

With this configuration, part programs must always begin with absolute programming.

17.8.2 Machining in direction of tool orientation

Typical application
On machines with toolholders with orientation capability, traversing should take place in the
tool direction (typically, when drilling) without activating a frame (e.g., using TOFRAME or
TOROT), on which one of the axes points in the direction of the tool.

This is also true of machines on which a frame defining the oblique plane is active during
oblique machining operations, but the tool cannot be set exactly perpendicular because an
indexed toolholder (Hirth tooth system) is restricting the setting of the tool orientation.

In these cases it is then necessary - contrary to the motion actually requested perpendicular
to the plane - to drill in the tool direction, as the drill would otherwise not be guided in the
direction of its longitudinal axis, which, among other things, would lead to breaking of the
drill.

MOVT
The end point of such a motion is programmed with MOVT= The programmed value is
effective incrementally in the tool direction as standard. The positive direction is defined from
the tool tip to the toolholder. The content of MOVT is thus generally negative for the infeed
motion (when drilling), and positive for the retraction motion. This corresponds to the
situation with normal paraxial machining, e.g., with G91Z

If the motion is programmed in the form MOVT=AC(...), MOVT functions absolutely. In this
case a plane is defined, which runs through the current zero point, and whose surface
normal vector is parallel to the tool orientation. MOVT then gives the position relative to this
plane:

W1: Tool offset
17.8 Incrementally programmed compensation values

 Basic Functions
1512 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 17-48 Definition of the position for absolute programming of a motion in tool direction

The reference to this auxiliary plane serves only to calculate the end position. Active frames
are not affected by this internal calculation.

Instead of MOVT= ... it is also possible to write MOVT=IC(...) if it is to be plainly visible that
MOVT is to function incrementally. There is no functional difference between the two forms.

Supplementary conditions
The following supplementary conditions apply to programming with MOVT:

● It is independent of the existence of a toolholder with orientation capability. The direction
of the motion is dependent on the active plane. It runs in the direction of the vertical axes,
i.e., with G17 in Z direction, with G18 in Y direction and with G19 in X direction. This applies
both where no toolholder with orientation capability is active and for the case of a
toolholder with orientation capability without rotary tool or with a rotary tool in its basic
setting.

● MOVT acts similarly for active orientation transformation (345axis transformation).

● If in a block with MOVT the tool orientation is changed simultaneously (e.g., active 5axis
transformation by means of simultaneous interpolation of the rotary axes), the orientation
at the start of the block is decisive for the direction of movement of MOVT. The path of the
tool tip (TCP - Tool Center Point) is not affected by the change in orientation.

● Linear or spline interpolation (G0, G1, ASPLINE, BSPLINE, CSPLINE) must be active.
Otherwise, an alarm is produced. If a spline interpolation is active, the resultant path is
generally not a straight line, since the end point determined by MOVT is treated as if it had
been programmed explicitly with X, Y, Z.

● A block with MOVT must not contain any programming of geometry axes (alarm 14157).

 W1: Tool offset
 17.9 Basic tool orientation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1513

17.9 Basic tool orientation

Application
Normally, the orientation assigned to the tool itself depends exclusively on the active
machining plane. For example, the tool orientation is parallel to Z with G17, parallel to Y with
G18 and parallel to X with G19.

Different tool orientations can only be programmed by activating a 5axis transformation. The
following system variables have been introduced in order to assign a separate orientation to
each tool cutting edge:

System variable Description of tool orientation Format Preassignment
$TC_DPV[t, d] Tool cutting edge orientation INT 0
$TC_DPV3[t, d] L1 component of tool orientation REAL 0
$TC_DPV4[t, d] L2 component of tool orientation REAL 0
$TC_DPV5[t, d] L3 component of tool orientation REAL 0

Indexing: Same as tool system variable $TC_DPx[t, d]
t: T number of cutting edge
d: D number of cutting edge

Identifiers $TC_DPV3 to $TC_DPV5 are analogous to identifiers $TC_DP3 to $TC_DP5 of
the tool length components.

MD18114
The system variables for describing the tool orientation are only available if machine data is
not equal to zero:

MD18114 $MN_MM_ENABLE_TOOL_ORIENT (assign orientation to tool cutting)

MD18114 $MN_MM_ENABLE_TOOL_ORIENT
Value = 1 Only system variable $TC_DPV[t, d] is available.
Value = 2 All four system variables are available.

W1: Tool offset
17.9 Basic tool orientation

 Basic Functions
1514 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Define direction vector
If all four system variables contain 0, the orientation is defined only by the active plane (as
before).

If system variable $TC_DPV[t, d] is equal to zero, the other three parameters - if available -
define a direction vector. The amount of the vector is insignificant.

Example:

$TC_DPV[1, 1] = 0

$TC_DPV3[1, 1] = 1.0

$TC_DPV4[1, 1] = 0.0

$TC_DPV5[1, 1] = 1.0

In this example, the basic orientation points in the direction of the bisector in the L1L3 plane,
i.e., the basic orientation in the bisector for a milling tool and active plane G17 lies in the Z/X
plane.

Basic orientation of tools

Basic orientation of: With :
Turning and grinding tools G18

Milling tools G17

The active tool orientation is unchanged in these cases and is equivalent to the original
settings in $TC_DPVx[t, d].

The basic orientation is always the direction perpendicular to the plane in which tool radius
compensation is performed. With turning tools, in particular, the tool orientation generally
coincides with the longitudinal tool axis.

The setting data specified below are effective only if the basic orientation of the tool is
defined by an entry in at least one of the system variables $TC_DPVx[t, d].

They have no effect if the tool orientation is only determined by the plane selection G17 - G19
and is compatible with previous behavior.

The plane of the basic orientation for a cutting edge is treated either like a milling tool or like
a turning tool, irrespective of the entry in $TC_DP1, if the following setting data is not equal
to zero:

SD42950 $SC_TOOL_LENGTH_TYPE (allocation of the tool length components
independent of tool type)

 W1: Tool offset
 17.9 Basic tool orientation

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1515

Plane change
A change of plane causes a change in orientation.

The following rotations are initiated:

When changing from: Rotations
G17 ⇒ G18:
G18 ⇒ G19:
G19 ⇒ G17:

Rotation through -90 degrees about the Z axis
followed by rotation through -90 degrees about the X
axis

G17 ⇒ G19:
G18 ⇒ G17:
G19 ⇒ G18:

Rotation through 90 degrees about the X axis
followed by rotation through 90 degrees about the Z
axis

These rotations are the same as those that have to be performed in order to interchange the
components of the tool length vector on a change of plane.

The basic orientation is also rotated when an adapter transformation is active.

If the following setting data is not equal to zero, the tool orientation is not rotated on a
change of plane:

SD42940 $SC_TOOL_LENGTH_CONST (change of tool length components on change of
planes).

Tool length components
The components of the tool orientation are treated the same as the components of the tool
length, with respect to setting data:

SD42910 $SC_MIRROR_TOOL_LENGTH (Sign change tool wear when mirroring).

SD42950 $SC_TOOL_LENGTH_TYPE (allocation of the tool length components
independent of tool type)

Therefore the components are changed respectively and assigned to the geometry axis.

System variable $TC_DPV[t, d]
The purpose of system variable $TC_DPV[t, d] is to allow the simple specification of certain
basic orientations (parallel to coordinate axes) that are required frequently. The permissible
values are shown in the table below. The values in the first and second/third columns are
equivalent.

Basic orientation $TC_DPV[t, d]

Milling tools * Turning tools *
≤ 0 or > 6 ($TC_DPV5[t, d],

$TC_DPV4[t, d],
$TC_DPV3[t, d],) **

($TC_DPV3[t, d],
$TC_DPV5[t, d],
$TC_DPV4[t, d],) **

1 (0, 0, V) (0, V, 0)
2 (0, V, 0) (0, 0, V)

W1: Tool offset
17.9 Basic tool orientation

 Basic Functions
1516 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Basic orientation $TC_DPV[t, d]

Milling tools * Turning tools *
3 (V, 0, 0) (V, 0, 0)
4 (0, 0, -V) (0, -V, 0)
5 (0, -V, 0) (0, 0, -V)
6 (-V, 0, 0) (-V, 0, 0)

* Turning tools in this context are any tools whose tool type ($TC_DP1[t, d]) is between 400 and
599. All other tool types refer to milling tools.

** If all three values $TC_DPV3[t, d], $TC_DPV4[t, d], $TC_DPV5[t, d] are equal to zero in this
case, the tool orientation is determined by the active machining plane (default).

V Stands for a positive value in the corresponding system variables.

Example:

For milling tools:

$TC_DPV[t, d] = 2 is equal to:

$TC_DPV3[t, d] = 0, $TC_DPV4[t, d] = 0, $TC_DPV5[t, d] = V.

Supplementary conditions
If the "Scratch" function is used in the RESET state, the following must be noted with respect
to the initial setting:

● The wear components are evaluated depending on the initial settings of the G-code
groups TOWSTD, TOWMCS and TOWWCS.

● If a value other than the initial setting is needed to ensure correct calculation, scratching
may be performed only in the STOP state.

 Note

"Special handling of tool compensations" pays particular attention to tool compensations
with evaluation of sign for tool length with wear and temperature fluctuations.

The following are taken into account:
• Tool type
• Transformations for tool components
• Assignment of tool length components to geometry axes independently of tool type

 W1: Tool offset
 17.10 Special handling of tool compensations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1517

17.10 Special handling of tool compensations

17.10.1 Relevant setting data

SD42900- 42960
Setting data SD42900 - SD42940 can be used to make the following settings with reference
to tool compensation:
● Sign of the tool length
● Sign of the wear
● Behavior of the wear components when mirroring geometry axes
● Behavior of the wear components when changing the machining plane via setting data
● Allocation of the tool length components independent of actual tool type
● Transformation of wear components into a suitable coordinate system for controlling the

effective tool length

 Note

In the following description, the wear includes the total values of the following
components:
• Wear values: $TC_DP12 to $TC_DP20
• Sum offset, consisting of:

– Wear values: $SCPX3 to $SCPX11
– Setup values: $ECPX3 to $ECPX11

You will find detailed information about sum and tool offsets in:

References:
Function Manual Tool Management
Programming Manual. Fundamentals; Tool Offsets

Required setting data
● SD42900 $SC_MIRROR_TOOL_LENGTH (mirroring of tool length components and

components of the tool base dimension)
● SD42910 $SC_MIRROR_TOOL_WEAR (mirroring of wear values of tool length

components)
● SD42920 $SC_WEAR_SIGN_CUTPOS (sign evaluation of the wear components)
● SD42930 $SC_WEAR_SIGN (inverts the sign of the wear dimensions)
● SD42940 $SC_TOOL_LENGTH_CONST (allocation of the tool length components to the

geometry axes)
● SD42950 $SC_TOOL_LENGTH_TYPE (allocation of the tool length components

independent of tool type)
● SD42935 $SC_WEAR_TRANSFORM (transformation of wear values)
● SD42960 $SC_TOOL_TEMP_COMP (tool length offsets)

W1: Tool offset
17.10 Special handling of tool compensations

 Basic Functions
1518 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.10.2 Mirror tool lengths (SD42900 $SC_MIRROR_TOOL_LENGTH)

Activation
Tool length mirroring is activated via the setting data:

SD42900 $SC_MIRROR_TOOL_LENGTH <> 0 (TRUE) (Sign change tool length when
mirroring)

Function
The following components are mirrored by inverting the sign:

● Tool lengths: $TC_DP3, $TC_DP4, $TC_DP5

● Tool base dimensions: $TC_DP21, $TC_DP22, $TC_DP23

Mirroring is performed for all tool base dimensions whose associated axes are mirrored.
Wear values are not mirrored.

Mirror wear values
The following setting data should be set in order to mirror the wear values:

SD42910 $SC_MIRROR_TOOL_WEAR <> 0 (Sign change tool wear when mirroring)

Inverting the sign mirrors the wear values of the tool length components whose associated
axes are mirrored.

Figure 17-49 Application example: Double-spindle turning machine

 W1: Tool offset
 17.10 Special handling of tool compensations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1519

17.10.3 Mirror wear lengths (SD42920 $SC_WEAR_SIGN_CUTPOS)

Activation
Wear length mirroring is activated by:

SD42920 $SC_WEAR_SIGN_CUTPOS <> 0 (TRUE) (Sign of wear for tools with cutting
edge systems)

Function

Length of cutting edge Length 1 Length 2
1 --- ---
2 --- Inverted
3 Inverted Inverted
4 Inverted ---
5 --- ---
6 --- ---
7 --- Inverted
8 Inverted ---
9 --- ---

In the case of tool types without a relevant cutting edge position, the wear length is not
mirrored.

 Note

The mirroring (sign inversion) in one or more components can cancel itself through a
simultaneous activation of the functions:

Tool length-mirroring (SD42900 <> 0)

And:

Tool length-mirroring (SD42920 <> 0)

SD42930 $SC_WEAR_SIGN
Setting data not equal to zero:

Inverts the sign of all wear dimensions. This affects both the tool length and other variables
such as tool radius, rounding radius, etc.

Entering a positive wear dimension makes the tool "shorter" and "thinner".

W1: Tool offset
17.10 Special handling of tool compensations

 Basic Functions
1520 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Activation of modified setting data
When the setting data described above are modified, the tool components are not
reevaluated until the next time a tool edge is selected. If a tool is already active and the data
of this tool are to be reevaluated, the tool must be selected again.

Example:

N10 $SC_WEAR_SIGN = 0 ; No sign inversion of the wear values

N20 $TC_DP1[1,1] = 120 ; End mill

N30 $TC_DP6[1,1] = 100 ; Tool radius 100 mm

N40 $TC_DP15[1,1] = 1 ; Wear dimension of tool radius 1 mm, resulting

tool radius 101 mm

N100 T1 D1 G41 X150 Y20

....

N150 G40 X300N10

....

N200 $SC_WEAR_SIGN = 1 ; Sign inversion for all wear values; the new

radius of 99 mm is activated on a new

selection (D1). Without D1, the radius would

continue to be 101 mm.

N300 D1 G41 X350 Y-20

N310

The same applies in the event that the resulting tool length is modified due to a change in
the mirroring status of an axis. The tool must be selected again after the mirror command, in
order to activate the modified tool-length components.

17.10.4 Tool length and plane change (SD42940 $SC_TOOL_LENGTH_CONST)

Plane change
The assignment of tool length components (length, wear and tool base dimension) to
geometry axes does not change when the machining plane is changed (G17–G19).

Assignment of tools
The assignment of tool length components to geometry axes for turning and grinding tools
(tool types 400 to 599) is generated from the value of the following setting data in
accordance with the following table:

SD42940 $SC_TOOL_LENGTH_CONST (change of tool length components on change of
planes).

 W1: Tool offset
 17.10 Special handling of tool compensations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1521

Layer Length 1 Length 2 Length 3
17 Y X Z
*) X Z Y
19 Z Y X
-17 X Y Z
-18 Z X Y
-19 Y Z X

*) Each value not equal to 0 and not equal to one of the six listed values is evaluated as value 18.

The following table shows the assignment of tool length components to geometry axes for all
other tools (tool types < 400 or > 599):

Layer Length 1 Length 2 Length 3
*) Z Y X
18 Y X Z
19 X Z Y
-17 Z X Y
-18 Y Z X
-19 X Y Z

*) Each value not equal to 0 and not equal to one of the six listed values is evaluated as value 17.

 Note

For representation in tables, it is assumed that geometry axes 1 to 3 are named X, Y, Z. The
axis order and not the axis name determines the assignment between a compensation and
an axis.

Three tool length components can be arranged on the six different types above.

17.10.5 Tool type (SD42950 $SC_TOOL_LENGTH_TYPE)

Characteristics
Definition of the assignment between tool length components (length, wear and tool base
dimension) and geometry axes independent of tool type.

Setting data not equal to zero: (the default definition is applied)

A distinction is made between turning and grinding tools (tool types 400 to 599) and other
tools (milling tools).

W1: Tool offset
17.10 Special handling of tool compensations

 Basic Functions
1522 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

The value range is from 0 to 2. Any other value is interpreted as 0.

The assignment of tool length components is always independent of the actual tool type.

● With value = 1: Always as for milling tools

● With value = 2: Always as for turning tools

Toolholder with orientation capability
Setting data SD42900 - SD42950

Setting data SD42900 - SD42950 have no effect on the components of an active toolholder
with orientation capability. The calculation with a toolholder with orientation capability always
allows for a tool with its total resulting length (tool length + wear + tool base dimension). The
calculation of the resulting total length allows for all modifications caused by the setting data.

 Note

When toolholders with orientation capability are used, it is common to define all tools for a
non-mirrored basic system, even those, which are only used for mirrored machining. When
machining with mirrored axes, the toolholder is then rotated such that the actual position of
the tool is described correctly. All tool-length components then automatically act in the
correct direction, dispensing with the need for control of individual component evaluation via
setting data, depending on the mirroring status of individual axes.

The use of toolholders with orientation capability is also practical if the physical
characteristics of the machine type prevents tools, which are permanently installed with
different orientations, from being rotated. Tool dimensioning can then be performed uniformly
in a basic orientation, where the dimensions relevant for machining are calculated according
to the rotations of a virtual toolholder.

17.10.6 Tool lengths in the WCS, allowing for the orientation

Change tool or working plane
The values displayed for the tool correspond to the expansion in the WCS. If a toolholder
with an inclined clamping position is to be used, you should make sure that the
transformation used supports the toolholder. If this is not the case, incorrect tool dimensions
will be displayed. When changing the working plane from G17 to G18 or G19, you should
ensure that the transformation can also be used for these working planes. If the
transformation is only available for G17 machining, the dimensions continue to be displayed
for a tool in the Z direction after the plane change.

When transformation is deactivated, the basic tool is displayed in the x, y or z direction,
according to the working plane. Allowance is made for a programmed toolholder. These tool
dimensions are not altered when traversing without a transformation.

 W1: Tool offset
 17.10 Special handling of tool compensations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1523

17.10.7 Tool length offsets in tool direction

Temperature compensation in real time
On 5-axis machines with a moving tool, temperature fluctuations can occur in the machining
heads. These can result directly in expansion fluctuations which are transmitted to the tool
spindle in the form of linear expansion. A typical case on 5-axis heads, for example, is
thermal expansion in the direction of the longitudinal spindle axis.

It is possible to compensate this thermal expansion even when the tool is orientated by
assigning the temperature compensation values to the tool rather than to the machine axes.
In this way, linear expansion fluctuations can be compensated even when the tool orientation
changes.

Using the orientation transformation whose direction is determined by the current tool
orientation, it is possible to overlay motions in real time and rotate them simultaneously. At
the same time, the compensation values are adjusted continuously in the tool coordinate
system.

The temperature compensation only becomes effective if the axis to be compensated is
really referenced.

Activation
The temperature compensation in the tool direction is activated by setting the following
machine data to a value not equal to zero.

MD20390 $MC_TOOL_TEMP_COMP_ON (activation of temperature compensation for tool
length)

In addition, bit 2 must be set for each affected channel axis in the machine data:

MD32750 $MA_TEMP_COMP_TYPE [<axis index>] (temperature compensation type)

This can be more than three axes in cases where more than three channel axes in
succession can be temporarily assigned to geometry axes as a result of geometry axis
replacement of transformation switchover. If this bit is not set for a particular channel axis,
the compensation value cannot be applied in the axis. This does not have any effect on other
axes. In this case, an alarm is not output.

Applicability
The temperature compensation in the tool direction is only effective with generic 5-axis
transformations with:

● Transformation type 24

Two axes rotate the tool

● Transformation type 56

One axis rotates the tool, the other axis rotates the workpiece without temperature
compensation

W1: Tool offset
17.10 Special handling of tool compensations

 Basic Functions
1524 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

In generic 5-axis transformation with:

● Transformation type 40

The tool orientation is constant with a rotary workpiece, which means that the motion of
the rotary axes on the machine does not affect the temperature compensation direction.

Temperature compensation in the tool direction also works in conjunction with orientation
transformations (not generic 5-axis transformations) with:

● Transformation type 64 to 69

Rotating linear axis

 Note

Temperature compensation can be activated with all other types of transformation. It is
not affected by a change in tool orientation. The axes move as if no orientation
transformation with temperature compensation were active.

Limit values
The compensation values are restricted to the maximum values by the machine data:

MD20392 $MC_TOOL_TEMP_COMP_LIMIT[0...2] (maximum temperature compensation for
tool length)

The limit value default setting is 1 mm. If a temperature compensation value higher than this
limit is specified, it will be limited without an alarm.

SD42960
The three temperature compensation values together form a compensation vector and are
contained in setting data:

SD42960 $SC_TOOL_TEMP_COMP[0...2] (temperature compensation with reference to
tools)

The setting data is user-defined, e.g. using synchronized actions or from the PLC. The
compensation values can, therefore, also be used for other compensation purposes.

In the initial state or when orientation transformation is deactivated, all three compensation
values apply in the direction of the three geometry axes (in the typical order X, Y, Z). The
assignment of components to geometry axes is independent of the tool type (turning, milling
or grinding tools) and the selected machining plane G17 to G19. Changes to the setting data
values take effect immediately.

 W1: Tool offset
 17.10 Special handling of tool compensations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1525

Toolholder with orientation capability
If a toolholder with orientation capability is active, the temperature compensation vector is
rotated simultaneously to any change in orientation. This applies independently of any active
orientation transformation.

If a toolholder with orientation capability is active in conjunction with a generic 5-axis
transformation or a transformation with rotating linear axis, the temperature compensation
vector is subjected to both rotations.

 Note

While transformations with rotating linear axes take changes in the tool vector (length) into
account, they ignore its change in orientation, which can be effected by a toolholder with
orientation capability.

Temperature compensation values immediately follow any applied change in orientation.
This applies in particular when an orientation transformation is activated or deactivated.

The same is true when the assignment between geometry axes and channel axes is
changed. The temperature compensation value for an axis is reduced to zero
(interpolatively), for example, when it ceases to be a geometry axis after a transformation
change. Conversely, any temperature compensation value for an axis which changes over to
geometry axis status is applied immediately.

Examples

Temperature compensation in tool direction

Example of a 5-axis machine with rotating tool on which the tool can be rotated around the C
and B axes.

In its initial state, the tool is parallel to the Z axis. If the B axis is rotated through 90 degrees,
the tool points in the X direction.

Therefore, a temperature compensation value in the following setting data is also effective in
the direction of the machine X axis if transformation is active:

SD42960 $SC_TOOL_TEMP_COMP[2] (temperature compensation with reference to tools)

If the transformation is deactivated with the tool in this direction, the tool orientation is, by
definition, parallel again to the Z axis and thus different to its actual orientation. The
temperature offset in the X axis direction is therefore reduced to zero and reapplied
simultaneously in the Z direction.

Example of a 5-axis machine with rotating tool (transformation type 24). The relevant
machine data is listed below:

● The first rotary axis rotates around Z, C-axis

● The second rotary axis rotates around Y, B-axis

The essential machine data is shown in the table below:

W1: Tool offset
17.10 Special handling of tool compensations

 Basic Functions
1526 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Machine data Value Remark
MD20390 $MC_TOOL_TEMP_COMP_ON = TRUE Temperature compensation active
MD32750 $MA_TEMP_COMP_TYPE[AX1] = 4 Compensation in tool direction
MD32750 $MA_TEMP_COMP_TYPE[AX2] = 4 Compensation in tool direction
MD32750 $MA_TEMP_COMP_TYPE[AX3] = 4 Compensation in tool direction

 Assignment of transformation type

24
MD24100 $MC_TRAFO_TYPE_1 = 24 Transformer type 24 in first channel
MD24110 $MC_TRAFO_AXES_IN_1[0] = 1 First axis of the transformation
MD24110 $MC_TRAFO_AXES_IN_1[1] = 2 Second axis of the transformation
MD24110 $MC_TRAFO_AXES_IN_1[2] = 3 Third axis of the transformation
MD24110 $MC_TRAFO_AXES_IN_1[3] = 5 Fifth axis of the transformation
MD24110 $MC_TRAFO_AXES_IN_1[4] = 4 Fourth axis of the transformation

MD24120 $MC_TRAFO_GEOAX_ASSIGN_TAB_1[0
]

= 1 Geometry axis for channel axis 1

MD24120 $MC_TRAFO_GEOAX_ASSIGN_TAB_1[1
]

= 2 Geometry axis for channel axis 2

MD24120 $MC_TRAFO_GEOAX_ASSIGN_TAB_1[2
]

= 3 Geometry axis for channel axis 3

MD24570 $MC_TRAFO5_AXIS1_1[0] = 0.0
MD24570 $MC_TRAFO5_AXIS1_1[1] = 0.0 Direction
MD24570 $MC_TRAFO5_AXIS1_1[2] = 1.0 First rotary axis is parallel to Z

MD24572 $MC_TRAFO5_AXIS1_2[0] = 0.0 Direction
MD24572 $MC_TRAFO5_AXIS1_2[1] = 1.0 Second rotary axis is parallel to Y
MD24572 $MC_TRAFO5_AXIS1_2[2] = 0.0

MD25574 $MC_TRAFO5_BASE_ORIENT_1[0] = 0.0
MD25574 $MC_TRAFO5_BASE_ORIENT_1[1] = 0.0 Basic tool orientation
MD25574 $MC_TRAFO5_BASE_ORIENT_1[2] = 1.0 In Z direction

 W1: Tool offset
 17.10 Special handling of tool compensations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1527

Temperature compensation values in the NC program

The compensation values assigned to axes X and Z are not zero and are applied for
temperature compensation with respect to tool length. The machine axis positions reached in
each case are specified as comments in the program lines.

Program code Comment

$SC_TOOL_TEMP_COMP[0] = -0.3 ; Compensation value in X

$SC_TOOL_TEMP_COMP[1] = 0.0 ;

$SC_TOOL_TEMP_COMP[2] = -1.0 ; Compensation value in Z

 ; Position setpoints of the machine

axes

N10 G74 X0 Y0 Z0 A0 B0 ; X Y Z

N20 X20 Y20 Z20 F10000 ; 20.30 20.00 21.00

N30 TRAORI() ; 20.30 20.00 21.00

N40 X10 Y10 Z10 B90 ; 11.00 10.00 9.70

N50 TRAFOOF ; 10.30 10.00 11.00

N60 X0 Y0 Z0 B0 C0 ; 0.30 0.00 1.00

N70 M30

With the exception of block N40, temperature compensation always acts in the original
directions, as the tool is pointing in the basic orientation direction. This applies particularly in
block N50. The tool is actually still pointing in the direction of the X axis because the B axis is
still at 90 degrees. However, because the transformation is already deactivated, the applied
orientation is parallel to the Z axis again.

Machine data Value Remark
MD20390 $MC_TOOL_TEMP_COMP_ON = TRUE Temperature compensation active
MD32750 $MA_TEMP_COMP_TYPE[AX1] = 4 Compensation in tool direction
MD32750 $MA_TEMP_COMP_TYPE[AX2] = 4 Compensation in tool direction
MD32750 $MA_TEMP_COMP_TYPE[AX3] = 4 Compensation in tool direction

Additional references
For more details on "Temperature compensation" see:

References:
Function Manual Extended Functions; Compensations (K3)

For information on "Generic 5-axis transformations" see:

References:
Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1528 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.11 Sum offsets and setup offsets

17.11.1 General

Sum offsets
Sum offsets can be treated as programmable process compensations during machining and
are composed of all the error sizes (including the wear), which cause the workpiece to
deviate from the specified dimensions.

Sum offsets are a generalized type of wear. They are part of the cutting edge data. The
parameters of the sum offset refer to the geometrical data of a cutting edge.

The compensation data of a sum offset are addressed by a DL number (DL: location-
dependent; compensations with reference to the location of use).

In contrast, the wear values of a D number describe the physical wear of the cutting edge,
i.e., in special situations, the sum offset can match the wear of the cutting edge.

Sum offsets are intended for general use, i.e., with active or inactive tool management or
with the flat D number function.

Machine data are used to classify the sum offsets into:

● Sum offset fine

● Sum offset coarse (setup offset)

Setup offset
The setup offset is the compensation to be entered by the setup engineer before machining.
These values are stored separately in the NCK. The operator subsequently only has access
to the "sum offset fine" via HMI.

The "sum offset fine" and "sum offset coarse" are added internally in the NCK. This value is
referred to below as the sum offset.

 Note

The function is enabled via the machine data setting:

MD18080 $MN_MM_TOOL_MANAGEMENT_MASK, Bit 8=1 (Gradual memory reservation
for tool management).

If kinematic transformations (e.g., 5axis transformations) are active, the tool length is
calculated first after allowing for the various wear components. ´The total tool length is then
used in the transformation. Unlike the case of a toolholder with orientation capability, the
wear values are thus always included in the transformation irrespective of the G code of
group 56.

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1529

17.11.2 Description of function

Sum offsets
Several sum offsets (DL numbers) can be defined per D number. This allows you to
determine, for example, workpiecelocationdependent compensation values and assign them
to a cutting edge. Sum offsets have the same effect as wear, i.e., they are added to the
compensation values of the D number. The data are permanently assigned to a D number.

Attitudes
You can define the following settings in machine data:

● Activate sum offset

● Define maximum quantity of DL data sets to be created in NCK memory

● Define maximum quantity of DL numbers to be assigned to a D number

● Define whether the sum offsets (fine/coarse) are to be saved during data backup

● Define the sum offset to be activated, if:

– A new cutting edge compensation is activated

– An operator panel front RESET is performed

– An operator panel front START is performed

– The end of the program has been reached

The name is oriented to the logic of the corresponding machine data for tools and cutting
edges.

The "setup offset" and "sum offset fine" can be read and written via system variables and
corresponding OPI services.

 Note

When tool management is active, a machine data can be used to define whether the sum
offset of a tool activated during a programmed tool change remains unchanged or is set to
zero.

Summary of compensation parameters $TC_DPx

The following general system variables were previously defined for describing a cutting
edge:

$TC_DP1 Tool type
$TC_DP2 Length of cutting edge

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1530 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Parameters for geometry and wear
Tool geometry compensations are assigned to system variables $TC_DP3 to $TC_DP11.
System variables $TC_DP12 to $TC_DP20 allow you to name a wear for each of these
parameters.

Geometry Wear Length compensations
$TC_DP3 $TC_DP12 Length 1
$TC_DP4 $TC_DP13 Length 2
$TC_DP5 $TC_DP14 Length 3
Geometry Wear Radius compensation
$TC_DP6 $TC_DP15 Radius
$TC_DP7 $TC_DP16 Corner radius (tool type 700; slotting saw)
Geometry Wear Further compensations
$TC_DP8 $TC_DP17 Length 4 (tool type 700; slotting saw)
$TC_DP9 $TC_DP18 Length 5
$TC_DP10 $TC_DP19 Angle 1 (angle between face of tool and torus surface)
$TC_DP11 $TC_DP20 Angle 2 (angle between tool longitudinal axis and upper

end of torus surface)

Tool base dimension/adapter dimension

$TC_DP21 Adapter length 1
$TC_DP22 Adapter length 2
$TC_DP23 Adapter length 3

Technology

System variable Clearance angle
$TC_DP24 • The clearance angle is stored here for ManualTurn; tool type 5xx.

Same significance as in standard cycles for turning tools.
• The tip angle of the drill is stored here for ShopMill; tool type 2xx.
• Used in standard cycles for turning tools; tool type 5xx. This is the

angle at the secondary cutting edge for these tools.

$TC_DP25 • The value for the cutting rate is stored here for ManualTurn.
• A bitcoded value for various states of tool types 1xx and 2xx is stored

here for ShopMill.

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1531

Parameters of the sum and setup offsets ($TC_SCPxy, $TC_ECPxy)
The numbering of the parameters is oriented to the numbering of system variables $TC_DP3
to $TC_DP11.

The effect of the parameters is similar to the wear (additive to the tool geometry). Up to six
sum/setup parameters can be defined per cutting edge parameter.

Tool geometry
parameter, to which the
compensation is added.

Sum/setup parameters, length compensations Tool wear
parameters

$TC_DP3 Length 1
$TC_SCP13, $TC_SCP23,$TC_SCP33,
$TC_SCP43,$TC_SCP53,$TC_SCP63
$TC_ECP13, $TC_ECP23,$TC_ECP33,
$TC_ECP43,$TC_ECP53,$TC_ECP63
The numbers in bold, 1, 2, ... 6, designate the
parameters of a maximum of six (location-dependent
or similar) compensations that can be programmed
with DL =1 to 6 for the parameter specified in column
one.

$TC_DP12

$TC_DP4 Length 2
$TC_SCP14, $TC_SCP24,$TC_SCP34,
$TC_SCP44,$TC_SCP54,$TC_SCP64
$TC_ECP14, $TC_ECP24,$TC_ECP34,
$TC_ECP44,$TC_ECP54,$TC_ECP64

$TC_DP13

$TC_DP5 Length 3
etc.

$TC_DP14

 Radius compensation
$TC_DP6 Radius $TC_DP15
$TC_DP7 Corner radius $TC_DP16
 Further compensations
$TC_DP8 Length 4 $TC_DP17
$TC_DP9 Length 5 $TC_DP18
$TC_DP10 Angle 1,

etc.
$TC_DP19

$TC_DP11 Angle 2
$TC_SCP21, $TC_SCP31,$TC_SCP41,
$TC_SCP51,$TC_SCP61,$TC_SCP71
$TC_ECP21, $TC_ECP31,$TC_ECP41,
$TC_ECP51,$TC_ECP61,$TC_ECP71
The numbers in bold, 2, 3, ... 7, designate the
parameters of a maximum of six (location-dependent
or similar) compensations that can be programmed
with DL =1 to 6 for the parameter specified in column
one.

$TC_DP20

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1532 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Supplementary conditions
The maximum number of DL data sets of a cutting edge and the total number of sum offsets
in the NCK are defined by machine data. The default value is zero, i.e., no sum offsets can
be programmed.

Activate the "monitoring function" to monitor a tool for wear or for "sum offset".

The additional sum/setup data sets use additional buffered memory. 8 bytes are required per
parameter.

A sum-offset data set requires: 8 bytes * 9 parameters = 72 bytes

A setup data set requires an equal amount of memory. A certain number of bytes is also
required for internal administration data.

17.11.3 Activation

Function
The function must be activated via the machine data:

MD18108 $MN_MM_NUM_SUMCORR (sum offsets in TO area).

System variables $TC_ECPx and $TC_SCPx and setup and sum offsets ("fine") defined via
the OPI interface can be activated in the part program.

This is done by programming the language command DL="number".

When a new D number is activated, either a new DL number is programmed, or the DL
number defined via the following machine data becomes active:

MD20272 $MC_SUMCORR_DEFAULT (basic setting of the additive offset without a
program)

DL programming
The sum offset is always programmed relative to the active D number with the command:

DL = "n"

The sum offset "n" is added to the wear of the active D number.

 Note

If you use "setup offset" and "sum offset fine", both compensations are combined and added
to the tool wear.

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1533

The sum offset is deselected with the command:

DL = 0

 Note

DL0 is not allowed. If compensation is deselected (D0 and T0), the sum offset also becomes
ineffective.

Programming a sum offset that does not exist triggers an alarm, similar to programming a D
compensation that does not exist.

Thus, only the defined wear remains part of the compensation (defined in system variables
$TC_DP12 to $TC_DP20).

Programming a sum offset when a D compensation is active (also applies to deselection)
has the same effect on the path as programming a D command. An active radius
compensation will, therefore, lose its reference to adjacent blocks.

Configuration
MD18112 $MN_MM_KIND_OF_SUMCORR, bit 4=0: (Properties of sum offset in the TO
area) default setting:

Only one set of sum offsets exists per DL number.

We refer in general to the sum offset.

This describes the data represented by $TC_SCPx.

Figure 17-50 MD18112 $MN_MM_KIND_OF_SUMCORR, bit 4 = 0

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1534 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Tool T = t is active. With the data in the figure, the following is programmed:

D2 ; Cutting edge offsets, i.e., $TC_DP3 to $TC_DP11 + wear

($TC_DP12 to $TC_DP20) + adapter dimension

...

DL=1 ; Sum offset 1 is added to the previous D2 compensations, i.e.,

$TC_SCP13 to $TC_SCP21.

...

DL=2 ; Sum offset 2 is added to the D2 compensation instead of sum

offset 1, i.e., $TC_SCP23 to $TC_SCP31.

...

DL=0 ; Deselection of sum offset;

only the data of D2 remain active.

MD18112 $MN_MM_KIND_OF_SUMCORR, bit 4=1: Setup offsets are available

The sum offset is now composed of the "sum offset fine" (represented by $TC_SCPx) and
the setup offset (represented by $TC_ECPx). Two data sets therefore exist for one DL
number. The sum offset is calculated by adding the corresponding components ($TC_ECPx
+ $TC_SCPx).

Figure 17-51 MD18112 $MN_MM_KIND_OF_SUMCORR, bit 4 = 1 "setup offsets" + "sum offsets fine"

Tool T = t is active. With the data in the figure, the following is programmed:

D2 ; Cutting edge compensations, i.e., $TC_DP3 to $TC_DP11 + wear

($TC_DP12 to $TC_DP20) + adapter dimension

...

DL=1 ; Sum offset 1 is added to the previous D2 compensations, i.e.,

$TC_ECP13 + $TC_SCP13 to $TC_ECP21 + $TC_SCP21.

...

DL=2 ; Sum offset 2 is added to the D2 compensation instead of sum

offset 1; i.e., $TC_ECP23 + $TC_SCP23,...$TC_ECP31 + $TC_SCP31

...

DL=0 ; Deselection of sum offset. Only the data of D2 remain active.

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1535

Reading/writing in the part program
The individual sets of sum offset parameters are differentiated according to the number
ranges of system variable $TC_SCP.

The significance of the individual variables is similar to geometry variables $TC_DP3 to
$TC_DP11. Only length 1, length 2 and length 3 are enabled for the basic functionality
(variables $TC_SCP13 to $TC_SCP15 for the first sum offset of the cutting edge).

R5 = $TC_SCP13[t, d] ; Sets the value of the R parameter to the value

of the first component of sum offset 1 for

cutting edge (d)

 on tool (t).

R6 = $TC_SCP21[t, d] ; Sets the value of the R parameter to the value

of the last component of sum offset 1 for

cutting edge (d) on tool (t).

R50 = $TC_SCP23[t, d] ; Sets the value of the R parameter to the value

of the first component of sum offset 2 for

cutting edge (d) on tool (t).

$TC_SCP43[t, d] = 1.234 ; Sets the value of the first component of sum

offset 4 for cutting edge (d) on tool (t) to the

value 1.234.

The above statements also apply to the setup offsets (if the NCK is configured with this
option), i.e.,

R5 = $TC_ECP13[t, d] ; Sets the value of the R parameter to the value

of the first component of setup offset 1 for

cutting edge (d) on tool (t).

R6 = $TC_ECP21[t, d] ; Sets the value of the R parameter to the value

of the last component of setup offset 1 for

cutting edge (d) on tool (t).

Etc.

When working with setup offsets, "sum offsets fine" are written with the $TC_SCPx system
variables.

Creating a new sum offset
If the compensation data set (x) does not yet exist, it is created on the first write operation to
one of its parameters (y).

$TC_SCPxy[t, d] = r.r ; Parameter y of sum offset x is assigned the

value "r.r.". The other parameters of x have a

value of zero.

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1536 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

When working with setup offsets, "sum offsets fine" are written with the $TC_SCPx system
variables.

 Note

When working with setup offsets, the data set for the setup offset is created when a data set
is created for "sum offset fine", if a data set did not already exist for [t, d].

Creating a new setup offset
If the compensation data set (x) does not yet exist, it is created on the first write operation to
one of its parameters (y).

$TC_ECPxy[t, d] = r.r ; The value "r.r" is assigned to the parameter y

of setup offset x. The other parameters of x

have the value zero.

 Note

When working with setup offsets, the data set for the "sum offset fine" is created when a data
set is created for setup offsets, if a data set did not already exist for [t, d].

DELDL - Delete sum offset
Sum offsets are generally only relevant when machining with a cutting edge at a certain time
at a certain location of the workpiece. You can use the NC language command DELDLto
delete sum offsets from cutting edges (in order to release memory).

; Deletes all sum offsets for cutting edge d on tool

t.

status = DELDL(t, d)

; t, d are optional parameters.

If d is not specified, all sum offsets of all cutting edges of tool t are deleted.

If d and t are not specified, all sum offsets for the cutting edges on all tools of the TO unit are
deleted (for the channel, in which the command is programmed).

When working with setup offsets, the DELDL command deletes both the setup offset and the
"sum offsets fine" of the specified cutting edge(s).

 Note

The memory used for the data sets is released after deletion.

The deleted sum offsets can subsequently no longer be activated or programmed.

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1537

Sum offsets and setup offsets on active tools cannot be deleted (similar to the deletion of D
compensations or tool data).

The "status" return value indicates the result of the deletion command:

0: Deletion was successful
-1: Deletion was not (one cutting edge) or not completely (several cutting edges) successful

Data backup
The data are saved during a general tool-data backup (as a component of the D number
data sets).

It is advisable to save the sum offsets, in order to allow the current status to be restored in
the event of an acute problem. Machine data settings can be made to exclude sum offsets
from a data backup (settings can be made separately for "setup offsets" and "sum offsets
fine").

 Note

Sum offsets behave in the same way as D compensations with reference to block search
and REPOS. The behavior on Reset and PowerOn can be defined by machine data.

If the setting of the following machine data indicates that the last active tool compensation
number (D) is to be activated after PowerOn, the last active DL number is then no longer
active:

MD20110 $MC_RESET_MODE_MASK (definition of initial control system settings after
RESET/TP-End)

17.11.4 Examples

Example 1
That no compensation and no sum offset will come into effect must be defined during tool
change via the machine data:

● MD20270 $MC_CUTTING_EDGE_DEFAULT=0 (Basic setting of tool cutting edge without
programming)

● MD20272 $MC_SUMCORR_DEFAULT=0 (default setting sum offset without program).

T5 M06 ; Tool number 5 is loaded - no compensation active.

D1 DL=3 ; Compensation D1 + sum offset 3 of D1 are activated.

X10

DL=2 ; Compensation D1 + sum offset 2 are activated.

X20

DL=0 ; Sum offset deselection, only compensation D1 is now active.

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1538 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

D2 ; Compensation D2 is activated - the sum offset is not included

in the compensation.

X1

DL=1 ; Compensation D2 + sum offset 1 are activated.

X2

D0 ; Compensation deselection

X3

DL=2 ; No effect - DL2 of D0 is zero (same as programming T0 D2).

Example 2
During tool change it has to be defined that offset D2 and sum offset DL=1 are activated via
the machine data:

MD20270 $MC_CUTTING_EDGE_DEFAULT=2 (Basic setting of tool cutting edge without
programming)

MD20272 $MC_SUMCORR_DEFAULT=1 (default setting sum offset without program)

T5 M06 ; Tool number 5 is loaded - D2 + DL=1 are active (= values of

machine data)

D1 DL=3 ; Compensation D1 + sum offset 3 of D1 are activated.

X10

DL=2 ; Compensation D1 + sum offset 2 are activated.

X20

DL=0 ; Sum offset deselection, only compensation D1 is now active.

D2 ; Compensation D2 is activated - sum offset DL=1 is activated.

X1

DL=2 ; Compensation D2 + sum offset 2 are activated.

D1 ; Compensation D1 + sum offset 1 are activated.

17.11.5 Upgrades for Tool Length Determination

17.11.5.1 Taking the compensation values into account location-specifically and workpiece-
specifically

Composition of the effective tool length
For a tool compensation without active kinematic transformation, the effective tool length
consists of up to 8 vectors:

• Tool length (geometry) ($TC_DP3 - $TC_DP5)

• Wear ($TC_DP12 - $TC_DP14)

• Tool base dimension (see note) ($TC_DP21 - $TC_DP23)

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1539

• Adapter dimension (see note) ($TC_ADPT1 - $TC_ADPT3)

• Total offsets fine ($TC_SCPx3 - $TC_SCPx5)

• Sum offsets coarse or setup offsets ($TC_ECPx3 - $TC_ECPx5)

• Offset vector l1 of toolholder with orientation capability ($TC_CARR1 - $TC_CARR3)

• Offset vector l2 of toolholder with orientation capability ($TC_CARR4 - $TC_CARR6)

• Offset vector l3 of toolholder with orientation capability ($TC_CARR15 - $TC_CARR17)

 Note

The tool base dimension and adapter dimension can only be applied as alternatives.

Type of action of the individual vectors
The type of action of the individual vectors or groups of vectors depends on the following
further quantities:

Influencing quantity Operating principle
G codes Active machining plane
Tool type Milling tool or turning/grinding tools
Machine data Tool management active/not active, toolholder with

orientation capability available/not available
Setting data Behavior of tool length components when mirroring or

when changing the plane
Toolholder with orientation capability Set values of toolholder with orientation capability
Adapter transformations Transformed tool compensation values

Distribution over the geometry-axis components
How the three vector components of partial totals of the vectors involved are distributed over
the three geometry-axis components is determined by the following quantities:

Influencing quantity Dependencies
Active processing level:
G17 X/Y direction
G18 Z/X direction
G19 Y/Z direction

Infeed plane:
Z
Y
X

Tool type:
Milling tools, drilling tools, grinding tools, turning tools

See Section "Tool parameter 1: Tool type
(Page 1415)", Table "Minimum number of
required tool parameters"

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1540 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Influencing quantity Dependencies
SD42900 $SC_MIRROR_TOOL_LENGTH
SD42910 $SC_MIRROR_TOOL_WEAR
SD42920 $SC_WEAR_SIGN_CUTPOS
SD42930 $SC_WEAR_SIGN
SD42940 $SC_TOOL_LENGTH_CONST
SD42950 $SC_TOOL_LENGTH_TYPE

See Section "Special handling of tool
compensations (Page 1517)" and Section
"Setting data (Page 1582)".

Adapter transformations References:
Function Manual Tool Management

The resulting tool orientation always remains parallel to one of the three axis directions X, Y
or Z and exclusively depends on the active machining plane G17-G19, since it has not yet
been possible to assign the tool an orientation.

Stepless variation of the tool orientation
The toolholder with orientation capability also enables the tool orientation to be varied
steplessly, in addition to providing further offsets or linear expansion fluctuations with the aid
of offset vectors l1 - l3 .

For further explanations, see Section "Toolholder with orientation capability (Page 1469)".

Minor operator compensations
Minor compensations, however, must also be modified during the normal production mode.

The reasons for this are, for example:

● Tool wear

● Clamping errors

● Temperature sensitivity of the machine:

These compensations are defined as follows:

Definition Wear components
Wear $TC_DP12 - $TC_DP14,
Total offsets fine $TC_SCPx3 - $TC_SCPx5,
Sum offsets coarse or setup offsets $TC_ECPx3 - $TC_ECPx5

In particular, compensations, which affect the tool length calculation, should be entered in
the coordinates used for measurement.

These workpiece-specific compensations can be achieved more simply using the G-code
group 56 with the three values TOWSTD, TOWMCS and TOWWCS and the setting data:

SD42935 $SC_WEAR_TRANSFORM (transformation of tool components)

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1541

SD42935
Which of the wear components:

● Wear ($TC_DP12 - $TC_DP14)

● Setup offsets or sum offsets coarse ($TC_ECPx3 - $TC_ECPx5)

● Sum offsets fine ($TC_SCPx3 - $TC_SCPx5)

are to be transformed in the transformations:

● Adapter transformation

● Toolholder with orientation capability

are to be or not to be transformed, can be defined via the setting data:

SD42935 $SC_WEAR_TRANSFORM (transformation of wear values)

With the setting data in its initial state, all wear values are transformed.

The setting data is considered in the following functions:

● Wear values in the machine coordinate system

Part program instruction: TOWMCS

● Wear values in the workpiece coordinate system

Part program instruction: TOWWCS

Figure 17-52 Transformation of wear data dependent on SD42935

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1542 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programming
G-code group 56 can be used to define the following values:

Syntax Corrections
TOWSTD Initial setting value for offsets in tool length
TOWMCS Wear values in the machine coordinate system (MCS)
TOWWCS Wear values in the workpiece coordinate system (WCS)
TOWBCS Wear values in the basic coordinate system (BCS)
TOWTCS Wear values in the TCS (Tool Coordinate System) at the toolholder (tool carrier

reference point T)
TOWKCS Wear values in tool coordinate system for kinematic transformation (KCS) of tool

head

Coordinate systems for offsets in tool length
G codes TOWMCS, TOWWCS, TOWBCS, TOWTCS and TOWKCS can be used, e.g. to measure the wear
tool length component in five different coordinate systems.

1. Machine coordinate system MCS

1. Basic coordinate system BCS

1. Workpiece coordinate system WCS

1. Tool coordinate system of kinematic transformation KCS

1. Tool coordinate system TCS

The calculated tool length or a tool length component can be represented and read out in
one of these coordinate systems using the GETTCOR function (predefined subprogram).

For further explanations, see Section "Read tool lengths, tool length components
(Page 1552)".

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1543

Figure 17-53 Coordinate system for the evaluation of tool lengths

17.11.5.2 Functionality of the individual wear values

TOWSTD
Initial setting (default behavior):

● The wear values are added to the other tool length components.

The resulting total tool length is then used in further calculations.

In the case of an active toolholder with orientation capability:

● The wear values are subjected to the appropriate rotation.

TOWMCS
Wear data in the MCS (machine coordinate system):

In the case of an active rotation by means of a toolholder with orientation capability:

● The toolholder only rotates the vector of the resultant tool length. Wear is ignored.

Then the tool length vector rotated in this way and the wear are added. The wear is not
subjected to the rotation.

If no toolholder with orientation capability is active or this does not result in a rotation, TOWMCS
and TOWSTD are identical.

W1: Tool offset
17.11 Sum offsets and setup offsets

 Basic Functions
1544 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Linear transformation

The tool length can be uniquely defined in the MCS only if the MCS is generated by linear
transformation from the BCS.

This would be the case when:

● No kinematic transformation is active

● Or orientation transformations (3-axis, 4-axis and 5-axis transformations) are active

TOWWCS
Wear values in WCS (workpiece coordinate system):

● If a toolholder with orientation capability is active, the tool vector is calculated as for
TOWMCS, without taking the wear into account.

● The wear data are interpreted in the workpiece coordinate system.

The wear vector in the workpiece coordinate system is converted to the machine coordinate
system and added to the tool vector.

TOWBCS
Wear values in BCS (basic coordinate system):

● If a toolholder with orientation capability is active, the tool vector is calculated as for
TOWMCS, without taking the wear into account.

● The wear data are interpreted in the workpiece coordinate system.

The wear vector in the basic coordinate system is converted to the workpiece coordinate
system and added to the tool vector.

Non-linear transformation

If a non-linear transformation is active, e.g. with TRANSMIT, and the MCS is specified as the
desired coordinate system, the BCS is automatically used instead of the MCS.

Toolholder with orientation capability

A table component of the toolholder with orientation capability, if available, is not applied
directly to the coordinate systems, unlike a table (or part) component of the kinematic
transformation. A rotation described by such a component is represented in a basic frame or
system frame and is thus included in the transition from WCS to BCS.

Kinematic transformation

The table (or part) component of the kinematic transformation is described by the transition
from BCS to MCS.

 W1: Tool offset
 17.11 Sum offsets and setup offsets

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1545

TOWTCS
Wear values in TCS (tool coordinate system):

● If a toolholder with orientation capability is active, the tool vector is calculated as for
TOWMCS, without taking the wear into account.

● The wear data are interpreted in the tool coordinate system.

The wear vector in the TCS (Tool Coordinate System) is converted to the machine
coordinate system by way of the tool coordinate system of the kinematic transformation
(KCS) and added to the tool vector.

TOWKCS
The wear value specifications for the kinematic transformation are interpreted in the
associated TCS (Tool Coordinate System).

The wear vector is converted to the machine coordinate system by way of the tool coordinate
system of the kinematic transformation and added to the tool vector.

G code change when a tool is active
Changing the G code in the group TOWSTD, TOWMCS, TOWWCS, TOWBCS, TOWTCS, and TOWKCS does
not affect an already active tool, and does not become effective until the next tool is
selected.

A new G code of this group will also come into effect if it is programmed in the same block, in
which a tool is selected.

Evaluation of individual wear components
Evaluation of individual wear components (assignment to geometry axes, sign evaluation) is
influenced by:

● The active plane

● The adapter transformation

● The five setting data shown in the table below

Setting data Wear components
SD42910 $SC_MIRROW_TOOL_WEAR TOWSTD TOWMCS TOWWCS

SD42920 $SC_WEAR_SIGN_CUTPOS X X —
SD42930 $SC_WEAR_SIGN X — —
SD42940 $SC_TOOL_LENGTH_CONST X X X
SD42950 $SC_TOOL_LENGTH_TYPE X X X

 Note

Wear components which are subjected to an active rotation by an adapter transformation or
a toolholder with orientation capability are referred to as non-transformed wear components.

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1546 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Special features
If TOWMCS or TOWWCS is active, the following setting data does not affect the non-transformed
wear components:

SD42920 $SC_WEAR_SIGN_CUTPOS (Sign of wear for tools with cutting edge systems)

The following setting data also does not affect the non-transformed wear components in
case of TOWWCS:

SD42910 $SC_MIRROR_TOOL_WEAR (Sign change tool wear when mirroring)

In this case, a possibly active mirroring is already contained in the frame, which is referred to
for evaluating the wear components.

On a plane change, the assignment between the non-transformed wear components and the
geometry axes is retained, i.e. these are not interchanged as with other length components.
The assignment of components depends on the active plane for tool selection.

Example
Let's assume a milling tool is used where only the wear value $TC_DP12 assigned to length
L1 is not equal to zero.

If G17 is active, this length is effective in the direction of the Z axis.

This measure always acts in the Z-direction also upon a plane change after the tool
selection, when TOWMCS or TOWWCS are active and the bit 1 is set in the setting data:

SD42935 $SC_WEAR_TRANSFORM (transformations for tool components)

If, for example, G18 is active on tool selection, the component is always effective in the Y
direction instead.

17.12 Working with tool environments

17.12.1 General

Functions
The current states of tool data can be processed using the functions below, which are
generally available:

● Save

● Deletion

● Read

● Modify

A further function can be used to determine information about the assignment of the tool
lengths of the active tool to the abscissa, ordinate and applicate.

 W1: Tool offset
 17.12 Working with tool environments

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1547

17.12.2 Saving with TOOLENV

Scope of a tool environment
The TOOLENV memory function is used to save any current states needed for the evaluation of
tool data stored in the memory.

The individual data are as follows:

● The active G code of group 6 (G17,G18,G19)

● The active G code of group 56 (TOWSTD, TOWMCS, TOWWCS, TOWBCS, TOWTCS, TOWKCS)

● The active transverse axis

● Machine data:

MD18112 $MN_MM_KIND_OF_SUMCORR (Properties of sum offsets in the TO area)

● Machine data:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

● Setting data:

SD42900 $SC_MIRROR_TOOL_LENGTH (Sign change tool length when mirroring)

● Setting data:

SD42910 $SC_MIRROR_TOOL_WEAR (Sign change tool wear when mirroring)

● Setting data:

SD42920 $SC_WEAR_SIGN_CUTPOS (Sign of wear for tools with cutting edge systems)

● Setting data:

SD42930 $SC_WEAR_SIGN (sign of wear)

● Setting data:

SD42935 $SC_WEAR_TRANSFORM (transformations for tool components)

● Setting data:

SD42940 $SC_LENGTH_CONST (change of tool components on change of planes)

● Setting data:

SD42950 $SC_TOOL_LENGTH_TYPE (allocation of the tool length components
independent of tool type)

● The orientation component of the current complete frame (rotation and mirroring, no work
offsets or scales)

● The orientation component and the resulting length of the active toolholder with
orientation capability

● The orientation component and the resulting length of an active transformation

● In addition to the data describing the environment of the tool, the T number, D number
and DL number of the active tool are also stored, so that the tool can be accessed later in
the same environment as the TOOLENV call, without having to name the tool again.

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1548 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Not in the tool environment
The value of the machine data determines whether the adapter length or the tool base
dimension is included in the tool length calculation:

MD18104 $MN_MM_NUM_TOOL_ADAPTER (tool adapter in TO area).

Since a change to this machine data only takes effect after Power On, it is not saved in the
tool environment.

 Note

Resulting length of toolholders with orientation capability and transformations:

Both toolholders with orientation capability and transformations can use system variables or
machine data, which act as additional tool length components, and which can be subjected
partially or completely to the rotations performed. The resulting additional tool length
components must also be stored when TOOLENV is called, because they represent part of the
environment, in which the tool is used.

Adapter transformation:

The adapter transformation is a property of the tool adapter and thus of the complete tool. It
is, therefore, not part of a tool environment, which can be applied to another tool.

By saving the complete data necessary to determine the overall tool length, it is possible to
calculate the effective length of the tool at a later point in time, even if the tool is no longer
active or if the conditions of the environment (e.g., G codes or setting data) have changed.
Similarly, the effective length of different tool can be calculated assuming that it would be
used under the same conditions as the tool, for which the status was saved.

TOOLENV function
Saving a tool environment

The TOOLENV function is a predefined subprogram. It must, therefore, be programmed in a
separate block.

Syntax:
 Status = TOOLENV(_NAME)

Value/parameter:
Status INT

 0: Function OK
 -1: No memory reserved for tool environments:

MD18116 $MN_MM_NUM_TOOL_ENV = 0 (number of tool environments in TO
area).
i.e. the "tool environments" functionality is not available.

 -2: No more free memory locations for tool environments available.
 -3: Null string illegal as name of a tool environment.
 -4: No parameter (name) specified.

 W1: Tool offset
 17.12 Working with tool environments

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1549

_NAME STRING

 Name, under which the current data set is stored.
If a data set of the same name already exists, it is overwritten. In this case, the status is
0.

17.12.3 Delete tool environment

DELTOOLENV function
This function can be used to delete sets of data used to describe tool environments. Deletion
means that the set of data stored under a particular name can no longer be accessed (an
access attempt triggers an alarm).

The DELTOOLENV function is a predefined subprogram.

It must, therefore, be programmed in a separate block.

Syntax:
There are two call formats:
 Status = DELTOOLENV()
 Status = DELTOOLENV(_NAME)

Value/parameter:
Status INT

 0: Function OK
 -1: No memory reserved for tool environments:

MD18116 $MN_MM_NUM_TOOL_ENV = 0 (number of tool environments in TO
area).
i.e. the "tool environments" functionality is not available.

 -2: A tool environment with the specified name does not exist.

_NAME STRING

 Name of data set to be deleted

The first call format deletes all data sets.

The second call format deletes the data set with the specified name.

Data sets can only be deleted using the DELTOOLENV command, by an INITIAL.INI download
or by a cold start (NCK powerup with default machine data). There are no further automatic
deletion operations (e.g., on RESET).

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1550 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.12.4 How many environments and which ones are saved?

$P_TOOLENVN
This system variable returns the number of available data sets for describing tool
environments. (Data sets defined by TOOLENV and not yet deleted.)

The value range is from 0 to machine data:

MD18116 $MN_MM_NUM_TOOL_ENV (number of tool environments in TO area).

This system variable can be accessed even if no tool environments are possible (MD18116
= 0). In this case, the return value is 0.

Syntax:
 _N = $P_TOOLENVN

Data type:
_N INT

 Number of defined TOOLENV

$P_TOOLENV
This system variable returns the number of the nth data set for describing a tool
environment.

The assignment of numbers to data sets is not fixed, but can be changed as a result of
deleting or creating data sets. The data sets are numbered internally. The range is from 1 to
$P_TOOLENVN.

Syntax:
 _NAME = $P_TOOLENV[i]

Data type:
_NAME STRING

 Name of the data set with number i
i INT

 Number of the data set.
If an index is specified, which does not point to a defined data set, the following alarm is
output:
Alarm "17020 (inadmissible array-index1)"

 W1: Tool offset
 17.12 Working with tool environments

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1551

17.12.5 Read T, D, DL from a tool environment

GETTENV function
The GETTENV function is used to read the T, D and DL numbers stored in a tool environment.

The GETTENV function is a predefined subprogram. It must, therefore, be programmed in a
separate block.

Syntax:
 Status = GETTENV(_NAME, _TDDL)

Value/parameter:
Status INT

 0: Function OK
 -1: No memory reserved for tool environments:

MD18116 $MN_MM_NUM_TOOL_ENV = 0 (number of tool environments in TO
area).
i.e. the "tool environments" functionality is not available.

 -2: A tool environment with the name specified in _NAME does not exist.

_NAME STRING

 Name of the tool environment, from which the T, D and DL numbers can be read

_TDDL[3] INT

 This integer array contains:
- in "_TDDL[0]" the T number of the tool,
- in "_TDDL[1]" the D number of the tool,
- in "_TDDL[2]" the DL number of the tool,
whose tool environment in the data set is stored with the name "_NAME".

It is possible to omit the first parameter in the GETTENV function call (e.g., GETTENV(, _TDDL))
or to pass a null string as the first parameter (e.g., GETTENV("", _TDDL)). In both of these two
special cases, the T, D and DL numbers of the active tool are returned in _TDDL.

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1552 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.12.6 Read tool lengths, tool length components

GETTCOR function
The GETTCOR function is used to read out tool lengths or tool length components.

The parameters can be used to specify, which components are considered, and the
conditions, under which the tool is used.

The GETTCOR function is a predefined subprogram. It must, therefore, be programmed in a
separate block.

Syntax:
 Status = GETTCOR(_LEN, _COMP, _STAT, _T, _D, _DL)
 All parameters can be omitted with the exception of the first parameter (_LEN).

Value/parameter:
Status INT

 0: Function OK
 -1: No memory reserved for tool environments:

MD18116 $MN_MM_NUM_TOOL_ENV = 0 (number of tool environments in TO
area).
i.e. the "tool environments" functionality is not available.

 -2: A tool environment with the name specified in _STAT does not exist.
 -3: Invalid string in parameter _COMP.

Causes of this error can be invalid characters or characters programmed twice.
 -4: Invalid T number
 -5: Invalid D number
 -6: Invalid DL number
 -7: Attempt to access non-existent memory module
 -8: Attempt to access a non-existent option (programmable tool orientation, tool

management).
 -9: The _COMP string contains a colon (identifier for the specification of a coordinate

system), but it is not followed by a valid character denoting the coordinate system.

_LEN[11] REAL

 Result vector
The vector components are arranged in the following order:

 Tool type (LEN[0])
 Length of cutting edge (LEN[1])
 Abscissa (LEN[2])
 Ordinate (LEN[3])

 W1: Tool offset
 17.12 Working with tool environments

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1553

 Applicate (LEN[4])
 Tool radius (LEN[5])
 The coordinate system defined in _COMP and _STAT is used as the reference

coordinate system for the length components. If no coordinate system is defined in
_COMP, the tool lengths are represented in the machine coordinate system.
The assignment of the abscissa, ordinate and applicate to the geometry axes depends on
the active plane in the tool environment, i.e. with G17, the abscissa is parallel to X, with
G18 it is parallel to Z, etc.
Components LEN[6] to LEN[10] contain the additional parameters, which can be used to
specify the geometry description of a tool (e.g. $TC_DP7 to $TC_DP11 for the geometry
and the corresponding components for wear or sum and setup offsets).
These 5 additional elements and the tool radius are only defined for components E, G, S,
and W. Their evaluation does not depend on _STAT. The corresponding values in LEN[5]
to LEN[10] can thus only be not equal to zero if at least one of the four specified
components is involved in the tool length calculation. The remaining components do not
influence the result. The dimensions refer to the control's basic system (inch or metric).

_COMP STRING

 This string consists of two substrings, which are separated from one another by a colon.
The individual characters (letters) of the first substring identify the tool length components
to be taken into account when calculating the tool length.
The second substring identifies the coordinate system, in which the tool length is to be
output. It consists of only one single relevant character.
The order of the characters in the strings, and their notation (upper or lower case), is
arbitrary. Any number of blanks or white spaces can be inserted between the characters.
The letters in the substrings cannot be programmed twice. The meanings in the first
substring are as follows:

 -: (Minus symbol, only allowed as first character): The complete tool length is
calculated, minus the components specified in the next string.

 C: Adapter or tool base dimension (whichever of the two alternative components is
active for the tool in use)

 E: Setup offsets
 G: Geometry
 K: Kinematic transformation (is only evaluated for generic 3, 4 and 5-axis

transformation)
 S: Sum offsets
 T: Toolholder with orientation capability
 W: Wear

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1554 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 If the first substring is empty (except for white spaces), the complete tool length is
calculated allowing for all components. This applies even if the _COMP parameter is not
specified.
An optional programmable colon must be followed by a single character specifying the
coordinate system, in which the tool length components are to be evaluated. If no
coordinate system is specified, the evaluation is performed in the MCS (machine
coordinate system). If any rotations are to be taken into account, they are specified in the
tool environment defined in _STAT.
The characters have the following significance:

 B: Basic coordinate system (BCS)
 K: Tool coordinate system of kinematic transformation (KCS)
 M: Machine coordinate system (MCS)
 T: Tool coordinate system (TCS)
 W: Workpiece coordinate system (WCS)

_STAT STRING

 Name of the data set for describing a tool environment.
If the value of this parameter is the null string ("") or is not specified, the current status is
used.

_T INT

 Internal T number of tool
If this parameter is not specified, or if its value is 0, the tool stored in _STAT is used.
If the value of this parameter is -1, the T number of the active tool is used. It is also
possible to specify the number of the active tool explicitly.

 Note

If _STAT is not specified, the current status is used as the tool environment. Since _T = 0
refers to the T number saved in the tool environment, the active tool is used in that
environment, i.e. parameters _T = 0 and _T = -1 have the same meaning in this special case.

_D INT

 Cutting edge of the tool. If this parameter is not specified, or if its value is 0, the D number
used is based on the source of the T number. If the T number from the tool environment
is used, the D number of the tool environment is also read, otherwise the D number of the
currently active tool is read.

 W1: Tool offset
 17.12 Working with tool environments

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1555

_DL INT

 Number of the local compensation. If this parameter is not specified, the DL number used
is based on the source of the T number. If the T number from the tool environment is
used, the D number of the tool environment is also read, otherwise the D number of the
currently active tool is read.

Any rotations and component exchanges initiated by the adapter transformation, toolholder
with orientation capability and kinematic transformation, are part of the tool environment.
They are thus always performed, even if the corresponding length component is not
supposed to be included. If this is undesirable, tool environments must be defined, in which
the corresponding transformations are not active. In many cases (i.e. any time a
transformation or toolholder with orientation capability is not used on a machine), the data
sets stored for the tool environments automatically fulfill these conditions, with the result that
the user does not need to make special provision.

MD20360 $MC_TOOL_PARAMETER_DEF_MASK
The two least significant bits of this machine data specify how the wear (bit 0) and tool length
(bit 1) are to be evaluated if a diameter axis is used for turning and grinding tools.

If the bits are set, the associated entry is weighted with the factor 0.5. This weighting is
reflected in the tool length returned by GETTCOR.

Example:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK = 3 (definition of tool parameters).

MD20100 $MC_DIAMETER_AX_DEF="X" (Geometry axis with face axis funtion)

X is diameter axis (standard turning machine configuration):

N30 $TC_DP1[1.1] = 500

N40 $TC_DP2[1.1] = 2

N50 $TC_DP3[1.1] = 3.0 ; Geometry L1

N60 $TC_DP4[1,1]= 4.0

N70 $TC_DP5[1,1]= 5.0

N80 $TC_DP12[1,1]= 12.0 ; Wear L1

N90 $TC_DP13[1,1]= 13.0

N100 $TC_DP14[1,1]= 14.0

N110 t1 d1 g18

N120 r1 = GETTCOR(_LEN, "GW")

N130 r3 = _LEN[2] ; 17.0 (= 4.0 + 13.0)

N140 r4 = _LEN[3] ; 7.5 (= 0.5 * 3.0 + 0.5 * 12.0)

N150 r5 = _LEN[4] ; 19.0 (= 5.0 + 14.0)

N160 m30

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1556 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Kinematic transformation, toolholder with orientation capability
If a toolholder with orientation capability is taken account of during the tool length calculation,
the following vectors are included in that calculation:

Type Vectors
M l1 and l2
T l1, l2 and l3
P Tool length is not influenced by the toolholder with orientation capability.

In generic 5-axis transformation, the following machine data are included in the tool length
calculation for transformer types 24 and 56:

Transforme
r type

Machine data

24 MD24550/24650 $MC_TRAFO5_BASE_TOOL_1/2
MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2
MD24558/24658 $MC_TRAFO5_PART_OFFSET_1/2

56 MD24550/24650 $MC_TRAFO5_BASE_TOOL_1/2
MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2

Transformation type 56 corresponds to type M for a toolholder with orientation capability.

With this 5-axis transformation in the software versions used up to now, the following vector
is equivalent to the sum of the two vectors l1 and l3 for a toolholder with orientation capability
type M.

MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2 (vector of kinematic offset of the
first/second 5-axis transformation in the channel)

Only the sum is relevant for the transformation in both cases. The way, in which the two
individual components are composed, is insignificant. When calculating the tool length,
however, it is relevant which component is assigned to the tool and which is assigned to the
tool table.

This explains the introduction of new machine data:

MD24558/24658 $MC_TRAFO5_JOINT_OFFSET_PART_1/2 (vector kinematic offset in
table).

It is equivalent to the vector l3.

The following machine data no longer corresponds to the sum of l1 and l3, but only to vector
l1.

MD24560/24660 $MC_TRAFO5_JOINT_OFFSET_1/2 (vector of kinematic offset of the first
5-axis transf. in the channel).

The new response is identical to the current response, if the following machine data equals
zero:

MD24558/24658 $MC_TRAFO5_JOINT_OFFSET_PART_1/2 (vector kinematic offset in
table).

 W1: Tool offset
 17.12 Working with tool environments

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1557

GETTCOR examples

GETTCOR(_LEN): Calculates the tool length of the currently active tool in the machine

coordinate system allowing for all components.
GETTCOR(_LEN; "CGW :
W"):

Calculates the tool length for the active tool, consisting of the adapter
or tool base dimension, geometry and wear. Further components,
such as toolholder with orientation capability or kinematic
transformation, are not considered. The workpiece coordinate system
is used for the output.

GETTCOR(_LEN, "-K :B"): Calculates the complete tool length of the active tool without allowing
for the length components of an active kinematic transformation.
Output in the basic coordinate system.

GETTCOR(_LEN, ":M",
"Testenv1",,3):

Calculates the complete tool length in the machine coordinate system
for the tool stored in the tool environment named "Testenv1". The
calculation is performed for cutting edge number D3, regardless of the
cutting edge number stored.

Compatibility
The GETTCOR function is used in conjunction with the TOOLENV and SETTCOR functions to replace
parts of the functionality, which were previously implemented externally in the measuring
cycles.

Only some of the parameters, which actually determine the effective tool length, were
implemented in the measuring cycles. The above functions can be configured to reproduce
the behavior of the measuring cycles in relation to the tool length calculation.

17.12.7 Changing tool components

SETTCOR function
The SETTCOR function is used to change tool components taking into account all general
conditions that can be involved when evaluating the individual components.

The SETTCOR function is a predefined subprogram. It must, therefore, be programmed in a
separate block.

 Note

Regarding the terminology: If in the following, in conjunction with the tool length, tool
components are involved, then the components considered from a vectorial perspective are
meant, which make up the complete tool length, e.g. geometry or wear. Such a component
comprises three individual values (L1, L2, L3), which are called coordinate values in the
following.

The tool component "geometry" therefore comprises three coordinate values $TC_DP3 to
$TC_DP5.

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1558 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Syntax:
 Status = SETTCOR(_CORVAL, _COMP, _CORCOMP, _CORMODE, _GEOAX, _STAT,

_T, _D, _DL)
 With the exception of the first two parameters (_CORVAL and _COMP) all of the

parameters can also be omitted.

Value/parameter:
Status INT
 0: Function OK
 -1: No memory reserved for tool environments:

MD18116 $MN_MM_NUM_TOOL_ENV = 0 (number of tool environments in TO
area).
i.e. the "tool environments" functionality is not available.

 -2: A tool environment with the name specified in _STAT does not exist.
 -3: Invalid string in parameter _COMP.

Causes of this error can be invalid characters or characters programmed twice.
 -4: Invalid T number.
 -5: Invalid D number.
 -6: Invalid DL number.
 -7: Attempt to access a non-existent memory module.
 -8: Attempt to access a non-existent option (programmable tool orientation, tool

management).
 -9: Illegal numerical value for the _CORCOMP parameter.
 -10: Illegal numerical value for the _CORMODE parameter.
 -11: The contents of the _COMP and _CORRCOMP parameters are contradictory.
 -12: The contents of the _COMP and _CORRMODE parameters are contradictory.
 -13: The content of the _GEOAX parameter does not designate a geometry axis.
 -14: Write attempt to a non-existent setup offset.

_CORVAL[3] REAL array
 Designates the offset vector.

In this case, in the workpiece coordinate system (WCS) defined using _STAT the
following are assigned:
• _CORVAL[0] of the abscissa
• _CORVAL[1] of the ordinate
• _CORVAL[2] of the applicate

 W1: Tool offset
 17.12 Working with tool environments

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1559

 If only one tool component is to be corrected (i.e. no vectorial correction, see parameter
_CORMODE), the correction value is always in _CORVAL[0], independent of the axis on
which it acts. The contents of the other two components are then not evaluated.

 If _CORVAL or a component of _CORVAL refers to the transverse axis, then the data is
evaluated as radius dimension. This means that a tool is e.g. "longer" by the specified
dimension; this correspondingly results in a change to the workpiece diameter that is
twice as large.
The dimensions refer to the basic system (inch or metric) of the control system.

_COMP STRING
 String that comprises either one or two characters. The first or only character for the 1st

component (Val1) and the second character for the 2nd component (Val2), which are
processed according to the subsequent parameters _CORCOMP and _CORMODE.

 The notation of the characters in the string (upper or lower case) is arbitrary. Any number
of spaces or tabs (white spaces) can be inserted.
The individual meanings are as follows:

 C: Adapter or tool base dimension (whichever of the two alternative components is
active for the tool in use)

 E: Setup offsets
 G: Geometry
 S: Sum offsets
 W: Wear

_CORCOMP INT
 This parameter specifies the component(s) of the two data sets that are to be described.

If this parameter is not specified then its value is 0.
Meaning of the numerical values:

 0: The offset value _CORVAL[0] refers to the geometry axis transferred in
parameter _GEOAX in the workpiece coordinate system, i.e. the offset value
must be calculated in the designated tool components so that, taking account
all the parameters that can influence the tool length calculation, as a result, a
change of the total tool length by the specified value in the specified axis
direction is obtained.
This change should be achieved by the correction of the component specified
in _COMP and the symbolic algorithm specified in _CORMODE (see the
following parameters). The resulting correction can therefore have an effect on
all three axis components.

 1: Like 0, however, vectorial. The content of vector _CORVAL refers to abscissa,
ordinate, applicate in the workpiece coordinate system (WCS).
The subsequent parameter _GEOAX is not evaluated.

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1560 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

 2: Vectorial offset, i.e. L1, L2 and L3 can change simultaneously.
In contrast to the versions from 0 and 1, the offset values contained in
_CORVAL refer to the coordinates of Val1 components (see following
parameter _CORMODE) of the tool.
Any possible inclination of an existing tool compared with the workpiece
coordinate system has no influence on the offset.

 3 - 5: Correction of tool lengths L1 to L3 ($TC_DP3 to $TC_DP5) or the
corresponding values for wear, setting up or additive offsets.
The offset value is contained in _CORVAL[0]. It is measured in the coordinates
of the Val1 component (see following parameter _CORMODE) of the tool. Any
possible inclination of an existing tool compared with the workpiece coordinate
system has no influence on the offset.

 6: Correction of the tool radius ($TC_DP6) or the corresponding values for wear,
setting up or additive offsets.

 7 – 11: Correction of $TC_DP7 to $TC_DP11 or the corresponding values for wear,
setting up or additive offsets. These parameters are treated just like the tool
radius.

_CORMODE INT
 This parameter specifies the type of write operation to be executed.

If this parameter is not specified then its value is 0.
Meaning of the ones location:

 0:Val1new = _CORVAL
 1:Val1new = Val1old + _CORVAL
 2:Val1new = _CORVAL

Val2new = 0

 W1: Tool offset
 17.12 Working with tool environments

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1561

 3:Val1new = Val1old + Val2old + _CORVAL
Val2new = 0

 The notation Val1old + Val2old is symbolic. If the two components (due to the status of
_STAT) are evaluated in different ways, i.e. if a rotation is effective between the two
components, then Val2old is transformed prior to addition so that the resulting tool length
after deleting Val2new and prior to the addition of _CORVAL remains unchanged.
_CORVAL always refers to Val1._CORVAL is a value that is always measured in the
workpiece coordinate system (WCS). It is therefore already transformed with respect to
the tool components, in which it should be calculated. Therefore, it cannot be directly
calculated together with the saved value, but must be transformed back prior to adding to
Val1 or Val2.
This can mean that the offset acts on an axis different than the one defined by
_CORCOMP – or that it acts on several axes.
For the case CORRCOMP = 0, i.e. if _CORVAL does not contain a vector, but only an
individual value, then the described operations are executed in the coordinates in which
_CORVAL was measured (WCS). In particular, this also applies to setting Val2new to zero
in versions 2 and 3. This result is then transformed back into the coordinates of the tool.
This can mean that none of the coordinate values to be set to zero (L1, L2, L3) become
zero, or coordinate values, that were previously zero, are now not equal to zero.
However, if the corresponding operations are successively executed for all three
geometry axes, then all three coordinate values of the components to be deleted are
always zero. If the tool is not rotated with respect to the workpiece coordinate system or
is rotated so that all tool components remain parallel to the coordinate axes (axis
exchange operations), then this also ensures that only one tool coordinate changes.
The successive execution of the same operation (_CORRMODE) with _CORCOMP = 0
for all three coordinate axes in any sequence is identical with the single execution of the
same operation with _CORCOMP = 1.

_T INT
 Internal T number of the tool. If this parameter is not specified or if its value is 0, then the

tool stored in _STAT is used. If the value of this parameter is -1, the T number of the
active tool is used. It is also possible to explicitly specify the number of the active tool.

 Note

If _STAT is not specified, the actual status is used as the tool environment. Since _T = 0
refers to the T number saved in the tool environment, the active tool is used in this
environment, i.e. parameters _T = 0 and _T = -1 have the same meaning in this special case.

_D INT
 Cutting edge of the tool. If this parameter is not specified, or if its value is 0, the D number

used is based on the source of the T number. If the T number from the tool environment
is used, the D number of the tool environment is also read, otherwise the D number of the
currently active tool is read.

W1: Tool offset
17.12 Working with tool environments

 Basic Functions
1562 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

_DL INT
 Number of the offset dependent on the location. If this parameter is not specified, the DL

number used is based on the source of the T number. If the T number from the tool
environment is used, the D number of the tool environment is also read, otherwise the D
number of the currently active tool is read. If T, D and DL specify a tool without location-
dependent offsets, no additive or setting-up offsets may be specified in parameter
_COMP (error code in "Status").

Not all possible combinations of the three parameters _COMP, _CORCOMP and
_CORMODE are sensible. For example, algorithm 3 in _CORCOMP requires that two
characters are specified in _COMP. If an invalid parameter combination is specified, then a
corresponding error code is returned in the status.

 Note
Calculating the tool length depending on machine data MD20360

The two least significant bits of this machine data specify how the wear (bit 0) and tool length
(bit 1) are to be evaluated if a diameter axis is used for turning and grinding tools. If the
appropriate bits are set, then for the tool length calculation, a factor of 0.5 is applied to the
associated entry. The correction using SETTCOR is executed so that the total effective tool
length change is equal to the value transferred in _CORVAL.

The correction of the components, whose length is evaluated with a factor of 0.5 due to the
following machine data for the length calculation, must be realized using twice the
transferred value:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters)

Example 1

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 120 ; Milling tool

N30 $TC_DP3[1.1] = 10.0 ; Geometry L1

N40 $TC_DP12[1,1]= 1.0 ; Wear L1

N50 _CORVAL[0] = 0.333

N60 t1 d1 g17 g0

N70 r1 = settcor(_CORVAL, "G", 0, 0, 2)

N80 t1 d1 x0 y0 z0 ; ==> MCS position X0.000 Y0.000

Z1.333

N90 M30

_CORCOMP is 0, therefore, the coordinate value of the geometry component acting in the Z
direction must be replaced by the offset value 0.333. The resulting total tool length is thus L1
= 0.333 + 1.000 = 1.333

 W1: Tool offset
 17.13 Tool lengths L1, L2, L3 assignment: LENTOAX

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1563

Example 2

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 120 ; Milling tool

N30 $TC_DP3[1.1] = 10.0 ; Geometry L1

N40 $TC_DP12[1,1]= 1.0 ; Wear L1

N50 _CORVAL[0] = 0.333

N60 t1 d1 g17 g0

N70 r1 = settcor(_CORVAL, "W", 0, 1, 2)

N80 t1 d1 x0 y0 z0 ; ==> MCS position X0.000 Y0.000

Z11.333

N90 M30

_CORCOMP is 1, therefore, an offset value of 0.333 acting in the Z direction is added to the
wear value of 1.0.

Therefore, the resulting total tool length is L1 = 10.0 + 1.333 = 11.333.

17.13 Tool lengths L1, L2, L3 assignment: LENTOAX

LENTOAX function
The "LENTOAX" function provides information about the assignment of tool lengths L1, L2
and L3 of the active tool to the abscissa, ordinate and applicate. The assignment of abscissa,
ordinate and applicate to the geometry axes is affected by frames and the active plane (G17 -
G19).

Only the geometry component of a tool ($TC_DP3[x,y] to $TC_DP5[x,y]) is considered, i.e. a
different axis assignment for other components (e.g. wear) has no effect on the result.

The "LENTOAX" function is a predefined subprogram. It must, therefore, be programmed in
a separate block.

Syntax:
 Status = LENTOAX(_AXIND, _MATRIX, _COORD)
 The first two parameters must always be programmed; the last parameter can be omitted.

Value/parameter:
Status INT

 0: Function OK, information in _AXIND sufficient for description (all tool length
components are parallel to the geometry axes).

 1: Function is OK, however, the content of _MATRIX must be evaluated for a correct
description (the tool length components are not parallel to the geometry axes).

 -1: Invalid string in parameter _COORD.
 -2: No tool active.

W1: Tool offset
17.13 Tool lengths L1, L2, L3 assignment: LENTOAX

 Basic Functions
1564 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

_AXIND[3] INT array
 Indices 0 to 2 are assigned to the abscissa (0), ordinate (1) and applicate (2) (e.g.

_AXIND[0] contains the number of the tool length components, which are effective in the
direction of the abscissa).
The content has the following significance:

 0: Assignment exists (axis does not exist)
 1 to 3:

or
-1 to -3:

Number of the length effective in the corresponding coordinate axis. The sign
is negative if the tool length component is pointing in the negative coordinate
direction.

_MATRIX[3][3] REAL array
 Matrix which represents the vector of the tool lengths (L1=1, L2=1, L3=1) to the vector of

the coordinate axes (abscissa, ordinate, applicate), i.e. the tool length components are
assigned to the columns in the order L1, L2, L3 and the axes are assigned to the lines in
the order abscissa, ordinate, applicate.
All elements are always valid in the matrix, even if the geometry axis belonging to the
coordinate axis is not available, i.e. if the corresponding entry in _AXIND is 0.

_COORD STRING
 Specifies the coordinate system used for the assignment.
 MCS or M: The tool length is represented in the machine coordinate system.
 BCS or B: The tool length is represented in the basic coordinate system.
 WCS or W: The tool length is represented in the workpiece coordinate system

(default).
 KCS or K: The tool length is represented in the tool coordinate system of the

kinematic transformation.
 TCS or T: The tool length is represented in the tool coordinate system.
 The notation of the characters in the string (upper or lower case) is arbitrary.

Further explanations
If the tool length components are parallel to the geometry axes, the axis indices assigned to
length components L1 to L3 are returned in the _AXIND array.

If a tool length component points in the negative axis direction, the associated axis index
contains a minus sign. In this case, the return value (status) is 0. If an axis does not exist,
the associated return value is 0. The assignment can also be read from the _MATRIX
parameter. Six of the nine matrix elements are then zero, and three elements contain the
value +1 or -1.

 W1: Tool offset
 17.13 Tool lengths L1, L2, L3 assignment: LENTOAX

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1565

 Note

In the TCS, all tool length components are always parallel or antiparallel to the axes.

The components can only be antiparallel when mirroring is active and the following setting
data is activated:

SD42900 $SC_MIRROR_TOOL_LENGTH (sign change tool length when mirroring)

If not all length components are parallel or antiparallel to the geometry axes, the index of the
axis, which contains the largest part of a tool length component, is returned in _AXIND. In
this case (if the function does not return an error for a different reason), the return value is 1.
The mapping of tool length components L1 to L3 onto geometry axes 1 to 3 is then described
completely by the contents of the 3rd parameter _MATRIX.

The _COORD parameter can be used to specify, which coordinate system is to be used for
the geometry axes. If the _COORD parameter is not specified (notation LENTOAX(_AXIND,
_MATRIX)), the WCS is used (default).

Example:

Standard situation: milling tool with G17

L1 applies in Z (applicate), L2 applies in Y (ordinate), L3 applies in X (abscissa).

Function call in the form:

Status = LENTOAX(_AXIND, _MATRIX, "WCS")

The result parameter _AXIND contains the values:

_AXIND[0] = 3

_AXIND[1] = 2

_AXIND[2] = 1

Or, in short: (3, 2, 1)

In this case, the associated matrix _MATRIX is:

A change from G17 to G18 or G19 does not alter the result, because the assignment of the
length components to the geometry axes changes in the same way as the assignment of the
abscissa, ordinate and applicate.

A frame rotation of Z through 60 degrees is now programmed with G17 active, e.g. rot Z60.
The direction of the applicate (Z direction) remains unchanged; the main component of L2
now lies in the direction of the new X axis; the main component of L1 now lies in the direction
of the negative Y axis. The return axis is thus 1, and _AXIND contains the values (2, -3, 1).

W1: Tool offset
17.14 Supplementary conditions

 Basic Functions
1566 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

In this case, the associated matrix _MATRIX is:

 Note

For further information to the above mentioned coordinate systems, please refer to:

References:
Programming Manual, Job Planning; Tool Offsets:

17.14 Supplementary conditions

17.14.1 Flat D number structure

Grinding tools
Grinding tools (tool types 400-499) cannot be defined using the simple tool management
structure (flat D numbers).

Block search
T number output to PLC triggers a synchronization process in the NCK: with absolute,
indirect D programming, the PLC returns the D values via NC/PLC interfaces. The NCK
waits until the output of a T number is followed by a response from the PLC: "I have written
the D number". With block search without calculation, this process of synchronization must
be deactivated until the first valid T number has been output again. That means that the NCK
must not wait on D programming.

 Note

At what point the auxiliary functions can be output to PLC after block search is complete, can
be controlled with the machine data:

$MC_AUXFU_AT_BLOCK_SEARCH_END (auxiliary function output after block search)

Automatic on end or on NC start.

 W1: Tool offset
 17.15 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1567

REORG
The (only) writable variable $A_MONIFACT, which is defined here, is stored by main-run
data. Since the write process takes place synchronously to the main run, no special
measures are required for Reorg.

17.14.2 SD42935 expansions

SD42935
Which of the wear components are to be transformed and which are not to be transformed in
conjunction with the functions TOWMCS and TOWWCS can be defined via the setting data:

SD42935 $SC_WEAR_TRANSFORM (transformation of wear values)

17.15 Examples

17.15.1 Toolholder with orientation capability

17.15.1.1 Example: Toolholder with orientation capability

Requirement
The following example uses a toolholder, which is described fully by a rotation about the Y
axis. It is therefore sufficient to enter only one value to define the rotary axis (block N20).

Blocks N50 to N70 describe an end mill with radius 5 mm and length 20 mm.

Block N90 defines a rotation of 37 degrees about the Y axis.

Block N120 activates the tool radius compensation and all settings are made to describe the
compensation in the following blocks with a rotation of 37 degrees about the Y axis.

N10 ; Definition of toolholder 1

N20 $TC_CARR8[1] = 1 ; Component of the first rotary axis in

the Y direction

N30

N40 ; Definition of tool-compensation memory

T1/D1

N50 $TC_DP1[1,1] = 120 ; End mill

N60 $TC_DP3[1,1] = 20 ; Length 1

N70 $TC_DP6[1,1] = 5 ; Radius

N80

N90 ROT Y37 ; 37-degree rotation about y axis

W1: Tool offset
17.15 Examples

 Basic Functions
1568 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

N100

N110 X0 Y0 Z0 F10000

N120 G42 CUT2DF TCOFR TCARR = 1 T1 D1 X10

N130 X40

N140 Y40

N150 X0

N160 Y0

N170 M30

17.15.1.2 Example of toolholder with orientation capability with rotary table

Use of the MOV command
For use of the MOVT command it is assumed that the program is running on a 5axis machine,
on which the tool rotates about the Y axis in case of a rotation of the B axis:

N10 TRAORI()

N20 X0 X0 Z0 B45 F2000 ; Setting the tool orientation

N30 MOVT=-10 ; Infeed movement 10 mm in tool

direction

; (under 45 degrees in the Y-Z plane)

N40 MOVT=AC(20) ; Retraction in tool direction at

distance of

; 20 mm from the zero point

Machine with rotary table
Complete definition for the use of a toolholder with orientation capability with rotary table:

N10 $TC_DP1[1,1]=120

N20 $TC_DP3[1,1]= 13 ; Tool length 13 mm

; Definition of toolholder 1:

N30 $TC_CARR1[1] = 0 ; X component of 1st offset vector

N40 $TC_CARR2[1] = 0 ; Y component of 1st offset vector

N50 $TC_CARR3[1] = 0 ; Z component of 1st offset vector

N60 $TC_CARR4[1] = 0 ; X component of 2nd offset vector

N70 $TC_CARR5[1] = 0 ; Y component of 2nd offset vector

N80 $TC_CARR6[1] = -15 ; Z component of 2nd offset vector

 W1: Tool offset
 17.15 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1569

N90 $TC_CARR7[1] = 1 ; X component of 1st axis

N100 $TC_CARR8[1] = 0 ; Y component of 1st axis

N110 $TC_CARR9[1] = 0 ; Z component of 1st axis

N120 $TC_CARR10[1] = 0 ; X component of 2nd axis

N130 $TC_CARR11[1] = 1 ; Y component of 2nd axis

N140 $TC_CARR12[1] = 0 ; Z component of 2nd axis

N150 $TC_CARR13[1] = 30 ; Angle of rotation of 1st axis

N160 $TC_CARR14[1] =-30 ; Angle of rotation of 2nd axis

N170 $TC_CARR15[1] = 0 ; X components of 3rd offset vector

N180 $TC_CARR16[1] = 0 ; Y component of 3rd offset vector

N190 $TC_CARR17[1] = 0 ; Z component of 3rd offset vector

N200 $TC_CARR18[1] = 0 ; X component of 4th offset vector

N210 $TC_CARR19[1] = 0 ; Y component of 4th offset vector

N220 $TC_CARR20[1] = 15 ; Z component of 4th offset vector

N230 $TC_CARR21[1] = A ; Reference for 1st axis

N240 $TC_CARR22[1] = B ; Reference for 2nd axis

N250 $TC_CARR23[1] = "P" ; Toolholder type

N260 X0 Y0 Z0 A0 B45 F2000

N270 TCARR=1 X0 Y10 Z0 T1 TCOABS

N280 PAROT

N290 X0 Y0 Z0

N300 G18 MOVT=AC(20)

N310 G17 X10 Y0 Z0

N320 MOVT=-10

N330 PAROTOF

N340 TCOFR

N350 X10 Y10 Z-13 A0 B0

N360 ROTS X-45 Y45

N370 X20 Y0 Z0 D0

N380 Y20

N390 X0 Y0 Z20

N400 M30

The definition of the toolholder with orientation capability is given in full. The components
which contain the value 0 need not actually be given, as they are preset to zero in any case.

The toolholder is activated in N270.

W1: Tool offset
17.15 Examples

 Basic Functions
1570 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

As $TC_CARR21 and $TC_CARR22 refer to the machine axes A and B and TCOABS is active,
the values in $TC_CARR13 and $TC_CARR14 are ignored, i.e. the axis position A0 B45 is
used for the rotation.

The rotation of the 4th offset vector (length 15 mm in Z direction) around the B axis causes
an offsetting of the zero point by X10.607 [= 15 * sin(45)] and Z-4.393 [= -15 * (1. - cos(45))].
This zero offset is taken into account by an automatically written basic or system frame so
that the position X10.607 Y10.000 Z8.607 is approached. In the Z direction the tool selection
leads to an additional offset of 13 mm; the Y component is not affected by the table rotation.

N280 defines a rotation in accordance with the rotation of the table of the toolholder with
orientation capability. The new X direction thus points in the direction of the bisecting line in
the 4th quadrant, the new Z axis in the direction of the bisecting line in the 1st quadrant.

The zero point is approached in N290, i.e. the machine position X10.607 Y0 Z-4.393, since
the position of the zero point is not changed by the rotation.

N300 traverses in Y to the position Y33.000, since G18 is active and the Y component is not
affected by the active frame. The X and Z positions remain unchanged.

The position X17.678 Y0 Z1.536 is approached in N310.

N320 changes only the Z position to the value -8.464 as a result of the MOVT command. As
only the table can be rotated, the tool orientation remains unchanged parallel to the machine
Z direction, even if the Z direction of the active frame is rotated by 45 degrees.

N330 deletes the basic or system frame; thus the frame definition from N280 is undone.

In N340, TCOFR specifies that the toolholder with orientation capability is to be aligned
according to the active frame. Since a rotation is no longer active in N330 due to the PAROTOF
command, the initial state is applied. The frame offset becomes zero.

N350 thus approaches the position X10 X10 Z0 (= Z-13 + tool length). Note: Through the
simultaneous programming of both rotary axes A and B the actual position of the toolholder
with orientation capability is made to match that used in N340. The position approached by
the three linear axes is dependent on this position, however.

In N360, solid angles are used to define a plane whose intersecting lines in the XZ and in the
YZ plane each form an angle of +45 degrees or -45 degrees with the X or Y axis. The plane
defined in such a way therefore has the following position: the surface normal points towards
the solid diagonals.

N370 traverses to the position X20 Y0 Z0 in the new coordinate system. Since the tool is
deselected with D0 at the same time, there is no longer an additional offset in Z. Since the
new X axis lies in the old XZ plane, this block reaches the machine position X14.142 Y0 Z-
14.142.

N380 only traverses on the Y axis in the rotated coordinate system. This leads to a motion of
all three machine axes. The machine position is X5.977 Y16.330 Z-22.307.

N390 approaches a point on the new Z axis. Relative to the machine axes this is thus on the
solid diagonal. All three axes thus reach the position 11.547.

 W1: Tool offset
 17.15 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1571

17.15.1.3 Basic tool orientation example

Basic orientation in the bisector
A milling tool is defined with length L1=10 whose basic orientation is in the bisector of the XZ
plane.

N10 $TC_DP1[1,1]=120

N20 $TC_DP3[1,1]=10

N30 $TC_DPV [1,1] = 0

N40 $TC_DPV3[1,1] = 1

N50 $TC_DPV4[1,1] = 0

N60 $TC_DPV5[1,1] = 1

N70 g17 f1000 x0 y0 z0 t1 d1

N80 movt=10

N80 m30

Description of example:

In N10 to N60, a milling tool is defined with length L1=10 (N20). The basic orientation is in the
bisector of the XZ plane N40 to N60.

In N70, the tool is activated and the zero position is approached. As a result of the tool length
the machine positions X0 Y0 Z10 are thus obtained in this block.

In N80 an incremental traversing motion is performed from 10 into tool direction. The resulting
axis positions are thus X7.071 Y0 Z17.071.

17.15.1.4 Calculation of compensation values on a location-specific and workpiece-specific basis

Tool with adapter
A tool with adapter and toolholder with orientation capability is defined in the following
program example. In order to simplify the overview, only length L1 is different to zero for the
additive and insert offsets and for the adapter in case of the tool itself. The offset vectors of
the toolholder with orientation capability are all zero.

N10 $TC_TP2[1] = "MillingTool" ; Name of identifier
N20 $TC_TP7[1]=9 ; Location types
N30 $TC_TP8[1]=2 ; Status: Enabled and not blocked

; D corr. D=1

N40 $TC_DP1[1,1]=120 ; Tool type - milling
N50 $TC_DP3[1,1]=; tool length compensation

vector

N60 $TC_DP12[1,1]= ; wear
N70 $TC_SCP13[1,1]=0.1 ; Sum offset DL=1

W1: Tool offset
17.15 Examples

 Basic Functions
1572 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

N80 $TC_ECP13[1,1]=0.01 ; Insert offset DL=1
N90 $TC_ADPTT[1]=5 ; Adapter transformation
N100 $TC_ADPT1[1]=0.001 ; Adapter dimension

 ; Magazine data
N110 $TC_MAP1[1]=3 ; Magazine type: Revolver
N120 $TC_MAP2[1]="Revolver" ; Magazine name
N130 $TC_MAP3[1]=17 ; Status of magazine
N140 $TC_MAP6[1]=1 ; Dimension - line
N150 $TC_MAP7[1]=2 ; Dimension - column -> 2 positions
N160 $TC_MPP1[1,1]=1 ; Location type
N170 $TC_MPP2[1,1]=9 ; Location types
N180 $TC_MPP4[1,1]=2 ; Location state
N190 $TC_MPP7[1,1]=1 ; Bring adapter into position
N200 $TC_MPP6[1,1]=1 ; T number "MillingTool"
N210 $TC_MAP1[9999]=7 ; Magazine type: buffer
N220 $TC_MAP2[9999]="buffer" ; Magazine name
N230 $TC_MAP3[9999]=17 ; Status of magazine
N240 $TC_MAP6[9999]=1 ; Dimension - line
N250 $TC_MAP7[9999]=1 ; Dimension - column -> 1 position
N260 $TC_MPP1[9999.1]=2 ; Location type
N270 $TC_MPP2[9999.1]=9 ; Location types
N280 $TC_MPP4[9999.1]=2 ; Location state
N290 $TC_MPP5[9999,1]=1 ; Spindle no. 1
N300 $TC_MDP2[1,1]=0 ; Distance from spindle to mag. 1

 ; Definition of toolholder 1
N310 $TC_CARR10[1] = 1 ; Component of 2nd rotary axis in X

direction
N320 $TC_CARR14[1] = 45 ; Angle of rotation of 2nd axis
N330 $TC_CARR23[1] = "T" ; Tool mode
N340 Stopre
N350 $SC_WEAR_TRANSFORM = 'B101'
N360 T0 D0 DL=0
N370 ROT X30
N380 G90 G1 G17 F10000 X0 Y0 Z0
N390 T="MillingTool" X0 Y0 Z0 TOWSTD ; X 0.000 Y11.110 Z 0.001
N400 T="MillingTool" X0 Y0 Z0 TOWMCS ; X 0.000 Y10.100 Z 1.011
N410 T="MillingTool" X0 Y0 Z0 TOWWCS ; X 0.000 Y 9.595 Z 0.876
N420 TCARR=1 X0 Y0 Z0 ; X 0.000 Y 6.636 Z 8.017
N430 G18 X0 Y0 Z0 ; X10.100 Y-0.504 Z 0.876
N440 m30

 W1: Tool offset
 17.15 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1573

Explanations regarding the example above
Starting at block N390, various methods are used to approach position X0 Y0 Z0. The
machine positions reached are specified in the blocks in comments. After the program a
description is given of how the positions were reached.

N390: The adapter transformation 5 (block N90) transforms length L1 into length L2. Only the
actual adapter dimension is not subject to this transformation. The Y value (L2 with G17)
results from the sum of the tool length (10), tool wear (1), sum offset (0.1), and insert offset
(0.01). The adapter dimension (0.001) is in Z (L1).

N400: In block N350, bits 0 and 2 are enabled in setting data:

SD42935 $SC_WEAR_TRANSFORM (transformations for tool components)

This means that the tool wear and the insert offset are not subject to the adapter
transformation because of TOWMCS in block N400. The sum of these two compensations is
1.01. The Z position is, therefore, increased by this amount and the Y position is reduced by
this amount compared with block N390.

TOWWCS is active in N410. The sum of the tool wear and the insert offset is thus effective in the
active workpiece coordinate system. In block N370, a rotation through 30 degrees is activated
around the X axis. The original compensation value of 1.01 in the Z direction thus yields a
new Z component of 0.875 (= 1.01 * cos(30)) and a new Y component of -0.505 (= 1.01 *
sin(30)). This yields the dimension specified in the program comment when added to the
sum of the tool length, sum offset and adapter dimension produced in block N390.

In addition, a toolholder with orientation capability is activated in block N420. This executes a
rotation through 45 degrees about the X axis (see N310 - N330). Since all offset vectors of the
toolholder are zero, there is no additional zero offset. The toolholder with orientation
capability acts on the sum of the tool length, sum offset and adapter dimension. The
resulting vector component is X0 Y7.141 Z7.142. To this, as in block N410, the sum of tool
wear and insert offset evaluated in WCS is added.

G18 is activated in N430. The components of the tool length sum, sum offset and adapter
dimension are interchanged accordingly. The toolholder with orientation capability continues
to act on this new vector (rotation through 45 degrees about X axis). The resulting vector
component thereby is X10.100 Y0.0071 Z0.0071. The vector formed from tool wear and insert
offset (X0 Y-0.505 Z0.875) is not affected by the change of plane. The sum of the two vectors
yields the dimension specified in the comment in N430.

W1: Tool offset
17.15 Examples

 Basic Functions
1574 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.15.2 Examples 3-6: SETTCOR function for tool environments

Example 3

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 120 ; Milling tool

N30 $TC_DP3[1,1] = 10.0 ; Geometry L1

N40 $TC_DP12[1,1] = 1.0 ; Wear L1

N50 _CORVAL[0] = 0.333

N60 t1 d1 g17 g0

N70 r1 = settcor(_CORVAL, "GW", 0, 2, 2)

N80 t1 d1 x0 y0 z0 ; ==> MCS position X0.000 Y0.000

Z0.333

N90 M30

_CORCOMP is 2, therefore, the compensation effective in the Z direction is entered in the
geometry component (the old value is overwritten) and the wear value is deleted. The
resulting total tool length is thus:

L1 = 0.333 + 0.0 = 0.333.

Example 4

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 120 ; Milling tool

N30 $TC_DP3[1,1] = 10.0 ; Geometry L1

N40 $TC_DP12[1,1] = 1.0 ; Wear L1

N50 _CORVAL[0] = 0.333

N60 t1 d1 g17 g0

N70 r1 = settcor(_CORVAL, "GW", 0, 3, 2)

N80 t1 d1 x0 y0 z0 ;==> MCS position X0.000 Y0.000

Z11.333

N90 M30

_CORCOMP is 3, therefore, the wear value and compensation value are added to the
geometry component and the wear component is deleted. The resulting total tool length is
thus L1 = 11.333 + 0.0 = 11.333.

Example 5

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 120 ; Milling tool

N30 $TC_DP3[1,1] = 10.0 ; Geometry L1

N40 $TC_DP12[1,1] = 1.0 ; Wear L1

N50 _CORVAL[0] = 0.333

 W1: Tool offset
 17.15 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1575

N60 t1 d1 g17 g0

N70 r1 = settcor(_CORVAL, "GW", 0, 3, 0)

N80 t1 d1 x0 y0 z0 ;==> MCS position X0.333 Y0.000

Z11.000

N90 M30

_CORCOMP is 3, as in the previous example, but the compensation is now effective on the
geometry axis with index 0 (X axis). The tool components L3 are assigned to this geometry
axis due to G17 with a milling tool. Calling SETTCOR thus does not affect tool parameters
$TC_DP3 and $TC_DP12. Instead, the compensation value is entered in $TC_DP5.

Example 6

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 500 ; Turning tool

N30 $TC_DP3[1,1] = 10.0 ; Geometry L1

N40 $TC_DP4[1,1] = 15.0 ; Geometry L2

N50 $TC_DP12[1,1]= 10.0 ; Wear L1

N60 $TC_DP13[1,1] =0.0 ; Wear L2

N70 _CORVAL[0] = 5.0

N80 rot y 30

N90 t1 d1 g18 g0

N100 r1 = settcor(_CORVAL, "GW", 0, 3, 1)

N110 t1 d1 x0 y0 z0 ; ==> MCS position X24.330

Y0.000 Z17.500

N120 M30

The tool is a turning tool. A frame rotation is activated in N80, causing the basic coordinate
system (BCS) to be rotated in relation to the workpiece coordinate system (WCS). In the
WCS, the compensation value (N70) acts on the geometry axis with index 1, i.e., on the X
axis because G18 is active. Since "_CORRMODE = 3", the tool wear in the direction of the X
axis of the WCS must become zero once N100 has been executed. The contents of the
relevant tool parameters at the end of the program are thus:

$TC_DP3[1,1] : 21.830 ; Geometry L1

$TC_DP4[1,1] : 21.830 ; Geometry L2

$TC_DP12[1,1] : 2.500 ; Wear L1

$TC_DP13[1,1] : -4.330 ; Wear L2

The total wear including _CORVAL is mapped onto the X' direction in the WCS. This
produces point P2. The coordinates of this point (measured in X/Y coordinates) are entered
in the geometry component of the tool. The difference vector P2 - P1 remains in the wear.
The wear thus no longer has a component in the direction of _CORVAL.

W1: Tool offset
17.15 Examples

 Basic Functions
1576 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Figure 17-54 Tool length compensation, example 6

If the sample program is continued after N110 with the following instructions:

N120 _CORVAL[0] = 0.0

N130 r1 = settcor(_CORVAL, "GW", 0, 3, 0)

N140 t1 d1 x0 y0 z0 ; ==> MCS position X24.330 Y0.000

Z17.500

The remaining wear is included completely in the geometry because the compensation is
now effective in the Z' axis (parameter _GEOAX is 0). Since the new compensation value is
0, the total tool length and thus the position approached in N140 may not change. If
_CORVAL were not equal to 0 in N120, a new total tool length and thus a new position in
N140 would result, however, the wear component of the tool length would always be zero,
i.e., the total tool length is subsequently always contained in the geometry component of the
tool.

The same result as that achieved by calling the SETTCOR function with the _CORCOMP = 0
parameter twice can also be reached by calling _CORRCOMP = 1 (vectorial compensation)
just once:

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 500 ; Turning tool

N30 $TC_DP3[1,1] = 10.0 ; Geometry L1

N40 $TC_DP4[1,1] = 15.0 ; Geometry L2

N50 $TC_DP12[1,1]= 10.0 ; Wear L1

N60 $TC_DP13[1,1] =0.0 ; Wear L2

N70 _CORVAL[0] = 0.0

N71 _CORVAL[1] = 5.0

N72 _CORVAL[2] = 0.0

N80 rot y 30

 W1: Tool offset
 17.15 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1577

N90 t1 d1 g18 g0

N100 r1 = settcor(_CORVAL, "GW", 1, 3, 1)

N110 t1 d1 x0 y0 z0 ; ==> MCS position X24.330 Y0.000

Z17.500

N120 M30

In this case, all wear components of the tool are set to zero immediately after the first call of
SETTCOR in N100.

Example 7

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 500 ; Turning tool

N30 $TC_DP3[1,1] = 10.0 ; Geometry L1

N40 $TC_DP4[1,1] = 15.0 ; Geometry L2

N50 $TC_DP12[1,1]= 10.0 ; Wear L1

N60 $TC_DP13[1,1] =0.0 ; Wear L2

N70 _CORVAL[0] = 5.0

N80 rot y 30

N90 t1 d1 g18 g0

N100 r1 = settcor(_CORVAL, "GW", 3, 3)

N110 t1 d1 x0 y0 z0 ; ==> MCS position X25.000 Y0.000

Z15.000

As opposed to example 6, parameter _CORCOMP = 3, and so the _GEOAX parameter can
be omitted. The value contained in _CORVAL[0] now acts immediately on the tool length
component L1, the rotation in N80 has no effect on the result, the wear components in
$TC_DP12 are included in the geometry component together with _CORVAL[0], with the
result that the total tool length is stored in the geometry component of the tool, due to
$TC_DP13, after the first SETTCOR call in N100.

Example 8

N10 def real _CORVAL[3]

N20 $TC_DP1[1,1] = 500 ; Turning tool

N30 $TC_DP3[1,1] = 10.0 ; Geometry L1

N40 $TC_DP4[1,1] = 15.0 ; Geometry L2

N50 $TC_DP5[1,1] = 20.0 ; Geometry L3

N60 $TC_DP12[1,1]= 10.0 ; Wear L1

N70 $TC_DP13[1,1] =0.0 ; Wear L2

N80 $TC_DP14[1.1] =0.0 ; Wear L3

N90 $SC_WEAR_SIGN = TRUE

N100 _CORVAL[0] = 10.0

N110 _CORVAL[1] = 15.0

N120 _CORVAL[2] = 5.0

W1: Tool offset
17.15 Examples

 Basic Functions
1578 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

N130 rot y 30

N140 t1 d1 g18 g0

N150 r1 = settcor(_CORVAL, "W", 1, 1)

N160 t1 d1 x0 y0 z0 ; ==> MCS position X7.990 Y25.000

Z31.160

In N90 the setting data is enabled:

SD42930 $SC_WEAR_SIGN (sign of wear)

i.e. the wear must be valued with a negative sign.

The compensation is vectorial (_CORCOMP = 1), and the compensation vector must be
added to the wear (_CORMODE = 1). The geometric conditions in the Z/X plane are shown
in the figure below:

Figure 17-55 Tool length compensation, example 8

The geometry component of the tool remains unchanged due to _CORMODE = 1. The
compensation vector defined in the WCS (rotation about y axis) must be included in the wear
component such that the total tool length in the figure refers to point P2. Therefore, the
resulting wear component of the tool is given in relation to the distance between points P1
and P2.

However, since the wear is evaluated negatively, due to setting data SD42930, the
compensation determined in this way has to be entered in the compensation memory with a
negative sign. The contents of the relevant tool parameters at the end of the program are
thus:

$TC_DP3[1,1] : 10.000 ; Geometry L1 (unchanged)

$TC_DP4[1,1] : 15.000 ; Geometry L2 (unchanged)

$TC_DP5[1,1] : 10.000 ; Geometry L3 (unchanged)

 W1: Tool offset
 17.15 Examples

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1579

$TC_DP12[1,1] : 2.010 ; Wear L1

 ;(= 10 -15*cos(30) + 10*sin(30))

$TC_DP13[1,1] : -16.160 ; Wear L2

 ;(= -15*sin(30) - 10*cos(30))

$TC_DP14[1,1] : -5.000 ; Wear L3

The effect of setting data SD42930 on the L3 component in the Y direction can be
recognized without the additional complication caused by the frame rotation.

Example 9:
2 (tool length must be valued in the diameter axis with the factor 0.5) is the value of machine
data:

MD20360 $MC_TOOL_PARAMETER_DEF_MASK (definition of tool parameters).

X is diameter axis:

N10 def real _LEN[11]

N20 def real _CORVAL[3]

N30 $TC_DP1[1,1]= 500

N40 $TC_DP2[1,1]= 2

N50 $TC_DP3[1,1]= 3.

N60 $TC_DP4[1,1]= 4.

N70 $TC_DP5[1,1]= 5.

N80 _CORVAL[0] = 1.

N90 _CORVAL[1] = 1.

N100 _CORVAL[2] = 1.

N110 t1 d1 g18 g0 x0 y0 z0 ; ==> MCS position X1.5 Y5 Z4

N120 r1 = settcor(_CORVAL, "g", 1, 1)

N130 t1 d1 x0 y0 z0 ; ==> MCS position X2.5 Y6 Z5

N140 r3 = $TC_DP3[1,1] ; = 5. = (3.000 + 2. * 1.000)

N150 r4 = $TC_DP4[1,1] ; = 5. = (4.000 + 1.000)

N160 r5 = $TC_DP5[1.1] ; = 6. = (5.000 + 1.000)

N170 m30

The compensation of the tool length is to be 1 mm in each axis (N80 to N100).

1 mm is thus added to the original length in lengths L2 and L3.

Twice the compensation value (2 mm) is added to the original tool length in L1, in order to
change the total length by 1 mm as required. If the positions approached in blocks N110 and
N130 are compared, it can be seen that each axis position has changed by 1 mm.

W1: Tool offset
17.16 Data lists

 Basic Functions
1580 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.16 Data lists

17.16.1 Machine data

17.16.1.1 NC-specific machine data

Number Identifier: $MN_ Description
18082 MM_NUM_TOOL Number of tools that the NCK can manage (SRAM)
18088 MM_NUM_TOOL_CARRIER Maximum number of the defined toolholders
18094 MM_NUM_CC_TDA_PARAM Number of tool data (SRAM)
18096 MM_NUM_CC_TOA_PARAM Number of data, per tool cutting edge for compile

cycles (SRAM)
18100 MM_NUM_CUTTING_EDGES_IN_TOA Tool offsets in the TOA area (SRAM)
18102 MM_TYPE_OF_CUTTING_EDGE Type of D number programming (SRAM)
18105 MM_MAX_CUTTING_EDGE_NO Maximum value of D number
18106 MM_MAX_CUTTING_EDGE_PERTOOL Maximum number of D numbers per tool
18108 MM_NUM_SUMCORR Number of all sum offsets in NCK
18110 MM_MAX_SUMCORR_PER_CUTTEDGE Number of additive offsets per cutting edge
18112 MM_KIND_OF_SUMCORR Properties of additive offsets in the TO area (SRAM)
18114 MM_ENABLE_TOOL_ORIENT Assign orientation to cutting edges
18116 MM_NUM_TOOL_ENV Tool environments in the TOA area (SRAM)

17.16.1.2 Channelspecific machine data

Number Identifier: $MC_ Description
20096 T_M_ADDRESS_EXT_IS_SPINO Meaning of the address extension with T, M tool

change
20110 RESET_MODE_MASK Definition of initial control setting after RESET/part

program end
20120 TOOL_RESET_VALUE Tool length compensation at power-up (Reset/TP

end)
20121 TOOL_PRESEL_RESET_VALUE Preselected tool on RESET
20125 CUTMOD_ERR Troubleshooting for the CUTMOD function
20126 TOOL_CARRIER_RESET_VALUE Active toolholder on RESET
20127 CUTMOD_INIT Initialize CUTMOD for POWER ON
20130 CUTTING_EDGE_RESET_VALUE Tool cutting edge length compensation at power-up

(Reset/TP end)
20132 SUMCORR_RESET_VALUE Additive offset effective at RESET
20140 TRAFO_RESET_VALUE Transformation data record at power up (Reset/TP

end)

 W1: Tool offset
 17.16 Data lists

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1581

Number Identifier: $MC_ Description
20180 TOCARR_ROT_ANGLE_INCR[i] Rotary axis increment of the toolholder with

orientation capability
20182 TOCARR_ROT_ANGLE_OFFSET[i] Rotary axis offset of toolholder with orientation

capability
20184 TOCARR_BASE_FRAME_NUMBER Number of the basic frames to accept the table offset
20188 TOCARR_FINE_LIM_LIN Limit linear fine offset TCARR
20190 TOCARR_FINE_LIM_ROT Limit of the rotary fine offset TCARR
20202 WAB_MAXNUM_DUMMY_BLOCKS Maximum number of blocks with no traversing

motions with SAR
20204 WAB_CLEARANCE_TOLERANCE Direction reversal for WAB
20210 CUTCOM_CORNER_LIMIT Max. angle for intersection calculation with tool radius

compensation
20220 CUTCOM_MAX_DISC Maximum value for DISC
20230 CUTCOM_CURVE_INSERT_LIMIT Maximum value for intersection calculation with TRC
20240 CUTCOM_MAXNUM_CHECK_BLOCKS Blocks for predictive contour calculation with tool

radius compensation
20250 CUTCOM_MAXNUM_DUMMY_BLOCKS Maximum number of blocks without traversing motion

for TRC
20252 CUTCOM_MAXNUM_SUPPR_BLOCKS Maximum number of blocks with compensation

suppression
20256 CUTCOM_INTERS_POLY_ENABLE Intersection process possible for polynomials
20270 CUTTING_EDGE_DEFAULT Basic setting of tool cutting edge without programming
20272 SUMCORR_DEFAULT Initial setting of additive offset without program
20360 TOOL_PARAMETER_DEF_MASK Definition of tool parameters
20390 TOOL_TEMP_COMP_ON Activation of temperature compensation for tool length
20392 TOOL_TEMP_COMP_LIMIT Maximum temperature compensation for tool length
20610 ADD_MOVE_ACCEL_RESERVE Acceleration reserve for overlaid movements
21080 CUTCOM_PARALLEL_ORI_LIMIT Minimum angle (path tangent and tool orientation) for

3D tool radius compensation
22530 TOCARR_CHANGE_M_CODE M code for change of toolholder
22550 TOOL_CHANGE_MODE New tool compensations with M function
22560 TOOL_CHANGE_M_CODE M function for tool change
22562 TOOL_CHANGE_ERROR_MODE Response when errors occur at tool change
24558 TRAFO5_JOINT_OFFSET_PART_1 Vector of kinematic offset in table, transformation 1
24658 TRAFO5_JOINT_OFFSET_PART_2 Vector of kinematic offset in table, transformation 2
28085 MM_LINK_TOA_UNIT Assigning ´the TO unit to a channel (SRAM)

17.16.1.3 Axis/spindlespecific machine data

Number Identifier: $MA_ Description
32750 TEMP_COMP_TYPE Temperature compensation type

W1: Tool offset
17.16 Data lists

 Basic Functions
1582 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

17.16.2 Setting data

17.16.2.1 Channelspecific setting data

Number Identifier: $SC_ Description
42442 TOOL_OFFSET_INCR_PROG Tool length compensation
42470 CRIT_SPLINE_ANGLE Core limit angle, for compressor
42480 STOP_CUTCOM_STOPRE Alarm response for tool radius compensation and

preprocessing stop
42494 CUTCOM_ACT_DEACT_CTRL Approach and retraction behavior for tool radius

compensation
42496 CUTCOM_CLSDT_CONT Behavior of the tool radius compensation for closed

contour
42900 MIRROR_TOOL_LENGTH Sign change, tool lengths when mirroring
42910 MIRROR_TOOL_WEAR Sign change, tool wear when mirroring
42920 WEAR_SIGN_CUTPOS Sign of wear for tools with cutting edge position
42930 WEAR_SIGN Sign of the wear
42935 WEAR_TRANSFORM Transformations for tool components
42940 TOOL_LENGTH_CONST Change of tool length components for change of

plane
42950 TOOL_LENGTH_TYPE Assignment of the tool length offset independent of

tool type
42960 TOOL_TEMP_COMP Temperature compensation value in relation to tool
42974 TCARR_FINE_CORRECTION Fine offset TCARR on/off
42984 CUTDIRMOD Modification of $P_AD[2] or $P_AD[11]

17.16.3 Signals

17.16.3.1 Signals from channel

Signal name SINUMERIK 840D sl SINUMERIK 828D
T function 1 change DB21,DBX61.0 -
D function 1 change DB21,DBX62.0 -
T function 1 DB21,DBB116-119 DB2500.DBD2000
D function 1 DB21,DBB128-129 DB2500.DBD5000
Active G function of group 7 DB21,DBB214 DB3500.DBB6
Active G function of group 16 DB21,DBB223 DB3500.DBB15
Active G function of group 17 DB21,DBB224 DB3500.DBB16
Active G function of group 18 DB21,DBB225 DB3500.DBB17
Active G function of group 23 DB21,DBB230 DB3500.DBB22

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1583

Z1: NC/PLC interface signals 18
18.1 Various interface signals and functions (A2)

18.1.1 Signals from PLC to NC (DB10)

DB10
DBX56.4 - DBX56.7

Key-operated switch positions 0 to 3

Edge evaluation: No Signal(s) updated: Cyclic
Depending on the key-operated switch position, access to certain elements in the NCK can be
enabled or disabled.
• Key-operated switch position 0 represents the lowest access rights
• Key-operated switch position 3 represents the highest access rights
The NC/PLC interface signals of key-operated switch positions 1 to 3 can either be directly
specified from the key-operated switch on the machine control panel or from the PLC user
program.
It is only permissible to set one bit. If several bits are set simultaneously, the control internally
activates switch position 3.

Key-operated switch position DBX56.7 DBX56.6 DBX56.5 DBX56.4
0 0 0 0 1
1 0 0 1 0
2 0 1 0 0

Significance of signal

3 1 0 0 0
Corresponding to ... Machine data for protection levels: MD11612, MD51044 - MD51064, MD51070 - MD51073,

MD51199 - MD51211, MD51215 - MD51225, MD51235
Disabling using a password

18.1.2 Selection/Status signals from HMI to PLC (DB10)

DB10
DBX103.0

Remote diagnosis active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Remote diagnosis (optional) is active, i.e. the control is operated via an external PC.

Signal state 0 or
edge change 1 → 0

Remote diagnosis is not active.

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1584 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB10
DBX103.5

AT box ready

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

The AT box for expansion modules is ready.

Signal state 0 or
edge change 1 → 0

The AT box is not ready. An expansion module conforming to the AT specification has either no
functionality or restricted functionality.

DB10
DBX103.6

HMI temperature limit

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

The environment conditions of the limit value are in the permitted tolerance range of 5 to 55° C.

Signal state 0 or
edge change 1 → 0

The temperature range was either exceeded, or the temperature fell below the limit.
The temperature monitor has responded and the PCU is disabled.

DB10
DBX103.7

HMI battery alarm

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

The battery monitor has responded. Power failure can cause the loss of recently changed data and
a correct device configuration. An appropriate alarm is issued. The buffer battery should be
checked. An insufficient battery voltage also affects the current time on the user interface.

Signal state 0 or
edge change 1 → 0

No HMI battery alarm is present.

Additional references Operator Components Manual (PCU)

18.1.3 Signals from the NC to the PLC (DB10)

DB10
DBX104.7

NCK CPU ready

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The NCK CPU is ready and registers itself cyclically with the PLC.

After a correct initial start and the first complete OB1 cycle (initial setting cycle) the PLC and NCK
continuously exchange sign-of-life signals.
The PLC basic program sets the interface signal "NCK CPU Ready" to 1.

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1585

DB10
DBX104.7

NCK CPU ready

Signal state 0 The NCK CPU is not ready.
If a sign-of-life is not received from the NCK, the PLC/NCK interface is neutralized by the PLC
basic program and the interface signal "NCK CPU Ready" is set to 0.
The following measures are introduced by the PLC basic program:
• Status signals from NCK to PLC (user interface) are deleted (cleared)
• Change signals for help functions are deleted
• Cyclic processing of the user interface PLC to NCK is terminated.

Additional references • Diagnostics Manual
• Function Manual Basic Functions; Basic PLC Program

DB10
DBX108.3

SINUMERIK Operate at OPI ready

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 SINUMERIK Operate is ready and cyclically logs on with the NCK.
Signal state 0 SINUMERIK Operate is not ready.
Additional references Diagnostics Manual

DB10
DBX108.5

Drives in cyclic operation

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 For all machine axes of the NC, the corresponding drives are in the cyclic operation, i.e. they

cyclically exchange PROFIdrive telegrams with the NC.
Signal state 0 For at least one machine axis of the NC, the corresponding drive is not in cyclic operation, i.e. it is

not cyclically exchanging PROFIdrive telegrams with the NC.

DB10
DBX108.6

Drive ready

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 For all machine axes of the NC, the corresponding drives are ready:

DB31, ... DBX93.5 == 1 (DRIVE ready)
Signal state 0 For at least one machine axis of the NC, the corresponding drive is not ready:

DB31, ... DBX93.5 == 0 (DRIVE ready)
Corresponding to ... DB31, ... DBX93.5 (DRIVE ready)

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1586 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB10
DBX108.7

NC ready

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The control system is ready.

This interface signal is an image of the relay contact "NC Ready".
This signal is set if:
• Relay contact "NC Ready" is closed
• All the voltages in the controller have been established
• The controller is in the cyclic mode

Signal state 0 The controller is not ready. The relay contact "NC Ready" is open.
The following faults will cause NC Ready to be canceled:
• Undervoltage and overvoltage monitoring function has responded
• Individual components are not ready (NCK CPU Ready)
• NCK CPU watchdog
If the signal "NC Ready" goes to 0 the following measures are introduced by the controller if they
are still possible:
• The controller enable signals are withdrawn (this stops the drives)
• The following measures are introduced by the PLC basic program:

– Status signals from NCK to PLC (user interface) are deleted (cleared)
– Change signals for help functions are deleted
– Cyclic processing of the PLC to NCK user interface is terminated

For further information see References!
The controller is not ready again until after POWER ON.

Corresponding to ... Relay contact "NC Ready"
Additional references • Diagnostics Manual

• Function Manual Basic Functions; Basic PLC Program

DB10
DBX109.0

NCK alarm is active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 At least one NCK alarm is present.

This is a group signal for the interface signals of all existing channels:
DB21, ... DBX36.6 (channel-specific NCK alarm is active)

Signal state 0 No NCK alarm is active.
Corresponding to ... DB21, ... DBX36.6 (channel-specific NCK alarm is active)

DB21, ... DBX36.7 (NCK alarm with processing stop present)
Additional references Diagnostics Manual

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1587

DB10
DBX109.5

NCU heat sink temperature alarm

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 In the NCU, the limit values of the heat sink temperature was exceeded.

The heat sink temperature has been activated and a steady operation of the operator panel is no
longer guaranteed.

Signal state 0 The heat sink monitoring function of the NCU has not responded.

DB10
DBX109.6

Air temperature alarm

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The ambient temperature or fan monitoring function has responded.

This may be due to the following causes:
• The temperature monitoring has identified an ambient temperature that is too high (approx. 60

°C). Alarm 2110 "NCK temperature alarm" is output.
• The speed monitoring of the 24 VDC fan used to cool the module has responded. Alarm 2120

"NCK fan alarm" is output.
Measures: Replace the fan and/or ensure that additional ventilation is provided.
When a temperature or fan error responds, a relay contact (terminal 5.1, 5.2 or 5.1, 5.3) in the
infeed/regenerative feedback unit is activated which can be evaluated by the customer.

Signal state 0 Neither the temperature monitoring nor the fan monitoring has responded.
Application
example(s)

Appropriate measures can be initiated by the PLC user program if the temperature or fan
monitoring is activated.

Corresponding to ... When a temperature or fan error responds, a relay contact (terminal 5.1, 5.2 or 5.1, 5.3) in the
infeed/regenerative feedback unit is activated. This can be evaluated.

Additional references Diagnostics Manual

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1588 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB10
DBX109.7

NCK battery alarm

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The NCK battery voltage monitoring function has responded.

This may be due to the following causes:
• The battery voltage is within the pre-warning limit range (approx. 2.7 to 2.9 V). Alarm 2100

"NCK battery warning threshold reached" has been triggered.

Refer to References for effects and measure.
• The battery voltage is below the pre-warning limit range (≤ 2.6 V).

Alarm 2101 "NCK battery alarm" is signaled in cyclic operation.

Effects: A supply voltage failure - e.g. when the controller is switched off - would result in the
loss of battery-buffered data (e.g. part program memory, variables, machine data ...).

Measure: Refer to additional References.
• When the controller powered-up, it was identified that the battery voltage was below the pre-

warning limit range (≤ 2.6 V).

Alarm 2102 "NCK battery alarm" is output; NC ready and mode group ready are not issued.

Effects: Some of the battery-buffered data may already have been lost!

Measure: Refer to additional References.
Signal state 0 The battery voltage is above the lower limit value (normal condition).
Special cases,
errors, ...

The NCK batteries should only be replaced while the NC is switched on to avoid data loss because
of no memory backup.

Additional references • Diagnostics Manual
• Equipment Manual NCU

18.1.4 Signals to Operator Panel (DB19)

DB19
DBX0.0

Screen bright

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

The screen blanking is disabled.

Signal state 0 or
edge change 1 → 0

The screen blanking remains in effect.

Corresponding to ... DB19 DBX0.1 (darken screen)

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1589

DB19
DBX0.1

Darken screen

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

The screen is darkened by the PLC user program.
The automatic screen brightening/darkening is therefore ineffective:
i.e. the screen does not brighten up automatically on actuating the keyboard.

Signal state 0 or
edge change 1 → 0

The screen is controlled by the PLC user program "bright".
In this signal state, the screen brightening/darkening setting can be derived by the control via the
keyboard automatically.
The screen is darkened if no key is pressed for a period defined via the following machine data on
the keyboard:
MD9006 $MM_DISPLAY_BLACK_TIME (time to darken the screen)
The screen is brightened the next time a key on the operator panel front is pressed.

Application
example(s)

Screen saver

Special cases,
errors,

Notice:
The keyboard of the operator panel front continues to be effective if the interface signal:
DB19 DBX0.1 (darken screen) = 1
We therefore recommend that this is disabled using the interface signal:
DB19 DBX0.2 (key disable)

Corresponding to ... DB19 DBX0.2 (key disable)
MD9006 $MM_DISPLAY_BLACK_TIME (time to darken the screen)

DB19
DBX0.2

Key disable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

The keyboard is disabled for the user.

Signal state 0 or
edge change 1 → 0

The keyboard is enabled for the user.

Application
example(s)

If the screen is darkened with the interface signal: DB19 DBX0.1 (darken screen), the keyboard
should be actuated simultaneously with the interface signal: DB19 DBX0.2 (key disable) to avoid
an unintended operation.

Corresponding to ... DB19 DBX0.1 (darken screen)

DB19
DBX0.3

Clear cancel alarms

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Clear error key on the machine control panel is pressed.
All cancel alarms of the NCKs and the control panel are then acknowledged. The PLC application
acknowledges the PLC alarms itself.
Power On and Reset alarms remain active on the NCK until the cause of the error has been
removed.

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1590 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB19
DBX0.3

Clear cancel alarms

Signal state 0 or
edge change 1 → 0

Clear error key on the machine control panel is not pressed.

Functionality Only valid for HMI Advanced.
Corresponding to ... DB19 DBX20.3 (cancel alarm cleared)

DB19
DBX0.4

Clear recall alarms

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Clear error key on the machine control panel is pressed.
All cancel alarms of the NCKs and the control panel are then acknowledged. The PLC application
acknowledges the PLC alarms itself. POWER On and Reset alarms remain active on the NCK until
the cause of the error has been removed.

Signal state 0 or
edge change 1 → 0

Clear error key on the machine control panel is not pressed.

Application
example(s)

Applies to HMI Advanced only

Corresponding to ... DB19 DBX20.4 (recall alarm cleared)

DB19
DBX0.7

Actual values in WCS, 0 = MCS

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

The PLC selects the display of actual values in the workpiece coordinate system (WCS). This
means that when the machine area is selected, the WCS display is activated; i.e. the machine and
the supplementary axes as well as their actual positions and distances-to-go are displayed in the
WCS in the "Position" window.
The interface signal is only evaluated when it enters the basic machine screen; this means that the
operator, within the machine area, can toggle as required between the particular coordinate
systems using the softkeys "actual values MCS" and "actual values WCS".

Signal state 0 or
edge change 1 → 0

This means that when the machine area is selected the coordinate system previously selected
(WCS or MCS) is reactivated and displayed.

Application
example(s)

Using the interface signal:DB19, DBX0.7 (actual value in WCS) = 1 each time that the machine
area is re-selected, the workpiece coordinate system display frequently required by the operator
(WCS), is selected.

Corresponding to ... DB19 DBX20.7 (changeover MCS/WCS)
Additional references Operation Guide HMI (corresponding to the used software)

DB19
DBB6

Analog spindle 1, utilization in percent

Edge evaluation: No Signal(s) updated: Cyclically

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1591

DB19
DBB7

Analog spindle 2, utilization in percent

Edge evaluation: No Signal(s) updated: Cyclically

DB19
DBB8

Channel number of the machine control panel to HMI

Edge evaluation: No Signal(s) updated: Cyclically

DB19
DBB10

PLC hard keys (value range 1 ...255, 0 is the initial state)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Program area selection active

Signal state 0 or
edge change 1 → 0

Program area selection inactive

DB19
DBX13.5

Unload part program

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Unload active

Signal state 0 or
edge change 1 → 0

Unload inactive

Application
example(s)

A file transfer can be initiated using the hard disk.

DB19
DBX13.6

Load part program

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Load active

Signal state 0 or
edge change 1 → 0

Load inactive

Application
example(s)

A file transfer can be initiated using the hard disk.

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1592 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB19
DBX13.7

Part program selection

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Selection active

Signal state 0 or
edge change 1 → 0

Selection inactive

Application
example(s)

A file transfer can be initiated using the hard disk.

DB19
DBX14.0 - DBX14.6

PLC index

Edge evaluation: No Signal(s) updated: Cyclically
Description This byte for control of the RS-232-C describes the PLC index for the standard control file that

specifies the axis, channel or TO number.
Application
example(s)

Dependent on:
DB19 DBX14.7=0 → Act. FS: PLC index that specifies axis, channel or TO No.
DB19 DBX14.7=1 → Pas. FS: PLC index for the user control file

DB19
DBX14.7

Active or passive file system

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Passive file system

Signal state 0 or
edge change 1 → 0

Active file system

DB19
DBB15

PLC line offset

Edge evaluation: No Signal(s) updated: Cyclically
Description This byte to control the RS-232-C interface defines the line of the standard or user control file in

which the control file to be transferred is specified.
Application
example(s)

Dependent on:
DB19 DBX14.7=0 → Act. FS: PLC line offset in a standard control file
DB19 DBX14.7=1 → Pas. FS: PLC line offset in a user control file

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1593

DB19
DBX16.0 - DBX16.6

PLC index for the user control file

Edge evaluation: No Signal(s) updated: Cyclically
Description This byte for controlling file transfer via hard disk defines the index for the control file (job list).
Application
example(s)

Dependent on:
DB19 DBX14.7=0 → Act. FS: PLC index for the standard control file
DB19 DBX14.7=1 → Pas. FS: PLC index for the user control file

DB19
DBX16.7

Active or passive file system

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Passive file system

Signal state 0 or
edge change 1 → 0

Active file system

Application
example(s)

with HMI Advanced always 1

DB19
DBB17

PLC line offset in the user control file

Edge evaluation: No Signal(s) updated: Cyclically
Description This byte for controlling file transfer via the hard disk defines the line of the user control file in which

the control file to be transferred is located.
Application
example(s)

Dependent on:
DB19 DBX14.7=0 → Act. FS: PLC line offset in a standard control file
DB19 DBX14.7=1 → Pas. FS: PLC line offset in a user control file

DB19
DBX44.0

Mode change disable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Mode change disable active

Signal state 0 or
edge change 1 → 0

Mode change disable active

DB19
DBX45.0

FC9 Out: Active

Edge evaluation: No Signal(s) updated: Cyclically

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1594 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB19
DBX45.1

FC9 Out: Done

Edge evaluation: No Signal(s) updated: Cyclically

DB19
DBX45.2

FC9 Out: Error

Edge evaluation: No Signal(s) updated: Cyclically

DB19
DBX45.3

FC9 Out: StartError

Edge evaluation: No Signal(s) updated: Cyclically

18.1.5 Signals from operator control panel (DB19)

DB19
DBX20.1

Screen dark

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The screen is darkened.
Signal state 0 The screen is not darkened.
Application
example(s)

Using this IS, the PLC can identify whether the screen was switched dark using the interface
signal:
DB19, DBX0.1 (darken screen)
or using the machine data:
MD9006 $MM_DISPLAY_BLACK_TIME (screen blanking time)
.

Corresponding to ... MD9006 $MM_DISPLAY_BLACK_TIME (screen blanking time)

DB19
DBX20.3

Cancel alarm deleted

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Cancel alarm deleted active
Signal state 0 Cancel alarm deleted inactive

Note: The signal is not reset automatically, it must be set by the user via the PLC user program.
Application
example(s)

Applies only to HMI Advanced

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1595

DB19
DBX20.4

Recall alarm deleted

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Recall alarm deleted inactive
Signal state 0 Recall alarm deleted inactive

Note: The signal is not reset automatically, it must be set by the user via the PLC user program.
Application
example(s)

Applies only to HMI Advanced

DB19
DBX20.6

Simulation active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 On entry to simulation = 1

Signal state 0 On exit from simulation = 0
Application
example(s)

Can be evaluated by machine manufacturer in order to activate the test on NC start.

DB19
DBX20.7

Switch over MCS/WCS

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The coordinate system is switched over from workpiece coordinate system (WCS) to machine

coordinate system (MCS) or from MCS to WCS.
After it has been set, the signal is active for one PLC cycle.

Signal state 0 No effect
Application
example(s)

The interface signal:
DB19, DBX20.7 (switch over MCS/WCS)
must be transferred to the interface signal:
DB19, DBX0.7 (actual value in WCS)
in order that the switchover becomes effective.

Corresponding to ... DB19, DBX0.7 (actual value in WCS)

DB19
DBB22

Displayed channel number from HMI

Edge evaluation: No Signal(s) updated: Cyclically

DB19
DBB24

Actual image number of the JobShop interface

Edge evaluation: No Signal(s) updated: Cyclically

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1596 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB19
DBX26.1

OK Part program handling status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Transfer correctly completed
Signal state 0 Transfer completed with error
Additional references Commissioning Manual, SINUMERIK Operate (IM9), Section "PLC functions" > "Program

selection"
Corresponding to ... DB19.DBB13 (program selection: Requirement)

DB19.DBB16 (program selection: Control file index)
DB19.DBB17 (program selection: Program list index)
DB19.DBB27 (program selection: Error handling)

DB19
DBX26.2

Error (part program handling status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Transfer completed with error
Signal state 0 Transfer correctly completed
Additional references Commissioning Manual, SINUMERIK Operate (IM9), Section "PLC functions" > "Program

selection"
Corresponding to ... DB19.DBB13 (program selection: Requirement)

DB19.DBB16 (program selection: Control file index)
DB19.DBB17 (program selection: Program list index)
DB19.DBB27 (program selection: Error handling)

DB19
DBX26.3

Active (part program handling status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Job in progress
Signal state 0 No job in progress
Additional references Commissioning Manual, SINUMERIK Operate (IM9), Section "PLC functions" > "Program

selection"
Corresponding to ... DB19.DBB13 (program selection: Requirement)

DB19.DBB16 (program selection: Control file index)
DB19.DBB17 (program selection: Program list index)
DB19.DBB27 (program selection: Error handling)

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1597

DB19
DBX26.5

Unload (part program handling status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Unload active
Signal state 0 Unload inactive
Additional references Commissioning Manual, SINUMERIK Operate (IM9), Section "PLC functions" > "Program

selection"
Corresponding to ... DB19.DBB13 (program selection: Requirement)

DB19.DBB16 (program selection: Control file index)
DB19.DBB17 (program selection: Program list index)
DB19.DBB27 (program selection: Error handling)

DB19
DBX26.6

Load (part program handling status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Load active
Signal state 0 Load inactive
Additional references Commissioning Manual, SINUMERIK Operate (IM9), Section "PLC functions" > "Program

selection"
Corresponding to ... DB19.DBB13 (program selection: Requirement)

DB19.DBB16 (program selection: Control file index)
DB19.DBB17 (program selection: Program list index)
DB19.DBB27 (program selection: Error handling)

DB19
DBX26.7

Select (part program handling status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Selection active
Signal state 0 Selection inactive
Additional references Commissioning Manual, SINUMERIK Operate (IM9), Section "PLC functions" > "Program

selection"
Corresponding to ... DB19.DBB13 (program selection: Requirement)

DB19.DBB16 (program selection: Control file index)
DB19.DBB17 (program selection: Program list index)
DB19.DBB27 (program selection: Error handling)

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1598 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB19
DBB27

Error program handling

Edge evaluation: No Signal(s) updated: Cyclically
Error codes: aaa

Value Meaning
0 No error
1 Invalid number for the control file (value in DB19.DBB16 < 127 or invalid)
3 Control file "plc_proglist_main.ppl" not found (value in DB19.DBB16 invalid)
4 Invalid index in control file (incorrect value in DB19.DBB17)
5 Job list in the selected workpiece could not be opened
6 Error in job list. (Job list Interpreter returns error)

Description

7 Job list Interpreter returns empty job list
Additional references Commissioning Manual, SINUMERIK Operate (IM9), Section "PLC functions" > "Program

selection"
Corresponding to ... DB19.DBB13 (program selection: Requirement)

DB19.DBB16 (program selection: Control file index)
DB19.DBB17 (program selection: Program list index)
DB19.DBB26 (program selection: Acknowledgement)

18.1.6 Signals to channel (DB21, ...)

DB21, ...
DBX6.2

Delete distance-to-go (channel-specific)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

Delete distance-to-go (channel-specific):
IS "Delete distance-to-go (channel-specific)" for path axes is only active in AUTOMATIC mode.
The rising edge of the interface signal is only effective for the axes involved in the geometry
grouping. These are also stopped with a ramp stop and their distance-to-go deleted (setpoint -
actual value difference). Any remaining following error is still corrected. The next program block is
then started.
IS "Delete distance-to-go (channel-specific)" is therefore ignored by positioning axes.
Remark:
IS "Delete distance-to-go" does not influence the running dwell time in a program block with dwell
time.

Signal state 0 or
edge change 1 → 0

No effect

Signal irrelevant for
...

Positioning axes

Application
example(s)

To terminate motion because of an external signal (e.g. measuring probe)

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1599

DB21, ...
DBX6.2

Delete distance-to-go (channel-specific)

Special cases,
errors,

Delete distance-to-go (channel-specific)
When the axes have been stopped with IS "Delete distance-to-go" the next program block is
prepared with the new positions. After a "Delete distance-to-go", geometry axes thus follow a
different contour to the one originally defined in the part program.
If G90 is programmed in the block after "Delete distance-to-go" it is at least possible to approach the
programmed absolute position. On the other hand, with G91, the position originally defined in the
part program is no longer reached in the following block.

Corresponding to ... DB31, ... DBX2.2 (delete distance-to-go (axis-specific))

18.1.7 Signals from channel (DB21, ...)

DB21, ...
DBX36.6

Channel-specific NCK alarm is active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

At least one NCK alarm is present for this channel.
Thus the following group interface signal is also set:
DB10 DBX109.0 (NCK alarm is present)
The PLC user program can interrogate whether processing for the channel in question has been
interrupted because of an NCK channel:
DB21, ... DBX36.7 (NCK alarm with processing stop present).

Signal state 0 or
edge change 1 → 0

No NCK alarm is active for this channel.

Corresponding to ... DB21, ... DBX36.7 (NCK alarm with processing stop pending)
DB10 DBX109.0 (NCK alarm pending)

Additional references Diagnostics guide

DB21, ...
DBX36.7

NCK alarm with processing stop present

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change 0 → 1

At least one NCK alarm - which is causing a processing stop of the part program running in this
channel - is active.

Signal state 0 or
edge change 1 → 0

There is no alarm active in this channel that is causing a processing stop.

Application
example(s)

With this alarm a program interruption because of an NCK alarm can be recognized immediately by
the PLC user program and the necessary steps introduced.

Corresponding to ... DB21, ... DBX36.6 (channel-specific NCK alarm pending)
Additional references Diagnostics guide

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1600 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

18.1.8 Signals to axis/spindle (DB31, ...)

DB31, ...
DBX1.0

Drive test travel enable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Traversing motions of the axis are enabled for the drive test.

Feedback signal of the safety handshake at the start of the NC function generator.
The NC has requested the traversing enable for the axis at the start of the function generator with
the following interface signal:
DB31, ... DBX61.0 = 1 (drive test travel request)
The PLC user program sets the current interface signal as feedback signal to the NC that the axis
can be traversed:
DB31, ... DBX1.0 = 1 (drive test travel enable)
Only the PLC can decide on the traversing enable of an axis.

Signal state 0 Traversing motions of the axis are disabled for the drive test.
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX1.3

Axis/spindle disable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Axis

No setpoints are output to the position controller. The traversing motion of the axis is disabled.
However, the axis is still in closed-loop position control and any remaining following error is
compensated.
If the axis is traversed, the position setpoint and velocity setpoint are displayed as actual position
and actual velocity on the user interface. No setpoints are transferred to the drive, the machine axis
therefore does not traverse. With RESET, the display of the actual value is set to the actual value
of the machine axis.
Travel commands are output to the NC/PLC interface.
If the interface signal is set for a traversing axis, this is stopped in compliance with the acceleration
characteristic and an alarm is displayed.
Spindle
No speed setpoints are output to the speed controller in open-loop control mode.
No position partial setpoints are output to the position controller in positioning mode.
The traversing motion of the spindle is disabled. The speed setpoint is displayed as the actual
speed value on the user interface.
If the interface signal is set for a traversing spindle, this is stopped in compliance with the
acceleration characteristic and an alarm is displayed.

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1601

DB31, ...
DBX1.3

Axis/spindle disable
The reset of the interface signal does not take effect until the axis/spindle is stationary, i.e. an
interpolation setpoint is no longer present.
Axis
Position setpoints are transferred to the position controller cyclically.
If the interface signal was set, traversing can be performed as normal immediately after the reset of
the axis.
Spindle
Speed setpoints are transferred to the speed controller cyclically.
If the interface signal was set, the effective spindle disable can only be canceled after the reset
through RESET or M2 and a program restart.

Signal state 0

Application
example(s)

Prevention of traversing motions of the axis or spindle when running-in and testing a new part
program.

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1602 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX1.3

Axis/spindle disable
If the interface signal is set, the following interface signals have no effect with regard to the braking
of the axis/spindle:
• DB31, ... DBX2.1 (controller enable)
• DB2 ... (feed/spindle stop)
• DB31, ... DBX12.0-12.1 (hardware limit switch)
The axis/spindle can still be switched to the "hold" or "follow up" state
(see DB31, ... DBX1.4 (follow-up mode)).
Notes
• The output of setpoints on the drive is disabled with the interface signal.
• A brief pulse can bring a traversing axis to a standstill. The axis will not move again in this

block, but only when the next block is reached.
• Re-synchronization takes place automatically on the next traversing command for this axis, i.e.

the axis traverses the remaining distance-to-go.

Example:

N10 G0 X0 Y0

N20 G1 F1000 X100

N30 Y100

N40 X200

Regarding N20: At position X20, the interface signal "Axis disable" is briefly set. The X axis is
braked to standstill.

Regarding N40: The X axis traverses from the last position (approx. 20 mm) to the programmed
position 200 mm.

Effects of the interface signal for spindle or axis couplings:
LS/LA1) FS/FA1) Coupl.2) Effect

0 0 Off Setpoints of axes are output
0 1 Off No setpoint output for FS/FA
1 0 Off No setpoint output for LS/LA
1 1 Off No setpoint output for FS/FA and LS/LA
0 0 On Setpoints of axes are output
0 1 On Disable not effective for FS/FA
1 0 On Disable also effective for FS/FA
1 1 On No setpoint output for FS/FA and LS/LA

Special cases,
errors,

1) Status of the interface signal; LS/LA: Leading spindle/axis; FS/FA: Following spindle/axis
2) Status of the coupling between leading and following spindle/axis

Corresponding to ... DB21, ... DBX33.7 (program test active)
Additional references Behavior in synchronous mode:

Function Manual, Extended Functions; Synchronous Spindle (S3)

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1603

DB31, ...
DBX1.4

Follow-up mode

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Follow-up mode is active.

• The position setpoint is continuously tracked: Position setpoint = actual position value.
• Feedback signal for the active follow-up mode:

DB31, ... DBX61.3 = 1 (follow-up active)
• Zero speed and clamping monitoring are not active.
• When the closed-loop control system is reactivated, a control-internal repositioning operation is

performed (REPOSA: linear approach with all axes) to the last programmed position if a part
program is active.

Signal state 0 Follow-up mode is not active.
When "controller enable" is removed the previous position setpoint is kept in the control.
If the axis/spindle is moved out of position during this time a following error occurs between the
position setpoint and the actual position value. This position difference is reduced to zero
immediately by issuing "controller enable" so that the previous setpoint position is restored. Then,
all the other axis motions start from the setpoint position valid before "controller enable" was
removed.
When the position control is switched on again the axis may make a speed setpoint jump.
Zero speed and clamping monitoring are active.
To switch off the zero speed monitoring, the following interface signal should be set when clamping
an axis:
DB31, ... DBX2.3 = 1 (clamping operation running).
In the "hold" state, the interface signal:
DB31, ... DBX61.3 (follow-up active)
is set to a 0 signal.

Special cases,
errors,

If the controller enable is canceled in the control because of faults, the "hold" state should be
activated for the axis before the NC Start after the queued alarms have been successfully deleted,
and the accompanying controller enable set: DB31, ... DBX1.4 = 0 (follow-up mode).
Otherwise, for an NC Start and active follow-up mode, the traversing distance of the previous NC
block would not be executed due to the internal delete distance-to-go.
Notice:
During the transition from the "follow-up" state to the "hold" state or when the controller enable is
set in position control, delete distance-to-go is activated in the control. As a consequence, for
example, a block in which only this axis is traversed is terminated directly.

Corresponding to ... DB31, ... DBX2.1 (controller enable)
DB31, ... DBX2.3 (clamping in progress)
DB31, ... DBX61.3 (follow-up active)

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1604 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX1.5 - DBX1.6

Position measuring system 1 (PMS1) / Position measuring system 2 (PMS2)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The position measuring system is enabled
Signal state 0 The position measuring system is disabled

PMS1 PMS2 Effect
1 0 Position measuring system 1 is active:

• Position measuring system 1 is used for position control.
• If position measuring system 2 is also available (MD30200 $MA_NUM_ENCS

== 2), its actual position value is also acquired.

0 1 Position measuring system 2 is active:
• Position measuring system 2 is used for position control.
• If position measuring system 1 is also available (MD30200 $MA_NUM_ENCS

== 2), its actual position value is also acquired.

1 1 • Position measuring system 1 is used for position control.
• If position measuring system 2 is also available (MD30200 $MA_NUM_ENCS

== 2), its actual position value is also acquired.

0 0 Position measuring systems 1 and 2 are inactive:
• There is no actual value acquisition.
• The monitoring of the position measuring system has been deactivated.
• The following interface signals are reset:

– DB31, ... DBX60.4/5 == 0 (referenced/synchronized)
– DB31, ... DBX61.5 (position controller active)
– DB31, ... DBX61.6 (speed controller active)
– DB31, ... DBX61.7 (current controller active)

After parking has been completed, the axis must be referenced again.

Signal state overview

Notes
• If the interface signal of the active position measuring system is reset for a traversing axis, the

axis is stopped with a ramp stop without the controller enable being canceled internally.
• If a speed-controlled spindle does not have a position measuring system, the "Controller

enable" interface signal must be set:
DB31, ... DBX2.1 == 1 (controller enable)

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1605

DB31, ...
DBX1.5 - DBX1.6

Position measuring system 1 (PMS1) / Position measuring system 2 (PMS2)

Application
example(s)

1. Switching over from position measuring system 1 to positioning measuring system 2 (and vice
versa).

If the axis was referenced in both position measuring systems and the limit frequency of the
used measured value encoder has not been exceeded in the meantime, i.e.
DB31, ... DBX60.4 and 60.5 == 1 (referenced/synchronized 1 and 2) , a new reference point
approach is not required after the switchover.

On switchover, the current difference between position measuring system 1 and 2 is traversed
immediately.

A tolerance band in which the deviation between the two actual values may lie at the switchover
can be specified with the following machine data:
MD36500 $MA_ENC_CHANGE_TOL (maximum tolerance for position actual value switchover)
If the actual value difference is greater than the tolerance, there is no switchover and alarm
25100 "Measuring system switchover not possible" is displayed.

2. Parking axis (i.e. no position measuring system is active):

The position measuring system monitoring is switched off when the measured value encoder is
removed.

3. Switch off position measuring system:

When position measuring system 1 or 2 is switched off, the associated interface signal:
DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2)
is reset.

4. Reference point approach:

Reference point approach of the axis is executed with the selected position measuring system.
Every position measuring system must be separately referenced.

Special cases,
errors,

If the state "parking axis" is active, the following interface signal is ignored at NC Start for this axis:
DB31, ... DBX60.4/60.5 (referenced/synchronized 1/2).

Corresponding to ... DB31, ... DBX60.4/.5 (referenced/synchronized 1/2)
DB31, ... DBX61.6 (speed controller active)
DB31, ... DBX2.1 (controller enable)
MD36500 $MA_ENC_CHANGE_TOL (max. tolerance on actual position value switchover)
MD30200 $MA_NUM_ENCS (number of encoders)

Additional references Function Manual, Basic Functions; Velocities, Setpoint / Actual Value Systems, Closed-Loop
Control (G2)

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1606 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX2.1

Controller enable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Controller is enabled.

The position control loop is closed and the axis/spindle is in closed-loop control.
Feedback:
DB31, ... DBX61.5 = 1 (position controller active)
If the axis/spindle was referenced before resetting the interface signal, the axis/spindle does not
have to be re-referenced after the interface signal is set again. Supplementary condition: The limit
frequency of the active measuring system must not be exceeded in the meantime.
Note
If the axis/spindle was moved from its position during the time in which the controller enable was
not set, the behavior when the controller enable is set depends on the interface signal "follow-up
mode":
• DB31, ... DBX1.4 == 1 (follow-up mode)

The position control is implemented on the current position
• DB31, ... DBX1.4 == 0 (follow-up mode)

The position control is made on the last position before the reset the controller enable

Signal state 0 Controller is not enabled.
The behavior when the "controller enable" is removed depends on whether the axis/spindle is
stationary or traversing at this time:
• Axis/spindle stationary:

– The position control loop of the axis is opened.
– For DB31, ... DBX1.4 == 1 (follow-up mode) ⇒ position setpoint = actual position value
– The controller enable on the drive is reset
– The following interface signals are reset:

DB31, ... DBX61.5 = 0 (position controller active)

DB31, ... DBX61.6 = 0 (speed controller active)

DB31, ... DBX61.7 = 0 (current controller active)
• Axis/spindle traverses

– The axis is stopped with rapid stop.
– Alarm 21612 "Controller enable VDI signal reset during motion".
– The position control loop of the axis/spindle is opened.
– Independent of the interface signal DB31, ... DBX1.4 (follow-up mode), the position setpoint

is corrected at the end of the braking operation (position setpoint = actual position value)
and the feedback signal DB31, ... DBX61.3 = 1 (follow-up mode) is set.

– The following interface signals are reset:

DB31, ... DBX61.5 (position controller active)

DB31, ... DBX61.6 (speed controller active)

DB31, ... DBX61.7 (current controller active)

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1607

DB31, ...
DBX2.1

Controller enable

Application
example(s)

Mechanical clamping of an axis
If the axis is positioned at the clamping position, the clamping is closed. The controller enable is
then reset. Otherwise, the position controller would constantly work against the clamping, if the axis
was moved mechanically from its specified position during the clamping operation.
When the clamping is removed, the controller enable is set first and then the mechanical clamping
is released.

Special cases,
errors,

Travel request for an axis/spindle without controller enable:
• The axis/spindle is not traversed
• The travel command is output to the interface
• As long as the travel request is present, the axis/spindle is traversed immediately when the

controller enable is set.
A reset of the controller enable for a moving geometry axis always leads to a contour violation.

Corresponding to ... DB31, ... DBX61.3 (follow-up active)
DB31, ... DBX1.4 (follow-up mode)
DB31, ... DBX61.5 (position controller active)
DB31, ... DBX61.6 (speed controller active)
DB31, ... DBX61.7 (current controller active)
MD36620 $MA_SERVO_DISABLE_DELAY_TIME (OFF delay of the controller enable)
MD36610 $MA_AX_EMERGENCY_STOP_TIME (braking ramp time when errors occur)

DB31, ...
DBX2.2

Delete distance-to-go (axis-specific) / spindle reset

Edge evaluation: Yes Signal(s) updated: Cyclically
Edge change
0 → 1

Delete distance-to-go (axis-specific) is requested.
The behavior varies depending on the operating mode:
• JOG mode:

If the interface signal is set for one axis (edge change 0 → 1), this axis is stopped with ramp stop
and its distance-to-go deleted (setpoint - actual value difference).
Any remaining following error is still corrected.

• Operating modes AUTOMATIC and MDI:

The rising edge of the interface signals only influences the axes which are not in the geometry
grouping. They are stopped with ramp stop and their distance-to-go deleted (setpoint - actual
value difference). The next program block can then be started. IS "delete distance-to-go axial" is
therefore ignored by geometry axes.

Remark: "Delete distance-to-go" does not influence the running dwell time in a part program block
with dwell time.

Edge change
1 → 0

No effect

Application
example(s)

To terminate motion because of an external signal (e.g. measuring probe)

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1608 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX2.2

Delete distance-to-go (axis-specific) / spindle reset

Special cases,
errors,

"Delete distance-to-go (axis-specific)"
After the axes have been stopped with "Delete distance-to-go" the next program block is prepared
with the new positions. The axes thus follow a different contour to the one originally defined in the
part program after a "Delete distance-to-go".
If G90 is programmed in the block after "Delete distance-to-go" it is at least possible to approach the
programmed absolute position. On the other hand, with G91, the position originally defined in the
part program is no longer reached in the following block.

Corresponding to ... DB21, ... DBX6.2 (delete distance-to-go, channel-specific)
Additional references Function Manual, Basic Functions; Spindles (S1)

DB31, ...
DBX9.0 - DBX9.2

Position controller parameter set selection A, B, C

Edge evaluation: No Signal(s) updated: On request
Six different position controller parameter sets can be selected with the interface signals A, B, and
C. The following assignment applies:

Parameter set C B A
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
6 1 1 0

Meaning

6 1 1 1
Signal irrelevant for
...

MD35590 $MA_PARAMSET_CHANGE_ENABLE = 0

Corresponding to ... DB31, ...DBX69.0, .1, ..2 (feedback: Active position controller parameter set)
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive, Section "Commissioning NCK" >
Edge evaluation: No Signal(s) updated: On request

DB31, ...
DBX9.3

Parameter set switchover commands from NC disabled

Edge evaluation: No Signal(s) updated: On request
Signal state 1 The parameter set switchover is disabled.
Signal state 0 The parameter set switchover is enabled.
Corresponding to ... DB31, ... DBX9.0, .1, .2

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1609

DB31, ...
DBX20.1

Ramp-function generator disable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 A rapid stop with speed setpoint 0 is requested for the drive. The drive is stopped without a ramp

function (regenerative braking).
Feedback for the triggering of the rapid stop in the drive is via:
DB31, ... DBX92.1 == 1 (ramp-function generator disable active)

Signal state 0 No rapid stop with speed setpoint 0 is requested for the drive.
Corresponding to ... DB31, ... DBX92.1 (ramp-function generator disable active)
Remark A PROFIDrive telegram compatible with the "SIMODRIVE 611 universal" interface mode must be

set in the drive.
See drive parameters: p0922 and p2038

Additional references NC: Commissioning Manual IBN CNC: NCK, PLC, Drive
Drive: SINAMICS S120/S150 List Manual

DB31, ...
DBX21.0 - DBX21.2

Drive parameter set selection A, B, C

Edge evaluation: No Signal(s) updated: Cyclically
Eight different drive parameter sets can be selected with the interface signals A, B, and C. The
following assignment applies:

Parameter set C B A
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0

Meaning

8 1 1 1
Application
example(s)

Drive parameter switchover can be used for the following:
• Changing the gear stage
• Changing the measuring circuit

Special cases,
errors,

In principle it is possible to switch over drive parameter sets at any time. However, as torque jumps
can occur when switching over speed controller parameters and motor speed normalization,
parameters should only be switched over in stationary states, especially axis standstill.

Corresponding to ... DB31, ... DBX93.0, .1, .2 (feedback: Active drive parameter set)
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1610 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX21.3 - DBX21.4

Motor selection A, B

Edge evaluation: No Signal(s) updated: Cyclically
Switchover between four different motors or motor operating modes is possible with the interface
signals A, B. The following assignment applies:

Motor selection Application B A
Motor 1 Operating mode 1 0 0
Motor 2 Operating mode 2 0 1
Motor 3 Operating mode 3 1 0

Motor 4 Operating mode 4 1 1

Meaning

As soon as the request to switch over to a new motor or operating mode is detected in the drive,
the pulse enable is removed.

Application
example(s)

For example, it is possible to switch between operating mode 1 (star operation) and operating mode
2 (delta operation) for a main spindle drive (MSD) via the motor selection.

Special cases,
errors,

Notice
Before a new selection, the following interface signal must be reset:
DB31, ... DBX21.5 = 0 (motor being selected)

Corresponding to ... DB31, ... DBX93.3 and .4 (feedback: Active motor)
DB31, ... DBX21.5 (motor being selected)

Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX21.5

Motor being selected

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The necessary electrical (e.g. contactor changeover for star-delta changeover) and/or mechanical

changeovers are complete. The axis can be traversed again. The pulses are then enabled by the
drive.
Notice
The interface signal must be reset before a new motor selection via DB31, ... DBX21.3 and .4.

Signal state 0 The necessary electrical (e.g. contactor changeover for star-delta changeover) and/or mechanical
changeovers are not complete. The axis must not traverse. The pulses are not enabled by the
drive.

Corresponding to ... DB31, ... DBX93.3 and 4 (active motor)
DB31, ... DBX21.3 and 4 (motor selection A, B)

Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1611

DB31, ...
DBX21.6

Integrator disable, speed controller

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The integrator (I component) of the speed controller is disabled or is to be disabled (P instead of PI

behavior).
Note:
If the speed controller integrator disable is activated, compensation operations might take place in
certain applications (e.g. if the integrator was already holding a load while stationary).
The drive acknowledges the integrator disable to the PLC using the interface signal:
DB31, ... DBX93.6 (speed controller integrator disabled).

Signal state 0 The integrator (I component) of the speed controller is enabled (PI behavior).
Corresponding to ... DB31, ... DBX93.6 (feedback: The speed controller integrator is disabled)
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX21.7

Pulse enable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The pulses are enabled for the drive.

The pulse enable is only performed in the drive when the drive signals readiness:
DB31, ... DBX93.5 == 1 (feedback: Drive ready)

Signal state 0 The pulses are disabled for the drive.
Application
example(s)

Signal relevant to safety

Special cases,
errors,

If the pulse enable is removed during motion (e.g. emergency stop), the axis/spindle is no longer
braked under control. The axis coasts to standstill.

Corresponding to ... DB31, ... DBX93.5 (feedback: Drive ready)
DB31, ... DBX93.7 (feedback: Pulses are enabled)

Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1612 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

18.1.9 Signals from axis/spindle (DB31, ...)

 Note
SINAMICS S120: Message word (MELDW)

The message word (MELDW) is only contained in PROFIdrive telegrams compatible with
SIMODRIVE 611U, for example, telegrams 102, 103, 105, 106, 110, 111, 116, 118, 125,
126, 136, 138, 139

References:
SINAMICS List Manual, Function Diagrams 2419 and 2420
SINAMICS S120: Status word 1/2 (ZSW1/2)

The status words ZSW1 or ZSW2 only refer to SIMODRIVE 611U compatible PROFIdrive
telegrams in the following (SIMODRIVE 611U interface mode, p2038 = 1)

DB31, ...
DBX61.0

Drive test travel request

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The control signals that all of the traversing conditions for the drives are fulfilled.

Requirements for this are:
• The mechanical brake of the axis involved was previously released and all other axis traversing

conditions are fulfilled.

With:
DB31, ... DBX61.0 (drive test, travel request) = 1 signal
the appropriate axes can be moved.

• The axis disable:
DB31, ... DBX1.3 (axis/spindle disable) = 1 signal
is not active.

Signal state 0 The control signals that the axes cannot be moved.
Axes cannot be moved when:
• DB31, ... DBX61.0 (drive test, travel request) = 0 signal
• Faults are present in the control
This means that the requirements specified above are not fulfilled.

Further references Commissioning Manual IBN CNC: NCK, PLC, Drive

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1613

DB31, ...
DBX61.3

Follow-up active (feedback)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The control signals that the follow-up mode for the axis/spindle is not active.

Requirements for this are:
• The controller enable for the drive has been withdrawn (either by the PLC with "controller enable

" = 0 signal or inside the control for faults; refer to the references)
• Follow-up operation is selected (either by the PLC with IS "follow-up operation" = 1 signal or in

the control, e.g. when withdrawing the controller enable from an axis that is moving)
The position setpoint continually tracks the actual value while the follow-up mode is active.
Zero speed and clamping monitoring are not active.

Signal state 0 The control signals that follow-up mode for the axis/spindle is not active.
Zero speed and clamping monitoring are active.
This means that the requirements specified above are not fulfilled.
In the "hold" state, the interface signal:
DB31, ... DBX61.3 (follow-up active)
is 0.

Special cases,
errors,

Notice:
A delete distance-to-go is triggered internally in the control on transition from "Follow up" to "Hold"
(IS "Follow-up mode" = 0) or in the closed-loop control mode (IS "Controller enable" = 1).

Corresponding to ... DB31, ... DBX2.1 (controller enable)
DB31, ... DBX1.4 (follow-up mode)

Additional references Diagnostics Manual

DB31, ...
DBX61.4

Axis/spindle stationary (n < nmin) (status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The current speed of the axis or the actual number of rotations of the spindle lies below the limit

given by the machine data:
MD36060 $MA_STANDSTILL_VELO_TOL
(maximum velocity/speed for signal "Axis/spindle stationary").

Signal state 0 The current velocity of the axis or the actual spindle speed is greater than the value specified in the
MD (standstill range).
If a travel command is present, e.g. for a spindle, then the signal is always = 0 - even if the actual
speed lies below that specified in MD36060.
If the interface signal:
DB31, ... DBX61.4 (axis/spindle stationary)
is signaled and there is no closed-loop position control active for the spindle, then at the MMC, an
actual speed of zero is displayed and with the system variable $AA_S[n] zero is read.

Application
example(s)

Enable signal for opening a protective device (e.g. open door).
The workpiece chuck or the tool clamping device is only opened when the spindle is stationary.
The oscillation mode can be switched-on during gear stage change after the spindle has been
braked down to standstill.
The tool clamping device must have been closed before the spindle can be accelerated.

Corresponding to ... MD36060 $MA_STANDSTILL_VELO_TOL
(maximum velocity/speed for signal "Axis/spindle stationary")

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1614 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX61.5

Position controller active (status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The control signals that the position controller for the axis or spindle is closed.
Signal state 0 The control signals that the position controller for the axis or spindle is open.

If "controller enable" is canceled because of a fault or from the PLC user program the position
controller is opened and therefore the interface signal
DB31, ... DBX61.5 (position controller active)
is set to 0.
Spindle without position control: Signal "Position controller active" is always "0".
See References for other effects.

Application
example(s)

If the position control is active the axis/spindle is kept in position by the position controller.
Any brakes or clamps can thus be opened.
The interface signal:
DB31, ... DBX61.5 (position controller active)
can be used as feedback signal for the interface signal:
DB31, ... DBX2.1 (controller enable).

The holding brake of a vertical axis must be activated as soon as the position control is no longer
active.
If a spindle has been technically designed/dimensioned for the purpose, in the part program, it can
be changed-over into the closed-loop position controlled mode as spindle or as axis (with SPCON or
M70).
In these cases, the interface signal "position controller active" is set.

Special cases,
errors,

Special case for simulation axes (MD30350 $MA_SIMU_AX_VDI_OUTPUT = "1"):
The IS "position controller active" is also set for simulation axes as soon as MD = "1".

Corresponding to ... DB31, ... DBX2.1 (controller enable)
DB31, ... DBX1.4 (follow-up mode)
DB31, ... DBX1.5 and 1.6 (position measuring system 1 and 2)

Additional references Diagnostics Manual

DB31, ...
DBX61.6

Speed controller active (status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The control signals that the speed controller is closed for the axis or spindle.
Signal state 0 The control signals that the speed controller is open for the axis or spindle.

The speed controller output is cleared.
Application
example(s)

If the spindle is not under position control, the interface signal can be used as a feedback for the
interface signal DB31, ... DBX2.1 (controller enable).

Special cases,
errors,

The interface signal is also set for simulation axes:
Simulation axis: MD30350 $MA_SIMU_AX_VDI_OUTPUT == 1

Corresponding to ... DB31, ... DBX61.5 (position controller active)

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1615

DB31, ...
DBX61.7

Current controller active (status)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The current controller for the axis/spindle is active.
Signal state 0 The current controller for the axis/spindle is not active.

The current controller output, including the injection variables on the control voltage, is cleared.
Corresponding to ... DB31, ... DBX61.5 (position controller active)

DB31, ... DBX61.6 (speed controller active)

DB31, ...
DBX69.0 - DBX69.2

Active position controller parameter set A, B, C (feedback)

Edge evaluation: No Signal(s) updated: After switchover
The active position controller parameter sets are displayed with the interface signals A, B and C.
The following assignment applies:

Parameter set C B A
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
6 1 1 0

Meaning

6 1 1 1
Signal irrelevant for
...

MD35590 $MA_PARAMSET_CHANGE_ENABLE == 0
If the switchover of the position controller parameter set is switched off, the first parameter set is
always active.

Corresponding to ... DB31, ...DBX9.0 - DBX9.2 (position controller parameter set selection A, B, C)

DB31, ...
DBX76.0

Lubrication pulse

Edge evaluation: Yes Signal(s) updated: Cyclically
Edge change
0 → 1
or
1 → 0

As soon as the axis/spindle has moved through the traversing distance set in machine data:
MD33050 $MA_LUBRICATION_DIST (traversing distance for lubrication from the PLC),
the interface signal is inverted.
Note:
The distance measurement is restarted each time that the control runs up.

Application
example(s)

The lubrication pump for the axis/spindle can be activated with the "Lubrication pulse" interface
signal. Machine bed lubrication therefore depends on the distance traveled.

Corresponding to ... MD33050 $MA_LUBRICATION_DIST (lubrication pulse distance)

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1616 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX92.1

Ramp-function generator disable active (feedback)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Ramp function generator fast stop is active for the drive.
Signal state 0 Ramp function generator fast stop is not active for the drive.
Application
example(s)

Position controller bypassing of the ramp function generator.

Corresponding to ... DB31, ... DBX20.1 (ramp-function generator fast stop)
Remark In the SINAMICS a protocol can be set that runs in what is known as the 611U compatibility mode.
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX92.4

Drive-autonomous motion active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 A drive-autonomous motion is active.

The axis traverses due to setpoints created by drive-internal functions. The drive still responds to
control signals of the NC, e.g. controller enable. Setpoint specifications of the NC are ignored.

Signal state 0 A drive-autonomous motion is not active.
Application
example(s)

Internal drive functions:
• Rotor or pole position identification
• Function generator

Remark DBX92.4 = 1 IF MELDW.11 == 1 (controller enable) AND ZSW1.2 == 0 (operation enabled)
Additional references SINAMICS S120 Function Manual;

Pole position identification: Section "Servo control" > "Pole position identification"
Function generator: Section "Servo control" > "Optimization of the current and speed controller"

DB31, ...
DBX93.0 - DBX93.2

Active drive parameter set A, B, C (feedback)

Edge evaluation: No Signal(s) updated: Cyclically
The active drive parameter set is displayed with the interface signals A, B and C. The following
assignment applies:

Parameter set C B A
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0

Meaning

8 1 1 1

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1617

DB31, ...
DBX93.0 - DBX93.2

Active drive parameter set A, B, C (feedback)

Corresponding to ... DB31, ... DBX21.0 - DBX21.2 (drive parameter set selection)
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX93.3 - DBX93.4

Active motor A, B (feedback)

Edge evaluation: No Signal(s) updated: Cyclically
Feedback signal from drive indicating which motor selection is active.
The active motor or motor operating mode is displayed with the interface signals A, B. The following
assignment applies:

Motor selection Meaning B A
Motor 1 Star operation active 0 0
Motor 2 Delta operation active 0 1
Motor 3 Reserved 1 0

Meaning

Motor 4 Reserved 1 1
Corresponding to ... DB31, ... DBX21.3 and .4 (motor selection)

DB31, ... DBX21.5 (motor being selected)
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX93.5

Drive ready

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The drive is ready.
Signal state 0 The drive is not ready.

If the signal is reset in operation, the drive is stopped (pulse inhibit or fast stop). When powering-up,
the pulses are still inhibited (canceled) In addition, the following NC/PLC interface signals are reset:
DB10, DBX108.6 = 0 (drive ready)
DB31, ... DBX61.7 = 0 (current controller active)
DB31, ... DBX61.6 = 0 (speed controller active)

Remark DB31, ... DBX93.5 = MELDW.12
Corresponding to ... SINUMERIK

DB10, DBX108.6 (drive ready)
DB31, ... DBX61.7 (current controller active)
DB31, ... DBX61.6 (speed controller active)

Additional references SINAMICS S120/S150 List Manual
Commissioning Manual IBN CNC: NCK, PLC, Drive

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1618 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX93.6

Speed controller integrator disabled (feedback)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The requested shutdown of the speed controller integrator is active in the drive. The speed

controller has been switched over from the PI to P control response.
Signal state 0 The integrator of the speed controller is enabled. The speed controller functions as a PI controller.
Corresponding to ... DB31, ... DBX21.6 (integrator disable, n-controller)
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX93.7

Pulses enabled (feedback)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The pulses of the assigned drive are enabled for the axis/spindle.
Signal state 0 The pulses of the assigned drive are not enabled.

If the pulses on the assigned drive are deleted, the following interface signals are reset:
• DB31, ... DBX61.7 (current controller active)
• DB31, ... DBX61.6 (speed controller active)
• DB31, ... DBX61.5 (position controller active)

Remark DB31, ... DBX93.7 = MELDW.13
Corresponding to ... DB31, ... DBX21.7 (pulse enable)
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX94.0

Motor temperature prewarning

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The motor temperature has exceeded the warning threshold (p0604) configured in the drive.

Note
If the motor temperature remains too high for longer than the parameterized time (p0606), a fault is
output, the drive is stopped and the pulse enable removed.
If the motor temperature falls below the warning threshold (p0604) again before the time has
expired (p0606), the interface signal is reset.

Signal state 0 The motor temperature is below the warning threshold (p0604).
Remark The current motor temperature is displayed on the user interface at:

Operating area "Diagnostics" > "Service display: Axis/spindle"
Corresponding to ... DB31, ... DBX94.1 (heat sink temperature prewarning)
Additional references See DB31, ... DBX94.1 (heat sink temperature prewarning)

 Z1: NC/PLC interface signals
 18.1 Various interface signals and functions (A2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1619

DB31, ...
DBX94.1

Heat sink temperature prewarning

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The heat sink temperature of the power semiconductors has exceeded the parameterized warning

threshold (p0294).
Note
The parameterized reaction (p0290) is performed in the drive. If the temperature violation remains,
a fault is output after approx. 20 s, the drive is stopped and the pulse enable removed.

Signal state 0 The drive module heat sink temperature monitoring has not responded, i.e. the temperature is
below the warning threshold.

Remark The interface signals DB31, ... DBX94.0 and .1 are derived from the following signals of the cyclic
drive telegram:
• Case 1: Temperature warning in the message word

– DB31, ... DBX94.0 ≙ MELDW, bit 6 (no motor overtemperature warning)
– DB31, ... DBX94.1 ≙ MELDW, bit 7 (no thermal overload in power unit warning)

• Case 2: Warning of warning class B (interface mode "SIMODRIVE 611U", p2038 = 1)
DB31, ... DBX94.0 == 1 and DBX94.1 == 1, if the following applies:
Cyclic drive telegram, ZSW1: Bit 11 == 0 and 12 == 1 (warning class B)

The interface signals are derived from the warning of warning class B if there is no specific
information from the message word.
An alarm is displayed. Alarm number = 200.000 + alarm value (r2124)

Additional references • S120 Commissioning Manual, Section "Commissioning" > "Temperature sensors for SINAMICS
components"

• S120 Function Manual, Section "Monitoring and protective functions"
• S120 List Manual

– MELDW, bit 6 ≙ BO: r2135.14 → function diagram: 2548, 8016
– MELDW, bit 7 ≙ BO: r2135.15 → function diagram: 2548, 2452, 2456, 8016

• SINUMERIK Diagnostics Manual

DB31, ...
DBX94.2

Run-up completed

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The actual speed value has reached the speed tolerance band specified via p2164 after a new

speed setpoint specification and has not left the band for the duration of p2166.
Any subsequent speed fluctuations, also outside the tolerance band, e.g. due to load changes, will
not affect the interface signal.

Signal state 0 The run-up procedure is still active after the speed setpoint has been changed.
Corresponding to ... DB31, ... DBX94.6 ("nact = nset")

DB31, ... DBX94.3 ("|MD| = Mdx")
Additional references • SINUMERIK Commissioning Manual IBN CNC: NCK, PLC, Drive

• SIMATIC S120 List Manual

Z1: NC/PLC interface signals
18.1 Various interface signals and functions (A2)

 Basic Functions
1620 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX94.3

|Md| < Mdx

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The current torque utilization is below the torque utilization threshold (torque threshold 2, p2194).

The run-up procedure is completed, the drive is in the steady state and the torque setpoint |Md|
drive does not exceed the threshold torque Mdx.
The torque threshold characteristic is speed-dependent.
During the run-up, DB31, ... DBX94.3 (|Md|< Mdx) == 1. The interface signal is not updated until the
run-up has been completed (DB31, ... DBX94.2 == 1) and the signal interlocking time for the
threshold torque has expired.

Signal state 0 The torque setpoint |Md| is larger than the threshold torque Mdx.
A motor overload can be determined via the interface signal. An appropriate response can then be
initiated in the PLC user program.

Remark DB31, ... DBX94.3 = MELDW.1
Additional references • SINUMERIK Commissioning Manual IBN CNC: NCK, PLC, Drive

• SIMATIC S120 List Manual

DB31, ...
DBX94.4

|nact| < nmin

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The actual speed value nact is less than nmin (speed threshold value 3, p2161).
Signal state 0 The actual speed value is greater than the threshold minimum speed nmin.
Remark DB31, ... DBX94.4 = MELDW.2
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX94.5

|nact| < nx

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The actual speed value nact is less than nx (speed threshold value 2, p2155).
Signal state 0 The actual speed value nact is greater than the threshold speed nx.
Remark DB31, ... DBX94.5 = MELDW.3
Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX94.6

nact = nset

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The actual speed value is at least the parameterized time (switch-on delay n_act = n_set, p2167)

within the tolerance band around the speed setpoint (speed threshold value 4, p2163).

 Z1: NC/PLC interface signals
 18.2 Axis monitoring, protection zones (A3)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1621

DB31, ...
DBX94.6

nact = nset

Signal state 0 The actual speed value is outside the tolerance band around the speed setpoint (speed threshold
value 4, p2163).

Additional references Commissioning Manual IBN CNC: NCK, PLC, Drive

DB31, ...
DBX94.7

Variable signaling function

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The parameterized drive variable has exceeded the specified threshold value, including hysteresis.
Signal state 0 The parameterized drive variable has fallen below the specified threshold value, including

hysteresis.
Remark Using the "Variable signaling" function, BICO interconnections and parameters which have the

attribute traceable can be monitored in the drive.
DB31, ... DBX94.7 = MELDW.5

Additional references SINAMICS S120 Function Manual, Section "Servo control" > "Variable signaling function"

DB31, ...
DBX95.7

Warning of warning class C is pending

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The drive signals that a warning of warning class C is pending.
Signal state 0 The drive signals that no warning of warning class C is pending.
Remark In the drive, a warning is the response to a detected potential or expected fault condition that does

not cause the drive to switch off and does not have to be acknowledged.
Additional references SINAMICS S120 List Manual, Section "Faults and alarms"

18.2 Axis monitoring, protection zones (A3)

18.2.1 Signals to channel (DB21, ...)

DB21, ...
DBX1.1

Enable protection zones

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

When a positive edge of this signal appears, a protection zone is enabled and the active alarm
cleared. Then, motion can start in the same protection zone. As a result of the start of motion, the
protection zone is enabled, the IS "machine or channel-specific protection zone violated" is set, and
the axis starts to move.
The enabling signal is canceled if motion is started that does not lead into the enabled protection
zone.

Z1: NC/PLC interface signals
18.2 Axis monitoring, protection zones (A3)

 Basic Functions
1622 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX1.1

Enable protection zones

Signal state 0 or
edge change
1 → 0

No effect

Application
example(s)

This allows protection zones to be released:
• If the current position is within a protection zone (alarm 2 present)
• If motion is to be started towards the protection zone limit

(alarm 1 or 2 present)

DB21, ...
DBX8.0 - DBX9.1

Activate machine-specific protection zone 1 (...10)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The pre-activated, machine-related protection zone 1 (...10) is activated by the PLC user program.
The protection zone is immediately activated.
Only protection zones that have been pre-activated in the part program can be activated.

Signal state 0 or
edge change
1 → 0

The pre-activated, machine-related protection zone 1 (...10) is de-activated by the PLC user
program.
The protection zone is immediately de-activated.
Only protection zones that have been activated via the PLC and have been pre-activated in the NC
part program can be de-activated.

Application
example(s)

Before a sensor, for example, is moved into the working range, the relevant machine-related
protection zone can be activated.

DB21, ...
DBX10.0 - DBX11.1

Activate channel-specific protection zone 1 (...10)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The preactivated, channel-specific protection zone 1 (...10) is activated by the PLC user program.
The protection zone is immediately activated.
Only protection zones that have been pre-activated in the part program can be activated.

Signal state 0 or
edge change
1 → 0

The pre-activated, channel-specific protection zone 1 (...10) is de-activated by the PLC user
program.
The protection zone is immediately de-activated.
Only protection zones that have been activated via the PLC and have been pre-activated in the NC
part program can be de-activated.

Application
example(s)

Before a synchronous spindle, for example, is moved into the working range, the relevant machine-
related protection zone can be activated.

 Z1: NC/PLC interface signals
 18.2 Axis monitoring, protection zones (A3)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1623

18.2.2 Signals from channel (DB21, ...)

DB21, ...
DBX272.0 –
DBX273.1

Machine-related protection zone 1 (...10) pre-activated

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The machine-related protection zone 1 (...10) is preactivated in the current block.
(Pre-activated in the part program).
The protection zone can therefore be activated or de-activated in the PLC user program using the
interface signal:
DB21, ... DBX8.0 - DBX9.1 (machine-related protection zone 1 (...10))

Signal state 0 or
edge change
1 → 0

The machine-related protection zone 1 (...10) is deactivated in the current block.
(De-activated in the part program).
The protection zone can therefore not be activated or de-activated in the PLC user program using
the interface signal:
DB21, ... DBX8.0 to DBX9.1 (activate machine-related protection zone 1 (...10))

Corresponding
to

DB21, ... DBX8.0 - DBX9.1 (activate machine-related protection zone 1 (...10))

DB21, ...
DBX274.0 –
DBX275.1

Channel-specific protection zone 1 (...10) pre-activated

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The channel-specific protection zone 1 (...10) is preactivated in the current block.
(Pre-activated in the part program).
The protection zone can therefore be activated or de-activated in the PLC user program using the
interface signal:
DB21, ... DBX10.0 - DBX11.1 channel-specific protection zone 1 (...10))

Signal state 0 or
edge change
1 → 0

The channel-specific protection zone 1 (...10) is deactivated in the current block.
(De-activated in the part program.)
The protection zone can therefore not be activated or de-activated in the PLC user program using
the interface signal:
DB21, ... DBX10.0 - DBX11.1 (channel-specific protection zone 1 (...10))

Corresponding
to

DB21, ... DBX10.0 - DBX11.1 (activate channel-specific protection zone 1 (...10))

Z1: NC/PLC interface signals
18.2 Axis monitoring, protection zones (A3)

 Basic Functions
1624 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX276.0 –
DBX277.1

Machine-related protection zone 1 (...10) violated

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The activated, machine-related protection zone 1 (...10) is violated in the current block or in the
current JOG movement.
The pre-activated, machine-related protection zone 1 (...10) would be violated in the current block
if it would be activated by the PLC.

Signal state 0
or edge change
1 → 0

The activated, machine-related protection zone 1 (...10) is not violated in the current block.
The pre-activated, machine-related protection zone 1 (...10) would not be violated in the current
block if it would be activated by the PLC.

Application
example(s)

Before parts are moved into the working zone - this IS can be used to check as to whether the tool
or workpiece is located in the machine-related protection zone of the part to be moved in.

DB21, ...
DBX278.0 -
DBX279.1

Channel-specific protection zone 1 (...10) violated

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The activated, channel-specific protection zone 1 (...10) is violated in the current block.
The pre-activated, channel-specific protection zone 1 (...10) would be violated in the current block
if it would be activated by the PLC.

Signal state 0 or
edge change
1 → 0

The activated, channel-specific protection zone 1 (...10) is not violated in the current block.
The pre-activated, channel-specific protection zone 1 (...10) would not be violated in the current
block if it would be activated by the PLC.

Application
example(s)

Before parts are moved into the working zone - this IS can be used to check whether the tool or
workpiece is located in the channel-specific protection zone of the part to be moved in.

18.2.3 Signals to axis/spindle (DB31, ...)

DB31, ...
DBX2.3

Clamping in progress

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Clamping in progress.
The clamping monitoring function is activated.

Signal state 0 or
edge change
1 → 0

Clamping completed.
The clamping monitoring function is replaced by the standstill (zero speed) monitoring.

Corresponding to ... MD36050 $MA_CLAMP_POS_TOL (clamping tolerance)

 Z1: NC/PLC interface signals
 18.2 Axis monitoring, protection zones (A3)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1625

DB31, ...
DBX3.6

Velocity/spindle speed limitation

Edge evaluation: no Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The NCK limits the velocity/spindle speed to the limit value set in the machine data:
MD35160 $MA_SPIND_EXTERN_VELO_LIMIT

Signal state 0 or
edge change
1 → 0

No limitation active.

Corresponding to ... MD35100 $MA_SPIND_VELO_LIMIT (max. spindle speed)
SD43220 $SA_SPIND_MAX_VELO_G26 (programmable upper spindle speed limitation for G26)
SD43230 $SA_SPIND_MAX_VELO_LIMS (spindle speed limitation for G96/G961/G97)

DB31, ...
DBX12.0 - DBX12.1

Hardware limit switches plus and minus

Edge evaluation: no Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

A switch can be mounted at each end of the travel range of a machine axis which will cause a
signal "hardware limit switch plus or minus" to be signaled to the NC via the PLC if it is actuated.
If the signal is recognized as set, alarm 021614 "hardware limit switch + or -" is output and the axis
is decelerated immediately.
The braking/deceleration type is defined using the machine data:
MD36600 $MA_BRAKE_MODE_CHOICE (braking behavior at the hardware limit switch)

If the controller enable is withdrawn at the same time as the "hardware limit switch" signal, then the
axis responds as described in Chapter A2 ("various interface signals").

Signal state 0 or
edge change
1 → 0

Normal condition - a hardware limit switch has not been actuated.

Corresponding to ... MD36600 $MA_BRAKE_MODE_CHOICE (deceleration behavior when the hardware limit switch
responds)

DB31, ...
DBX12.2 - DBX12.3

2nd software limit switch plus or minus

Edge evaluation: no Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

2nd software limit switch for the plus and minus directions is effective.
1st software limit switch for the plus and minus directions is not effective.
In addition to the 1st software limit switches (plus and minus), the 2nd software limit switches (plus
and minus) can be activated using these interface signals.
The position is defined using machine data:
MD36130 $MA_POS_LIMIT_PLUS2 (2nd software limit switch plus)
and
MD36120 $MA_POS_LIMIT_MINUS2 (2nd software limit switch minus)
.

Z1: NC/PLC interface signals
18.3 Continuous-path mode, exact stop and LookAhead (B1)

 Basic Functions
1626 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX12.2 - DBX12.3

2nd software limit switch plus or minus

Signal state 0 or
edge change
1 → 0

1st software limit switch for the plus and minus directions is effective.
2nd software limit switch for the plus and minus directions is not effective.

Corresponding to ... MD36110 $MA_POS_LIMIT_PLUS (1st software limit switch plus)
MD36130 $MA_POS_LIMIT_PLUS2 (2nd software limit switch plus)
MD36100 $MA_POS_LIMIT_MINUS (1st software limit switch minus)
MD36120 $MA_POS_LIMIT_MINUS2 (2nd software limit switch minus)

18.2.4 Signals from axis/spindle (DB31, ...)

DB31, ...
DBX60.2 - DBX60.3

Encoder limit frequency exceeded 1
Encoder limit frequency exceeded 2

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The limit frequency set in the machine data:
MD36300 $MA_ENC_FREQ_LIMIT (encoder limit frequency)
has been exceeded.
The reference point for the position measuring system involved has been lost (IS:
Referenced/synchronized has a signal state 0). Closed-loop position control is no longer possible.
Spindles continue to run with closed-loop speed control. Axes are stopped with a fast stop (with
open-circuit position control loop) along a speed setpoint ramp.

Signal state 0 or
edge change
1 → 0

The limit frequency set in machine data:
MD36300 $MA_ENC_FREQ_LIMIT
is no longer exceeded.
For the edge change 1 → 0, the encoder frequency must have fallen below the value of machine
data:
MD36302 $MA_ENC_FREQ_LIMIT_LOW (encoder limit frequency for encoder resynchronization)

18.3 Continuous-path mode, exact stop and LookAhead (B1)

18.3.1 Signals from channel (DB21, ...)

DB21, ...
DBX36.3

All axes stationary

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

All axes assigned to the channel are stationary with interpolator end.
No other traversing movements are active.

 Z1: NC/PLC interface signals
 18.3 Continuous-path mode, exact stop and LookAhead (B1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1627

18.3.2 Signals from axis/spindle (DB31, ...)

DB31, ...
DBX60.6

Position reached with exact stop coarse

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The axis is in the appropriate exact stop and no interpolator is active for the axis and:
• The control is in the reset state (reset key or end of program).
• The axis was last programmed as a positioning axis or positioning spindle (initial setting of

supplementary axis: Positioning axis).
• The path motion was terminated with NC stop.
• The spindle is in the closed-loop positioncontrolled mode (SPCON/SPOS instruction) and is

stationary.
• The axis is switched from closed-loop speedcontrolled to closed-loop positioncontrolled mode

with IS "position measuring system".

Signal state 0 or
edge change
1 → 0

The axis is not in the appropriate exact stop or the interpolator is active for the axis or:
• The path motion was terminated with NC stop.
• The spindle is in the closed-loop speedcontrolled mode (SPCOF/SPOSA instruction).
• The "followup" mode is active for the axis.
• The "parking" mode is active for the axis.
• The axis is switched from closed-loop positioncontrolled to closed-loop speedcontrolled mode

with IS "position measuring system".

Signal irrelevant for
...

Rotary axes that are programmed as rounding axes.

Corresponding to ... MD36000 $MA_STOP_LIMIT_COARSE (exact stop coarse)

DB31, ...
DBX60.7

Position reached with exact stop fine

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Refer to DB31, ... DBX60.6 (position reached with exact stop coarse).

Signal state 0 or
edge change
1 → 0

Refer to DB31, ... DBX60.6 (position reached with exact stop coarse).

Signal irrelevant for
...

Rotary axes that are programmed as rounding axes.

Corresponding to ... MD36010 $MA_STOP_LIMIT_FINE (exact stop fine)

Z1: NC/PLC interface signals
18.4 Travel to fixed stop (F1)

 Basic Functions
1628 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

18.4 Travel to fixed stop (F1)

18.4.1 Signals to axis/spindle (DB31, ...)

DB31, ...
DBX1.1

Acknowledge fixed stop reached

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

Significance after the fixed stop has been reached:
DB31, ... DBX62.5 (fixed stop reached) = 1
→ The axis presses against the fixed stop with the clamping torque:
→ The fixed stop monitoring window is activated.
→ A block change is executed.

Signal state 0

Edge change
1 → 0

Significance after the fixed stop has been reached:
DB31, ... DBX62.5 (fixed stop reached) = 1
→ The axis presses against the fixed stop with the clamping torque.
→ The fixed stop monitoring window is activated.
→ A block change is not executed and the channel message
"Wait: Auxiliary function acknowledgment missing" is displayed.
Meaning after the fixed stop has been reached:
IS "Fixed stop reached" DB31, ... DBX62.5 = 1
→ The function is aborted, the alarm "20094 axis %1 Function aborted" is output.
Significance when de-selecting the function FXS=0 via the part program:
→ The torque limiting and the monitoring of the fixed stop monitoring window are canceled.

IS irrelevant
for ...

MD37060 $MA_FIXED_STOP_ACKN_MASK
(monitoring PLC acknowledgments for travel to fixed stop)
= 0 or 1

Corresponding to MD37060 $MA_FIXED_STOP_ACKN_MASK
(monitoring PLC acknowledgments for travel to fixed stop)
DB31, ... DBX62.5 (fixed stop reached)

DB31, ...
DBX1.2

Sensor for fixed stop

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

Fixed stop is reached.

Signal state 0 or
edge change
1 → 0

Fixed stop is not reached.

Corresponding to The signal is only active if:
MD37040 $MA_FIXED_STOP_BY_SENSOR = 1

 Z1: NC/PLC interface signals
 18.4 Travel to fixed stop (F1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1629

DB31, ...
DBX3.1

Enable travel to fixed stop

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

Meaning when FXS function is selected using the part program
(IS "Activate travel to fixed stop" = 1):
→ Travel to fixed stop is enabled and the axis traverses from the start position at the programmed
velocity to the programmed target position.

Signal state 0

Edge change
1 → 0

Meaning when FXS function is selected using the part program
(IS "Activate travel to fixed stop" = 1):
→ Travel to fixed stop is inhibited.
→ The axis is stationary at the start position with reduced torque.
→ The channel message "wait": Auxiliary function acknowledgment missing" is displayed.
Meaning before the fixed stop has been reached
(IS "fixed stop reached" = 0):
→ Travel to fixed stop is aborted.
→ The alarm "20094: Axis%1 Function aborted" is displayed.
Meaning after the fixed stop has been reached
IS "fixed stop reached" = 1):
→ The torque limiting and monitoring of the fixed stop monitoring window are canceled.
Deselection: DB31, ...DBX1.1 (acknowledge fixed stop reached)

IS irrelevant
for ...

MD37060 $MA_FIXED_STOP_ACKN_MASK
(monitoring PLC acknowledgments for travel to fixed stop)
= 0 or 2

Corresponding to MD37060 $MA_FIXED_STOP_ACKN_MASK
(monitoring PLC acknowledgments for travel to fixed stop)
DB31, ... DBX62.4 (activate travel to fixed stop)

18.4.2 Signals from axis/spindle (DB31, ...)

DB31, ...
DBX62.4

Activate travel to fixed stop

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

The "Travel to fixed stop" function is active.
This signal is used for analog drives in order, for example, to activate the current or torque limitation
parameterized in the actuator.

Signal state 0 or
edge change
1 → 0

The "Travel to fixed stop function" is not active.

Z1: NC/PLC interface signals
18.5 Help function output to PLC (H2)

 Basic Functions
1630 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX62.5

Fixed stop reached

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

The fixed stop was reached after selecting the FXS function.
This signal is used by analog drives, e.g. to switch the actuator from speedcontrolled to current or
torquecontrolled mode so that a programmable clamping torque can be set.

Signal state 0 or
edge change
1 → 0

The fixed stop has still not been reached after selecting the FXS function.

18.5 Help function output to PLC (H2)

18.5.1 Signals to channel (DB21, ...)

DB21, ...
DBX30.5

Activate associated M01

Edge evaluation: no Signal(s) updated:
Signal state 1 or
edge change
0 → 1

PLC signals the NCK that the associated M01 (help function) should be activated.

Signal state 0 or
edge change
1 → 0

De-activate the associated M01 (help function).

Corresponding to DB21, ... DBX 318.5 (associated M01 active)

18.5.2 Signals from channel (DB21, ...)

DB21, ...
DBB58,
DBB60 - DBB65

M, S, T, D, H, F functions Modification

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

One M, S, T, An D, H, or F function has been output to the interface with a new value together with
the associated change signal at the beginning of an OB1 cycle.
In this case, the change signal indicates that the appropriate value is valid.

Signal state 0 or
edge change
1 → 0

The change signals are reset by the PLC basic program at the start of the next OB1 cycle.
The value of the data involved is not valid.

 Z1: NC/PLC interface signals
 18.5 Help function output to PLC (H2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1631

DB21, ...
DBX59.0 - DBX59.4

M fct. 1-5 not decoded

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

M function is greater than 99 (for extended address = 0) or for extended address > 0, not included
in the decoding list.
This signal is available - together with the associated M change signal - for one OB1 cycle.
Cause:
• Incorrect M function programmed
• M function not configured in the decoding list of the PLC
Remedy, e.g.:
• PLC sets read-in disable
• Output of a PLC alarm

Signal state 0 or
edge change
1 → 0

M function less than 99 (for extended address = 0) or for extended address > 0 included in the
decoding list.

DB21, ...
DBB60 - DBB64,
DBB66 - DBB67

M, S, T, D, H, F functions Additional info "Quick" (fast acknowledgment)

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

One M, S, T, An D, H, or F function has been output to the interface with a new value together with
the associated change signal at the beginning of an OB1 cycle.
In this case, the additional info "Quick" indicates the quick help function.

Signal state 0 or
edge change
1 → 0

The change signals are reset by the PLC basic program at the start of the next OB1 cycle.
The value of the data involved is not valid.

DB21, ...
DBB68 - DBB97

M functions 1 to 5
Extended address M functions 1 to 5

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

Up to 5 M functions programmed in an NC block are simultaneously made available here as soon
as the M change signals are available.
Value range of M functions: 0 to 9999 9999; integer number
Value range of the extended address: 0 to 99; integer number
The M functions remain valid until they are overwritten by new M functions.

Signal state 0 or
edge change
1 → 0

• After the PLC has ramped-up.
• All help functions are deleted before a new function is entered.

Application
example(s)

Decoding and evaluation of M functions that are not decoded as standard or via a list.
Using the extended address, the M function can be assigned to another channel that does not
correspond to that channel in which the program is running.

Special cases,
errors,

For M00 to M99 the extended address = 0.

Z1: NC/PLC interface signals
18.5 Help function output to PLC (H2)

 Basic Functions
1632 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBB98 - DBB115

S functions 1 to 3
Extended address S functions 1 to 3

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

Up to 3 S functions programmed in an NC block are simultaneously made available here as soon
as the S change signals are available.
Value range of the spindle speed: 0 to 999 999; integer number
Value range of the extended address: 0 to 6; integer number
The S functions remain valid until they are overwritten by new S functions.

Signal state 0 or
edge change
1 → 0

• After the PLC has ramped-up.
• All help functions are deleted before a new function is entered.

Application
example(s)

Spindle speed control by the PLC.
The extended address is used to program for which spindle the S word is valid.
E.g.: S2=500

DB21, ...
DBB118

T function 1

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

The T function programmed in an NC block is made available here
as soon as the T change signal is available.
Value range of T functions: 0 to 99 999 999; integer number
The T function remains valid until it is overwritten by a new T function.

Signal state 0 or
edge change
1 → 0

• After the PLC has ramped-up.
• All help functions are deleted before a new function is entered.

Application
example(s)

Control of automatic tool selection.

Special cases,
errors,

With T0, the current tool is removed from the tool holder but not replaced by a new tool (default
configuration of the machine manufacturer).

Remark 8 decade T numbers are only available as T function 1.

DB21, ...
DBB129

D function 1

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

The D function programmed in an NC block is made available here
as soon as the D change signal is available.
Value range of D functions: 0 to 999; integer number
The D function remains valid until it is overwritten by a new D function.

Signal state 0 or
edge change
1 → 0

• After the PLC has ramped-up.
• All help functions are deleted before a new function is entered.

 Z1: NC/PLC interface signals
 18.5 Help function output to PLC (H2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1633

DB21, ...
DBB129

D function 1

Application
example(s)

Implementation of protective functions.

Special cases,
errors,

D0 is reserved for deselecting the current tool offset.

DB21, ...
DBB140 - DBB157

H functions 1 to 3
Extended address H functions 1 to 3

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

Up to 3 H functions programmed in an NC block are made available here simultaneously as soon
as the H change signals are available.
Value range of the H function: Floating point (corresponding to the MC5+format)
Value range of the extended address: 0 to 99; integer number
The H functions remain valid until they are overwritten by new H functions.

Signal state 0 or
edge change
1 → 0

• After the PLC has ramped-up.
• All help functions are deleted before a new function is entered.

Application
example(s)

Switching functions on the machine.

DB21, ...
DBB158 - DBB193

F functions 1 to 6
Extended address F functions 1 to 6

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

Up to 6 F functions (one path feed and up to 5 axis-specific feeds for
positioning axes) are made available here simultaneously as soon as the F change
signals are available.
Value range of F function: Floating point (corresponding to the MC5+format)
Value range of the extended address: 0 to 18; integer number
The extended address of the F function is generated from the feed type (path feed or axis-specific
feed) and the axis names.
It is coded as follows:

The F functions remain until they are overwritten by new F functions.
Signal state 0 or
edge change
1 → 0

• After the PLC has ramped-up.
• All help functions are deleted before a new function is entered.

Z1: NC/PLC interface signals
18.5 Help function output to PLC (H2)

 Basic Functions
1634 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBB158 - DBB193

F functions 1 to 6
Extended address F functions 1 to 6

Application
example(s)

Control of programmed F word by the PLC, e.g. through overwriting of the set feed rate override.

Corresponding to ... MD22240 $MC_AUXFU_F_SYNC_TYPE (output time of F functions)

DB21, ...
DBB194 - DBB206

Dynamic M functions: M0 - M99

Edge evaluation: No Signal(s) updated: job-controlled by NCK
Signal state 1 or
edge change
0 → 1

The dynamic M signal bits are set by decoded M functions.

Signal state 0 or
edge change
1 → 0

For a general help function output, the dynamic M signal bits are acknowledged by the PLC basic
program after the OB1 has been completely run-through (executed once).
For a fast help function output, after the PLC identifies the help functions, they are acknowledged in
the same OB40 cycle.

Application
example(s)

Spindle clockwise/counterclockwise rotation, switch coolant ON/OFF

DB21, ...
DBX318.5

Associated M01/M00 active

Edge evaluation: No Signal(s) updated:
Signal state 1 or
edge change
0 → 1

This bit indicates that an M00 or M01 help function is active if the appropriate associated M00 and M01
(help functions) were enabled/activated beforehand.

Signal state 0 or
edge change
1 → 0

No associated M00/M01 help functions active.

Corresponding to ... DB21, ... DBX30.5 (activate associated M01)

18.5.3 Signals from axis/spindle (DB31, ...)

DB31, ...
DBD78

F auxiliary function for positioning axis

Edge evaluation: no Signal(s) updated: Jobcontrolled
 The values of the F help functions for positioning axes are stored here. The axis to which each

value applies is determined by the extended address.

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1635

DB31, ...
DBD86

M auxiliary function for spindle

Edge evaluation: no Signal(s) updated: Jobcontrolled
 The values for the M3, M4, M5 help functions are sent to the associated interface for the addressed

spindle.

DB31, ...
DBD88

S auxiliary function for spindle

Edge evaluation: no Signal(s) updated: Jobcontrolled
 The values for the S help functions are sent to the associated interface for the addressed spindle.

18.6 Mode group, channel, program operation, reset response (K1)

18.6.1 Signals to mode group (DB11)

DB11
DBX0.0

AUTOMATIC mode

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

AUTOMATIC mode is selected by the PLC program.

Signal state 0 or
edge change
1 → 0

AUTOMATIC mode is not selected by the PLC program.

Signal irrelevant for
...

DB11 DBX0.4 (operating mode, changeover inhibit) = 1

Corresponding to ... DB11 DBX6.0 (active AUTOMATIC mode)

DB11
DBX0.1

MDA mode

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

MDA mode is selected by the PLC program.

Signal state 0 or
edge change
1 → 0

MDA mode is not selected by the PLC program.

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1636 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB11
DBX0.1

MDA mode

Signal irrelevant for
...

DB11 DBX0.4 (operating mode, changeover inhibit) = 1

Corresponding to ... DB11 DBX6.1 (active MDA mode)

DB11
DBX0.2

JOG mode

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

JOG mode is selected by the PLC program.

Signal state 0 or
edge change
1 → 0

JOG mode is not selected by the PLC program.

Signal irrelevant for
...

DB11 DBX0.4 (operating mode, changeover inhibit) = 1

Corresponding to ... DB11 DBX6.2 (active JOG mode)

DB11
DBX0.4

Mode change disable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The currently active mode (JOG, MDA or AUTOMATIC) of the mode group cannot be changed. The
machine functions that can be selected within a mode group can be changed.

Signal state 0 or
edge change
1 → 0

The mode of the mode group can be changed.

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1637

DB11
DBX0.5

Mode group stop

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

An NC Stop is activated for all the channels of the mode group. The channel status of all the active
channels changes to the channel status "interrupted". All of the channels in channel status "reset"
remain in the channel status "reset". Programs that are running at this point are immediately
interrupted (at the earliest possible point, even within a block) and the program status changes to
"stopped". All the moving axes of the mode group are decelerated according to their acceleration
characteristics without contour violation. The program can be restarted with NC Start. None of the
spindles of that mode group are affected.

Signal state 0 or
edge change
1 → 0

Channel status and program execution are not influenced.

Special cases,
errors,

All the axes of a mode group that are not triggered by a program or a program block (e.g. axes
traverse because traverse keys are being pressed on the machine control panel) decelerate to rest
with mode group stop.

DB11
DBX0.6

Mode group stop axes plus spindles

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

An NC Stop is activated for all the channels of the mode group. The channel status of all of the
active channels changes to the channel status "interrupted". All of the channels in channel status
"reset" remain in the channel status "reset". Programs that are running at this point are immediately
interrupted (at the earliest possible point, even within a block) and the program status changes to
"stopped". All the moving axes and spindles of the mode group are decelerated according to their
acceleration characteristics without contour violation. The program can be restarted with NC Start.

Signal state 0 or
edge change
1 → 0

Channel status and program execution are not influenced.

Special cases,
errors,

All the axes and spindles of a mode group that are not triggered by a program or a program block
(e.g. axes traverse because traverse keys are pressed on the machine control panel, spindles are
controlled by the PLC) decelerate to rest with "mode group stop plus spindles".

DB11
DBX0.7

Mode group reset

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

A reset is activated for all the channels of the mode group. All of the channels are then in the
channel status "reset". All of the current programs are then in the program status "aborted". All
moving axes and spindles are decelerated to zero speed according to their acceleration ramp
without contour violation. The initial settings are set (e.g. for G functions). The alarms for the mode
group are cleared if they are not POWER ON alarms.

Signal state 0 or
edge change
1 → 0

Channel status and program execution are not influenced by this signal.

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1638 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB11
DBX0.7

Mode group reset

Corresponding to ... DB21, ... DBX7.7 (channel reset)
DB11 DBX6.7 (all channels in the reset status)

Special cases,
errors,

An alarm that withdraws the interface signal
DB11 DBX6.3 (mode group ready)
ensures that all channels of the mode group are no longer in the reset status.
In order to switch to another operating mode, a mode group reset (DB11 DBX0.7) must then be
initiated.

DB11
DBX1.0

Machine function TEACH IN

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Machine function TEACH IN is activated in JOG mode for the mode group.

Signal state 0 or
edge change
1 → 0

Machine function TEACH IN is not activated.

Signal irrelevant for
...

If JOG mode is not active.

Additional references Operating Manual HMI (corresponding to the used software)

DB11
DBX1.1

Machine function REPOS

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Machine function REPOS is activated in JOG mode for the mode group.

Signal state 0 or
edge change
1 → 0

Machine function REPOS is not activated.

Signal irrelevant for
...

JOG mode is not active.

Application
example(s)

When a fault occurs when executing a part program (e.g. tool breakage), the axis is manually
moved away from the fault location in the JOG mode in order to be able to replace the tool.
The axis can then be manually returned to the exact previous position using the REPOS machine
function so that the program can be continued in the automatic mode.

Additional references Operating Manual HMI (corresponding to the used software)

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1639

DB11
DBX1.2

Machine function REF

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Machine function REF is activated in the JOG mode for the mode group.

Signal state 0 or
edge change
1 → 0

Machine function REF is not activated.

Signal irrelevant for
...

If JOG mode is not active.

Additional references See Section "R1: Referencing (Page 1173)"

DB11
DBX1.6

Single block type B

Edge evaluation: No Signal(s) updated:
Signal state 1 or
edge change
0 → 1

Bit set and DB11 DBX1.7 not set: Response across modes
• All channels are stopped.
• All channels receive a start command.
• Channel KS stops at the end of the block.
• The channels KA receive a STOPATEND.

(comparable with DB21, ... DBX7.2 (NC Stop at the block limit).)
• All channels are stopped at a block limit (at some point in time).
(If DB11 DBX1.6 and DB11 DBX1.7 are set simultaneously, it is impossible to determine which
single block type is required. The control then assumes: No single block across mode groups).

Signal state 0 or
edge change
1 → 0

If Bit DB11 DBX1.6 is not set and Bit DB11 DBX1.7 is set, then it is single block type A.
(If DB11 DBX1.6 and DB11 DBX1.7 are not set, it is impossible to determine which single block
type is required. The control then assumes: No single block across mode groups).

Corresponding to ... Single block type A

DB11
DBX1.7

Single block type A

Edge evaluation: No Signal(s) updated:
Signal state 1 or
edge change
0 → 1

DB11 DBX1.7 set and DB11 DBX1.6 not set: Response across modes
• All channels are stopped.
• All channels receive a start (start key).
• Channel KS stops at the end of the block (due to single-block).
• Channels KA receive a STOP command (analogous to Stop key).
• All channels are stopped. (deceleration phase of all KAs).
(If DB11 DBX1.6 and DB11 DBX1.7 are set simultaneously, it is impossible to determine which
single block type is required. The control then assumes: No single block across mode groups).

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1640 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB11
DBX1.7

Single block type A

Signal state 0 or
edge change
1 → 0

If DB11 DBX1.7 is not set and DB11 DBX1.6 is set, then it is single block type B.
(If DB11 DBX1.6 and DB11 DBX1.7 are not set, it is impossible to determine which single block
type is required. The control then assumes: No single block across mode groups).

Corresponding to ... Single block type B

18.6.2 Signals from the mode group (DB11)

DB11
DBX4.0

Selected mode AUTOMATIC

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

AUTOMATIC mode is selected by HMI.

Signal state 0 or
edge change
1 → 0

AUTOMATIC mode is not selected by HMI.

DB11
DBX4.1

Selected mode MDA

Edge evaluation: Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

MDA mode is selected by HMI.

Signal state 0 or
edge change
1 → 0

MDA mode is not selected by HMI.

DB11
DBX4.2
Data block

Selected JOG mode
Signal(s) from BAG (HMI → PLC)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

JOG mode is selected by HMI.

Signal state 0 or
edge change
1 → 0

JOG mode is not selected by HMI.

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1641

DB11
DBX5.0

Selected machine function TEACH IN

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The machine function TEACH IN is selected by HMI within BAG.

Signal state 0 or
edge change
1 → 0

The machine function TEACH IN is not selected by HMI.

Additional references Operating Manual HMI (corresponding to the used software)

DB11
DBX5.1

Selected REPOS machine function

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The machine function REPOS is selected by HMI within BAG.

Signal state 0 or
edge change
1 → 0

The machine function REPOS is not selected by HMI.

Application
example(s)

When a fault occurs when executing a part program (e.g. tool breakage), the axis is manually
moved away from the fault location in the JOG mode in order to be able to replace the tool.
The axis can then be manually returned to the exact previous position using the REPOS machine
function so that the program can be continued in the automatic mode.

Additional references Operating Manual HMI (corresponding to the used software)

DB11
DBX5.2

Selected machine function REF

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The machine function REF is selected by HMI within BAG.

Signal state 0 or
edge change
1 → 0

The machine function REF is not selected by HMI.

Additional references See Section "R1: Referencing (Page 1173)"

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1642 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB11
DBX6.0
Data block

Active mode AUTOMATIC
Signal(s) from the mode group (NCK → PLC)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

AUTOMATIC mode is active.

Signal state 0 or
edge change
1 → 0

AUTOMATIC mode is not active.

DB11
DBX6.1

Active mode MDA

Edge evaluation: Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

MDA mode is active.

Signal state 0 or
edge change
1 → 0

MDA mode is not active.

DB11
DBX6.2

Active JOG mode

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

JOG mode is active.

Signal state 0 or
edge change
1 → 0

JOG mode is not active.

DB11
DBX6.3

Mode group ready

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

This signal is set after power on and all of the voltage have been established. The mode group is
now ready and part programs can be executed and axes traversed in the individual channels.

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1643

DB11
DBX6.3

Mode group ready

Signal state 0 or
edge change
1 → 0

The mode group is not ready. Possible causes for this are:
• A critical axis or spindle alarm is present
• Hardware faults
• The mode group has been incorrectly configured (machine data)
If the mode group ready changes to signal state "0", then:
• The axis and spindle drives are braked down to standstill with the max. braking current.
• The signals from the PLC to the NCk are brought into an inactive state (cleared state).

Special cases,
errors,

An alarm that withdraws the interface signal
DB11 DBX6.3 (mode group ready)
ensures that all channels of the mode group are no longer in the reset state.
In order to switch to another operating mode, a mode group reset (DB11 DBX0.7) must be made.

DB11
DBX6.7

All channels in the reset state

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

All the channels that belong to this mode group are in the "channel status reset" state (DB21, ...
DBX7.7).

Signal state 0 or
edge change
1 → 0

At least one of the channels in the mode group is not in "channel status reset" (DB21, ... DBX7.7).

Corresponding to ... DB21, ... DBX7.7 (channel state, reset)

DB11
DBX7.0

Active machine function TEACH IN

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Machine function TEACH IN is active in the mode group.

Signal state 0 or
edge change
1 → 0

Machine function TEACH IN is not active.

Additional references Operating Manual HMI (corresponding to the used software)

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1644 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB11
DBX7.1

Active REPOS machine function

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Machine function REPOS is active in the mode group.

Signal state 0 or
edge change
1 → 0

Machine function REPOS is not active.

Application
example(s)

When a fault occurs when executing a part program (e.g. tool breakage), the axis is manually
moved away from the fault location in the JOG mode in order to be able to replace the tool.
The axis can then be manually returned to the exact previous position using the REPOS machine
function so that the program can be continued in the automatic mode.

Additional references Operating Manual HMI (corresponding to the used software)

DB11
DBX7.2

Active machine function REF

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Machine function REF is active in the mode group.

Signal state 0 or
edge change
1 → 0

Machine function REF is not active.

Additional references See Section "R1: Referencing (Page 1173)"

18.6.3 Signals to channel (DB21, ...)

DB21, ...
DBX0.4

Activate single block

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 In AUTOMATIC and MDI modes, the operator must enable processing of each individual part

program block of the part program selected in the channel by reactivating NC Start.
Signal state 0 No effect.
Special cases,
errors,

• In the case of active tool offset, intermediate blocks are inserted, when necessary. These blocks
must also be enabled using NC Start.

• In a series of G33 blocks, a single block is only operative if "dry run feed" is selected.
• In the case of a decoding single block, calculation blocks are not processed in the single step.

Corresponding to ... DB21, ... DBX35.3 (program status interrupted)

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1645

DB21, ...
DBX0.5

Activate M01

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Activation of program control "Conditional stop"M01 is requested.
Signal state 0 Activation of program control "Conditional stop" M01 is not requested.
Corresponding to ... DB21, ... DBX24.5 (M01 selected)

DB21, ... DBX32.5 (M0/M01 active)

DB21, ...
DBX1.6

PLC action completed

Edge evaluation: no Signal(s) updated: Cyclically
 At the end of the block search, concluding action blocks are executed:

DB21, ... DBX32.3 (action block active) == 1 AND
DB21, ... DBX32.6 (last action block active) == 1
Alarm "10208 Channel <Channel Number> Issue NC Start to continue program" notifies that NC
Start must be reactivated to resume the part program starting from the target block.
If other actions are to be executed by the PLC user program prior to the NC Start (e.g. tool change),
Search mode can be parameterized as follows:
MD11450 $MN_SEARCH_RUN_MODE = 1
Output of alarm delayed until the existing signal is reset.

Signal state 1 PLC action is completed.
Signal state 0 PLC action is not yet completed.
Corresponding to ... DB21, ... DBX32.3 (action block active)

DB21, ... DBX32.6 (last action block active)
DB21, ... DBX33.4 (block search active)

DB21, ...
DBX1.7

Activate program test

Edge evaluation: no Signal(s) updated: Cyclically
Signal state 1 Activation of the program test is requested.

During the program test, all motion commands of axes (not spindles) take place under "Axis
disable."
Notice!
Due to the axis disable, the assignment of a tool magazine is not changed for the program test. The
user / machine manufacturer must utilize a suitable PLC user program to ensure that the NC-
internal tool management and the actual assignment of the tool magazine remain consistent. Refer
to the program example included in the PLC Toolbox.

Signal state 0 Activation of the program test is not requested.
Corresponding to ... DB21, ... DBX25.7 (program test selected)

DB21, ...DBX33.7 (program test active)

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1646 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBB2

Activate skip block

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Skip blocks marked in the part program with a slash (/) are not processed. If there is a series of skip

blocks, the signal is only active if it is present before the first skip block of the series is decoded.
Note
The signal should be available prior to the start of the part program.

Signal state 0 Skip blocks marked in the part program with an slash (/) are processed.
Corresponding to ... DB21, ... DBX26.0 (skip block selected)

DB21, ... DBX35.2 (program status stopped)

DB21, ...
DBX6.1

Read-in disable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The main run does not read in any preprocessed part program blocks.

Note
The signal is only active in AUTOMATIC and MDI modes.

Signal state 0 The main run reads in preprocessed part program blocks.
Corresponding to ... DB21, ... DBX35.0 (program status running)

DB21, ...
DBX6.4

Program level abort

Edge evaluation: Yes Signal(s) updated: Cyclically
Edge change
0 → 1

At each edge change 0 → 1 the current program level being processed (subprogram level, ASUB
level, save routine) is immediately aborted. Processing of the part program continues at the next
higher program level from the exit point.

Edge change
1 → 0

No effect.

Special cases,
errors,

The main program level cannot be aborted with this IS, only with IS "Reset".

DB21, ...
DBX7.0

NC Start disable

Edge evaluation: no Signal(s) updated: Cyclically

Signal state 1 The NC Start disable prevents a part program from being started with NC START signal DB21, ...

DBX7.1 (NC Start) == 1.

Signal state 0 NC Start disable is not active.

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1647

DB21, ...
DBX7.0

NC Start disable

Special cases,
errors,

The start of a part program selected in the channel by part program command START in another
channel (program coordination) is not prevented by the interface signal:
DB21, ... DBX7.0 (NC Start disable) == 1.

Corresponding to ... DB21, ... DBX7.1 (NC Start)

DB21, ...
DBX7.1

NC Start

Edge evaluation: Yes Signal(s) updated: Cyclically
Edge change
0 → 1

AUTOMATIC mode: The selected NC program is started or continued, or the auxiliary functions that
were saved during the program interruption are output.
If data is transferred from the PLC to the NC during program status "Program interrupted," then this
data is immediately cleared at NC Start.
MDI:mode
The entered block information or part program blocks are released for execution.

Edge change
1 → 0

No effect.

Corresponding to ... DB21, ... DBX7.0 (NC Start disable)

DB21, ...
DBX7.2

NC Stop at block limit

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The current NC program is stopped after the current part program block has been completely

processed. Otherwise, as for DB21, ... DBX7.3 (NC Stop).
Signal state 0 No effect.
Corresponding to ... DB21, ... DBX7.3 (NC Stop)

DB21, ... DBX7.4 (NC Stop axes plus spindles)
DB21, ... DBX35.2 (program status stopped)
DB21, ... DBX35.6 (channel status interrupted)

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1648 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX7.3

NC Stop

Edge evaluation: no Signal(s) updated: Cyclically
Signal state 1 AUTOMATIC or MDI mode:

Processing of the part program active in the channel is stopped.
The axes (not spindles) are brought to a standstill within the assigned acceleration parameters.
• Program status: Stopped
• Channel status: Interrupted
JOG mode:
In JOG mode, incompletely traversed incremental paths (INC...) are retracted at the next NC Start.
Note
The signal must be present for at least one PLC cycle (OB1).

Signal state 0 No effect.
Signal irrelevant for
...

• Program status: Aborted
• Channel status: Reset

Special cases,
errors,

• If data is transferred to the NCK after NC Stop (e.g. tool offset), the data is cleared at the next
NC Start.

Corresponding to ... DB21, ... DBX7.2 (NC Stop at block limit)
DB21, ... DBX7.4 (NC Stop axes plus spindles)
DB21, ... DBX35.2 (program status stopped)
DB21, ... DBX35.6 (channel status interrupted)

DB21, ...
DBX7.4

NC Stop axes plus spindles

Edge evaluation: no Signal(s) updated: Cyclically
 See DB21, ... DBX7.3 (NC Stop).

In addition, the spindles of the channel are stopped.

DB21, ...
DBX7.7

Reset

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The channel is reset. The initial settings are set (e.g. G functions).

The alarms for the channel are cleared if they are not POWER ON alarms.
The reset signal must be issued by the PLC (e.g. using a logic operation with the reset key on the
MCP). The signal is only evaluated by the selected channel.
The program status changes to "Aborted", and the channel status changes to "Channel status
reset".

Signal state 0 No effect.
Corresponding to ... DB11, ... DBX0.7 (mode group reset)

DB21, ... DBX35.7 (channel status reset)

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1649

DB21, ...
DBX31.0 - DBX31.2

REPOS mode (A, B, C)

Edge evaluation: No Signal(s) updated: Cyclically
REPOS mode for repositioning to the contour after an interruption of the traversal block
Mode Bit 2 Bit 1 Bit 0
No REPOS mode active 0 0 0
RMB: Repositioning to start of block 0 0 1
RMI: Repositioning to interrupt point 0 1 0
RME: Repositioning to end of block 0 1 1

Meaning

RMN: Repositioning to the nearest path
point

1 0 0

Corresponding to ... DB21, ...DBX25.0-2 (REPOS mode)
DB31, ... DBX10.0 (REPOS_DELAY)

DB21, ...
DBX31.4

REPOS mode change

Edge evaluation: Yes Signal(s) updated: Cyclically
Edge change
0 → 1

REPOS mode has changed.

Edge change
1 → 0

REPOS mode has not changed.

Corresponding to ... DB21, ... DBX31.0-2 (REPOS mode)
DB21, ... DBX319.0 (acknowledgement of REPOS mode change)

18.6.4 Signals from channel (DB21, ...)

DB21, ...
DBX32.3

Action block active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The action block is being executed.
Signal state 0 No action block active.
Additional references Operating Manual HMI (corresponding to the used software)

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1650 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX32.4

Approach block active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The approach block for the progress of the program with "Block search with computation on

contour" is active, as with "Block search with computation on block end point" no approach block is
created of its own. The axes are automatically positioned on the collected search position if ASUB
exits with REPOSA during "Block search with computation on contour".

Signal state 0 The search target is found during "Block search with computation on contour".
Additional references Programming Manual, Job Planning

DB21, ...
DBX32.5

M00/M01 active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The part program block is processed, the auxiliary functions are output, and:

• M00 is in the RAM
• M01 is in the RAM and IS "Activate M01" is active
The program status changes to "Stopped".

Signal state 0 • With DB21, ... DBX7.1 (NC Start)
• For a program abort as a result of a reset

Screen

Corresponding to ... DB21, ... DBX0.5 (activate M01)
DB21, ... DBX24.5 (M01 selected)

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1651

DB21, ...
DBX32.6

Last action block active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The last action block is being executed.

This means that all the action blocks on the NC side have been processed and the actions on the
PLC side (ASUB, FC) or the operator such as overstore, mode change according to JOG/REPOS
are possible. In this way the PLC, for example, can still perform a tool change before the start of
movement.

Signal state 0 The last action block is not being executed. Action blocks contain the actions collected during
"Block search with computation" such as
• Output help function H, M00, M01, M..
• Tool programming T, D, DL
• Spindle programming S-Value, M3/M4/M5/M19, SPOS
• Feed programming, F

Additional references See Section "K1: Mode group, channel, program operation, reset response (Page 451)"

DB21, ...
DBX33.4

Block search active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The block search function is active.

It was selected from the operator interface and started using the interface signal:
DB21, ... DBX7.1 (NC Start)

Signal state 0 Search target found.
Application
example(s)

The block search function makes it possible to jump to a certain block within a part program and to
start processing the part program from this block.

Additional references See Section "K1: Mode group, channel, program operation, reset response (Page 451)"

DB21, ...
DBX33.5

M02/M30 active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 • NC block with M02 or M30 (or M17 if a subprogram was started) is completely processed; if

traversing motions are also programmed in this block, the signal is only output when the target
position is reached.

• The program was interrupted as a result of a reset, and the program status changes to
"Aborted".

• When MDI mode or machine functions REF or PRESET are selected
• According to DB10 DBX56.2 (acknowledge emergency stop)

Signal state 0 • No program end or program abort
• Status after activation of control
• Start of an NC Program

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1652 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX33.5

M02/M30 active

Screen

Application
example(s)

The PLC can detect the end of program processing with this signal and react appropriately.

Special cases,
errors,

• The M02 and M30 functions have equal priority.
• The interface signal:

DB21, ... DBX33.5 (M02/M30 active)
is available as steady-state signal after the end of the program.

• Not suitable for automatic follow-on functions such as workpiece counting, bar feed, etc. For
these functions, M02/M30 must be written in a separate block and the word M02/M30 or the
decoded M signal used.

• Auxiliary functions that could result in a read-in operation being stopped and any S values that
are to be operative beyond M02/M30 must not be written in the last block of a program.

DB21, ...
DBX33.6

Transformation active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The NC command TRAORI (activate transformation) is programmed in the NC part program. This

block has been processed by the NC and the transformation is now activated.
Signal state 0 No transformation active.
Additional references Programming Manual, Job Planning

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1653

DB21, ...
DBX33.7

Program test active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 Program control program test is active. Axis disable is set internally for all axes (not spindles).

Therefore the machine axes do not move when a part program block or a part program is being
processed. The axis movements are simulated on the user interface with changing axis position
values.
The axis position values for the display are generated from the calculated setpoints.
The part program is processed in the normal way.

Signal state 0 Program control "Program test" is not active.
Corresponding to ... DB21, ... DBX1.7 (activate program test)

DB21, ... DBX25.7 (program test selected)

DB21, ...
DBX35.0

Program status running

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The part program was started with the interface signal:

DB21, ... DBX7.1 (NC Start)
and is running.
The running program was stopped with the interface signal:
DB21, ... DBX6.1 (read-in disable)

Signal state 0 • Program stopped by M00/M01 or NC Stop or operating mode change.
• If single-block mode, then the block is processed.
• End of program reached (M02/M30).
• Program aborted due to a reset.
• No actual block in the memory (e.g. for MDI).
• The actual block cannot be executed.

Signal irrelevant for
...

The part program was started with the interface signal:
DB21, ... DBX7.1 (NC Start)
and is running.

Special cases,
errors,

The interface signal:
DB21, ... DBX35.0 (program status running)
does not change to 0 if workpiece machining is stopped due to the following events:
• A feed disable or spindle disable was output
• DB21, ... DBX6.1 (read-in disable)
• Feed correction to 0%
• The spindle and axis monitoring functions respond
• Position setpoints are entered in the NC program for axes in "follow-up mode," for axes without

"servo enable," or for "parking axes"

Corresponding to ... DB21, ... DBX6.1 (read-in disable)

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1654 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX35.1

Program status wait

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The running program is waiting for the program command WAIT_M or WAIT_E in an NC block. The

wait condition specified in the WAIT command for the channel or channels has not yet been fulfilled.
Signal state 0 Program status wait is not active.
Additional references Programming Manual, Fundamentals

DB21, ...
DBX35.2

Program status stopped

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The NC part program has been stopped by:

• DB21, ... DBX7.3 (NC Stop)
• DB21, ... DBX7.4 (NC Stop axes plus spindles)
• DB21, ... DBX7.2 (NC Stop at the block limit)
• Programmed M00 or M01

or
• Single-block mode

Signal state 0 "Program status stopped" is not present.
Corresponding to ... DB21, ... DBX7.3 (NC Stop)

DB21, ... DBX7.4 (NC Stop axes plus spindles)
DB21, ... DBX7.2 (NC Stop at the block limit)

DB21, ...
DBX35.3

Program status interrupted

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 When the operating mode changes from AUTOMATIC or MDI (in stopped program status) to JOG,

the program status changes to "Interrupted". The program can be continued at the point of
interruption in AUTOMATIC or MDI mode when NC Start is issued.

Signal state 0 "Program status interrupted" not available.
Special cases,
errors,

The interface signal:
DB21, ... DBX35.3 (program status interrupted)
indicates that the part program can continue to be processed by restarting it.

DB21, ...
DBX35.4

Program status aborted

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The program has been selected but not started, or the current program was aborted with a reset.
Signal state 0 Program status interrupted is not active.
Corresponding to ... DB21, ... DBX7.7 (reset)

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1655

DB21, ...
DBX35.5

Channel status active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 In this channel:

• A part program is presently being executed in Automatic or MDI mode

or
• At least one axis is being traversed in JOG mode.

Signal state 0 DB21, ... DBX35.3 (channel status interrupted) or DB21, ... DB35.7 (channel status reset) is
present.

DB21, ...
DBX35.6

Channel status interrupted

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The NC part program in AUTOMATIC or MDI mode or a traversing motion in JOG mode can be

interrupted by:
• DB21, ... DBX7.3 (NC Stop)
• DB21, ... DBX7.4 (NC Stop axes plus spindles)
• DB21, ... DBX7.2 (NC Stop at the block limit)
• Programmed M00 or M01

or
• Single-block mode
After an NC Start the part program or the interrupted traversing movement can be continued.

Signal state 0 DB21, ... DBX35.5 (channel status active) or DB21, ... DB35.7 (channel status reset) is present.

DB21, ...
DBX35.7

Channel status reset

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The signal changes to 1 as soon as the channel goes into the reset state, i.e. no processing taking

place.
Signal state 0 The signal is set to 0 as soon as processing takes place in the channel, e.g.:

• Execution of a part program
• Block search
• TEACH IN active
• Overstore active

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1656 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX36.4

Interrupt processing active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 One or more channels in the mode group are not in the desired operating mode as the result of an

active interrupt routine.
Note: The signal is not set if an interrupt routine is running in a program mode.

Signal state 0 All channels are operating in the required mode.
Corresponding to ... MD11600 $MN_BAG_MASK

DB21, ...
DBX36.5

Channel is ready

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 A channel is ready for a part program processing of machine axes, geometry axes and positioning

axes. These are already allocated corresponding to machine configuration and the current program
status of the concerned channels.

Signal state 0 The concerned channel is not ready for a part program processing of machine axes, geometry axes
and positioning axes.

Corresponding to ... MD11600 $MN_BAG_MASK

DB21, ...
DBX37.6

Read-in disable is ignored

Edge evaluation: No Signal(s) updated:
 The following machine data is used to specify that the read-in disable (DB21, ... DBX6.1) is to be

ignored:
• MD11602 $MN_ASUP_START_MASK, Bit 2 = 1 (start also permitted if read-in disable is active)
• MD20116 $MC_IGNORE_INHIBIT_ASUP (execute interrupt program in spite of read-in disable)
• MD20107 $MC_ PROG_EVENT_IGN_INHIBIT (Prog events ignore read-in disable)
Part program blocks for which read-in disable is ignored are designated as read-in disable-
inoperative.

Signal state 1 Read-in disable is active (DB21, ... DBX6.1==1) AND part program block is read-in disable-
inoperative.

Signal state 0 Read-in disable is not active (DB21, ... DBB6.1 == 0) OR
(read-in disable is active (DB21, ... DBX6.1 == 1) AND part program block is read-in disable-
operative)

Corresponding to ... DB21, ... DBX37.7 (Stop at block end is ignored during single block (SBL))

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1657

DB21, ...
DBX37.7

Stop at block end is ignored during single block (SBL)

Edge evaluation: Signal(s) updated:
 The following machine data and part program commands are used to specify that the stop at block

end during single block (DB21, ... DBX0.4 == 1) is to be ignored:
• MD10702 $MN_IGNORE_SINGLEBLOCK_MASK (prevent single-block stop)
• MD20117 $MC_IGNORE_SINGLEBLOCK_ASUP (execute interrupt program completely in spite

of single block)
• MD20106 $MC_PROG_EVENT_IGN_SINGLEBLOCK (Prog events ignore single block)
• SBLOF (suppress single block), SBLON (cancel single block suppression)
Part program blocks for which stop at block end during single block is ignored are designated as
single block-inoperative.

Signal state 1 Single block is active (DB21, ... DBX0.4==1) AND part program block is single block-inoperative.
Signal state 0 Single block is not active (DB21, ... DBB0.4 == 0) OR

(single block is active (DB21, ... DBX0.4 == 1) AND part program block is single block-operative)
Corresponding to ... Read-in disable is ignored. DB21, ... DBX37.6 (read-in disable is ignored)

DB21, ...
DBB208 - DBB271

Active G function of groups 1 to 60

Edge evaluation: No Signal(s) updated: Cyclically
The G function displayed in BCD format or its mnemonic identifier is active in the G group.

Valu
e

Meaning

1 1st G function of the G group
2 2nd G function of the G group

Signal state <> 0

n nth G function of the G group
Signal state = 0 No G function or G group mnemonic identifier is active.

Bit 7 6 5 4 3 2 1 0
Value 128 64 32 16 8 4 2 1
Example:

Application
example(s)

G90 0 1 0 1 1 0 1 0
Special cases,
errors,

In contrast to auxiliary functions, G functions are not output to the PLC subject to
acknowledgement, i.e. processing of the part program is continued immediately after the G function
output.

Additional references A complete list of the G groups and G functions can be found in:
References: Programming Manual, Fundamentals.

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1658 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBB317.1

Workpiece setpoint reached

Edge evaluation: No Signal(s) updated: Cyclically
Signal state = 1 The number of machined workpieces (actual workpiece total) is equal to the number of workpieces

to be machined (required number of workpieces):
$AC_ACTUAL_PARTS == $AC_REQUIRED_PARTS

Signal state = 0 The number of machined workpieces (actual workpiece total) is not equal to the number of
workpieces to be machined (required number of workpieces):
$AC_ACTUAL_PARTS <> $AC_REQUIRED_PARTS

Corresponding to ... MD27880 $MC_PART_COUNTER (activation of workpiece counters)
Additional references Function Manual, Fundamentals, Section "K1: Mode group, channel, program operation, reset

response" > "Program runtime / workpiece counter" > "Workpiece counter"

DB21, ...
DBX318.0

ASUB is stopped

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The signal is set to 1 if the control stops automatically prior to the end of the ASUB.

The IS DB21, ... DBX318.0 (ASUB is stopped) is only supplied in the case "Interrupt in a program
mode and channel status stopped".

Signal state 0 The IS DB21, ... DBX318.0 (ASUB is stopped) is set to 0 with start and reset.

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1659

DB21, ...
DBX318.0

ASUB is stopped

 Typical sequence of an ASUB with REPOSA:

ASUB with REPOSA
is triggered in the
status AUTOMATIC
mode stopped

If the interrupt routine is ended with REPOSA, then the following sequence is typical:
• NC Stop or an alarm is used to stop the part program.
• The control assumes program status "Stopped".
• The PLC initiates an ASUB via block FC9.
• Before the re-approach to the contour, the control stops and goes to program state "Stopped".

IS DB21, ... DBX318.0 (ASUB is stopped) is set.
• The user presses Start. The IS DB21, ... DBX318.0 (ASUB is stopped) is reset, the re-approach

motion is started.
• At the end of the re-approach motion, the FC9 signal "ASUB done" is set and the path of the

interrupted part program is continued.

DB21, ...
DBX318.1

Block search via program test is active (SERUPRO)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 During the processing of the part program block in context of block search (internal channel status:

"Program test"), up to the change of the target block in the main execution (Program status:
"Stopped").

Signal state 0 With the change of the target block in the main execution (internal channel status: "Program test" is
deselected; stop condition: "Search target found" is displayed).

Special cases,
errors,

The block search (SERUPRO) can only be activated in AUTOMATIC mode in program status
"Aborted".

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1660 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX319.0

Acknowledgement of the REPOS mode change

Edge evaluation: Yes Signal(s) updated: Cyclically
Edge change
0 → 1

The interface signal detected by the NC:
DB21, ... DBX31.4 (REPOS mode change)
is acknowledged with the existing interface signal, if the requested REPOS mode:
DB21, ... DBX31.0-2 (REPOS mode)
and the delay signal:
DB31, ... DBX10.0 (REPOSDELAY)
are taken over in the NC.
The signal states refer to the current main run block

Edge change
1 → 0

SERUPRO-ASUB stops automatically before REPOS and DB21, ... DBX31.4 (REPOS mode
change) does not affect the SERUPRO approach.

Corresponding to ... DB21, ... DBX31.4 (REPOS mode-change)

DB21, ...
DBX319.1 -
DBX319.3

Active REPOS mode (A, B, C)

Edge evaluation: No Signal(s) updated: Cyclically
The active REPOS mode is displayed with the interface signals A, B and C.

Active REPOS mode C B A
0 = no REPOS mode active 0 0 0
1 = repositioning to block start point RMBBL 0 0 1
2 = repositioning to interruption point RMIBL 0 1 0
3 = repositioning to block end point RMEBL 0 1 1

Meaning

4 = repositioning to nearest path point RMNBL 1 0 0

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1661

DB21, ...
DBX319.1 -
DBX319.3

Active REPOS mode (A, B, C)

 Example of the sequence of REPOS acknowledgements in the part program and signal timing of
the acknowledgement process from the NC:

Corresponding to ... DB21, ... DBX31.0-2 (REPOS mode)
DB21, ... DBX31.4 (REPOS mode-change)
DB21, ... DBX319.0 (acknowledgement of REPOS mode change)
DB31, ... DBX70.2 (acknowledgement of REPOS delay)

Additional references See Section "Block search Type 5 SERUPRO (Page 491)"

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1662 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX319.5

Repos DEFERAL Chan

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 All axes currently controlled by this channel have either no REPOS offset or their REPOS offsets

are invalid.
Signal state 0 Miscellaneous.
Corresponding to ... DB31, ... DBX70.0 (Repos offset)

DB21, ...
DBB376

ProgEventDisplay

Edge evaluation: No Signal(s) updated: Event-driven
Note: Signal duration of at least one complete PLC cycle

All bits == 0: There is no event-driven program call active
Meaning of individual bits:

Bit Meaning
0 Part program start from channel state "Reset"
1 Part program end
2 Operator panel reset
3 Startup
4 1st start after block search

5 - 7 Reserved, currently always 0
Signal state 1 The event assigned to the bit has activated the "Event-driven program call" function.
Signal state 0 The event assigned to the bit has not activated the "Event-driven program call" function or the

event-driven user program has expired or was canceled with RESET.

DB21, ...
DBX378.0

ASUB is active

Edge evaluation: No Signal(s) updated: Event-driven
Signal state 1 One ASUB is active.

Note:
The user gets a feedback on a running ASUB through DB21, … DBX378.0 even outside FC9 block.

Signal state 0 No ASUB is active.

DB21, ...
DBX378.1

Still ASUB is active

Edge evaluation: No Signal(s) updated: Event-driven
Signal state 1 An ASUB with suppressed display updating (refer to MD20191 $MC_IGN_PROG_STATE_ASUP) is

active.
Signal state 0 No ASUB with suppressed display updating is active.

 Z1: NC/PLC interface signals
 18.6 Mode group, channel, program operation, reset response (K1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1663

DB21, ...
DBX384.0

Control program branching

Edge evaluation: No Signal(s) updated:
Signal state 1 GOTOS in the part program initiates a return to the program start. The program is then processed

again.
Signal state 0 GOTOS initiates no return. Program execution is continued with the next part program block after

GOTOS.
Corresponding to ... MD27860 $MC_PROCESSTIMER_MODE (activation of the program runtime measurement)

MD27880 $MC_PART_COUNTER (activation of workpiece counters)

18.6.5 Signals to axis/spindle (DB31, ...)

DB31, ...
DBX10.0

REPOSDELAY

Edge evaluation: no Signal(s) updated: Cyclically
Signal state 1 The REPOS offset of the axis is first applied with its next programming.
Signal state 0 There is no REPOS offset.
Special cases,
errors,

The signal is not relevant for path axes.

Corresponding to ... DB21, ... DBX31.0 - DBX31.2 (REPOS mode)
DB31, ... DBX70.2 (REPOSDELAY acknowledge)
DB31, ... DBX72.0 (REPOSDELAY)

18.6.6 Signals from axis/spindle (DB31, ...)

DB31, ...
DBX70.0

REPOS offset

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

A REPOS offset must be applied for the appropriate axis.

Signal state 0 or
edge change
1 → 0

No REPOS offset need be applied for the appropriate axis.

Corresponds to DB31, ... DBX70.1 (REPOS offset valid)

Z1: NC/PLC interface signals
18.6 Mode group, channel, program operation, reset response (K1)

 Basic Functions
1664 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX70.1

REPOS offset valid

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

The range of validity of the REPOS offset is indicated with the value 1.
The REPOS offset was calculated to be valid.

Signal state 0 or
edge change
1 → 0

A value of zero indicates that the REPOS offset was calculated to be invalid.

Application
example(s)

Updating the REPOS offset in the range of validity:
Between SERUPRO end and start, the axis can be moved in JOG mode with a mode change. The
user moves the REPOS offset to the zero value.

Corresponds to DB31, ... DBX70.0 (REPOS offset)

DB31, ...
DBX70.2

REPOS Delay Ackn

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

The axis was programmed within a traversing block, and the REPOS offset was applied.
Note
A REPOS offset was available for the axis, and REPOSDELAY was active:
DB31, ... DBX10.0 (REPOSDELAY) == 1
This signal behaves the same as:
DB21, ... DBX319.1 - DBX319.3 (Repos Path Mode Ackn)

Signal state 0 or
edge change
1 → 0

The value zero is used to acknowledge that the REPOS offset is not active for this axis. This signal
is cancelled on activation of the remaining block.

Corresponds to DB31, ... DBX10.0 (REPOSDELAY)
DB31, ... DBX72.0 (REPOSDELAY)

DB31, ...
DBX72.0

REPOSDELAY

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

After a block search, a REPOS offset is applied for this axis. However it is not applied using the
approach block, but rather using the next traversing block in which the axis is programmed.

Signal state 0 or
edge change
1 → 0

The REPOS offset for this axis is not active.

Special cases,
errors,

The signal is not relevant for path axes.

Corresponds to DB21, ... DBX31.0 - DBX31.2 (REPOSPATHMODE)
DB31, ... DBX10.0 (REPOSDELAY)
DB31, ... DBX70.2 (REPOS Delay Ackn)

 Z1: NC/PLC interface signals
 18.7 Axis types, coordinate systems, frames (K2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1665

DB31, ...
DBX76.4

Path axis

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

The axis is involved in the path (path axis).
Note
In conjunction with SERUPRO in status "Target block found", the signal refers to the status of the
axis in the target block.

Signal state 0 or
edge change
1 → 0

The axis is not involved in the path.

18.7 Axis types, coordinate systems, frames (K2)

18.7.1 Signals to axis/spindle (DB31, ...)

DB 31, ...
DBX3.0

External Zero Offset

Edge evaluation: no Signal(s) updated:
Signal state 1 or
edge change
0 → 1

The preselected value of the external work offest of an axis is used as the new value for calculating
the total work offset between the basic and the workpiece coordinate systems.

Signal state 0 or
edge change
1 → 0

The preselected value of the external work offset of an axis is not used as the new value for
calculating the total work offset between the basic and workpiece coordinate systems. The previous
value is still valid.

Signal irrelevant for
...

$AA_ETRANS[axis] equals zero for all axes.

Special cases,
errors,

Signal zero after ramp-up (power ON).

Corresponding to $AA_ETRANS[axis]

Z1: NC/PLC interface signals
18.8 Emergency stop (N2)

 Basic Functions
1666 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

18.8 Emergency stop (N2)

18.8.1 Signals to NC (DB10)

DB10
DBX56.1

Emergency stop

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The NC is brought into the emergency stop state and the emergency stop sequence in the NC is
started.

Signal state 0 or
edge change
1 → 0

The NC is not in the emergency stop state.
The emergency stop state is (still) active but can be reset using the interface signals:
DB10 DBX56.2 (acknowledge emergency stop)
and
DB11 DBX0.7 (mode group reset)

Corresponding to ... DB10 DBX56.2 (acknowledge emergency stop)
DB10 DBX106.1 (emergency stop active)

DB10
DBX56.2

Acknowledge emergency stop

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The emergency stop state is only reset if the interface signal:
DB10 DBX56.2 (acknowledge emergency stop)
is set followed by the interface signal:
DB11, ... DBX0.7 (mode group reset).

It must be noted that IS "Acknowledge emergency stop" and IS "Reset" must be set (together) for a
long enough period so that the interface signal:
DB10 DBX106.1 (emergency stop active)
was reset.
Resetting the emergency stop state has the following effects:
• The controller enable is switched in.
• Follow-up mode is canceled for all axes and position control mode resumed.
• DB31, ... DBX61.5 set (position controller active).
• DB11, ... DBX6.3 set (mode group ready).
• DB10 DBX106.1 reset (emergency stop active).
• Alarm 3000 is cleared.
• Part program processing is aborted for all channels.

 Z1: NC/PLC interface signals
 18.8 Emergency stop (N2)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1667

DB10
DBX56.2

Acknowledge emergency stop

Special cases,
errors,

The emergency stop state cannot be reset using the interface signal:
DB21, ... DBX7.7 (reset).

Corresponding to ... DB10 DBX56.1 (Emergency stop)
DB10 DBX106.1 (emergency stop active)
DB11 DBX0.7 (mode group reset)

18.8.2 Signals from NC (DB10)

DB10
DBX106.1

Emergency stop active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The NC is in the emergency stop state.

Corresponding to ... DB10 DBX56.1 (Emergency stop)
DB10 DBX56.2 (acknowledge emergency stop)

Z1: NC/PLC interface signals
18.9 PLC basic program (P3)

 Basic Functions
1668 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

18.9 PLC basic program (P3)
To describe the NC/PLC interface signals, refer to:
References:
Functions Manual, Basic Functions; PLC Basic Program (P3)
Chapter: "Signal/Data Specifications"

18.10 Reference point approach (R1)

18.10.1 Signals to channel (DB21, ...)

DB21, ...
DBX1.0

Activate referencing

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Channel-specific referencing is started using the interface signal:
DB21, ... DBX1.0 (activate referencing).

The control acknowledges a successful start using the interface signal:
DB21, ... DBX33.0 (referencing active)
With the channel-specific referencing each machine axis, which is allocated to a channel, can be
referenced (control internals are simulated by traversing keys plus/minus).
Using the axis-specific machine data:
MD34110 $MA_REFP_CYCLE_NR (axis sequence for channel-specific referencing)
can determine in which sequence the machine axes are referenced.
When all of the axes entered in REFP_CYCLE_NO have reached their reference point,
the interface signal:
DB21, ... DBX36.3 (all axes stationary)
is set.

Application
example(s)

If the machine axes are to be referenced in a particular sequence, there are the following
possibilities:
• The operator must observe the correct sequence when starting.
• The PLC must check the sequence when starting or define it itself.
• The channel-specific referencing function will be used.

Corresponding to ... DB21, ... DBX33.0 (activate referencing)
DB21, ... DBX36.2 (all axes with obligatory reference point are referenced)

 Z1: NC/PLC interface signals
 18.10 Reference point approach (R1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1669

DB21, ...
DBX33.0

Referencing active

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The channel-specific referencing was started using the interface signal:
DB21, ... DBX1.0 (activate referencing)
and the successful start was acknowledged using the interface signal:
DB21, ... DBX33.0 (referencing active).

The channel-specific referencing is operational.

Signal state 0 or
edge change
1 → 0

• Channel-specific referencing is completed
• Axis-specific referencing is running
• No referencing active

Signal irrelevant for
...

Spindles

Corresponding to ... DB21, ... DBX1.0 (activate referencing)

18.10.2 Signals from channel (DB21, ...)

DB21, ...
DBX36.2

All axes that have to be referenced are referenced

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

All axes that must be referenced (linear axes and rotary axes) of the channel are referenced.
The machine data:
MD20700 $MC_REFP_NC_START_LOCK (NC start inhibit without reference point)
is zero.
If two position measuring systems are connected to an axis, that would prevent an NC start, then
the active one must be referenced so that the axis is considered to have been referenced.
An NC Start command for parts program processing is only accepted when this signal is present.
Axes that have to be referenced are axes, if:
MD34110 $MA_REFP_CYCLE_NR _ = -1
and the axis is not in the parked position (position measuring system inactive and the controller
enable withdrawn).

Signal state 0 or
edge change
1 → 0

One or more axes of the channel have not been referenced.

Special cases,
errors,

The spindles of the channel have no effect on this interface signal.

Corresponding to DB31, ... DBX60.4 (referenced / synchronized 1)
DB31, ... DBX60.5 (referenced / synchronized 2)

Z1: NC/PLC interface signals
18.10 Reference point approach (R1)

 Basic Functions
1670 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

18.10.3 Signals to axis/spindle (DB31, ...)

DB31, ...
DBX2.4 - DBX2.7

Reference point value 1 to 4

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

When the reference cam is reached, the NCK is signaled which coded reference cam is actuated.
The interface signal:
DB31, ... DBX2.4 - DBX2.7 (reference point values 1 to 4)
must remain set until the reference point is reached,
or until a new coded reference cam is actuated.
If the machine axis has reached the reference point (axis stationary) then using the reference point
value pre-selected using
IS "reference point values 1 to 4" from the machine data:
MD34100 $MA_REFP_SET_POS (reference point value)
is transferred into the control as the new reference position.

Signal state 0 or
edge change
1 → 0

No effect.

Signal irrelevant for
...

Linear measurement systems with distancecoded reference marks

Application
example(s)

On a machine tool with large traversing distances, four coded reference cams can be distributed
over the entire distance traveled by the axis, four different reference points approached and the
time required to reach a valid referenced point reduced.

Special cases,
errors,

If the machine axis has arrived at the reference point and none of the four "reference point value 1
to 4" interface signals has been set, the value of the reference point is automatically set to 1.

Corresponding to MD34100 $MA_REFP_SET_POS (reference point value)

DB31, ...
DBX12.7

Reference point approach delay

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

The machine axis is positioned on the reference cam.

Signal state 0 or
edge change
1 → 0

The machine axis is positioned in front of the reference cam. An appropriately long reference cam
(up to the end of the traversing range) should be used to prevent the machine axis from being
located behind (after) the referencing cam.

Corresponding to DB31, ... DBX2.4 - DBX2.7 (reference point values 1 to 4)

 Z1: NC/PLC interface signals
 18.10 Reference point approach (R1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1671

18.10.4 Signals from axis/spindle (DB31, ...)

DB31, ...
DBX60.4

Referenced/synchronized 1

Edge evaluation: Signal(s) updated:
Signal state 1 or
edge change
0 → 1

Axes:
When being referenced, if the machine axis has reached the reference point (incremental
measuring systems) or the target point (for length measuring system with distance-coded reference
marks), then the machine axis is referenced and the following interface signal is set:
DB31, ... DBX60.4 (referenced/synchronized 1)
(depending on which position measuring system is active when referencing).

Spindles:
After power-on, a spindle is synchronized the latest after one spindle revolution (360 degrees) (the
zero mark passed or the Bero responded).

Signal state 0 or
edge change
1 → 0

The machine axis/spindle with position measuring system 1 is not referenced/synchronized.

Corresponding to ... DB31, ... DBX1.5 (position measuring system 1)

DB31, ...
DBX60.5

Referenced/synchronized 2

Edge evaluation: Signal(s) updated:
Signal state 1 or
edge change
0 → 1

Axes:
When being referenced, if the machine axis has reached the reference point (incremental
measuring systems) or the target point (for length measuring system with distance-coded reference
marks), then the machine axis is referenced and the following interface signal is set:
DB31, ... DBX60.5 (referenced/synchronized 2)
(depending on which position measuring system is active when referencing).

Spindles:
After power-on, a spindle is synchronized the latest after one spindle revolution (360 degrees) (the
zero mark passed or the Bero responded).

Signal state 0 or
edge change
1 → 0

The machine axis/spindle with position measuring system 2 is not referenced/synchronized.
Axes:
Alarm 21610 was output.
Spindles:
Encoder limit frequency exceeded.

Corresponding to ... DB31, ... DBX1.6 (position measuring system 2)
MD34102 $MA_REFP_SYNC_ENCS (measuring system calibration) = 0

Z1: NC/PLC interface signals
18.10 Reference point approach (R1)

 Basic Functions
1672 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX71.4

POS_RESTORED 1

Edge evaluation: Signal(s) updated:
Signal state 1 or
edge change
0 → 1

If MD34210 $MA_ENC_REFP_STATE is set to a value of 3, the last axis position buffered before
switch off is restored in distance-coded, incremental measuring systems. Referencing does not take
place automatically. Position measuring system 1 is in "Position restored" state.

Signal state 0 or
edge change
1 → 0

The machine axis/spindle with position measuring system 1 is not restored.

Corresponding to ... DB31, ... DBX60.4 (referenced / synchronized 1)

DB31, ...
DBX71.5

POS_RESTORED 2

Edge evaluation: Signal(s) updated:
Signal state 1 or
edge change
0 → 1

If MD34210 $MA_ENC_REFP_STATE is set to a value of 3, the last axis position buffered before
switch off is restored in distance-coded, incremental measuring systems. Referencing does not take
place automatically. Position measuring system 2 is in "Position restored" state.

Signal state 0 or
edge change
1 → 0

The machine axis/spindle with position measuring system 2 is not restored.

Corresponding to ... DB31, ... DBX60.5 (referenced / synchronized 2)

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1673

18.11 Spindles (S1)

18.11.1 Signals to axis/spindle (DB31, ...)

DB31, ...
DBX2.2

Spindle reset/delete distancetogo

Edge evaluation: yes Signal(s) updated: cyclic
Edge change
0 → 1

Independent of the machine data:
MD35040 $MA_SPIND_ACTIVE_AFTER_RESET
selects a spindle reset for the various spindle operating modes in the following fashion:
• Control mode:

– Spindle stops
– Program continues to run
– Spindle continues to run with subsequent M and S program commands

• Oscillating mode:
– Oscillation is interrupted
– Axes continue to run
– Program continues with the actual gearbox stage
– With the following M value and higher S value, it is possible that the IS:

DB31, ... DBX83.1 (programmed speed high)
is set.

• Positioning mode:
– Is stopped

• Axis operation:
– Is stopped

Signal state 0 or
edge change
1 → 0

No effect.

Corresponding to ... MD35040 $MA_SPIND_ACTIVE_AFTER_RESET (own spindle reset)
DB21, ... DBX7.7 (reset)
DB31, ... DBX2.2 (delete distance to go): is a different name for the same signal

Z1: NC/PLC interface signals
18.11 Spindles (S1)

 Basic Functions
1674 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX16.0 - DBX16.2

Actual gear stage A to C

Edge evaluation: yes Signal(s) updated: Cyclic
Signal state 1
(statuscontrolled)

If the new gear stage is engaged, the PLC user program sets the interface signals:
DB31, ... DBX16.2 - DBX16.0 (actual gear stage A to C)
and
DB31, ... DBX16.3 (gear is changed over).

This signals the NCK that the correct gear stage has been successfully engaged.
The gear change is considered to have been completed (spindle oscillation mode is deselected),
the spindle accelerates in the new gear stage to the last programmed spindle speed and the next
block in the parts program can be executed.
The actual gear stage is output in coded format.
For each of the 5 gear stages, there is one set of parameters assigned as follows:

Special cases,
errors,

If the PLC user reports back to the NCK with a different actual gear stage than issued by the NCK
as the setpoint gear stage, the gear change is still considered to have been successfully completed
and the actual gear stage A to C is activated.

Corresponding to ... DB31, ... DBX82.0 - DBX82.2 (setpoint gear stage A to C)
DB31, ... DBX82.3 (change over gear stage)
DB31, ... DBX16.3 (gear is changed)
DB31, ... DBX18.5 (oscillation speed)
Parameter sets for gear stages

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1675

DB31, ...
DBX16.3

Gear is changed over

Edge evaluation: yes Signal(s) updated: Cyclic
Signal state 1 or
edge change
0 → 1

When the new gear stage is engaged, the PLC user sets the interface signals:
DB31, ... DBX16.0 - DBX16.2 (actual gear stages A to C)
and
DB31, ... DBX16.3 (gear is changed over).

This signals the NCK that the correct gear stage has been successfully engaged.
The gear stage change is complete (spindle oscillation mode is deselected), the spindle accelerates
in the new gear stage to the last programmed spindle speed and the next block in the parts
program can be executed.
The interface signal:
DB31, ... DBX82.3 (change over gear)
is reset by the NCK - the PLC user then resets the interface signal:
(gear is changed over).

Signal state 0 or
edge change
1 → 0

No effect.

Signal irrelevant for
...

... spindle modes other than the oscillation mode

Special cases,
errors,

If the PLC user reports back to the NCK with a different actual gear stage than issued by the NCK
as the setpoint gear stage, the gear change is still considered to have been successfully completed
and the actual gear stage A to C is activated.

Corresponding to ... DB31, ... DBX16.2 - DBX16.0 (actual gear stage A to C)
DB31, ... DBX82.2 - DBX82.0 (setpoint gear stage A to C)
DB31, ... DBX82.3 (change over gear stage)
DB31, ... DBX18.5 (oscillation speed)

DB31, ...
DBX16.4 - DBX16.5

Resynchronizing spindles 1 and 2

Edge evaluation: yes Signal(s) updated: Cyclic
Edge change
0 → 1

The spindle should be resynchronized, as the synchronization between the position measuring
system of the spindle and the 0 degree position has been lost.

Signal state 0 or
edge change
1 → 0

No effect.

Signal irrelevant for
...

... spindle modes other than the control mode.

Application
example(s)

The machine has a selector switch to changeover between a vertical and a horizontal spindle. Two
different position encoders are used (one for the vertical spindle and one for the horizontal spindle),
but only one actual value input is used on the control. When the system switches from the vertical
to the horizontal spindle, the spindle must be resynchronized.
This synchronization is triggered by the IS "re-synchronize spindle 1 or 2".

Corresponding to ... DB31, ... DBX60.4 (referenced / synchronized 1)
DB31, ... DBX60.5 (referenced / synchronized 2)

Z1: NC/PLC interface signals
18.11 Spindles (S1)

 Basic Functions
1676 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX16.7

Delete S value

Edge evaluation: yes Signal(s) updated: Cyclic
Edge change
0 → 1

Control mode:
• Spindle stops
• Program continues to run
• Spindle continues to run with the following S value, if M3 or M4 were active
Oscillation mode, axis mode, positioning mode:
• Signal has no effect for the corresponding function. However, if the open-loop control mode is

selected again, a new S value must be programmed.

Signal state 0 or
edge change
1 → 0

No effect.

Application
example(s)

Terminating traversing motion on account of an external signal (e.g. sensing probe).

DB31, ...
DBX17.4 - DBX17.5

Re-synchronizing spindle when positioning 1 and 2

Edge evaluation: yes Signal(s) updated: Cyclic
Signal state 1 When positioning, the spindle must be re-synchronized.
Signal state 0 or
edge change
1 → 0

No effect.

Signal irrelevant for
...

... spindle modes other than the positioning mode.

Application
example(s)

The spindle has an indirect measuring system and slippage may occur between the motor and the
clamp. If the signal=1 - when positioning is started, the old reference is deleted and the zero mark is
searched for again before the end position is approached.

Corresponding to ... DB31, ... DBX60.4 (referenced / synchronized 1)
DB31, ... DBX60.5 (referenced / synchronized 2)

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1677

DB31, ...
DBX17.6

Invert M3/M4

Edge evaluation: yes Signal(s) updated: Cyclic
Signal state 1 or
edge change
0 → 1

The direction of rotation of the spindle motor changes for the following functions:
• M3
• M4
• M5
• SPOS/M19/SPOSA from the motion; not effective for SPOS/M19/SPOSA from zero speed (stationary).

Application
example(s)

The machine has a selector switch to changeover between a vertical and a horizontal spindle. The
mechanical design is implemented so that for the horizontal spindle, one more gearwheel is
engaged than for the vertical spindle. The direction of rotation must therefore be changed for the
vertical spindle if the spindle is always to rotate clockwise with M3.

DB31, ...
DBX18.4

Oscillation controlled by the PLC

Edge evaluation: yes Signal(s) updated: Cyclic
Signal state 1 or
edge change
0 → 1

If the interface signal:
DB31, ... DBX18.4 (oscillation controlled by thePLC)
is not set, then automatic oscillation in the NCK is carried-out using the interface signal:
DB31, ... DBX18.5 (oscillation speed).

The two times for the directions of rotation are entered in the machine data:
MD35440 $MA_SPIND_OSCILL_TIME_CW (oscillation time for the M3 direction)
and
MD35450 $MA_SPIND_OSCILL_TIME_CCW (oscillation time for the M4 direction).

If the IS "oscillation via PLC" is set, then with the IS "oscillation speed" a speed is only output in
conjunction with the interface signals:
DB31, ... DBX18.6 - DBX18.7 (setpoint direction of rotation, counter-clockwise and clockwise).

The oscillation, i.e. the continuous change of the direction of rotation, is performed by the PLC user
program using the interface signal "setpoint direction of rotation, counter-clockwise and clockwise"
(oscillation via the PLC).

Application
example(s)

If the new gear stage cannot be engaged in spite of several attempts by the NCK, the system can
be switched to oscillation via PLC. Both of the times for the directions of rotation can then be
altered by the PLC user program as required. This ensures that the gear stage is reliably changed -
even with unfavorable gear wheel positions.

Corresponding to ... MD35440 $MA_SPIND_OSCILL_TIME_CW (oscillation time for the M3 direction)
MD35450 $MA_SPIND_OSCILL_TIME_CCW (oscillation time for the M4 direction)
DB31, ... DBX18.5 (oscillation speed)
DB31, ... DBX18.7 (setpoint direction of rotation, counter-clockwise)
DB31, ... DBX18.6 (setpoint direction of rotation, clockwise)

Z1: NC/PLC interface signals
18.11 Spindles (S1)

 Basic Functions
1678 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX18.5

Oscillation enable

Edge evaluation: no Signal(s) updated: Cyclic
Signal state 1 or
edge change
0 → 1

If the gear stage is to be changed (DB31, ... DBX82.3 (change over gear) is set), then the spindle
operating mode changes to the oscillation mode.
Depending on the instant in time that the interface signal:
DB31, ... DBX18.5 (oscillation speed)
is set, the spindle decelerates down to standstill with different deceleration levels:
The IS "Oscillation speed" is set before the interface signal:
DB31, ... DBX82.3 (change over gear)
is set by the NCK.
When oscillating, the spindle is decelerated down to standstill with the deceleration:
MD35410 $MA_SPIND_OSCILL_ACCEL.

Once the spindle is stationary, oscillation is immediately initiated.
The IS "Oscillation speed" is enabled after the IS "Change gear" is set by the NCK and when the
spindle is stationary. The position controller is disabled. The spindle decelerates with the specified
deceleration rate in the speed controlled mode.
After the IS "oscillation speed" is set, the spindle starts to oscillate with the oscillation acceleration
(MD35410).
if the interface signal:
DB31, ... DBX18.4 (oscillation via the PLC)
is not set, then automatic oscillation is executed in the NCK using the IS "Oscillation speed".
The two times for the directions of rotation are entered in the machine data:
MD35440 $MA_SPIND_OSCILL_TIME_CW (oscillation time for the M3 direction)
and
MD35450 $MA_SPIND_OSCILL_TIME_CCW (oscillation time for the M4 direction).

If the IS "oscillation via PLC" is set, then with the IS "oscillation speed" a speed is only output in
conjunction with the interface signals:
DB31, ... DBX18.6 - DBX18.7 (setpoint direction of rotation, counter-clockwise and clockwise).

The oscillation, i.e. the continuous change of the direction of rotation, is performed by the PLC user
program using the interface signal "setpoint direction of rotation, counter-clockwise and clockwise"
(oscillation via the PLC).

Signal state 0 or
edge change
1 → 0

The spindle does not oscillate.

Signal irrelevant for
...

... All spindle modes except the oscillation mode.

Application
example(s)

The oscillation speed is used to make it easier to engage a new gear stage.

Corresponding to ... DB31, ... DBX18.4 (oscillation controlled by the PLC)
DB31, ... DBX18.7 (setpoint direction of rotation, counter-clockwise)
DB31, ... DBX18.6 (setpoint direction of rotation, clockwise)

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1679

DB31, ...
DBX18.6 - DBX18.7

Oscillation direction of rotation counter-clockwise / oscillation direction of rotation clockwise

Edge evaluation: yes Signal(s) updated: Cyclic
Signal state 1 or
edge change
0 → 1

If the interface signal:
DB31, ... DBX18.4 (oscillation by the PLC)
is set, then the direction of rotation for the oscillation speed
can be entered using the two interface signals:
DB31, ... DBX18.6 - DBX18.7 (setpoint direction of rotation counter-clockwise and clockwise).
The times for the oscillation movement of the spindle motor are defined by setting the interface
signals "direction of rotation setpoint counter-clockwise and clockwise" for a corresponding length of
time.

Signal irrelevant for
...

... spindle modes other than the oscillation mode

Application
example(s)

Refer to DB31, ... DBX18.4 (oscillation controlled by the PLC)

Special cases,
errors,

If both of the interface signals are set simultaneously enabled, no oscillation speed is output.
If an interface signal is not set, then an oscillation speed is not output.

Corresponding to ... DB31, ... DBX18.4 (oscillation controlled by the PLC
DB31, ... DBX18.5 (oscillation speed)

18.11.2 Signals from axis/spindle (DB31, ...)

DB31, ...
DBX60.0

Spindle/no axis

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The machine axis is operated in one of the following spindle modes:
• Control mode
• Oscillation mode
• Positioning mode
• Tapping without compensating chuck
• Synchronous mode
The interface signals to the axis (DB31, ... DBB12 - DBB15) and from the axis
(DB31, ... DBB74 - DBB81) are invalid.
The interface signals to the spindle (DB31, ... DBB16 - DBB19) and from the spindle
(DB31, ... DBB82 - DBB91) are valid.

Z1: NC/PLC interface signals
18.11 Spindles (S1)

 Basic Functions
1680 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX60.0

Spindle/no axis

Signal state 0 or
edge change
1 → 0

The machine axis is operated as an axis
The interface signals to the axis (DB31, ... DBB12 - DBB15) and from the axis
(DB31, ... DBB74 - DBB81) are valid.
The interface signals to the spindle (DB31, ... DBB16 - DBB19) and from the spindle
(DB31, ... DBB82 - DBB91) are invalid.

Application
example(s)

If a machine axis operates alternatively as a spindle or rotary axis:
• Turning machine: Spindle / C axis
• Milling machine: Spindle / rotary axis for rigid tapping
The currently active operating mode
can be identified from interface signal:
DB31, ... DBX60.0 (spindle/no axis).

DB31, ...
DBX82.0 - 82.2

Setpoint gear stage A to C

Edge evaluation: Yes Signal(s) updated: Cyclically
 See DB31, ... DB82.3 (change gear).
Signal state 1 or
edge change
0 → 1

The set gear stage is output in coded format:

Signal irrelevant for
...

... Other spindle modes except oscillation mode

Corresponding to ... DB31, ... DBX82.3 (change gear)
DB31, ... DBX16.0 - DBX16.2 (actual gear stage A to C)
DB31, ... DBX16.3 (gear is changed)

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1681

DB31, ...
DBX82.3

Change gear

Edge evaluation: Yes Signal(s) updated: Cyclically
 Specification of gear stage:

• Manual specification using M function M41 - M45 corresponding to gear stage 1 - 5
If set gear stage <> actual gear stage =>
DB31, ... DBX82.3 (change gear) = 1
DB31, ... DBX82.0 - DBX82.2 (set gear stage) = set gear stage

• Automatic gear stage selection depending on the progr. Spindle speed via M-function M40
at specified setpoint speed requires gear stage change =>
DB31, ... DBX82.3 (change gear) = 1
DB31, ... DBX82.0 - DBX82.2 (setpoint gear stage) = setpoint gear stage

Signal state 1 or
edge change
0 → 1

New set gear stage was specified AND
set gear stage <> actual gear stage

Special cases,
errors,

Signal is not output if: Set gear stage == actual gear stage

Corresponding to ... DB31, ... DBX82.0 - DBX82.2 (setpoint gear stage A to C)
DB31, ... DBX16.0 - 16.2 (actual gear stage A to C)
DB31, ... DBX16.3 (gear is changed)

DB31, ...
DBX83.0

Speed limit exceeded

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The actual speed exceeds the maximum spindle speed:
MD35100 $MA_SPIND_VELO_ LIMIT
by more than the spindle speed tolerance:
MD35150 $MA_SPIND_DES_VELO_TOL

Corresponding to ... MD35150 $MA_SPIND_DES_VELO_TOL (spindle speed tolerance)
MD35100 $MA_SPIND_VELO_LIMIT (maximum spindle speed)

Z1: NC/PLC interface signals
18.11 Spindles (S1)

 Basic Functions
1682 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX83.1

Setpoint speed limited (programmed speed too high)

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The effective setpoint speed exceeds the actual max. limit value. The setpoint speed is limited to
this limit.
Limit values:
• MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speed of gear stage)
• MD35100 $MA_SPIND_VELO_LIMIT (maximum spindle speed)
• DB31, ... DBX3.6 (spindle speed limitation to MD35160 $MA_SPIND_EXTERN_VELO_LIMIT)
• G26 (upper spindle speed limitation)
• LIMS (speed limitation for the master spindle if G96/G961/G97 is active)
• VELOLIM: Programmed spindle speed limitation in the open-loop speed controlled mode
• Safety Integrated

MD36931 $MA_SAFE_VELO_LIMIT (limit value for safely-reduced speed)
Signal state 0 or
edge change
1 → 0

The effective setpoint speed of the spindle is outside the maximum limit value.

In the PLC user program, it can be identified via the interface signal that the spindle setpoint speed
has not been reached. Possible responses:
• Indicate that the status is permissible and enable path feed:

DB21, ... DBX6.0 = 0 (feed disable)
• Disable path feed or entire channel:

DB21, ... DBX6.0 = 1 (feed disable)
DB31, ... DBX83.5 (spindle in setpoint range) is processed

Application
example(s)

Safety Integrated
In addition to the limit value MD36931 $MA_SAFE_VELO_LIMIT, depending on the active safety
speed level SG1 ... SGn, the following machine data should be taken into account:
• MD36932 $MA_ SAFE_VELO_OVR_FACTOR
• MD36933 $MA_SAFE_DES_VELO_LIMIT
Example:
All standard limit values are greater than 1500 rpm.
• SG1 is active
• MD36932 $MA_ SAFE_VELO_OVR_FACTOR[<SG1>] = 1111.11111 [rev/min]
• MD36933 $MA_SAFE_DES_VELO_LIMIT[<SG1>] = 90%
Programming: M3 S1500
The speed setpoint is limited to 1000 rev/min (MD36932 * MD36933).
DB31, ... DBX83.1 = 1

Corresponding to ... DB21, ... DBX6.0 (feed disable)
DB31, ... DBX4.3 (feed / spindle stop)
DB31, ... DBX83.5 (spindle in setpoint range)

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1683

DB31, ...
DBX83.2

Setpoint speed increased (programmed speed too low)

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The effective setpoint speed is below the current min. limit value. The setpoint speed is limited to
this limit.
Limit values:
• MD35120 $MA_GEAR_STEP_MIN_VELO (minimum speed for automatic gear stage selection

M40)
• MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT (minimum speed of the gear stage)
• G25 (lower spindle speed limitation)

Signal state 0 or
edge change
1 → 0

The set speed of the spindle is outside the minimum limit value.

Application
example(s)

In the PLC user program, it can be identified via the interface signal that the spindle setpoint speed
has not been reached. Possible responses:
• Indicate that the status is permissible and enable path feed:

DB21, ... DBX6.0 = 0 (feed disable)
• Disable path feed or entire channel:

DB21, ... DBX6.0 = 1 (feed disable)
DB31, ... DBX83.5 (spindle in setpoint range) is processed

The interface signal indicates if the programmed set speed is unattainable. The feed can be
enabled nonetheless by means of the PLC user program.
The PLC user program can flag this state as permissible and enable the path feed, or it can disable
the path feed or the complete channel, IS:

Corresponding to ... DB21, ... DBX6.0 (feed disable)
DB31, ... DBX4.3 (feed / spindle stop)
DB31, ... DBX83.5 (spindle in setpoint range)

DB31, ...
DBX83.5

Spindle in setpoint range

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The actual speed of the spindle deviates from the set speed by less than the spindle speed
tolerance:
MD35150 $MA_SPIND_DES_VELO_TOL.

Signal state 0 or
edge change
1 → 0

The actual speed of the spindle deviates from the set speed by more than the spindle speed
tolerance:
MD35150 $MA_SPIND_DES_VELO_TOL.

Normal status during the acceleration/deceleration phase of the spindle.

Signal irrelevant for
...

... All spindle modes except for control mode (speed mode).

Z1: NC/PLC interface signals
18.11 Spindles (S1)

 Basic Functions
1684 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX83.5

Spindle in setpoint range

Application
example(s)

Feed enable in the channel only at the end of the acceleration phase of the spindle:
IF (DB31, ... DBX83.5 (spindle in setpoint range) == 1)
THEN (DB21, ... DBX6.0 (feed disable) = 0)
ELSE (DB21, ... DBX6.0 (feed disable) = 1)
Note: With the feed disable, the positioning axes are also stopped.

Corresponding to ... MD35500 $MA_SPIND_ON_SPEED_AT_IPO_START
MD35500 $MA_SPIND_DES_VELO_TOL (spindle speed tolerance)

DB31, ...
DBX83.7

Actual direction of rotation clockwise

Edge evaluation: Yes Signal(s) updated: Cyclically
 Interface signal is only valid if the spindle is rotating:

DB31, ... DBX61.4 (axis/spindle stationary) == 0
The actual direction of rotation is derived from the position measuring encoder.

Signal state 1 or
edge change
0 → 1

Actual direction of rotation: Right

Signal state 0 or
edge change
1 → 0

Actual direction of rotation: Left

Signal irrelevant for
...

• Spindle is stationary: DB31, ... DBX61.4 (axis/spindle stationary) == 1
• Spindles without position measuring encoder

Corresponding to ... DB31, ... DBX61.4 (axis/spindle stationary)

DB31, ...
DBX84.3

Rigid tapping active

Edge evaluation: Yes Signal(s) updated: Cyclically
 The spindle is internally switched to axis mode by the "Rigid tapping" function (G331/G332). This

results in a reaction to or updating of the spindle-specific interface signals:
• DB31, ... DBX2.2 (spindle reset)
• DB31, ... DBX16.4 - DBX16.5 (synchronize spindle)
• DB31, ... DBX17.6 (invert M3/M4)
• DB31, ... DBX83.5 (spindle in set range)
• DB31, ... DBX83.1 (programmable speed too high)

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1685

DB31, ...
DBX84.3

Rigid tapping active

Signal state 1 or
edge change
0 → 1

• Rigid tapping active.

Application
example(s)

Notice!
If the following signals are set during rigid tapping, the thread will be destroyed:
• DB11, … DBX0.7 (mode group reset) = 1
• DB21, ... DBX7.7 (channel reset) = 1
• DB31, ... DBX2.1 (controller enable) = 0
• DB31, ... DBX4.3 (feed stop) = 1

DB31, ...
DBX84.5

Active spindle mode: Positioning mode

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Positioning mode (SPOS or SPOSA) is active.

Corresponding to ... DB31, ... DBX84.7 (spindle mode control mode)
DB31, ... DBX84.6 (spindle mode oscillation mode)

DB31, ...
DBX84.6

Active spindle mode: Oscillation mode

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Oscillation mode is active.
Note: The spindle changes automatically to oscillation mode if there is a gear change.

Corresponding to ... DB31, ... DBX84.7 (spindle mode control mode)
DB31, ... DBX84.5 (spindle mode positioning mode)
DB31, ... DBX82.3 (change gear)

DB31, ...
DBX84.7

Active spindle mode: Control mode

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The spindle is in control mode with the following functions:
• Spindle direction of rotation specification M3/M4 or spindle stop M5
• M41...M45, or automatic gear stage change M40

Corresponding to ... DB31, ... DBX84.6 (spindle mode oscillation mode)
DB31, ... DBX84.5 (spindle mode positioning mode)

Z1: NC/PLC interface signals
18.11 Spindles (S1)

 Basic Functions
1686 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX85.5

Spindle in position

Edge evaluation: Yes Signal(s) updated: Cyclically
 The interface signal is processed exclusively with the function spindle positioning. This includes:

• SPOS, SPOSA and M19 in the part program
• SPOS and M19 in synchronized actions
• Spindle positioning, using FC18
• Spindle positioning via PLC interface (DB31, ... DBX30.4)

Signal state 1 or
edge change
0 → 1

Requirement for the output of the DB31, ... DBX85.5 signal (spindle in position) is reaching the
"Exact stop fine".
DB31, ... DBX60.7 (exact stop fine) = 1
Additionally, the last programmed spindle position must have been reached on the setpoint side.
If the spindle is already at the programmed position after a positioning, then signal DB31,...
DBX85.5 (spindle in position) is set.

Signal state 0 or
edge change
1 → 0

When signal DB31, ... DBX60.7 is withdrawn (exact stop fine), then signal DB31, ... DBX85.5
(spindle in position) is also always reset.

Application
example(s)

Spindle in position for the tool change
If the machine operator interrupts the tool change cycle (e.g. with NC stop, NC stop axis plus
spindle, mode group stop, etc.), then NC/PLC interface signal DB31, ... DBX85.5 can be used to
query that the position has been reached with which the spindle should enter the tool changer.

Corresponding to ... DB31, ... DBX60.7 (exact stop fine)

DB31, ...
DBB86

M function for spindle

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

From the NCK one of the following M functions: M3, M4, M5, M19, M70 is output to the PLC.
The output is performed via: See "Corresponds to ..." below

Corresponding to ... DB31, ... DBB86 - DBB87 (M function for spindle), axis-specific
DB21, ... DBB58, DBB68 - DBB97 (M function for spindle), channel-specific

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1687

DB31, ...
DBB88

S function for spindle

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

An S function was output from the NCK to the PLC.
The output occurs by means of: See "Corresponds to ..." below
The following S functions are output here:
• S.... as spindle speed in rpm (programmed value)
• S as constant cutting rate in m/min or ft/min
The following S functions are not output here:
• S.... as the programmed spindle speed limiting G25
• S.... as the programmed spindle speed limiting G26
• S as spindle speed in rpm if a spindle was not defined in the controller
• S.... as the dwell time in spindle revolutions

Corresponding to ... DB31, ... DBB88 - DBB91 (S function for spindle), axis-specific
DB21, ... DBB60, DBB98 - DBB115 (S function for spindle), channel-specific

Spindle with SMI 24 (Weiss spindle)

DB31, ...
DBX132.0

Sensors available

Edge evaluation: No Signal(s) updated: Power-up
Signal state 1 The sensor required for spindles with SMI 24 is available.
Signal state 0 The sensor required for spindles with SMI 24 is not available.
Corresponding to ... DB31, … DBX132.1: Sensor S1 (clamped state) is available

DB31, … DBX132.4: Sensor S4 is available
DB31, … DBX132.5: Sensor S5 is available

DB31, ...
DBX132.1

Sensor S1 available (clamped state)

Edge evaluation: No Signal(s) updated: Power-up
Signal state 1 Sensor S1 is available.
Signal state 0 Sensor S1 is not available.
Corresponding to ... DB31, … DBW134 (status of the clamping system)

DB31, … DBW136 (analog value: clamped state)

Z1: NC/PLC interface signals
18.11 Spindles (S1)

 Basic Functions
1688 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX132.4

Sensor S4 available (piston end position)

Edge evaluation: No Signal(s) updated: Power-up
Signal state 1 Sensor S4 is available.
Signal state 0 Sensor S4 is not available.
Corresponding to ... DB31, … DBX138.4 (Sensor S4: piston end position)

DB31, ...
DBX132.5

Sensor S5 available (angular position of the motor shaft)

Edge evaluation: No Signal(s) updated: Power-up
Signal state 1 Sensor S5 is available.
Signal state 0 Sensor S5 is not available.
Corresponding to ... DB31, … DBX138.5 (Sensor S5: angular position of the motor shaft)

DB31, ...
DBX133.2

State value is generated, speed limitation p5043 is active

Edge evaluation: No Signal(s) updated: Power-up
Signal state 1 The state value is generated and the speed limitations from drive parameter p5043 are active.
Signal state 0 The state value is not generated and the speed limitations from drive parameter p5043 are not

active.
Note When generating the state value, the analog voltage values of sensor S1 are transformed into

discrete state values of drive parameter r5001.
Corresponding to ... DB31, … DBX134 (clamped state)

Drive parameters: r5001
System variable: $VA_MOT_CLAMPING_STATE[<axis>]
OPI variables: vaMotClampingState

DB31, ...
DBW134

Status of the clamping system (sensor S1)

Edge evaluation: No Signal(s) updated: Cyclically
Depending on the position of the clamping device, sensor S1 supplies an analog voltage value. To
simplify the evaluation of the clamped state, the analog voltage of sensor module SMI 24 is
converted into a state value.
The state values correspond to certain voltage ranges. The voltage ranges can be set via: Drive
parameter p5041[0...5].

State value Clamped state
0 Sensor S1 not available or state values inactive
1 State initialization running
2 Released with signal (error state)
3 Released

4 Clamping with tool

 Z1: NC/PLC interface signals
 18.11 Spindles (S1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1689

DB31, ...
DBW134

Status of the clamping system (sensor S1)

5 Releasing with tool
6 Releasing without tool
7 Clamped with tool AND S4 == 0
8 Clamped with tool AND S4 == 1
9 Clamping without tool

10 Clamped without tool
11 Clamped with signal (error state)

Corresponding to ... DB31, … DBW136 (analog value: clamped state)
Drive parameters: p5041[0...5], p5043[0...6]

DB31, ...
DBW136

Analog measured value: Of the clamping system

Edge evaluation: No Signal(s) updated: Cyclically
 Sensor S1 supplies an analog voltage value: 0 - 10 V. The analog value of the clamped state is

mapped to: 0 - 10000 increments, resolution 1 mV
Note
SIMATIC S7 input module: 0 - 27648 increments, resolution 0.36 mV
Adaptation factor if you change to a spindle with SMI 24: 2.7648

Corresponding to ... DB31, … DBW134 (clamped state)
Drive parameters: p5041[0...5], p5043[0...6]

DB31, ...
DBX138.4

Sensor S4, piston end position

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The piston is in position, i.e. the piston is free to move
Signal state 0 The piston is not in position
Corresponding to ... DB31, … DBX132.4 (Sensor S4 available)

DB31, ...
DBX138.5

Sensor S5, angular position of the motor shaft

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 The motor shaft is in position (requirement: The spindle is stationary)
Signal state 0 The motor shaft is not aligned
Corresponding to ... DB31, … DBX132.5 (sensor S5 available)

Z1: NC/PLC interface signals
18.12 Feeds (V1)

 Basic Functions
1690 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

18.12 Feeds (V1)

18.12.1 Signals to channel (DB21, ...)

DB21, ...
DBX0.6

Activate dry run feed

Edge evaluation: Yes Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The dry run feedrate defined using the setting data:
SD42100 $SC_DRY_RUN_FEED
is used instead of the programmed feed (for G01, G02, G03) if the dry run feedrate is greater than
that programmed.
The dry run feedrate is effective after the reset state.
This interface signal is evaluated at NC start when the channel is in the "reset" state.
The dry run feed can be activated from the PLC or operator panel.
When selected from the operator panel front, the PLC interface signal:
DB21, ... DBX24.6 (dry run feed selected)
is set and transferred from the PLC basic program to the interface signal:
DB21, ... DBX0.6 (activate dry run feed).

When selected using the PLC, the IS "activate dry run feed" should be set from the PLC user
program.

Signal state 0 or
edge change
1 → 0

The programmed feed is used.
Effective after the reset state.

Application
example(s)

Testing a workpiece program with an increased feedrate.

Special cases,
errors,

If the signal changes to "0" within a G33 block, the programmed feed is not activated until the end of
the block is reached, since an NC stop was not triggered.

Corresponding to ... DB21, ... DBX24.6 (dry run feedrate selected)
SD42100 $SC_DRY_RUN_FEED (dry run feedrate)

 Z1: NC/PLC interface signals
 18.12 Feeds (V1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1691

DB21, ...
DBB4

Feedrate override

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The feedrate override can be defined via the PLC in binary or Gray coding.
With binary coding, the feed value is interpreted in %.
0% to 200% feed changes are possible, in accordance with the binary value in the byte.
The following permanent assignment applies:

Binary values > 200 are limited to 200%.
The machine data:
MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary-coded override switch)
can be used to additionally limit the maximum feedrate override.
In gray coding, the following codes are assigned to the individual switch settings:

The factors listed in the table for the feedrate override are stored in the machine data:
MD12030 $MN_OVR_FACTOR_FEEDRATE [n].

The table contains the default settings.
The number of possible switch settings for standard machine panels is described in the Configuration Manual
for SINUMERIK 840D.

Corresponding to ... DB21, ... DBX6.7 (feedrate override active)
MD12030 $MN_OVR_FACTOR_FEEDRATE [n] (evaluation of the path feedrate override switch)
MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary coded override switch)

Z1: NC/PLC interface signals
18.12 Feeds (V1)

 Basic Functions
1692 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBB5

Rapid traverse override

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The rapid traverse override can be entered via the PLC in either the binary or Gray code.
For binary coding, the rapid traverse override is interpreted as a %.
0% to 100% feed changes are possible, in accordance with the binary value in the byte.
The following permanent assignment applies:

Binary values > 100 are limited to 100%.
Using the machine data:
MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary-coded override switch),
the maximum rapid traverse override can be additionally limited.
In gray coding, the following codes are assigned to the individual switch settings:

The factors listed in the table for the rapid traverse override are stored in the machine data:
MD12050 $MN_OVR_FACTOR_RAPID_TRA[n].

The table contains the default settings.
The number of possible switch settings for standard machine panels is described in the Configuration Manual
for SINUMERIK 840D.

Corresponding to ... DB21, ... DBX6.6 (rapid traverse override active)
MD12050 $MN_OVR_FACTOR_RAPID_TRA[n] (evaluation of the path feedrate override switch)
MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary coded override switch)

 Z1: NC/PLC interface signals
 18.12 Feeds (V1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1693

DB21, ...
DBX6.0

Feed disable

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The signal is active in one channel in all operating modes.
The signal disables the feed for all of the axes (geometry and synchronized) that interpolate relative
to one another as long as G33 (thread) is not active.
All axes are brought to a standstill but still maintaining the path contour. When the feed disable is
canceled (0 signal), the interrupted part program is continued.
The signal triggers a feed disable for all positioning axes. This signal brings all traversing axes to a
standstill with controlled braking (ramp stop). No alarm is output.
The position control is retained, i.e. the following error is eliminated.
If a travel request is issued for an axis with an active "Feed disable", then this is kept. The queued
travel request is executed immediately when the "Feed disable" is canceled.
If the axis is interpolating in relation to others, this also applies to these axes.

Signal state 0 or
edge change
1 → 0

The feedrate is enabled for all axes of the channel.
If a travel request ("travel command") exists for an axis or group of axes when the "feed disable" is
canceled, then this is executed immediately.

Application
example(s)

Stopping machining by selecting FEED OFF on the machine control panel.

Special cases,
errors,

The feed disable is inactive when G33 is active.

DB21, ...
DBX6.6

Rapid traverse override active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The rapid traverse override between 0 and a maximum of 100% entered in the PLC interface is
channel-specific. The override factor is defined using the machine data:
MD12040 $MN_OVR_RAPID_IS_GRAY_CODE (rapid traverse override switch gray coded)
and
MD12050 $MN_OVR_FACTOR_RAPID_TRA [n] (evaluation of the rapid traverse override switch).

Signal state 0 or
edge change
1 → 0

The rapid traverse override entered at the PLC interface is ignored.
When the rapid traverse override is inactive, the NC always uses 100% as the internal override
factor.
Exceptions are the zero setting for a binary interface and the 1st switch setting for a Gray-coded
interface. In these cases, the override factors entered at the PLC interface are used. With a binary
interface, the override factor = 0. With a gray-coded interface, the value entered in the machine
data for the 1st switch setting is output as the override value.

Application
example(s)

The override value is generally selected using the rapid traverse override switch on the machine
control panel.
Using the interface signal:
DB21, ... DBX6.6 (rapid traverse override active),
the rapid traverse override switch can be enabled from the PLC user program while commissioning
a new NC program, e.g. using the key-operated switch.

Special cases,
errors,

The rapid traverse override is inactive when G33, G63, G331, G332 are active.

Corresponding to ... DB21, ... DBB5 (rapid traverse override)

Z1: NC/PLC interface signals
18.12 Feeds (V1)

 Basic Functions
1694 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB21, ...
DBX6.7

Feedrate override active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The feedrate override between 0 and a maximum of 200% entered at the PLC interface is active for
the path feedrate and therefore automatically for the related axes.
In JOG mode, the feedrate override acts directly on the axes.
The override factor is entered using the machine data:
MD12020 $MN_OVR_FEED_IS_GRAY_CODE (path feedrate override factor, gray-coded)
and
MD12030 $MN_OVR_FACTOR_FEEDRATE [n] (evaluation of the path feedrate override switch)

Signal state 0 or
edge change
1 → 0

The feedrate override entered at the PLC interface is ignored.
When the feedrate override is inactive, the NC always uses 100% as the internal override factor.
Exceptions are the zero setting for a binary interface and the 1st switch setting for a Gray-coded
interface. In these cases, the override factors entered in the PLC interface are used. With a binary
interface, the override factor = 0. With a gray-coded interface, the value entered in the machine
data for the 1st switch setting is output as the override value.

Application
example(s)

The override value is generally selected using the feedrate override switch on the machine control
panel.
Using the interface signal:
DB21, ... DBX6.7 (feedrate override active),
the feedrate override switch can be enabled from the PLC user program while commissioning a
new NC program, e.g. using the key-operated switch.

Special cases,
errors,

The feedrate override is inactive when G33, G63, G331, G332 are active.

Corresponding to ... DB21, ... DBB4 (feedrate override)

DB21, ...
DBX12.3, DBX16.3,
DBX20.3

Feed stop (Geometry axis 1 to 3)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The signal is only active in JOG mode.
The signal stops the feed of the geometry axis. This signal brings all traversing axes to a standstill
with controlled braking (ramp stop). No alarm is output.
The position control is retained, i.e. the following error is eliminated.
If, for a geometry axis, a travel request is issued with an active "feed stop", the request is kept. This
queued travel request is executed immediately after the "feed stop" is canceled.

Signal state 0 or
edge change
1 → 0

The feed is enabled for the geometry axis.
If, for the geometry axis, a travel request ("travel command") is active when the "feed stop" is
canceled, this is executed immediately.

 Z1: NC/PLC interface signals
 18.12 Feeds (V1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1695

DB21, ...
DBX24.6

Dry run feedrate selected

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Dry run feedrate is selected.
Instead of the programmed feedrate, the dry run feedrate entered in setting data:
SD42100 $SC_DRY_RUN_FEED
is active.
When activated from the operator panel, the dry run feed signal is automatically entered in the PLC
interface and transmitted by the PLC basic program to the PLC interface signal:
DB21, ... DBX0.6 (active dry run feed).

Signal state 0 or
edge change
1 → 0

Dry run feedrate is not selected.
The programmed feedrate is active.

Corresponding to ... DB21, ... DBX0.6 (activate dry run feed)
SD42100 $SC_DRY_RUN_FEED (dry run feedrate)

DB21, ...
DBX25.3

Feedrate override selected for rapid traverse

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The feedrate override switch should also be active as rapid traverse override switch.
Override values above 100% are limited to the maximum value for 100% rapid traverse override.
The interface signal:
DB21, ... DBX25.3 (feedrate override for rapid traverse selected)
is automatically entered into the PLC interface from the operator panel
and transferred from the PLC basic program to the PLC interface signal:
DB21, ... DBX6.6 (rapid traverse override active).

Further, the interface signal:
DB21, ... DBB4 (feedrate override)
is copied from the PLC basic program to the interface signal:
DB21, ... DBB5 (rapid traverse override).

Signal state 0 or
edge change
1 → 0

The feedrate override switch should not be activated as rapid traverse override switch.

Application
example(s)

The signal is used when no separate rapid traverse override switch is available.

Z1: NC/PLC interface signals
18.12 Feeds (V1)

 Basic Functions
1696 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB 21, ...
DBX29.0 - DBX29.3

Activate fixed feedrate 1 - 4 for path/geometry axes

Edge evaluation: No Signal(s) updated: Cyclically
Description These signals are used to select/de-select the function "fixed feed" and define which fixed feed

should be effective for path/geometry axes.

Corresponding to ... MD12202 $MN_PERMANENT_FEED[n] 
MD12200 $MN_RUN_OVERRIDE_0

 Z1: NC/PLC interface signals
 18.12 Feeds (V1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1697

18.12.2 Signals to axis/spindle (DB31, ...)

DB31, ...
DBB0

Feedrate override (axis-specific)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The axis-specific feedrate override can be defined via the PLC in binary or Gray coding. With binary coding, the
feed value is interpreted in %. 0% to 200% feed changes are possible, in accordance with the binary value in
the byte.
The following permanent assignment applies:

Binary values > 200 are limited to 200%.
Using the machine data:
MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary-coded override switch)
the maximum axis-specific feedrate override can be additionally limited.
In gray coding, the following codes are assigned to the individual switch settings:

The factors listed in the table for the axial feedrate override
are stored in the NC-specific machine data:
MD12010 $MN_OVR_FACTOR_AX_SPEED [n]

The table contains the default settings.
The number of possible switch settings for standard machine panels is described in the Configuration Manual
for SINUMERIK 840D.

Z1: NC/PLC interface signals
18.12 Feeds (V1)

 Basic Functions
1698 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBB0

Feedrate override (axis-specific)

Corresponding to ... DB31, ... DBX1.7 (override effective)
MD12010 $MN_OVR_FACTOR_AX_SPEED [n] (evaluation of the axis feedrate override switch)
MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary coded override switch)

DB31, ...
DBX1.7

Override active

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

Feedrate override active:
The axis-specific feedrate override between 0 and a maximum of 200% entered in the PLC
interface is used.
The override factor is defined using the machine data:
MD12000 $MN_OVR_AX_IS_GRAY_CODE (axis feedrate override switch gray coded)
and
MD12010 $MN_OVR_FACTOR_AX_SPEED [n] (evaluation of the axis feedrate override switch).
Spindle override active:
The spindle override - input at the PLC interface - of 0 to a maximum of 200% is taken into account.
The override factor is entered using the machine data:
MD12060 $MN_OVR_SPIND_IS_GRAY_CODE (spindle override switch, Gray coded)
and
MD12070 $MN_OVR_FACTOR_SPIND_SPEED [n] (evaluation of the spindle override switch).

Signal state 0 or
edge change
1 → 0

The existing axis-specific feedrate override or spindle override is not active.
If the feedrate override is inactive, "100%" is used as the internal override factor.
Exceptions are the zero setting for a binary interface and the 1st switch setting for a Gray-coded
interface. In these cases, the override factors entered at the PLC interface are used.
With a binary interface, the override factor = 0. With a gray-coded interface, the value entered in the
machine data for the 1st switch setting is output as the override value.

Application
example(s)

The override value is generally specified using the axis-specific feedrate override switch or the
spindle override switch on the machine control panel.
The "feedrate override active" signal can be used to enable the feedrate override switch from the
PLC user program, e.g. using the key-operated switch when commissioning a new NC program.

Special cases,
errors,

The spindle override is always accepted with 100% in the spindle "Oscillation mode".
The spindle override acts on the programmed values before the limits (e.g. G26, LIMS...) intervene.
The feedrate override is ineffective for:
• Active G33
• Active G63 (the override is defined in the NC at 100%)
• Active G331, G332 (the override is defined in the NC at 100%)
The spindle override is inactive for:
• Active G63 (the override is defined in the NC at 100%)

Corresponding to ... DB31, ... DBB0 (feed/spindle override)

 Z1: NC/PLC interface signals
 18.12 Feeds (V1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1699

DB31, ...
DBX3.2 - DBX3.5

Activate fixed feedrate 1 - 4 for machine axes

Edge evaluation: No Signal(s) updated: Cyclically
Description These signals are used to select/de-select the function "fixed feed" and define which fixed feed

should be effective for machine axes.

Corresponding to ... MD12202 $MN_PERMANENT_FEED[n] 
MD12200 $MN_RUN_OVERRIDE_0

DB31, ...
DBX4.3

Feed stop / spindle stop (axis-specific)

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The signal is active in all modes.
Feed stop:
The signal triggers a "feed stop" for the axis. This signal brings all traversing axes to a standstill
with controlled braking (ramp stop). No alarm is output.
The signal triggers a "feed stop" for all path axes interpolating relative to each other when the "feed
stop" is activated for any one of these path axes. In this case, all the axes are brought to a stop with
adherence to the path contour. When the "feed stop" signal is canceled, execution of the interrupted
part program is resumed.
The position control is retained, i.e. the following error is eliminated.
If a travel request is issued for an axis with an active "feed stop", this is kept. This queued travel
request is executed immediately after the "feed stop" is canceled.
If the axis is interpolating in relation to others, this also applies to these axes.
Spindle stop:
The spindle is brought to a standstill along the acceleration characteristic.
In the positioning mode, when the "Spindle stop" signal is set positioning is interrupted. The above
response applies with respect to individual axes.

Signal state 0 or
edge change
1 → 0

Feed stop:
The feedrate is enabled for the axis.
If a travel request ("travel command") is active when the "feed stop" is canceled, this is executed
immediately.
Spindle stop:
The speed is enabled for the spindle.
The spindle is accelerated to the previous speed setpoint with the acceleration characteristic or, in
positioning mode, positioning is resumed.

Z1: NC/PLC interface signals
18.12 Feeds (V1)

 Basic Functions
1700 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DB31, ...
DBX4.3

Feed stop / spindle stop (axis-specific)

Application
example(s)

Feed stop:
The traversing motion of the machine axes is not started with "feed stop", if, for example, certain
operating states exist at the machine that do not permit the axes to be moved (e.g. a door is not
closed).
Spindle stop:
In order to change a tool
To enter help functions (M, S, H, T, D and F functions) during setup.

Special cases,
errors,

Spindle stop is inactive when G331, G332 are active.

DB31, ...
DBB19

Spindle override

Edge evaluation: No Signal(s) updated: Cyclically
Signal state 1 or
edge change
0 → 1

The spindle override can be defined via the PLC in binary or Gray coding.
The override value determines the percentage of the programmed speed setpoint that is issued to
the spindle.
With binary coding, the override is interpreted in %. 0% to 200% feed changes are possible, in
accordance with the binary value in the byte.
The following permanent assignment applies:

Binary values > 200 are limited to 200%.
The machine data:
MD12100 $MN_OVR_FACTOR_LIMIT_BIN (limit for binary-coded override switch)
can be used to additionally limit the maximum spindle override.

 Z1: NC/PLC interface signals
 18.12 Feeds (V1)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1701

DB31, ...
DBB19

Spindle override

Signal state 1 or
edge change
0 → 1

In gray coding, the following codes are assigned to the individual switch settings:

The factors listed in the table for spindle override are stored in the machine data:
MD12070 $MN_OVR_FACTOR_SPIND_SPEED [n]

The table contains the default settings.
The number of possible switch settings for standard machine panels is described in the
Configuration Manual for SINUMERIK 840D.

Corresponding to ... DB31, ... DBX1.7 (override active)
MD12070 $MN_OVR_FACTOR_SPIND_SPEED [n] (evaluation of the spindle override switch)
MD12100 $MN_FACTOR_LIMIT_BIN (limit for binary-coded override switch)

Z1: NC/PLC interface signals
18.12 Feeds (V1)

 Basic Functions
1702 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

18.12.3 Signals from axis/spindle (DB31, ...)

DB31, ...
DBX62.2

Revolutional feed rate active

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

For programming of G95 (revolutional feed rate) in JOG mode or automatic mode.

Corresponding to SD41100 $SN_JOG_REV_IS_ACTIVE (revolutional feed rate for JOG active)
SD42600 $SC_JOG_FEED_PER_REV_SOURCE
(in the JOG mode revolutional feed rate for geometry axes, on which the frame with rotation acts)
SD43300 $SA_ASSIGN_FEED_PER_REV_SOURCE
(revolutional feed rate for position axes/spindles)
MD32040 $MA_JOG_REV_VELO_RAPID (revolutional feed rate for JOG with rapid traverse
override)
MD32050 $MA_JOG_REV_VELO (revolutional feed rate for JOG mode)

DB31, ...
DBB78 - DBB81

F function for positioning axis

Edge evaluation: no Signal(s) updated: cyclic
Signal state 1 or
edge change
0 → 1

The F value of a positioning axis programmed in the current block is entered in the axisspecific PLC
interface signal.
The assignment between the DB number and machine axis number is established using the axis
name.
The value is retained until it is overwritten by another.
Format: Binary number in real format.

Application
example(s)

Modification of the programmed F value by the PLC, e.g. by overwriting the selected axisspecific
feed rate override.

Corresponding to MD22240 $MC_AUXFU_F_SYNC_TYPE (output time F functions)

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1703

Appendix A
A.1 List of abbreviations

A
O Output
ADI4 (Analog drive interface for 4 axes)
AC Adaptive Control
ALM Active Line Module
ARM Rotating induction motor
AS PLC
ASCII American Standard Code for Information Interchange: American coding standard for

the exchange of information
ASIC Application-Specific Integrated Circuit: User switching circuit
ASUB Asynchronous subprogram
AUXFU Auxiliary Function: Auxiliary function
STL Statement List
UP User Program

B
BA Mode
BAG Mode group
BCD Binary Coded Decimals: Decimal numbers encoded in binary code
BERO Proximity limit switch with feedback oscillator
BI Binector Input
BICO Binector Connector
BIN BINary files: Binary files
BIOS Basic Input Output System
BCS Basic Coordinate System
BO Binector Output
OPI Operator Panel Interface

C
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CC Compile Cycle: Compile cycles

Appendix
A.1 List of abbreviations

 Basic Functions
1704 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

C
CI Connector Input
CF Card Compact Flash Card
CNC Computerized Numerical Control: Computer-Supported Numerical Control
CO Connector Output
CoL Certificate of License
COM Communication
CPA Compiler Projecting Data: Configuring data of the compiler
CRT Cathode Ray Tube picture tube
CSB Central Service Board: PLC module
CU Control Unit
CP Communication Processor
CPU Central Processing Unit: Central processing unit
CR Carriage Return
CTS Clear To Send: Ready to send signal for serial data interfaces
CUTCOM Cutter radius Compensation: Tool radius compensation

D
DAC Digital-to-Analog Converter
DB Data Block (PLC)
DBB Data Block Byte (PLC)
DBD Data Block Double word (PLC)
DBW Data Block Word (PLC)
DBX Data block bit (PLC)
DDE Dynamic Data Exchange
DIN Deutsche Industrie Norm
DIO Data Input/Output: Data transfer display
DIR Directory: Directory
DLL Dynamic Link Library
DO Drive Object
DPM Dual Port Memory
DPR Dual Port RAM
DRAM Dynamic memory (non-buffered)
DRF Differential Resolver Function: Differential revolver function (handwheel)
DRIVE-CLiQ Drive Component Link with IQ
DRY Dry Run: Dry run feedrate
DSB Decoding Single Block: Decoding single block
DSC Dynamic Servo Control / Dynamic Stiffness Control
DW Data Word
DWORD Double Word (currently 32 bits)

 Appendix
 A.1 List of abbreviations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1705

I
I Input
I/O Input/Output
ENC Encoder: Actual value encoder
EFP Compact I/O module (PLC I/O module)
ESD Electrostatic Sensitive Devices
EMC ElectroMagnetic Compatibility
EN European standard
EnDat Encoder interface
EPROM Erasable Programmable Read Only Memory: Erasable, electrically programmable

read-only memory
ePS Network Services Services for Internet-based remote machine maintenance
EQN Designation for an absolute encoder with 2048 sine signals per revolution
ES Engineering System
ESR Extended Stop and Retract
ETC ETC key ">"; softkey bar extension in the same menu

F
FB Function Block (PLC)
FC Function Call: Function Block (PLC)
FEPROM Flash EPROM: Read and write memory
FIFO First In First Out: Memory that works without address specification and whose data is

read in the same order in which they was stored
FIPO Fine interpolator
FPU Floating Point Unit: Floating Point Unit
CRC Cutter Radius Compensation
FST Feed Stop: Feedrate stop
FBD Function Block Diagram (PLC programming method)
FW Firmware

G
GC Global Control (PROFIBUS: Broadcast telegram)
GEO Geometry, e.g. geometry axis
GIA Gear Interpolation dAta: Gear interpolation data
GND Signal Ground
GP Basic program (PLC)
GS Gear Stage
GSD Device master file for describing a PROFIBUS slave

Appendix
A.1 List of abbreviations

 Basic Functions
1706 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

G
GSDML Generic Station Description Markup Language: XML-based description language for

creating a GSD file
GUD Global User Data: Global user data

H
HEX Abbreviation for hexadecimal number
AuxF Auxiliary Function
HLA Hydraulic linear drive
HMI Human Machine Interface: SINUMERIK user interface
MSD Main Spindle Drive
HW Hardware

I
IBN Commissioning
ICA Interpolatory compensation
IM Interface Module Interconnection module
IMR Interface Module Receive: Interface module for receiving data
IMS Interface Module Send: Interface module for sending data
INC Increment: Increment
INI Initializing Data: Initializing data
IPO Interpolator
ISA Industry Standard Architecture
ISO International Standardization Organization

J
JOG Jogging: Setup mode

K
KV Gain factor of control loop
Kp Proportional gain
KÜ Transformation ratio
LAD Ladder Diagram (PLC programming method)

 Appendix
 A.1 List of abbreviations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1707

L
LAI Logic Machine Axis Image: Logical machine axes image
LAN Local Area Network
LCD Liquid Crystal Display: Liquid crystal display
LED Light Emitting Diode: Light-emitting diode
LF Line Feed
PMS Position Measuring System
LR Position controller
LSB Least Significant Bit Least significant bit
LUD Local User Data: User data (local)

M
MAC Media Access Control
MAIN Main program: Main program (OB1, PLC)
MB Megabyte
MCI Motion Control Interface
MCIS Motion Control Information System
MCP Machine Control Panel: Machine control panel
MD Machine Data
MDA Manual Data Automatic: Manual input
MSGW Message Word
MCS Machine Coordinate System
MLFB Machine-readable product code
MM Motor Module
MPF Main Program File: Main program (NC)
MCP Machine Control Panel

N
NC Numerical Control: Numerical Control
NCK Numerical Control Kernel: NC kernel with block preparation, traversing range, etc.
NCU Numerical Control Unit: NCK hardware unit
NRK Name for the operating system of the NCK
IS Interface Signal
NURBS Non-Uniform Rational B-Spline
ZO Zero Offset
NX Numerical Extension: Axis expansion board

Appendix
A.1 List of abbreviations

 Basic Functions
1708 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

O
OB Organization block in the PLC
OEM Original Equipment Manufacturer
OP Operator Panel: Operating equipment
OPI Operator Panel Interface: Interface for connection to the operator panel
OPT Options: Options
OLP Optical Link Plug: Fiber optic bus connector
OSI Open Systems Interconnection: Standard for computer communications

P
PIQ Process Image Output
PII Process Image Input
PC Personal Computer
PCIN Name of the SW for data exchange with the controller
PCMCIA Personal Computer Memory Card International Association:

Plug-in memory card standardization
PCU PC Unit: PC box (computer unit)
PG Programming device
PKE Parameter identification: Part of a PIV
PIV Parameter identification: Value (parameterizing part of a PPO)
PLC Programmable Logic Control: Adaptation control
PN PROFINET
PNO PROFIBUS user organization
PO POWER ON
POU Program Organization Unit
POS Position/positioning
POSMO A Positioning Motor Actuator: Positioning motor
POSMO CA Positioning Motor Compact AC: Complete drive unit with integrated power and

control module as well as positioning unit and program memory; AC infeed
POSMO CD Positioning Motor Compact DC: Like CA but with DC infeed
POSMO SI Positioning Motor Servo Integrated: Positioning motor, DC infeed
PPO Parameter Process data Object: Cyclic data telegram for PROFIBUS DP

transmission and "Variable speed drives" profile
PPU Panel Processing Unit (central hardware for a panel-based CNC, e.g SINUMERIK

828D)
PROFIBUS Process Field Bus: Serial data bus
PRT Program Test
PSW Program control word
PTP Point-To-Point Point-To-Point
PUD Program global User Data: Program-global user variables
PZD Process data: Process data part of a PPO

 Appendix
 A.1 List of abbreviations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1709

Q
QEC Quadrant Error Compensation

R
RAM Random Access Memory: Read/write memory
REF REFerence point approach function
REPOS REPOSition function
RISC Reduced Instruction Set Computer: Type of processor with small instruction set and

ability to process instructions at high speed
ROV Rapid Override: Input correction
RP R Parameter, arithmetic parameter, predefined user variable
RPA R Parameter Active: Memory area on the NCK for R parameter numbers
RPY Roll Pitch Yaw: Rotation type of a coordinate system
RTLI Rapid Traverse Linear Interpolation: Linear interpolation during rapid traverse motion
RTS Request To Send: Control signal of serial data interfaces
RTCP Real Time Control Protocol

S
SA Synchronized Action
SBC Safe Brake Control: Safe Brake Control
SBL Single Block: Single block
SBR Subroutine: Subroutine (PLC)
SD Setting Data
SDB System Data Block
SEA Setting Data Active: Identifier (file type) for setting data
SERUPRO SEarch RUn by PROgram test: Search run by program test
SFB System Function Block
SFC System Function Call
SGE Safety-related input
SGA Safety-related output
SH Safe standstill
SIM Single Inline Module
SK Softkey
SKP Skip: Function for skipping a part program block
SLM Synchronous Linear Motor
SM Stepper Motor
SMC Sensor Module Cabinet Mounted
SME Sensor Module Externally Mounted

Appendix
A.1 List of abbreviations

 Basic Functions
1710 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

S
SMI Sensor Module Integrated
SPF Sub Routine File: Subprogram (NC)
PLC Programmable Logic Controller
SRAM Static RAM (non-volatile)
TNRC Tool Nose Radius Compensation
SRM Synchronous Rotary Motor
LEC Leadscrew Error Compensation
SSI Serial Synchronous Interface: Synchronous serial interface
SSL Block search
STW Control word
GWPS Grinding Wheel Peripheral Speed
SW Software
SYF System Files: System files
SYNACT SYNchronized ACTion: Synchronized Action

T
TB Terminal Board (SINAMICS)
TCP Tool Center Point: Tool tip
TCP/IP Transport Control Protocol / Internet Protocol
TCU Thin Client Unit
TEA Testing Data Active: Identifier for machine data
TIA Totally Integrated Automation
TM Terminal Module (SINAMICS)
TO Tool Offset: Tool offset
TOA Tool Offset Active: Identifier (file type) for tool offsets
TRANSMIT Transform Milling Into Turning: Coordination transformation for milling operations on

a lathe
TTL Transistor-Transistor Logic (interface type)
TZ Technology cycle

U
UFR User Frame: Zero Offset
SR Subprogram
USB Universal Serial Bus
UPS Uninterruptible Power Supply

 Appendix
 A.1 List of abbreviations

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1711

V
VDI Internal communication interface between NCK and PLC
VDI Verein Deutscher Ingenieure [Association of German Engineers]
VDE Verband Deutscher Elektrotechniker [Association of German Electrical Engineers]
VI Voltage Input
VO Voltage Output
FDD Feed Drive

W
SAR Smooth Approach and Retraction
WCS Workpiece Coordinate System
T Tool
TLC Tool Length Compensation
WOP Workshop-Oriented Programming
WPD Workpiece Directory: Workpiece directory
TRC Tool Radius Compensation
T Tool
TO Tool Offset
TM Tool Management
TC Tool change

X
XML Extensible Markup Language

Z
ZOA Zero Offset Active: Identifier for zero offsets
ZSW Status word (of drive)

Appendix
A.2 Documentation overview

 Basic Functions
1712 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

A.2 Documentation overview

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1713

Glossary

Absolute dimensions
A destination for an axis motion is defined by a dimension that refers to the origin of the
currently active coordinate system. See → Incremental dimension

Acceleration with jerk limitation
In order to optimize the acceleration response of the machine whilst simultaneously
protecting the mechanical components, it is possible to switch over in the machining program
between abrupt acceleration and continuous (jerk-free) acceleration.

Address
An address is the identifier for a certain operand or operand range, e.g. input, output, etc.

Alarms
All → messages and alarms are displayed on the operator panel in plain text with date and
time and the corresponding symbol for the cancel criterion. Alarms and messages are
displayed separately.

1. Alarms and messages in the part program:

Alarms and messages can be displayed in plain text directly from the part program.

2. Alarms and messages from the PLC:

Alarms and messages for the machine can be displayed in plain text from the PLC
program. No additional function block packages are required for this purpose.

Archiving
Reading out of files and/or directories on an external memory device.

Asynchronous subprogram
Part program that can be started asynchronously to (independently of) the current program
status using an interrupt signal (e.g. "Rapid NC input" signal).

Automatic
Operating mode of the controller (block sequence operation according to DIN): Operating
mode for NC systems in which a → subprogram is selected and executed continuously.

Glossary

 Basic Functions
1714 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Auxiliary functions
Auxiliary functions enable → part programs to transfer → parameters to the → PLC, which
then trigger reactions defined by the machine manufacturer.

Axes
In accordance with their functional scope, the CNC axes are subdivided into:

● Axes: Interpolating path axes

● Auxiliary axes: Non-interpolating feed and positioning axes with an axis-specific feedrate.
Auxiliary axes are not involved in actual machining, e.g. tool feeder, tool magazine.

Axis address
See → Axis name

Axis name
To ensure clear identification, all channel and → machine axes of the control system must be
designated with unique names in the channel and control system. The → geometry axes are
called X, Y, Z. The rotary axes rotating around the geometry axes → are called A, B, C.

Backlash compensation
Compensation for a mechanical machine backlash, e.g. backlash on reversal for ball screws.
Backlash compensation can be entered separately for each axis.

Backup battery
The backup battery ensures that the → user program in the → CPU is stored so that it is safe
from power failure and so that specified data areas and bit memory, timers and counters are
stored retentively.

Basic axis
Axis whose setpoint or actual value position forms the basis of the calculation of a
compensation value.

Basic Coordinate System
Cartesian coordinate system which is mapped by transformation onto the machine
coordinate system.

The programmer uses axis names of the basic coordinate system in the → part program. The
basic coordinate system exists parallel to the → machine coordinate system if no
→ transformation is active. The difference lies in the → axis names.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1715

Baud rate
Rate of data transfer (bits/s).

Blank
Workpiece as it is before it is machined.

Block
"Block" is the term given to any files required for creating and processing programs.

Block search
For debugging purposes or following a program abort, the "Block search" function can be
used to select any location in the part program at which the program is to be started or
resumed.

Booting
Loading the system program after power ON.

C axis
Axis around which the tool spindle describes a controlled rotational and positioning motion.

C spline
The C spline is the most well-known and widely used spline. The transitions at the
interpolation points are continuous, both tangentially and in terms of curvature. 3rd order
polynomials are used.

Channel
A channel is characterized by the fact that it can process a → part program independently of
other channels. A channel exclusively controls the axes and spindles assigned to it. Part
program runs of different channels can be coordinated through → synchronization.

Circular interpolation
The → tool moves on a circle between specified points on the contour at a given feedrate,
and the workpiece is thereby machined.

CNC
See → NC

Glossary

 Basic Functions
1716 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

COM
Component of the NC for the implementation and coordination of communication.

Compensation axis
Axis with a setpoint or actual value modified by the compensation value

Compensation table
Table containing interpolation points. It provides the compensation values of the
compensation axis for selected positions on the basic axis.

Compensation value
Difference between the axis position measured by the encoder and the desired, programmed
axis position.

Continuous-path mode
The objective of continuous-path mode is to avoid substantial deceleration of the → path
axes at the part program block boundaries and to change to the next block at as close to the
same path velocity as possible.

Contour
Contour of the → workpiece

Contour monitoring
The following error is monitored within a definable tolerance band as a measure of contour
accuracy. An unacceptably high following error can cause the drive to become overloaded,
for example. In such cases, an alarm is output and the axes are stopped.

Coordinate system
See → Machine coordinate system, → Workpiece coordinate system

CPU
Central processing unit, see → PLC

Curvature
The curvature k of a contour is the inverse of radius r of the nestling circle in a contour point
(k = 1/r).

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1717

Cycles
Protected subprograms for execution of repetitive machining operations on the → workpiece.

Data block
1. Data unit of the → PLC that → HIGHSTEP programs can access.

2. Data unit of the → NC: Data modules contain data definitions for global user data. This
data can be initialized directly when it is defined.

Data word
Two-byte data unit within a → data block.

Diagnostics
1. Operating area of the controller.

2. The controller has a self-diagnostics program as well as test functions for servicing
purposes: status, alarm, and service displays

Dimensions specification, metric and inches
Position and pitch values can be programmed in inches in the machining program.
Irrespective of the programmable dimensions (G70/G71), the controller is set to a basic
system.

DRF
Differential Resolver Function: NC function which generates an incremental zero offset in
Automatic mode in conjunction with an electronic handwheel.

Drive
The drive is the unit of the CNC that performs the speed and torque control based on the
settings of the NC.

Dynamic feedforward control
Inaccuracies in the → contour due to following errors can be practically eliminated using
dynamic, acceleration-dependent feedforward control. This results in excellent machining
accuracy even at high → path velocities. Feedforward control can be selected and
deselected on an axis-specific basis via the → part program.

Editor
The editor makes it possible to create, edit, extend, join, and import programs/texts/program
blocks.

Glossary

 Basic Functions
1718 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Exact stop
When an exact stop statement is programmed, the position specified in a block is
approached exactly and, if necessary, very slowly. To reduce the approach time, → exact
stop limits are defined for rapid traverse and feed.

Exact stop limit
When all path axes reach their exact stop limits, the controller responds as if it had reached
its precise destination point. A block advance of the → part program occurs.

External zero offset
Zero offset specified by the → PLC.

Fast retraction from the contour
When an interrupt occurs, a motion can be initiated via the CNC machining program,
enabling the tool to be quickly retracted from the workpiece contour that is currently being
machined. The retraction angle and the distance retracted can also be parameterized. An
interrupt routine can also be executed following the fast retraction.

Feed override
The programmed velocity is overriden by the current velocity setting made via the → machine
control panel or from the → PLC (0 to 200%). The feedrate can also be corrected by a
programmable percentage factor (1 to 200%) in the machining program.

Finished-part contour
Contour of the finished workpiece. See → Raw part.

Fixed machine point
Point that is uniquely defined by the machine tool, e.g. machine reference point.

Fixed-point approach
Machine tools can approach fixed points such as a tool change point, loading point, pallet
change point, etc. in a defined way. The coordinates of these points are stored in the
controller. The controller moves the relevant axes in → rapid traverse, whenever possible.

Frame
A frame is an arithmetic rule that transforms one Cartesian coordinate system into another
Cartesian coordinate system. A frame contains the following components: → zero offset,
→ rotation, → scaling, → mirroring.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1719

Functionality
The path-jerk limitation can be activated/deactivated by programming the setting data.

Parameter: Value

● Value range: TRUE, FALSE

Application:

● Part program

● Static synchronized action

Geometry
Description of a → workpiece in the → workpiece coordinate system.

Geometry axis
The geometry axes form the 2 or 3-dimensional → workpiece coordinate system in which, in
→ part programs, the geometry of the workpiece is programmed.

Ground
Ground is taken as the total of all linked inactive parts of a device which will not become live
with a dangerous contact voltage even in the event of a malfunction.

Helical interpolation
The helical interpolation function is ideal for machining internal and external threads using
form milling cutters and for milling lubrication grooves.

The helix comprises two motions:

● Circular motion in one plane

● A linear motion perpendicular to this plane

High-level CNC language
The high-level language offers: → user-defined variables, → system variables, → macro
techniques.

High-speed digital inputs/outputs
The digital inputs can be used for example to start fast CNC program routines (interrupt
routines). High-speed, program-driven switching functions can be initiated via the digital
CNC outputs

Glossary

 Basic Functions
1720 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

HIGHSTEP
Summary of programming options for → PLCs of the AS300/AS400 system.

HW Config
SIMATIC S7 tool for the configuration and parameterization of hardware components within
an S7 project

Identifier
In accordance with DIN 66025, words are supplemented using identifiers (names) for
variables (arithmetic variables, system variables, user variables), subprograms, key words,
and words with multiple address letters. These supplements have the same meaning as the
words with respect to block format. Identifiers must be unique. It is not permissible to use the
same identifier for different objects.

Inch measuring system
Measuring system which defines distances in inches and fractions of inches.

Inclined surface machining
Drilling and milling operations on workpiece surfaces that do not lie in the coordinate planes
of the machine can be performed easily using the function "inclined-surface machining".

Increment
Travel path length specification based on number of increments. The number of increments
can be stored as → setting data or be selected by means of a suitably labeled key (i.e. 10,
100, 1000, 10000).

Incremental dimension
Also incremental dimension: A destination for axis traversal is defined by a distance to be
covered and a direction referenced to a point already reached. See → Absolute dimension.

Intermediate blocks
Motions with selected → tool offset (G41/G42) may be interrupted by a limited number of
intermediate blocks (blocks without axis motions in the offset plane), whereby the tool offset
can still be correctly compensated for. The permissible number of intermediate blocks which
the controller reads ahead can be set in system parameters.

Interpolator
Logic unit of the → NCK that defines intermediate values for the motions to be carried out in
individual axes based on information on the end positions specified in the part program.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1721

Interpolatory compensation
Interpolatory compensation is a tool that enables manufacturing-related leadscrew error and
measuring system error compensations (SSFK, MSFK).

Interrupt routine
Interrupt routines are special → subprograms that can be started by events (external signals)
in the machining process. A part program block which is currently being worked through is
interrupted and the position of the axes at the point of interruption is automatically saved.

Inverse-time feedrate
The time required for the path of a block to be traversed can also be programmed for the
axis motion instead of the feed velocity (G93).

JOG
Control operating mode (setup mode): In JOG mode, the machine can be set up. Individual
axes and spindles can be traversed in JOG mode by means of the direction keys. Additional
functions in JOG mode include: → Reference point approach, → Repos, and → Preset (set
actual value).

Key switch
The key switch on the → machine control panel has four positions that are assigned functions
by the operating system of the controller. The key switch has three different colored keys
that can be removed in the specified positions.

Keywords
Words with specified notation that have a defined meaning in the programming language for
→ part programs.

KÜ
Transformation ratio

KV
Servo gain factor, a control variable in a control loop.

Leading axis
The leading axis is the → gantry axis that exists from the point of view of the operator and
programmer and, thus, can be influenced like a standard NC axis.

Glossary

 Basic Functions
1722 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Leadscrew error compensation
Compensation for the mechanical inaccuracies of a leadscrew participating in the feed. The
controller uses stored deviation values for the compensation.

Limit speed
Maximum/minimum (spindle) speed: The maximum speed of a spindle can be limited by
specifying machine data, the → PLC or → setting data.

Linear axis
In contrast to a rotary axis, a linear axis describes a straight line.

Linear interpolation
The tool travels along a straight line to the destination point while machining the workpiece.

Load memory
The load memory is the same as the → working memory for the CPU 314 of the → PLC.

Look Ahead
The Look Ahead function is used to achieve an optimal machining speed by looking ahead
over an assignable number of traversing blocks.

Machine axes
Physically existent axes on the machine tool.

Machine control panel
An operator panel on a machine tool with operating elements such as keys, rotary switches,
etc., and simple indicators such as LEDs. It is used to directly influence the machine tool via
the PLC.

Machine coordinate system
A coordinate system, which is related to the axes of the machine tool.

Machine zero
Fixed point of the machine tool to which all (derived) measuring systems can be traced back.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1723

Machining channel
A channel structure can be used to shorten idle times by means of parallel motion
sequences, e.g. moving a loading gantry simultaneously with machining. Here, a CNC
channel must be regarded as a separate CNC control system with decoding, block
preparation and interpolation.

Macro techniques
Grouping of a set of statements under a single identifier. The identifier represents the set of
consolidated statements in the program.

Main block
A block prefixed by ":" introductory block, containing all the parameters required to start
execution of a -> part program.

Main program
The term "main program" has its origins during the time when part programs were split
strictly into main and → subprograms. This strict division no longer exists with today's
SINUMERIK NC language. In principle, any part program in the channel can be selected and
started. It then runs through in → program level 0 (main program level). Further part
programs or → cycles as subprograms can be called up in the main program.

MDA
Control operating mode: Manual Data Automatic. In the MDA mode, individual program
blocks or block sequences with no reference to a main program or subprogram can be input
and executed immediately afterwards through actuation of the NC start key.

Messages
All messages programmed in the part program and → alarms detected by the system are
displayed on the operator panel in plain text with date and time and the corresponding
symbol for the cancel criterion. Alarms and messages are displayed separately.

Metric measuring system
Standardized system of units: For length, e.g. mm (millimeters), m (meters).

Mirroring
Mirroring reverses the signs of the coordinate values of a contour, with respect to an axis. It
is possible to mirror with respect to more than one axis at a time.

Glossary

 Basic Functions
1724 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Mode
An operating concept on a SINUMERIK controller. The following modes are defined: → Jog,
→ MDA, → Automatic.

Mode group
Axes and spindles that are technologically related can be combined into one mode group.
Axes/spindles of a mode group can be controlled by one or more → channels. The same
→ mode type is always assigned to the channels of the mode group.

NC
Numerical Control: Numerical control (NC) includes all components of machine tool control:
→ NCK, → PLC, HMI, → COM.

 Note

A more correct term for SINUMERIK controllers would be: Computerized Numerical Control

NCK
Numerical Control Kernel: Component of NC that executes the → part programs and
basically coordinates the motion operations for the machine tool.

Network
A network is the connection of multiple S7-300 and other end devices, e.g. a programming
device via a → connecting cable. A data exchange takes place over the network between the
connected devices.

NRK
Numeric robotic kernel (operating system of → NCK)

NURBS
The motion control and path interpolation that occurs within the controller is performed based
on NURBS (Non Uniform Rational B-Splines). This provides a uniform procedure for all
internal interpolations.

OEM
The scope for implementing individual solutions (OEM applications) has been provided for
machine manufacturers, who wish to create their own user interface or integrate technology-
specific functions in the controller.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1725

Offset memory
Data range in the control, in which the tool offset data is stored.

Oriented spindle stop
Stops the workpiece spindle in a specified angular position, e.g. in order to perform
additional machining at a particular location.

Oriented tool retraction
RETTOOL: If machining is interrupted (e.g. when a tool breaks), a program command can be
used to retract the tool in a user-specified orientation by a defined distance.

Overall reset
In the event of an overall reset, the following memories of the → CPU are deleted:

● → Working memory

● Read/write area of → load memory

● → System memory

● → Backup memory

Override
Manual or programmable control feature which enables the user to override programmed
feedrates or speeds in order to adapt them to a specific workpiece or material.

Part program
Series of statements to the NC that act in concert to produce a particular → workpiece.
Likewise, this term applies to execution of a particular machining operation on a given → raw
part.

Part program block
Part of a → part program that is demarcated by a line feed. There are two types: → main
blocks and → subblocks.

Part program management
Part program management can be organized by → workpieces. The size of the user memory
determines the number of programs and the amount of data that can be managed. Each file
(programs and data) can be given a name consisting of a maximum of 24 alphanumeric
characters.

Glossary

 Basic Functions
1726 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Path axis
Path axes include all machining axes of the → channel that are controlled by the
→ interpolator in such a way that they start, accelerate, stop, and reach their end point
simultaneously.

Path feedrate
Path feed affects → path axes. It represents the geometric sum of the feedrates of the
→ geometry axes involved.

Path velocity
The maximum programmable path velocity depends on the input resolution. For example,
with a resolution of 0.1 mm the maximum programmable path velocity is 1000 m/min.

PCIN data transfer program
PCIN is an auxiliary program for sending and receiving CNC user data (e.g. part programs,
tool offsets, etc.) via a serial interface. The PCIN program can run in MS-DOS on standard
industrial PCs.

Peripheral module
I/O modules represent the link between the CPU and the process.

I/O modules are:

● → Digital input/output modules

● → Analog input/output modules

● → Simulator modules

PLC
Programmable Logic Controller: → Programmable logic controller. Component of → NC:
Programmable control for processing the control logic of the machine tool.

PLC program memory
SINUMERIK 840D sl: The PLC user program, the user data and the basic PLC program are
stored together in the PLC user memory.

PLC programming
The PLC is programmed using the STEP 7 software. The STEP 7 programming software is
based on the WINDOWS standard operating system and contains the STEP 5 programming
functions with innovative enhancements.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1727

Polar coordinates
A coordinate system which defines the position of a point on a plane in terms of its distance
from the origin and the angle formed by the radius vector with a defined axis.

Polynomial interpolation
Polynomial interpolation enables a wide variety of curve characteristics to be generated,
such as straight line, parabolic, exponential functions (SINUMERIK 840D sl).

Positioning axis
Axis that performs an auxiliary motion on a machine tool (e.g. tool magazine, pallet
transport). Positioning axes are axes that do not interpolate with → path axes.

Pre-coincidence
Block change occurs already when the path distance approaches an amount equal to a
specifiable delta of the end position.

Program block
Program blocks contain the main program and subprograms of → part programs.

Program level
A part program started in the channel runs as a → main program on program level 0 (main
program level). Any part program called up in the main program runs as a → subprogram on
a program level 1 ... n of its own.

Programmable frames
Programmable → frames enable dynamic definition of new coordinate system output points
while the part program is being executed. A distinction is made between absolute definition
using a new frame and additive definition with reference to an existing starting point.

Programmable logic controller
Programmable logic controllers (PLCs) are electronic controllers, the function of which is
stored as a program in the control unit. This means that the layout and wiring of the device
do not depend on the function of the controller. The programmable logic control has the
same structure as a computer; it consists of a CPU (central module) with memory,
input/output modules and an internal bus system. The peripherals and the programming
language are matched to the requirements of the control technology.

Glossary

 Basic Functions
1728 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Programmable working area limitation
Limitation of the motion space of the tool to a space defined by programmed limitations.

Programming key
Characters and character strings that have a defined meaning in the programming language
for → part programs.

Protection zone
Three-dimensional zone within the → working area into which the tool tip must not pass.

Quadrant error compensation
Contour errors at quadrant transitions, which arise as a result of changing friction conditions
on the guideways, can be virtually entirely eliminated with the quadrant error compensation.
Parameterization of the quadrant error compensation is performed by means of a circuit test.

R parameters
Arithmetic parameter that can be set or queried by the programmer of the → part program for
any purpose in the program.

Rapid traverse
The highest traverse rate of an axis. For example, rapid traverse is used when the tool
approaches the → workpiece contour from a resting position or when the tool is retracted
from the workpiece contour. The rapid traverse velocity is set on a machine-specific basis
using a machine data element.

Reference point
Machine tool position that the measuring system of the → machine axes references.

Rotary axis
Rotary axes apply a workpiece or tool rotation to a defined angular position.

Rotation
Component of a → frame that defines a rotation of the coordinate system around a particular
angle.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1729

Rounding axis
Rounding axes rotate a workpiece or tool to an angular position corresponding to an
indexing grid. When a grid index is reached, the rounding axis is "in position".

RS-232-C
Serial interface for data input/output. Machining programs as well as manufacturer and user
data can be loaded and saved via this interface.

Safety functions
The controller is equipped with permanently active monitoring functions that detect faults in
the → CNC, the → PLC, and the machine in a timely manner so that damage to the
workpiece, tool, or machine is largely prevented. In the event of a fault, the machining
operation is interrupted and the drives stopped. The cause of the malfunction is logged and
output as an alarm. At the same time, the PLC is notified that a CNC alarm has been
triggered.

Scaling
Component of a → frame that implements axis-specific scale modifications.

Setting data
Data which communicates the properties of the machine tool to the NC as defined by the
system software.

Softkey
A key, whose name appears on an area of the screen. The choice of softkeys displayed is
dynamically adapted to the operating situation. The freely assignable function keys
(softkeys) are assigned defined functions in the software.

Software limit switch
Software limit switches limit the traversing range of an axis and prevent an abrupt stop of the
slide at the hardware limit switch. Two value pairs can be specified for each axis and
activated separately by means of the → PLC.

Spline interpolation
With spline interpolation, the controller can generate a smooth curve characteristic from only
a few specified interpolation points of a set contour.

Glossary

 Basic Functions
1730 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Standard cycles
Standard cycles are provided for machining operations which are frequently repeated:

● For the drilling/milling technology

● For turning technology

The available cycles are listed in the "Cycle support" menu in the "Program" operating area.
Once the desired machining cycle has been selected, the parameters required for assigning
values are displayed in plain text.

Subblock
Block preceded by "N" containing information for a sequence, e.g. positional data.

Subprogram
The term "subprogram" has its origins during the time when part programs were split strictly
into →main and subprograms. This strict division no longer exists with today's SINUMERIK
NC language. In principle, any part program or any → cycle can be called up as a
subprogram within another part program. It then runs through in the next → program level
(x+1) (subprogram level (x+1)).

Synchronization
Statements in → part programs for coordination of sequences in different → channels at
certain machining points.

Synchronized actions
1. Auxiliary function output

During workpiece machining, technological functions (→ auxiliary functions) can be output
from the CNC program to the PLC. For example, these auxiliary functions are used to
control additional equipment for the machine tool, such as quills, grabbers, clamping
chucks, etc.

2. Fast auxiliary function output

For time-critical switching functions, the acknowledgement times for the → auxiliary
functions can be minimized and unnecessary hold points in the machining process can
be avoided.

Synchronized axes
Synchronized axes take the same time to traverse their path as the geometry axes take for
their path.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1731

Synchronized axis
A synchronized axis is the → gantry axis whose set position is continuously derived from the
motion of the → leading axis and is, thus, moved synchronously with the leading axis. From
the point of view of the programmer and operator, the synchronized axis "does not exist".

Syntax
$SC_IS_SD_MAX_PATH_JERK = value

System memory
The system memory is a memory in the CPU in which the following data is stored:

● Data required by the operating system

● The operands timers, counters, markers

System variable
A variable that exists without any input from the programmer of a → part program. It is
defined by a data type and the variable name preceded by the character $. See → User-
defined variable.

Tapping without compensating chuck
This function allows threads to be tapped without a compensating chuck. By using the
interpolating method of the spindle as a rotary axis and the drilling axis, threads can be cut to
a precise final drilling depth, e.g. for blind hole threads (requirement: spindles in axis
operation).

Text editor
See → Editor

TOA area
The TOA area includes all tool and magazine data. By default, this area coincides with the
→ channel area with regard to the access of the data. However, machine data can be used to
specify that multiple channels share one → TOA unit so that common tool management data
is then available to these channels.

TOA unit
Each → TOA area can have more than one TOA unit. The number of possible TOA units is
limited by the maximum number of active → channels. A TOA unit includes exactly one tool
data block and one magazine data block. In addition, a TOA unit can also contain a
toolholder data block (optional).

Glossary

 Basic Functions
1732 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Tool
Active part on the machine tool that implements machining (e.g. turning tool, milling tool, drill,
LASER beam, etc.).

Tool nose radius compensation
Contour programming assumes that the tool is pointed. Because this is not actually the case
in practice, the curvature radius of the tool used must be communicated to the controller
which then takes it into account. The curvature center is maintained equidistantly around the
contour, offset by the curvature radius.

Tool offset
Consideration of the tool dimensions in calculating the path.

Tool radius compensation
To directly program a desired → workpiece contour, the control must traverse an equistant
path to the programmed contour taking into account the radius of the tool that is being used
(G41/G42).

Transformation
Additive or absolute zero offset of an axis.

Travel range
The maximum permissible travel range for linear axes is ± 9 decades. The absolute value
depends on the selected input and position control resolution and the unit of measurement
(inch or metric).

User interface
The user interface (UI) is the display medium for a CNC in the form of a screen. It features
horizontal and vertical softkeys.

User memory
All programs and data, such as part programs, subprograms, comments, tool offsets, and
zero offsets/frames, as well as channel and program user data, can be stored in the shared
CNC user memory.

 Glossary

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1733

User program
User programs for the S7-300 automation systems are created using the programming
language STEP 7. The user program has a modular layout and consists of individual blocks.

The basic block types are:

● Code blocks

These blocks contain the STEP 7 commands.

● Data blocks

These blocks contain constants and variables for the STEP 7 program.

User-defined variable
Users can declare their own variables for any purpose in the → part program or data block
(global user data). A definition contains a data type specification and the variable name. See
→ System variable.

Variable definition
A variable definition includes the specification of a data type and a variable name. The
variable names can be used to access the value of the variables.

Velocity control
In order to achieve an acceptable traverse rate in the case of very slight motions per block,
an anticipatory evaluation over several blocks (→ Look Ahead) can be specified.

WinSCP
WinSCP is a freely available open source program for Windows for the transfer of files.

Working area
Three-dimensional zone into which the tool tip can be moved on account of the physical
design of the machine tool. See → Protection zone.

Working area limitation
With the aid of the working area limitation, the traversing range of the axes can be further
restricted in addition to the limit switches. One value pair per axis may be used to describe
the protected working area.

Glossary

 Basic Functions
1734 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Working memory
The working memory is a RAM in the → CPU that the processor accesses when processing
the application program.

Workpiece
Part to be made/machined by the machine tool.

Workpiece contour
Set contour of the → workpiece to be created or machined.

Workpiece coordinate system
The workpiece coordinate system has its starting point in the → workpiece zero-point. In
machining operations programmed in the workpiece coordinate system, the dimensions and
directions refer to this system.

Workpiece zero
The workpiece zero is the starting point for the → workpiece coordinate system. It is defined
in terms of distances to the → machine zero.

Zero offset
Specifies a new reference point for a coordinate system through reference to an existing
zero point and a → frame.

1. Settable

A configurable number of settable zero offsets are available for each CNC axis. The
offsets - which are selected by means of G functions - take effect alternatively.

2. External

In addition to all the offsets which define the position of the workpiece zero, an external
zero offset can be overridden by means of the handwheel (DRF offset) or from the PLC.

3. Programmable

Zero offsets can be programmed for all path and positioning axes using the TRANS
statement.

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1735

Index

$
$A_MONIFACT, 1567
$AA_ACC, 1379
$AA_ATOL, 222
$AA_ETRANS, 753
$AA_FGREF, 327
$AA_FGROUP, 327
$AA_MOTEND, 1381
$AA_S, 1230
$AA_SCPAR, 1382
$AA_VLFCT, 1316
$AA_VMAXB, 1316
$AA_VMAXM, 1316
$AC_ACT_PROG_NET_TIME, 628
$AC_ACTUAL_PARTS, 634
$AC_ASUP, 572
$AC_AUXFU_EXT, 436
$AC_AUXFU_M_EXT, 436
$AC_AUXFU_M_STATE, 436
$AC_AUXFU_M_TICK, 417
$AC_AUXFU_M_VALUE, 436
$AC_AUXFU_PREDEF_INDEX, 435
$AC_AUXFU_SPEC, 436
$AC_AUXFU_STATE, 436
$AC_AUXFU_TYPE, 436
$AC_AUXFU_VALUE, 436
$AC_CONSTCUT_S, 1310
$AC_CTOL, 222
$AC_CUT_INV, 1507
$AC_CUTMOD, 1507
$AC_CUTMOD_ANG, 1507
$AC_CUTTING_TIME, 631
$AC_CYCLE_TIME, 630
$AC_FGROUP_MASK, 327
$AC_OLD_PROG_NET_TIME, 628
$AC_OLD_PROG_NET_TIME_COUNT, 629
$AC_OPERATING_TIME, 630
$AC_OTOL, 222
$AC_PATHACC, 253
$AC_PATHJERK, 254
$AC_PROG_NET_TIME_TRIGGER, 629
$AC_REQUIRED_PARTS, 634
$AC_SGEAR, 1295
$AC_SMAXACC, 1316

$AC_SMAXACC_INFO, 1316
$AC_SMAXVELO, 1316
$AC_SMAXVELO_INFO, 1316
$AC_SMINVELO, 1316
$AC_SMINVELO_INFO, 1316
$AC_SPECIAL_PARTS, 634
$AC_SPIND_STATE, 1316
$AC_STOLF, 225
$AC_TOTAL_PARTS, 634
$AN_AUXFU_LIST_ENDINDEX, 426
$AN_POWERON_TIME, 627
$AN_SETUP_TIME, 627
$C_AUX_EXT, 609
$C_AUX_IS_QUICK, 609
$C_AUX_VALUE, 609
$C_D, 609
$C_D_PROG, 609
$C_DL, 609
$C_DL_PROG, 609
$C_DUPLO, 609
$C_DUPLO_PROG, 609
$C_M, 609
$C_M_PROG, 609
$C_ME, 609
$C_MTL, 609
$C_MTL_PROG, 609
$C_T, 609
$C_T_PROG, 609
$C_TCA, 609
$C_TE, 609
$C_THNO, 609
$C_THNO_PROG, 609
$C_TS, 609
$C_TS_PROG,
$P_AD, 1508
$P_CHANNO, 553
$P_CONSTCUT_S, 1310
$P_CTOL, 223
$P_CUT_INV, 1507
$P_CUTMOD, 1507
$P_CUTMOD_ANG, 1507
$P_FGROUP_MASK, 328
$P_GEAR, 1295
$P_ISTEST, 470
$P_OTOL, 223
$P_PROG_EVENT, 553
$P_REPINF, 569
$P_SEARCH_S, 482

Index

 Basic Functions
1736 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

$P_SEARCH_SDIR, 482
$P_SEARCH_SGEAR, 1274
$P_SEARCH_SPOS, 482
$P_SEARCH_SPOSMODE, 482
$P_SGEAR, 1274
$P_SIM, 476
$P_STOLF, 225
$P_SUB_AUTOGEAR, 618
$P_SUB_AXFCT, 619
$P_SUB_CA, 618
$P_SUB_GEAR, 618
$P_SUB_LA, 618
$P_SUB_M19, 619
$P_SUB_SPOS, 619
$P_SUB_SPOSA, 619
$P_SUB_SPOSIT, 619
$P_SUB_SPOSMODE, 619
$P_SUB_STAT, 609
$P_TOOLENV, 1550
$P_TOOLENVN, 1550
$P_WORKAREA_CS_COORD_SYSTEM, 111
$PA_ATOL, 223
$PA_FGREF, 327
$PA_FGROUP, 328
$SC_IS_SD_MAX_PATH_ACCEL, 241
$SC_IS_SD_MAX_PATH_JERK, 252
$SC_SD_MAX_PATH_ACCEL, 240
$SC_SD_MAX_PATH_JERK, 251
$TC_DP1, 1498
$TC_DP10, 1499
$TC_DP11, 1498
$TC_DP2, 1502
$TC_DP24, 1499
$TC_DPCE[t,d], 1399
$TC_DPNT, 1339
$VA_ABSOLUTE_ENC_DELTA_INIT, 102
$VA_ENC_ZERO_MON_ERR_CNT, 102
$VA_TORQUE_AT_LIMIT, 301
$VC_SGEAR, 1274

3
3D face milling, 1423

A
ACC, 1379
ACC[axis], 238
Access authorization, 62
Access features, 63
Access method, 1067

Access security, 62
ACN, 1302
ACP, 1302
Action blocks, 479
Action single block, 471
Activation

from machine control panel, hand-held unit, 855
Actual image number of the JobShop interface, 1595
Actual value, 1075
Actual value synchronization, 46
Actual values in workpiece coordinate system, 37
Actual-value acquisition, 329
Actual-value correction, 330
Actual-value processing, 337
Actual-value resolution, 339
Actual-value system

workpiecerelated,
adaptation factor

dynamic path response, 201
Adapter dimension, 1424
Adapting the motor/load ratios, 334
ADDFRAME, 752
Address

-input, absolute, 1080
-input, symbolic, 1080
-ranges, 1066

Addressing
absolute, 1069
direct, 1080
indirect, 1081
symbolic, 1069

AG_SEND, AG_RECV, 846
Air temperature alarm, 36
Alarm for preprocessing stop, 1464
ALF, 1351
Angle

Clearance, 1499
Holder, 1499

ANY, 1042
ANY in FB, 1043
ANY in FC, 1042
Applied position difference, 362
Assignment tool/toolholder, 1470
ASUB

Activation, 561
after block search with calculation, 480
Internal, 571
Priority, 568
Reorganization, 561
SERUPRO end, 426

ATOL, 221
ATRANS, 651

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1737

Autonomous singleaxis operations,
AUXFUDEL, 428
AUXFUDELG, 428
AUXFUMSEQ, 417
AUXFUSYNC, 427
auxiliary function

Associated, 402
Auxiliary function

Address extension, 393
-counter, 423
Definition, 370
Output behavior, 394
Predefined, 369
Type, 393
User-defined, 369
Value, 394

Auxiliary function output, 524
auxiliary functions

Pre-defined, 377
User-specific, 400

Axis clamping, 86
Axis configuration, 667
Axis disable, 1358
Axis monitoring functions, 79

Actual velocity, 94
Axis/spindlespecific setting data,
Following error, 81
Speed setpoint, 93
Supplementary conditions, 143
Zero speed, 85

Axis/spindle stationary, 48

B
Basic block display

Activating, 585
Configure, 585

Basic coordinate system (BCS), 678
Basic display

Size of display buffer, 585
Basic orientation of tool, example, 1571
Basic orientation of tools, 1514
Basic tool orientation, 1513
Block

Hide, 581
Block search

Cascaded, 477
Time sequence of types 1, 2 and 4, 478
with calculation at block end point (type 4), 477
with calculation at the contour (type 2), 477
with calculation in program test mode, SERUPRO
(type 5), 477

without calculation (type 1), 477
Block search SERUPRO

Conditions for axis functions, 520
Control REPOS with NC/PLC interface signals, 499
Delayed approach of axis with REPOS offset, 498
Gear stage change, 521
Initial setting, 523
Overlaid movements, 522
Path axes, 498
Prefer or ignore REPOS, 497
REPOS acknowledgements, 500
REPOS offset after an axis interchange, 503
REPOS offset with synchronous spindle
coupling, 503
Reposition positioning axes, 497
Set REPOS response, 495
Setpoint and actual value couplings, 517
Time sequence, 492
Updating the REPOS offset within the scope, 502

Block search with calculation
accumulated spindle functions, 482
collected actual position, 480
current actual position, 480

Block-related limit (FOC), 301
BLSYNC, 568
BRISK, 235
BRISKA, 236

C
Cancel alarms, 37
Cascaded block search, 485
CFC, 1337
CFCIN, 1337
CFINE, 651
CFTCP, 1337
Channel

Configuration, 466
Current, 553
-display status, 533
Initial setting, 524
Path interpolator, 465
Properties, 465
-states, 533

Channel axes, 657
Channel state

Channel active, 460
Channel interrupted, 460
Channel reset, 460

channel-specific basic position after power up,
RESET, 800
Channel-specific diameter programming, 801

Index

 Basic Functions
1738 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Channel-specific NCK alarm is active, 36
Chart status, 1113
Clamping monitoring, 86
Clearance angle, 1499
Closed-loop control, 350
CLRINT, 569
Coarse offset, 651
Collision detection, 1457
COMPCAD, 215
COMPCURV, 215
COMPON, 215
Computational resolution, 311
Concurrent axes, 844
Constant, 1073
Constant curvature, 1432
Constant cutting rate, 1341
Constant cutting speed setting, 1309
Constant speed, 1342
Constant tangent, 1432
Continuous-path mode, 168

Implicit, 171
Contour

sampling factor, 213
sampling time, 213
tolerance, 220

Contour error, 80
Contrast, 53
Control direction, 337
Control system response

at the end of the part program, 595
at the start of the part program, 595
during run-up, 595
When resetting, 595

Controller enable, 44
Controller parameter set switchover, 71
Conversion of basic system,
Counter pulse, 636
Cross reference, 1061
CTOL, 221
CTRANS, 651
Current controller active, 48
Curvature, 211
Cut direction, 1498
Cutting edge

Position, 1502
Cutting edge number, 1398
Cutting edge position, 1418

relevant, 1427
Cutting edges

Center point, 1501
-reference point, 1501
-shape, 1500

Cycle-end status, 1109
Cyclic operation, 839
Cyclic signal exchange, 34

D
D functions, 1393
D number structure

- flat (without tool management), 1407
D numbers

Allocation of free ..., 1398
D/DL function replacement, 606
Darken screen, 36
Data

-block, 1075
-classes, 1089
-format, 1117
-type, 1070

Data channel, faster, 58
Data exchange

with operator panel, 822
Data interface, 825
Data type

-test, 1071
DB 31, ...

DBX60.6,
DBX60.7, 1321
DBX83.1, 1242

DB10
DBB4-7, 793
DBX103.0, 1583
DBX103.5, 1584
DBX103.6, 1584
DBX103.7, 1584
DBX104.3, 857
DBX104.4, 857
DBX104.7, 1584
DBX106.1, 1667
DBX107.7, 322
DBX108.3, 1585
DBX108.5, 1585
DBX108.6, 1585
DBX108.7, 1586
DBX109.0, 1586
DBX109.5, 1587
DBX109.6, 1587
DBX109.7, 1588
DBX180.2, 1585
DBX56.1, 1666
DBX56.2, 1666
DBX56.4, 1583
DBX56.5, 1583

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1739

DBX56.6, 1583
DBX56.7, 1583
DBX92.0, 842
DBX92.1, 842

DB11
DBX0.0, 1635
DBX0.1, 1635
DBX0.2, 1636
DBX0.4, 1636
DBX0.5, 1637
DBX0.6, 1637
DBX0.7, 1637
DBX07.7, 528
DBX1.0, 1638
DBX1.0 - DBX1.2, 460
DBX1.1, 1638
DBX1.2, 1639
DBX1.6, 1639
DBX1.7, 1639
DBX26.4, 462
DBX26.5, 462
DBX4.0, 1640
DBX4.0 - DBX4.2, 459
DBX4.1, 1640
DBX4.2, 1640
DBX4.4, 528
DBX46.4, 462
DBX46.5, 462
DBX5.0, 1641
DBX5.0 - DBX5.2, 460
DBX5.1, 1641
DBX5.2, 1641
DBX6.0, 1642
DBX6.1, 1642
DBX6.2, 1642
DBX6.3, 1642
DBX6.4, 462
DBX6.5, 462
DBX6.7, 1643
DBX7.0, 1643
DBX7.0 - DBX7.2, 460
DBX7.1, 1644
DBX7.2, 1644

DB1600, 1055
DB19

DBB10, 1591
DBB13,
DBB15, 1592
DBB16,
DBB17, 1593
DBB22, 1595
DBB24, 1595

DBB26, 38
DBB27, 38
DBB6, 1590
DBB7, 1591
DBB8, 1591
DBX 0.3, 37
DBX 0.4, 37
DBX0.0, 1588
DBX0.1, 1589
DBX0.2, 1589
DBX0.3, 1589
DBX0.4, 1590
DBX0.7, 1590
DBX13.5, 1591
DBX13.6, 1591
DBX13.7, 1592
DBX14.0 - DBX14.6, 1592
DBX14.7, 1592
DBX16.6, 1593
DBX16.7, 1593
DBX20.1, 1594
DBX20.3, 1594
DBX20.4, 1595
DBX20.6, 1595
DBX20.7, 1595
DBX26.1, 1596
DBX26.2, 1596
DBX26.3, 1596
DBX26.5, 1597
DBX26.6, 1597
DBX26.7, 1598
DBX44.0, 1593
DBX45.0, 1593
DBX45.1, 1594
DBX45.2, 1594
DBX45.3, 1594

DB21
DBX378.1, 567

DB21, ...
D35.5,
DBB116 - DBB136, 410
DBB118, 1632
DBB129, 1632
DBB140 - DBB157, 1633
DBB140 - DBB190, 410
DBB158 - DBB193, 1633
DBB194, 1304
DBB194 - DBB206, 1634
DBB2, 1646
DBB202, 1304
DBB208 - DBB271, 1657
DBB317.1, 1658

Index

 Basic Functions
1740 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DBB376, 1662
DBB4, 1691
DBB5, 1692
DBB58,
DBB58 - DBB67, 410
DBB60 - DBB64, 1631
DBB60 - DBB65, 1630
DBB66 - DBB67, 1631
DBB68 - DBB112, 410
DBB68 - DBB97, 1631
DBB68ff., 1304
DBB98 - DBB115, 1632
DBX0.4, 1644
DBX0.5, 1645
DBX0.6, 1690
DBX1.0, 1668
DBX1.1,
DBX1.6, 1645
DBX1.7, 1645
DBX10.0 - DBX11.1,
DBX12.3, 1694
DBX16.3, 1694
DBX2.0, 529
DBX2.0 - 7, 582
DBX20.3, 1694
DBX24.6, 1695
DBX25.3, 1695
DBX25.7, 469
DBX26.0, 475
DBX272.0 - DBX273.1, 1623
DBX274.0 - DBX275.1, 1623
DBX276.0 - DBX277.1, 1624
DBX278.0 - DBX279.1, 1624
DBX29.0, 1372
DBX29.0 - DBX29.3, 1696
DBX29.1, 1372
DBX29.2, 1372
DBX29.3, 1372
DBX30.5, 1630
DBX31.0 - DBX31.2, 1649
DBX31.0-31.2,
DBX31.4, 1649
DBX31.6 - 7, 582
DBX317.1, 634
DBX318.0, 1658
DBX318.1, 1659
DBX318.5, 1634
DBX318.6, 1365
DBX319.0, 1660
DBX319.1- DBX319.3, 1660
DBX319.5, 1662
DBX32.3, 1649

DBX32.4, 1650
DBX32.5, 1650
DBX32.6, 1651
DBX33.0, 1669
DBX33.4, 1651
DBX33.5, 1651
DBX33.6, 1652
DBX33.7, 1653
DBX35.0, 1653
DBX35.0 - DBX35.4, 567
DBX35.1, 1654
DBX35.2, 1654
DBX35.3, 1654
DBX35.4, 1654
DBX35.5, 1655
DBX35.5 - DBX35.7, 567
DBX35.6, 1655
DBX35.7, 1655
DBX36.2, 1669
DBX36.3, 1626
DBX36.4, 1656
DBX36.5, 1656
DBX36.6, 1599
DBX36.7, 1599
DBX37.6, 1656
DBX37.7, 1657
DBX378.0, 1662
DBX378.1, 1662
DBX384.0, 1663
DBX4.3, 1359
DBX59.0 - DBX59.4, 1631
DBX6.0, 1693
DBX6.1, 1646
DBX6.2, 1598
DBX6.4, 1646
DBX6.6, 1693
DBX6.7, 1694
DBX7.0, 1646
DBX7.1, 1647
DBX7.2, 1647
DBX7.3, 1648
DBX7.4, 1648
DBX7.5, 468
DBX7.7, 1648
DBX8.0 - DBX9.1,

DB21, …
DBX378.0, 561

DB31, ...
DBB0, 1697
DBB1.5, 1214
DBB1.6, 1214
DBB19, 1700

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1741

DBB2.1, 1214
DBB60.4, 1210
DBB60.5, 1210
DBB68ff., 1304
DBB78 - DBB81, 1702
DBB86, 1686
DBB88, 1687
DBD 78, 1634
DBD86, 1635
DBD88, 1635
DBW134, 1688
DBW136, 1689
DBX1.0, 1600
DBX1.1, 1628
DBX1.2, 1628
DBX1.3, 1600
DBX1.4, 1603
DBX1.5, 1259
DBX1.5 - DBX1.6, 1604
DBX1.6, 1259
DBX1.7, 1698
DBX10.0, 1663
DBX12.0, 103
DBX12.0 - DBX12.1, 1625
DBX12.1, 103
DBX12.2, 104
DBX12.2 - DBX12.3, 1625
DBX12.3, 104
DBX12.7, 1670
DBX132.0, 1687
DBX132.1, 1687
DBX132.4, 1688
DBX132.5,
DBX138.4, 1689
DBX138.5, 1689
DBX16.0 - DBX16.2, 1674
DBX16.3, 1675
DBX16.4, 1259
DBX16.4 - DBX16.5, 1675
DBX16.5, 1259
DBX16.7, 1676
DBX17.0, 1290
DBX17.4 - DBX17.5, 1286
DBX17.4 - DBX17.5, 1286
DBX17.6, 1677
DBX18.4, 1677
DBX18.5, 1678
DBX18.6, 1282
DBX18.6 - DBX18.7, 1679
DBX18.7, 1282
DBX2.1, 1606
DBX2.2, 1673

DBX2.3, 1624
DBX2.4 - DBX2.7, 1670
DBX20.1, 1609
DBX21.0, 49
DBX21.0 - DBX21.2, 1609
DBX21.1, 49
DBX21.2, 49
DBX21.3, 49
DBX21.3 - DBX21.4, 1610
DBX21.4, 49
DBX21.5, 1610
DBX21.6, 1611
DBX21.7, 1611
DBX28.7, 467
DBX3.0, 1665
DBX3.1, 1629
DBX3.2, 1373
DBX3.2 - DBX3.5, 1699
DBX3.3, 1373
DBX3.4, 1373
DBX3.5, 1373
DBX3.6, 1625
DBX3.7, 520
DBX30.0, 1306
DBX30.1, 1306
DBX30.2, 1306
DBX30.3, 1306
DBX30.4, 1306
DBX39.0, 130
DBX4.3, 1699
DBX4.6, 1174
DBX4.7, 1174
DBX60.0, 1679
DBX60.2, 1319
DBX60.2 - DBX60.3, 1626
DBX60.3, 1319
DBX60.4, 1671
DBX60.4 - DBX60.5, 1287
DBX60.5, 1671
DBX60.6, 1627
DBX60.7, 1627
DBX61.0, 1612
DBX61.3, 1613
DBX61.4, 1613
DBX61.5, 1614
DBX61.6, 1614
DBX61.7, 1615
DBX62.2, 1702
DBX62.4, 1629
DBX62.5, 1630
DBX64.6, 415
DBX64.7, 415

Index

 Basic Functions
1742 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

DBX68.0 - DBX68.3, 1307
DBX69.0, 72
DBX69.0 - DBX69.2, 1615
DBX69.1, 72
DBX69.2, 72
DBX7.7, 1315
DBX70.0, 1663
DBX70.1, 1664
DBX70.2, 1664
DBX71.4, 1672
DBX71.5, 1672
DBX72.0, 1664
DBX76.0, 1615
DBX76.4, 1665
DBX82.0 - DBX82.2, 1680
DBX82.3, 1681
DBX83.0, 1681
DBX83.1, 1682
DBX83.2, 1683
DBX83.5, 1683
DBX83.7, 1684
DBX84.0, 1309
DBX84.3, 1684
DBX84.5, 1685
DBX84.6, 1685
DBX84.7, 1685
DBX85.5, 1686
DBX9.0, 71
DBX9.0 - DBX9.2, 1608
DBX9.1, 71
DBX9.2, 71
DBX9.3, 1608
DBX92.1,
DBX93.0, 51
DBX93.0 - DBX93.2, 1616
DBX93.1, 51
DBX93.2, 51
DBX93.3, 51
DBX93.3 - DBX93.4, 1617
DBX93.4, 51
DBX93.5, 1617
DBX93.6, 1618
DBX93.7, 1618
DBX94.0, 1618
DBX94.1, 1619
DBX94.2, 1619
DBX94.3, 1620
DBX94.4, 1620
DBX94.5, 1621
DBX94.6, 1620

DB31, …
DBX9.3, 1382

DB4500, 1056
DB9000 - DB9063, 1055
DC, 1302
Decoding single block, 471
Default passwords, 64
Delete distance-to-go, 38
DELTOOLENV, 1549
Description of a rotation, 1481
DIACYCOFA, 802
DIAM90, 801
DIAM90/DIAM90A[AX], 804
DIAM90A, 802
DIAMCHAN, 802
DIAMCHANA, 802
DIAMCYCOF, 801
DIAMCYCOF/DIACYCOFA[AX], 804
DIAMOF, 801
DIAMOFA, 802
DIAMON, 801
DIAMON/DIAMONA[AX], 803
DIAMONA, 802
DILF, 1351
Direct keys

Address, 858
Alarms, 858
OPs at Ethernet bus, 857

Direction vector, 1514
DISABLE, 569
DISC, 1451
Display block, structure (DIN), 587
Display resolution, 311
Displaying position values in the diameter, 805
DITE, 1347
DITS, 1346
DL functions, 375
DRIVE, 267
Drive ready, 35
Drive test travel enable, 38
Drive test travel request, 48
DRIVEA, 267
Drives in cyclic operation, 35
Dry run feedrate, 1364
Dynamic response

adaptation, 200
Dynamic response adaptation, 351
DYNFINISH, 209
DYNNORM, 209
DYNPOS, 209
DYNROUGH, 209
DYNSEMIFIN, 209

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1743

E
Emergency stop

Acknowledgement, 794
Interface, 791
Sequence, 792

Emergency stop control elements, 791
ENABLE, 569
Encoder coding, 340
Encoder directly at the tool, 335
Encoder monitoring functions, 97

Encoder frequency, 97
End-of-motion criterion

For single axes, 1381
Ethernet

-connection, 856
Evaluation of individual wear components, 1545
Event-controlled program sequences, 543
Exact stop, 164

Implicit, 169
Exact-stop criteria, 166
Execute external subprogram, 591
Execution status, 1107
External program memory, 590
External work offset, 806

F
F functions, 375
FA, 1356
FA functions, 376
FB, 1377
FB1 RUN_UP (basic program, startup section),
FB10 Safety relay, 953
FB11 Brake test, 956
FB2 GET (Read NC Variable), 897
FB29 Signal recorder and data trigger diagnostics, 961
FB3 PUT (write NC variables), 904
FB4 PI_SERV (PI services), 911

Available PI services, 914
FB5 GETGUD (read GUD variable), 939
FB7 PI_SERV2 (PI services), 947
FB9 MzuN (control units switchover), 948
FC10 AL_MSG, 984
FC1005 AG_SEND, 1036
FC1006 AG_RECV, 1037
FC12 AUXFU, 986
FC13 BHGDisp, 987
FC17, 991
FC18 SpinCtrl, 994
FC19 / MCP_IFM, 1005
FC2 GP_HP (Basic program, cyclic section), 965

FC21 Transfer, 1011
FC22 TM_DIR, 1019
FC24 MCP_IFM2, 1021
FC25 / MCP_IFT, 1024
FC3 GP_PRAL (Basic program, diagnostics), 969
FC3 GP_PRAL (Basic program, interruptdriven
section),
FC6 TM_TRANS2, 970
FC7 TM_REV, 972
FC8 TM_TRANS, 975
FC9 ASUB, 981
FCUB, 1374
Feedrate

for chamfer/rounding, 1374
Inverse-time (G93), 1338
Linear (G94), 1339
-override, 1359
Path feedrate F, 1336
Revolutional (G95), 1339
Tooth, 1339
-types, 1335
types (G93, G94, G95), 1338

Feedrate disable
Channel-specific, 1358

Feedrate override
Programmable, 1363

Feedrates
Dry run feedrate, 1364
Feedrate disable, 1357
Feedrate/spindle stop, 1357

FGROUP, 666
FIFO Buffer, 591
Fine interpolation, 351
Fine offset, 651
Firmware, 1053
Fixed feedrates, 1372
FL, 1337
Flat D number structure, 1407
FLIN, 1374
FNORM, 1373
FOC, 281
FOCOF, 281
FOCON, 281
Follow up active, 48
Foreground language, 54
Format

-identifier, 1073
FPO, 1374
FPRAOF, 1302
FPRAON, 1302
FRAME, 657
Frame change, 1472

Index

 Basic Functions
1744 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Frame rotations, 652
in the direction of the tool, 761
with solid angles, 758

FRC, 1375
FRCM, 1375
Free-form surface

mode, 162
Free-form surfaces, 212

mode, 212
Function interface, 826
Function overview of inch/metric switchover

Data backup, 324
Rounding machine data, 325
Synchronized actions, 318

Function selection (via operator panel front or
PLC), 580
FXS, 281
FXS-REPOS, 294
FXST, 281
FXSW, 281
FZ, 1339

G
G groups, 525
G0 tolerance factor, 223
G25, 1303
G26, 1303
G33, 1345
G331, 1354
G332, 1354
G40, 1429
G41, 1429
G42, 1429
G450/G451, 1450
G451, 1453
G460, 1466
G461, 1467
G462, 1468
G58, 651
G59, 651
G60, 164
G601, 166
G602, 166
G603, 166
G63, 1356
G64, 171
G642, 176
G643, 176
G644, 180
G645, 184
G9, 164

G91 extension, 1510
Zero point offset, 1511

G93, 1338
G94, 1339
G95, 1339
G96, 1341
G961, 1341
G97, 1342
G971, 1342
Gap, 456
Gear stage

in M70, 1292
Manual entry, 1269
Specification by PLC, 1268

Gear stage change
Automatic, 1321

Gear stages, 1260
Geometry axes, 678
Geometry axes during handwheel traveling, 806
GETTCOR, 1552

Compatibility, 1557
Orientable toolholder, 1556

GETTENV, 1551
GOTOS, 538
Grouping together auxiliary functions, 393

H
H functions, 373
Hardware interrupt, 841
Hardware limit switch, 103
Helical interpolation, 666
Helix interpolation, 666
High-speed data channel, 58
HMI - CPU at OPI ready, 35
HMI monitor, 871
Holder angle, 1499

I
IC, 1302
ID check, 636
Implicit continuous-path mode, 171
Implicit exact stop, 169
Implicit preprocessing stop, 515
Incrementally programmed compensation values, 1510
Input resolution, 311
Interface

MCP/PLC and HHU/PLC, 824
PLC/HMI, 831
PLC/HMI-Messages, 832

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1745

PLC/MCP, 835
PLC/NCK, 825

Interface signals
Acknowledge emergency stop, 1666
Acknowledge fixed stop reached, 1628
Action block active, 1649
Activate associated M1, 1630
Activate channel-specific protection zone, 1622
Activate dry run feed, 1690
Activate fixed feedrate 1 - 4 for machine axes, 1699
Activate fixed feedrate 1 - 4 for path/geometry
axes, 1696
Activate M01, 1645
Activate machine-specific protection zone, 1622
Activate program test, 1645
Activate referencing, 1668
Activate single block, 1644
Activate skip block, 1646
Activate travel to fixed stop, 1629
Active, 1596
Active drive parameter set A, B, C, 1616
Active G function of groups 1 to 60, 1657
Active JOG mode, 1642
Active machine function REF, 1644
Active machine function TEACH IN, 1643
Active mode AUTOMATIC, 1642
Active mode MDA, 1642
Active motor A, B, 1617
Active or passive file system, 1593
Active REPOS machine function, 1644
Active spindle control mode, 1685
Active spindle mode oscillation mode, 1685
Active spindle positioning mode, 1685
Actual direction of rotation clockwise, 1684
Actual gear stage A to C, 1674
Actual values in WCS, 1590
Air temperature alarm, 1587
All axes stationary, 1626
All axes that have to be referenced are
referenced, 1669
All channels in the reset state, 1643
Analog measured value of the clamping
system, 1689
Analog spindle 1, utilization in percent, 1590
Analog spindle 2, utilization in percent, 1591
Approach block active, 1650
Associated M01/M00 active, 1634
ASUB is active, 1662
ASUB is stopped, 1658
AT box ready, 1584
AUTOMATIC mode, 1635
Axis/spindle disable, 1600

Axis/spindle stationary, 1613
Block search active, 1651
Block search via program test is active, 1659
Cancel alarm deleted, 1594
Change gear, 1681
Channel is ready, 1656
Channel number of the machine control panel to
HMI, 1591
Channel status active, 1655
Channel status interrupted, 1655
Channel status reset, 1655
Channel-specific NCK alarm is active, 1599
Channel-specific protection zone preactivated, 1623
Channel-specific protection zone violated, 1624
Clamping in progress, 1624
Clear cancel alarms, 1589
Clear recall alarms, 1590
Control program branching, 1663
Controller enable, 1606
Controller parameter set switchover (request),
Current controller active, 1615
D function 1, 1632
Darken screen, 1589
Delete distance-to-go (axis-specific) / spindle
reset, 1607
Delete distance-to-go (channel-specific), 1598
Delete S value, 1676
Disable parameter set switchover commands from
NC, 1608
Displayed channel number from HMI, 1595
Drive parameter set selection A, B, C, 1609
Drive ready, 1617
Drive test travel enable, 1600
Drive test travel request, 1612
Drives in cyclic operation, 1585
Drives ready, 1585
Dry run feedrate selected, 1695
Emergency stop, 1666
Emergency stop active, 1667
Enable protection zones, 1621
Enable travel to fixed stop, 1629
Encoder limit frequency exceeded, 1626
Error, 1596
Extended address F functions 1 to 6, 1633
Extended address H functions 1 to 3, 1633
Extended address M functions 1 to 5, 1631
Extended address S functions 1 to 3, 1632
External zero offset, 1665
F auxiliary function for positioning axis, 1634
F function for positioning axis, 1702
FC9 Out\ Active, 1593
FC9 Out\ Done, 1594

Index

 Basic Functions
1746 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

FC9 Out\ Error, 1594
FC9 Out\ StartError, 1594
Feed stop (Geometry axis 1 to 3), 1694
Feed stop / spindle stop (axis-specific), 1699
Feedrate disable, 1693
Feedrate override, 1691
Feedrate override (axis-specific), 1697
Feedrate override active, 1694
Feedrate override selected for rapid traverse, 1695
Fixed stop reached, 1630
Follow up active, 1613
Follow-up mode, 1603
Gear is changed over, 1675
Hardware limit switches plus and minus, 1625
HMI battery alarm, 1584
HMI CPU1 Ready, 1585
HMI temperature limit, 1584
Interrupt processing active, 1656
Invert M3/M4, 1677
JOG mode, 1636
Key disable, 1589
Key-operated switch position, 1583
Last action block active, 1651
Load, 1597
Load part program, 1591
Lubrication pulse, 1615
M auxiliary function for spindle, 1635
M fct. 1-5 not decoded, 1631
M function for spindle, 1686
M(d) less than M(dx), 1620
M, S, T, D, H, F functions Additional info "Quick"
(quick acknowledgment), 1631
M, S, T, D, H, F functions Modification, 1630
M00/M01 active, 1650
M02/M30 active, 1651
Machine function REF, 1639
Machine function REPOS, 1638
Machine function TEACH IN, 1638
Machine-related protection zone preactivated, 1623
Machine-related protection zone violated, 1624
MDA mode, 1635
Mode change disable, 1636
Mode group ready, 1642
Mode group reset, 1637
Mode group stop, 1637
Mode group stop axes plus spindles, 1637
Motor being selected, 1610
Motor selection A, B, 1610
n(act) equals n(set), 1620
n(act) less than n(min), 1620
n(act) less than n(x),
NC Ready, 1586

NC Start, 1647
NC Start disable, 1646
NC Stop, 1648
NC Stop at block limit, 1647
NC Stop axes plus spindles, 1648
NCK alarm is active, 1586
NCK alarm with processing stop present, 1599
NCK battery alarm, 1588
NCK CPU Ready, 1584
NCU heat sink temperature alarm, 1587
OK, 1596
Oscillation controlled by the PLC, 1677
Oscillation enable, 1678
Override active, 1698
Part program selection, 1592
Path axis, 1665
PLC action completed, 1645
PLC hard keys, 1591
PLC index, 1593
PLC line offset, 1593
POS_RESTORED 1, 1672
POS_RESTORED2, 1672
Position controller active, 1614
Position measuring systems 1 and 2, 1604
Position reached with exact stop coarse, 1627
Position reached with exact stop fine, 1627
ProgEventDisplay, 1662
Program level abort, 1646
Program status aborted, 1654
Program status interrupted, 1654
Program status running, 1653
Program status stopped, 1654
Program status wait, 1654
Program test active, 1653
Pulse enable, 1611
Pulses enabled, 1618
Ramp-function generator disable, 1609
Ramp-function-generator disable active,
Rapid traverse override, 1692
Rapid traverse override active, 1693
Read-in disable, 1646
Read-in enable is ignored, 1656
Recall alarm deleted, 1595
Reference point approach delay, 1670
Reference point value 1 to 4, 1670
Referenced/synchronized 1, 1671
Referenced/synchronized 2, 1671
Referencing active, 1669
Remote diagnosis active, 1583
Repos DEFERAL Chan, 1662
REPOS Delay Ackn, 1664
REPOS offset, 1663

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1747

REPOS offset valid, 1664
Repos Path Mode Ackn0-2, 1660
REPOSDELAY, 1664
REPOSMODEEDGEACKN, 1660
Reset, 1648
Re-synchronizing spindle when positioning 1 and
2, 1676
Resynchronizing spindles 1 and 2, 1675
Revolutional feed rate active, 1702
Rigid tapping active, 1684
Run-up completed, 1619
S auxiliary function for spindle, 1635
S function for spindle, 1687
Screen bright, 1588
Screen is dark, 1594
Second software limit switch plus or minus, 1625
Selected JOG mode, 1640
Selected machine function REF, 1641
Selected mode AUTOMATIC, 1640
Selected mode MDA, 1640
Selected mode TEACH IN,
Selection, 1598
Sensor for fixed stop, 1628
Sensor S1 available (clamped state), 1687
Sensor S4 available (piston position), 1688
Sensor S4, piston end position, 1689
Sensor S5 available (angular position of the motor
shaft), 1688
Sensor S5, angular position of the motor
shaft, 1689
Sensors available, 1687
Setpoint direction of rotation,
counter.clockwise/setpoint direction of rotation,
clockwise, 1679
Setpoint gear stage A to C, 1680
Setpoint speed increased, 1683
Setpoint speed limited, 1682
Simulation active, 1595
Single block type A, 1639
Single block type B, 1639
Speed controller active, 1614
Speed controller integrator disable, 1611
Speed controller integrator disabled, 1618
Speed limit exceeded, 1681
Spindle in position, 1686
Spindle in setpoint range, 1683
Spindle override, 1700
Spindle reset/Delete distancetogo,
Spindle/no axis, 1679
State value is generated, speed limitation p5043 is
active, 1688
Status of the clamping system, 1688

Still ASUB is active, 1662
Stop at the end of block with SBL is
suppressed, 1657
Switch over MCS/WCS, 1595
Synchronized Actions (S5, H2)|Signals for dynamic
M functions, 1634
T function 1, 1632
Transformation active, 1652
Unload part program, 1591
Unloading, 1597
Velocity/spindle speed limitation, 1625
Workpiece setpoint reached, 1658

Intermediate gear, 1277
Interpolator end, 165
Interpolatory axis grouping, 45
Interrupt

-lock, 569
-routine, 559
-signal, 560

Interrupt routine
End, 562

Inverse-time feedrate (G93), 1338

J
Jerk

-increase, velocity-dependent jerk, 255
Jerk limitation, 182
Jogging

during interruption of a JOG ASUB, 565
in the mode type AUTOMATIC, 461

K
Key disable, 870
Key switch, 64
Kinematic transformation, 678
Kinematic type, 1473
KONT, 1430
KONTC, 1430
KONTT, 1430

L
LENTOAX, 1563
LFOF, 1351
LFON, 1351
LFPOS, 1351
LFTXT, 1351
LFWP, 1351
LIFTFAST, 568

Index

 Basic Functions
1748 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

Limit
velocity, for path axes, 1337

Limited toolholder orientation, 1472
Limit-switch monitoring, 103
LIMS, 1303
Linear feedrate (G94), 1339
Linear signal distortions, 80
Loader axes, 662
Lockable data areas, 65
LookAhead, 186

Selection and deselection, 187
Lubrication pulse, 49

M
M decoding acc. to list, 847
M function replacement, 603
M1, 439
M17, 438
M19, 1302
M2, 438
M3, 1301
M30, 438
M4, 1301
M40, 1321
M41, 1304
M42, 1304
M43, 1304
M44, 1304
M45, 1304
M5, 1301
M70, 1302
Machine axes, 656
Machine coordinate system (MCS), 676
Machine kinematics, 1473
Machine tool axes, 662
Machine with rotary tool, 1478
Machine with rotary workpiece, 1479
Machine zero, 1173
Machine zero M, 670
Machines with extended kinematics, 1480
Machining in direction of tool orientation, 1511
MAIN, 1062
Main axes, 664
Main run

-axes, 1380
Manual switchover of the basic system

General, 320
Input resolution and computational resolution, 323
JOG and handwheel factor, 324
Reference point, 323
System data, 322

Tool data, 323
Master-slave changeover with G96, G961, 1344
MCP identification, 858
MCS, 37
Md < Mdx, 52
MD10000, 648
MD10010, 456
MD10050, 1215
MD10070, 1215
MD10131, 54
MD10192,
MD10200, 342
MD10210, 347
MD10220, 313
MD10230, 314
MD10240, 1383
MD10260,
MD10270, 323
MD10290, 323
MD10292, 323
MD10366, 1064
MD10368, 1064
MD10600, 759
MD10602, 738
MD10610,
MD10612, 717
MD10613, 770
MD10615, 768
MD10618, 127
MD10680, 214
MD10682, 214
MD10702, 577
MD10704, 1365
MD10707, 492
MD10708, 492
MD10710, 1343
MD10712, 211
MD10713, 411
MD10714, 605
MD10715, 604
MD10716, 604
MD10719, 606
MD10735,
MD10804, 605
MD10806, 605
MD10814, 605
MD1103, 296
MD1104, 296
MD1105, 296
MD11100, 400
MD11110, 406
MD11300, 1175

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1749

MD11346, 1406
MD11410, 1458
MD11411, 468
MD11450, 519
MD11470, 520
MD11550, 1355
MD11600, 564
MD11602, 566
MD11604, 566
MD11610, 571
MD11620, 548
MD12000, 1361
MD12010, 1361
MD12020, 1359
MD12030, 1360
MD12040, 1359
MD12050, 1360
MD12060, 1362
MD12070, 1362
MD12080, 1363
MD12082, 1361
MD12090, 1355
MD12100, 1363
MD12200, 1373
MD12202, 1372
MD12204, 1372
MD1230/1231, 296
MD14504, 851
MD14506, 851
MD14508, 851
MD15700, 616
MD15702, 616
MD17200, 585
MD18080, 1528
MD18088, 1493
MD18094, 323
MD18096, 323
MD18100, 1408
MD18102,
MD18104, 1548
MD18105, 1402
MD18106, 1401
MD18108, 1532
MD18112, 1547
MD18114,
MD18116, 1558
MD18150, 58
MD18190, 128
MD18360, 591
MD18362, 591
MD18600, 689
MD18601, 766

MD18602, 766
MD18960, 250
MD20000, 466
MD20050, 743
MD20060, 648
MD20070, 648
MD20080, 666
MD20090, 1412
MD20092, 1299
MD20094, 605
MD20095, 605
MD20096, 1397
MD20100, 1555
MD20105, 565
MD20106, 549
MD20107, 550
MD20108, 547
MD20109, 548
MD20110, 1537
MD20112, 1495
MD20115, 565
MD20116, 566
MD20117, 578
MD20118, 660
MD20120, 1495
MD20121, 1411
MD20124, 437
MD20125, 1504
MD20126, 1505
MD20127, 1505
MD20130, 1410
MD20140, 598
MD20144, 600
MD20150, 1383
MD20152, 803
MD20172, 1374
MD20180, 1486
MD20184, 1488
MD20188, 1481
MD20190, 1481
MD20191, 567
MD20192, 551
MD20193, 552
MD20200, 1375
MD20201, 1375
MD20202, 1446
MD20204, 1439
MD20210, 1453
MD20220, 1452
MD20230, 1454
MD20240, 1457
MD20250, 1429

Index

 Basic Functions
1750 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MD20252, 1463
MD20256, 1465
MD20270, 1538
MD20272, 1538
MD20310, 506
MD20360, 1579
MD20390, 1527
MD20392, 1524
MD20400, 189
MD20430, 190
MD20440, 190
MD20443, 193
MD20450, 191
MD20460, 198
MD20462, 197
MD20465, 202
MD20480, 220
MD20482, 224
MD20488, 219
MD20490, 171
MD20500, 238
MD20550, 167
MD20552, 167
MD20560, 224
MD20600, 248
MD20602, 246
MD20606, 213
MD20610, 239
MD20700, 1209
MD20750, 1343
MD20800,
MD20850, 1234
MD21015, 56
MD21016, 57
MD21020, 107
MD21110, 761
MD21158, 270
MD21159, 270
MD21166, 269
MD21168, 270
MD21202, 567
MD21220, 1368
MD21230, 1367
MD21330, 598
MD22000, 1233
MD22010, 1233
MD22020, 1233
MD22030, 1233
MD22035, 402
MD22040, 400
MD22050, 393
MD22060, 393

MD22070, 394
MD22080, 617
MD22100, 411
MD22110,
MD22200, 404
MD22210, 404
MD22220, 404
MD22230, 404
MD22240, 1357
MD22250, 404
MD22252, 404
MD22254, 605
MD22256, 605
MD22410, 1383
MD22510, 1039
MD22530,
MD22532, 660
MD22534, 433
MD22550, 1411
MD22560, 1411
MD22560, 1411
MD22562, 1406
MD22600, 505
MD22601, 519
MD22620, 523
MD24000, 718
MD24002, 770
MD24004, 768
MD24006, 769
MD24007, 771
MD24008, 768
MD24010, 716
MD24020, 711
MD24030, 708
MD24040,
MD24100, 1526
MD24110, 1526
MD24120, 1526
MD24550, 1556
MD24558, 1556
MD24560, 1556
MD24570, 1526
MD24572, 1526
MD24650, 1556
MD24658, 1556
MD24660, 1556
MD24805, 733
MD24855, 733
MD24905, 726
MD24955, 726
MD25574, 1526
MD26008, 605

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1751

MD26012, 605
MD27100, 805
MD27800, 467
MD27850, 631
MD27860, 632
MD27880, 635
MD27882, 635
MD28060, 585
MD28070, 219
MD28080, 712
MD28081, 713
MD28082, 1487
MD28085, 1493
MD28150, 60
MD28200, 128
MD28210, 128
MD28400, 585
MD28530, 179
MD28533, 192
MD28560, 772
MD28600, 111
MD28610, 212
MD30130, 330
MD30200, 341
MD30240,
MD30242, 1199
MD30250, 1204
MD30300, 1383
MD30310, 105
MD30330, 1198
MD30340, 1198
MD30350, 330
MD30455, 1303
MD30460, 806
MD30550, 1176
MD31000, 347
MD31010, 342
MD31020, 1215
MD31025, 344
MD31030, 344
MD31040, 1287
MD31044, 1277
MD31050, 1283
MD31060, 1277
MD31064, 1277
MD31066, 1277
MD31070, 347
MD31080, 347
MD31090, 324
MD31122, 1257
MD31123, 1257
MD32000, 1337

MD32040, 1340
MD32050, 1340
MD32060, 1378
MD32074, 768
MD32100, 337
MD32200, 351
MD32200, 351
MD32210, 364
MD32220, 364
MD32250, 338
MD32260, 143
MD32300, 1379
MD32301, 269
MD32310,
MD32320, 1379
MD32400, 359
MD32402, 359
MD32410, 359
MD32420,
MD32430, 249
MD32431, 254
MD32432, 255
MD32433, 244
MD32434, 254
MD32435, 254
MD32436, 269
MD32439, 256
MD32440, 201
MD32610, 81
MD32620, 355
MD32630, 355
MD32640, 358
MD32711, 323
MD32750, 1527
MD32800, 81
MD32810,
MD32890,
MD32900, 352
MD32910, 357
MD32950, 363
MD33050, 49
MD33100, 220
MD33120, 220
MD34000,
MD34010, 1206
MD34020, 1186
MD34040, 1258
MD34050, 1185
MD34060, 1245
MD34070, 1196
MD34080, 1190
MD34090,

Index

 Basic Functions
1752 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

MD34092,
MD34093, 1188
MD34100, 1208
MD34102, 1199
MD34104, 1201
MD34110, 1176
MD34200, 1258
MD34210, 1213
MD34230, 1213
MD34232,
MD34300, 1195
MD34320, 1192
MD34330, 1210
MD34990, 1338
MD35000, 1304
MD35010, 1291
MD35012, 1289
MD35014, 1292
MD35020, 1254
MD35030, 1255
MD35035, 1296
MD35040, 1230
MD35090, 1260
MD35092, 1265
MD3510, 1291
MD35100, 1317
MD35110, 1321
MD35112, 1266
MD35120, 1321
MD35122, 1266
MD35130, 1315
MD35135, 1261
MD35140, 1345
MD35150, 1318
MD35200, 1290
MD35210, 1290
MD35212, 1266
MD35220, 266
MD35230, 266
MD35240, 266
MD35242, 261
MD35300, 1303
MD35310, 1289
MD35350, 1289
MD35400, 1282
MD35410, 1283
MD35430,
MD35440, 1281
MD35450, 1281
MD35500,
MD35510, 1313
MD35550, 1266

MD35590, 1275
MD36000, 1321
MD36010, 1321
MD36012, 166
MD36020, 84
MD36030, 85
MD36040, 302
MD36042, 302
MD36050, 92
MD36052, 92
MD36060, 1313
MD36100, 104
MD36110, 104
MD36120, 104
MD36130, 104
MD36200, 94
MD36210, 338
MD36220, 94
MD36300,
MD36302, 1240
MD36310, 98
MD36312, 99
MD36400, 81
MD36500, 329
MD36510, 329
MD36600, 103
MD36610, 792
MD36620, 792
MD37002, 290
MD37010, 301
MD37012, 290
MD37020, 297
MD37030, 286
MD37040, 286
MD37050, 288
MD37060, 289
MD37080, 300
MD51029, 581
MD9000, 53
MD9001, 53
MD9003, 54
MD9004, 587
MD9006, 1589
MD9010, 587
MD9011, 587
MD9424, 685
MD9440, 775
Measuring systems, 1173
Memory

-type, 1065
Memory requirements

of basic PLC program, 872

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1753

Message signals in DB2, 1041
Mirroring

Frames, 698
Retraction direction (lift fast), 567

Modal activation (FOCON/FOCOF), 300
Mode

AUTOMATIC, 458
JOG, 458
JOG in AUTOMATIC, 458
MDI, 458

Mode change
from/to the AUTOMATIC, JOG, MDA modes, 464

Mode group, 839
Change in configuration of the mode group, 456
Channel-specific assignments, 454
number, 456
User interface, 455

Modes
change, 463
-change, 458
-cross-mode synchronized actions, 459
of the mode group, 458
Priorities, 459

Monitor type, 53
Motor/load gear, 335
MTL, 606
Multiinstance DB,
Multitool, 935

N
nact, 53
NC

- Languages, 525
-block compressor, 215
Edit variables, 1086
-Failure, 842
NC Start, 527
-Read/write variables, 845
Variables freely selectable, 1060

NC VAR selector, 877
Input options, 881
Startup, installation,

NCK alarm is active, 36
NCK alarm with processing stop, 36
NCK battery alarm, 36
NCK CPU ready, 35
Negative address extension, 439
Nonacknowledged gear stage change,
Non-linear signal distortions, 80
NORM, 1430

O
Offset, 1067
Offset number, 1398
Operating modes

Interlocks, 463
monitoring functions, 463

Operating states, 460
Operations, 1089
Orientation, 115

tolerance, 220
OTOL, 221
Output

Behavior of an auxiliary function, 394
-counter, 423
Sequence, 423

Overload factor, 171
Override

in G331/332, 1355
OVR, 1363
OVRA, 1363

P
Package

-counter, 423
Parameter set

For axes, 354
Toolholder with orientation capability, 1473

Parking, 113
Part program

Channel enable, 528
Selection, 527
Skipping of specific part program blocks, 474
starting, 535

Password, 63
resetting, 63
setting, 63

Path
feedrate F, 1336
velocity, maximum, 1337

Path axes, 663
Path criterion, 174
Path feedrate, 308
Path interpolator, 465
PCOF, 1302
Phase filter, 360
Physical quantities, 312
PLC

- Read/write variable, 58
-axes, 663
Basic program functions, 811

Index

 Basic Functions
1754 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

HMI monitor, 871
Key disable, 870
Program list, 868
-Versions, 811

POINTER, 1042
POINTER in FB, 1043
POINTER in FC, 1042
POLF, 1351
POLFMASK, 1351
POLFMLIN, 1351
Polynomials, intersection process, 1465
POS,
POSA,
Position control loop, 350
Position controller active, 48
Position measuring system, 43
Position of coordinate systems and reference
points, 672
Positioning accuracy, 310
Positioning axes, 663
Processing time, 631
PROFIBUS

-connection, 860
PROFIBUS connection, 860
PROFIBUS diagnostics, 842
PROFINET

-connection, 862
Program

-action, 534
-display status, 532
Interrupt, 1063
List, 868
-organization, 1062
-organizational unit, 1059
Program test, 469
Runtimes, 627
-states, 532
status, 1101

Program control, interface signals, 580
Program display modes, 584
Program execution without setpoint outputs, 469
Program operation, 524

Initial setting, 524
Program section repetition, 539
Programming device

Hardware requirements, 875
Project, 1058
Protection level

for user ASUB, 572
Protection levels, 62

programmable, 65
Protection zones, 114

Data storage, 123
Definition as per partprogram, 118
Definition with system variables, 121
Example, activation, 155
Example, definition, 146
Restrictions, 132

R
Radius-related data, 804
Rapid traverse

-override, 1359
Reaching simulated target point for LEAD with
JOG, 518
Read

Single, 1113
Recall alarms, 37
Reference axis

for G96 / G961 / G962, 797
Reference point R, 671
Reference points, 670
Referencing

in rotary absolute encoders, 1211
with incremental measurement system, 1181

Referencing methods, 1173
Relevant standards, 789
Remote diagnostics, 35
Replaceable geometry axes, 657
Replacement subprogram, 602
replacement zero mark, 1211
REPOS offset, 293
Repositioning neutral axes after SERUPRO, 497
Reset

behavior, 595
RESET

Command, 531
Residual time

For a workpiece, 630
Retraction

Direction for thread cutting, 1352
Revolutional feedrate (G95), 1339
Rewiring, 1097
Rotary axes, 662
Rotary axis parameters, 1474
Rotation component, 756
Rounding, 172
Runtimes

Program, 627
Run-up completed, 52

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1755

S
S functions, 372
S..., 1301
SAVE, 569
SBLOF, 575
SBLON, 578
SCPARA, 1381
Screen bright, 36
SD41100, 1340
SD41200, 1296
SD42010, 1348
SD42100, 1365
SD42101, 1366
SD42200, 575
SD42440, 1510
SD42442, 1510
SD42444, 479
SD42465, 220
SD42466, 220
SD42480, 1464
SD42496, 1460
SD42500,
SD42502,
SD42510,
SD42512,
SD42600, 1340
SD42676, 220
SD42678, 220
SD42700, 592
SD42750, 584
SD42800, 1299
SD42900, 1565
SD42910, 1547
SD42920, 1547
SD42930, 1578
SD42935, 1573
SD42940, 1547
SD42950, 1547
SD42960, 1525
SD42974, 1481
SD42980, 763
SD42984, 1506
SD42990, 582
SD43200, 1308
SD43202, 1309
SD43206, 1310
SD43210, 1345
SD43220, 1343
SD43230, 1343
SD43235, 1318
SD43240, 1310
SD43250, 1310

SD43300, 1340
SD43400, 109
SD43410, 109
SD43420, 108
SD43430, 108
SD43500, 296
SD43510,
SD43520, 297
Secant error, 213
Selection of the cutting edge when changing tool, 1393
Selfacting SERUPRO,
SERUPRO

Automatic interrupt pointer, 513
-end ASUB, 426
Programmable interrupt pointer, 510
SPEED factor for channel axes during ramp-up, 505

SERUPRO approach
control from the PLC, 499

SERUPRO ASUB, 292
Special features, 506

serurpoMasterChan, 509
Servo gain factor, 351
SETINT, 568
SETMS, 1301
Setpoint output, 328
Setpoint system, 328
SETTCOR, 1557
Several transverse axes

Acceptance of the additional transverse axis, 802
Axis replacement in synchronized actions, 802
Axis replacement via axis container rotation, 803
Axis-specific diameter programming, 802

Signal distortions, 80
Signal exchange

Cyclic, 809
Event-controlled, 809

Signals
Alarm signals, 35
Axis/spindle-specific (DB31, ...), 34
Channel-specific (DB21, ...), 34
Compile cycles, 827
NCK/PLC, 828
PLC / mode group, 829
PLC/axes, spindles, 830
PLC/NCK, 827
PLC/NCK channels, 829
Ready signals, 35

Signature, 1071
Simulation, 475
Simulation axes, 330
Single block

Channel classification, 579

Index

 Basic Functions
1756 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

do not stop, depending on the situation, 577
Program operation mode, 471
-reactivate suppression in the ASUB, 578
SBL1, 573
SBL2, 573
SBL2 with implicit preprocessing stop, 574
SBL3, 573
Stop suppression, 575
-suppression in the program SBLOF, 575
-Suppression with started ASUB, 576

Single-axis dynamic response, 1378
Skip levels, 581
Slotting saw, 1417
Smooth approach and retraction

Significance, 1435
Sub-movements, 1436

Smoothing
Path velocity, 196

SOFT, 249
SOFTA, 250
Software limit switch, 104
SPCOF, 1302
SPCON, 1302
Special axes, 662
Special bit memory, 1086
Special points in the target block

STOPRRE block, 514
Specify gear stage,
Speed

feedforward control, 355
Speed control loop, 350
Speed controller active, 48
Speed default, 1308
Speed setpoint adjustment, 337
Speed setpoint output, 337
SPI,
spindle

modes, 1226
Spindle

-definitions, 1307
-gear stage 0, 1271
-interface, 1306
-job, 1306
-override, 1362
-setpoint speed, 1314
-speed limits, 1315
-speed, maximum, 1315
-speed, minimum, 1314

Spindle disable, 1358
Spindle functions using a PLC, 467
Spindle speed, 309
Spindle speed limitation with G96, G961, 1343

Spline, 163
SPOS, 1302
SPOSA, 1302
Star/delta switchover with FC17, 1271
Star-delta changeover, 991
Startup and synchronization of NCK PLC,
status

End of scan cycle, 1109
Execution, 1107

Status, 1101
Program, 1101
-table, 1112

STOLF, 224
Stop delay area, 555
Stop event, 556
Storing angles in the toolholder data, 1473
Strings, 1048
SVC, 1301
Symbol

-table, 1060
Symbolic programming, 846
Synchronized axes, 665

T
T function, 1392
T function replacement, 606
Table

Status, 1060
-Symbol, 1060

TCARR, 1486
TCOABS, 1486
TCOFR,
TCP Tool Center Position, 671
TEACH IN, 458
Thread

Cutting, 1351
Thread cutting G33, 1345
Tick, 423
TOA

-Data, 1417
-Unit, 1394

Tolerance
-factor for spindle speed, 1314
with G0, 223

Tool, 1392
Change, 1392
Change tool with M06, 1392
Cutting edge,
DISC, 1451
-length, 1420
management, 453

 Index

Basic Functions
Function Manual, 03/2013, 6FC5397-0BP40-3BA1 1757

-offset data, 1417
-parameters, 1413
-retraction, 600
Select, 1392
-shape, 1422
-shape, active, 1424
-size, active, 1424
T function, 1392
Tool base dimension/adapter dimension, 1424
Tool cutting edge, 1393
Tool radius compensation 2D (TRC), 1428
-type, 1415
-wear, 1424

Tool base dimension, 1424
Tool change

D function, 1393
Offset memory, 1394

Tool environments, 1546
Tool length compensation

calculate tool-specifically, example, 1571
Geometry, 1420
Wear, 1423
Workpiece-specific calculation, 1538

Tool offset
Offset in the NC, 1395
Types, 1472

Tool radius compensation
keep constant, 1461
Wear, 1424

Tool radius compensation, 2D, 1428
Approach and retraction behavior, 1430
Collision detection, 1457
Compensation and inner corners, 1455
Compensation at outside corners, 1450
Deselection, 1450
Geometry, 1422
Modified alarm response, 1464
Point of intersection G451, 1453
Selection, 1429
Smooth approach and retraction, 1435
Transition circle, 1451
variable compensation value, 1459

Tool revolver axes, 662
TOOLENV, 1547
Toolholder reference point T, 671
Toolholder selection, 1470
Toolholder with orientation capability, 1469

Calculation of active tool length, 1485
Create new, 1489
Examples, 1567
Kinematic chain, 1476

Toolholder, with orientation capability, 1469

Control system response on Reset, program start,
REPOS, 1494
Create new, 1489
Inclined machining, 1484
Programming, 1493
Supplementary conditions, 1494
swiveling working table, 1485

Tooth feedrate, 1339
Torsion, 211
TOWBCS, 1544
TOWKCS, 1545
TOWMCS, 1543
TOWSTD, 1543
TOWTCS, 1545
TOWWCS, 1544
TRANS, 651
TRANSMIT, 678
Transverse axis, 797

Dimensions, 801
Initial setting, 803

Travel to fixed stop, 281
Block search, 291
Contour monitoring, 295
Deselection, 289
Fixed stop is not reached, 288
Fixed stop is reached, 286
Function abort, 295
Monitoring window, 287
Positioning axes, 295
Selection, 285

Traversing movement release, 1210
Traversing ranges, 309

U
UDT assignments, 846
Undercut angle, 1426
User

-data block, 1068
-interface, 1068

User-defined ASUB
after SERUPRO operation, 493

UTD-blocks, 846

V
Variables

Freely selectable, 1060
local, 1069
-table, 1069

Velocities, 307

Index

 Basic Functions
1758 Function Manual, 03/2013, 6FC5397-0BP40-3BA1

VELOLIM, 1303
Vertical axes, 296

W
WAITENC, 600
WAITS, 1303
WALCS0, 112
WALIMOF, 110
WALIMON, 110
WCS, 37
Work offset $P_EXTFRAME, 806
Working area limitation, 106

in BCS, 108
in WCS/SZS, 110

Working area limitation group, 111
Workpiece

-counter, 634
-simulation, 475

Workpiece coordinate system (WCS), 686
Workpiece zero W, 670

X
XE * MERGEFORMAT, 371

Y
YDelta, 991

Z
Zero mark diagnostics, 99
Zero points, 670
Zero vectors, 1477

	Basic Functions
	Legal information
	Preface
	Table of Contents
	1 A2: Various NC/PLC interface signals and functions
	1.1 Brief description
	1.2 NC/PLC interface signals - only 840D sl
	1.2.1 General
	1.2.2 Ready signal to PLC
	1.2.3 Status signals to PLC
	1.2.4 Signals to/from the operator panel front
	1.2.5 Signals to channel
	1.2.6 Signals to axis/spindle
	1.2.7 Signals from axis/spindle
	1.2.8 Signals to axis/spindle (digital drives)
	1.2.9 Signals from axis/spindle (digital drives)

	1.3 Functions
	1.3.1 Screen settings
	1.3.2 Settings for involute interpolation - only 840D sl
	1.3.3 Activate DEFAULT memory - only 840D sl
	1.3.4 Read and write PLC variable - only 840D sl
	1.3.5 Access protection via password and keyswitch
	1.3.5.1 Password
	1.3.5.2 Keyswitch positions (DB10, DBX56.4 to 7)
	1.3.5.3 Parameterizable protection levels

	1.3.6 "Parking" of a machine axis
	1.3.7 Switchover of motor/drive data sets
	1.3.7.1 General Information
	1.3.7.2 Validity and format of the request/display interfaces
	1.3.7.3 Request for a new motor data set and/or drive data set
	1.3.7.4 Display of the active motor and/or drive data set
	1.3.7.5 Example
	1.3.7.6 Overview of the interfaces
	1.3.7.7 Supplementary conditions

	1.4 Examples
	1.5 Data lists
	1.5.1 Machine data
	1.5.1.1 Display machine data
	1.5.1.2 NC-specific machine data
	1.5.1.3 Channelspecific machine data
	1.5.1.4 Axis/spindlespecific machine data

	1.5.2 System variables
	1.5.3 Signals
	1.5.3.1 Signals to NC
	1.5.3.2 Signals from NC
	1.5.3.3 Signals to operator panel front
	1.5.3.4 Signals from operator panel front
	1.5.3.5 Signals to channel
	1.5.3.6 Signals from channel
	1.5.3.7 Signals to axis/spindle
	1.5.3.8 Signals from axis/spindle

	2 A3: Axis Monitoring, Protection Zones
	2.1 Brief description
	2.1.1 Axis monitoring functions
	2.1.2 Protection zones

	2.2 Axis monitoring functions
	2.2.1 Contour monitoring
	2.2.1.1 Contour error
	2.2.1.2 Following-error monitoring

	2.2.2 Positioning, zero speed and clamping monitoring
	2.2.2.1 Correlation between positioning, zero-speed and clamping monitoring
	2.2.2.2 Positioning monitoring
	2.2.2.3 Zero-speed monitoring
	2.2.2.4 Parameter set-dependent exact stop and standstill tolerance
	2.2.2.5 Clamping monitoring

	2.2.3 Speed-setpoint monitoring
	2.2.4 Actual-velocity monitoring
	2.2.5 Measuring system monitoring
	2.2.5.1 Encoder-limit-frequency monitoring
	2.2.5.2 Plausibility check for absolute encoders
	2.2.5.3 Customized error reactions

	2.2.6 Limit-switch monitoring
	2.2.6.1 Hardware limit switch
	2.2.6.2 Software limit switch

	2.2.7 Monitoring of the working area limitation
	2.2.7.1 General
	2.2.7.2 Working area limitation in BKS
	2.2.7.3 Working area limitation in WCS/SZS

	2.2.8 Deactivating all monitoring functions: "Parking"

	2.3 Protection zones
	2.3.1 General
	2.3.2 Types of protection zone
	2.3.3 Definition via part program instruction
	2.3.4 Definition as per system variable
	2.3.5 Activating and deactivating protection zones
	2.3.6 Protection zone violation and temporary enabling of individual protection zones
	2.3.7 Restrictions in protection zones
	2.3.8 Checking for protection zone violation, working area limitation and software limit switches (CALCPOSI)

	2.4 Supplementary conditions
	2.4.1 Axis monitoring functions

	2.5 Examples
	2.5.1 Axis monitoring functions
	2.5.1.1 Working area limitation in WCS/SZS

	2.5.2 Protection zones
	2.5.2.1 Definition and activation of protection zones

	2.6 Data lists
	2.6.1 Machine data
	2.6.1.1 NC-specific machine data
	2.6.1.2 Channelspecific machine data
	2.6.1.3 Axis/spindlespecific machine data

	2.6.2 Setting data
	2.6.2.1 Axis/spindlespecific setting data

	2.6.3 Signals
	2.6.3.1 Signals to channel
	2.6.3.2 Signals from channel
	2.6.3.3 Signals to axis/spindle

	3 B1: Continuous-path mode, Exact stop, Look Ahead
	3.1 Brief Description
	3.2 Exact stop mode
	3.3 Continuous-path mode
	3.3.1 General functionality
	3.3.2 Velocity reduction according to overload factor
	3.3.3 Rounding
	3.3.3.1 Rounding according to a path criterion (G641)
	3.3.3.2 Rounding in compliance with defined tolerances (G642/G643)
	3.3.3.3 Rounding with maximum possible axial dynamic response (G644)
	3.3.3.4 Rounding of tangential block transitions (G645)
	3.3.3.5 Rounding and repositioning (REPOS)

	3.3.4 LookAhead
	3.3.4.1 Standard functionality
	3.3.4.2 Free-form surface mode: Extension function

	3.4 Dynamic adaptations
	3.4.1 Smoothing of the path velocity
	3.4.2 Adaptation of the dynamic path response
	3.4.3 Determination of the dynamic response limiting values
	3.4.4 Interaction between the "smoothing of the path velocity" and "adaptation of the path dynamic response" functions
	3.4.5 Dynamic response mode for path interpolation
	3.4.6 Free-form surface mode: Basic functions

	3.5 Compressor functions
	3.5.1 NC block compression
	3.5.2 Combine short spline blocks

	3.6 Contour/Orientation tolerance
	3.7 Tolerance and compression of G0 blocks
	3.8 RESET behavior
	3.9 Supplementary conditions
	3.9.1 Block change and positioning axes
	3.9.2 Block change delay

	3.10 Data lists
	3.10.1 Machine data
	3.10.1.1 General machine data
	3.10.1.2 Channelspecific machine data
	3.10.1.3 Axis/spindlespecific machine data

	3.10.2 Setting data
	3.10.2.1 Channelspecific setting data

	3.10.3 Signals
	3.10.3.1 Signals from channel
	3.10.3.2 Signals from axis/spindle

	4 B2: Acceleration
	4.1 Brief description
	4.1.1 General
	4.1.2 Features

	4.2 Functions
	4.2.1 Acceleration without jerk limitation (BRISK/BRISKA) (channel/axis-specific)
	4.2.1.1 General Information
	4.2.1.2 Parameterization
	4.2.1.3 Programming

	4.2.2 Constant travel time (channel-specific)
	4.2.2.1 General Information
	4.2.2.2 Parameterization

	4.2.3 Acceleration matching (ACC) (axis-specific)
	4.2.3.1 General Information
	4.2.3.2 Programming

	4.2.4 Acceleration margin (channel-specific)
	4.2.4.1 General Information
	4.2.4.2 Parameterization

	4.2.5 Path-acceleration limitation (channel-specific)
	4.2.5.1 General Information
	4.2.5.2 Parameterization
	4.2.5.3 Programming

	4.2.6 Path acceleration for real-time events (channel-specific)
	4.2.6.1 General Information
	4.2.6.2 Programming

	4.2.7 Acceleration with programmed rapid traverse (G00) (axis-specific)
	4.2.7.1 General Information
	4.2.7.2 Parameterization

	4.2.8 Acceleration with active jerk limitation (SOFT/SOFTA) (axis-specific)
	4.2.8.1 General Information
	4.2.8.2 Parameterization

	4.2.9 Excessive acceleration for non-tangential block transitions (axis-specific)
	4.2.9.1 General Information
	4.2.9.2 Parameterization

	4.2.10 Acceleration margin for radial acceleration (channel-specific)
	4.2.10.1 General Information
	4.2.10.2 Parameterization

	4.2.11 Jerk limitation with path interpolation (SOFT) (channel-specific)
	4.2.11.1 General Information
	4.2.11.2 Parameterization
	4.2.11.3 Programming

	4.2.12 Jerk limitation with single-axis interpolation (SOFTA) (axis-specific)
	4.2.12.1 Parameterization
	4.2.12.2 Programming

	4.2.13 Path-jerk limitation (channel-specific)
	4.2.13.1 General Information
	4.2.13.2 Parameterization
	4.2.13.3 Programming

	4.2.14 Path jerk for real-time events (channel-specific)
	4.2.14.1 General Information
	4.2.14.2 Programming

	4.2.15 Jerk with programmed rapid traverse (G00) (axis-specific)
	4.2.15.1 General Information
	4.2.15.2 Parameterization

	4.2.16 Excessive jerk for block transitions without constant curvature (axis-specific)
	4.2.16.1 General Information
	4.2.16.2 Parameterization

	4.2.17 Velocity-dependent jerk adaptation (axis-specific)
	4.2.18 Jerk filter (axis-specific)
	4.2.18.1 General Information
	4.2.18.2 Parameterization

	4.2.19 Kneeshaped acceleration characteristic curve
	4.2.19.1 Adaptation to the motor characteristic curve
	4.2.19.2 Effects on path acceleration
	4.2.19.3 Substitute characteristic curve
	4.2.19.4 Parameterization
	4.2.19.5 Programming
	4.2.19.6 Boundary conditions

	4.2.20 Acceleration and jerk for JOG motions
	4.2.20.1 Parameterization
	4.2.20.2 Supplementary conditions

	4.3 Examples
	4.3.1 Acceleration
	4.3.1.1 Path velocity characteristic

	4.3.2 Jerk
	4.3.2.1 Path velocity characteristic

	4.3.3 Acceleration and jerk
	4.3.4 Knee-shaped acceleration characteristic curve
	4.3.4.1 Activation

	4.4 Data lists
	4.4.1 Machine data
	4.4.1.1 NC-specific machine data
	4.4.1.2 Channel-specific machine data
	4.4.1.3 Axis/spindlespecific machine data

	4.4.2 Setting data
	4.4.2.1 Channelspecific setting data

	4.4.3 System variables

	5 F1: Travel to fixed stop
	5.1 Brief description
	5.2 Detailed description
	5.2.1 Programming
	5.2.2 Functional sequence
	5.2.2.1 Selection
	5.2.2.2 Fixed stop is reached
	5.2.2.3 Fixed stop is not reached
	5.2.2.4 Deselection

	5.2.3 Behavior during block search
	5.2.4 Behavior for reset and function abort
	5.2.5 Behavior with regard to other functions
	5.2.6 Setting data
	5.2.7 System variable
	5.2.8 Fixed stop alarms
	5.2.9 Travel with limited torque/force FOC

	5.3 Examples
	5.4 Data lists
	5.4.1 Machine data
	5.4.1.1 Axis/spindlespecific machine data

	5.4.2 Setting data
	5.4.2.1 Axis/spindle-specific setting data

	5.4.3 Signals
	5.4.3.1 Signals to axis/spindle
	5.4.3.2 Signals from axis/spindle

	6 G2: Velocities, setpoint / actual value systems, closed-loop control
	6.1 Brief description
	6.2 Velocities, traversing ranges, accuracies
	6.2.1 Velocities
	6.2.2 Traversing ranges
	6.2.3 Positioning accuracy of the control system
	6.2.4 Input/display resolution, computational resolution
	6.2.5 Scaling of physical quantities of machine and setting data

	6.3 Metric/inch measuring system
	6.3.1 Conversion of basic system by part program
	6.3.2 Manual switchover of the basic system
	6.3.3 FGROUP and FGREF

	6.4 Setpoint/actual-value system
	6.4.1 General
	6.4.2 Setpoint and encoder assignment
	6.4.3 Adapting the motor/load ratios
	6.4.4 Speed setpoint output
	6.4.5 Actual-value processing
	6.4.6 Actual-value resolution
	6.4.6.1 Description of the function
	6.4.6.2 Example: Linear axis with linear scale
	6.4.6.3 Example: Linear axis with rotary encoder on motor
	6.4.6.4 Example: Linear axis with rotary encoder on the machine
	6.4.6.5 Example: Rotary axis with rotary encoder on motor
	6.4.6.6 Example: Rotary axis with rotary encoder on the machine
	6.4.6.7 Example: Intermediate gear with encoder on the tool

	6.5 Closed-loop control
	6.5.1 General
	6.5.2 Parameter sets of the position controller

	6.6 Optimization of the control
	6.6.1 Position controller, position setpoint filter: Balancing filter
	6.6.2 Position controller, position setpoint filter: Jerk filter
	6.6.3 Position controller, position setpoint filter: Phase filter
	6.6.4 Position controller: injection of positional deviation
	6.6.5 Position control with proportional-plus-integral-action controller

	6.7 Data lists
	6.7.1 Machine data
	6.7.1.1 Displaying machine data
	6.7.1.2 NC-specific machine data
	6.7.1.3 Channelspecific machine data
	6.7.1.4 Axis/spindlespecific machine data

	7 H2: Auxiliary function outputs to PLC
	7.1 Brief description
	7.1.1 Function
	7.1.2 Definition of an auxiliary function
	7.1.3 Overview of the auxiliary functions

	7.2 Predefined auxiliary functions
	7.2.1 Overview: Predefined auxiliary functions
	7.2.2 Overview: Output behavior
	7.2.3 Parameterization
	7.2.3.1 Group assignment
	7.2.3.2 Type, address extension and value
	7.2.3.3 Output behavior

	7.3 Userdefined auxiliary functions
	7.3.1 Parameterization
	7.3.1.1 Maximum number of user-defined auxiliary functions
	7.3.1.2 Group assignment
	7.3.1.3 Type, address extension and value
	7.3.1.4 Output behavior

	7.4 Associated auxiliary functions
	7.5 Type-specific output behavior
	7.6 Priorities of the output behavior for which parameters have been assigned
	7.7 Programming an auxiliary function
	7.8 Programmable output duration
	7.9 Auxiliary function output to the PLC
	7.10 Auxiliary functions without block change delay
	7.11 M function with an implicit preprocessing stop
	7.12 Response to overstore
	7.13 Behavior during block search
	7.13.1 Auxiliary function output during type 1, 2, and 4 block searches
	7.13.2 Assignment of an auxiliary function to a number of groups
	7.13.3 Time stamp of the active M auxiliary function
	7.13.4 Determining the output sequence
	7.13.5 Output suppression of spindle-specific auxiliary functions
	7.13.6 Auxiliary function output with a type 5 block search (SERUPRO)
	7.13.7 ASUB at the end of the SERUPRO

	7.14 Implicitly output auxiliary functions
	7.15 Information options
	7.15.1 Group-specific modal M auxiliary function display
	7.15.2 Querying system variables

	7.16 Supplementary conditions
	7.16.1 General constraints
	7.16.2 Output behavior

	7.17 Examples
	7.17.1 Extension of predefined auxiliary functions
	7.17.2 Defining auxiliary functions

	7.18 Data lists
	7.18.1 Machine data
	7.18.1.1 NC-specific machine data
	7.18.1.2 Channelspecific machine data

	7.18.2 Signals
	7.18.2.1 Signals to channel
	7.18.2.2 Signals from channel
	7.18.2.3 Signals to axis/spindle
	7.18.2.4 Signals from axis/spindle

	8 K1: Mode group, channel, program operation, reset response
	8.1 Product brief
	8.2 Mode group
	8.2.1 Mode group stop
	8.2.2 Mode group reset

	8.3 Mode types and mode type change
	8.3.1 Monitoring functions and interlocks of the individual modes
	8.3.2 Mode change

	8.4 Channel
	8.4.1 Global start disable for channel

	8.5 Program test
	8.5.1 Program execution without setpoint outputs
	8.5.2 Program execution in single-block mode
	8.5.3 Program execution with dry run feedrate
	8.5.4 Skip part-program blocks

	8.6 Workpiece simulation
	8.7 Block search
	8.7.1 Sequence for block search of the type 1, 2 and 4
	8.7.2 Block search in connection with other NCK functions
	8.7.2.1 ASUB after and during block search
	8.7.2.2 PLC actions after block search
	8.7.2.3 Spindle functions after block search
	8.7.2.4 Reading system variables for a block search

	8.7.3 Automatic start of an ASUB after a block search
	8.7.4 Cascaded block search
	8.7.5 Examples for block search with calculation

	8.8 Block search Type 5 SERUPRO
	8.8.1 Description of the function
	8.8.2 REPOS
	8.8.2.1 Continue machining at the contour after SERUPRO search target found
	8.8.2.2 Repositioning on contour with controlled REPOS

	8.8.3 Acceleration measures via MD
	8.8.4 SERUPRO ASUB
	8.8.5 Selfacting SERUPRO
	8.8.6 Locking a program section for "Continue machining at the contour"
	8.8.7 Behavior during POWER ON, mode change and RESET
	8.8.8 Supplementary conditions
	8.8.8.1 STOPRE in the target block
	8.8.8.2 SPOS in target block
	8.8.8.3 Travel to fixed stop (FXS)
	8.8.8.4 Travel with limited torque/force (FOC)
	8.8.8.5 Synchronous spindle
	8.8.8.6 Couplings and master-slave
	8.8.8.7 Axis functions
	8.8.8.8 Gear stage change
	8.8.8.9 Superimposed motion
	8.8.8.10 NC/PLC interface signals
	8.8.8.11 Making the initial settings more flexible

	8.8.9 System variable

	8.9 Program operation
	8.9.1 Initial settings
	8.9.2 Selection and start of part program or part program block
	8.9.3 Part program interruption
	8.9.4 RESET command
	8.9.5 Program status
	8.9.6 Channel status
	8.9.7 Responses to operator or program actions
	8.9.8 Part-Program Start
	8.9.9 Example of a timing diagram for a program run
	8.9.10 Program jumps
	8.9.10.1 Jump back to start of program

	8.9.11 Program section repetitions
	8.9.11.1 Overview
	8.9.11.2 Individual part program block
	8.9.11.3 A part program section after a start label
	8.9.11.4 A part program section between a start label and end label
	8.9.11.5 A part program section between a Start label and the key word: ENDLABEL

	8.9.12 Event-driven program calls
	8.9.12.1 Function
	8.9.12.2 Parameterization
	8.9.12.3 Programming
	8.9.12.4 Boundary conditions
	8.9.12.5 Examples

	8.9.13 Influencing the Stop events through Stop delay area

	8.10 Asynchronous subprograms (ASUBs), interrupt routines
	8.10.1 Function
	8.10.1.1 General functionality
	8.10.1.2 Sequence of an interrupt routine in program operation
	8.10.1.3 Interrupt routine with REPOSA
	8.10.1.4 NC response

	8.10.2 Parameterization
	8.10.3 Programming
	8.10.4 Restrictions
	8.10.5 Examples

	8.11 User-specific ASUB for RET and REPOS
	8.11.1 Function
	8.11.2 Parameter assignment
	8.11.3 Programming

	8.12 Single block
	8.12.1 Decoder single block SBL2 with implicit preprocessing stop
	8.12.2 Single-block stop: Suppression using SBLOF
	8.12.3 Single-block stop: Inhibit according to situation
	8.12.4 Single-block behavior in mode group with type A/B

	8.13 Program control
	8.13.1 Function selection (via operator panel front or PLC)
	8.13.2 Activation of skip levels
	8.13.3 Adapting the size of the interpolation buffer
	8.13.4 Program display modes via an additional basic block display
	8.13.5 Basic block display for ShopMill/ShopTurn
	8.13.6 Structure for a DIN block
	8.13.7 Execution from external
	8.13.8 Execution from external subroutines

	8.14 System settings for power-up, RESET / part program end and part program start
	8.14.1 Tool withdrawal after POWER ON with orientation transformation

	8.15 Replacing functions by subprograms
	8.15.1 Overview
	8.15.2 Replacement of M, T/TCA and D/DL functions
	8.15.2.1 Replacement of M functions
	8.15.2.2 Replacing T/TCA and D/DL functions
	8.15.2.3 System variable
	8.15.2.4 Example: Replacement of an M function
	8.15.2.5 Example: Replacement of a T and D function
	8.15.2.6 Behavior in the event of a conflict

	8.15.3 Replacement of spindle functions
	8.15.3.1 General
	8.15.3.2 Replacement of M40 - M45 (gear stage change)
	8.15.3.3 Replacement of SPOS, SPOSA, M19 (spindle positioning)
	8.15.3.4 System variable
	8.15.3.5 Example: Gear stage change
	8.15.3.6 Example: Spindle positioning

	8.15.4 Properties of the subprograms
	8.15.5 Restrictions

	8.16 Program runtime / part counter
	8.16.1 Program runtime
	8.16.2 Workpiece counter

	8.17 Data lists
	8.17.1 Machine data
	8.17.1.1 General machine data
	8.17.1.2 Channel-specific machine data
	8.17.1.3 Axis/spindlespecific machine data

	8.17.2 Setting data
	8.17.2.1 Channelspecific setting data

	8.17.3 Signals
	8.17.3.1 Signals to NC
	8.17.3.2 Signals to mode group
	8.17.3.3 Signals to NC
	8.17.3.4 Signals to channel
	8.17.3.5 Signals from channel
	8.17.3.6 Signals to NC
	8.17.3.7 Signals from axis/spindle

	9 K2: Axis Types, Coordinate Systems, Frames
	9.1 Brief description
	9.1.1 Axes
	9.1.2 Coordinate systems
	9.1.3 Frames

	9.2 Axes
	9.2.1 Overview
	9.2.2 Machine axes
	9.2.3 Channel axes
	9.2.4 Geometry axes
	9.2.5 Replaceable geometry axes
	9.2.6 Special axes
	9.2.7 Path axes
	9.2.8 Positioning axes
	9.2.9 Main axes
	9.2.10 Synchronized axes
	9.2.11 Axis configuration
	9.2.12 Link axes

	9.3 Zeros and reference points
	9.3.1 Reference points in working space
	9.3.2 Position of coordinate systems and reference points

	9.4 Coordinate systems
	9.4.1 Overview
	9.4.2 Machine coordinate system (MCS)
	9.4.3 Basic coordinate system (BCS)
	9.4.4 Additive offsets
	9.4.5 Basic zero system (BZS)
	9.4.6 Settable zero system (SZS)
	9.4.7 Workpiece coordinate system (WCS)

	9.5 Frames
	9.5.1 Frame types
	9.5.2 Frame components
	9.5.2.1 Translation
	9.5.2.2 Fine offset
	9.5.2.3 Rotation Overview (geometry axes only)
	9.5.2.4 Rotation with a Euler angles: ZY'X" convention (RPY angles)
	9.5.2.5 Rotation with a Euler angles: ZX'Z" convention
	9.5.2.6 Rotation in any plane
	9.5.2.7 Scaling
	9.5.2.8 Mirroring
	9.5.2.9 Chain operator
	9.5.2.10 Programmable axis name
	9.5.2.11 Coordinate transformation

	9.5.3 Frames in data management and active frames
	9.5.3.1 Overview
	9.5.3.2 Activating data management frames
	9.5.3.3 NCU global frames

	9.5.4 Frame chain and coordinate systems
	9.5.4.1 Overview
	9.5.4.2 Relative coordinate systems
	9.5.4.3 Configurable SZS
	9.5.4.4 Manual traverse in the SZS coordinate system
	9.5.4.5 Suppression of frames

	9.5.5 Frames of the frame chain
	9.5.5.1 Overview
	9.5.5.2 Settable frames $P_UIFR[n]
	9.5.5.3 Channel basic frames $P_CHBFR[n]
	9.5.5.4 NCU global basic frames $P_NCBFR[n]
	9.5.5.5 Complete basic frame $P_ACTBFRAME
	9.5.5.6 Programmable frame $P_PFRAME
	9.5.5.7 Channelspecific system frames

	9.5.6 Implicit frame changes
	9.5.6.1 Frames and switchover of geometry axes
	9.5.6.2 Frame for selection and deselection of transformations
	9.5.6.3 Adapting active frames
	9.5.6.4 Mapped Frames

	9.5.7 Predefined frame functions
	9.5.7.1 Inverse frame
	9.5.7.2 Additive frame in frame chain

	9.5.8 Functions
	9.5.8.1 Setting zeros, workpiece measuring and tool measuring
	9.5.8.2 Zero offset external via system frames
	9.5.8.3 Toolholder

	9.5.9 Subprograms with SAVE attribute (SAVE)
	9.5.10 Data backup
	9.5.11 Positions in the coordinate system
	9.5.12 Control system response
	9.5.12.1 POWER ON
	9.5.12.2 Mode change
	9.5.12.3 RESET, end of part program
	9.5.12.4 Part program start
	9.5.12.5 Block search
	9.5.12.6 REPOS

	9.6 Workpiece-related actual value system
	9.6.1 Overview
	9.6.2 Use of the workpiece-related actual value system
	9.6.3 Special reactions

	9.7 Restrictions
	9.8 Examples
	9.8.1 Axes
	9.8.2 Coordinate systems
	9.8.3 Frames

	9.9 Data lists
	9.9.1 Machine data
	9.9.1.1 Displaying machine data
	9.9.1.2 NC-specific machine data
	9.9.1.3 Channel-specific machine data
	9.9.1.4 Axis/spindlespecific machine data

	9.9.2 Setting data
	9.9.2.1 Channelspecific setting data

	9.9.3 System variables
	9.9.4 Signals
	9.9.4.1 Signals from channel
	9.9.4.2 Signals to axis/spindle
	9.9.4.3 Signals from axis/spindle

	10 N2: Emergency stop
	10.1 Brief Description
	10.2 Relevant standards
	10.3 Emergency stop control elements
	10.4 Emergency stop sequence
	10.5 Emergency stop acknowledgement
	10.6 Data lists
	10.6.1 Machine data
	10.6.1.1 Axis/spindlespecific machine data

	10.6.2 Signals
	10.6.2.1 Signals to NC
	10.6.2.2 Signals from NC
	10.6.2.3 Signals to BAG

	11 P1: Transverse axes
	11.1 Brief description
	11.2 Defining a geometry axis as transverse axis
	11.3 Dimensional information for transverse axes
	11.4 Data lists
	11.4.1 Machine data
	11.4.1.1 Channelspecific machine data
	11.4.1.2 Axis/spindlespecific machine data

	12 P3: Basic PLC program for SINUMERIK 840D sl
	12.1 Brief description
	12.2 Key data of the PLC CPU
	12.3 PLC operating system version
	12.4 PLC mode selector
	12.5 Reserve resources (timers, counters, FC, FB, DB, I/O)
	12.6 Commissioning hardware configuration of the PLC CPU
	12.7 Starting up the PLC program
	12.7.1 Installation of the basic program
	12.7.2 Application of the basic program
	12.7.3 Version codes
	12.7.4 Machine program
	12.7.5 Data backup
	12.7.6 PLC series startup, PLC archive
	12.7.7 Software upgrade
	12.7.8 I/O modules (FM, CP modules)
	12.7.9 Troubleshooting

	12.8 Coupling of the PLC CPU
	12.8.1 General
	12.8.2 Properties of the PLC CPU
	12.8.3 Interface with integrated PLC
	12.8.4 Diagnostic buffer on PLC

	12.9 Interface structure
	12.9.1 PLC/NCK interface
	12.9.2 Interface PLC/HMI
	12.9.3 PLC/MCP/HHU interface

	12.10 Structure and functions of the basic program
	12.10.1 Startup and synchronization of NCK PLC
	12.10.2 Cyclic operation (OB 1)
	12.10.3 Time-interrupt processing (OB 35)
	12.10.4 Process interrupt processing (OB 40)
	12.10.5 Diagnostic interrupt, module failure processing (OB 82, OB 86)
	12.10.6 Response to NCK failure
	12.10.7 Functions of the basic program called from the user program
	12.10.8 Symbolic programming of user program with interface DB
	12.10.9 M decoding acc. to list
	12.10.10 PLC machine data
	12.10.11 Configuration machine control panel, handheld unit, direct keys
	12.10.12 Switchover of machine control panel, handheld unit

	12.11 SPL for Safety Integrated
	12.12 Assignment overview
	12.12.1 Assignment: NCK/PLC interface
	12.12.2 Assignment: FB/FC
	12.12.3 Assignment: DB
	12.12.4 Assignment: Timers

	12.13 PLC functions for HMI
	12.13.1 Program selection from the PLC
	12.13.2 Activating the key lock
	12.13.3 HMI monitor

	12.14 Memory requirements of the basic PLC program
	12.15 Basic conditions and NC VAR selector
	12.15.1 Supplementary conditions
	12.15.1.1 Programming and parameterizing tools
	12.15.1.2 SIMATIC documentation required
	12.15.1.3 Relevant SINUMERIK documents

	12.15.2 NC VAR selector
	12.15.2.1 Overview
	12.15.2.2 Description of functions
	12.15.2.3 Startup, installation

	12.16 Block descriptions
	12.16.1 FB 1: RUN_UP Basic program, startup section
	12.16.2 FB 2: Read GET NC variable
	12.16.3 FB 3: PUT write NC variables
	12.16.4 PI services
	12.16.4.1 FB 4: PI_SERV PI service request
	12.16.4.2 List of available Pl services
	12.16.4.3 PI service: ASUB
	12.16.4.4 PI service: CANCEL
	12.16.4.5 PI service: CONFIG
	12.16.4.6 PI service: DIGION
	12.16.4.7 PI service: DIGIOF
	12.16.4.8 PI service: FINDBL
	12.16.4.9 PI service: LOGIN
	12.16.4.10 PI service: LOGOUT
	12.16.4.11 PI service: NCRES
	12.16.4.12 PI service: SELECT
	12.16.4.13 PI service: SETUDT
	12.16.4.14 PI service: SETUFR
	12.16.4.15 PI service: RETRAC
	12.16.4.16 PI service: CRCEDN
	12.16.4.17 PI service: CREACE
	12.16.4.18 PI service: CREATO
	12.16.4.19 PI service: DELECE
	12.16.4.20 PI service: DELETO
	12.16.4.21 PI service: MMCSEM
	12.16.4.22 PI service: TMCRTO
	12.16.4.23 PI service: TMFDPL
	12.16.4.24 PI service: TMFPBP
	12.16.4.25 PI service: TMGETT
	12.16.4.26 PI service: TMMVTL
	12.16.4.27 PI service: TMPOSM
	12.16.4.28 PI service: TMPCIT
	12.16.4.29 PI service: TMRASS
	12.16.4.30 PI service: TRESMO
	12.16.4.31 PI service: TSEARC
	12.16.4.32 PI service: TMCRMT
	12.16.4.33 PI service: TMDLMT
	12.16.4.34 PI service: POSMT
	12.16.4.35 PI service: FDPLMT

	12.16.5 FB 5: GETGUD read GUD variable
	12.16.6 FB 7: PI_SERV2 (PI service request)
	12.16.7 FB 9: MtoN Control unit switchover
	12.16.8 FB 10: Safety relay (SI relay)
	12.16.9 FB 11: Brake test
	12.16.10 FB 29: Signal recorder and data trigger diagnostics
	12.16.11 FC 2: GP_HP Basic program, cyclic section
	12.16.12 FC 3: GP_PRAL Basic program, interruptdriven section
	12.16.13 FC 5: GP_DIAG Basic program, diagnostic alarm, and module failure
	12.16.14 FC 6: TM_TRANS2 transfer block for tool management and multitool
	12.16.15 FC 7: TM_REV Transfer block for tool change with revolver
	12.16.16 FC 8: TM_TRANS transfer block for tool management
	12.16.17 FC 9: ASUB startup of asynchronous subprograms
	12.16.18 FC 10: AL_MSG error and operating messages
	12.16.19 FC 12: AUXFU call interface for user with auxiliary functions
	12.16.20 FC 13: BHGDisp Display control for handheld unit
	12.16.21 FC 17: YDelta Star-Delta changeover
	12.16.22 FC 18: SpinCtrl Spindle control
	12.16.23 FC 19: MCP_IFM transmission of MCP signals to interface
	12.16.24 FC 21: transfer PLC NCK data exchange
	12.16.25 FC 22: TM_DIR Direction selection for tool management
	12.16.26 FC 24: MCP_IFM2 transmission of MCP signals to interface
	12.16.27 FC 25: MCP_IFT transfer of MCP/OP signals to interface
	12.16.28 FC 26: HPU_MCP transmission of HT8 signals to interface
	12.16.28.1 Overview of the NC/PLC interface signals of HT 8
	12.16.28.2 Overview of the NC/PLC interface signals of HT 8

	12.16.29 FC 19, FC 24, FC 25, FC 26 source code description
	12.16.30 FC 1005: AG_SEND transfers data to Ethernet CP
	12.16.31 FC 1006: AG_RECV receives data from the Ethernet CP

	12.17 Signal/data descriptions
	12.17.1 Interface signals NCK/PLC, HMI/PLC, MCP/PLC
	12.17.2 Decoded M signals
	12.17.3 G Functions
	12.17.4 Message signals in DB 2

	12.18 Programming tips with STEP 7
	12.18.1 Copying data
	12.18.2 ANY and POINTER
	12.18.2.1 Use of POINTER and ANY in FC
	12.18.2.2 Use of POINTER and ANY in FB
	12.18.2.3 POINTER or ANY variable for transfer to FC or FB

	12.18.3 Multiinstance DB
	12.18.4 Strings
	12.18.5 Determining offset addresses for data block structures
	12.18.6 FB calls

	12.19 Data lists
	12.19.1 Machine data
	12.19.1.1 Display machine data
	12.19.1.2 NC-specific machine data
	12.19.1.3 Channelspecific machine data

	13 P4: PLC for SINUMERIK 828D
	13.1 Overview
	13.1.1 PLC firmware
	13.1.2 PLC user interface
	13.1.2.1 Data that are cyclically exchanged
	13.1.2.2 Alarms and messages
	13.1.2.3 Retentive data
	13.1.2.4 Non-retentive data
	13.1.2.5 PLC machine data

	13.1.3 PLC key data
	13.1.4 PLC I/O, fast onboard inputs/outputs
	13.1.5 PLC Toolbox
	13.1.5.1 Star/delta changeover

	13.2 PLC Programming Tool
	13.3 Programming
	13.3.1 Introduction
	13.3.1.1 Important terms
	13.3.1.2 Create/open a project
	13.3.1.3 Program organization using the the Programming Tool
	13.3.1.4 Fast on-board inputs and outputs

	13.3.2 Target system memory
	13.3.2.1 Type of memory
	13.3.2.2 Addressing range of the target system
	13.3.2.3 Addressing
	13.3.2.4 Data types
	13.3.2.5 Constants
	13.3.2.6 Data blocks
	13.3.2.7 Special bit memories and their functions
	13.3.2.8 Editing NC variables in the PLC Programming Tool

	13.3.3 Operation set
	13.3.4 Data classes
	13.3.4.1 Defining data classes
	13.3.4.2 Assigning a block to a data class
	13.3.4.3 Load data class(es) into the CPU
	13.3.4.4 Load data class(es) from CPU
	13.3.4.5 Comparison between online and offline projects
	13.3.4.6 Delete in the target system

	13.3.5 Rewire addresses

	13.4 Test and diagnostic functions
	13.4.1 Program status
	13.4.1.1 Status definition
	13.4.1.2 Preconditions of the status update
	13.4.1.3 Influence of the operating state on the target system
	13.4.1.4 Communication and cycle
	13.4.1.5 Status update
	13.4.1.6 Simulating process conditions
	13.4.1.7 Checking cross references and the elements used

	13.4.2 Program status in the LAD program editor
	13.4.2.1 Display program status
	13.4.2.2 Pause Program Status
	13.4.2.3 Display properties
	13.4.2.4 Execution status
	13.4.2.5 Cycle-end status
	13.4.2.6 Display types of the status values
	13.4.2.7 Adapting the program status display

	13.4.3 Displaying the status in a status chart
	13.4.3.1 Properties of a status chart
	13.4.3.2 Open status chart
	13.4.3.3 Working with several status charts
	13.4.3.4 Creating a status chart
	13.4.3.5 Editing the status chart
	13.4.3.6 Data formats
	13.4.3.7 Enabling the status table
	13.4.3.8 Working with test functions in the status chart

	13.4.4 Execute cycles

	13.5 Data interface
	13.5.1 PLC-NCK interface
	13.5.1.1 Mode signals
	13.5.1.2 NC channel signals
	13.5.1.3 Axis and spindle signals
	13.5.1.4 General NCK signals
	13.5.1.5 Fast data exchange PLC-NCK

	13.5.2 PLC-HMI interface

	13.6 Function interface
	13.6.1 Read/write NC variables
	13.6.1.1 User interface
	13.6.1.2 Job specification
	13.6.1.3 Job management: Start job
	13.6.1.4 Job management: Waiting for end of job
	13.6.1.5 Job management: Job completion
	13.6.1.6 Job management: Flow diagram
	13.6.1.7 Job evaluation
	13.6.1.8 Operable variables
	13.6.1.9 Specifying selected NC variables

	13.6.2 Program instance services (PI services)
	13.6.2.1 User interface
	13.6.2.2 PI services

	13.6.3 PLC user alarms
	13.6.3.1 User interface

	13.6.4 PLC axis control
	13.6.4.1 Overview
	13.6.4.2 User interface: Preparing the NC axis as PLC axis
	13.6.4.3 User interface: Functionality
	13.6.4.4 Spindle positioning
	13.6.4.5 Rotate spindle
	13.6.4.6 Oscillate spindle
	13.6.4.7 Indexing axis
	13.6.4.8 Positioning axis metric
	13.6.4.9 Positioning axis inch
	13.6.4.10 Positioning axis metric with handwheel override
	13.6.4.11 Positioning axis inch with handwheel override
	13.6.4.12 Rotate spindle with automatic gear stage selection
	13.6.4.13 Rotate spindle with constant cutting rate [m/min]
	13.6.4.14 Rotate spindle with constant cutting rate [feet/min]
	13.6.4.15 Error messages

	13.6.5 Starting ASUBs
	13.6.5.1 General
	13.6.5.2 Job start
	13.6.5.3 Job result
	13.6.5.4 Signal flow

	14 R1: Referencing
	14.1 Brief Description
	14.2 Axisspecific referencing
	14.3 Channelspecific referencing
	14.4 Reference point appraoch from part program (G74)
	14.5 Referencing with incremental measurement systems
	14.5.1 Hardware signals
	14.5.2 Zero mark selection with BERO
	14.5.3 Time sequence
	14.5.4 Phase 1: Traversing to the reference cam
	14.5.5 Phase 2: Synchronization with the zero mark
	14.5.6 Phase 3: Traversing to the reference point

	14.6 Referencing with distance-coded reference marks
	14.6.1 General overview
	14.6.2 Basic parameter assignment
	14.6.3 Time sequence
	14.6.4 Phase 1: Travel across the reference marks with synchronization
	14.6.5 Phase 2: Traversing to the target point

	14.7 Referencing by means of actual value adjustment
	14.7.1 Actual value adjustment to the referencing measurement system
	14.7.2 Actual value adjustment for measuring systems with distance-coded reference marks

	14.8 Referencing in follow-up mode
	14.9 Referencing with absolute encoders
	14.9.1 Information about the adjustment
	14.9.2 Calibration by entering a reference point offset
	14.9.3 Adjustment by entering a reference point value
	14.9.4 Automatic calibration with probe
	14.9.5 Adjustment with BERO
	14.9.6 Reference point approach with absolute encoders
	14.9.7 Reference point approach in rotary absolute encoders with external zero mark
	14.9.8 Automatic encoder replacement detection
	14.9.9 Enabling the measurement system
	14.9.10 Referencing variants not supported

	14.10 Automatic restoration of the machine reference
	14.10.1 Automatic referencing
	14.10.2 Restoration of the actual position

	14.11 Supplementary conditions
	14.11.1 Large traverse range

	14.12 Data lists
	14.12.1 Machine data
	14.12.1.1 NC-specific machine data
	14.12.1.2 Channelspecific machine data
	14.12.1.3 Axis/spindlespecific machine data

	14.12.2 Signals
	14.12.2.1 Signals to BAG
	14.12.2.2 Signals from BAG
	14.12.2.3 Signals to channel
	14.12.2.4 Signals from channel
	14.12.2.5 Signals to axis/spindle
	14.12.2.6 Signals from axis/spindle

	15 S1: Spindles
	15.1 Brief Description
	15.2 Modes
	15.2.1 Overview
	15.2.2 Mode change
	15.2.3 Control mode
	15.2.4 Oscillation mode
	15.2.5 Positioning mode
	15.2.5.1 General functionality
	15.2.5.2 Positioning from rotation
	15.2.5.3 Positioning from standstill
	15.2.5.4 "Spindle in position" signal for tool change

	15.2.6 Axis mode
	15.2.6.1 General functionality
	15.2.6.2 Implicit transition to axis mode

	15.2.7 Initial spindle state

	15.3 Reference / synchronize
	15.4 Configurable gear adaptation
	15.4.1 Gear stages for spindles and gear change change
	15.4.2 Spindle gear stage 0
	15.4.3 Determining the spindle gear stage
	15.4.4 Parameter set selection during gear step change
	15.4.5 Intermediate gear
	15.4.6 Nonacknowledged gear step change
	15.4.7 Gear step change with oscillation mode
	15.4.8 Gear stage change at fixed position
	15.4.9 Configurable gear step in M70
	15.4.10 Suppression of the gear stage change for DryRun, program test and SERUPRO

	15.5 Additional adaptations to the spindle functionality that can be configured
	15.6 Selectable spindles
	15.7 Programming
	15.7.1 Programming from the part program
	15.7.2 Programming via synchronized actions
	15.7.3 Programming spindle controls via PLC with FC18 - only 840D sl
	15.7.4 Special spindle motion via the PLC interface
	15.7.5 External programming (PLC, HMI)

	15.8 Spindle monitoring
	15.8.1 Permissible speed ranges
	15.8.2 Axis/spindle stationary
	15.8.3 Spindle in setpoint range
	15.8.4 Minimum / maximum speed of the gear stage
	15.8.5 Diagnosis of spindle speed limitation
	15.8.6 Maximum spindle speed
	15.8.7 Maximum encoder limit frequency
	15.8.8 End point monitoring
	15.8.9 M40: Automatic gear stage selection for speeds outside the configured switching thresholds

	15.9 Spindle with SMI 24 (Weiss spindle)
	15.9.1 General Information
	15.9.2 Sensor data
	15.9.3 Clamped state
	15.9.4 Additional drive parameters

	15.10 Supplementary conditions
	15.10.1 Changing control parameters

	15.11 Examples
	15.11.1 Automatic gear step selection (M40)

	15.12 Data lists
	15.12.1 Machine data
	15.12.1.1 NC-specific machine data
	15.12.1.2 Channelspecific machine data
	15.12.1.3 Axis/spindlespecific machine data

	15.12.2 Setting data
	15.12.2.1 Channelspecific setting data
	15.12.2.2 Axis/spindle-specific setting data

	15.12.3 signals
	15.12.3.1 Signals to axis/spindle
	15.12.3.2 Signals from axis/spindle

	16 V1: Feedrates
	16.1 Brief description
	16.2 Path feedrate F
	16.2.1 Feedrate type G93, G94, G95
	16.2.2 Type of feedrate G96, G961, G962, G97, G971
	16.2.3 Feedrate for thread cutting (G33, G34, G35, G335, G336)
	16.2.3.1 Feedrate with G33
	16.2.3.2 Programmable run-in and run-out path for G33, G34 and G35
	16.2.3.3 Linear increasing/decreasing thread pitch change with G34 and G35
	16.2.3.4 Fast retraction during thread cutting

	16.2.4 Feedrate for tapping without compensating chuck (G331, G332)
	16.2.5 Feedrate for tapping with compensating chuck (G63)

	16.3 Feedrate for positioning axes (FA)
	16.4 Feedrate control
	16.4.1 Feedrate disable and feedrate/spindle stop
	16.4.2 Feedrate override on machine control panel
	16.4.3 Programmable feedrate override
	16.4.4 Dry run feedrate
	16.4.5 Multiple feedrate values in one block
	16.4.6 Fixed feedrate values
	16.4.7 Programmable feedrate characteristics
	16.4.8 Feedrate for chamfer/rounding FRC, FRCM
	16.4.9 Non-modal feedrate FB
	16.4.10 Influencing the single axis dynamic response

	16.5 Supplementary conditions
	16.6 Data lists
	16.6.1 Machine data
	16.6.1.1 NC-specific machine data
	16.6.1.2 Channel-specific machine data
	16.6.1.3 Axis/Spindle-specific machine data

	16.6.2 Setting data
	16.6.2.1 Channel-specific setting data
	16.6.2.2 Axis/spindle-specific setting data

	16.6.3 Signals
	16.6.3.1 Signals to channel
	16.6.3.2 Signals from channel
	16.6.3.3 Signals to axis/spindle
	16.6.3.4 Signals from axis/spindle

	17 W1: Tool offset
	17.1 Brief description
	17.2 Tool
	17.2.1 General
	17.2.2 Compensation memory structure
	17.2.3 Calculating the tool compensation
	17.2.4 Address extension for NC addresses T and M
	17.2.5 Free assignment of D numbers
	17.2.6 Compensation block in case of error during tool change
	17.2.7 Definition of the effect of the tool parameters

	17.3 Flat D number structure
	17.3.1 General
	17.3.2 Creating a new D number (compensation block)
	17.3.3 D number programming
	17.3.4 Programming the T number
	17.3.5 Programming M6
	17.3.6 Program test
	17.3.7 Tool management or "Flat D numbers"

	17.4 Tool cutting edge
	17.4.1 General
	17.4.2 Tool parameter 1: Tool type
	17.4.3 Tool parameter 2: Cutting edge position
	17.4.4 Tool parameters 3 - 5: Geometry - tool lengths
	17.4.5 Tool parameters 6 - 11: Geometry - tool shape
	17.4.6 Tool parameters 12 - 14: Wear - tool lengths
	17.4.7 Tool parameters 15 - 20: Wear - tool shape
	17.4.8 Tool parameters 21 - 23: Tool base dimension/adapter dimension
	17.4.9 Tool parameter 24: Undercut angle
	17.4.10 Tools with a relevant tool point direction

	17.5 Tool radius compensation 2D (TRC)
	17.5.1 General
	17.5.2 Selecting the TRC (G41/G42)
	17.5.3 Approach and retraction behavior (NORM/KONT/KONTC/KONTT)
	17.5.4 Smooth approach and retraction
	17.5.4.1 Function
	17.5.4.2 Parameters
	17.5.4.3 Velocities
	17.5.4.4 System variables
	17.5.4.5 Supplementary conditions
	17.5.4.6 Examples

	17.5.5 Deselecting the TRC (G40)
	17.5.6 Compensation at outside corners
	17.5.7 Compensation and inner corners
	17.5.8 Collision detection and bottleneck detection
	17.5.9 Blocks with variable compensation value
	17.5.10 Keep tool radius compensation constant
	17.5.11 Alarm behavior
	17.5.12 Intersection procedure for polynomials
	17.5.13 G461/G462 Approach/retract strategy expansion

	17.6 Toolholder with orientation capability
	17.6.1 General
	17.6.2 Kinematic interaction and machine design
	17.6.3 Inclined surface machining with 3 + 2 axes
	17.6.4 Machine with rotary work table
	17.6.5 Procedure when using toolholders with orientation capability
	17.6.6 Programming
	17.6.7 Supplementary conditions and control system response for orientation

	17.7 Cutting edge data modification for tools that can be rotated
	17.7.1 Function
	17.7.2 Determination of angle of rotation
	17.7.3 Cutting edge position, cut direction and angle for rotary tools
	17.7.4 Modifications during the rotation of turning tools
	17.7.5 Cutting edge position for milling and tapping tools
	17.7.6 Modifications during rotation of milling and tapping tools
	17.7.7 Parameter assignment
	17.7.8 Programming
	17.7.9 Example

	17.8 Incrementally programmed compensation values
	17.8.1 G91 extension
	17.8.2 Machining in direction of tool orientation

	17.9 Basic tool orientation
	17.10 Special handling of tool compensations
	17.10.1 Relevant setting data
	17.10.2 Mirror tool lengths (SD42900 $SC_MIRROR_TOOL_LENGTH)
	17.10.3 Mirror wear lengths (SD42920 $SC_WEAR_SIGN_CUTPOS)
	17.10.4 Tool length and plane change (SD42940 $SC_TOOL_LENGTH_CONST)
	17.10.5 Tool type (SD42950 $SC_TOOL_LENGTH_TYPE)
	17.10.6 Tool lengths in the WCS, allowing for the orientation
	17.10.7 Tool length offsets in tool direction

	17.11 Sum offsets and setup offsets
	17.11.1 General
	17.11.2 Description of function
	17.11.3 Activation
	17.11.4 Examples
	17.11.5 Upgrades for Tool Length Determination
	17.11.5.1 Taking the compensation values into account location-specifically and workpiece-specifically
	17.11.5.2 Functionality of the individual wear values

	17.12 Working with tool environments
	17.12.1 General
	17.12.2 Saving with TOOLENV
	17.12.3 Delete tool environment
	17.12.4 How many environments and which ones are saved?
	17.12.5 Read T, D, DL from a tool environment
	17.12.6 Read tool lengths, tool length components
	17.12.7 Changing tool components

	17.13 Tool lengths L1, L2, L3 assignment: LENTOAX
	17.14 Supplementary conditions
	17.14.1 Flat D number structure
	17.14.2 SD42935 expansions

	17.15 Examples
	17.15.1 Toolholder with orientation capability
	17.15.1.1 Example: Toolholder with orientation capability
	17.15.1.2 Example of toolholder with orientation capability with rotary table
	17.15.1.3 Basic tool orientation example
	17.15.1.4 Calculation of compensation values on a location-specific and workpiece-specific basis

	17.15.2 Examples 3-6: SETTCOR function for tool environments

	17.16 Data lists
	17.16.1 Machine data
	17.16.1.1 NC-specific machine data
	17.16.1.2 Channelspecific machine data
	17.16.1.3 Axis/spindlespecific machine data

	17.16.2 Setting data
	17.16.2.1 Channelspecific setting data

	17.16.3 Signals
	17.16.3.1 Signals from channel

	18 Z1: NC/PLC interface signals
	18.1 Various interface signals and functions (A2)
	18.1.1 Signals from PLC to NC (DB10)
	18.1.2 Selection/Status signals from HMI to PLC (DB10)
	18.1.3 Signals from the NC to the PLC (DB10)
	18.1.4 Signals to Operator Panel (DB19)
	18.1.5 Signals from operator control panel (DB19)
	18.1.6 Signals to channel (DB21, ...)
	18.1.7 Signals from channel (DB21, ...)
	18.1.8 Signals to axis/spindle (DB31, ...)
	18.1.9 Signals from axis/spindle (DB31, ...)

	18.2 Axis monitoring, protection zones (A3)
	18.2.1 Signals to channel (DB21, ...)
	18.2.2 Signals from channel (DB21, ...)
	18.2.3 Signals to axis/spindle (DB31, ...)
	18.2.4 Signals from axis/spindle (DB31, ...)

	18.3 Continuous-path mode, exact stop and LookAhead (B1)
	18.3.1 Signals from channel (DB21, ...)
	18.3.2 Signals from axis/spindle (DB31, ...)

	18.4 Travel to fixed stop (F1)
	18.4.1 Signals to axis/spindle (DB31, ...)
	18.4.2 Signals from axis/spindle (DB31, ...)

	18.5 Help function output to PLC (H2)
	18.5.1 Signals to channel (DB21, ...)
	18.5.2 Signals from channel (DB21, ...)
	18.5.3 Signals from axis/spindle (DB31, ...)

	18.6 Mode group, channel, program operation, reset response (K1)
	18.6.1 Signals to mode group (DB11)
	18.6.2 Signals from the mode group (DB11)
	18.6.3 Signals to channel (DB21, ...)
	18.6.4 Signals from channel (DB21, ...)
	18.6.5 Signals to axis/spindle (DB31, ...)
	18.6.6 Signals from axis/spindle (DB31, ...)

	18.7 Axis types, coordinate systems, frames (K2)
	18.7.1 Signals to axis/spindle (DB31, ...)

	18.8 Emergency stop (N2)
	18.8.1 Signals to NC (DB10)
	18.8.2 Signals from NC (DB10)

	18.9 PLC basic program (P3)
	18.10 Reference point approach (R1)
	18.10.1 Signals to channel (DB21, ...)
	18.10.2 Signals from channel (DB21, ...)
	18.10.3 Signals to axis/spindle (DB31, ...)
	18.10.4 Signals from axis/spindle (DB31, ...)

	18.11 Spindles (S1)
	18.11.1 Signals to axis/spindle (DB31, ...)
	18.11.2 Signals from axis/spindle (DB31, ...)

	18.12 Feeds (V1)
	18.12.1 Signals to channel (DB21, ...)
	18.12.2 Signals to axis/spindle (DB31, ...)
	18.12.3 Signals from axis/spindle (DB31, ...)

	A Appendix
	A.1 List of abbreviations
	A.2 Documentation overview

	Glossary
	Index

