
SINEC

FDL Programming Interface

Volume 1 of 1

1 Introduction to the FDL Programming Interface

2 The FDL Services

3 Productive Services

4 Management Services

5 Access to Layer 2

6 Function Calls of the IHI Interface

7 Function Calls of the SCP Interface

8 Appendix

9 Index

Glossary

C79000-B8976-C072 Release 2

SINEC is a trademark of Siemens
Siemens Aktiengesellschaft

Wir haben den Inhalt der Druckschrift auf
Übereinstimmung mit der beschriebenen Hard- und
Software geprüft. Dennoch können Abweichungen
nicht ausgeschlossen werden, so daß wir für die
vollständige Übereinstimmung keine Gewähr
übernehmen. Die Angaben in der Druckschrift
werden jedoch regelmäßig überprüft. Notwendige
Korrekturen sind in den nachfolgenden Auflagen
enthalten. Für Verbesserungsvorschläge sind wir
dankbar.

 Technische Änderungen vorbehalten.

Weitergabe sowie Vervielfältigung dieser Unterlage,
Verwertung und Mitteilung ihres Inhalts nicht
gestattet, soweit nicht ausdrücklich zugestanden.
Zuwiderhandlungen verpflichten zu Schadenersatz.
Alle Rechte vorbehalten, insbesondere für den Fall
der Patenterteilung oder GM-Eintragung.

Copyright © Siemens AG 1996
All Rights Reserved

We have checked the contents of this manual for
agreement with the hardware described. Since
deviations cannot be precluded entirely, we cannot
guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary
corrections included in subsequent editions.
Suggestions for improvement are welcome.

Technical data subject to change.

The reproduction, transmission or use of this
document or its contents is not permitted without
express written authority. Offenders will be liable for
damages. All rights, including rights created by
patent grant or registration of a utility or design, are
reserved.

Copyright © Siemens AG 1996
All Rights Reserved

Nous avons vérifié la conformité du contenu du
présent manuel avec le matériel et le logiciel qui y
sont décrits. Or, des divergences n'étant pas
exclues, nous ne pouvons pas nous porter garants
pour la conformité intégrale. Si l'usage du manuel
devait révéler des erreurs, nous en tiendrons
compte et apporterons les corrections nécessaires
dès la prochaine édition. Veuillez nous faire part de
vos suggestions.

Nous nous réservons le droit de modifier les
caractéristiques techniques.

Toute communication ou reproduction de ce support
d'informations, toute exploitation ou communication
de son contenu sont interdites, sauf autorisation
expresse. Tout manquement à cette règle est illicite
et expose son auteur au versement de dommages et
intérêts. Tous nos droits sont réservés, notamment
pour le cas de la délivrance d'un brevet ou celui de
l'enregistrement d'un modèle d'utilité.

Copyright © Siemens AG 1996
All Rights Reserved

Siemens Aktiengesellschaft Elektronikwerk Karlsruhe
Printed in the Federal Republic of Germany

SINEC
FDL Programming Interface

Description C79000-B8976-C072/02

Note

We would point out that the contents of this product documentation shall not become a part of or modify any prior or existing
agreement, commitment or legal relationship. The Purchase Agreement contains the complete and exclusive obligations of
Siemens. Any statements contained in this documentation do not create new warranties or restrict the existing warranty.

We would further point out that, for reasons of clarity, these operating instructions cannot deal with every possible problem
arising from the use of this device. Should you require further information or if any special problems arise which are not
sufficiently dealt with in the operating instructions, please contact your local Siemens representative.

General
This device is electrically operated. In operation, certain parts of this device carry a dangerously high
voltage.

WARNING !
Failure to heed warnings may result in serious physical injury and/or material damage.

Only appropriately qualified personnel may operate this equipment or work in its vicinity. Personnel must be
thoroughly familiar with all warnings and maintenance measures in accordance with these operating
instructions.

Correct and safe operation of this equipment requires proper transport, storage and assembly as well as
careful operator control and maintenance.

Personnel qualification requirements

Qualified personnel as referred to in the operating instructions or in the warning notes are defined as persons who are familiar
with the installation, assembly, startup and operation of this product and who posses the relevant qualifications for their work,
e.g.:

− Training in or authorization for connecting up, grounding or labelling circuits and devices or systems in accordance with
current standards in safety technology;

− Training in or authorization for the maintenance and use of suitable safety equipment in accordance with current standards
in safety technology;

− First Aid qualification.

!

B8976072/02 FDL Programming Interface

1

FDL Programming Interface

This manual describes the FDL programming interface and the services
available on the PROFIBUS Layer 2.

The FDL protocol (Field Data Link protocol) is suitable for SINEC L2 in the
open, heterogeneous SINEC communication system for the cell and field area
and is specially intended for an industrial environment.

Known under the name PROFIBUS (Process Field Bus), SINEC L2 is based
on the PROFIBUS DIN 19245 Part 1 standard and is oriented on the ISO/OSI
reference model.

By complying with the requirements of DIN 19 245 Part 1, SINEC L2
guarantees an open system for the attachment of components of other
vendors that comply with the standard.

SINEC L2 is the network for the middle range of performance. The maximum
off 127 stations that can be connected opens up a wide spectrum of
automation tasks. Different data rates can be selected using the software. ❑

FDL Programming Interface B8976072/02

2

1 Introduction to the FDL Programming Interface 5

2 The FDL Services 9
2.1 Transfer Mechanisms 12

3 Productive Services 15
3.1 Data Structures of the Productive Services 16
3.2 Request Blocks of the Productive Services 22
3.2.1 SDA (send data with acknowledge) 22
3.2.2 SDN (send data with no acknowledge) 26
3.2.3 SRD (send and request data) 31
3.2.4 REPLY_UPDATE_SINGLE 37
3.2.5 REPLY_UPDATE_MULTIPLE 40

4 Management Services 43
4.1 Data Structures of the Management Services 44
4.2 Request Blocks of the Management Services 51
4.2.1 FDL_READ_VALUE 51
4.2.2 SAP_ACTIVATE 54
4.2.3 RSAP_ACTIVATE 57
4.2.4 SAP_DEACTIVATE 60
4.2.5 LSAP_STATUS 62
4.2.6 FDL_LIFE_LIST_CREATE_REMOTE 66
4.2.7 FDL_LIFE_LIST_CREATE_LOCAL 68
4.2.8 FDL_IDENT 70
4.2.9 FDL_READ_STATISTIC_COUNTER 73
4.2.10 FDL_READ_LAS_STATISTIC_COUNTER 76
4.2.11 AWAIT_INDICATION 78
4.2.12 FDL_EVENT 82
4.2.13 WITHDRAW_INDICATION 83

5 Access to Layer 2 85
5.1 Activating SAPs 87
5.2 Data Transfer 88
5.2.1 Sending Data Frames 89
5.2.2 Receiving Data Frames 91

6 Function Calls of the IHI Interface 95
6.1 ihi_open_dev 97
6.2 ihi_write 98
6.3 ihi_read 99
6.4 ihi_close 100
6.5 Examples 101

7 Function Calls of the SCP Interface 103
7.1 SCP_open 105
7.2 SCP_send 106
7.3 SCP_receive 107
7.4 SCP_close 109
7.5 SCP_get_errno 110
7.6 Examples 111

8 Appendix 113
8.1 Differences in Implementation between the CP 5412 (A1) and CP 5412 (A2) 113
8.2 Compiling and Linking for MS-DOS 116
8.2.1 Working with the MSC 6.0 Compiler 116
8.2.2 Working with the TURBO or Borland C Compiler 117

B8976072/02 FDL Programming Interface

3

8.2.3 Program Example for MS-DOS 117
8.3 Compiling and Linking for Windows 3.x 118
8.3.1 Working with the MSC Compiler 6.0 and the SDK from Microsoft 118
8.3.2 Working with the Borland C Compiler 118
8.3.3 Special Features for Windows 119
8.3.4 Restrictions Under Windows 120
8.3.5 Sample Program for WINDOWS 3.x 120
8.4 Compiling and Linking for Windows 95 121
8.4.1 Working with the MSVC Compiler 2.2 and the SDK from Microsoft 121
8.4.2 Special Features for Windows 122
8.4.3 Sample Program for Windows 95 123
8.5 Compiling and Linking for Windows NT 124
8.5.1 Working with the MSVC Compiler 2.2 and the SDK from Microsoft 124
8.5.2 Special Features for Windows 125
8.5.3 Sample Program for Windows NT 126

9 Index 127

Glossary 129

FDL Programming Interface B8976072/02

4

Notes

B8976072/02 FDL Programming Interface

5

1 Introduction to the FDL Programming Interface

This chapter introduces the concept of the FDL programming interface. It
explains the basic mechanisms you require to be able to program an
application.

You require the information in this chapter as a basis for the chapters that
follow.

FDL Programming Interface B8976072/02

6

The program that uses the layer 2 services is known as an FDL
application.

An FDL application can be created in the programming language C or
C++. To allow access to the CP, include files and libraries are supplied
on the diskette.

FDL

SCI library

application

FDL application created by the user

Driver

CP with protocol

software

SINEC L2

Fig. 1.1: Communications Architecture of the FDL Programming Interface

The layer 2 protocol software of SINEC L2 can be divided into three
entities, FLC (Fieldbus Link Control), FMA (Fieldbus Management),
MAC (Media Access Control).

Productive services

FMA

Management services

FLC

MAC

FDL

Fig. 1.2: Structure of the Layer 2 Protocol Software (FDL)

Using the FLC and FMA entities, the FDL application can transfer jobs
to layer 2 that, if applicable, are passed on to the physical medium by
the MAC entity. In the opposite direction, the MAC entity receives
frames on the bus that can then be transferred to the FLC or FMA
entities of the FDL application.

Introduction

Structure of
Layer 2

B8976072/02 FDL Programming Interface

7

FLC The FLC entity is responsible for receiving the services on
the FDL programming interface as described in PROFIBUS
(data transfer services, send and receive frames). The jobs
of the FDL application are received, processed (frame
processing etc.) and if applicable, passed on to the MAC
entity via an internal interface.

FMA The FMA entity is responsible for receiving the
management services described in PROFIBUS
(administrative services, parameter assignment,
modifications to operating parameters etc.).

MAC The MAC entity implements the complete bus access
management according to DIN 19245 Part 1.

The FDL programming interface uses request blocks (job blocks, RB)
for processing jobs with the CP. A request block completely describes a
job for the FDL programming interface. The request block is transferred
to the CP with one of the functions of the SCI library and is then fetched
later by a different function.

In general, the FDL application transfers a request block to layer 2 with
the request ID and, depending on the service, receives a request block
back with the confirm ID or with the indication ID.

Request Block
ID

Task of the Request Block

request Jobs from the FDL application for the CP.
confirm Acknowledgment of a request from the CP to the FDL

application.
indication Indication of an event from the CP to the FDL

application. ❑

Mechanism of the
Interface

Request Block
ID

FDL Programming Interface B8976072/02

8

Notes

B8976072/02 FDL Programming Interface

9

2 The FDL Services

This chapter explains which services the FDL protocol provides for
communication with other stations on the bus.

FDL Programming Interface B8976072/02

10

The services of layer 2 can be divided into productive services and
management services. Productive services are used in the productive
phase to send data frames. Management services are used to
activate/deactivate local SAPs (Service Access Point), to provide
resources for receiving data frames from other stations and other
administrative services. The following tables contain an overview of the
available FDL services.

SDA
(send and request data with
acknowledge)

The CP sends a data frame to a remote station.
If this is successful, the addressed remote
station returns an acknowledgment. If an error
occurs, layer 2 generates a local error
message.

SDN
(send data with no acknowledge)

The CP sends a data frame to one or more
remote stations. In contrast to the SDA service,
the addressed remote stations do not return an
acknowledgment. After the frame is sent, layer
2 generates a local acknowledgment.

SRD
(send and request data)

The CP sends a data frame to a remote station.
If this is successful, the addressed remote
station returns an acknowledgment. In contrast
to the SDA service, the remote station can also
send user data in the reply frame. If an error
occurs, layer 2 generates a local error
message.

REPLY_UPDATE_SINGLE With this call, data is transferred to layer 2 that
can be read out by a remote station. The data is
sent back to a remote station in the
acknowledgment of an SRD frame. The data
can only be read by the remote station once .

REPLY_UPDATE_MULTIPLE Sequence as for REPLY_UPDATE_SINGLE.
Difference:
The data transferred to layer 2 can be read
more than once by remote stations.

Description of the
FDL Services

Productive
Services

B8976072/02 FDL Programming Interface

11

SAP_ACTIVATE With this service, an SAP (Service Access
Point) can be activated at layer 2. This must be
activated before data frames can be sent or
received.

RSAP_ACTIVATE Corresponds to the SAP_ACTIVATE call
Difference:
With this RSAP_ACTIVATE service, an SAP
cannot be initialized for active sending of data
frames.

SAP_DEACTIVATE With this service, an SAP activated with
(R)SAP_ACTIVATE can be deactivated again.
Following this, no further data transfer is
possible with this SAP.

AWAIT_INDICATION With this service, a receive buffer can be
transferred to an SAP. Only then is it possible
for a call frame (SDA, SDN, SRD) to be
received from a remote station. After receiving
a remote call frame, a new receive buffer must
be transferred to the SAP.

WITHDRAW_INDICATION With this service, receive buffers transferred to
an SAP with AWAIT_INDICATION, can be
fetched back.

LSAP_STATUS This service checks the configuration of an SAP
of the local station.

FDL_IDENT This service checks the identification of the
local or a remote station.

FDL_LIFE_LIST_CREATE_LOCAL This service provides a list of active and some
of the passive stations on the bus. The list is
generated using only local information within
layer 2. No additional frames are sent on the
bus.

FDL_LIFE_LIST_CREATE_REMOTE This service provides a list of the active and
passive stations on the bus. In contrast to
FDL_LIFE_LIST_CREATE_LOCAL a status
frame is requested from all possible stations
(extra load on the bus).

FDL_READ_STATISTIC_ CTR This service is used to read out bus-specific
statistical values (invalid frames etc.).

FDL_READ_LAS_STATISTIC_CTR This service is used to read bus-specific
statistical values (number of token frames etc.).

FDL_EVENT With this service, the FDL application is
informed of layer 2 events.

FDL_READ_VALUE With this service, the current parameter
assignment data of layer 2 can be read out.

Management
Services

FDL Programming Interface B8976072/02

12

2.1 Transfer Mechanisms

An FDL application communicates with layer 2 using three different
transfer mechanisms:

1) FDL application request to layer 2

2) Layer 2 confirmation to the FDL application

3) Layer 2 indication to the FDL application

A request involves the FDL application requesting a service at layer 2.
The request is transferred to the CP with an SCP_send call (see
Section 7.2) or ihi_write call (see Section 6.2).

The call parameters of the function are a ‘handle’ and the address of
the pointer that points to a request block structure *). The entries must
be made in the request block before the call in keeping with the service
description.

The return value of the SCP_send or ihi_write call relates only to the
correct transfer of the request to layer 2 by the driver.

Only the corresponding layer 2 confirmation shows whether a request
was processed without errors by layer 2.

In a confirmation, layer 2 informs the FDL application of the result of a
processed request. The confirmation must be read out using an
SCP_receive call (see Section 7.3) or an ihi_read call (see Section 6.3)
to the CP.

The return value of the SCP_receive or ihi_read call relates only to the
correct transfer of the data to the driver. The result of the request
processing is contained in the request block returned with ihi_read.

Using an indication, layer 2 informs the FDL application that a call frame
(SDA, SRD or SDN) has been received from a remote station. The
indication must be read out with an SCP_receive call or an ihi_read call
to the CP *).

The return value of the SCP_receive call or ihi_read call relates only to
the correct transfer of the data to the driver. The type and content of the
indication is contained in the request block that is returned with
SCP_receive or ihi_read.

*) see 3.1 Data Structures of the Productive Services

Transfer to the FDL
Application

Request

Confirmation

Indication

B8976072/02 FDL Programming Interface

13

Requester The station that triggers job processing and waits to
receive the confirmation.

Responder The station that receives a data frame from a
remote station and returns an acknowledgment
frame.

The following table shows the possible transfer mechanisms for the
available productive and management services for requesters and
responders.

Requester Responder
Service Request Confirmation Indication
SDA (Send data with acknowledge) yes yes yes
SDN (Send data with no acknowledge) yes yes yes
SRD (Send and request data) yes yes yes
REPLY UPDATE SINGLE yes yes no
REPLY UPDATE MULTIPLE yes yes no
SAP ACTIVATE yes yes no
RSAP ACTIVATE yes yes no
SAP DEACTIVATE yes yes no
AWAIT_INDICATION yes Success: no

Error: yes
no

WITHDRAW_INDICATION yes yes no
LSAP_STATUS yes yes no
FDL_IDENT yes yes no
FDL_LIFE_LIST_CREATE_ REMOTE yes yes no
FDL_LIFE_LIST_CREATE_LOCAL yes yes no
FDL_READ_STATISTIC_ COUNTER yes yes no
FDL_EVENT no no yes
FDL_READ_VALUE yes yes no ❑

Requester and
Responder

FDL Programming Interface B8976072/02

14

Notes

B8976072/02 FDL Programming Interface

15

3 Productive Services

This chapter explains the principles of productive services.

The chapter covers the following topics:

➢ The data structures of the productive services

➢ The request blocks of the productive service

The following productive services are dealt with in detail:

➢ SDA (send and request data with acknowledge)

➢ SDN (send and request data with no acknowledge)

➢ SRD (send and request data)

➢ REPLY_UPDATE_SINGLE

➢ REPLY_UPDATE_MULTIPLE

FDL Programming Interface B8976072/02

16

3.1 Data Structures of the Productive Services

The data structures are defined in the "fdl_rb.h" include file .

The "fdl_rb" structure described below is the request block assigned to
the ihi functions as a parameter.

typedef struct
{
 rb2_header_type rb2_header;
 struct application_block application_block;
 UBYTE reserved [12];
 UBYTE reference [2];
 UBYTE user_data_1 [260];
 UBYTE user_data_2 [260];
} fdl_rb;

rb2_header Request block header. General,
non-service-specific parameters

application_block Argument area. FDL parameters.
reference ID of the FDL application.
user_data_1 User data, dependent on particular

job.
user_data_2 User data, dependent on particular

job.

typedef struct
{
 UWORD reserved [2];
 UBYTE length;
 UWORD user;
 UBYTE rb_type;
 UBYTE priority;
 UBYTE reserved_1;
 UWORD reserved_2;
 UBYTE subsystem;
 UBYTE opcode;
 UWORD response;
 UWORD fill_length_1;
 UBYTE reserved_3;
 UWORD seg_length_1;
 UWORD offset_1;
 UWORD reserved_4;
 UWORD fill_length_2;
 UBYTE reserved_5;
 UWORD seg_length_2;
 UWORD offset_2;
 UWORD reserved_6;
} rb2_header_type;

length Length of the request block without "user_data_1"
and "user_data_2" (= 80 bytes).

Request Block
Structure

Description of the
Parameters

Substructure
Request Block
Header

Description of the
Parameters

B8976072/02 FDL Programming Interface

17

user Available for the FDL application
rb_type Type of request block used (= 2).
priority Priority of the job (identical to the "serv_class"

parameter in the application block).
subsystem Selects the communications layer. (FDL = 22h).
opcode Request, confirm, indication (same as the “opcode”

parameter in the application block).
response Return parameter (same as the "l_status"

parameter in the application block).
fill_length_1 Number of relevant bytes in data buffer 1.
seg_length_1 Actual length of data buffer 1.
offset_1 Offset of data buffer 1 relative to the start of the

request block.
fill_length_2 Number of relevant bytes in data buffer 2.
seg_length_2 Actual length of data buffer 2.
offset_2 Offset of data buffer 2 relative to the start of the

request block.

struct application_block
{
 UBYTE opcode;
 UBYTE subsystem;
 UWORD id;
 struct service service;
 struct remote_address loc_add;
 UBYTE ssap;
 UBYTE dsap;
 struct remote_address rem_add;
 enum service_class serv_class;
 struct link_service_data_unit receive_l_sdu;
 UBYTE reserved_1;
 UBYTE reserved;
 struct link_service_data_unit send_l_sdu;
 enum link_status l_status;
 UWORD reserved_2 [2];
};

Substructure
Argument Area

FDL Programming Interface B8976072/02

18

struct service
{
 enum service_code code;
};
struct remote_address
{
 UBYTE station;
 UBYTE segment;
};
struct link_service_data_unit
{
 void far * buffer_ptr;
 UBYTE length;
};

opcode Request, confirm, indication
subsystem Reserved for the CP.
id Reserved for the CP.
service.code sda, sdn, sdn_broadcast , srd,

reply_update_single, reply_update_multiple
loc_add.station Local address 0 to 126; for SDN: 127 =

MULTICAST/ BROADCAST
loc_add.segment Reserved
ssap Source service access point, 0 to 62
dsap Destination service access point, 0 to 63
rem_add.station Remote address, 0 to 126; for SDN : 127 =

MULTICAST/BROADCAST
rem_add.segment Reserved
serv_class Priority of the service (low or high)
receive_l_sdu.buffer_ptr Reserved for the CP.
receive_l_sdu.length Buffer length, 32 to 255 (for request); user

data length for confirm, indication
send_l_sdu.buffer_ptr Reserved for the CP.
send_l_sdu.length User data length of the send frame.
l_status Return parameter, link_status

The constants used in this chapter that are available to the FDL
application are as follows:

DEFAULT_SAP FFH Default SAP ID
NO_SEGMENT FFH Segment invalid
BROADCAST 127 Global address
MULTICAST 127 Global address
LEN_MAX_RECEIVE_BUFFER 255 Max. receive buffer
LEN_MIN_RECEIVE_BUFFER 32 Min. receive buffer
LEN_DATA_OVERHEAD 14 Length of maximum frame

header + trailer

Description of the
Parameters

Constants for the
Application Block

B8976072/02 FDL Programming Interface

19

The following tables indicate which parameters are mandatory (m),
optional (o), don’t care (x), returned (r) for the request blocks of the
productive services:

request sda sdn srd reply_update
length m m m m
user x x x x
rb_type m m m m
priority m m m m Request
subsystem m m m m block
opcode m m m m header
response x x x x
fill_length_1 m m m m
seg_length_1 m m m m
offset_1 m m m m
fill_length_2 m m m m
seg_length_2 m m m m
offset_2 x x m x
opcode m m m m
subsystem x x x x
id x x x x Application
service.code m m m m block
loc_add.station x o x x
loc_add.segment x x x x
ssap m m m m
dsap m m m m
rem_add.station m m m m
rem_add.segment x x x x
serv_class m m m m
receive_l_sdu.length x x m x
send_l_sdu.length m m m m
l_status x x x x
user_data_1 m m m m User data 1
user_data_2 x x m x User data 2

Declaration

Request

FDL Programming Interface B8976072/02

20

confirm sda sdn srd reply_update
length r r r r
user x x x x
rb_type r r r r
priority r r r r Request
subsystem r r r r block
opcode r r r r header
response r r r r
fill_length_1 r r r r
seg_length_1 x x x x
offset_1 r r r r
fill_length_2 x x r x
seg_length_2 x x r x
offset_2 x x r r
opcode r r r r
subsystem x x x x
id x x x x Application
service.code r r r r block
loc_add.station x o x x
loc_add.segment x x x x
ssap r r r r
dsap r r r r
rem_add.station r r r r
rem_add.segment x x x x
serv_class r r r x
receive_l_sdu.length x x r x
send_l_sdu.length r r r r
l_status r r r r
user_data_1 x x x x User data 1
user_data_2 x x r x User data 2

Confirmation

B8976072/02 FDL Programming Interface

21

indication sda sdn srd sdn_broadcast
length r r r r
user x x x x
rb_type r r r r
priority r r r r Request
subsystem r r r r block
opcode r r r r header
response r r r r
fill_length_1 r r r r
seg_length_1 x x x x
offset_1 r r r r
fill_length_2 x x x x
seg_length_2 x x x x
offset_2 x x x x
opcode r r r r
subsystem x x x x
id x x x x Application
service.code r r r r block
loc_add.station x o x x
loc_add.segment x x x x
ssap r r r r
dsap r r r r
rem_add.station r r r r
rem_add.segment x x x x
serv_class r r r r
receive_l_sdu.length r r r r
send_l_sdu.length x x x x
l_status x x r x
user_data_1 r r r r User data 1
user_data_2 x x x x User data 2

Indication

FDL Programming Interface B8976072/02

22

3.2 Request Blocks of the Productive Services

3.2.1 SDA (send data with acknowledge)

The local station sends data to a remote station and receives a
confirmation of the correct or incorrect data transfer.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the send frame low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 Length of the data 13 to 258
seg_length_1 Length of the buffer used 15..260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode request
subsystem Reserved for the CP
id Reserved for the CP
service.code sda
loc_add.station No significance
loc_add.segment No significance
ssap 0 to 62 or DEFAULT_SAP
dsap 0 to 63 or DEFAULT_SAP
rem_add.station 0 to 126
rem_add.segment No significance
serv_class Priority of the send frame low/high
receive_l_sdu.length No significance
send_l_sdu.length Number of net bytes to be transferred 1 to 246
l_status No significance

The following diagram shows the structure of the data of the SDA
frame. This data is contained in the user_data_1 structure element of
the request block.

The total length of the structure element is fixed at 260 bytes in the
header file "fdl_rb.h".

The offset byte and the user data must be entered in the data buffer by
the FDL application.

Select 12 for the offset byte.

Select 260 as the value for seg_length_1.

Select 12 + the length of the user data as the value for fill_length_1.

Request

Recommendation

B8976072/02 FDL Programming Interface

23

�����2IIVHW������

ILOOBOHQJWKB�

VHJBOHQJWKB�

��

2IIVHW 8VHU�GDWD5HVHUYHG

The use of address extensions reduces the maximum number of net
bytes that can be transmitted by up to 2 bytes.

Address extensions occur when an SAP other than the default SAP is
used for dsap and/or ssap.

Structure of the
Send Buffer

Address Extension

FDL Programming Interface B8976072/02

24

The SDA confirmation confirms execution of the SDA request.

The result of the service is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, rr, ue, rs, ls, na, ds, iv
fill_length_1 No significance
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id Unchanged from request
service.code sda
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length May be different from request
send_l_sdu.length Unchanged from request
l_status ok, rr, ue, rs, ls, na, ds, iv

ok = Positive acknowledgment, service executed.
rr = Negative acknowledgment, resources of the CP (remote) not

available.
ue = Negative acknowledgment, FDL application/FDL interface error

(remote)
rs = Service or rem_add not activated on SAP (remote)
ls = Service not activated on SAP (local)
na = No or no plausible reaction from station (remote)
ds = CP (local) not in logical token ring or disconnected from the

bus.
iv = Invalid parameters in the request.

Confirm

l_status Values

B8976072/02 FDL Programming Interface

25

The SDA indication shows that an SDA request has been received from
a remote station.

The receive data are entered in the receive buffer.

Request Block Header
length 80
user Unchanged from "await_indication"
rb_type 2
priority Priority of the receive frame low/high
subsystem 22H
opcode Indication
response No significance
fill_length_1 Length of the data (≤ 258)
seg_length_1 No significance
offset_1 80
fill_length_2 No significance
seg_length_2 No significance
offset_2 No significance

Application Block
opcode Indication
subsystem No significance
id No significance
service.code sda
loc_add.station No significance
loc_add.segment No significance
ssap SAP of the station (local) 0 to 63 or DEFAULT_SAP
dsap SAP of the station (remote) 0 to 62 or DEFAULT_SAP
rem_add.station address of the source station 0 to 126
rem_add.segment No significance
serv_class Priority of the receive frame low/high
receive_l_sdu.length Length of the received user data 1 to 246
send_l_sdu.length No significance
l_status No significance

The following diagram shows the structure of the data received with the
SDA indication.

This data is contained in the user_data_1 structure element of the
request block.

The offset and the user data are entered in the receive buffer by the CP.

8VHU�GDWD

UHFHLYHBOBVGX�OHQJWK

ILOOBOHQJWKB�

2IIVHW 5HVHUYHG

The offset (first byte in the receive buffer) indicates the number of bytes
from the start of the receive buffer to the first byte of the user data.

Indication

Structure of the
Receive Buffers

FDL Programming Interface B8976072/02

26

3.2.2 SDN (send data with no acknowledge)

The station (local) sends data to a station, a group of stations
(MULTICAST) or all stations (BROADCAST). The FDL application only
receives a local confirmation, but no confirmation of reception from the
remote station(s).

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the send frame low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 Length of the data 13 to 258
seg_length_1 Length of the buffer used 15..260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code sdn
loc_add.station No significance
loc_add.segment NO_SEGMENT
ssap 0 to 62 or DEFAULT_SAP
dsap 0 to 63 or DEFAULT_SAP
rem_add.station 0 to 126 or MULTICAST (= 127) or BROADCAST (= 127)
rem_add.segment NO_SEGMENT
serv_class Priority of the send frame low/high
receive_l_sdu.length No significance
send_l_sdu.length Number of net bytes to be transferred 1 to 246
l_status No significance

rem_add.station = BROADCAST: dsap = 63
rem_add.station = MULTICAST: dsap = 0 to 62 or DEFAULT_SAP

The following diagram shows the structure of the data of the SDN
frame. This data is contained in the user_data_1 structure element of
the request block.

The total length of the structure element is fixed at 260 bytes in the
header file "fdl_rb.h".

The offset byte and the user data must be entered in the data buffer by
the FDL application.

Select 12 for the offset byte.

Select 260 as the value for seg_length_1.

Select 12 + the length of the user data as the value for fill_length_1.

Request

Meaning of the
Parameters

Recommendation

B8976072/02 FDL Programming Interface

27

�����2IIVHW������

ILOOBOHQJWKB�

VHJBOHQJWKB�

��

2IIVHW 8VHU�GDWD5HVHUYHG

The use of address extensions reduces the maximum number of net
bytes that can be transmitted by up to 2 bytes.

Address extensions occur when an SAP other than the default SAP is
used for dsap and/or ssap.

Structure of the
Send Buffer

Note

FDL Programming Interface B8976072/02

28

The SDN confirmation confirms execution of the SDN request.

The result of the service is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, ls, ds, iv
fill_length_1 No significance
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code sdn
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length May be different from request
send_l_sdu.length Unchanged from request
l_status ok, ls, ds, iv

ok = Transfer of the data from the CP completed
ls = Service not activated on the SAP (local)
ds = CP not in the logical token ring or disconnected from the bus
iv = Invalid parameters in the request

Confirmation

l_status Values

B8976072/02 FDL Programming Interface

29

The SDN indication shows that an SDN request has been received from
a remote station.

The received data entered in the receive buffer.

Request Block Header
length 80
user Unchanged from "await_indication"
rb_type 2
priority Priority of the receive frame low/high
subsystem 22H
opcode Indication
response No significance
fill_length_1 Length of the data (≤ 258)
seg_length_1 No significance
offset_1 80
fill_length_2 No significance
seg_length_2 No significance
offset_2 No significance

Application Block
opcode Indication
subsystem No significance
id No significance
service.code sdn
loc_add.station Address of the destination station 0 to 126 (local L2 address)
loc_add.segment NO_SEGMENT
ssap SAP of the station (local) 0 to 62 or DEFAULT_SAP
dsap SAP of the station (remote) 0 to 62 or DEFAULT_SAP
rem_add.station Address of the source station 0 to 126
rem_add.segment NO_SEGMENT
serv_class Priority of the receive frame low/high
receive_l_sdu.length Length of the received user data 1 to 246
send_l_sdu.length No significance
l_status No significance

The following diagram shows the structure of the data received with the
SDN indication.

This data is contained in the user_data_1 structure element of the
request block.

The offset and the user data are entered in the receive buffer by the CP.

UHFHLYHBOBVGX�OHQJWK

ILOOBOHQJWKB�

2IIVHW 8VHU�GDWD5HVHUYHG

The offset (first byte in the receive buffer) indicates the number of bytes
from the start of the receive buffer to the first byte of the user data.

Indication

Structure of the
Receive Buffer

FDL Programming Interface B8976072/02

30

The SDN_BROADCAST indication shows that an SDN request has
been received from a remote station that was sent to more than one or
to all stations.

The received data are entered in the receive buffer.

Request Block Header
length 80
user Unchanged from "await_indication"
rb_type 2
priority Priority of the receive frame low/high
subsystem 22H
opcode Indication
response No significance
fill_length_1 Length of the data (≤ 258)
seg_length_1 No significance
offset_1 0
fill_length_2 No significance
seg_length_2 No significance
offset_2 No significance

Application Block
opcode Indication
subsystem No significance
id No significance
service.code sdn_broadcast
loc_add.station Address of the destination station BROADCAST
loc_add.segment NO_SEGMENT
ssap SAP of the station (local) 0 to 62: MULTICAST or 63:

BROADCAST
dsap SAP of the station (remote) 0 to 62, DEFAULT_SAP
rem_add.station Address of the source station 0 to 126
rem_add.segment NO_SEGMENT
serv_class Priority of the receive frame low/high
receive_l_sdu.length Length of the received user data 1 to 246
send_l_sdu.length No significance
l_status No significance

The following diagram shows the structure of the data received with the
SDN indication.

This data is contained in the user_data_1 structure element of the
request block.

The offset and the user data are entered in the receive buffer by the CP.

UHFHLYHBOBVGX�OHQJWK

ILOOBOHQJWKB�

2IIVHW 8VHU�GDWD5HVHUYHG

The offset (first byte in the receive buffer) indicates the number of bytes
from the start of the receive buffer to the first byte of the user data.

Indication
(Broadcast,
Multicast)

Structure of the
Receive Buffer

B8976072/02 FDL Programming Interface

31

3.2.3 SRD (send and request data)

The station (local) sends data to a remote station and at the same time
requests data back from this station. As a confirmation of the reception
of the data by the remote station, the local station receives the response
data.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the send frame low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 Length of the data 12 to 258
seg_length_1 Length of the send buffer used 14..260
offset_1 80
fill_length_2 0
seg_length_2 Length of the receive buffer 260
offset_2 Offset from the start of the request block to the data buffer

user_data_2

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code srd
loc_add.station No significance
loc_add.segment No significance
ssap 0 to 62 or DEFAULT_SAP
dsap 0 to 62 or DEFAULT_SAP
rem_add.station 0 to 126
rem_add.segment No significance
serv_class Priority of the send frame low/high
receive_l_sdu.length Receive buffer length ≥ max. (LEN_MIN_RECEIVE_BUFFER,

expected frame length)
Recommendation: 255

send_l_sdu.length Number of net bytes to be transferred 0 to 246
l_status No significance

The following diagram shows the structure of the data of the SRD
frame. This data is contained in the user_data_1 structure element of
the request block.

The total length of the structure element is fixed at 260 bytes in the
header file "fdl_rb.h".

The offset and the user data must be entered in the data buffer by the
FDL application.

Select 12 for the offset byte in the send buffer.

Select 260 as the value for seg_length_1.

Select 12 + the length of the user data as the value for fill_length_1.

Select 340 as the value for offset_2 (offset_1 + seg_length_1). This
makes sure that the received data are entered in the user_data_2
structure element.

Request

Recommendation

FDL Programming Interface B8976072/02

32

�����2IIVHW������

ILOOBOHQJWKB�

VHJBOHQJWKB�

��

2IIVHW 8VHU�GDWD5HVHUYHG

See SRD confirmation.

The use of address extensions reduces the maximum number of net
bytes that can be transferred by up to 2 bytes.

Structure of the
Send Buffer

Structure of the
Receive Buffer

B8976072/02 FDL Programming Interface

33

The SRD confirmation confirms execution of the SRD request.

The result of the service is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ue, rr, rs, dl, nr, dh, rdl, rdh, ls, na, ds, iv
fill_length_1 No significance
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Number of received data (≤ 258)
seg_length_2 Unchanged from request
offset_2 Offset from the start of the request block to data buffer

user_data_2

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code srd
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Number of received net bytes 0 to 246, if l_status appropriate
send_l_sdu.length Unchanged from request
l_status ue, rr, rs, dl, nr, dh, rdl, rdh, ls, na, ds, iv

The following diagram shows the structure of the data received with the
SRD confirmation.

This data is in the user_data_2 structure element of the request block.

The offset and the user data are entered in the receive buffer by the CP.

Confirmation

FDL Programming Interface B8976072/02

34

UHFHLYHBOBVGX�OHQJWK

ILOOBOHQJWKB�

2IIVHW 8VHU�GDWD5HVHUYHG

The offset (first byte in the receive buffer) indicates the number of bytes
from the start of the receive buffer to the first byte of the user data.

Note that here fill_length_2 is used since fill_length_1 is already
being used for sending the data.

ue = Negative acknowledgment, FDL application/FDL interface error
(remote).

rs = Service or rem_add not activated on SAP (remote) .
ls = Service not activated on SAP (local).
na = No or no plausible reaction from station (remote).
ds = CP not in logical token ring or disconnected from the bus.
iv = Invalid parameters in the request.
dl = Response data low exist. Positive acknowledgment for

transmitted data.
dh = Response data high exist. Positive acknowledgment for

transmitted data.
nr = Negative acknowledgment. Response data not available on CP

(remote). Positive acknowledgment for transmitted data.
rdl = Response data low exist. Negative acknowledgment for

transmitted data since CP resources (remote) are not
available.

rdh = Response data high exist. Negative acknowledgment for
transmitted data since CP resources (remote) are not
available.

rr = Negative acknowledgment. CP resources (remote) and
response data (remote) are not available.

Structure of the
Receive Buffer

☞☞

l_status Values

B8976072/02 FDL Programming Interface

35

The SRD indication confirms the reception of an SRD request from a
remote station.

The received data are entered in the receive buffer.

The update status of the service is entered in the l_status structure
element.

Request Block Header
length 80
user Unchanged from "await_indication"
rb_type 2
priority Priority of the receive frame low/high
subsystem 22H
opcode Indication
response Update_status
fill_length_1 Length of the data
seg_length_1 No significance
offset_1 80
fill_length_2 No significance
seg_length_2 No significance
offset_2 No significance

Application Block
opcode Indication
subsystem No significance
id No significance
service.code srd
loc_add.station No significance
loc_add.segment No significance
ssap SAP of the station (local) 0 to 62 of the DEFAULT_SAP
dsap SAP of the station (remote) 0 to 62 of the DEFAULT_SAP
rem_add.station Address of the source station 0 to 126
rem_add.segment No significance
serv_class Priority of the receive frame low/high
receive_l_sdu.length Number of received net bytes 0 to 246, if l_status appropriate
send_l_sdu.length No significance
l_status update_status

The following diagram shows the structure of the data received with the
SRD indication.

This data is contained in the user_data_1 structure element of the
request block.

The offset and the user data are entered in the receive buffer by the CP.

Indication

FDL Programming Interface B8976072/02

36

UHFHLYHBOBVGX�OHQJWK

ILOOBOHQJWKB�

2IIVHW 8VHU�GDWD5HVHUYHG

The offset (first byte in the receive buffer) indicates the number of bytes
from the start of the receive buffer to the first byte of the user data.

lo = The response to this SRD was low priority data.
hi = The response to this SRD was high priority data.
no_data = No data were transmitted in response to this SRD.

Structure of the
Receive Buffer

update_status
Values

B8976072/02 FDL Programming Interface

37

3.2.4 REPLY_UPDATE_SINGLE

With this service, the FDL application prepares data for a particular
service access point (ssap). This data can be fetched by a different
station that has access to this SAP using an SRD. The data is only
transferred once .

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the send frame
subsystem 22H
opcode Request
response No significance
fill_length_1 Length of the data 12 to 258
seg_length_1 Length of the buffer used 14..260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code Reply_update_single
loc_add.station No significance
loc_add.segment No significance
ssap 0 to 62 or DEFAULT_SAP

Data is made ready for this SAP
dsap No significance
rem_add.station No significance
rem_add.segment No significance
serv_class Priority of the send frame low/high
receive_l_sdu.length No significance
send_l_sdu.length Number of net bytes to be transferred 0 to 246
l_status No significance

The following diagram shows the structure of the data of the
REPLY_UPDATE_SINGLE. This data is contained in the user_data_1
structure element of the request block.

The total length of the structure element is fixed at 260 bytes in the
header file "fdl_rb.h".

The offset and the user data must be entered in the data buffer by the
FDL application.

Select 12 for the offset byte in the send buffer.

Select 260 as the value for seg_length_1.

Select 12 + the length of the user data as the value for fill_length_1.

Request

Recommendation

FDL Programming Interface B8976072/02

38

8VHU�GDWD

�����2IIVHW������

ILOOBOHQJWKB�

VHJBOHQJWKB�

��

2IIVHW 5HVHUYHG

The FDL can only provide a low or high priority data buffer per SAP.

Structure of the
Send Buffer

B8976072/02 FDL Programming Interface

39

The REPLY_UPDATE_SINGLE confirmation confirms execution of the
REPLY_UPDATE_SINGLE request.

The result of the service is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, ls, lr, iv
fill_length_1 No significance
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code reply_update_single
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Unchanged from request
send_l_sdu.length Unchanged from request
l_status ok, ls, lr, iv

ok = data area loaded.
ls = service not activated on the SAP (local)
lr = response resource currently being used by the CP (temporary

error).
iv = invalid parameters in the request.

To transfer new data to an SAP, the FDL application can use the
REPLY_UPDATE_SINGLE service at any time.

Please note that the job is acknowledged negatively if such a buffer has
already been transferred to this SAP with REPLY_UPDATE_SINGLE or
REPLY_UPDATE_MULTIPLE and this buffer is currently being sent.
The REPLY_UPDATE_SINGLE must then be started again.

Confirmation

l_status Values

FDL Programming Interface B8976072/02

40

3.2.5 REPLY_UPDATE_MULTIPLE

With this service, the FDL application prepares data for a certain
service access point (ssap). This data can be fetched by any other
station with access to this SAP using an SRD.

In contrast to the REPLY_UPDATE_SINGLE request, the data can be
transferred more than once .

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the send frame low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 Length of the data 12 to 258
seg_length_1 Length of the buffer used 14..260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code Reply_update_multiple
loc_add.station No significance
loc_add.segment No significance
ssap 0 to 62 or DEFAULT_SAP

Data are prepared for this SAP
dsap No significance
rem_add.station No significance
rem_add.segment No significance
serv_class Priority of the send frame low/high
receive_l_sdu.length No significance
send_l_sdu.length Number of net bytes to be transferred 0 to 246
l_status No significance

The following diagram shows the structure of the data of the
REPLY_UPDATE_MULTIPLE. This data is contained in the
user_data_1 structure element of the request block.

The total length of the structure element is fixed at 260 bytes in the
header file "fdl_rb.h".

The offset and the user data must be entered in the data buffer by the
FDL application.

Request

B8976072/02 FDL Programming Interface

41

Select 12 for the offset byte in the send buffer.

Select 260 as the value for seg_length_1.

Select 12 + the length of the user data as the value for fill_length_1

8VHU�GDWD

�����2IIVHW������

ILOOBOHQJWKB�

VHJBOHQJWKB�

��

2IIVHW 5HVHUYHG

The FDL can only prepare either a low or high priority data buffer per
SAP.

Recommendation

Structure of the
Send Buffer

FDL Programming Interface B8976072/02

42

The REPLY_UPDATE_MULTIPLE confirmation confirms execution of
the REPLY_UPDATE_MULTIPLE request.

The result of the service is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, ls, lr, iv
fill_length_1 No significance
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code Reply_update_multiple
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Unchanged from request
send_l_sdu.length Unchanged from request
l_status ok, ls, lr, iv

ok = data area loaded.
ls = service not activated on the SAP (local).
lr = response source currently being used by the CP (temporary

error).
iv = invalid parameters in the request.

To transfer new data to an SAP, the FDL application can use the
REPLY_UPDATE_MULTIPLE service at any time.

Please note that the job is acknowledged negatively if such a buffer has
already been transferred to this SAP with REPLY_UPDATE_SINGLE or
REPLY_UPDATE_MULTIPLE and this buffer is currently being sent.
The REPLY_UPDATE_MULTIPLE must then be started again. ❑

Confirmation

l_status Values

B8976072/02 FDL Programming Interface

43

4 Management Services

This chapter explains the basic principles of the management services.

The chapter explains the following:

➢ The data structures of the management services

➢ The request blocks of the management services

The following management services are described in detail:

➢ SAP_ACTIVATE

➢ RSAP_ACTIVATE

➢ SAP_DEACTIVATE

➢ AWAIT_INDICATION

➢ WITHDRAW_INDICATION

➢ LSAP_STATUS

➢ FDL_LIFE_LIST_CREATE_LOCAL

➢ FDL_LIFE_LIST_CREATE_REMOTE

➢ FDL_READ_STATISTIC_COUNTER

➢ FDL_READ_LAS_STATISTIC_COUNTER

➢ FDL_EVENT

➢ FDL_READ_VALUE

FDL Programming Interface B8976072/02

44

4.1 Data Structures of the Management Services

The same request block structure is used for the management services
as for the productive services. Owing to the different functions, there
are new service codes and the contents of the send and receive buffers
are different. Up to now, the FDL application has structured the user
data of the frames when it saved them, the data required by the
management service are, however, now saved in the appropriate
structure.

typedef struct
{
 rb2_header_type rb2_header;
 struct application_block application_block;
 UBYTE reserved [12];
 UBYTE reference [2];
 UBYTE user_data_1 [260];
 UBYTE user_data_2 [260];
} fdl_rb;

rb2_header Request block header.
General, non service-dependent
parameters

application_block Argument area. FDL parameters.
reference ID of the FDL application.
user_data_1 User data depending on the

particular job.
user_data_2 User data depending on the

particular job.

Request Block
Structure

Description of the
Parameters

B8976072/02 FDL Programming Interface

45

typedef struct
{
 UWORD reserved [2];
 UBYTE length;
 UWORD user;
 UBYTE rb_type;
 UBYTE priority;
 UBYTE reserved_1;
 UWORD reserved_2;
 UBYTE subsystem;
 UBYTE opcode;
 UWORD response;
 UWORD fill_length_1;
 UBYTE reserved_3;
 UWORD seg_length_1;
 UWORD offset_1;
 UWORD reserved_4;
 UWORD fill_length_2;
 UBYTE reserved_5;
 UWORD seg_length_2;
 UWORD offset_2;
 UWORD reserved_6;
} rb2_header_type;

length Length of the request block without
"user_data_1" and "user_data_2" (= 80 bytes).

user User ID, available for the FDL application.
rb_type Type of request block used (= 2).
priority Priority of the job.
subsystem Communication layer selection (FDL = 22h).
opcode Request, confirm, indication (same as the

parameter "opcode" in the application block).
response Return parameter (same as the parameter

"l_status" in the application block).
fill_length_1 Number of relevant bytes in data buffer 1.
seg_length_1 Actual length of data buffer 1.
offset_1 Offset of data buffer 1 relative to the start of the

request block.
fill_length_2 Number of relevant bytes in data buffer 2.
seg_length_2 Actual length of data buffer 2.
offset_2 Offset of data buffer 2 relative to the start of the

request block.

Substructure of the
Request Block
Header

Description of the
Parameters

FDL Programming Interface B8976072/02

46

struct application_block
{
 UBYTE opcode;
 UBYTE subsystem;
 UWORD id;
 struct service service;
 struct remote_address loc_add;
 UBYTE ssap;
 UBYTE dsap;
 struct remote_address rem_add;
 enum service_class serv_class;
 struct link_service_data_unit receive_l_sdu;
 UBYTE reserved_1;
 UBYTE reserved;
 struct link_service_data_unit send_l_sdu;
 enum link_status l_status;
 UWORD reserved_2 [2];
};
struct service
{
 enum service_code code;
};
struct remote_address
{
 UBYTE station;
 UBYTE segment;
};
struct link_service_data_unit
{
 void far * buffer_ptr;
 UBYTE length;
};

opcode Request, confirm, indication
subsystem Reserved for the CP.
id Reserved for the CP.
service.code fdl_read_value, sap_activate, rsap_activate,

sap_deactivate, fdl_life_list_create_local,
fdl_ident, fdl_event, await_indication, with-
draw_indication, fdl_read_las_statistic_ctr,
lsap_status, fdl_life_list_create_remote

loc_add.station Irrelevant for management services
loc_add.segment Irrelevant for management services
ssap Source service access point, 0 to 62
dsap Destination service access point for

LSAP_STATUS;
Number of the SAP for (R)SAP_ACTIVATE,
SAP_DEACTIVATE (0 to 63)

rem_add.station Remote address, 0 to 126, for FDL_IDENT
rem_add.segment Reserved
serv_class Priority of the service (low or high)
receive_l_sdu.length Service dependent
send_l_sdu.length No significance
l_status Return parameter, link_status

Substructure
Argument Area

Description of the
Parameters

Send Buffers

B8976072/02 FDL Programming Interface

47

The send buffers have the following significance for the various jobs:
Service Structure used
sap_activate fdl_sap
rsap_activate fdl_sap
Others No significance

The FDL application receives the following completed structures:

Service Structure used
fdl_read_value Bus_parameter_block
fdl_event Event_indication
lsap_status Byte buffer
fdl_life_list_create_local Byte buffer
fdl_life_list_create_remote Byte buffer
fdl_ident Byte buffer
fdl_read_statistic_ctr Statistic_ctr_list
fdl_read_las_statistic_ctr Byte buffer
await_indication Byte buffer
others No significance

struct bus_parameter_block
{
 UBYTE hsa;
 UBYTE ts;
 enum station_type station_type;
 enum baud_rate baud_rate;
 enum redundancy medium_red;
 UWORD retry_ctr;
 UBYTE default_sap;
 UBYTE network_connection_sap;
 UWORD tsl;
 UWORD tqui;
 UWORD tset;
 UWORD min_tsdr;
 UWORD max_tsdr;
 d_word ttr;
 UBYTE g;
 boolean in_ring_desired;
 enum physical_layer physical_layer;
 struct ident ident;
};

Return Values

Substructure Bus
Parameter Block

FDL Programming Interface B8976072/02

48

struct ident
{
 UBYTE reserved_header[8];
 UBYTE ident[202];
 UBYTE response_frame_length;
};

hsa Highest L2 address of an active station on
the bus

ts L2 address of the station (local)
station_type Type of the station (local) (active, passive);
baud_rate Kbps_9_6 , Kbps_19_2, Kbps_93_75,

Kbps_187_5, Kbps_500, Mbps_1_5,
Mbps_3, Mbps_6, Mbps_12

medium_red Redundancy
retry_ctr Number of repeated calls to a responder

that is not answering, 0 to 7
network_connection_sap No significance
default_sap Number of the default SAP (local)
tsl SLOT time
tqui Transmitter fall time/repeater changeover

time
tset Setup time
min_tsdr Minimum station delay time
max_tsdr Maximum station delay time
ttr Target rotation time
g GAP update factor
in_ring_desired Request to enter ring
physical_layer Selectable physical bus characteristics
ident Vendor name, controller type, hardware

and software versions

struct fdl_sap
{
 UWORD user_id;
 UBYTE max_l_sdu_length;
 UBYTE access_sap;
 UBYTE access_station;
 UBYTE access_segment;
 UBYTE max_l_sdu_length;
 UBYTE sda;
 UBYTE sdn;
 UBYTE srd;
 UBYTE csrd;
 void far *rup_l_sdu_ptr_low;
 void far *rup_l_sdu_ptr_high;
};

see Section 4.2.2

Meaning of the
Parameters

Structure fdl_sap

Meaning of the
Parameters

B8976072/02 FDL Programming Interface

49

struct event_indication
{
 struct event_ctr time_out;
 struct event_ctr not_syn;
 struct event_ctr uart-error;
 struct event_ctr out_of_ring;
 struct event_ctr sdn_not_indicated;
 struct event_ctr duplicate_address;
 struct event_ctr hardware_error;
 struct event_ctr mac_error;
};

see Section 4.2.12

struct event_ctr
{
 UWORD threshold
 UWORD counter
};

see Section 4.2.12

struct statistic_ctr_list
{
 UWORD invalid_start_delimiter_ctr;
 UWORD invalid_fcb_fcv_ctr;
 UWORD invalid_token_ctr;
 UWORD collision_ctr;
 UWORD wrong_fcs_or_ed_ctr;
 UWORD frame_error_ctr;
 UWORD char_error_ctr;
 UWORD retry_ctr;
 d_word start_delimiter_ctr;
 d_word stop_receive_ctr;
 d_word send_confirmed_ctr;
 d_word send_sdn_ctr;
};

see Section 4.2.10

Structure
event_indication

Meaning of the
Parameters

Structure event_ctr

Meaning of the
Parameters

Structure
statistic_ctr_list

Meaning of the
Parameters

FDL Programming Interface B8976072/02

50

Constants used in this chapter and available to the FDL application are
as follows:

Values for the Application Block:
DEFAULT_SAP FFH Default SAP identifier
NO_SEGMENT FFH Segment invalid
BROADCAST 127 Global address
MULTICAST 127 Global address
EVENT_SAP 64 SAP number for events
LEN_MAX_RECEIVE_BUFFER 255 Max. receive buffer
LEN_MIN_RECEIVE_BUFFER 32 Min. receive buffer
LEN_DATA_OVERHEAD 14 Length of the maximum frame

header plus trailer

Structure Values for Management Services:
LEN_BUS_PARAMETER Length of structure

"bus_parameter_block"
LEN_SAP_ACTIVATE Length of structure "fdl_sap"
LEN_POLL_ELEMENT Length of structure

"user_poll_element"
LEN_APPLICATION_BLOCK Length of structure

"application_block"
LEN_IDENT Length of structure "ident"
LEN_EVENT_INDICATION Length of structure "event_indication"
LEN_STATISTIC_CTR_LIST Length of structure "statistic_ctr_list"

Constants for SAP Configurations:
ALL 7FH
SEGMENT_VALID 80H
SEGMENT_INVALID 00H
SEGMENT_TYP 40H
INITIATOR 00H
RESPONDER 10H
BOTH_ROLES 20H
SERVICE_NOT_ACTIVATED 30H

Constants for Life List:
STATION_PASSIVE 00H
STATION_NOT_EXISTENT 10H
STATION_ACTIVE_READY 20H
STATION_ACTIVE 30H

Constants

B8976072/02 FDL Programming Interface

51

4.2 Request Blocks of the Management Services

4.2.1 FDL_READ_VALUE

The current bus parameters of the CP can be read with this service.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 Length of the buffer used (≥ LEN_BUS_PARAMETER)
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code fdl_read_value
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap No significance
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

Request

FDL Programming Interface B8976072/02

52

The FDL_READ_VALUE confirmation confirms execution of the
FDL_READ_VALUE request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, iv
fill_length_1 LEN_BUS_PARAMETER
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code fdl_read_value
loc_add.station No significance
loc_add.segment No significance
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Unchanged from request
send_l_sdu.length Unchanged from request
l_status ok, iv

ok = Positive acknowledgment, the bus parameters were read.
iv = Negative acknowledgment:

- CP is currently being reset
- No receive buffer

Confirmation

l_status Values

B8976072/02 FDL Programming Interface

53

The parameters described in the following structure are entered in the
user_data_1 structure element by the CP.

struct bus_parameter_block

hsa Highest L2 address on the bus, 2 to 126.
ts L2 address local station, 0 to hsa or 126.
station_type Type of station (local)
baud_rate Data rate: Kbps_9_6, Kbps_19_2, Kbps_93_75, Kbps_187_5,

Kbps_500, Mbps_1_5, Mbps_3, Mbps_6, Mbps_12.
medium_red Redundancy
retry_ctr Number of repeated calls to a non-responding station

(remote), 0 to 7.
default_sap Number of the default SAP of the station (local), 0 to 63.
network_connection_sap Reserved
tsl SLOT time
tqui Transmitter fall time/repeater changeover time
tset Setup time
min_tsdr Minimum station delay time.
max_tsdr Maximum station delay time.
ttr Target rotation time
g GAP update factor
in_ring_desired Request to enter the ring
physical_layer Selectable physical bus characteristics
ident Vendor name, controller type, hardware and software versions

Meaning of the
Parameters

FDL Programming Interface B8976072/02

54

4.2.2 SAP_ACTIVATE

With this service you can assign parameters to service access points
(SAPs) in the FDL and activate them.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 LEN_SAP_ACTIVATE
seg_length_1 Length of the buffer used (≥ LEN_SAP_ACTIVATE)
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code Sap_activate
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap Number of the SAP to be activated, 0 to 63
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

Request

B8976072/02 FDL Programming Interface

55

The parameters described in the following structure are entered in the
user_data_1 structure element by the FDL application.

struct fdl_sap
user_id Identification for the FDL application; no

significance for the CP.
max_l_sdu_length Maximum user data length processed on

this SAP.
Recommendation: 246

access_sap Optional access right for a particular SAP
(remote) on this SAP.
Other remote SAPs (≠ access_sap) are
not allowed access (0 to 63, ALL).
ALL = no access restrictions.

access_station Optional access right for a particular
station (remote) on this SAP. Stations with
the L2 address ≠ access_station are not
allowed access (0 to hsa, ALL).
ALL = no access restrictions.

access_segment Reserved
sda Specifies the role
sdn Specifies the role
srd Specifies the role
csrd Reserved
*rup_l_sdu_ptr_low No significance
*rup_l_sdu_ptr_high No significance

Role:
INITIATOR Station (local) can only be initiator of the

service.
RESPONDER Station (local) can only be responder in the

service.
BOTH_ROLES Station (local) can be both initiator and

responder in the service.
SERVICE_NOT_ACTIVATED Service is not activated.

An SAP can be activated for several services. If, however
BOTH_ROLES and/or RESPONDER are entered more than once, all
entries (SDA, SDN and SRD) become BOTH_ROLES.

CSRD is no longer supported.

The service LSAP_STATUS allows the roles set with SAP_ACTIVATE
to be read.

Structure Element
user_data_1

Note:

Note on
LSAP_STATUS

FDL Programming Interface B8976072/02

56

The SAP_ACTIVATE confirmation confirms execution of the
SAP_ACTIVATE request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, no, iv
fill_length_1 No significance
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code Sap_activate
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Unchanged from request
send_l_sdu.length Unchanged from request
l_status ok, no, iv

ok = Positive acknowledgment, SAP was activated.
no = Negative acknowledgment, SAP exists already.
iv = Negative acknowledgment:

- CP currently being reset
- SAP parameter invalid
- SAP number invalid

Confirmation

l_status Values

B8976072/02 FDL Programming Interface

57

4.2.3 RSAP_ACTIVATE

With this service, service access points (SAPs) with a pure responder
role can be assigned parameters and activated for SRD in the FDL.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 LEN_SAP_ACTIVATE
seg_length_1 Length of the buffer used (≥ LEN_SAP_ACTIVATE)
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code Rsap_activate
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap Number of the SAP to be activated, 0 to 63
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

Request

FDL Programming Interface B8976072/02

58

The parameters described in the following structure are entered in the
user_data_1 structure element by the FDL application.

struct fdl_sap
user_id Identification for the FDL application, no

significance for the CP.
max_l_sdu_length Maximum user data length processed on

this SAP (recommendation 246).
access_sap Optional access rights for a particular SAP

(remote) on this SAP. Other remote SAPs
(≠ access_sap) are not permitted access
(0 to 63, ALL).
ALL = no access restriction.

access_station Optional access right for a particular
station (remote) on this SAP. Stations with
an L2 address ≠ access_station are not
permitted access (0..hsa, ALL).
ALL = no access restrictions

access_segment Reserved
sda No significance
sdn No significance
srd Specifies the role = RESPONDER
csrd Reserved
*rup_l_sdu_ptr_low No significance
*rup_l_sdu_ptr_high No significance

Structure Element
user_data_1

B8976072/02 FDL Programming Interface

59

The RSAP_ACTIVATE confirmation confirms execution of the
RSAP_ACTIVATE request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, no, iv
fill_length_1 No significance
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code rsap_activate
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Unchanged from request
send_l_sdu.length Unchanged from request
l_status ok, no, iv

ok = Positive acknowledgment, SAP was activated.
no = Negative acknowledgment, SAP exists already
iv = Negative acknowledgment:

- CP currently being reset
- SAP parameter invalid
- SAP number invalid

Confirmation

l_status Values

FDL Programming Interface B8976072/02

60

4.2.4 SAP_DEACTIVATE

With this service, service access points (SAPs) can be deactivated.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 Length of the buffer used ≥ LEN_SAP_ACTIVATE
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code sap_deactivate
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap Number of the SAP to be deactivated, 0 to 63
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

An SAP can only be deactivated when there are no more resources
attached to the SAP. Buffers transferred with previous
AWAIT_INDICATION requests that still exist in layer 2 must first be
fetched back with WITHDRAW_INDICATION before an
SAP_DEACTIVATE can be performed.

Request

B8976072/02 FDL Programming Interface

61

The SAP_DEACTIVATE confirmation confirms execution of the
SAP_DEACTIVATE request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, no, lr, iv
fill_length_1 LEN_SAP_ACTIVATE
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code sap_deactivate
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Unchanged from request
send_l_sdu.length Unchanged from request
l_status ok, no, lr, iv

ok = Positive acknowledgment, SAP was deactivated
no = Negative acknowledgment, SAP does not exist
lr = Negative acknowledgment: CP access to SAP (temporary),

there are still indication resources on the SAP.
iv = Negative acknowledgment:

- CP currently being reset
- SAP number invalid

Data, transferred to the CP for this SAP using "REPLY_UPDATE_..."
are discarded.

Confirmation

l_status Values

FDL Programming Interface B8976072/02

62

4.2.5 LSAP_STATUS

This service allows configuration parameters for a particular SAP to be
read. Only the SAPs of the local station (local) can be read.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 Length of the receive buffer
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code lsap_status
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap Number of the SAP (local) 0 to 63 or DEFAULT_SAP
rem_add.station ts (local L2 address)
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length Receive buffer length

Recommendation: 255
send_l_sdu.length No significance
l_status No significance

Request

B8976072/02 FDL Programming Interface

63

The LSAP_STATUS confirmation confirms execution of the
LSAP_STATUS request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, iv
fill_length_1 Length of the returned data + offset (see "Structure of the

receive buffer")
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code lsap_status
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Number of returned net bytes 0 to 6, with appropriate l_status
send_l_sdu.length Unchanged from request
l_status ok, iv

The following diagram shows the structure of the data received with the
LSAP_STATUS confirmation.

This data is contained in the user_data_1 structure element of the
request block.

The offset and the user data are entered in the receive buffer by the CP.

/6$3�VWDWXV�E\WHV

UHFHLYHBOBVGX�OHQJWK

ILOOBOHQJWKB�

2IIVHW 5HVHUYHG

The offset (first byte of the receive buffer) indicates the number of bytes
from the start of the receive buffer to the first byte of the user data.

Confirmation

Structure of the
Receive Buffer

FDL Programming Interface B8976072/02

64

ok = Positive acknowledgment, status was read.
iv = Negative acknowledgment:

- CP currently being reset
- Invalid parameters in the application block
- Other management service currently active

l_status Values

B8976072/02 FDL Programming Interface

65

If l_status = ok, 6 status bytes are read. The bytes have the following
meaning:

BYTE 1: Station access restriction (access_station)
BYTE 2: Reserved
BYTE 3 to 6: Status of the individual services (SDA, SDN, SRD)

Structure of BYTE 1:
b8: Bit 8 is always 1.
b7 to b1: Only the station with the L2 address b7 to b1 can

access this SAP.
b7 to b1 = 7FH means there is no access
restriction (ALL).

Structure of BYTE 2:
b8 .. b1: Reserved

Structure of BYTE 3 to 5:
b8 to b5: Specifies the role in the service:

0000 INITIATOR
0001 RESPONDER
0010 BOTH_ROLES
0011 SERVICE_NOT_ACTIVATED

b4 to b1: Specifies the service ID:
0000 SDA_RESERVED
0001 SDN_RESERVED
0011 SRD_RESERVED
0101 Reserved

Structure of BYTE 6:
Reserved

The CSRD is no longer supported.

Meaning of the
Parameters:

Note

FDL Programming Interface B8976072/02

66

4.2.6 FDL_LIFE_LIST_CREATE_REMOTE

This service supplies the FDL application with a current list of functional
stations on the bus. A status frame is sent to all possible active or
passive stations on the bus (bus load).

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 Length of the buffer used 127..260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code fdl_life_liste_create_remote
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap No significance
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

In contrast to FDL_LIFE_LIST_CREATE_LOCAL, the function also
provides the L2 addresses of passive stations (slaves) with which the
local CP does not exchange data.

Request

B8976072/02 FDL Programming Interface

67

The FDL_LIFE_LIST_CREATE_REMOTE confirmation shows the
execution of the FDL_LIFE_LIST_CREATE_REMOTE request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, ds, lr, iv
fill_length_1 127 if l_status = ok
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code fdl_life_list_create_remote
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length 127 if l_status = ok
send_l_sdu.length Unchanged from request
l_status ok, ds, lr, iv

user_data_1 Status station x
(byte) e.g. 00h x = 0 e.g. STATION_PASSIVE
(byte) e.g. 10h x = 1 e.g. STATION_NON_EXISTENT
(byte) e.g. 30h x = 2 e.g. STATION_ACTIVE

(byte) e.g. 20h x = 126 e.g. STATION_ACTIVE_READY

Status: STATION_NON_EXISTENT = 10H
STATION_ACTIVE_READY = 20H (ready for entry in the logical

 ring)
STATION_ACTIVE = 30H (already in the logical ring)
STATION_PASSIVE = 00H

ok = Positive acknowledgment, life list was created.
ds = CP not in logical token ring or disconnected from the bus.
lr = Resources of the CP not available or inadequate.
iv = Negative acknowledgment:

- CP currently being reset
- passive station
- other management service currently active

Confirmation

Structure of the
Life List

Values for Status

l_status Values

FDL Programming Interface B8976072/02

68

4.2.7 FDL_LIFE_LIST_CREATE_LOCAL

The service provides the FDL application with a current list of functional
stations on the bus. The list is generated from the information on the
local station (no bus load).

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 Length of the buffer used 127..260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code fdl_life_list_create_local
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap No significance
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

In contrast to FDL_LIFE_LIST_CREATE_REMOTE, the function only
provides the L2 addresses of passive stations (slaves) with which the
local CP exchanges data.

If the FDL_LIFE_LIST_CREATE_REMOTE service has already been
executed, an image of all stations is provided, this means that passive
stations that have already been entered are not removed.

Request

B8976072/02 FDL Programming Interface

69

The FDL_LIFE_LIST_CREATE_LOCAL confirmation shows the
execution of the FDL_LIFE_LIST_CREATE_LOCAL request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, lr, iv
fill_length_1 127 if l_status = ok
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code fdl_life_list_create_local
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length 127 if l_status = ok
send_l_sdu.length Unchanged from request
l_status ok, lr, iv

user_data_1 Status station x
(byte) e.g. 00h x = 0 e.g. STATION_PASSIVE
(byte) e.g. 10h x = 1 e.g. STATION_NON_EXISTENT
(byte) e.g. 30h x = 2 e.g. STATION_ACTIVE

(byte) e.g. 20h x = 126 e.g. STATION_ACTIVE_READY

Status: STATION_NON_EXISTENT = 10H
STATION_ACTIVE_READY = 20H (ready for entry in the logical ring)

STATION_ACTIVE = 30H (already in the logical ring)
STATION_PASSIVE = 00H

ok = Positive acknowledgment, life list was created.
lr = Resources of the CP not available or inadequate.
iv = Negative acknowledgment:

- CP currently being reset
- no life list buffer exists
- passive station
- other management service currently active

Confirmation

Structure of the
Life List

l_status Values

FDL Programming Interface B8976072/02

70

4.2.8 FDL_IDENT

With this service, a station (local or remote) can be identified. The
identification includes the vendor name, the module type and the
hardware and software versions.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 Length of the receive buffer used (≥ LEN_IDENT ≤ 260)
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code fdl_ident
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap No significance
rem_add.station 0 to 126; if local L2 address, then check local ident
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length receive buffer length

Recommendation: 255
send_l_sdu.length No significance
l_status No significance

Request

B8976072/02 FDL Programming Interface

71

The FDL_IDENT confirmation confirms execution of the FDL_IDENT
request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, na, ds, nr, lr, iv
fill_length_1 Length of the Ident (0..200) + offset (if l_status = ok)
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code fdl_ident
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Length of the Ident 0 to 200, if l_status = ok
send_l_sdu.length Unchanged from request
l_status ok, na, ds, nr, lr, iv

The following diagram shows the structure of the data received with the
FDL_IDENT confirmation.

This data is contained in the user_data_1 structure element of the
request block.

The offset and die Ident-data are entered in the receive buffer by the
CP.

������E\WHV

2IIVHW /(� /(� /(�/(� 9HQGRU &RQWUROOHU +:�YHUV� 6:�YHUV�

� � � � /(�/(�/(�/(�

The offset (first byte of the receive buffer) indicates the number of bytes
from the start of the receive buffer to the first byte of the user data.
The last four elements contain character strings.

Confirmation

Structure of the
Receive Buffer

FDL Programming Interface B8976072/02

72

ok = Positive acknowledgment, Ident was read.
na = No or no plausible reaction from the addressed station

(remote).
ds = CP not in the logical token ring or disconnected from the bus.
nr = Negative acknowledgment for Ident-data, since these are not

available on the addressed station (remote).
lr = Resources of the CP not available or inadequate.
iv = Negative acknowledgment:

- CP currently being reset
- invalid parameters in the application block
- other management service currently active.

l_status Values

B8976072/02 FDL Programming Interface

73

4.2.9 FDL_READ_STATISTIC_COUNTER

This service is used to read the statistical data of the local station. Each
time the data is read, the counters are reset.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 Length of the buffer used

Recommendation: 260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code fdl_read_statistic_ctr
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap No significance
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

Request

FDL Programming Interface B8976072/02

74

The FDL_READ_STATISTIC_COUNTER confirmation shows the
execution of the FDL_READ_STATISTIC_COUNTER request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, iv
fill_length_1 LEN_STATISTIC_CTR_LIST
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code fdl_read_statistic_ctr
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length No significance
send_l_sdu.length Unchanged from request
l_status ok, iv

Confirmation

B8976072/02 FDL Programming Interface

75

The parameters described in the following structure are entered in the
user_data_1 structure element by the CP.

struct statistic_ctr_list:
invalid_start_delimiter_ctr Receive frame with invalid start delimiter
invalid_fcb_fcv_ctr Reserved
invalid_token_ctr Invalid token received
collision_ctr Unexpected response frame, possibly bus

collisions or bus short-circuit.
wrong_fcs_or_ed_ctr Reserved
frame_error_ctr Gap in the received frame.
char_error_ctr Reserved
retry_ctr Frame repetitions
start_delimiter_ctr Receive frame with valid start delimiter.
stop_receive_ctr Reception aborted, because:

- incorrect start delimiter
- bus short-circuit or bus collisions
- station exists twice
- Invalid entry in the frame

send_confirmed_ctr Number of sent "confirmed requests" (SDA,
SRD).

send_sdn_ctr Number of sent SDN requests.

ok = Positive acknowledgment, statistics were read.
iv = Negative acknowledgment:

- CP currently being reset
- no statistic buffer exists

Structure Element
user_data_1

l_status Values

FDL Programming Interface B8976072/02

76

4.2.10 FDL_READ_LAS_STATISTIC_COUNTER

This service is used to read bus-related statistics. Each time the
statistical data is read, the counters are reset.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 Length of the buffer used

Recommendation: 260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code fdl_read_las_statistic_ctr
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap No significance
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

Request

B8976072/02 FDL Programming Interface

77

The FDL_READ_LAS_STATISTIC_COUNTER confirmation confirms
execution of the FDL_READ_LAS_STATISTIC_COUNTER request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, iv
fill_length_1 number of active stations + 2
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code fdl_read_las_statistic_ctr
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Number of active stations (= n)
send_l_sdu.length Unchanged from request
l_status ok, iv

user_data_1
(word) FFFFh
(byte) station x 1st active station
(byte) station y 2nd active station

....

(byte) station z nth active station

ok = Positive acknowledgment, statistics were read
iv = Negative acknowledgment:

- CP currently being reset
- no statistic buffer exists

Confirmation

Structure of the
Statistic Buffer

l_status Values

LAS
List of active

 stations

FDL Programming Interface B8976072/02

78

4.2.11 AWAIT_INDICATION

With this service, a resource for an indication is made available to the
CP. The management of individual resources is SAP-related.

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 If dsap = EVENT_SAP: LEN_EVENT_INDICATION otherwise: 0
seg_length_1 Recommendation: 260
offset_1 80
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code await_indication
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap 0 to 63 or EVENT_SAP; SAP for which resources are made

available
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length receive buffer length

Recommendation: 255
send_l_sdu.buffer_ptr 0
send_l_sdu.length 1
l_status No significance

Request

B8976072/02 FDL Programming Interface

79

If the DSAP structure element has the value EVENT_SAP, an
FDL_EVENT indication is received with the resource. In all other
cases, the resource is made available for receiving an SDA, SDN or
SRD indication.

In contrast to all other SAPs, the EVENT-SAP does not need to be
created with the SAP_ACTIVATE service.

SAP 0..63 EVENT_SAP
fill_length_1 Recommendation: 0 Recommendation: 258
seg_length_1 Recommendation: 260 Recommendation: 260
receive_l_sdu.length Recommendation: 255 No significance

Please remember that there is only a direct confirmation with the
“l_status = ls”, "lr" or "iv" for the AWAIT_INDICATION service if
the service was unsuccessful. If the request was correct, the
request block remains on the CP.

If you fetch back the resources using the WITHDRAW_INDICATION
service, the opcode structure element is unchanged, in other
words the entry continues to be "request".

☞☞

☞☞

Lengths Dependent
on the SAP Used

☞☞

☞☞

FDL Programming Interface B8976072/02

80

dsap = EVENT_SAP: A resource is made available for the FDL_EVENT
indication. A resource consists of an application block
and a receive buffer (=LEN_EVENT_INDICATION,
struct event_indication).

dsap = 0 to 63: A resource is made available for an SDA, SDN or SRD
indication. A resource consists of an application block
and a receive buffer.

The parameters described in the following structure are entered in the
user_data_1 structure element by the FDL application. /1/

struct event_indication
time_out.counter Initialize with 0.
time_out.threshold 1 to 65535; threshold, can be set individually for every

event. As soon as the "time_out.counter" reaches the
"time_out.threshold" an FDL_EVENT indication with the
complete receive buffer is triggered.

not_syn.counter Initialize with 0.
not_syn.threshold 1 to 65535; threshold, can be set individually for every

event. As soon as the "not_syn.counter" reaches the
"not_syn.threshold" an FDL_EVENT indication with the
complete receive buffer is triggered.

uart_error.counter Initialize with 0.
uart_error.threshold Not supported.
out_of_ring.counter Initialize with 0.
out_of_ring. threshold 1 to 65535; threshold, can be set individually for every

event. As soon as the "out_of_ring.counter" reaches the
"out_of_ring.threshold" an FDL_EVENT indication with
the complete receive buffer is triggered.

sdn_not_indicated.counter Initialize with 0.
sdn_not_indicated.threshold Not supported.
duplicate_address.counter Initialize with 0.
duplicate_address.threshold 1 to 65535; threshold, can be set individually for every

event. As soon as the “duplicate_address.counter"
reaches the "duplicate_address.threshold" an
FDL_EVENT indication with the complete receive buffer
is triggered.

hardware_error.counter Initialize with 0.
hardware_error.threshold 1 to 65535; threshold, can be set individually for every

event. As soon as the "hardware_error.counter" reaches
the "hardware_error.threshold" an FDL_EVENT
indication with the complete receive buffer is triggered.

mac_error.counter Initialize with 0.
mac_error.threshold 1 to 65535; threshold, can be set individually for every

event. As soon as the "mac_error.counter" reaches the
"mac_error.threshold" an FDL_EVENT indication with
the complete receive buffer is triggered.

Meaning of the
Parameters

Structure of the
Receive Buffer with
FDL_EVENT

B8976072/02 FDL Programming Interface

81

The AWAIT_INDICATION confirmation is only returned if an error
occurs.

If the service is successful, there is no confirmation.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ls, lr, iv
fill_length_1 No significance
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code await_indication
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Unchanged from request
send_l_sdu.length Unchanged from request
l_status ls, lr, iv

ls = Negative acknowledgment, SAP does not exist.
lr = Negative acknowledgment, resource overflow on the CP (more

than 255 for one SAP).
iv = Negative acknowledgment:

- CP currently being reset
- invalid parameters in the request

The request block remains on the CP until an indication is received. It is
then returned to the FDL application as an SDA, SDN or SRD
indication.

Confirmation

l_status Values

Note

FDL Programming Interface B8976072/02

82

4.2.12 FDL_EVENT

With this service, the FDL application is informed of events on the CP.
An application block and an event buffer (more than one also possible)
must be made available to the CP using the AWAIT_INDICATION
service. The CP returns the counter readings providing information
about how often the corresponding events occur. The indication is
triggered when one of the counters reaches the sensitivity threshold that
can be set individually by the FDL application. The FDL application
receives the application block and the complete event buffer.

Request Block Header
length 80
user Unchanged from "await_indication"
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Indication
response No significance
fill_length_1 LEN_EVENT_INDICATION
seg_length_1 No significance
offset_1 80
fill_length_2 No significance
seg_length_2 No significance
offset_2 No significance

Application Block
opcode Indication
subsystem No significance
id No significance
service.code fdl_event
loc_add.station No significance
loc_add.segment No significance
ssap EVENT_SAP
dsap No significance
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

The Structure of the event buffer is described along with the
AWAIT_INDICATION service. The buffer is in the user_data_1
structure component.

Indication

B8976072/02 FDL Programming Interface

83

4.2.13 WITHDRAW_INDICATION

With this service, receive resources transferred previously to the CP by
the FDL application with the AWAIT_INDICATION service can be
fetched back. These resources normally remain on the CP until data are
received from a station (remote). With the WITHDRAW_INDICATION
service, the resources can be fetched back prematurely (for example to
deactivate the SAP).

Request Block Header
length 80
user Free for use by FDL application
rb_type 2
priority Priority of the job low/high
subsystem 22H
opcode Request
response No significance
fill_length_1 0
seg_length_1 0
offset_1 No significance
fill_length_2 0
seg_length_2 0
offset_2 No significance

Application Block
opcode Request
subsystem Reserved for the CP
id Reserved for the CP
service.code withdraw_indication
loc_add.station No significance
loc_add.segment No significance
ssap No significance
dsap 0 to 63 or EVENT_SAP; SAP from which the resources are

fetched back
rem_add.station No significance
rem_add.segment No significance
serv_class No significance
receive_l_sdu.length No significance
send_l_sdu.length No significance
l_status No significance

Before deactivating an SAP, the resources must be fetched back. The
number of returned resources is transferred in the confirmation in the
send_l_sdu.length structure element. The resources must then be
fetched with individual "ihi_read" or “SCP_receive” calls.

Request

FDL Programming Interface B8976072/02

84

The WITHDRAW_INDICATION confirmation shows the execution of
the WITHDRAW_INDICATION request.

The result of the request is entered in the l_status structure element.

Request Block Header
length Unchanged from request
user Unchanged from request
rb_type Unchanged from request
priority Unchanged from request
subsystem 22H
opcode Confirm
response ok, ls, iv
fill_length_1 Unchanged from request
seg_length_1 Unchanged from request
offset_1 Unchanged from request
fill_length_2 Unchanged from request
seg_length_2 Unchanged from request
offset_2 Unchanged from request

Application Block
opcode Confirm
subsystem No significance
id No significance
service.code withdraw_indication
loc_add.station Unchanged from request
loc_add.segment Unchanged from request
ssap Unchanged from request
dsap Unchanged from request
rem_add.station Unchanged from request
rem_add.segment Unchanged from request
serv_class Unchanged from request
receive_l_sdu.length Unchanged from request
send_l_sdu.length Number of returned resources (if l_status = ok)
l_status ok, ls, iv

ok = Positive acknowledgment, service was executed.
ls = Negative acknowledgment, SAP does not exist
iv = Negative acknowledgment:

- CP currently being reset
- invalid parameters in the request

The WITHDRAW_INDICATION request is followed by the
WITHDRAW_INDICATION confirmation. If this service is successful,
(l_status = ok), the structure element send_l_sdu.length contains the
number of returned resources. After the confirmation, these must be
fetched individually by the FDL application using ihi_read or
SCP_receive calls. The request or application block of the returned
resource is unchanged from the AWAIT_INDICATION request. ❑

Confirmation

l_status Values

Fetching the
Resources

B8976072/02 FDL Programming Interface

85

5 Access to Layer 2

This chapter illustrates the relationship between interface functions and the
FDL services. The chapter also explains how communication is implemented
between the local and remote station using productive services.

FDL Programming Interface B8976072/02

86

An FDL application has the following basic structure:

ihi_open_dev ()

Layer 2 jobs
(ihi_write() and ihi_read())

Finish layer 2 communication ?

yes

no

ihi_close()

Fig. 5.1: Sequence of an FDL Application

The communication between the FDL application and the CP consists
of three essential steps:

1) The FDL application logs on at the CP with the SCP_open or
ihi_open_dev() call.

2) Layer 2 jobs executed with SCP_send and SCP_receive or
ihi_write() and ihi_read().

3) The FDL application logs off after terminating layer 2
communication with SCP_close or ihi_close().

The interface functions SCP_open(), SCP_send(), SCP_receive(), and
SCP_close() are described in Chapter 7 Function Calls of the SCP
Interface

The interface functions ihi_open_dev(), ihi_write(), ihi_read() and
ihi_close() are described in Chapter 6 Function Calls of the IHI
Interface.

Basic Structure of
the FDL
Application

Sequence of
Communication

B8976072/02 FDL Programming Interface

87

5.1 Activating SAPs

Before data can be transmitted or received via the layer 2 interface, one
or more SAPs must be activated by one of the management services
SAP_ACTIVATE or RSAP_ACTIVATE. SAPs are data interfaces within
a PROFIBUS station. The source and destination of a data frame are
specified by the L2 address and the SAP number.

No data exchange with other PROFIBUS stations is possible
without activating SAPs.

To activate an SAP, several parameters must be specified, such as the
maximum data length, access rights (remote access, remote SAP),
permitted productive services and permitted access type (as initiator or
responder).

See also Section 4.2.2 SAP_ACTIVATE.

The default SAP is a special case. If the source and/or destination of a
data frame is only specified using the L2 address, the PROFIBUS
station automatically uses the default SAP as the local data interface.
As with all other SAPs used for sending or receiving, the default SAP
must be activated by the FDL application using the (R)SAP_ACTIVATE
service. The number of the default SAP can be read using the
FDL_READ_VALUE service. With management services affecting the
default SAP, the SAP number must always be specified. On the other
hand, with productive services, the constant DEFAULT_SAP as defined
in the "fdl_rb.h" include file can be used.

Conditions for Data
Transfer

☞☞

Parameters

Default SAP

FDL Programming Interface B8976072/02

88

5.2 Data Transfer

The FDL application, the FDL protocol software and the remote
PROFIBUS stations are involved in data transfer.

To make the situation clearer in the examples, following each request,
the application waits for the corresponding result
(confirmation/indication). As explained in Chapter 2 and 7, several
requests can be sent to layer 2 one after the other and the application
only waits for the result after the requests have been sent.

Sequence of the
Data Transfer

B8976072/02 FDL Programming Interface

89

5.2.1 Sending Data Frames

The CP sends an acknowledged data frame to one other station.

FDL application FDL Transmission

Local Remote

SDA, SRD:
entries in fdl_rb structure

ihi_write(..)

request

confirmation

ihi_read(..)

Evaluate confirmation

Call frame

Acknowl. frame

1

2

3

(SDA, SRD)

station

medium

station

FDL

Fig. 5.2: Sending Data Frames SDA, SRD

1 Entries made in the structure according to the service description
(Chapter 3 Productive Services).

Make sure that an offset of at least 12 bytes to the user data is
maintained in the send buffer. The size of the offset must be
entered in the first byte of the send buffer.

2 After receiving the acknowledgment frame, layer 2 returns the
confirmation. If an error occurs (syntax error, remote station does
not respond, ...), layer 2 generates a local confirmation.

3 The confirmation must be read out with ihi_read() or
SCP_receive(). In the polling mode, ihi_read() or SCP_receive()
may need to be called several times.

If several jobs are processed simultaneously by layer 2, the FDL
application should specify the type of structure returned
(confirmation/indication) based on the ‘opcode’ structure element
of the ‘rb2_header_type’ structure. With a confirmation, the
assignment to the corresponding request should also be checked.

SDA and SRD to a
Remote Partner

Notes

☞☞

☞☞

FDL Programming Interface B8976072/02

90

The CP sends an unacknowledged data frame to one or more other
stations.

FDL application FDL

SDN:
Entries in fdl_rb struct

ihi_write(..)

request

confirmation

ihi_read(..)

Evaluate confirmation

1

2

3

Transmission

Local Remote

Call frame
(SDN)

station

medium

station

FDL

Fig. 5.3: Sending Data Frames SDN

1 Make entries in the structure according to the service description
(Chapter 3 Productive Services).

Make sure that an offset of at least 12 bytes to the user data is
maintained in the send buffer. The size of the offset must be
entered in the first byte of the send buffer.

2 With unacknowledged services (SDN, SDN_BROADCAST), layer
2 generates a local confirmation after sending the call frame.

3 The confirmation must be read out with ihi_read() or
SCP_receive(). In the polling mode, ihi_read() or SCP_receive()
may need to be called several times.

If several jobs are processed simultaneously by layer 2, the FDL
application should specify the type of structure returned
(confirmation/indication) based on the ‘opcode’ structure element
of the ‘rb2_header_type’ structure. With a confirmation, the
assignment to the corresponding request should also be checked.

SDN to Remote
Partner(s)

Notes

☞☞

☞☞

B8976072/02 FDL Programming Interface

91

5.2.2 Receiving Data Frames

The CP receives call frames from a remote station.

FDL application

AWAIT_INDICATION:
Entries in fdl_rb struct

ihi_write(..)

request

indication

ihi_read(..)

Evaluate indication

1

2

3

FDL Transmission

Local Remote

Call frame
(SDA, SDN)

station

medium

station

Short ack. with SDA

FDL

Fig. 5.4: Receiving Data Frames SDA, SDN

1 Entries in the structure according to the service description
(Chapter 3 Productive Services). To be able to receive a data
frame from a remote station, one or more receive resources must
be transferred to the SAP using AWAIT_INDICATION. Several
receive resources can be transferred to the SAP by repeatedly
calling AWAIT_INDICATION. After a call frame has been
received, the resource is used up and must be replaced by a new
AWAIT_INDICATION.

2 After receiving a call frame, layer 2 generates an indication
containing the received data and sends it to the FDL application.
The first byte of the receive buffer contains the offset to the
received data.

3 The indication must be read out using ihi_read() or
SCP_receive(). In the polling mode, ihi_read() or SCP_receive()
may need to be called several times.

SDA, SDN from
Remote Partner

Notes

FDL Programming Interface B8976072/02

92

If several jobs are processed simultaneously by layer 2, the FDL
application should specify the type of structure returned
(confirmation/indication) based on the ‘opcode’ structure element
of the ‘rb2_header_type’ structure.

With a confirmation, the assignment to the corresponding request
should also be checked. The FDL application must transfer the
AWAIT_INDICATION to the CP to continue receiving.

The CP receives a call frame and sends an acknowledgment frame with
data back to the remote station.

FDL application FDL

REPLY_UPDATE_

Entries in fdl_rb struct

ihi_write(..)
request

indication

ihi_read(..)

Evaluate indication

 Call frame

1

3

 Acknowl. frame

ihi_read(..)

SINGLE/MULTIPLE:

ihi_write(..)
request

2
AWAIT_INDICATION:

Transmission

Local Remote

station

medium

station

(SRD)

FDL

Fig. 5.5: Receiving Data Frames SRD

☞☞

☞☞

SRD from Remote
Partner

B8976072/02 FDL Programming Interface

93

1 With the REPLY_UPDATE_SINGLE or REPLY_UPDATE_
MULTIPLE service, data is transferred to layer 2 and can be
fetched by a remote station using an SRD service. The data is
sent to the remote station in the acknowledgment frame. With the
REPLY_UPDATE_SINGLE service, the data can only be read out
once whereas with the REPLY_UPDATE_ MULTIPLE service it
can be read out several times.

Make sure that an offset of at least 12 bytes to the user data is
maintained in the send buffer. The size of the offset must be
entered in the first byte of the send buffer.

If the acknowledgment frame to the remote station does not

contain data, 1 can be omitted.

2 To be able to receive a data frame from a remote station, one or
more receive resources must be transferred to the SAP with
AWAIT_INDICATION. Several receive resources can be
transferred to the SAP by repeatedly calling
AWAIT_INDICATION. After receiving a call frame, the resource
is used up and must be replaced by a new AWAIT_INDICATION.

3 After receiving a call frame, layer 2 generates an indication
containing the received data for the FDL application. The first
byte of the receive buffer contains the offset to the received data.
The indication can be read out with an ihi_read () or
SCP_receive() call.❑

Notes

☞☞

FDL Programming Interface B8976072/02

94

Notes

B8976072/02 FDL Programming Interface

95

6 Function Calls of the IHI Interface

This chapter describes the IHI interface functions with which you transfer FDL
jobs and fetch the results.

Under MS-DOS and Windows 3.x, you should only use these calls of the IHI
interface.

Under Windows 95 and Windows NT, the IHI calls are only intended for
porting old applications.

FDL Programming Interface B8976072/02

96

The FDL programming interface is made available to the FDL
application in the form of a library. The library functions of the FDL
programming interface handle the transfer of FDL jobs to the CP for the
FDL application.

The FDL programming interface involves the following functions:

Logon function for the FDL application ihi_open_dev

Sending jobs, data ihi_write

Receiving data (jobs, acknowledgments) ihi_read

Logoff function for the FDL application ihi_close

The calls for the FDL programming interface must be made by the FDL
application. The following order must be maintained: The first interface
call is ihi_open_dev . Using ihi_write , the FDL application can then
send jobs to the CP. Each job must then be fetched again with
ihi_read . Until a request block has been fetched, neither it nor the data
buffer appended to it can be used. Finally, the connection to the CP is
terminated with ihi_close .

FDL Programming
Interface

How the Interface
Works

B8976072/02 FDL Programming Interface

97

6.1 ihi_open_dev

Using the ihi_open_dev function, the FDL application logs on at the
driver. The driver transfers the job to the CP.

The “dev” parameter selects the CP in the PG/PC. The function returns
a handle that must be specified for all further calls.

#include "fdl_rb.h"

int ihi_open _dev (ord16 mode, char * dev);

mode: mode = 0: No device name is specified, instead,
communication is via the first CP that supports the
ihi function calls.

mode = 1: A connection is established between the FDL
application and the CP selected with the “dev”
parameter.

Recommendation: When using the FDL
programming interface, select mode = 1.

dev: This parameter selects the CP. Syntax:
"/name:/FLC"

name = identical to the name selected in the
configuration program.

� 0: Success: Return value = handle

< 0: Error:

-1: Bus driver not installed.

-2: Error opening driver.

-3: Driver already opened.

Description of the
Function

Declaration of the
Function

Description of the
Parameters

Return Value

FDL Programming Interface B8976072/02

98

6.2 ihi_write

Using the ihi_write function, request blocks are transferred to the CP for
processing.

#include "fdl_rb.h"

int ihi_write (int handle, RB * rb);

handle: Reference (see ihi_open)

rb: Address for the request block to be transferred.

= 0: Success: Job transferred correctly to the CP.

< 0: Error:

-1: No ihi_open_dev executed for this handle.

-2: Job can no longer be transferred. Maximum
number of simultaneous jobs exceeded.

-3: No longer occurs.

-4: Meaning as for return value -2.

-5: Incorrect job, the job was not passed on to the
CP.

Description of the
Function

Declaration of the
Function

Description of the
Parameters

Return Value

B8976072/02 FDL Programming Interface

99

6.3 ihi_read

With this call, the FDL application receives back the request blocks
processed by the CP. They are returned using a pointer to the request
block.

The FDL application has the choice between a synchronous mode in
which the call is only completed when a request block is received, and
an asynchronous mode, that allows the results to be polled.

#include "fdl_rb.h"

int ihi_read (int handle, ord16 mode,RB ** rb);

handle: Reference (see ihi_open)

mode: mode=0 Asynchronous mode, polling. The function
enters the address of an RB in the rb parameter
if the return value is 1. Otherwise, the function is
terminated with *rb = 0.

mode=1 Synchronous mode, wait for result. The call is
only completed when a request block is returned
by the CP.

rb: Address of a request block pointer returned by
the CP.

= 0: Success: Job executed correctly.

= 1: Success: Job executed correctly. RB transferred.

< 0: Error:

-1: No ihi_open_dev executed for this handle.

-2: No jobs exist.

-3: Illegal receive mode.

-4: No longer occurs.

-5: No longer occurs.

The synchronous mode and asynchronous mode must not be
used simultaneously in a program.

Under Windows, only the asynchronous mode can be used.

Description of the
Function

Declaration of the
Function

Description of the
Parameters

Return Value

☞☞

☞☞

FDL Programming Interface B8976072/02

100

6.4 ihi_close

Using the ihi_close function, an FDL application logs off at the driver.
Following this call, productive communication is no longer possible with
this handle.

#include "fdl_rb.h"

int ihi_close (int handle);

handle: Reference (see ihi_open).

 0: Success: Job executed correctly.

Under Windows, ihi_close also returns the value
0 if jobs were discarded.

< 0: Error:

-1: No ihi_open_dev executed for this handle.

-2: ihi_close was executed correctly, jobs not yet
processed were discarded.

Description of the
Function

Declaration of the
Function

Description of the
Parameters

Return Value

B8976072/02 FDL Programming Interface

101

6.5 Examples

Jobs are sent to the CP one after the other.

#include "fdl_rb.h"

ex_1 ()
{ int handle;

RB rb; /* request block/
int ret;
RB * rb_ptr;

handle = ihi_open_dev(1,"/CP_L2_1:/FLC");

 if (handle < 0)
 {
 /* error opening the connection to
 the CP 5412 */
 }
 /* make entries in rb */
 ret = ihi_write (handle, &rb);

 if (ret >= 0)
 {
 /* fetch the request block */
 ret = ihi_read (handle,1,&rb_ptr);
 }

 /* make entries in rb */
 /*(see examples on the diskette) */
 ret = ihi_write (handle, &rb);

 if (ret >= 0)
 {
 /* fetch the request block */
 ret = ihi_read (handle,1,&rb_ptr);
 }

 /* finish working with L2 */
 ret = ihi_close (handle);
}

Example 1:

FDL Programming Interface B8976072/02

102

Several jobs are processed simultaneously on the CP.
#include "fdl_rb.h"
ex_2 ()
{ int handle;

RB rb1; /* request block*/
RB rb2; /* request block*/
RB rb3; /* request block*/
int ret;
RB * rb_ptr;
int i;

handle = ihi_open_dev(1,"/CP_L2_1:/FLC");

 if (handle < 0)
 {
 /* error opening the connection to
 the CP5412 */
 }

 /* make entries in rb1 */

 /* senfd rb1 to the CP */
 ret = ihi_write (handle, &rb1);

 /* make entries in rb2 */

 /* send rb2 to the CP */
 ret = ihi_write (handle, &rb2);

 /* make entries in rb3 */

 /* send rb3 to the CP */
 ret = ihi_write (handle, &rb3);
 /* fetch the request blocks */
 for (i = 0; i < 2; i++)
 {
 ret = ihi_read (handle,1,&rb_ptr);
 }

 /* make entries in rb */

 ret = ihi_write (handle, &rb1);

 if (ret >= 0)
 {
 /* fetch the request block */
 ret = ihi_read (handle,1,&rb_ptr);
 }

 /* finish communication */
 ret = ihi_close (handle);
}

❑

Example 2:

B8976072/02 FDL Programming Interface

103

7 Function Calls of the SCP Interface

This chapter describes the SCP interface functions with which you transfer
FDL jobs and fetch the results.

Under MS-DOS and Windows 3.x, these calls are not available for FDL jobs.

Under Windows 95 and Windows NT, the SCP calls are intended for new FDL
applications.

FDL Programming Interface B8976072/02

104

The FDL programming interface is made available to the FDL
application in the form of a library. The library functions of the FDL
programming interface handle the transfer of FDL jobs to the CP for the
FDL application.

The FDL programming interface involves the following functions:

Logon function for the FDL application SCP_open

Sending jobs, data SCP_send

Receiving data (jobs, acknowledgments) SCP_receive

Logoff function for the FDL application SCP_close

Fetching error IDs SCP_get_errno

The calls for the FDL programming interface must be made by the FDL
application. The following order must be maintained: The first interface
call is SCP_open . Using SCP_send , the FDL application can then send
jobs to the CP. Each job must then be fetched again with
SCP_receive . Until a request block has been fetched, neither it nor the
data buffer appended to it can be used. Finally, the connection to the
CP is terminated with SCP_close .

After every function that returns the value -1, SCP_get_errno can be
called to obtain an error ID that identifies the cause of the error in more
detail.

Please note the points made about the specific operating systems
in the Appendix.

FDL Programming
Interface

How the Interface
Works

☞☞

B8976072/02 FDL Programming Interface

105

7.1 SCP_open

Using the SCP_open function, the FDL application logs on at the driver.
The driver transfers the job to the CP.

The “dev” parameter selects the CP in the PG/PC. The function returns
a handle that must be specified for all further calls.

#include "fdl_rb.h"

int SCP_open (char * dev);

dev: This parameter selects the CP. Syntax:
"/name/FLC"

name = identical to the name selected in the
configuration program.

� 0: Success: Return value = handle

= -1: Error: The exact cause of the error can be
obtained with SCP_get_errno().

Description of the
Function

Declaration of the
Function

Description of the
Parameters

Return Value

FDL Programming Interface B8976072/02

106

7.2 SCP_send

Using the SCP_send function, request blocks are transferred to the CP
for processing.

#include "fdl_rb.h"

int SCP_send (int handle, UWORD length, char * rb);

handle: Reference (see SCP_open)

length: Length of the request block to be transferred in
bytes.

rb: Address of the request block to be transferred.

= 0: Success: Job transferred correctly to the CP.

= -1: Error: The exact cause of the error can be obtained with
SCP_get_errno().

Description of the
Function

Declaration of the
Function

Description of the
Parameters

Return Value

B8976072/02 FDL Programming Interface

107

7.3 SCP_receive

With this call, the FDL application receives back job acknowledgments
and data from the CP. They are returned in a buffer provided by the
application.

The FDL application has the choice between a synchronous mode in
which the call is only completed when a request block is received, and
an asynchronous mode, that allows the results to be polled.

#include "fdl_rb.h"

int SCP_receive (int handle, UWORD timeout,
 UWORD *data_len,
 UWORD length, char *buffer);

Description of the
Function

Declaration of the
Function

FDL Programming Interface B8976072/02

108

handle: Reference (see SCP_open)

timeout: Waiting time for the receive job. The following
values are possible.

0 Asynchronous mode (SCP_NOWAIT):
The function is completed immediately. If no data
are available for the caller, then *data_len = 0.

FFFFh Synchronous mode (SCP_FOREVER):
The call is only completed when data have arrived
for the caller.

0 <
 timeout
< FFFFh

The function is completed when data arrive for the
caller or at the latest when a timeout specified in
seconds expires.

data_len: Pointer to the number of bytes received (return
parameter)

length: Length of the receive buffer in bytes.

buffer: Address of the receive buffer.

= 0: Success
:

Job executed correctly.

= -1: Error: The exact cause of the error can be obtained with
SCP_get_errno().

The synchronous and asynchronous modes must not be used at
the same time in a program.

In Windows applications, you can only work in the asynchronous
mode.

Description of the
Parameters

Return Value

☞☞

☞☞

B8976072/02 FDL Programming Interface

109

7.4 SCP_close

Using the SCP_close function, an FDL application logs off at the driver.
Following this call, productive communication is no longer possible with
this handle.

#include "fdl_rb.h"

int SCP_close (int handle);

handle: Reference (see SCP_open).

 0: Success
:

Job executed correctly.
The value 0 is also returned when pending jobs
have been discarded.

= -1: Error: The exact cause of the error can be obtained with
SCP_get_errno().

Description of the
Function

Declaration of the
Function

Description of the
Parameters

Return Value

FDL Programming Interface B8976072/02

110

7.5 SCP_get_errno

Using the SCP_get_errno function, an application can query the cause
of an error that occurred in an SCP function.

#include "fdl_rb.h"

int WINAPI SCP_get_errno (void);

none

= 0: Last job executed correctly

= 202: Lack of resources in driver or in the library

= 203: Configuration error

= 205: Job not currently permitted

= 206: Parameter error

= 207: Device already/not yet open.

= 208: CP not reacting

= 209: Error in firmware

= 210: Lack of memory for driver

= 215: No message

= 216: Error accessing application buffer

= 219: Timeout expired

= 225: Maximum number of logons exceeded

= 226: Job aborted

= 233: An auxiliary program could not be started

= 234: No authorization exists for this function

= 304: Initialization not yet completed

= 305: Function not implemented

= 4865: CP name does not exist

= 4866: CP name not configured

= 4867: Channel name does not exist

= 4868: Channel name not configured

Description of the
Function

Declaration of the
Function

Description of the
Parameters

Return Value

B8976072/02 FDL Programming Interface

111

7.6 Examples

Jobs are sent to the CP one after the other.

#include "fdl_rb.h"

exa_1 ()
{ int handle;

fdl_rb rb; /* request block, job block */
int ret;
UWORD data_len;

handle = SCP_open ("/CP_L2_1:/FLC");

 if (handle == -1)
 {
 /* error opening the connection to
 the CP */
 }
 /* make entries in rb */
 ret = SCP_send (handle, sizeof(fdl_rb), &rb);

 if (ret == 0)
 {
 /* fetch the acknowledgment/data */
 ret = SCP_receive (handle, 0xffff,
 &data_len,
 sizeof(fdl_rb), &rb);
 }

 /* make entries in rb */
 /*(see examples on the diskette) */
 ret = SCP_send (handle, sizeof(fdl_rb), &rb);

 if (ret == 0)
 {
 /* fetch the acknowledgment/data */
 ret = SCP_receive (handle, 0xffff,
 &data_len,
 sizeof(fdl_rb), &rb);
 }

 /* finish working with FDL */
 ret = SCP_close (handle);
}

Example 1:

FDL Programming Interface B8976072/02

112

Several jobs are processed simultaneously on the CP.

#include "fdl_rb.h"
exa_2 ()
{ int handle;

fdl_rb rb; /* request block, job block */
int ret;
UWORD data_len;
int i;

handle = SCP_open ("/CP_L2_1:/FLC");

 if (handle == -1)
 {
 /* error opening connection to CP */
 }

 /* enter first job in rb */

 /* send rb to the CP */
 ret = SCP_send (handle, sizeof(fdl_rb), &rb);

 /* enter second job in rb */

 /* send rb to the CP */
 ret = SCP_send (handle, sizeof(fdl_rb), &rb);

 /* enter third job in rb */

 /* send rb to the CP */
 ret = SCP_send (handle, sizeof(fdl_rb), &rb);

 /* fetch the request blocks */
 for (i = 0; i < 2; i++)
 {
 ret = SCP_receive (handle, 0xffff,
 &data_len,
 sizeof(fdl_rb), &rb);
 }

 /* enter fourth job in rb */

 /* send rb to the CP */
 ret = SCP_send (handle, sizeof(fdl_rb), &rb);

 /* fetch the request blocks */
 if (ret != -1)
 {
 ret = SCP_receive (handle, 0xffff,
 &data_len,
 sizeof(fdl_rb), &rb);
 }

 /* finish communication */
 ret = SCP_close (handle);
}

❑

Example 2:

B8976072/02 FDL Programming Interface

113

8 Appendix

8.1 Differences in Implementation between the CP 5412 (A1)
and CP 5412 (A2)

The CP 5412 (A2) is the compatible successor to the CP 5412 (A1).

By using an optimized bus controller ASIC, for example to achieve a higher
transmission rate, it was necessary to modify some of the characteristics of
the CP 5412 (A1).

These modifications affect the following services:

➢ SAP_ACTIVATE

➢ FDL_READ_(LAS)_STATISTIC_COUNTER

➢ REPLY_UPDATE

➢ AWAIT_INDICATION

➢ WITHDRAW_INDICATION

➢ FDL_EVENT

➢ FDL_READ_VALUE

➢ CSRD

➢ FDL_SET_VALUE

➢ FDL_RESET

➢ MAC_RESET

Due to the multi-application capability for Windows users and to achieve
higher performance, CP 5412 (A1) users may need to make certain
adaptations.

FDL Programming Interface B8976072/02

114

The network connection SAP is not supported by the CP 5412 (A2).

The LSAP_STATUS service is only possible locally. This is no longer
available as a remote service.

Only some of the statistic cells of FDL_READ_STATISTIC_CTR are
available. Statistic cells that are not supported always have the value 0.

statistic_ctr_list CP 5412 (A1) CP 5412 (A2)

invalid_start_delimiter supported not supported
invalid_fcb_fcv_ctr supported not supported
invalid_token_ctr supported supported
collision_ctr supported supported
wrong_fcs_or_ed_ctr supported supported
frame_error_ctr supported supported
char_error_ctr supported supported
start_delimiter_ctr supported supported
retry_ctr supported supported
stop_receive_ctr supported supported
send_confirmed_ctr supported supported
send_sdn_ctr supported supported

The FDL_READ_LAS_STATISTIC_COUNTER service no longer
supports the LAS_cycle_ctr. The value FFFFh is entered.

The REPLY_UPDATE service does not support priority-related buffers
per SAP. Either a high priority or a low priority buffer can be transferred.

With the REPLY_UPDATE service, the dsap parameter has no
significance. The actions previously associated with this parameter are
no longer supported.

SAP_ACTIVATE

LSAP_STATUS

FDL_READ_STATIS
TIC_ COUNTER

FDL_READ_LAS_
STATISTIC_
COUNTER

REPLY_UPDATE

B8976072/02 FDL Programming Interface

115

The AWAIT_INDICATION and WITHDRAW_INDICATION services do
not distinguish between high and low priority buffers. The buffer
management of layer 2 uses only one indication queue per SAP which
means that no reserve buffer can be included for high priority jobs in the
SAP.

Only some of the events are supported.

Event CP 5412 (A1) CP 5412 (A2)
time_out supported supported
not_syn supported supported
uart_error supported not supported
out_of_ring supported supported
sdn_not_indicated supported not supported
duplicated_address supported supported
hardware_error supported supported
mac_error supported supported

The range of values for the bus parameters are different.

Parameter CP 5412 (A1) CP 5412 (A2)
hsa 2 .. 126 1 .. 126
ts 0 .. 126 0 .. 126
station_type active, passive

active_fast, passive_fast
active, passive

sm_active, sm_passive
*)

baudrate 9.6; 19.2; 93.75; 187.5; 500;
1.5M

9.6; 19.2; 93.75; 187.5;
500; 1.5M, 3M; 6M; 12M

redundancy no_redundancy,
select_bus_a
select_bus_b
redundancy_on

not supported

retry_ctr 1 to 8 0 to 7
default_sap 2 to 62 2 to 62
network-connection-sap 2 to 62 not supported
tsl 1 to 65535 37 to 16383
tqui 0 to 255 0 to 127
tset 0 to 255 1 to 479 (494)
min_tsdr 1 to 65535 11 to 1023
max_tsdr 1 to 65535 35 to 1023
ttr 1 to (2^24)-1 256 to (2^24)-1
g 1 to 100 1 to 255

*) Parallel operation with PROFIBUS-PA is not possible as long as
the station is in the S mode state (special mode of PROFIBUS
PA). With the FDL_READ_VALUE service, it is possible to read
out whether the station was set as sm_active or sm_passive.

The following services are no longer supported:

➢ CSRD

➢ FDL_SET_VALUE

➢ FDL_RESET

➢ MAC_RESET

AWAIT_
INDICATION,
WITHDRAW_
INDICATION

FDL_EVENT

FDL_READ_VALUE

Services No Longer
Supported

FDL Programming Interface B8976072/02

116

8.2 Compiling and Linking for MS-DOS

The libraries for MS-DOS are in the directory \sinec\dp5412a2.dw\lib.

The include files are in \sinec\dp5412a2.dw\include.

The names are made up as follows:

<Memory model><operating system>sci<compiler>,
for example ldscimsc.lib means memory model large for MS-DOS with
the Microsoft C compiler.

<Memory model> : l Large model
b Big or huge model

<Operating system> : d MS-DOS
w Windows

<Compiler> : msc Microsoft C compiler 6.X or higher
tc Turbo C 2.0 or Turbo C++ 1.0 or

higher or Borland C/C++

8.2.1 Working with the MSC 6.0 Compiler

The library for the MSC Compiler 6.0 is
\sinec\dp5412a2.dw\lib\ldscimsc.lib.

The include files are in \sinec\dp5412a2.dw\include.

An example program exa.c is compiled and linked as follows:

cl /c /AL /Os /I\sinec\dp5412a2.dw\include /DM_DOS exa.c

link exa.obj,exa.exe,,\sinec\dp5412a2.dw\lib\ldscimsc+
c:\c600\lib\llibce,,,

Note

Note

B8976072/02 FDL Programming Interface

117

8.2.2 Working with the TURBO or Borland C Compiler

The library for the Turbo C compiler 2.0, Turbo C++ 1.0, Borland C or
Borland C++ is \sinec\dp5412a2.dw\lib\ldscitc.lib.

An example program exa.c is compiled and linked as follows:

tcc -c -ml -I\sinec\dp5412a2.dw\include -DTURBO_CC -DM_DOS
exa.c

or
bcc -c -ml -I\sinec\dp5412a2.dw\include -DTURBO_CC -DM_DOS

exa.c

tlink @exa.lnk

The exa.lnk file contains the instructions for the linker (4 lines):

\tc\lib\c0l.obj exa.obj

exa.exe

exa.map

\tc\lib\emu.lib \tc\lib\mathl \tc\lib\cl.lib
\sinec\dp5412a2.dw\lib\ldscitc.lib

8.2.3 Program Example for MS-DOS

The directory \sinec\dp5412a2.dw\sample\fdl\dos contains the sample
program l2ddemo.c". This illustrates the use of the SDA service. The
directories \sinec\dp5412a2.dw\sample\fdl\dos\msc and
\sinec\dp5412a2.dw\sample\fdl\dos\tc or
\sinec\dp5412a2.dw\sample\fdl\dos\bc contain the make files for the
Microsoft and Turbo C compilers.

Note

Note

FDL Programming Interface B8976072/02

118

8.3 Compiling and Linking for Windows 3.x

8.3.1 Working with the MSC Compiler 6.0 and the SDK from Microsoft

The library for the MSC Compiler 6.0 for Windows 3.x is
\sinec\dp5412a2.dw\lib\lwscimsc.lib.

An sample program exa.c is compiled and linked as follows:

cl /c /Zi -Gw -Zp /AL /Os /I\sinec\dp5412a2.dw\include -DM_WINDOWS /DM_DOS exa.c
rc -r exa.rc
link /NOD exa.obj,exa.exe,exa.map,\sinec\sci\dp5412a2.dw\lwscimsc.lib+

LLIBCEW+LIBW,exa.def
rc -K exa.res

rc is the resource compiler of Windows SDK.

8.3.2 Working with the Borland C Compiler

The library for the Borland C or C++-Compiler is
\sinec\dp5412a2.dw\lib\lwscibc.lib.

An example program exa.c is compiled and linked as follows:

bcc -c -ml -I\sinec\dp5412a2.dw\include -DTURBO_CC -DM_DOS exa.c

rc -r exa.rc

tlink exa.obj,exa.exe,exa.map,\sinec\dp5412a2.dw\lib\lwscibc.lib mathwl
 import cwl , exa.def

rc -r exa.res

rc is the resource compiler of Windows SDK.

Note

Note

Note

Note

B8976072/02 FDL Programming Interface

119

8.3.3 Special Features for Windows

The library supports the enhanced mode under Windows 3.0/3.1.

The library must be linked to the FDL application. A DLL library is not
yet supported.

Windows programs differ from DOS programs in that they branch to a
WndProc. At a central point, Windows programs wait for Windows
messages that are then processed in a WndProc procedure. It is
possible that during the processing of the WndProc, control is
transferred to Windows and the WndProc is called again.

After ihi_open_dev() in a Windows program, you must call the routine
SetSinecHWnd with a Windows handle so that the driver knows where
to send its messages. If an asynchronous command is issued, a
WM_SINEC message is sent to Windows when a message is received.
It can then be processed in the corresponding WndProc if you execute
an ihi_read with mode 0.

Example of a typical Windows application:
WndProc (hWnd,)
{
int handle;
int ret;
RB * rb_ptr;

 switch (msg)
 {
 case /* init code */ :
 handle = ihi_open_dev ("/CP_L2_1:/FLC");
 SetSinecHWnd (handle,hWnd);
 break;

 case /* trigger the function */:
 ret = ihi_write (handle,....);
 break;

 case WM_SINEC:
 ret = ihi_read (handle, 0, &rb_ptr);
 if (ret == 1)
 {
 /* a request block was returned==>*/
 /* analyze it */
 }
 break;
 }
}

Note

FDL Programming Interface B8976072/02

120

Call format for SetSinecHWnd:

SetSinecHWnd (int handle, HWND hWnd)

The function used as an alternative to SetSinecHWnd

SetSinecHWndMsg (int handle,HWND hWnd,
 unsigned int msg_id)

allows the FDL application to be informed by the driver when data arrive
using a self-defined message (msg_id).

8.3.4 Restrictions Under Windows

Compared to MS-DOS, the layer 2 interface under Windows has the
following restrictions:

➢ You can only establish one link to the driver with ihi_open_dev in
one task. Once you have called ihi_close, however, you can send
a further ihi_open_dev.

➢ The event SAP can only be used in one task, otherwise no
assignment of events is possible.

➢ In the same way, only one task can be responsible for the
statistic cells.

8.3.5 Sample Program for WINDOWS 3.x

The directory \sinec\dp5412a2.dw\sample\fdl\win contains the sample
program l2wdemo.c. This illustrates the use of the SDA service. The
directories \sinec\dp5412a2.dw\sample\fdl\win\msc and
\sinec\dp5412a2.dw\sample\fdl\win\bc contain the make files for the
Microsoft and Borland C compilers. ❑

Note

Note

B8976072/02 FDL Programming Interface

121

8.4 Compiling and Linking for Windows 95

8.4.1 Working with the MSVC Compiler 2.2 and the SDK from Microsoft

Under Windows 95, the SCP interface is made available by a DLL. The
import library for the MSVC Compiler 2.2 for Windows 95 is s7onlinx.lib.
This is in the folder (directory) \sinec\dp5412a2.w95\lib or at the location
specified in the installation instructions.

A sample program exa.c is compiled and linked as follows:

cl /c /GX /YX /O2 /I\sinec\dp5412a2.w95\include /D "WIN32" /D "NDEBUG" /D
"_WINDOWS" exa.c
rc -l 0x407 exa.rc
link @exa.dat

with exa.dat:
kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib\
 oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /NOLOGO /SUBSYSTEM:windows \
 /INCREMENTAL:no /MACHINE:I386 /DEF:".\exa.def" /OUT:".\exa.exe"
exa.res exa.obj \sinec\dp5412a2.w95\lib\s7onlinx.lib

Note

FDL Programming Interface B8976072/02

122

8.4.2 Special Features for Windows

One of the differences between Windows programs and console
programs is that they branch to a WndProc. At a central point, Windows
programs wait for Windows messages that are then processed in a
WndProc procedure. It is possible that during the processing of the
WndProc, control is transferred to Windows and the WndProc is called
again.

After SCP_open() in a Windows program, you must call the routine
SetSinecHWnd with a Windows handle so that the driver knows where
to send its messages. If an asynchronous command is issued, a
WM_SINEC message is sent to Windows when a message is received.
It can then be processed in the corresponding WndProc if you execute
an SCP_receive with timeout 0.

Example of a typical Windows application:

WndProc (hWnd,...)
{
int handle;
int ret;
RB * rb_ptr;

 switch (msg)
 {
 case /* init -code */ :
 handle = SCP_open ("/CP_L2_1:/FLC");
 SetSinecHWnd (handle,hWnd);
 break;

 case /* trigger the function */:
 ret = SCP_send (handle,....);
 break;

 case WM_SINEC:
 ret = SCP_receive (handle, 0, &rb_ptr);
 if (ret != -1)
 {
 /* a request block was returned==> */
 /* analyze it */
 }
 break;
 }
}

Note

B8976072/02 FDL Programming Interface

123

Call format for SetSinecHWnd:

SetSinecHWnd (int handle, HWND hWnd)

The function used as an alternative to SetSinecHWnd

SetSinecHWndMsg (int handle,HWND hWnd,
 unsigned int msg_id)

allows the FDL application to be informed by the driver when data arrive
using a self-defined message (msg_id).

8.4.3 Sample Program for Windows 95

The folder (directory) \sinec\dp5412a2.w95\sample\fdl contains the
sample program l295demo.c. This illustrates the use of the SDA
service. The corresponding make file for Microsoft Visual C++ is also in
this folder.

Note

FDL Programming Interface B8976072/02

124

8.5 Compiling and Linking for Windows NT
8.5.1 Working with the MSVC Compiler 2.2 and the SDK from Microsoft

Under Windows NT, the SCP interface is made available by a DLL. The
import library for the MSVC Compiler 2.2 for Windows NT is scilib.lib.
This is in the directory \sinec\dp5412a2.nt\lib or at the location specified
in the installation instructions.

A sample program exa.c is compiled and linked as follows:

cl /c /GX /YX /O2 /I\sinec\dp5412a2.nt\include /D "WIN32" /D "NDEBUG"
/D "_WINDOWS" exa.c
rc -l 0x407 exa.rc
link @exa.dat

with exa.dat:
kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib \
ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib /NOLOGO
/SUBSYSTEM:windows \
/INCREMENTAL:no /MACHINE:I386 /DEF:".\exa.def" /OUT:".\exa.exe"
exa.res exa.obj \sinec\dp5412a2.nt\lib\scilib.lib

Note

B8976072/02 FDL Programming Interface

125

8.5.2 Special Features for Windows

One of the differences between Windows programs and console
programs is that they branch to a WndProc. At a central point, Windows
programs wait for Windows messages that are then processed in a
WndProc procedure. It is possible that during the processing of the
WndProc, control is transferred to Windows and the WndProc is called
again.

After SCP_open() in a Windows program, you must call the routine
SetSinecHWnd with a Windows handle so that the driver knows where
to send its messages. If an asynchronous command is issued, a
WM_SINEC message is sent to Windows when a message is received.
It can then be processed in the corresponding WndProc if you execute
an SCP_receive with timeout 0.

Example of a typical Windows application:

WndProc (hWnd,...)
{
int handle;
int ret;
RB * rb_ptr;

 switch (msg)
 {
 case /* init -code */ :
 handle = SCP_open ("/CP_L2_1:/FLC");
 SetSinecHWnd (handle,hWnd);
 break;

 case /* trigger the function */:
 ret = SCP_send (handle,....);
 break;

 case WM_SINEC:
 ret = SCP_receive (handle, 0, &rb_ptr);
 if (ret != -1)
 {
 /* a request block was returned==> */
 /* analyze it */
 }
 break;
 }
}

FDL Programming Interface B8976072/02

126

Call format for SetSinecHWnd:

SetSinecHWnd (int handle, HWND hWnd)

The function used as an alternative to SetSinecHWnd

SetSinecHWndMsg (int handle,HWND hWnd,
 unsigned int msg_id)

allows the FDL application to be informed by the driver when data arrive
using a self-defined message (msg_id).

8.5.3 Sample Program for Windows NT

The directory \sinec\dp5412a2.nt\sample\fdl contains the sample
program l2ntdemo.c. This illustrates the use of the SDA service. The
corresponding make file for Microsoft Visual C++ is also in this
directory.

Note

Note

B8976072/02 Index

127

9 Index

AWAIT_INDICATION 78
Bus parameter block 53
Confirmation 12; 20
FDL SAP 58
FDL_EVENT 82
FDL_IDENT 70
FDL_LIFE_LIST_CREATE_LOCAL 68
FDL_LIFE_LIST_CREATE_REMOTE 66
FDL_READ_LAS_STATISTIC_COUNTER 76
FDL_READ_STATISTIC_COUNTER 73
FDL_READ_VALUE 51
Indication 12; 21
LSAP_STATUS 62
PROFIBUS 1
PROFIBUS PA 115
REPLY_UPDATE_MULTIPLE 40
REPLY_UPDATE_SINGLE 37
Request 12; 19
Requester 13
Responder 13
RSAP_ACTIVATE 57
SAP_ACTIVATE 54
SAP_DEACTIVATE 60
SDA 22
SDN 26
SINEC 1
SINEC L2 1; 6
SRD 31
Station 1; 10; 12; 87; 89; 90; 91; 92
WITHDRAW_INDICATION 83

Index B8976072/02

128

Notes

B8976072/02 Glossary

129

Glossary

Logical address of a module in S7 systems.

Bus parameters control the data transmission on the bus. Each ->
station on the -> SINEC L2 network must use bus parameters that
match those of other stations.

Part of a -> subnet. Subnets can consist of bus segments and
connectivity devices such as repeaters and bridges.

Communication Function Block: A communication technique for
program-controlled transmission of data from or to a CPU in an S7-
300/400 using special function blocks. These function blocks were
defined based on the IEC 1131-5 draft. The communication partners
can be other modules with communication capabilities in an S7-
300/400, operator stations, PCs or other controllers and computers.

Configuration tool for configuring -> DP masters in -> SINEC L2.

Communications Processor. Module for communication tasks.

Device master data (DMD) contain DP slave descriptions complying
with DIN E 19245 Part 3. Using DMD makes configuration of the -> DP
master and -> DP slaves easier.

Input and output modules used at a distance (distributed) from the CPU
(central processing unit of the controller). The connection between the
programmable controller and the distributed I/Os is established on ->
SINEC L2. The programmable logic controllers do not recognize any
difference between these I/Os and local process inputs and outputs.

DP slaves have a modular design. A -> DP slave has at least one DP
I/O module.

The DP I/O type identifies a -> DP I/O module. The following types
exist:

Input module
Output module
Input/output module

A -> station with master functions in -> SINEC L2 DP. The DP master
controls the exchange of user data with the -> DP slaves assigned to it.

The DP module list contains the modules belonging to a -> DP slave.
You make entries in the DP module list when configuring a -> DP
master with -> COML DP.

Name of a -> DP I/O module entered in the ->DP module list.

Base address

Bus parameters

Bus segment

CFB

COML DP

CP

Device master
data

Distributed I/Os

DP I/O module

DP I/O type

DP master

DP module list

DP module
name

Glossary B8976072/02

130

Type identifier of a -> DP I/O module in the -> device master data of a -
> DP slave complying with DIN E 19245 Part 3.

A -> station with slave functions in -> SINEC L2 DP.

The DP slave catalog contains the device descriptions of -> DP slaves
required for configuring -> DP masters according to the -> DP standard.
The DP slave catalog is available when configuring with -> COML DP.

A DP slave name is entered in the DP slave list to identify a -> DP slave
in the DP configuration.

SINEC L2 subnet in which only -> distributed I/Os are operated.

A -> DP master and all -> DP slaves with which this DP master
exchanges data.

Software required for the data transfer between applications and the ->
CP.

Enhanced mode under 3.x for personal computers with an Intel 386 or
compatible processor.

Fieldbus Data Link. Layer 2 in -> PROFIBUS.

A message from one PROFIBUS station to another.

A frame header consists of an identifier for the -> frame and the source
and destination address.

A frame trailer consists of a checksum and the end identifier of the ->
frame.

The FREEZE mode is a DP mode in which process data are acquired at
the same time and fetched from all (or a group of) DP slaves. The time
at which the data are acquired is indicated in the FREEZE command (a
synchronization control frame).

A free address area (gap) between two active -> stations is checked
cyclically by the station with the lower -> L2 address to find out whether
or not another station is requesting to enter the logical ring. The cycle
time for this check is as follows:

gap update factor x target rotation time

Intelligent connectivity device that connects different types of local area
-> networks at OSI layer 7.

DP module type

DP slave

DP slave catalog

DP slave name

DP subnet

DP subsystem

Driver

Enhanced mode

FDL

Frame

Frame header

Frame trailer

FREEZE mode

Gap update
factor

Gateway

B8976072/02 Glossary

131

A GD circle is a group of -> stations that exchange global data with
each other. A -> GD packet is sent to the stations belonging to the GD
circle.

Collection of data that may be distributed within the programmable logic
controller (for example flags/memory bits or data blocks) to be
transferred using the -> global data technique.

Global data (GD) is the name of a communication technique for the
cyclic exchange of limited amounts of data from STEP 7 data areas
between CPUs of the S7-300/400. Transmitted data can be received by
several CPUs at the same time.

Part of the I/O area of SIMATIC S5 PLCs can be used for global data
exchange between SIMATIC S5 PLCs on -> SINEC L2. The main
characteristic of this technique is the cyclic transmission of data that
have changed since the last cycle.

DP slaves can be assigned to one or more groups using a group
identifier. The -> control frames can be addressed to specific groups of
DP slaves using the group identifier.

A -> bus parameter for -> SINEC L2. This specifies the highest -> L2
address (HSA) of an active -> station on the SINEC L2 bus. L2
addresses higher than the highest station address are possible for
passive stations (possible values: HSA 1 to 126).

The L2 address is a unique identifier for a -> station connected to ->
SINEC L2 (PROFIBUS). The L2 address is transferred in the -> frame
to address a -> station.

An active station in -> SINEC L2 that can send -> frames on its own
initiative when it is in possession of the token.

A -> bus parameter for -> SINEC L2. The maximum station delay (max.
TSDR) specifies the longest interval required by a -> station in the ->
subnet between receiving the last bit of an unacknowledged -> frame
and sending the first bit of the next frame. After sending an
unacknowledged frame, a sender must wait for the max. TSDR to
elapse before sending a further frame.

A -> bus parameter for -> SINEC L2. The minimum station delay (min.
TSDR) specifies the minimum time that the receiver of a -> frame must
wait before sending the acknowledgment or sending a new frame. The
min. TSDR takes into account the longest interval required by a station
in the subnet for receiving an acknowledgment after sending a frame.

A network consists of one or more interconnected -> subnets with any
number of -> stations. Several networks can exist side by side. There is
a common -> node table for every -> subnet.

GD circle

GD packet

Global data

Global I/Os

Group identifier

Highest L2
address

L2 address

Master

Maximum
station delay

Minimum
station delay

Network

Glossary B8976072/02

132

The node table applies to all -> networks within a -> system. Each entry
in the node table describes the interface between a programmable logic
controller (or any other station) and a -> subnet. The entries in the
subnet are used by the system to locate and establish connections
between stations.

The length of the reserved area at the beginning of a data buffer of the
FDL programming interface.

The process image is a special memory area in the programmable logic
controller. At the start of the cyclic program, the signal states of the
input modules are transferred to the process image of the inputs. At the
end of the cyclic program, the process image of the outputs is
transferred to the output modules

A fieldbus complying with DIN 19245.

DP mode complying with DIN E 19245 Part 3.

PROFIBUS PA is a recommendation of the PROFIBUS users'
organization extending PROFIBUS DIN 19245 to include aspects of
intrinsic safety.

A set of rules governing data transmission. Using these rules, both the
formats of the messages and the data flow during transmission can be
specified.

All the -> masters on -> SINEC L2 (PROFIBUS) form a logical token
ring. Within this token ring, the token is passed on from station to
station. If the transmission of the token is incorrect or if a master is
removed from the ring, this leads to an error when the token is passed
on (the token is not accepted by this station) and the station is excluded
from the ring. The number of exclusions is counted in the internal
token_error_counter. If this counter reaches an upper limit value, the
logical token ring is then reorganized.

Diagnostic software for -> SINEC L2 with which the traffic on the ->
network can be recorded and analyzed.

Synonym for -> bus segment.

Services provided by a communication protocol.

A -> bus parameter for -> SINEC L2. The setup time specifies the
minimum interval on the sender between receiving an acknowledgment
and sending a new call frame.

Siemens Network and Communication. Product name for -> Siemens
networks and network components.

SINEC bus system for industrial applications based on PROFIBUS.

SINEC L2 distributed I/Os. Transmission services complying with
PROFIBUS DIN E 19245 Part 3.

Node table

Offset

Process image

PROFIBUS

PROFIBUS DP

PROFIBUS PA

Protocol

Reorganization
token ring

SCOPE L2

Segment

Services

Setup time

SINEC

SINEC L2

SINEC L2 DP

B8976072/02 Glossary

133

A -> station with master functions in -> SINEC L2 DP.

SINEC L2 Fieldbus Message Specification. Upper sublayer of layer 7 of
the ISO/OSI reference model for PROFIBUS.

A bus parameter for -> SINEC L2. The slot time (TSL) is the time during
which the sender of a -> frame waits for the acknowledgment from the
receiver before detecting a timeout.

A station is identified by an -> L2 address in the -> SINEC L2 network.

A subnet is part of a -> network whose -> bus parameters (for example
-> L2 addresses) must be matched. It includes the bus components and
all attached stations. Subnets can, for example, be connected together
by -> gateways to form a network.
A -> system consists of several subnets with unique -> subnet numbers.
A subnet consists of several ->stations with unique -> L2 addresses.

A -> system consists of several -> subnets with unique subnet numbers.

The SYNC mode is a DP mode in which several or all -> DP slaves
transfer data to their process outputs at a certain time. The time at
which the data is transferred is indicated in the SYNC command (a
control command for synchronization).

All the electrical equipment within a system. A system includes, among
other things, programmable logic controllers, devices for operation and
monitoring, bus systems, field devices, actuators, supply lines.

A -> bus parameter for -> SINEC L2. The token represents the right to
transmit for a -> station on SINEC L2. A station compares the actual
token rotation time it has measured with the target rotation time and
depending on the result can then send high or low priority frames.

Transmission rate on the bus (unit in bits per second). A -> bus
parameter for -> SINEC L2. The set or selected transmission rate
depends on various conditions, for example distance across the
network.

A monitoring time that can be set for a -> DP slave so that it detects the
failure of the -> DP master to which it is assigned.

SINEC L2 DP
master

SINEC L2 FMS

Slot time

Station

Subnet

Subnet number

SYNC mode

System

Target rotation
time

Transmission
rate

Watchdog

Glossary B8976072/02

134

Notes

�

