
SINEC

DP Programming Interface

Volume 1 of 1

1 Distributed I/Os

2 Characteristics of the DP Programming Interface

3 Basic Principles of Distributed I/Os (DP)

4 Structure of the DP Programming Interface

5 Description of the DP Functions

6 Data Storage

7 Creating DOS Applications

8 Creating Windows Applications

9 Creating Unix Applications

Index

Glossary

C79000-G8976-C071 Release 3

SINEC is a trademark of Siemens
Siemens Aktiengesellschaft

Wir haben den Inhalt der Druckschrift auf
Übereinstimmung mit der beschriebenen Hard- und
Software geprüft. Dennoch können Abweichungen
nicht ausgeschlossen werden, so daß wir für die
vollständige Übereinstimmung keine Gewähr
übernehmen. Die Angaben in der Druckschrift werden
jedoch regelmäßig überprüft. Notwendige Korrekturen
sind in den nachfolgenden Auflagen enthalten. Für
Verbesserungsvorschläge sind wir dankbar.

 Technische Änderungen vorbehalten.

Weitergabe sowie Vervielfältigung dieser Unterlage,
Verwertung und Mitteilung ihres Inhalts nicht gestattet,
soweit nicht ausdrücklich zugestanden.
Zuwiderhandlungen verpflichten zu Schadenersatz.
Alle Rechte vorbehalten, insbesondere für den Fall
der Patenterteilung oder GM-Eintragung.

Copyright © Siemens AG 1998
All Rights Reserved

We have checked the contents of this manual for
agreement with the hardware described. Since
deviations cannot be precluded entirely, we cannot
guarantee full agreement. However, the data in this
manual are reviewed regularly and any necessary
corrections included in subsequent editions.
Suggestions for improvement are welcome.

Technical data subject to change.

The reproduction, transmission or use of this
document or its contents is not permitted without
express written authority. Offenders will be liable for
damages. All rights, including rights created by patent
grant or registration of a utility or design, are reserved.

Copyright © Siemens AG 1998
All Rights Reserved

Nous avons vérifié la conformité du contenu du
présent manuel avec le matériel et le logiciel qui y
sont décrits. Or, des divergences n'étant pas exclues,
nous ne pouvons pas nous porter garants pour la
conformité intégrale. Si l'usage du manuel devait
révéler des erreurs, nous en tiendrons compte et
apporterons les corrections nécessaires dès la
prochaine édition. Veuillez nous faire part de vos
suggestions.

Nous nous réservons le droit de modifier les
caractéristiques techniques.

Toute communication ou reproduction de ce support
d'informations, toute exploitation ou communication de
son contenu sont interdites, sauf autorisation
expresse. Tout manquement à cette règle est illicite et
expose son auteur au versement de dommages et
intérêts. Tous nos droits sont réservés, notamment
pour le cas de la délivrance d'un brevet ou celui de
l'enregistrement d'un modèle d'utilité.

Copyright © Siemens AG 1998
All Rights Reserved

Siemens Aktiengesellschaft Elektronikwerk Karlsruhe
Printed in the Federal Republic of Germany

SINEC
DP Programming Interface

Description C79000-B8976-C071/03

Note

We would point out that the contents of this product documentation shall not become a part of or modify any prior or existing
agreement, commitment or legal relationship. The Purchase Agreement contains the complete and exclusive obligations of Siemens.
Any statements contained in this documentation do not create new warranties or restrict the existing warranty.

We would further point out that, for reasons of clarity, these operating instructions cannot deal with every possible problem arising
from the use of this device. Should you require further information or if any special problems arise which are not sufficiently dealt with
in the operating instructions, please contact your local Siemens representative.

General
This device is electrically operated. In operation, certain parts of this device carry a dangerously high voltage.

WARNING !
Failure to heed warnings may result in serious physical injury and/or material damage.

Only appropriately qualified personnel may operate this equipment or work in its vicinity. Personnel must be
thoroughly familiar with all warnings and maintenance measures in accordance with these operating instructions.

Correct and safe operation of this equipment requires proper transport, storage and assembly as well as careful
operator control and maintenance.

Personnel qualification requirements

Qualified personnel as referred to in the operating instructions or in the warning notes are defined as persons who are familiar with
the installation, assembly, startup and operation of this product and who posses the relevant qualifications for their work, e.g.:

− Training in or authorization for connecting up, grounding or labelling circuits and devices or systems in accordance with current
standards in safety technology;

− Training in or authorization for the maintenance and use of suitable safety equipment in accordance with current standards in
safety technology;

− First Aid qualification.

!

B8976071/03 DP Programming Interface

1

DP Programming Interface

The distributed I/Os (abbreviated to DP from now on) allow you to use a
variety of analog and digital input/output modules with a distributed
configuration in close proximity to the process.

There can be large distances between the individual I/O devices bridged by
the serial field bus SINEC L2. Distributed I/O devices capture the input
signals locally and transfer them via the field bus to the central controller in
the PG/PC. In the opposite direction, the central controller sends output data
to the distributed I/O devices cyclically.

Networking the components results in a considerable reduction in cabling
compared with previous methods in which the components were “hard” wired.

The PROFIBUS DP protocol used for the distributed I/Os is based on the
PROFIBUS DIN E 19245 Part 3 communications standard for the field area.
The concept of DP communication was developed in a joint venture by
leading manufacturers of programmable logic controllers. It describes a
multivendor (heterogeneous) transmission protocol designed to meet the
requirements of the field area. DP communication uses a subset of the open
communications services standardized in DIN 19245 Part 1.

PROFIBUS DP is intended for time-critical applications. The simple,
optimized transmission protocol, the high transmission rates and the use of a
master-slave structure achieve short cycle times.

This volume describes the DP protocol and how to program it. ❑

DP Programming Interface B8976071/03

2

NOTES

B8976071/03 DP Programming Interface

3

1 Distributed I/Os 7
1.1 DP Protocol 8

2 Characteristics of the DP Programming Interface 9

3 Basic Principles of Distributed I/Os (DP) 13
3.1 Communication Between the DP Stations 14
3.2 Data Areas on the DP Master 16
3.3 The Modes of the DP Master 18
3.4 The Event Messages of the DP Master 20
3.5 The Operating Status of the DP Slaves 21
3.6 Control Frames to One or More Slaves 22
3.6.1 Synchronization 23
3.7 Notes on Configuration 26
3.7.1 Watchdog 27
3.7.2 Data Control Time 27
3.7.3 Poll Timeout 27
3.7.4 Min Slave Interval 28
3.7.5 Deactivating a DP Slave 29
3.7.6 AUTOCLEAR 29
3.7.7 Configuration Data 29

4 Structure of the DP Programming Interface 31
4.1 Overview of the DP Call Functions 32
4.2 General Call for the DP Functions 33
4.3 Evaluating a Function Call 34
4.3.1 Evaluating the Return Value 35
4.3.2 Evaluating the Structure Element "error_code" 36
4.4 Overview of the Error IDs 37
4.5 Transfer Structures 38
4.6 Description of the Structure Elements 39
4.7 Assignment of the Parameters to the DP Functions 40
4.8 Constants 41
4.8.1 "reference" Structure Element 41
4.8.2 "slv_state" Structure Element 42
4.8.3 "sys_state" Structure Element 42
4.8.4 "sys_event" Structure Element 43
4.8.5 Global Control Commands 44
4.8.6 Activating/Deactivating a Slave 44
4.8.7 Slave Parameters 44
4.8.8 DP Slave Types 45
4.9 Structure of a DP Application 46

5 Description of the DP Functions 49
5.1 How a DP Application Logs On 50
5.1.1 Call Parameters 50
5.1.2 Return Parameters 53
5.1.3 Explanation of the "reference" Structure Element 54
5.1.4 Constants for the "reference.access" Structure Element 57
5.2 Monitoring Activity of the DP Application 58
5.2.1 Call Parameters 59
5.2.2 Return Parameters 60
5.3 Read Bus Parameters 61
5.3.1 Call Parameters 61
5.3.2 Return Parameters 62

DP Programming Interface B8976071/03

4

5.4 Write Bus Parameters 63
5.4.1 Call Parameters 64
5.4.2 Return Parameters 65
5.5 Read Slave Parameters 66
5.5.1 Call Parameters 67
5.5.2 Return Parameters 68
5.6 Activating/Deactivating a DP Slave 69
5.6.1 Call Parameters 69
5.6.2 Return Parameters 70
5.7 Querying the Configuration of the DP System 71
5.7.1 Call Parameters 71
5.7.2 Return Parameters 72
5.8 Requesting the Diagnostic Data of a Slave 73
5.8.1 Call Parameters 73
5.8.2 Return Parameters 74
5.9 Reading Status Information of the DP System 75
5.9.1 Call Parameters 75
5.9.2 Return Parameters 76
5.10 Sending Output Data to a DP Slave 77
5.10.1 Call Parameters 77
5.10.2 Return Parameters 78
5.11 Sending Output Data to Several DP Slaves 80
5.11.1 Call Parameters 81
5.11.2 Return Parameters 82
5.11.3 Return Value of the Function Call 83
5.12 Reading the Local Output Data of a DP Slave 84
5.12.1 Call Parameters 84
5.12.2 Return Parameters 85
5.13 Reading the Input Data of a DP Slave 87
5.13.1 Call Parameters 87
5.13.2 Return Parameters 88
5.14 Reading the Input Data of Several DP Slaves 90
5.14.1 Values of the "dpn_interface_s" Structures 91
5.14.2 Return Parameters of the "dpn_interface_s" Structures 92
5.14.3 Return Value of the Function 93
5.15 Setting the Mode of the DP Master 94
5.15.1 Call Parameters 95
5.15.2 Return Parameters 96
5.16 Querying the Mode of the DP Master 97
5.16.1 Call Parameters 97
5.16.2 Return Parameters 98
5.17 Acyclic Transmission of a Control Frame 99
5.17.1 Call Parameters 100
5.17.2 Return Parameters 101
5.18 How a DP Application Logs Off 102
5.18.1 Call Parameters 103
5.18.2 Return Parameters 103

6 Data Storage 105
6.1 Structure of the Input and Output Data 106
6.2 Structure of the Diagnostic Data with Standard Slaves 107
6.2.1 Device-related Diagnostics 111
6.2.2 Identifier-related Diagnostics 111
6.2.3 Channel-related Diagnostics 112
6.2.4 Example: Structure of the Diagnostic Information 113

B8976071/03 DP Programming Interface

5

6.3 Diagnostic Data of Non-standard Slaves 114
6.3.1 Diagnostic Data of the ET 200U 114
6.3.2 Diagnostic Data of the ET 200K/B 115
6.4 Structure of the Bus Parameters 118
6.5 Structure of the Slave Parameters 120
6.5.1 Sl_Flag, Slave Type, Octet String 120
6.5.2 Parameter Assignment Data 122
6.5.3 Configuration Data 124
6.5.4 Special Identifier Formats 125

7 Creating DOS Applications 127
7.1 Environment Under DOS 128
7.2 Logging On a DP Application 130
7.2.1 Examples of Logging On a DP Application 132
7.3 Porting DP Applications of the TF-5412 Product 134

8 Creating Windows Applications 137
8.2 Logging On a DP Windows Application 142
8.2.1 Examples of Logging On Under Windows 145

9 Creating Unix Applications 149

Index 151

Glossary 153

DP Programming Interface B8976071/03

6

NOTES

B8976071/03 DP Programming Interface

7

1 Distributed I/Os

This chapter describes the basic characteristics of the distributed input/output
system:

➢ Central control by a master

➢ High data throughput with a simple transmission protocol

➢ Cyclic transmission of the process image in the input/output direction

➢ Simple, cost-effective attachment

➢ Data transmission via twisted pair (RS 485) or optical fiber

➢ Detection of errors with on-line diagnostics

➢ Based on DIN 19245 Part 1, parallel operation with FMS devices
(master and slaves) on one bus is possible.

A wide variety of I/O devices are available for various applications, for
example:

ET 200U: A modular I/O device with the IP 20 degree of protection for
universal application. The ET 200U system can be
configured with up to 32 input/output modules.

ET 200B: A small compact I/O device with the IP 20 degree of
protection. Various versions of the ET 200B system are
available.

ET 200C: A robust I/O device with the IP 66/67 degree of protection
for use in a hostile industrial environment.

For detailed information about the functions, design and installation of
the I/O devices listed above, refer to the manuals for the particular
product.

Further Information about available components and the connection of
devices can be found in the SINEC Catalog IK 10.

I/O Devices
from Siemens

Design and
Installation

Further
Information

DP Programming Interface B8976071/03

8

1.1 DP Protocol

Fig. 1.1 shows the basic design and components of a SINEC L2 DP
system controlled by one computer with a PROFIBUS CP installed.

:
DP slaves

Other stations

DP Master with PROFIBUS CP

PROFIBUS

DP Master/slave communikation Master/master - communikation

Process

Fig. 1.1: Basic Structure

The PROFIBUS standard DIN 19245 defines two classes of stations:

➢ passive stations

➢ active stations

In the distributed I/O system, the I/O devices are passive stations.
They are known as DP slaves . The DP slaves are controlled by an
active master station. This master station is known as the DP master .

The DP programming interface allows the use of a PROFIBUS CP in a
PG/PC as a DP master class 1. The PC in conjunction with the
PROFIBUS CP controls the communication with the distributed I/O
devices and other PROFIBUS stations. It implements the central
functions of a DP master Class 1 complying with DIN E 19245 Part 3.
This means::

➢ Initialization of the DP system

➢ Parameter assignment/configuration of the DP slaves

➢ Cyclic data transfer to the DP slaves

➢ Monitoring the DP slaves

➢ Preparing diagnostic information ❑

Basic Design

Definition of DP
Slave and DP
Master

DP Master Class 1

B8976071/03 DP Programming Interface

9

2 Characteristics of the DP Programming Interface

This chapter provides you with an overview of the characteristics of the DP
programming interface of the CP 5412 (A2).

The following sections contain more detailed information about using the
various possibilities provided by the interface.

➢ Simple linking of a DP application using the functions of the DP
programming interface

➢ Multi-stage reliability concept

➢ Data consistency

➢ Support of single user and multi-user applications

➢ Support of single board and multiboard applications

➢ Support of various operating systems and compilers

➢ Support of slaves belonging to the ET 200 system

➢ Support of applications created for the “Distributed I/O System
ET 200” user interface of the TF-5412/MS-DOS, Windows
product.

These points are explained in more detail below.

The DP programming interface provides you with a range of functions
in the form of a library. All the functions have a uniform structure. They
allow simple access to the functions of the DP master (Class 1).

The function calls of the DP programming interface are explained in
detail in Section 5.

Overview of
the
Characteristics

Simple Linking of
DP Applications

DP Programming Interface B8976071/03

10

The DP programming interface provides a multi-stage reliability
concept to limit the effects of the failure on a communication
connection or the DP master.

➢ A configurable watchdog for DP slaves ensures that a DP slave
that has not been accessed for a longer period of time changes
to a safe operating mode.

➢ An AUTOCLEAR function can be activated so that if individual
DP slaves cannot be accessed, the DP master automatically
changes to the CLEAR state.

➢ An activity monitoring function can be activated on the DP
master to detect inactivity of a DP application and to change the
DP slaves controlled by the application to a safe operating
mode..

For detailed information about the watchdog, refer to Section 3.7.1.
The AUTOCLEAR function is described in detail in Section 3.7.6 and
the activity monitoring in Section 5.2.

When transferring the data between the DP slave and DP application,
data consistency is ensured by internal reliability mechanisms.

In single user operation, only one DP application accesses the DP
programming interface. This is the standard application under DOS.

When using operating systems that permit multitasking (for example
Windows 3.x, Windows 95 and Windows NT), other separate DP
applications can share the DP programming interface. In such
applications, the DP programming interface provides mechanisms for
coordinating the tasks.

The single board mode means that only one PROFIBUS CP is
operated in the PG/PC.

In the multiboard mode, more than one PROFIBUS CP is operated in
the PG/PC. Each of these modules is connected to its own bus. This
allows several L2-DP bus systems to be controlled from one computer.
Each CP is the DP master on its bus.

For detailed information about the single board and multiboard modes
with different operating systems, refer to Chapters 7 and 8.

The DP programming interface is designed for different operating
systems and compilers.

For detailed information about the supported operating systems,
compilers, memory model, DP library, include files etc., refer to
Chapters 7 and 8.

Multi-Stage
Reliability Concept

Data Consistency

Single User/Multi-
User Operation

Single Board/Multi-
Board Operation

Operating
Systems/
Compilers

B8976071/03 DP Programming Interface

11

The DP programming interface of the CP 5412 (A2) supports all slaves
of the ET 200 system.

The DP programming interface of the CP 5412 (A2) continues to
support the DP function calls of the TF-5412/MS-DOS, Windows.
product. This product is based on the CP 5412 (A1).

DP Slaves of the
ET 200 System

Interface calls
of the
CP 5412 (A1)

DP Programming Interface B8976071/03

12

NOTES

B8976071/03 DP Programming Interface

13

3 Basic Principles of Distributed I/Os (DP)

This chapter explains the basic principles of the DP protocol. Understanding
the communication structure between the DP master and DP slaves is
indispensable for the efficient use of the function calls of the DP
programming interface.

This chapter explains the following:

➢ How the data transfer between the DP master and DP slaves takes
place

➢ How the data structures in the DP master are organized

➢ The various modes of the DP master

➢ Which events can be signaled to the DP master

➢ The various modes of the DP slaves

➢ Which control frames the DP master sends to the DP slaves

➢ What you should remember when configuring.

DP Programming Interface B8976071/03

14

3.1 Communication Between the DP Stations

Communication between the DP master and the distributed I/O stations
takes the form of polling. Polling means that in the productive phase,
the DP master sends frames to the DP slaves assigned to it cyclically.
Each DP slave is sent its own call frame.

The call frame contains the current output data that the DP slave will
apply to its output ports. If a DP slave does not have output ports, an
“empty frame” is sent instead.

The reception of a call frame must be acknowledged by the addressed
DP slave by returning an acknowledgment frame. The
acknowledgment frame contains the current input data applied to the
input ports of the DP slave. If a DP slave does not have input ports, an
“empty frame” is returned instead.

All the operational DP slaves are addressed in one polling cycle. As
soon as the last slave is addressed, a new polling cycle starts. This
method ensures that the data are up-to-date. The current input data
and diagnostic data of the DP slaves are available to the DP
application on the data interface of the DP master. The current output
values of the DP application are applied to the output ports of the DP
slave.

⊗ ⊕:Output data

Input data

DP master

DP slaves
Fig. 3.1: Schematic Representation of the Polling Mode

Polling

B8976071/03 DP Programming Interface

15

In the acknowledgment frame, a DP slave can not only return the
current input data but also indicate to the DP master that diagnostic
messages are available. Diagnostic messages inform the DP
application that special events or errors have occurred on the DP
slave, such as a short-circuit, undervoltage, overvoltage, overload,
wire break etc.

When it receives the diagnostic message, the DP master reads the
diagnostic data using a special call frame and makes this data
available to the DP application. The diagnostic data have a uniform
structure (see Section 6.2 pp.). This allows the DP application to make
a detailed error analysis.

The DP master can only enter a productive data exchange with the DP
slaves when it has assigned parameters to them and configured them.

The master assigns parameters and configures the slaves

➢ during the startup phase of the DP master

➢ after a temporary failure of a slave during the productive phase.

The parameter assignment frame sets global operating parameters on
the slave (for example the duration of the watchdog).

The configuration frame is sent after the DP slave has had parameters
assigned. This contains the current configuration of the DP slave. The
configuration contains the number and type of input/output ports. The
DP slave compares the received configuration frame with its own
values that it recorded during the startup phase. If the values match,
the DP slave confirms the configuration and changes to the productive
phase.

The parameter assignment and configuration data are specified using
the COML DP configuration tool. COML DP creates a database with all
relevant parameter assignment and configuration data. This database
is loaded on the CP during the startup phase.

Diagnostic
Messages

Parameter
Assignment/
Configuration

DP Programming Interface B8976071/03

16

3.2 Data Areas on the DP Master

Fig. 3.2 shows the data areas of the DP master.

Consistency check Consistency check Consistency check

Input Output Diagn.

PROFIBUS access control

Data group

Data group

etc.

DP master

Function calls of the DP application

SINEC L2

Consistency check Consistency check Consistency check

Eingabe- Ausgabe- Diagnose-

Read input Write output Read diagn.

data data data

data

daten daten daten

datadata

slave 2

slave 1

Fig. 3.2: Data Areas of the DP Master

For each configured DP slave, the DP master has three different data
areas:

➢ input data from the DP slave

➢ output data to the DP slave

➢ diagnostic data from the DP slave

Data Area

B8976071/03 DP Programming Interface

17

These areas form a common interface between the CP and the DP
application. They are continuously updated during the productive
phase. An internal security mechanism ensures the consistency of the
data if the DP application and field bus access controller access the
data simultaneously. A DP application has access to the data areas
using various function calls to the DP programming interface.

The data in this area are provided by the DP application. In the
productive phase (i.e. after successful parameter
assignment/configuration), they are sent to the DP slave cyclically. If
no output data exist, an “empty frame” is transmitted instead.

During the productive phase, the DP slave sends its input data back to
the master in its response frame following each call frame of the DP
master. If the DP slave does not have any input ports, it sends an
“empty frame” instead. The received response data are entered in the
input area of the DP master.

If a DP slave recognizes an error during the initialization or productive
phase, it can indicate this to the DP master using a diagnostic request.
The received diagnostic data are entered in the diagnostic area of the
DP master.

Output Data

Input Data

Diagnostic Data

DP Programming Interface B8976071/03

18

3.3 The Modes of the DP Master

Communication between the DP master and DP slaves takes place
within four modes:

➢ OFFLINE

➢ STOP

➢ CLEAR

➢ OPERATE

Each of these modes is characterized by defined actions between the
DP master and the DP slaves.

Mode Meaning
OFFLINE There is no communication whatsoever between the DP master and the

DP slaves. This is the initial status of the DP master.
STOP There is also no communication between the DP master and DP slaves

in this mode. In contrast to the OFFLINE mode, a DP diagnostic station
(DP master Class 2) can read out diagnostic information of the DP
master.

CLEAR In this mode, the master assigns parameters to and configures all DP
slaves entered in the database and activated. Following this, the cyclic
data exchange between the DP master and DP slaves begins. In the
CLEAR mode, the value 0h is sent to all slaves with process output, i.e.
the process output is deactivated. The input data of the slaves are
known and can be read out.

OPERATE The cyclic data transfer to the DP slaves takes place in the OPERATE
mode. This is the productive phase. In this mode, the DP slaves are
addressed one after the other by the DP master. The call frame contains
the current output data and the corresponding response frame contains
the current input data.

Overview

B8976071/03 DP Programming Interface

19

Initially, the DP master is in the OFFLINE mode. To change to the
productive phase, in other words to the OPERATE mode, the master
must run through the modes above in the following sequence:

OFFLINE -> STOP -> CLEAR -> OPERATE

The DP programming interface provides two ways in which you can
change the mode:

➢ After a DP application has logged on, the DP master changes to
the OPERATE mode automatically (in other words without any
further action by the DP application) and remains in this mode
until the DP application is terminated.

➢ After a DP application has logged on, the DP master remains in
the OFFLINE mode. The transition to a different mode is
triggered by a special function call of the DP application, in other
words the DP application itself is responsible for setting the
mode.

Which of the two possible methods is used, is specified when the DP
application logs on.

Regardless of the methods explained above, you can also specify
during configuration that the DP system changes to a “safe” mode if an
error occurs. This function is known as AUTOCLEAR.

To achieve this react ion, the "Autocl ear" opt ion must be set using
the configuration tool.

Effect: If an error occurs on one or more DP slaves during the
productive phase, the DP master changes
automatically to the CLEAR status (the DP system is
closed down). In the CLEAR status, the DP master
sends data with the value 0h to the DP slaves in the
output direction. The DP master no longer exits this
status on its own initiative, in other words the user must
bring about a change to the OPERATE mode explicitly.

The DP application can recognize the current mode of the DP master
from the return parameters of certain function calls. For more detailed
information about this topic, refer to Section 4.8.3 (sys_state) or
Chapter 5 (DP Function Calls).

Setting the Mode

Special Case
"AUTOCLEAR"

☞☞

Further
Information

DP Programming Interface B8976071/03

20

3.4 The Event Messages of the DP Master

During the operating phase, unexpected events can occur that are
significant for the DP application. In this case, the DP master can
inform the DP application of the following events using a return
parameter in response to DP function calls:

Event Message Meaning
Autoclear Automatic closing down of the DP system to the CLEAR mode,

when errors occur in communication with DP slaves.

Requirement:
The AUTOCLEAR function must be configured in COML DP.

Timeout The watchdog time of the DP application has expired.

Cause:
The DP application has not made a DP function call during the
time preset by the application.

Requirement:
The DP application must have logged on and transferred a
watchdog time to the DP master. The required function calls are
described in Chapter 5.

Access by a DP master
Class 2

The DP master Class 2 is a special DP diagnostic station that
can perform detailed on-line diagnostics of the DP master Class 1
and DP slaves. This event message signals that a DP diagnostic
station is taking part in the bus traffic and is currently accessing
internal diagnostic lists of the DP master.

Note:
With the current DP firmware, no special reaction to the event
message is normally required of the DP application since the CP
normally handles data exchange with the diagnostic station
automatically.
The event message is a “place holder” intended for future
expanded diagnostic DP functions in which the DP application will
have the option of coordinating certain diagnostic sequences with
the DP diagnostic station.

With function calls from a DP application, the DP master enters the
event messages in a special return parameter. For detailed information
about the constants occurring in event messages, refer to Section 4.8.4
and the function calls in Chapter 5.

Overview

Further
Information

B8976071/03 DP Programming Interface

21

3.5 The Operating Status of the DP Slaves

During the operational phase, the DP master evaluates the
acknowledgment frames received from the DP slaves. Based on these
frames, the DP master can recognize the current operating status of
the DP slaves. Using some of the DP function calls, the DP application
can query these values.

The following operating statuses of a DP slave can be signaled to the
DP application:

➢ The DP slave is in the data transfer phase.

➢ The DP slave is in the data transfer phase, and diagnostic data
exist.

➢ The DP slave is not in the data transfer phase (CP starting up).

➢ The DP slave is not in the data transfer phase.

➢ The DP slave is not in the data transfer phase, and diagnostic
data exist.

➢ The DP slave is not activated.

With certain function calls from the DP application, the DP master
enters the operating status of a slave in a return parameter. For
detailed information of the constants used for this, refer to Section
4.8.2 and to the function calls in Chapter 5.

Overview

Operating Statuses

Further
Information

DP Programming Interface B8976071/03

22

3.6 Control Frames to One or More Slaves

During the configuration, a slave can be assigned a group
identification, in other words it is possible to group several slaves
together (up to 8 different groups can be formed). In the productive
phase, individual groups can then be addressed using control frames
(known as global control frames).

A control frame is a frame that the master sends to one slave, a group,
several groups or to all slaves. These frames are not acknowledged by
the slaves.

Control frames are used to transfer control commands (known as
global control commands) to the selected slaves to allow
synchronization. A control command contains three components:

➢ Identifier whether one or more DP slaves are being addressed

➢ Identification of the slave group

➢ Control command

You specify which slaves belong to a group when creating the
database with the COML DP configuration tool. During this phase,
each DP slave can be assigned a group number. The DP slave is
informed of this group number during the parameter assignment
phase. You can specify a maximum of eight groups.

The following control commands can be sent to DP slaves:

➢ FREEZE The signal state of the inputs is read in and frozen.

➢ UNFREEZE This cancels the freezing of the inputs.

➢ SYNC Output is frozen.

➢ UNSYNC The UNSYNC command cancels the SYNC command.

➢ CLEAR All the outputs are reset.

Overview

Creating Groups

Control Commands

B8976071/03 DP Programming Interface

23

3.6.1 Synchronization

Control frames can be sent to the slaves cyclically or acyclically.

Fig. 3.3 illustrates cyclic transmission. During configuration with COML
DP, you can specify whether a slave will be operated in the SYNC
mode, in the FREEZE mode, in the SYNC and FREEZE mode or in
neither of these modes.

The DP master automatically takes into account that certain slaves
must be operated in a certain mode. Once data transfer has been
completed with all slaves, the master waits for a set time
(min slave interval, see Section 3.7.4), to allow all slaves operating in
the SYNC mode, to process the previously transferred output data.

At the end of this interval, the DP master sends a control frame to all
slaves operating in the SYNC and/or FREEZE mode. The effect of this
is that all slaves operating in the SYNC mode switch the previously
transferred data to their process output cyclically. All slaves operating
in the FREEZE mode read in the input data of the process when they
receive this frame.

After sending the frame, the DP master again waits for a set time
before it begins a new data transfer cycle. This gives the slaves
operating in the FREEZE mode the opportunity to prepare the process
input they have just read in synchronously for the later response frame
to the master (in the next data transfer cycle).

Cyclic
Transmission of
Control Frames

DP Programming Interface B8976071/03

24

:

I signal Q signal x

I signal x Q signal x+1

Polling cycle

:

I signal Q signal x-1

I signal x-1 Q signal x

Polling cycle

:

Min slave interval

Control command
sync and freeze

Min slave interval

: DP master

DP slave no. 1 (operation in FREEZE mode)

DP slave no. 2 (operation in SYNC mode)

Time phase a Time phase b Time phase c

Q signal xI signal x

TimeX

Fig. 3.3: Cyclic Transmission Based on the Example of Two DP Slaves

The figure illustrates three time phases.

During the polling cycle, the DP master requests the input data from
slave number 1. The slave replies with the input data that it read in
when it received the last control frame. The DP master then sends new
output data to slave number 2, but this is not output by the slave.

At time x, the DP master sends a control frame to the DP slaves. On
receiving the frame, DP slave number 1 reads in the input signal x. At
the same time, slave number 2 transfers the output data that it
received from the DP master during the previous polling cycle to the
process.

During the polling cycle, slave number 1 replies with the input value
read in at time x. The DP master sends new output data to slave
number 2.

Cyclic
Transmission
(Example)

Time Phase a

Time Phase b

Time Phase c

B8976071/03 DP Programming Interface

25

The DP programming interface also provides the option of sending
control frames to certain slaves acyclically, in other words not within
the framework of the polling cycle or configured min slave interval.

To allow this, the DP application has a special function call with which
the DP master is instructed to send a control frame once.

For detailed information about the constants for individual control
commands, refer to Section 4.8.5, and for the function call for acyclic
transmission of control frames refer to Section 5.17.

Please remember that not all slaves support operation in the SYNC or
FREEZE mode. Refer to the manufacturer's instructions.

Acyclic
Transmission

Further
Information

DP Programming Interface B8976071/03

26

3.7 Notes on Configuration

To be able to communicate with the DP slaves, the DP master requires
a database. The database contains all the operating and configuration
data required for a DP system.

You create the configuration using COM PROFIBUS. This generates
the database of the CP.

For detailed information about configuring, refer to the volume
“SIMATIC ET 200 Distributed I/O System”.

The database and firmware are loaded on the CP 5412 (A2) during the
system startup phase. Once the firmware has been loaded, the CP is
an active station with the role of DP master complying with the
PROFIBUS standard DIN 19245 Part 1.

There is no data exchange between the CP and DP slaves until a DP
application has logged on.

General

Loading the
Database

B8976071/03 DP Programming Interface

27

3.7.1 Watchdog

The watchdog of a DP slave can be activated or deactivated by the DP
master during the parameter assignment phase (depending on the
information in the configured database). If the watchdog of a DP slave
is activated, the DP master must communicate with the DP slave
within a set time. If there is no communication during this time, the
slave switches its outputs to a safe state and no longer takes part in the
data transfer with the master, since the slave assumes that a serious
error (for example wire break, DP master failure) has occurred. The
master must then re-assign parameters and re-configure the slave. The
exchange of productive data is only possible again when this has been
completed.

The description of the DP slaves explains which “safe” value is applied
to the outputs.

3.7.2 Data Control Time

The data control time is fixed. Once the data control time has expired,
the DP master checks whether all the slaves configured in the
database are taking part in data exchange. The slaves that are
configured but that are also de-activated when the data control time
expires are not counted (see also Section 3.7.5). If one of the activated
slaves is not taking part in the data exchange and if the AUTOCLEAR
function is set, the DP master automatically changes to the CLEAR
mode.

Once this time has expired, the DP master also informs the DP slaves
of its operating status.

3.7.3 Poll Timeout

The poll timeout time can be set by a function call of the DP
programming interface. The time is used to monitor the communication
with a DP master of Class 2 (DP diagnostic master). The DP diagnostic
master can request certain information from the DP master Class 1
(CP 5412 (A2)) during operation (for example the mode of the DP
master Class 1). If the job can be executed, the DP master Class 1
prepares the data to be fetched. If the DP diagnostic master does not
fetch this data within the poll timeout time, the data is cleared.

DP Programming Interface B8976071/03

28

3.7.4 Min Slave Interval

You configure the min slave interval using COML DP and it can be
used in two ways.

➢ If cyclic control frames are configured, the time is used as shown
in Fig. 3.3.

➢ If no cyclic control frames are configured, the time is used as
shown in Fig. 3.4.

:

I signal Q signal

I signal Q signal

Polling cycle

:

I signal Q signal

I signal Q signal

Polling cycle

: DP master

DP slave no. 1

DP slave no. 2

Time

Min slave interval Min slave interval

Fig. 3.4: Min Slave Interval - Without Cyclic Control Frame

B8976071/03 DP Programming Interface

29

3.7.5 Deactivating a DP Slave

A DP slave can be activated or deactivated using a function call of the
DP programming interface. DP slaves that are deactivated are ignored
in the polling cycle.

3.7.6 AUTOCLEAR

This function allows the DP master to monitor the DP system
automatically. If you have selected this function, the master checks
whether all the slaves that have not been deactivated (Section 3.7.5)
are taking part in the data exchange when the data control time
(Section 3.7.2) expires. If this is not the case, the DP master changes
to the CLEAR mode.

3.7.7 Configuration Data

The database must contain the configuration data for every DP slave.
The configuration specifies the number and type
(input/output/analog/digital) and the consistency (byte/word/area) of the
data areas. This configuration data must match the actual configuration
of the DP slave.

The DP master sends this data to the DP slave in a configuration
frame. The DP slave then compares the received values with its actual
configuration. Productive data can only be exchanged between the DP
master and DP slave when this information matches.

If the values do not match, the DP slave signals a configuration error.
❑

DP Programming Interface B8976071/03

30

NOTES

B8976071/03 DP Programming Interface

31

4 Structure of the DP Programming Interface

This chapter provides you with an overview of the function calls provided by
the DP programming interface. The function calls are divided into several
groups according to their meaning.

The chapter also describes the basic structure of a DP application that can be
divided into several functional sections.

The appropriate function calls are dealt with in these sections. From the
description you can see which function calls are mandatory and which
function calls can be used as options.

This chapter also explains the structure and elements of the data structures
transferred to the functions as call parameters.

The pre-defined constants that are assigned to the different elements of the
data structures are also described. A distinction is made between call and
return parameters.

The return parameters of the function calls are listed and briefly described in
the table.

DP Programming Interface B8976071/03

32

4.1 Overview of the DP Call Functions

The DP call functions can be divided into the following groups:
initialization functions, database functions, data transfer functions,
control functions and close functions.

dpn_init() Log on a DP application at the DP programming interface
dpn_wd() Activate monitoring of the DP application

dpn_read_bus_par() Read out the bus parameters from the database
dpn_load_bus_par() Modify DP-specific parts of the bus parameters
dpn_read_slv_par() Read slave parameters
dpn_set_slv_state() Activate/deactivate a slave of the database
dpn_read_cfg() Read out the DP configuration

dpn_slv_diag() Request diagnostic data of a slave
dpn_read_sys_info() Read out system information

dpn_out_slv() Send output data to a single slave
dpn_out_slv_m() Send output data to several slaves
dpn_in_slv() Read input data from a single slave
dpn_in_slv_m() Read input data from several slaves
dpn_read_slv() Read local output data of a single slave

dpn_set_mode() Set the DP mode
dpn_get_mode() Read out the current DP mode
dpn_global_ctrl() Send control commands to a slave group

dpn_reset() Log off a DP application at the DP programming interface

Grouping of the
DP Functions

Initialization
Functions

Database
Functions

Diagnostic
Functions

Data transfer
Functions

Control Functions

Close Functions

B8976071/03 DP Programming Interface

33

4.2 General Call for the DP Functions

Return value = dpn_..(struct dpn_interface far * ptr);
or
Return value = dpn_..(struct dpn_interface_m far * ptr);

As a transfer parameter, each function expects a pointer to the
dpn_interface structure. The elements of this structure are described
in Section 4.5.

The dpn_interf ace _m structure is used for the two call functions
dpn_in_slv_m() and dpn_out_slv_m(). This structure is also described
in Section 4.5.

Both structures are defined in the dpn_user.h file.

Exception

DP Programming Interface B8976071/03

34

4.3 Evaluating a Function Call

A DP application can use one of the two following methods to check
whether a function call was processed:

➢ Evaluation of the return value of the DP function

➢ Evaluation of the error_code structure element of the structures
dpn_interface or dpn_interface_m

The content of the error_code structure element is identical to the
return value of the DP function.

Two Evaluation
Methods

B8976071/03 DP Programming Interface

35

4.3.1 Evaluating the Return Value

Using the return value of the function call (type: unsigned short), the
calling DP application can check whether the function was processed.

Return value of the
function call

Meaning

DPN_NO_ERROR The function was processed. The return parameters of
the dpn_interface structure (dpn_interface_m) are
valid.

Not DPN_NO_ERROR The processing of the function was aborted due to an
error. The return parameters of the dpn_interface
structure (dpn_interface_m) are not valid.
The return parameter of the function contains a
detailed error ID.

Checking the return value using the dpn_get_mode() function as an
example.

#include "dpn_user.h"

struct dpn_interface myDpnInterface;
/* get actual mode of DP-System */
unsigned char GetActualMode (unsigned char myBoard,

unsigned char myAccess)
{ unsigned short int result;
 unsigned char mode;

myDpnInterface.reference.board_select = myBoard;
myDpnInterface.reference.access = myAccess;

 result = dpn_get_mode (&myDpnInterface);
if (result == DPN_NO_ERROR) /* result is valid */
{
 mode = myDpnInterface.sys_state;
}
else

 {
 mode = 0xff; /* sign for invalid */

 switch (result)
 {

 /* check error code */
 }

 }
 return (mode);
}

Checking the
Return Value of the
Function

Example

DP Programming Interface B8976071/03

36

4.3.2 Evaluating the Structure Element "error_code"

An alternative to the return parameters of the function call (see above),
a DP application can also evaluate the error_code structure element to
determine whether the function was processed or not. The error_code
structure element in the dpn_interface(_m) structure is identical to the
return parameter of the function.

Structure element
error_code

Meaning

DPN_NO_ERROR The function was processed. The remaining return
parameters of the dpn_interface (dpn_interface_m)
structure are valid.

Not DPN_NO_ERROR The processing of the function was aborted due to an
error. The remaining return parameters of the
parameters of the dpn_interface (dpn_interface_m)
structure are not valid.
The error_code structure element contains a detailed
error ID.

Checking the error_code structure element based on the example of
the dpn_get_mode() function.

#include "dpn_user.h"

struct dpn_interface myDpnInterface;
/* get actual mode of DP-System */
unsigned char GetActualMode(unsigned char myBoard,

unsigned char myAccess)
{ unsigned char mode;

myDpnInterface.reference.board_select = myBoard;
myDpnInterface.reference.access = myAccess;

 dpn_get_mode (&myDpnInterface);
if (myDpnInterface.error_code == DPN_NO_ERROR)
/* result is valid */
{
 mode = myDpnInterface.sys_state;
}
else

 {
 mode = 0xff; /* sign for invalid */

 switch (myDpnInterface.error_code)
 {

 /* check error code */
 }

 }
 return (mode);
}

Checking the
Structure Element
"error_code"

Example

B8976071/03 DP Programming Interface

37

4.4 Overview of the Error IDs

The table contains a list of the error IDs of the DP functions. For more
information about the term “central application” used in the table, refer
to Sections 4.8.1 and 5.1.3.

Error ID Meaning
DPN_NO_ERROR No error processing the function call.
DPN_ACCESS_ERROR The calling DP application does not have right of

access to the function or to a slave.
DPN_APPL_LIMIT_ERROR The maximum permitted number of DP applications

in the multi-user mode has been exceeded.
DPN_CENTRAL_ERROR The function can only be called by a central DP

application.
DPN_CLOSE_ERROR Error logging off a DP application.
DPN_LENGTH_ERROR Structure element length of the dpn_interface

structure is outside the permitted range of values.
The data length does not match the configured
value.

DPN_MEM_BOARD_ERROR Not enough free memory on the CP.
DPN_MEM_HOST_ERROR Not enough free memory on the host.
DPN_MODE_ERROR The function call cannot be processed in the current

mode or a status was skipped when changing the
mode.

DPN_NO_DBASE_ERROR No or incorrect entries in the DP database.
DPN_OPEN_ERROR Error logging on a DP application (e.g. driver not

loaded, CP not plugged in).
DPN_RECEIVE_ERROR Error transferring an acknowledgment from the CP

to the DP application.
DPN_REFERENCE_ERROR The reference structure element of the dpn_interface

structure is not valid.
DPN_REFERENCE_DIFF_
ERROR

Error in the multi-user mode. The reference
structure element with the dpn_init() call does not
match the previous dpn_init() of other DP
applications that have logged on at the same CP.

DPN_SEND_ERROR Error transferring a function call to the CP.
DPN_SLV_STATE_ERROR The slv_state structure element of the dpn_interface

structure is not valid.
DPN_STAT_NR_ERROR The stat_nr structure element of the dpn_interface

structure is not valid (e.g. slave does not exist in the
database).

DPN_USER_DATA_ERROR One or more elements of user_data array of the
dpn_interface structure are invalid.

DPN_WRONG_BOARD_ERROR The reference.board structure element of the
dpn_interface structure is not valid.

DPN_SYS_STATE_ERROR The sys_state structure element of the
dpn_interface structure is not valid.

DPN_GLB_CTRL_ERROR Invalid range of values for control command when
calling the dpn_global_crtl() function.

DPN_BOARD_ERROR CP error.
DPN_WD_EXPIRED The job could not be executed because the

watchdog of the DP application detected a timeout.

List of Error IDs

DP Programming Interface B8976071/03

38

4.5 Transfer Structures

A pointer to the dpn_interface or dpn_interface_m structure is
transferred to a DP function as a parameter. The structure contains the
call and return elements of the DP function.

Both structures are contained in the dpn_user.h include file.

The dpn_interface_m structure is used when the call involves data
transfer to several DP slaves. It contains a separate substructure
dpn_interface_s for each slave.

struct dpn_interface
{
struct REFERENCE reference; /* Reference of applic. */
unsigned char stat_nr; /* Station number */
unsigned char length; /* Length */
unsigned short error_code; /* Error identifier */
unsigned char slv_state; /* Status of the DP slave */
unsigned char sys_state; /* Status of the DP master*/
unsigned char sys_event; /* Event messages */
unsigned char user_data[255]; /* Data field */
};

struct REFERENCE
{
unsigned char board_select;
unsigned char access;
};

struct dpn_interface_s
{
struct REFERENCE reference;
unsigned char stat_nr;
unsigned char length;
unsigned short int error_code;
unsigned char slv_state;
unsigned char sys_state;
unsigned char sys_event;
unsigned char user_data[DPN_SINGLE_SIZE];
};

struct dpn_interface_m
{
struct dpn_interface_s dpn_if_single[DPN_MULTIPLE_SIZE];
};

dpn_interface
Structure

Structures
dpn_interface_m,
dpn_interface_s

B8976071/03 DP Programming Interface

39

4.6 Description of the Structure Elements

The reference structure element contains the identification of the DP
application. The identification is assigned when the dpn_init() function
is called. Based on this entry, the DP library can assign the function
call to the selected CP.

L2 address of the selected DP slave.

Number of valid bytes in the user_data[] array.

This structure element is identical to the return parameter of the
function.
This signals whether the function call could be processed or not.

Note:
A DP application can either check the return value of the function or
the error_code structure element.

Remember that the remaining structure elements are only valid when
the function return parameter or the error_code structure element do
not contain an error ID.

This structure element indicates the status of the addressed DP slave.

This structure element indicates the current mode of the DP master.

If an error occurs on the DP master (see also Section 3.4), it enters an
appropriate ID at this point to identify the event.

The user_data[] array contains the data specific to the job.

reference

stat_nr

length

error_code

slv_state

sys_state

sys_event

user_data[]

DP Programming Interface B8976071/03

40

4.7 Assignment of the Parameters to the DP Functions

The following matrix illustrates the assignment of the parameters of the
dpn_interface and dpn_interface_m structures as described in Section
4.6 to the function calls of the DP library.

A "C" in the parameter matrix means that the parameter is used as a
call value.

An "R" in the parameter matrix indicates the return parameters of the
function calls.

Function Calls reference stat_nr length error_code slv_state sys_state sys_event user_data
dpn_init() C/R - C R - - R C
dpn_wd() C - C R - R R C
dpn_read_bus_par() C - C/R R - R R R
dpn_load_bus_par() C - C R - R R C
dpn_read_slv_par() C C C/R R C/R R R R
dpn_set_slv_state() C C C R R R R C
dpn_read_cfg() C - C/R R - R R R
dpn_slv_diag() C C C/R R R R R R
dpn_read_sys_info() C - C/R R - R R R
dpn_out_slv() C C C R R R R C
dpn_out_slv_m() C C C R R R R C
dpn_in_slv() C C C/R R R R R R
dpn_in_slv_m() C C R R R R R R
dpn_read_slv() C C C/R R R R R R
dpn_set_mode() C - - R - C/R R -
dpn_get_mode() C - - R - R R -
dpn_global_ctrl() C C C R C R R C
dpn_reset C - - R - - - -

Description

B8976071/03 DP Programming Interface

41

4.8 Constants

The following tables contain the definitions of constants that are
entered as call or return parameters in the dpn_interface(_m) structure.
These constants are referred to in Chapter 5 in the description of the
function calls.

The constants are defined in the dpn_user.h include file.

4.8.1 "reference" Structure Element

The DP programming interface distinguishes between two types of DP
applications - central and not central.

Certain function calls are reserved for the central DP application. Of
the maximum four DP applications that can log on at the DP
programming interface, a maximum of one can be logged on as the
central DP application per CP. For further information about this topic,
refer to Section 5.1.3.

With the dpn_init() function call, these constants indicate the type and
environment of the DP application. For a detailed description of the
dpn_init() function call, refer to Chapter 5.

Possible Entries Meaning
DPN_ROLE_CENTRAL The DP application that is logging on is a central

application.
DPN_ROLE_NOT_CENTRAL The DP application that is logging on is not a central

application.
DPN_SYS_CENTRAL One of the DP applications is a central application.
DPN_SYS_NOT_CENTRAL None of the DP applications is a central application.

With the dpn_init() function call, these constants specify the access
rights of a DP application to a DP slave and are entered in the
user_data[] array.

Possible Entries Meaning
DPN_SLV_NO_ACCESS No access requested
DPN_SLV_READ Only read input data
DPN_SLV_WRITE_READ Send output data/read input data

Type of
Application

reference.access

Right of Access to
DP Slaves

DP Programming Interface B8976071/03

42

4.8.2 "slv_state" Structure Element

These constants indicate the current operating status of a DP slave
during the communication with the DP master.

Possible Entries Meaning
DPN_SLV_STAT_OFFLINE The DP slave is not in the data transfer phase

(CP starting up).
DPN_SLV_STAT_NOT_ACTIVE The DP slave is not activated in the local

database.
DPN_SLV_STAT_READY The DP slave is in the data transfer phase.
DPN_SLV_STAT_READY_DIAG The DP slave is in the data transfer phase and

diagnostic data exist.
DPN_SLV_STAT_NOT_READY The DP slave is not in the data transfer phase.
DPN_SLV_STAT_NOT_READY_DIAG The DP slave is not in the data transfer phase

and diagnostic data exist.

4.8.3 "sys_state" Structure Element

These constants indicate the current mode of the DP master.

Possible Entries Meaning
DPN_SYS_OFFLINE There is no DP communication.
DPN_SYS_STOP Only communication with DP master Class 2 is

possible. There is also no communication with
DP slaves.

DPN_SYS_CLEAR The DP slaves are in the parameter
assignment/configuration phase. In the data
transfer phase that follows, bytes with logical 0
are sent to the DP slaves in the output direction.

DPN_SYS_OPERATE Productive data exchange with the DP slaves.

Statuses of a DP
Slave

Mode of the
DP Master

B8976071/03 DP Programming Interface

43

4.8.4 "sys_event" Structure Element

These constants identify event messages that can be indicated in the
sys_event structure element with the various DP functions. Note that
the event messages can occur singly or in combinations. If no event
has occurred, sys_event contains the value 0. If sys_event contains a
value other than 0, the number and type of events can be determined
using “AND operations” on the various constants.

Possible Entries Meaning
MST_CLS_TWO_ACCESS Event message access by a DP master Class 2

(diagnostic master).
AUTOCLEAR Event message AUTOCLEAR
WATCHDOG Event message TIMEOUT

Simple example:
struct dpn_interface myDpnInterface;
// Here complete the parameters and execute the
// call

::
// Check whether Autoclear has occurred
if ((myDpnInterface.sys_event & AUTOCLEAR) != 0)
{

 /* Event AUTOCLEAR */
}

Event Messages

Example

DP Programming Interface B8976071/03

44

4.8.5 Global Control Commands

Using the dpn_global_ctrl() function call, you can send various
commands to the DP slaves. The constants listed below are entered in
the slv_state structure element.

Possible Entries Meaning
DPN_CLEAR CLEAR command
DPN_UNFREEZE UNFREEZE command
DPN_FREEZE FREEZE command
DPN_UNSYNC UNSYNC command
DPN_SYNC SYNC command

4.8.6 Activating/Deactivating a Slave

These constants are relevant for the dpn_set_slv_state() function call
and are entered in the user_data[0] structure element.

Possible Entries Meaning
DPN_SLV_ACTIVATE The slave is activated in the local database. Following

this, the DP master attempts to assign parameters to
the slave, to configure the slave and to execute data
transfer. (Condition: The master is in the CLEAR or
OPERATE mode.)

DPN_SLV_DEACTIVATE The slave is deactivated in the local database, i.e. there
is no data exchange with the slave.

4.8.7 Slave Parameters

Using these constants, different parts of the slave parameters
(structure complying with DIN E 19245 Part 3) can be selected in the
dpn_read_slv_par() function call. The constant is entered in the
slv_state structure element.

Possible Entries Meaning
DPN_SLV_PARA_TYP Selection of Sl-Flag, Slave-type and Octet-String
DPN_SLV_PARA_PRM_DATA Selection of the parameter assignment data
DPN_SLV_PARA_CFG_DATA Selection of the configuration data
DPN_SLV_PARA_ADD_TAB Selection of the Add-Tab list
DPN_SLV_PARA_USER_DATA Selection of the slave user data

B8976071/03 DP Programming Interface

45

4.8.8 DP Slave Types

These constants indicate the different types of DP slaves and are
returned with the dpn_read_cfg() function call in the user_data[] field.

Possible Entries Meaning
DPN_CFG_NO_SLV No DP slave
DPN_CFG_NORM Standard DP slave
DPN_CFG_ET200_U Non-standard slave: ET 200 U
DPN_CFG_ET200K_B Non-standard slave: ET 200 K/B
DPN_CFG_ET200_SPM Non-standard slave: General SPM station

DP Programming Interface B8976071/03

46

4.9 Structure of a DP Application

Fig. 4.1 illustrates the basic structure of a DP application. It is divided
into the three areas: Initialization, productive phase and close phase.

Certain DP function calls are assigned to each of these areas. The
function calls that are mandatory for a DP application are shown on a
gray background.

In the left-hand column, the figure shows the typical functions of a DP
application. The right-hand column contains the additional functions
available for extended diagnostics, modifying parameters etc.

dpn_init()

dpn_read_bus_par()
dpn_load_bus_par() *)
dpn_read_cfg()
dpn_read_slv_par()
dpn_set_slv_state()

dpn_wd()

dpn_set_mode () *)

dpn_get_mode()
dpn_out_slv()

dpn_in_slv()

dpn_read_slv()

dpn_slv_diag()

dpn_read_sys_info()

dpn_global_crtl ()

 dpn_reset()

Initialization

Productive phase

Close phase

mandatory

optional

*) only permitted for central DP application

dpn_in_slv_m()

dpn_out_slv_m()

Fig. 4.1: Structure of a DP Application

Overview

B8976071/03 DP Programming Interface

47

Function Status Comment

dpn_init() mandatory Must be called as the first DP function.
dpn_read_cfg() optional Read out the complete configuration.
dpn_read_bus_par() optional Read/check the bus parameters.
dpn_load_bus_par() optional or not allowed Change the DP timers of the bus

parameters. This must only be called
by a central DP application.

dpn_read_slv_par() optional Read out the slave parameters. From
the slave parameters, the configuration
and status (activated/not activated) of
the DP slaves can be obtained.

dpn_set_slv_state() optional Activate/deactivate slave.
dpn_wd() optional CP monitors the activity of the DP

application.

Function Status Comment
dpn_set_mode() mandatory

or not allowed
Must be called by the central DP
application at the start of the operating
phase to set a new mode on the DP
master.

dpn_get_mode() optional Queries the current mode.
dpn_out_slv() optional Transfer output data to a DP slave.
dpn_out_slv_m() optional Transfer output data to several DP

slaves.
dpn_in_slv() optional Read the input data of a DP slave.
dpn_in_slv_m() optional Read the input data of several DP

slaves.
dpn_read_slv() optional Read the output data of a DP slave.
dpn_slv_diag() optional Read the diagnostics of a DP slave.
dpn_read_sys_info() optional Overview of the total status.
dpn_global_ctrl() optional or not allowed Control command to several or all DP

slaves.

This function is only mandatory in a DP system with a central DP
application. In this case, the DP application must change the master
from the OFFLINE to the OPERATE mode using the dpn_set_mode()
function.

On a DP system without a central DP application, the DP master
changes from the OFFLINE mode to the OPERATE mode
automatically after the first application logs on.

The principles of the central DP application are described in detail in
Section 5.1.

Function Status Comment
dpn_reset() mandatory The application logs off and

terminates DP communication with
the slaves assigned to the application.
The operating system resources are
returned. ❑

Functions of the
Initialization Phase

Functions of the
Productive Phase

Special Case
dpn_set_mode

Functions of the
Close Phase

DP Programming Interface B8976071/03

48

NOTES

B8976071/03 DP Programming Interface

49

5 Description of the DP Functions

This chapter contains a detailed description of all the functions of the DP
programming interface.

From the description, you can see which elements of the dpn_interface or
dpn_interface_m structure must be completed before the function is called.

The chapter also explains the structure elements that are updated or modified
by the DP function as return parameters. These elements can be evaluated in
the DP application providing the return parameter (or the error_code structure
element) signals correct execution.

Overview of the functions:

➢ dpn_init() Section 5.1

➢ dpn_wd() Section 5.2

➢ dpn_read_bus_par() Section 5.3

➢ dpn_load_bus_par() Section 5.4

➢ dpn_read_slv_par() Section 5.5

➢ dpn_set_slv_state() Section 5.6

➢ dpn_read_cfg() Section 5.7

➢ dpn_slv_diag() Section 5.8

➢ dpn_read_sys_info() Section 5.9

➢ dpn_out_slv() Section 5.10

➢ dpn_out_slv_m() Section 5.11

➢ dpn_read_slv() Section 5.12

➢ dpn_in_slv() Section 5.13

➢ dpn_in_slv_m() Section 5.14

➢ dpn_set_mode() Section 5.15

➢ dpn_get_mode() Section 5.16

➢ dpn_global_ctrl() Section 5.17

➢ dpn_reset() Section 5.18

DP Programming Interface B8976071/03

50

5.1 How a DP Application Logs On

unsigned short int dpn_init (struct dpn_interface far * ptr)

Using this function, a DP application must log on at the CP. The
function must be called before all other DP functions . A far pointer
to the dpn_interface structure is transferred as the call parameter. If
the call is successful, a handle is returned in the reference structure
element. This handle is required by the DP firmware to identify the DP
application. The handle must be entered as a call parameter for all
further function calls to the CP.

After the DP master has been changed to the OPERATE state, the
DP slaves may st ill require a certain am ount of time until they are
ready for operat ion. Before writing output data for a DP sl ave, you
should th erefore check the operat ing mode of the DP sl aves, for
example us ing dpn _read_sys_info until the value
DPN_SLV_STAT_READY or DPN_SLV_STAT_READY_DIAG is
returned for the DP slave.

5.1.1 Call Parameters

ptr -> reference Reference of the DP application
ptr -> stat_nr irrelevant
ptr -> length Size of the user_data[] array
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] Required type of access to DP slaves

The parameters relevant to the DP application are entered in the
reference structure element.

These are as follows:

➢ Selection of a module

➢ Setting the DP application environment

➢ Setting the type of application

You will find a detailed description of these parameters in Section
5.1.3.

Call Function

Description

reference

☞☞

B8976071/03 DP Programming Interface

51

Here, the number of relevant bytes in the user_data[] array must be
entered; range of values: 0 to 126.

The DP application must specify the required access rights to the
individual DP slaves in the user_data[] array. The entry is made in a
separate byte for each slave. The index in the array corresponds to the
L2 address of the DP slave.

:

Right to access slave 0

Right to access slave 1

Right to access slave 2

Right to access slave 3

Right to access slave 4

Right to access slave 5

Right to access slave 125

user_data[0]

user_data[1]

user_data[2]

user_data[3]

user_data[4]

user_data[5]

:

user_data[125]

Fig. 5.1: Access Rights to the DP Slaves

The required access rights can be as follows:

➢ Write output data/read input data

➢ Read input data

➢ No access required

When it specifies the access rights, the DP application can use the
following constants (dpn_user.h include file):

Constant Required Access Right
DPN_SLV_WRITE_READ Write output data/

read input data
DPN_SLV_READ Read input data
DPN_SLV_NO_ACCESS No access required

length

user_data[]

DP Programming Interface B8976071/03

52

The validity of the entries is checked as follows:

➢ Data output to a particular DP slave must only be made by one
single DP application within a multitasking operating system.
This application must enter the access right
DPN_SLV_WRITE_READ when it logs on. Attempts by other
applications to send data to this slave are rejected.

This access protection prevents undefined dangerous situations
arising in the plant that could otherwise occur if two DP
applications can send output data to the same DP slave without
being coordinated (example: DP application A closes a valve,
DP application B opens the valve).

➢ When the application logs on, the program checks whether the
option write output/read input data has already been set by a
different DP application. If this is the case, the dpn_init() function
is acknowledged negatively.

Any DP application always has the right to read a slave's data
(i.e. image of the input data, image of the output data and image
of the diagnostic data).

Checking the
Entries

B8976071/03 DP Programming Interface

53

5.1.2 Return Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length unchanged
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event Event messages
ptr -> user_data[] unchanged

The reference structure element (parameters reference.board_select
and reference.access) contains a handle that must be used in all
further DP function calls to this CP.

The error_code structure element is identical to the return value of the
function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

reference

error_code

sys_event

DP Programming Interface B8976071/03

54

5.1.3 Explanation of the "reference" Structure Element

Several CPs can be installed in one PG/PC. A DP application must log
on at every CP with which it wants to communicate using a separate
dpn_init() call.

The number of the CP (1,2...) must be transferred in the
reference.board_select structure element.

The reference.access structure element contains the "DP application
type" and "DP application environment" identifiers. The meaning of
these identifiers is explained below.

This identifier determines the start-up response and the permitted DP
functions when several independent DP applications of a multitasking
operating system use the DP functions of the same CP.

There are two DP application environments:

➢ Of the DP applications that access the same CP, one is logged
on as the central DP application. This application has full access
to all DP functions.

➢ All the DP functions accessing the same CP are of equal rank.
There is no central DP application.

reference.board_
select

reference.access

DP Application
Environment

B8976071/03 DP Programming Interface

55

This identifier specifies the type of DP application.

The following two values are possible:

➢ The DP application is a central application.

➢ The DP application is not a central application.

In this case, the DP communication is controlled centrally by a
selected DP application. This DP application has access to all DP
functions. A change in the mode of the DP master is only possible
using a dpn_set_mode() call from the central DP application. The
central DP application can change the mode at any time using a
dpn_set_mode() call. If the central DP application sends a dpn_reset()
call, communication is terminated with all DP slaves.

The following function calls are reserved for the central DP application:

➢ dpn_set_mode() sets the mode

➢ dpn_global_ctrl() sends a control frame to DP slaves

➢ dpn_load_bus_par() modifies bus parameters

To control a DP system, two Windows DP applications (tasks) are
created. Both tasks access the same CP. One of the tasks is identified
as the central task. The central task implements the control of the DP
system (access to input and output ports of the DP slaves). The other
task is responsible for visualization of the DP system (for example
displaying whether valves are open or closed). In this case, the
relevant functions such as setting output ports starting and stopping the
DP system etc. are only executed by the central task.

DP Application
Type

A Central DP
Application Exists

Example

DP Programming Interface B8976071/03

56

In this case, there is no special task to control the way in which DP
communication is handled. All the DP applications have the same
rank. Communication with DP slaves is started when the first DP
application logs on successfully using the dpn_init() function call. The
OPERATE mode is set automatically by the DP master after the first
DP application has logged on.

The DP slaves connected to the DP bus form various functional
groups. To control each group, a separate DP application is created
under Windows. Each DP application can be started or stopped at any
time.

Via the DP programming interface, the DP application can activate or
deactivate the AUTOCLEAR function (see also Section 3.7.6 and 5.4).
This function changes the DP master from the OPERATE mode to the
CLEAR mode automatically (see Section 4.8.3) if an error occurs on
one of the configured slaves, in other words communication with the
slave is no longer possible. To change back to the OPERATE mode,
the user must send a job to change the mode. This is possible using
the dpn_set_mode() function. Since such a call is reserved for central
DP applications, the AUTOCLEAR function is only effective in a
system with a central DP application.

If no central DP application exists, the AUTOCLEAR function is not
effective. In this case, the master does not change to the CLEAR
mode, even if this function is configured using COML DP.

No Central
DP Application
Exists

Example

☞☞

☞☞

B8976071/03 DP Programming Interface

57

5.1.4 Constants for the "reference.access" Structure Element

The following constants are available in dpn_user.h for setting the DP
application environment and the DP application type in the
reference.access structure element:

Constant DP Application Environment DP Application Type
DPN_SYS_
CENTRAL

One of the DP applications is a
central application.

DPN_SYS_
NOT_CENTRAL

None of the DP applications is a
central application.

DPN_ROLE_
CENTRAL

The DP application that is
logging on is a central
application.

DPN_ROLE_
NOT_CENTRAL

The DP application that is
logging on is not a central
application.

The values for the DP application environment and DP application type
must be combined using an OR logic operation by the DP application
before the entry is made in the reference.access structure element.
The following combinations are permitted:

Combination Meaning
(DPN_SYS_CENTRAL) |
(DPN_ROLE_NOT_CENTRAL)

The DP application that is logging on is not a central
DP application.
A different DP application that also accesses the
same CP takes over the control of the DP
communication as the central application.

(DPN_SYS_CENTRAL) |
(DPN_ROLE_CENTRAL)

The DP application that is logging on takes over the
control of the CP communication as the central
application.

(DPN_SYS_NOT_CENTRAL) |
(DPN_ROLE_NOT_CENTRAL)

All the DP applications that access the CP have the
same rank. There is no higher ranking application
that controls the DP communication centrally.

If several DP applications access the same CPU, two rules must be
adhered to:

Rule 1: Only one of the applications can log on as the central
DP application.

Rule 2: All the DP applications must enter the same value as
the DP application environment (either
DPN_SYS_CENTRAL or
DPN_SYS_NOT_CENTRAL).

Permitted
Combinations

Two Rules for
Multitasking
Applications

DP Programming Interface B8976071/03

58

5.2 Monitoring Activity of the DP Application

unsigned short int dpn_wd (struct dpn_interface far * ptr)

This function starts an activity check (watchdog function) of the DP
application on the CP. When the function is active and the DP
application no longer accesses the DP programming interface as a
result of a fault or error, this is detected by the CP. The CP then only
sends data with the value 0h to the DP slaves assigned to this DP
application.

Only the slaves for which the application has the
DPN_SLV_WRITE_READ access rights are assigned to the
application.

Without this p recaut ion, a dangerous status could arise in the
plant.

Reason:

The CP would continue to send the last output data to the DP cyclically
although the DP application is no longer functioning correctly. If this
response is not required, the DP application must call the dpn_wd()
function before the productive phase starts.

As default, the watchdog function is inactive. Using the dpn_wd()
function, the watchdog can be activated or deactivated after the DP
initialization (dpn_init() function call).

The watchdog time is entered as a call parameter in the user_data[0]
structure element. If the call is successful, the CP checks whether the
DP application executes DP function calls within the preset watchdog
time. If this is the case, the watchdog is reset with each DP function
call. If the DP application does not execute any DP function call during
the preset watchdog time, the timer expires.

If the DP application attempts to send output data or a control frame to
DP slaves after the watchdog timer has expired, the job is
acknowledged negatively until the DP application sends a new
dpn_wd() call.

Call Function

Description

Which Slaves are
Assigned to the
Application?

☞☞

Defaults

Effect of the Call

Timeout

B8976071/03 DP Programming Interface

59

5.2.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length >= 1
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[0] Watchdog time

The reference structure element must contain the handle returned with
the dpn_init() function call.

Here a value >= 1 must be entered.

The watchdog time is entered in the user_data[0] structure element. If
the watchdog time 0 is entered, the watchdog monitoring is
deactivated.

One time unit corresponds to 400 ms. The accuracy of the
measurement is 1 time unit.

Example: The value 10 is entered in the user_data[0] structure
element. The watchdog expires after approximately 4
seconds if the DP application does not execute a DP
function call within this time.

reference

length

user_data[]

Granularity of the
Watchdog Time

DP Programming Interface B8976071/03

60

5.2.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr irrelevant
ptr -> length unchanged
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] unchanged

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The sys_event structure element identifies event messages during DP
communication. The possible event messages are described in
Sections 3.4 and 4.8.4.

The WATCHDOG (monitoring time expired) identifier is entered in the
sys_event structure element of the DP function calls if the DP
application does not execute any DP function call within the preset
watchdog time.

Note: The “watchdog time expired” event message is
generated after a timeout has been detected. The
message is then entered with all further DP calls. The
entry is made until the DP application resets the event
message.

To reset the “watchdog time expired” event message, the DP
application must once again execute a dpn_wd() function.

error_code

sys_state

sys_event

Event Message
"Watchdog Time
Expired”

Resetting the
Event Message

B8976071/03 DP Programming Interface

61

5.3 Read Bus Parameters

unsigned short int dpn_read_bus_par
(struct dpn_interface far * ptr)

With this function, a DP application can read out the current bus
parameters of the CP. The data format of the bus parameters is
described in Chapter 6.

5.3.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length 255
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

Length of the user_data[] array. The value 255 must be entered.

Call function

Description

reference

length

DP Programming Interface B8976071/03

62

5.3.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr irrelevant
ptr -> length Number of valid bytes in user_data[]
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] Bus parameters

The length structure element contains the size (number of bytes) of the
bus parameters of the DP master entered in user_data[].

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The sys_state structure element contains the current mode of the DP
master.
The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication. The possible event messages are described in
Sections 3.4 and 4.8.4.

This structure element contains the bus parameters of the DP master.
Chapter 6 describes the structure of the bus parameters. The structure
definition of the bus parameters can be found in the dpn_user.h include
file (dpn_buspar structure).

length

error_code

sys_state

sys_event

user_data[]

B8976071/03 DP Programming Interface

63

5.4 Write Bus Parameters

unsigned short int dpn_load_bus_par
(struct dpn_interface far * ptr)

With this function, the bus parameter data record of the DP master can
be modified by a central application. The structure of the bus
parameters transferred is described in Chapter 6. The DP firmware
only evaluates the following DP-specific parts of the bus parameters:

➢ POLL_TIMEOUT

➢ BP_FLAG

Before the function dpn_load_bus_par() is used, the current bus
parameters must be read into the dpn_bus_par structure with the
function dpn_read_bus_par(). The parameters POLL_TIMEOUT and
BP_FLAG can then be modified in the dpn_bus_par structure.

If there is a service request from a DP master Class 2 to the CP, this
value specifies the time within which the response must be fetched by
the DP master Class 2.

Time unit: 50 ms

The BP_FLAG is used to activate or deactivate the autoclear function
of the DP master.

Activate: OR logic operation of the BpFlag structure element
 with the value 80h.

Deactivate: AND logic operation of the BpFlag structure element
 with the value 7Fh.

Bus parameters can only be written when the DP master is in the
OFFLINE mode and they can only be written by a central DP
application.

Call function

Description

POLL_TIMEOUT

BP_FLAG

☞☞

DP Programming Interface B8976071/03

64

5.4.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length >= 36
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] Bus parameters

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The length structure element contains the number of valid bytes of the
user_data[] array. A minimum value of 36 must be entered.

The element user_data[] structure element contains the bus
parameters. The structure of the bus parameters is described in
Chapter 6. The structure definition of the bus parameters is in the
dpn_user.h include file (dpn_buspar structure).

reference

length

user_data[]

B8976071/03 DP Programming Interface

65

5.4.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr irrelevant
ptr -> length unchanged
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] unchanged

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The sys_state structure element contains the current mode of the DP
master. The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication. The possible event messages are described in
Sections 3.4 and 4.8.4.

error_code

sys_state

sys_event

DP Programming Interface B8976071/03

66

5.5 Read Slave Parameters

unsigned short int dpn_read_slv_par
(struct dpn_interface far * ptr)

With this function, a DP application can read out the various
components of the slave parameters of a DP slave. The data format of
the individual parts of the slave parameters corresponds to the format
described in Chapter 6. Evaluation of the slave parameters requires
detailed knowledge of the PROFIBUS DP standard. For this reason,
this function is only intended for specialized diagnostic purposes.

The following components of the slave parameters can be selected
using the slv_state structure element:

➢ Sl-Flag, Slave-Type, Octet-String

➢ Parameter assignment data

➢ Configuration data

➢ Add_Tab list

➢ Slave_User_Data

This service can only be used with standard slaves.

The structure of the slave parameters is described in Chapter 6.

Call Function

Description

☞☞

Structure of the
Slave Parameters

B8976071/03 DP Programming Interface

67

5.5.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr Address of the DP slave
ptr -> length 255
ptr -> error_code irrelevant
ptr -> slv_state Component selection
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[0] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The stat_nr structure element contains the L2 address of the selected
DP slave.

The value 255 must be entered.

The slv_state structure element contains the information defining which
part of the slave parameters must be read out. The job-defining values
are contained in the dpn_user.h include file.

Job-defining Value Used to Select..
DPN_SLV_PARA_TYP Sl-Flag, Slave-type and Octet-String
DPN_SLV_PARA_PRM_DATA Parameter assignment data
DPN_SLV_PARA_CFG_DATA Configuration data
DPN_SLV_PARA_ADD_TAB Add_Tab - list
DPN_SLV_PARA_USER_DATA Slave_User_Data

reference

stat_nr

length

slv_state

DP Programming Interface B8976071/03

68

5.5.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length Number of valid bytes in user_data[]
ptr -> error_code Error identifier
ptr -> slv_state Operating status of the DP slave
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] Slave parameters

The length structure element contains the size (number of bytes) of the
components of the slave parameters entered in user_data[].

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The structure element slv_state contains the current operating status of
the DP slave.

The possible operating statuses are described in Section 4.8.2.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.
The possible event messages are described in Sections 3.4 and 4.8.4.

This structure element contains the selected components of the slave
parameters.

length

error_code

slv_state

sys_state

sys_event

user_data[]

B8976071/03 DP Programming Interface

69

5.6 Activating/Deactivating a DP Slave

unsigned short int dpn_set_slv_state
(struct dpn_interface far * ptr)

With this function, the operating status of a DP slave can be modified
while the DP application is running.

The function makes it possible to activate or deactivate the DP slave
dynamically.

The mode of a DP slave can only be modified by a DP application
when the identifier DPN_SLV_WRITE_READ has been entered as the
access right for the dpn_init() call.

5.6.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr Address of the DP slave
ptr -> length >= 1
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[0] New mode of the DP slave

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The stat_nr structure element contains the L2 address of the selected
DP slave.

The length structure element contains the number of valid bytes of the
user_data[] array.

A minimum value of 1 must be entered.

The user_data[0] structure element contains the new mode of the DP
slave. The value for the mode is contained in the dpn_user.h include
file.

Mode Effect
DPN_SLV_ACTIVATE The slave is activated in the local database. Following this, the DP

master attempts to assign parameters to the slave, to configure it
and to transfer data. (Condition: The master is in the CLEAR or
OPERATE mode.)

DPN_SLV_DEACTIVATE The slave is deactivated in the local database, in other words there
is no data exchange with the slave.

Call Function

Description

reference

stat_nr

length

user_data[]

DP Programming Interface B8976071/03

70

5.6.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length unchanged
ptr -> error_code Error identifier
ptr -> slv_state Operating status of the DP slave
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] unchanged

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The slv_state structure element contains the current operating status of
the DP slave.

The possible operating statuses are described in Section 4.8.2.

Note: To activate or deactivate a slave, various activities are
required so that the indicated operating status of the
DP slave can still be distinguished from the new
setting.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

error_code

slv_state

sys_state

sys_event

B8976071/03 DP Programming Interface

71

5.7 Querying the Configuration of the DP System

unsigned short int dpn_read_cfg
(struct dpn_interface far * ptr)

With this function, a DP application can find out the total configuration
of the DP database. The function provides information about:

➢ the number of configured DP slaves

➢ the type of configured DP slaves.

5.7.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length >= 126
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The structure element length contains the number of valid bytes of the
user_data[] array.

A minimum value of 126 must be entered.

Call Function

Description

reference

length

DP Programming Interface B8976071/03

72

5.7.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length Number of valid bytes in user_data[]
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] Configuration of the DP system

The length structure element contains the size of the entire
configuration in user_data[].

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

Type information is entered in the user_data[] structure element for
every possible slave address. Each entry is in a separate byte. The
index within the array corresponds to the L2 address of the DP slave.

Example: user_data[2] contains the type information of the slave
with the L2 address 2.

The following type information can be entered:

Possible Entries Meaning
DPN_CFG_NO_SLV No DP slave
DPN_CFG_NORM Standard DP slave
DPN_CFG_ET200_U Non-standard slave: ET 200U
DPN_CFG_ET200K_B Non-standard slave: ET 200K/B
DPN_CFG_ET200_SPM Non-standard slave: General SPM station

length

error_code

sys_state

sys_event

user_data[]

B8976071/03 DP Programming Interface

73

5.8 Requesting the Diagnostic Data of a Slave

unsigned short int dpn_slv_diag
(struct dpn_interface far * ptr)

With this function, a DP application can request the diagnostic data of
a DP slave. The diagnostic data are read out of the local diagnostic
buffer. Whether or not diagnostic data exist, can be determined from
the slv_state structure element of a previous DP function call. After the
diagnostic data have been read out, the corresponding ID is reset in
slv_state (provided no new diagnostic data have been added in the
meantime).

Management of the diagnostic ID is application-related. This means
that if DP application “A” reads out the diagnostic data, the diagnostic
ID for DP application “B” is not reset.

5.8.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr Address of the DP slave
ptr -> length 255
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The stat_nr structure element contains the L2 address of the selected
DP slave.

The structure element length contains the number of valid bytes of the
user_data[] array.

The value 255 must be entered.

Call Function

Description

reference

stat_nr

length

DP Programming Interface B8976071/03

74

5.8.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length Number of valid bytes in user_data[]
ptr -> error_code Error identifier
ptr -> slv_state Operating status of the DP slave
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] Diagnostic data

The length structure element contains the size (number of bytes) of the
diagnostic data in user_data[].

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The structure element slv_state contains the current operating status of
the DP slave.

The possible operating statuses are described in Section 4.8.2.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

The structure element user_data[] contains the diagnostic data of the
DP slave.

The structure of the diagnostic data is described in Chapter 6.

length

error_code

slv_state

sys_state

sys_event

user_data[]

B8976071/03 DP Programming Interface

75

5.9 Reading Status Information of the DP System

unsigned short int dpn_read_sys_info
(struct dpn_interface far * ptr)

This function provides an overview of the current status of the DP
slaves known to the CP. The function also indicates whether diagnostic
data exist for each DP slave.

5.9.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length >=126
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The length structure element contains the number of valid bytes of the
user_data[] array.

A minimum value of 126 must be entered.

Call Function

Description

reference

length

DP Programming Interface B8976071/03

76

5.9.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length Number of valid bytes in user_data[]
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] Status information

The length structure element contains the size of the status information
in user_data[].

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

The status information for every possible slave address is entered in
user_data[]. Each entry is made in a separate byte. The index in the
array corresponds to the L2 address of the DP slave.

Example: the status of the slave with address 2 is entered in
user_data[2].

The following status information is possible:

Status Information Meaning
DPN_SLV_STAT_READY The DP slave is in the data transfer phase.
DPN_SLV_STAT_READY_DIAG The DP slave is in the data transfer phase,

and diagnostic data exist.
DPN_SLV_STAT_OFFLINE The DP slave is not in the data transfer

phase (CP startup).
DPN_SLV_STAT_NOT_READY The DP slave is not in the data transfer

phase.
DPN_SLV_STAT_NOT_READY_
DIAG

The DP slave is not in the data transfer
phase, and diagnostic data exist.

DPN_SLV_STAT_NOT_ACTIVE The DP slave is not activated.

length

error_code

sys_state

sys_event

user_data[]

B8976071/03 DP Programming Interface

77

5.10 Sending Output Data to a DP Slave

unsigned short int dpn_out_slv (struct dpn_interface far * ptr)

With this function, a DP application can transfer output data to a DP
slave. The L2 address and the length of the output data are compared
with the configured values in the DP database. The data are only
accepted if both parameters match.

The output data are entered in the internal data memory of the CP.

5.10.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr Address of the DP slave
ptr -> length Length of the output data
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] Output data

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The stat_nr structure element contains the L2 address of the selected
DP slave.

The length structure element contains the number of output data in the
user_data[] array.

The output data are entered in the user_data[] structure element.

The format of the output data is described in Chapter 6.

Call Function

Description

reference

stat_nr

length

user_data[]

DP Programming Interface B8976071/03

78

5.10.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length unchanged
ptr -> error_code Error identifier
ptr -> slv_state Operating status of the DP slave
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] unchanged

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The entry of DPN_NO_ERROR in the error_code structure element
simply means that the output data c ould be ent ered in the local
data buffer of the CP.

Whether or not the output data are sent to the DP slave must be
determined by evaluating the structure el ements slv_state
(operat ing status of the DP sl ave) and sys_state (mode of the DP
master).

The DP slave only receives the output data of the DP master when
the DP slave is in the pr oductive ph ase. This is the case when the
slv_state structure element contains one of the following values:

➢➢ DPN_SLV_STAT_READY or

➢➢ DPN_SLV_STAT_READY_DIAG

The DP master must also be in the OPERATE mode, in other
words the sys_state structure element must have the value

➢➢ DPN_SYS_OPERATE

The structure element slv_state contains the current operating status of
the DP slave.

The possible operating statuses are described in Section 4.8.2.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

error_code

☞☞

slv_state

sys_state

B8976071/03 DP Programming Interface

79

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

sys_event

DP Programming Interface B8976071/03

80

5.11 Sending Output Data to Several DP Slaves

unsigned short int dpn_out_slv_m
(struct dpn_interface_m far * ptr)

With this function, a DP application can send output data to several
DP slaves with a single function call. Within the dpn_interf ace_m
structure, a dpn_interf ace_s structure exists for every DP slave. The
structure of dpn_interface_s corresponds to that of the dpn_interface
structure.

When using the function, remember the following differences
compared with the dpn_out_slv() function:

➢ The output data sent to one slave must not exceed 32 bytes.

➢ A maximum of 32 slaves can be addressed.

➢ The slaves addressed must be obtainable using the same CP.

➢ Unused structure elements (dpn_interface_s) must be marked as
invalid by the entry DPN_IF_S_UNUSED in the stat_nr structure
element.

The return parameters of the function call indicate whether an error
occurred in one or more structure elements. If a error occurred (return
value ≠ DPN_NO_ERROR), the return parameter contains the error ID
of the first structure element with an error.

Call Function

Description

B8976071/03 DP Programming Interface

81

5.11.1 Call Parameters

ptr -> dpn_if_single[x].reference Handle of the DP application (only relevant in the
first valid structure)

ptr -> dpn_if_single[x].stat_nr Address of the DP slave or DPN_IF_S_UNUSED;
ptr -> dpn_if_single[x].length Number of valid bytes in the user_data[] array

(Maximum: 32 bytes)
ptr -> dpn_if_single[x].error_code irrelevant
ptr -> dpn_if_single[x].slv_state irrelevant
ptr -> dpn_if_single[x].sys_state irrelevant
ptr -> dpn_if_single[x].sys_event irrelevant
ptr -> dpn_if_single[x].user_data[] Output data

The handle returned with the dpn_init() function call must be entered in
the reference structure element. The handle only needs to be entered
in the first dpn_interface_s structure.

The stat_nr structure element contains the L2 address of the selected
DP slave.

If a dpn_interf ace_s structure is not used, the constant
DPN_IF_S_UNUSED must be entered here. This entry marks the
structure as invalid.

The length structure element contains the number of output data in the
user_data[] array.

The output data are entered in the user_data[] structure.

The format of the output data is described in Chapter 6.

reference

stat_nr

☞☞

length

user_data[]

DP Programming Interface B8976071/03

82

5.11.2 Return Parameters

ptr -> dpn_if_single[x].reference irrelevant
ptr -> dpn_if_single[x].stat_nr unchanged
ptr -> dpn_if_single[x].length unchanged
ptr -> dpn_if_single[x].error_code Error identifier
ptr -> dpn_if_single[x].slv_state Status of the DP slave
ptr -> dpn_if_single[x].sys_state Mode of the DP master
ptr -> dpn_if_single[x].sys_event Event messages
ptr -> dpn_if_single[x].user_data[] unchanged

The error_code structure element indicates the result of the job
processing. This is only valid when the return parameter of the function
call is DPN_NO_ERROR. The remaining return parameters of the
dpn_interface_s structure are only valid if no error occurred (DPN_NO-
ERROR).

The possible error identifiers are described in Section 4.4.

The entry of DPN_NO_ERROR in the error_code structure element
simply means that the output data c ould be ent ered in the local
data buffer of the CP.

Whether or not the output data are sent to the DP slave must be
determined by evaluating the structure el ements slv_state
(operat ing status of the DP sl ave) and sys_state (mode of the DP
master).

The DP slave only receives the output data of the DP master when
the DP slave is in the pr oductive ph ase. This is the case when the
slv_state structure element contains one of the following values:

➢➢ DPN_SLV_STAT_READY or

➢➢ DPN_SLV_STAT_READY_DIAG

The DP master must also be in the OPERATE mode, in other
words the sys_state structure element must have the value

➢➢ DPN_SYS_OPERATE

The structure element slv_state contains the current operating status of
the DP slave.

The possible operating statuses are described in Section 4.8.2.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

error_code

☞☞

slv_state

sys_state

B8976071/03 DP Programming Interface

83

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

5.11.3 Return Value of the Function Call

The return value of the function indicates whether an error occurred
with one or more of the dpn_interface_s structures. The function could
only be processed by the CP if no error occurred (DPN_NO_ERROR).
If an error occurred, process ing is aborted. In this case, output data
may possibly already have been passed on to individual DP slaves.

If no error occurred, the return parameters of the individual
dpn_interface_s structures must be evaluated.

sys_event

DP Programming Interface B8976071/03

84

5.12 Reading the Local Output Data of a DP Slave

unsigned short int dpn_read_slv
(struct dpn_interface far * ptr)

With this function, a DP application can read out the current output
data entered in the local data buffer of the CP.

The function primarily supports communication between the tasks of a
multitasking operating system when the tasks access the same CP.
The function allows a task “A” to determine which output data another
task “B” sends to a DP slave.

5.12.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr Address of the DP slave
ptr -> length 255
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The stat_nr structure element contains the L2 address of the selected
DP slave.

The structure element length contains the size of the user_data[]
structure element.

Here, the value 255 must be entered.

Call Function

Description

reference

stat_nr

length

B8976071/03 DP Programming Interface

85

5.12.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length Number of output data
ptr -> error_code Error identifier
ptr -> slv_state Operating status of the DP slave
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] Output data to the DP slave

The length structure element contains the number of output data in the
user_data[] structure element.

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The entry of DPN_NO_ERROR in the error_code structure element
simply means that the output data c ould be ent ered in the local
data buffer of the CP.

Whether or not the output data are sent to the DP slave must be
determined by evaluating the structure el ements slv_state
(operat ing status of the DP sl ave) and sys_state (mode of the DP
master).

The DP slave only receives the output data of the DP master when
the DP slave is in the pr oductive ph ase. This is the case when the
slv_state structure element contains one of the following values:

➢➢ DPN_SLV_STAT_READY or

➢➢ DPN_SLV_STAT_READY_DIAG

The DP master must also be in the OPERATE mode, in other
words the sys_state structure element must have the value

➢➢ DPN_SYS_OPERATE

The structure element slv_state contains the current operating status of
the DP slave.

The possible operating statuses are described in Section 4.8.2.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

length

error_code

☞☞

slv_state

sys_state

DP Programming Interface B8976071/03

86

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

The user_data[] structure element contains the output data for the DP
slave.

sys_event

user_data[]

B8976071/03 DP Programming Interface

87

5.13 Reading the Input Data of a DP Slave

unsigned short int dpn_in_slv (struct dpn_interface far * ptr)

With this function, a DP application can read out the current input data
of a DP slave. The data are taken from the local data buffer of the CP.
The image of the data buffer is updated cyclically as long as the DP
master is in one of the modes CLEAR or OPERATE.

5.13.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr Address of the DP slave
ptr -> length 255
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The stat_nr structure element contains the L2 address of the selected
DP slave.

The length structure element contains the size of the structure element
user_data[].

Here, the value 255 must be entered.

Call Function

Description

reference

stat_nr

length

DP Programming Interface B8976071/03

88

5.13.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length Number of input bytes
ptr -> error_code Error identifier
ptr -> slv_state Operating status of the DP slave
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] Input data of the DP slave

The length structure element contains the number of input data in the
user_data[] structure element.

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The entry of DPN_NO_ERROR in the error_code structure element
simply means that the input data could be ent ered in the local
data buffer of the CP.

Whether the input data of the DP sl ave are va lid must be
determined by evaluating the structure el ements slv_state
(operat ing status of the DP sl ave) and sys_state (mode of the DP
master).

The slave only sends the input data to the DP master when it is in
the productive ph ase. If this is the case when the slv_state
structure element contains one of the following values:

➢➢ DPN_SLV_STAT_READY or

➢➢ DPN_SLV_STAT_READY_DIAG

The DP master must also be in one of the modes CLEAR or
OPERATE, in other words the sys_state structure element must
have one of the following values:

➢➢ DPN_SYS_CLEAR or

➢➢ DPN_SYS_OPERATE

The structure element slv_state contains the current operating status of
the DP slave.

The possible operating statuses are described in Section 4.8.2.

length

error_code

☞☞

slv_state

B8976071/03 DP Programming Interface

89

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

The structure element user_data[] contains the input data of the DP
slave.

The format of the input data is described in Chapter 6.

sys_state

sys_event

user_data[]

DP Programming Interface B8976071/03

90

5.14 Reading the Input Data of Several DP Slaves

unsigned short int dpn_in_slv_m (struct dpn_interface_m far *
ptr)

With this function, a DP application can read out the current input data
of several DP slaves. The application receives an image of the local
data buffer of the CP. The image is updated cyclically.

Within the dpn_interface_m structure, there is a dpn_interface_s
structure for every DP slave. The structure of the dpn_interface_s
structure corresponds to that of the dpn_interface structure.

When using the function, remember the following differences
compared with the dpn_in_slv() function call:

➢ The input data of a slave must not exceed 32 bytes.

➢ The addressed slaves must be obtainable via the same CP.

➢ A maximum of 32 slaves can be addressed.

➢ Unused structure elements (dpn_interface_s) must be marked as
invalid using the DPN_IF_S_UNUSED entry in the stat_nr
structure element.

From the return value of the function call, it is possible to recognize
whether an error occurred with a single structure element. If an error
occurs (return value ≠ DPN_NO_ERROR), the return value contains
the error ID of the first incorrect structure element. The processing of
the function call is aborted if an error is detected in a structure
element.

Call Function

Description

B8976071/03 DP Programming Interface

91

5.14.1 Values of the "dpn_interface_s" Structures

ptr -> dpn_if_single[x].reference Handle of the DP application (only relevant in the
first valid structure)

ptr -> dpn_if_single[x].stat_nr Address of the DP slave or DPN_IF_S_UNUSED;
ptr -> dpn_if_single[x].length irrelevant
ptr -> dpn_if_single[x].error_code irrelevant
ptr -> dpn_if_single[x].slv_state irrelevant
ptr -> dpn_if_single[x].sys_state irrelevant
ptr -> dpn_if_single[x].sys_event irrelevant
ptr -> dpn_if_single[x].user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element. The handle only needs to be entered
in the first valid dpn_interface_s structure.

The stat_nr structure element contains the L2 address of the selected
DP slave.

If a dpn_interf ace_s structure is not used, the constant
“DPN_IF_S_UNUSED“ must be entered here. This entry marks the
structure as invalid.

reference

stat_nr

☞☞

DP Programming Interface B8976071/03

92

5.14.2 Return Parameters of the "dpn_interface_s" Structures

ptr -> dpn_if_single[x].reference unchanged
ptr -> dpn_if_single[x].stat_nr unchanged
ptr -> dpn_if_single[x].length Number of valid bytes in user_data[]
ptr -> dpn_if_single[x].error_code Error identifier
ptr -> dpn_if_single[x].slv_state Status of the DP slave
ptr -> dpn_if_single[x].sys_state Mode of the DP master
ptr -> dpn_if_single[x].sys_event Event messages
ptr -> dpn_if_single[x].user_data[] Input data of the DP slave

The length structure element contains the number of input data in the
user_data[] structure element.

The error_code structure element indicates the result of the job
processing. This is only valid when the return parameter of the function
call is DPN_NO_ERROR. The remaining return parameters of the
dpn_interface_s structure are only valid when no error occurred
(DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The entry of DPN_NO_ERROR in the error_code structure element
simply means that the input data could be ent ered in the local
data buffer of the CP.

Whether the input data of the DP sl ave are va lid must be
determined by evaluating the structure el ements slv_state
(operat ing status of the DP sl ave) and sys_state (mode of the DP
master).

The slave only sends the input data to the DP master when it is in
the productive ph ase. If this is the case when the slv_state
structure element contains one of the following values:

➢➢ DPN_SLV_STAT_READY or

➢➢ DPN_SLV_STAT_READY_DIAG

The DP master must also be in one of the modes CLEAR or
OPERATE, in other words the sys_state structure element must
have one of the following values:

➢➢ DPN_SYS_CLEAR or

➢➢ DPN_SYS_OPERATE

The structure element slv_state contains the current operating status of
the DP slave.

The possible operating statuses are described in Section 4.8.2.

length

error_code

☞☞

slv_state

B8976071/03 DP Programming Interface

93

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

The structure element user_data[] contains the input data of the DP
slave.

The format of the input data is described in Chapter 6.

5.14.3 Return Value of the Function

The return value indicates whether an error occurred in one or more
dpn_interface_s structure elements. The CP was only able to process
the function if no error occurred (DPN_NO_ERROR). If an error
occurs, processing is aborted.

If no error occurred, the return parameters of the individual
dpn_interface_s structures must be evaluated.

sys_state

sys_event

user_data[]

DP Programming Interface B8976071/03

94

5.15 Setting the Mode of the DP Master

unsigned short int dpn_set_mode (struct dpn_interface far * ptr)

The mode of the DP master can be changed using this function. This
function can only be called by a central application (see Section 5.1.3).

The following DP modes can be set:

Mode Description
OFFLINE There is no DP communication.
STOP Communication possible only with a DP master Class 2. There is no

communication with the DP slaves.
CLEAR The DP slaves are assigned parameters and configured and data is

transferred, in the output direction 0 bytes are sent to the DP slaves.
OPERATE Productive data exchange with the DP slaves.

When setting a new mode, no modes must be skipped. Starting
from the current mode, the modes must be run through in the
prescribed order OFFLINE -> STOP -> CLEAR -> OPERATE (in
ascending or descending order). The current operating status can be
read out using the dpn_get_mode() call.

Following a dpn_set_mode() call, the subsequent dpn_get_mode()
calls must check whether the required mode has been set. Another
new mode can only be set after the first one has been achieved.

Remember that there is no change to the OPERATE mode, if the
AUTOCLEAR event is indicated in the sys_event return parameter.

You want to set the OPERATE mode. The dpn_get_mode() call
determines that the current mode is STOP. By calling dpn_set_mode(),
the CLEAR mode must first be set. The OPERATE mode can only be
set after the CLEAR mode has been adopted.

Call Function

Description

☞☞

Example of
Maintaining the
Correct Order

B8976071/03 DP Programming Interface

95

5.15.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length irrelevant
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state New mode
ptr -> sys_event irrelevant
ptr -> user_data[0] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The structure element contains the new mode of the DP master.

Values in sys_state Mode
DPN_SYS_OFFLINE OFFLINE
DPN_SYS_STOP STOP
DPN_SYS_CLEAR CLEAR
DPN_SYS_OPERATE OPERATE

reference

sys_state

DP Programming Interface B8976071/03

96

5.15.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr irrelevant
ptr -> length irrelevant
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] irrelevant

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The sys_state structure element contains the mode of the DP master
that was valid when the job was sent.

The possible modes are described in Section 4.8.3.

Note: Since setting a new mode requires certain activities by
the DP master, the value determined may differ from
the current set value.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

error_code

sys_state

sys_event

B8976071/03 DP Programming Interface

97

5.16 Querying the Mode of the DP Master

unsigned short int dpn_get_mode (struct dpn_interface far * ptr)

The current mode of the DP master can be determined using this
function.

The DP master can be in one of the following modes:

Mode Description
OFFLINE There is no DP communication
STOP Communication possible only with a DP master Class 2. There is also no

communication with DP slaves.
CLEAR The DP slaves have parameters assigned and are configured and data is

transferred, in the output direction 0 bytes are sent to the DP slaves.
OPERATE Productive data exchange with the DP slaves.

5.16.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length irrelevant
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

Call Function

Description

reference

DP Programming Interface B8976071/03

98

5.16.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr irrelevant
ptr -> length irrelevant
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[] irrelevant

The error_code structure element is identical to the return parameter of
the function call. The remaining return parameters of the dpn_interface
structure are only valid if no error occurred (DPN_NO_ERROR).

The possible error identifiers are described in Section 4.4.

The sys_state structure element contains the current mode of the DP
master.

Return Parameters in sys_state Mode
DPN_SYS_OFFLINE OFFLINE
DPN_SYS_STOP STOP
DPN_SYS_CLEAR CLEAR
DPN_SYS_OPERATE OPERATE

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

error_code

sys_state

sys_event

B8976071/03 DP Programming Interface

99

5.17 Acyclic Transmission of a Control Frame

unsigned short int dpn_global_ctrl (struct dpn_interface far * ptr)

With this function, a DP application can send control commands to one
slave, a group of slaves, several groups or all DP slaves. The control
commands are sent to the DP slaves using a broadcast or a multicast
frame.

A broadcast frame is intended for all DP slaves.

A multicast frame is intended for several DP slaves.

The following control commands can be transferred with the function
call:

Control Command Effect on the DP slaves
FREEZE The states of the inputs are read in and frozen.
UNFREEZE The freezing of the inputs is canceled.
SYNC Output is frozen.
UNSYNC The UNSYNC command cancels the SYNC command.

Control commands are only effective with standard slaves.

Call Function

Description

☞☞

DP Programming Interface B8976071/03

100

5.17.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr slave address
ptr -> length >= 1
ptr -> error_code irrelevant
ptr -> slv_state Control_Command
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[0] Group_identifier

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

The stat_nr structure element contains the L2 address of a single DP
slave or the global address. If the control frame is intended for a single
DP slave, the L2 address between 0 and 125 must be entered here. If
a group or several groups or all slaves are addressed by the control
frame, the global address is entered for which the constant
DPN_GROUP_ADR is defined in the dpn_user.h include file.

Here a value >= 1 must be entered.

The control command of the call is entered here. The following values
can be set:

Possible Entries Command
DPN_FREEZE FREEZE
DPN_UNFREEZE UNFREEZE
DPN_SYNC SYNC
DPN_UNSYNC UNSYNC

The group_identifier is entered in the user_data[0] structure element.
The group_identifier selects the slave group (s) to be addressed. The
group_identifier of a DP slave is specified when you create the DP
database and the slave is informed of the identifier during parameter
assignment.

A total of up to eight different groups can be created and selected
using the individual bits of the group_identifier.

If the value "3" in is entered in user_data[0], this selects groups "1" and
"2" since bits 0 and 1 are set to “1” in the group_identifier.

To select all DP standard slaves, the constant DPN_SELECT_ALL
must be entered in user_data[0] and the constant DPN_GROUP_ADR
in the stat_nr structure element. The constants are defined in the
dpn_user.h include file.

reference

stat_nr

length

slv_state

user_data[0]

Example of a
Group

Selecting All
Slaves

B8976071/03 DP Programming Interface

101

5.17.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr unchanged
ptr -> length unchanged
ptr -> error_code Error identifier
ptr -> slv_state unchanged
ptr -> sys_state Mode of the DP master
ptr -> sys_event Event messages
ptr -> user_data[0] unchanged

The error_code structure element is identical to the return parameter of
the function call.

The possible error identifiers are described in Section 4.4.

The entry of the constant “DPN_NO_ERROR“ in the error_code
structure element simply means that the control commands were
sent to the slaves. There is no confirmat ion that the job has been
executed since the control frames are not ack nowledged by the
DP slaves.

The sys_state structure element contains the current mode of the DP
master.

The possible modes are described in Section 4.8.3.

The structure element sys_event identifies event messages during DP
communication.

The possible event messages are described in Sections 3.4 and 4.8.4.

error_code

☞☞

sys_state

sys_event

DP Programming Interface B8976071/03

102

5.18 How a DP Application Logs Off

unsigned short int dpn_reset (struct dpn_interface far * ptr)

This call deletes the handle of the application and the resources
assigned to the application are released.

Depending on the type and number of DP applications, various actions
are executed:

Situation at the Time of the Call Action
No further DP applications are logged on. In this case, the entire DP communication is

terminated. All allocated resources are
released.

Other DP applications are active. In this case, the output data of those DP
slaves assigned to the DP application are set
to 0.

This function must be called before a DP application is
terminated.

If a DP application is t erminated due to an error wit hout the
dpn_reset() ca ll, a safe system status can only be gu aranteed
when the DP application had p reviously set a watchdog time
using the dpn_wd() function call.

Reason:
Without the dpn_wd() call, the DP master would continue to output
data to the DP slaves cyclically although the DP application is no
longer active.

Call Function

☞☞

☞☞

B8976071/03 DP Programming Interface

103

5.18.1 Call Parameters

ptr -> reference Handle of the DP application
ptr -> stat_nr irrelevant
ptr -> length irrelevant
ptr -> error_code irrelevant
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The handle returned with the dpn_init() function call must be entered in
the reference structure element.

5.18.2 Return Parameters

ptr -> reference unchanged
ptr -> stat_nr irrelevant
ptr -> length irrelevant
ptr -> error_code Error identifier
ptr -> slv_state irrelevant
ptr -> sys_state irrelevant
ptr -> sys_event irrelevant
ptr -> user_data[] irrelevant

The error_code structure element is identical to the return parameter of
the function call.

The possible error identifiers are described in Section 4.4. ❑

reference

error_code

DP Programming Interface B8976071/03

104

NOTES

B8976071/03 DP Programming Interface

105

6 Data Storage

This chapter describes the structure of the various data structures used by
the call functions of the DP programming interface, as follows:

➢ Structure of the input and output data

➢ Structure of the diagnostic data

➢ Structure of the bus parameters

➢ Structure of the slave parameters

➢ Structure of the configuration data

DP Programming Interface B8976071/03

106

6.1 Structure of the Input and Output Data

The input and output data of a DP slave are stored contiguously
starting from the user_data[0] structure element. The length structure
element of the dpn_interface structure contains the number of valid
bytes of the data area.

Output data sent to the DP slaves must be entered in the data area by
the DP application before the function dpn_out_slv() or
dpn_out_slv_m().

With functions that return data, the entry is made by the CP. These
functions include dpn_in_slv(), dpn_in_slv_m() and dpn_read_slv().
The first two of these functions return the input data of one or more DP
slaves while the dpn_read_slv() function returns the current output data
from the local data buffer of the CP.

The order of the data corresponds to the configured input/output ports
of the DP slaves.

Analog values are an exception: see below

Example: The input ports of an ET 200B-16 DI station are read
using the function dpn_in_slv(). The input value of port
0 is entered in the user_data[0] structure element, the
input value of port 1 is entered in the user_data[1]
structure element.

With older ET 200U stations that do not conform to the standard, the
data are stored as follows:

➢ First, the analog values are stored in the order of the configured
analog slots.

➢ Following these, the binary values are stored in the order of the
configured digital modules.

The following order is necessary for storing values in the word format:

First, the high byte (lower order address) of the word is entered
followed by the low byte (higher order address).

This order does not corres pond to the fo rmat of processors of the
8086 family!

On older ET 200U stations that do not conform to the standard (DP
Siemens), data storage for word access corresponds to the format of
the processors of the 8086 family:

First, the low byte (less significant address) and then the high byte
(more significant address) of the word is entered.

Contiguous
Storage

Order of the Data

Exception:
Analog Values

Format of the Data
Storage for Word
Access

☞☞

Exception: older
ET 200 stations

B8976071/03 DP Programming Interface

107

6.2 Structure of the Diagnostic Data with Standard Slaves

The typical length of diagnostic data is between 6 and 32 bytes. The
maximum possible length is 244 bytes. Diagnostic data have the
structure described below.

Byte Meaning
Byte 1 Station_status_1
Byte 2 Station_status_2
Byte 3 Station_status_3
Byte 4 Diag.Master_Add
Bytes 5,6 Ident_Number
Bytes 7-32 Ext_Diag_Data

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Bit 7: Diag.Master_Lock

The DP slave has already been assigned parameters by another
master, in other words the local master does not currently have access
to this slave.

Bit 6: Diag.Prm_Fault

This bit is set by the DP slave if the last parameter assignment frame
was incorrect (for example wrong length, wrong ident number, invalid
parameters).

Bit 5: Diag.Invalid_Slave_Response

This bit is set as soon as an implausible response is received from an
addressed DP slave.

Bit 4: Diag.Not_Supported

This bit is set whenever a function is requested that is not supported by
the particular slave (for example the SYNC mode is requested
although the slave does not support this mode).

Overview

Station_status_1

DP Programming Interface B8976071/03

108

Bit 3: Diag.Ext_Diag

This bit is set by the DP slave. If the bit is set, there must be a
diagnostic entry in the slave-specific diagnostic area (Ext_Diag_Data).
If the bit is not set, there may be a status message in the slave-specific
diagnostic area (Ext_Diag_Data). The meaning of the status message
must be negotiated with each specific application.

Bit 2: Diag.Cfg_Fault

This bit is set when the configuration data last sent by the master do
not match those determined by the DP slave, in other words when
there is a configuration error.

Bit 1: Diag.Station_Not_Ready

This bit is set when the DP slave is not yet ready for productive data
exchange.

Bit 0: Diag.Station_Non_Existent

This bit is set by the DP master if the DP slave cannot be reached via
the bus. If this bit is set, the diagnostic bits contain the status of the last
diagnostic message or the initial value. The DP slave always sets this
bit to zero.

B8976071/03 DP Programming Interface

109

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Bit 7: Diag.Deactivated

This bit is set when the DP slave is marked as inactive in the local
parameter data record and has been taken out of cyclic processing.

Bit 6: reserved

Bit 5: Diag.Sync_Mode

This bit is set by the DP slave as soon as it receives the sync control
command.

Bit 4: Diag.Freeze_Mode

This bit is set by the DP slave as soon as it receives the freeze control
command.

Bit 3: Diag.WD_On (Watchdog on)

This bit is set by the DP slave. If this bit is set to 1, the watchdog
monitoring is activated on the DP slave.

Bit 2:

This bit is always set to 1 by the DP slave.

Bit 1: Diag.Stat_Diag (Static Diagnostics)

If the DP slave sets this bit, the DP master must fetch diagnostic
information and continue to fetch it until the bit is cleared again. The
DP slave, for example, sets this bit when it is not capable of providing
valid user data.

Bit 0: Diag.Prm_Req

If the DP slave sets this bit, it requires a new parameter assignment
and must be reconfigured. This bit remains set until the slave has had
parameters assigned to it.

Note: If bit 1 and bit 0 are set, bit 0 has the higher priority.

Station_status_2

DP Programming Interface B8976071/03

110

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Bit 7: Diag.Ext_Diag_Overflow

If this bit is set, there is more diagnostic information than specified in
Ext_Diag_Data. The DP slave sets this bit, for example, when there is
more channel diagnostic data than the DP slave can enter in its send
buffer. The DP master also sets this bit when the DP slave sends more
diagnostic data than the DP master can accommodate in its diagnostic
buffer.

Bit 0-6: reserved

The address of the DP master that assigned parameters to this DP
slave is entered in this byte. If the DP slave has not been assigned
parameters by a DP master, the DP slave sets the address 255 in this
byte.

The vendor's identifier is assigned for a DP slave type. This identifier
can be used on the one hand for test purposes and on the other for
precise identification of the slave.

The DP slave can enter its specific diagnostic data in this area. A field
structure is necessary with a header byte both for the device and for
the identifier-related diagnostics.

Station_status_3

Diag.Master_Add

Ident_Number

Ext_Diag_Data

B8976071/03 DP Programming Interface

111

6.2.1 Device-related Diagnostics

MSB LSB
7 6 5 4 3 2 1 0
Bit 7, bit 6
always 00

Block length in bytes including
header byte 2 to header byte 63

This field contains general diagnostic information such as
overtemperature, undervoltage or overvoltage. The specific coding
depends on the device. For further information, the Ident_Number is
necessary.

6.2.2 Identifier-related Diagnostics

A bit is reserved for each identifier byte assigned during the
configuration. The entries are always rounded up to byte boundaries
and the non-configured bits are set to 0. If a bit is set, this means that
there is diagnostic information in this I/O area.

MSB LSB
7 6 5 4 3 2 1 0
Bit 7, bit 6
always 01

Block length in bytes including
header byte 2 to header byte 63

MSB LSB
7 6 5 4 3 2 1 0

Bit 0: Identifier byte 0 contains diagnostic information
Bit 1: Identifier byte 1 has diagnostic information

"

Bit 7: Identifier byte 7 has diagnostic information

Header Byte

Header Byte

Bit Structure for
Identifier-related
Diagnostics

DP Programming Interface B8976071/03

112

6.2.3 Channel-related Diagnostics

This field contains the diagnosed channels and the reason for the
diagnostic information for each channel one after the other. The length
of each entry is 3 bytes.

MSB LSB
7 6 5 4 3 2 1 0
Bit 7, bit 6
always 10

Identifier number 0 to 63

MSB LSB
7 6 5 4 3 2 1 0
Input/output
00 reserved
01 input
10 output
11 input/output.

Channel number 0 to 63

With identifier bytes that contain both inputs and outputs, bits 7 and 6
of the channel number contain the direction of the diagnosed channel.

MSB LSB
7 6 5 4 3 2 1 0
Channel type
000 reserved
001 bit
010 2 bits
011 4 bits
100 byte
101 word
110 2 words
111 reserved

Error type

Error type:

0 reserved
1 short-circuit
2 undervoltage
3 overvoltage
4 overload
5 overtemperature
6 line break
7 upper limit value exceeded
8 lower limit value exceeded
9 error
10-15 reserved
16-31 vendor-specific

Byte 1:
Identifier Number

Byte 2:
Channel Number

Byte 3:
Type of
Diagnostics

B8976071/03 DP Programming Interface

113

6.2.4 Example: Structure of the Diagnostic Information

MSB LSB
7 6 5 4 3 2 1 0

Device-related diagnostics: 0 0 0 0 0 1 0 0
The meaning of the bits is Device-specific
specified by the vendor diagnostic field

with length 3

Identifier-related diagnostics: 0 1 0 0 0 1 0 1
ID number 0 with diag. info. 0 0 0 0 0 0 0 1
ID number 1 with diag. info. 0 0 0 1 0 0 0 0
ID number 18 with diag. info. 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0
Channel-related diagnostics:
ID number 0 1 0 0 0 0 0 0 0
Channel 2 0 0 0 0 0 0 1 0
Overload, channel organized in
bits

0 0 1 0 0 1 0 0

ID number 12 1 0 0 0 1 1 0 0
Channel 6 0 0 0 0 0 1 1 0
Upper limit value exceeded,
channel organized in words

1 0 1 0 0 1 1 1

DP Programming Interface B8976071/03

114

6.3 Diagnostic Data of Non-standard Slaves

In various older versions of the ET 200U, ET 200K and ET 200B
station types, the structure of the diagnostic information is different
from today’s standard. The structure of the data with these types is
explained below.

6.3.1 Diagnostic Data of the ET 200U
Byte 1 Station diagnostic information
Byte 2 Station status
Byte 3-6 Module diagnostic information

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Bit 0: irrelevant
Bit 1: Station cannot be controlled
Bit 2: Parameter assignment error (module identifier)
Bit 3: Single error (module removed)
Bit 4: No load voltage
Bit 5: Output incorrectly activated
Bit 6: irrelevant
Bit 7: Extended diagnostics activated

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Bit 0-2: irrelevant
Bit 3: Watchdog monitoring activated
Bit 4: S5-100 slow mode set
Bit 5: No further diagnostic message is generated
Bit 6: irrelevant
Bit 7: No new data are written to the outputs

General Structure

Structure of the
Station Diagnostic
Information

Structure of the
Station Status

B8976071/03 DP Programming Interface

115

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following assignment:

Byte 3:

Bit 0: Module in slot 0
Bit 1: Module in slot 1
Bit 2: Module in slot 2

....(etc.)

Byte 6:

Bit 7: Module in slot 31

If a bit is set to 1, an error has occurred on the corresponding module.

6.3.2 Diagnostic Data of the ET 200K/B

Byte 1 Status byte 1
Byte 2 Status byte 2
Byte 3-6 Diagnostic port A-D

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Bit 0: RESET was triggered
Bit 1: Watchdog timer expired
Bit 2: Diagnostic error
Bit 3: Error with EEPROM write command
Bit 4: Ports were frozen
Bit 5: Output to ports is disabled
Bit 6-7: irrelevant

Structure of the
Module Diagnostic
Information

General Structure

Structure of
Status Byte 1

DP Programming Interface B8976071/03

116

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Bit 0: irrelevant
Bit 1=0:Watchdog deactivated
Bit 2: irrelevant
Bit 3: irrelevant
Bit 4-6: irrelevant
Bit 7: EEPROM connected

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Byte 3 (Diagnostic Port A):

Bit 0: Input A0 error
Bit 1: Input A1 error

.....

Bit 7: Input A7 error

Byte 4 (Diagnostic Port B):

Bit 0: Input B0 error
Bit 1: Input B1 error

.....

Bit 7: Input B7 error

Byte 5 (Diagnostic Port C):

Bit 0: Input C0 error
Bit 1: Input C1 error

.....

Bit 7: Input C7 error

Byte 6 (Diagnostic Port D):

Bit 0: Input/output D0 error
Bit 1: Input/output D1 error

.....

Bit 7: Input/output D7 error

Structure of
Status Byte 2

Structure of the
Diagnostic Ports
(A-D) in ET 200K
Stations

B8976071/03 DP Programming Interface

117

Of the ET 200B devices, only type ET 200B 16DQ has diagnostic
capability. The diagnostic ports are only relevant with this type.

MSB LSB
7 6 5 4 3 2 1 0

Byte 3 (Diagnostic Channel Group 0):

The individual bits have the following significance:

Bit 0=0:Overload, output short-circuit
Bit 1-6: irrelevant
Bit 7=0:Fuse defective, no load voltage

Byte 4 (Diagnostic Channel Group 1):

Bit 0=0:Overload, output short-circuit
Bit 1-6: irrelevant
Bit 7=0:Fuse defective, no load voltage

Structure of the
Diagnostic Ports
(A-D) in ET 200B
Stations

DP Programming Interface B8976071/03

118

6.4 Structure of the Bus Parameters

The bus parameters have the following structure:

Name of the Parameter Type (Intel format)
Reserved unsigned16
FDL_Add unsigned8
Baudrate unsigned8
TSL *) unsigned16

minTSDR *) unsigned16

maxTSDR *) unsigned16

TQUI *) unsigned8

TSET *) unsigned8

TTR *) unsigned32

G *) unsigned8
HSA *) unsigned8
max_retry_limit *) unsigned8
Bp_Flag unsigned8
Min_Slave_Interval unsigned16
Poll_Timeout unsigned16
Data_Control_Time unsigned16

*) These parameters are described in DIN 19245 Part 1.

L2 address of the DP master.

Code number for the transmission rate

Code Number Transmission Rate
0 9.6 Kbps
1 19.2 Kbps
2 93.75 Kbps
3 187.5 Kbps
4 500 Kbps
5 375 Kbps
6 750 Kbps
7 1.5 Mbps
8 3 Mbps
9 6 Mbps
10 12 Mbps

FDL_Add

Baudrate

B8976071/03 DP Programming Interface

119

MSB LSB
7 6 5 4 3 2 1 0

Bit 7 (Error_Action_Flag)

Bit 7=0: no mode change if error occurs

Bit 7=1: mode change if error occurs (AUTOCLEAR)

Bit 0-6 reserved

This time is important when sending control frames and in the gap
between polling cycles. For a detailed description of the parameter
refer to Section 3.7.4.

Time unit: 5 ms

This time is used to monitor the communication between the DP
master Class 1 and a DP master Class 2 (DP diagnostic unit). For a
detailed description of the polling timeout refer to Section 3.7.3.

Time unit: 50 ms

This time is required for the AUTOCLEAR function. A detailed
description of the data control time can be found in Section 3.7.2.

Time unit: 50 ms

Bp_Flag

Min_Slave_Interval

Poll_Timeout

Data_Control_Time

DP Programming Interface B8976071/03

120

6.5 Structure of the Slave Parameters

The slave parameters consist of the following components

➢ Sl_Flag, slave type, octet string

➢ Parameter assignment data

➢ Configuration data

➢ Add-Tab list

➢ Slave-User-Data

The components listed above can be read out with the
dpn_read_slv_par() call function. This function is described in
Chapter 5.

6.5.1 Sl_Flag, Slave Type, Octet String

These slave parameter components have the following structure:

Name Type
Sl_Flag unsigned8
Slave type unsigned8
Octet 1 (reserved) unsigned8
....
Octet 12 (reserved) unsigned8

This parameter contains slave-related flags.

MSB LSB
7 6 5 4 3 2 1 0

Bit 7 (Active)

Bit 7 = 0: DP slave is not activated.

Bit 7 = 1: DP slave is activated.

Bit 6 (New_Prm)

Bit 6 = 0: DP slave receives user data.

Bit 6 = 1: DP slave receives new parameter assignment data.

Bits 0-5

These bits are reserved

Overview

Sl_Flag

B8976071/03 DP Programming Interface

121

This parameter contains a vendor-specific type identifier for the slave
unit.

Range: 0 to 28-1

0 DP standard slave

1 to 15 reserved

16 to 255 vendor-specific

Slave Type

DP Programming Interface B8976071/03

122

6.5.2 Parameter Assignment Data

The parameter assignment data consist of bus-specific data and DP
slave-specific data.

Type : Octet string

Length : Ideally 7 to 32

Octet Number Meaning
Octet 1 Station_status
Octet 2 WD_Fact_1
Octet 3 WD_Fact_2
Octet 4 Min. Station Delay Responder
Octet 5-6 Ident_Number
Octet 7 Group_Ident
Octet 8 to 32 User_Prm_Data

Structure of the station_status:

MSB LSB
7 6 5 4 3 2 1 0

The individual bits have the following significance:

Bits 7 and 6 Lock_Req and Unlock_Req

Bit 7 Bit 6 Meaning of the Bit Combinations
0 0 The min TSDR is overwritten when parameters are assigned. All other

parameters remain unchanged.
0 1 The DP slave is enabled for other masters.
1 0 The DP slave is disabled for other masters, all parameters are adopted

(exception: min TSDR = 0).

1 1 The DP slave is enabled for other masters.

Bit 5 Sync_Req

This bit indicates to the slave that it must operate in the Sync mode as
soon as the command is transferred with the dpn_global_crtl() function.
If the CP slave does not support the Sync command, it sets the bit
Diag.Not_Supported in the diagnostic information.

Bit 4 Freeze_Req

This bit indicates to a DP slave that it must operate in the freeze mode
as soon as the command is transferred with the dpn_global_ctrl()
function. If the DP slave does not support the freeze command, it sets
the bit Diag.Not_Supported in the diagnostic information.

Station_status

B8976071/03 DP Programming Interface

123

Bit 3 Watchdog

If this bit is set to 0, the watchdog monitoring is deactivated. If the bit is
set, the watchdog monitoring is activated on the DP slave.

Bits 2, 1, 0

These bits are reserved for future expansions. If no expansions are
implemented on a DP slave and one of these bits is set, the bit
Diag.Not_Supported is set in the diagnostic information.

These two bytes contain factors for setting the watchdog time (TWD).

The watchdog ensures that if this time expires after a DP master has
failed, the outputs are set to a safe state.

TWD [ms] = 10 ms * WD_Fact_1 * WD_Fact_2

This is the time that the DP slave must wait before it is allowed to send
its response frames to the DP master.

Unit: bit times

This number is assigned by the vendor. The DP slave only accepts
parameter assignment frames when the Ident_Number transferred with
the parameter assignment data matches its own Ident_Number.

With this parameter, a group can be formed for the dpn_glb_ctrl()
function. Each bit represents a group. The Group_Ident is only
accepted when the Lock_Req bit is set.

These bytes can be used for parameters specific to the DP slave (for
example diagnostic filter, controller parameters). The meaning and
range of values are specified by the vendor.

WD_Fact_1
WD_Fact_2

Min. Station Delay
Responder

Ident_Number

Group_Ident

User_Prm_Data

DP Programming Interface B8976071/03

124

6.5.3 Configuration Data

The configuration data contain the size of the input and output data
areas and information about the data consistency.

The length of the configuration data is ideally 1 to 32. If necessary
however, up to 244 bytes are possible.

Input and output areas can be grouped together and described by an
identifier byte.

Structure of the identifier byte

MSB LSB
7 6 5 4 3 2 1 0

Bits 0-3 Length of the data

00 1 byte or 1 word

...

15 16 bytes or 16 words

Bits 5,4 Input/output

00 Special identifier formats
01 Input
10 Output
11 Input/output

Bit 6 Length

0 Byte (byte structure)
1 Word (word structure)

Bit 7 (Consistency)

0 Byte or word
1 Total length

Length

Structure

B8976071/03 DP Programming Interface

125

6.5.4 Special Identifier Formats

Special identifier formats allow the configuration to be extended by
increasing the flexibility.

MSB LSB
7 6 5 4 3 2 1 0

Bits 0-3 Length of the vendor-specific data

These bits contain the length of the vendor-specific data.

Bits 4,5

These bits are always set to 0.

Bits 7,6 Input/output

00 Empty
01 1 length byte for inputs follows.
10 1 length byte for outputs follows.
11 1 length byte for outputs and

1 length byte for inputs follow.

MSB LSB
7 6 5 4 3 2 1 0

Bits 0-5 length of the inputs/outputs

00 1 byte or 1 word
...
63 64 bytes or 64 words

Bit 6 Length

0 Byte (byte structure)
1 Word (word structure)

Bit 7 Consistency

0 Byte or word
1 Total length

Oct.1 1 1 0 0 0 0 1 1 Output/input, 3 bytes of vendor-specific data
Oct.2 1 1 0 0 1 1 1 1 Consistency, output, 16 words
Oct.3 1 1 0 0 0 1 1 1 Consistency, input, 8 words
Oct.4 Vendor-
Oct.5 specific
Oct.6 data

❑

Structure of the
Identifier

Structure of the
Length Byte

Example of a
Special Identifier
Format

DP Programming Interface B8976071/03

126

NOTES

B8976071/03 DP Programming Interface

127

7 Creating DOS Applications

To create DP applications, you require the following files from the
installation diskette:

Files on the Installation Diskette Meaning
DP library Library of the DP programming interface.
DP include file DP-specific declarations and constants for the

DP programming interface.
SCI library Library with functions for accessing the driver of

the CP.

The DP library and the SCI library must be linked to the DP
application. The DP include file provides the required declarations and
constants for the DP application.

The following table shows the compiler versions for which the DP
library is available. The corresponding columns of the table show which
files are required for creating the DP application. For example, to
create a Borland DOS application, you must link the libraries
lddpnbc.lib and ldscitc.lib to the DP application.

Compiler

Files

Microsoft
 MSVC 1.x

Borland C++
V 4.x

Comment

DP library lddpnmsc.lib lddpnbc.lib DP library for DOS in
the large model.

DP include file dpn_user.h dpn_user.h DP-specific
declarations.

SCI library ldscimsc.lib ldscitc.lib These libraries must be
linked to the DP
application.

The ldscimsc.lib library was created with Microsoft Visual C++ Version
1.52 and the ldscitc.lib library was created with TurboC++ Version 1.0.

When compiling the DP application, the define command DPN_DOS
must be activated (for example using a compiler switch). This define
command is required by the dpn_user.h include file and must be
made available by the user.

Libraries and
Include Files
Required

Overview of the
Components

Note

DP Programming Interface B8976071/03

128

7.1 Environment Under DOS

This chapter provides you with information about using a DP
application under DOS.

The two modes

➢ single board mode

➢ multiboard mode

are possible.

Fig. 7.1 illustrates the single board mode of a DP application under
DOS. The DP application accesses one CP.

DOS application

PROFIBUS CP

PROFIBUS

PG/PC

DP library

Fig. 7.1: Single Board Mode under DOS

Overview

Single Board Mode

B8976071/03 DP Programming Interface

129

You can install more than one PROFIBUS CP in one computer. In the
multiboard mode, a DP application accesses more than one CP as
shown in Fig. 7.2.

PROFIBUS CP

PROFIBUS

PG/PC

DOS application
DP library

PROFIBUS CP

Fig. 7.2: Multiboard Mode with Two Modules

In the multiboard mode, the PROFIBUS modules must be connected to
different buses. Each of these CPs acts as the DP master controlling
the DP slaves on its bus.

Operat ion of more than one DP master in the same PG/PC and on
the same bus leads to conflicts and is therefore not permitted.

The DP library supports up to two CP modules.

Multiboard mode

Requirements for
the Multiboard
Mode

☞☞
Number of
PROFIBUS
Modules in the
Multiboard Mode

DP Programming Interface B8976071/03

130

7.2 Logging On a DP Application

A DOS application must log on using the function dpn_init() for every
CP module with which it wants to communicate. This function must be
called before all other DP functions.

The function call specifies the following characteristics of the DP
application and makes them known to the CP (for a detailed
description, see Chapter 5).

➢ The number of the PROFIBUS module with which the DP
application communicates.

➢ The type and environment of the DP application.

➢ The rights of access to the DP slaves.

If the dpn_init() is successful, a reference (handle) to the selected CP
is returned. The reference must be used with all further function calls to
this CP in the reference element of the dpn.interface structure.

Parameter Possible Entries Comment
reference.board_select 1 - 2 Number of the CP
reference.access (DPN_SYS_CENTRAL) |

(DPN_ROLE_CENTRAL)

(DPN_SYS_NOT_CENTRAL) |
(DPN_ROLE_NOT_CENTRAL)

Type and environment of the
DP application (see also
Chapter 5)

user_data[n]
where n=0 to 125

DPN_SLV_WRITE_READ
DPN_SLV_READ
DPN_SLV_NO_ACCESS

Rights of access to DP slaves
(see also Chapter 5)

Using this parameter, a DP application identifies itself to the DP master
when using the dpn_init() call. According to the table above, the two
following entries are permitted under DOS:

➢ (DPN_SYS_CENTRAL) | (DPN_ROLE_CENTRAL)

➢ (DPN_SYS_NOT_CENTRAL) | (DPN_ROLE_NOT_CENTRAL)

General

Call Parameters

reference.access
for dpn_init() under
DOS

B8976071/03 DP Programming Interface

131

The following table shows the different responses of the DP master to
these entries.

(DPN_SYS_CENTRAL) |
(DPN_ROLE_CENTRAL)

(DPN_SYS_NOT_CENTRAL) |
(DPN_ROLE_NOT_CENTRAL)

Setting the
mode of the
DP master

The mode of the DP master must
be set by the DP application using
the dpn_set_mode() function call.
The mode can be changed at any
time.

Following the dpn_init() call, the DP
master automatically changes to the
OPERATE mode.

Available DP
functions

All the DP functions of the DP
programming interface can be
used.

The following DP function calls are
not permitted:
dpn_load_bus_par()
dpn_set_mode()
dpn_global_ctrl()

Miscellaneous If AUTOCLEAR was configured,
the DP master automatically
changes to the CLEAR mode if an
error occurs.

The AUTOCLEAR function is
disabled.

DP Programming Interface B8976071/03

132

7.2.1 Examples of Logging On a DP Application

The following examples show the basic procedure for logging on in the
single board and multiboard modes. The examples have been
simplified to make them easier to understand. For example, the return
value is not checked which it should always be in a real DP application.

One CP is installed in a computer. Three DP slaves are connected to
the bus and have the L2 addresses 3, 4 and 7. DP slave no. 3 has only
input ports, DP slave no. 4 has only output ports and DP slave no. 7
has both input and output ports.

After the dpn_init() function call, the DP master will change
automatically to the OPERATE mode. For this reason, the identifier
(DPN_SYS_NOT_CENTRAL | DPN_ROLE_NOT_CENTRAL) is
entered in the reference.access structure.

The dpn_ptr pointer in the example points to the dpn_interface
structure.

The initialization call could appear as follows:

dpn_ptr -> reference.board_select = 1;
dpn_ptr -> reference.access = (DPN_SYS_NOT_CENTRAL) |

(DPN_ROLE_NOT_CENTRAL);
dpn_ptr -> length = 8; // Index 0 to 7
dpn_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[3] = DPN_SLV_READ;
dpn_ptr -> user_data[4] = DPN_SLV_WRITE_READ;
dpn_ptr -> user_data[5] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[6] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[7] = DPN_SLV_WRITE_READ;
error = dpn_init (dpn_ptr);

Example:
Single Board Mode

DOS application

PROFIBUS CP

PROFIBUS

PG/PC

DP library

B8976071/03 DP Programming Interface

133

Two CPs are installed in one computer. Each CP is connected to a
separate bus segment.

The arrangement of the slaves on bus 1 is the same as in the example
above for the single mode board. The DP master for bus 1 changes
automatically to the OPERATE mode after the dpn_init() function call.

One DP slave with L2 address 3 is connected to bus 2. The DP slave
has only output ports. In contrast to bus no. 1, the DP application will
set the OPERATE mode. For this reason, the identifier
(DPN_SYS_CENTRAL | DPN_ROLE_NOT_CENTRAL) is entered in
the reference.access structure element.

The dpn1_ptr pointer points to the dpn_interface structure of bus 1.
The dpn2_ptr pointer points to the dpn_interface structure of bus no. 2.

The initialization calls of the DP application could appear as follows:

dpn1_ptr -> reference.board_select = 1;
dpn1_ptr -> reference.access = (DPN_SYS_NOT_CENTRAL)|

(DPN_ROLE_NOT_CENTRAL);
dpn1_ptr -> length = 8; // Index 0 to 7
dpn1_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[3] = DPN_SLV_READ;
dpn1_ptr -> user_data[4] = DPN_SLV_WRITE_READ;
dpn1_ptr -> user_data[5] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[6] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[7] = DPN_SLV_WRITE_READ;
error = dpn_init (dpn1_ptr);

dpn2_ptr -> reference.board_select = 2;
dpn2_ptr -> reference.access = (DPN_SYS_CENTRAL) |

(DPN_ROLE_CENTRAL);
dpn2_ptr -> length = 4; // Index 0 to 3
dpn2_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn2_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn2_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn2_ptr -> user_data[3] = DPN_SLV_WRITE_READ;
error = dpn_init (dpn2_ptr);
// Here, set the mode of bus no. 2 using the
// function calls dpn_set_mode()
// and dpn_get_mode(). See Chapter 5 of the DP description

Example:
Multiboard Mode

PROFIBUS CP

PROFIBUS

PG/PC

DOS application
DP library

PROFIBUS CP

DP Programming Interface B8976071/03

134

7.3 Porting DP Applications of the TF-5412 Product

The present DP programming interface continues to support the
interface functions of the TF-5412/MS-DOS, Windows product.

The old interf ace calls of the TF 5412/MS-DOS, W indows product
must only be used for the sl aves listed in the corres ponding
manual.

When DP applications are created new, only the new DP call
functions (described in Chapter 5) can be used.

Simultaneous use of “new” and “old” (TF 5412/ MS-DOS,
Windows) function calls in a DP application is not permitted.

The AUTOCLEAR function that can be set with the COML DP
configuration tool has no effect with older applications.

Porting involves the following two steps:

➢ New translation of the application with one of the compilers listed
in Chapter 7. Here, the “old” dp_user.h include file must be
replaced by the "new" dp_user.h include file from the installation
diskette (do not confuse this with the dpn_user.h include file).

➢ The libraries lddpnmsc.lib and ldscimsc.lib (Microsoft
applications) or lddpnbc.lib and ldscitc.lib (Borland applications)
from the installation diskette must be linked.

When porting old applications, only the range of functions described in
the TF 5412 /MSDOS, Windows manual (Chapter 8) is supported. This
means, among other things:

➢ Access possible to only one CP

➢ Maximum number of DP slaves = 31

➢ No multitasking mode permitted

➢ Operation possible only under DOS

☞☞

☞☞

☞☞

☞☞

Procedure

Restrictions

B8976071/03 DP Programming Interface

135

➢ Owing to the different hardware and software architecture, the
dynamic response can change compared with the CP 5412 (A1).

➢ The ET 200 initialization function dp_init() expects the first
transferred parameter to be a pointer to the path and name of a
database created with COM ET 200. Instead of this pointer, a
ZERO pointer can now be transferred as an option if a database
created with the new COML DP configuration tool is being used.
In contrast to the CP 5412 (A1), a database created with
COML DP is not loaded by the DP application but along with the
firmware during the startup phase. Of course, the pointer to the
database can continue to be transferred with the dp_init() call if
no database is being used that was created with COML DP.

➢ If an error occurs, the return parameters (error IDs) of the
function calls may be different from those of the old ET 200 DP
library.

➢ The granularity of the watchdog function with the dp_wd() of the
old DP library (CP 5412 (A1)) is 320 ms. With the CP 5412 (A2),
the granularity of this function is now 400 ms.

➢ On the CP 5412 (A1), the dp_dia_s() diagnostic function does
not return diagnostic data when communication to the DP slave
is interrupted. On the CP 5412 (A2), the last received diagnostic
data are returned even when the communication between the
DP master and DP slave is interrupted.

➢ If the watchdog time expires due to an error in the DP
application after calling the dp_wd() function, a further dp_wd()
call must be made to allow data exchange with the DP slaves to
be resumed. ❑

Differences
Compared with the
CP 5412 (A1)

DP Programming Interface B8976071/03

136

NOTES

B8976071/03 DP Programming Interface

137

8 Creating Windows Applications

The Microsoft operating systems Windows 3.x in enhanced mode,
Windows 95 and Windows NT are supported.

The DP library is made available under Windows as a DLL (Dynamic
Link Library).

The DP include file makes the necessary declarations and constants
available to the DP application.

To create DP applications under Windows, you require the following
files from the installation diskette.

Files of the Installation Diskette File Name Created with Meaning
DP Library lwdpnbc.dll BC++ 4.0 BC++ 4.0

DP functions in a DLL
DP Import Library lwdpnbc.lib BC++ 4.0 BC++ 4.0

DP function prototypes
DP Include File dpn_user.h DP-specific declarations and

constants

To create DP applications under Windows 95 and Windows NT, you
require the following files from the installation diskette.

Files of the Installation Diskette File Name Crated with Meaning
DP Library dplib.dll See product

information
DP functions in a DLL

DP Import Library dplib.lib See product
information

DP function prototypes

DP Include File dpn_user.h DP-specific declarations and
constants

When compiling the DP application, the define statement DPN_WIN
must be activated (for example with compiler switches). This define
statement is required by the dpn_user.h include file and must be
provided by the user .

Supported
Windows Versions

Libraries and
Include Files
Required

Windows 3.x

Windows 95 and
Windows NT

Constants

DP Programming Interface B8976071/03

138

8.1 Environment Under Windows

This section provides you with information about using a DP
application under Windows.

A distinction must be made between the modes:

➢ Single board/multiboard mode

➢ Single user/multi-user mode

The possible combinations are explained in the following sections.

Fig. 8.1 illustrates the situation for the single board and single user
mode. Here only one DP Windows application accesses one
PROFIBUS CP.

Windows application

PROFIBUS CP

PROFIBUS

PG/PC

DP dynamic link library (DLL)

Fig. 8.1: Single Board/Single User Mode

Overview

Single Board
Mode/Single User
Mode

B8976071/03 DP Programming Interface

139

In this case, several DP Windows applications access one common
PROFIBUS CP.

PROFIBUS CP

PROFIBUS

PG/PC

DP dynamic link library (DLL)

Windows
application

Windows
application

Fig. 8.2: Single Board/Multi-User Mode

Single Board
Mode/Multi-User
Mode

DP Programming Interface B8976071/03

140

More than one PROFIBUS CP can be installed in one computer. In
the multiboard/single user mode, one DP Windows application
accesses more than one PROFIBUS CP as shown in Fig. 8.3.

Windows application

PROFIBUS CP

PROFIBUS

PG/PC

DP dynamic link library (DLL)

PROFIBUS CP

Fig. 8.3: Multiboard/Single User Mode

More than one PROFIBUS CP can be installed in one computer. In
the multiboard/multi-user mode, more than one DP Windows
application accesses more than one PROFIBUS CP as shown in Fig.
8.4.

PROFIBUS CP

PROFIBUS

PG/PC

DP dynamic link library (DLL)

PROFIBUS CP

Windows
application

Windows
application

Fig. 8.4: Multiboard/Multi-User Mode

Multiboard/Single
User Mode

Multiboard/Multi-
User Mode

B8976071/03 DP Programming Interface

141

In the multiboard mode, the CPs must be connected to different buses.
Each of these CPs controls the DP slaves of the bus as the DP master.

Operat ing more than one DP master in the same PC/PG and on
the same bus leads to conflicts and is therefore not permitted.

The DP-DLL supports a maximum of two PROFIBUS modules.

The DP-DLL supports a maximum of four DP Windows applications.

A maximum of two CPs and four applications can be supported at
the same time. Remember that the logging on of one DP application
at two CPs (two log on calls are required) is handled like the logging
on of two applications , in other words after this log on, two further
applications can also log on.

Example 1:

The DP applications 1, 2 and 3 log on for access to CP 1. DP
application 4 logs on for access to CP 2. All the logons (provided they
are not contradictory) are acknowledged positively.

A further DP application 5 wants to log on at module 2. The log on is
acknowledged negatively since four applications are already logged on.

Example 2:

The DP application 1 logs on at CPs 1 and 2. DP application 2 also
logs on at CPs 1 and 2. Assuming that all four logons were
acknowledged positively, DP application 3 then attempts to log on at
CP 1.

This log on is acknowledged negatively since the log on of DP
application 1 (2) on CPs 1 and 2 is treated as a log on of 2 DP
applications. This means that at the time when DP application 3
attempts to log on, a total of four DP applications are already logged
on.

Requirements for
the Multiboard
Mode

☞☞

Number of
PROFIBUS
Modules in the
Multiboard Mode

Number of
DP Windows
Applications

☞☞

DP Programming Interface B8976071/03

142

8.2 Logging On a DP Windows Application

A Windows application must log on using the dpn_init() function at
every PROFIBUS module with which it wants to communicate. This
function must be called before all other DP functions.

Along with the function call, the following characteristics of the DP
application are specified and made known to the CP (for a detailed
description see Chapter 5):

➢ The number of the CP

➢ Type and environment of the DP application

➢ Rights of access to the DP slaves

If successful, the dpn_init() function returns a reference (handle) to the
CP. The reference must be entered in all further function calls to this
DP in the reference element of the dpn_interface structure.

Parameter Possible Entries Comment
reference.board_
select

1 - 2 Number of the CP

reference.access (DPN_SYS_CENTRAL) |
(DPN_ROLE_CENTRAL)

(DPN_SYS_CENTRAL) |
(DPN_ROLE_NOT_CENTRAL)

(DPN_SYS_NOT_CENTRAL) |
(DPN_ROLE_NOT_CENTRAL)

Type and
environment of the
DP application

user_data[n]
where n=0 to 125

DPN_SLV_WRITE_READ
DPN_SLV_READ
DPN_SLV_NO_ACCESS

Right of access to
DP slaves

Using this structure element, a DP application must identify itself to the
DP programming interface when using the dpn_init() call. According to
the table above. the following entries are permitted under Windows:

➢ (DPN_SYS_CENTRAL) | (DPN_ROLE_CENTRAL)

➢ (DPN_SYS_NOT_CENTRAL) | (DPN_ROLE_NOT_CENTRAL)

➢ (DPN_SYS_CENTRAL) | (DPN_ROLE_NOT_CENTRAL)

General

Call Parameters

reference.access
with dpn_init()
under Windows

B8976071/03 DP Programming Interface

143

The table below, shows the different responses of the DP-DLL to the
possible entries.

Setting the Type of the
Application

Meaning Available DP
Functions

(DPN_SYS_CENTRAL) |
(DPN_ROLE_CENTRAL)

The DP application is a
central application. The
mode of the DP master
must be set by the DP
application using the
dpn_set_mode()
function call. The mode
can be changed at any
time.

All the DP functions
of the DP-DLL can
be used.

(DPN_SYS_CENTRAL) |
(DPN_ROLE_NOT_
CENTRAL)

The DP application is
not a central
application. Another DP
application exists. This
other DP application is a
central application. It
must set the mode of
the DP master.

The following DP
function calls are not
permitted:
dpn_load_bus_par()
dpn_set_mode()
dpn_ global_ctrl().

(DPN_SYS_NOT_
CENTRAL) |
(DPN_ROLE_NOT_
CENTRAL)

The DP application is
not a central
application. The DP
master changes
automatically to the
OPERATE mode after
the dpn_init() call since
there is no central
application in the
system.

The following DP
function calls are not
permitted:
dpn_load_bus_par()
dpn_set_mode()
dpn_global_ctrl()

AUTOCLEAR:
The AUTOCLEAR
function (see Section
3.7.6) has no effect
with the
DPN_SYS_NOT_
CENTRAL setting.

DP Programming Interface B8976071/03

144

If more than one DP Windows application logs on at the same CP,
remember the following rules:

Rule 1 Only one of the DP applications can log on as the central
DP application (DPN_ROLE_CENTRAL).

Rule 2 All DP applications must enter the same value as the DP
application environment (either DPN_SYS_CENTRAL or
DPN_SYS_NOT_CENTRAL).

Rule 3 No more than one DP application can send output data to
any one DP slave. For this reason, when the access rights
to a particular slave x are assigned, the identifier
DPN_SLV_ WRITE_READ (write output data/read input
data) must only be assigned by one DP Windows
application.

Special Case:
Multi-User/Single
Board Mode

B8976071/03 DP Programming Interface

145

8.2.1 Examples of Logging On Under Windows

The following examples show the basic log on procedure for DP
applications in the single board and multiboard mode. To make them
clearer, the examples have been simplified. There is for example no
check of the return value which should always be the case in a real
application.

One CP is installed in a computer. Three DP slaves are connected to
the bus and have the L2 addresses 3, 4 and 7. DP slave no. 3 has only
input ports, DP slave no. 4 has only output ports and DP slave no. 7
has both input and output ports.

After the dpn_init() function call, the DP master will change
automatically to the OPERATE mode. For this reason, the identifier
(DPN_SYS_NOT_CENTRAL | DPN_ROLE_NOT_CENTRAL) is
entered in the reference.access structure.

The dpn_ptr pointer in the example points to the dpn_interface
structure.

The initialization call could appear as follows:

dpn_ptr -> reference.board_select = 1;
dpn_ptr -> reference.access = (DPN_SYS_NOT_CENTRAL) |

(DPN_ROLE_NOT_CENTRAL);
dpn_ptr -> length = 8; // Index 0 to 7
dpn_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[3] = DPN_SLV_READ;
dpn_ptr -> user_data[4] = DPN_SLV_WRITE_READ;
dpn_ptr -> user_data[5] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[6] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[7] = DPN_SLV_WRITE_READ;
error = dpn_init (dpn_ptr);

Two CPs are installed in one computer. Each CP is connected to a
separate bus segment.

The arrangement of the slaves on bus 1 is the same as in the example
above for the single mode board. The DP master for bus 1 changes
automatically to the OPERATE mode after the dpn_init() function call.

One DP slave with L2 address 3 is connected to bus 2. The DP slave
has only output ports. In contrast to bus no. 1, the DP application will
set the OPERATE mode. For this reason, the identifier
(DPN_SYS_CENTRAL) is entered in the reference.access structure
element.

The dpn1_ptr pointer points to the dpn_interface structure of bus 1.
The dpn2_ptr pointer points to the dpn_interface structure of bus no. 2.

Example 1:
Single Board-/
Single User Mode

Windows application

PROFIBUS CP

PROFIBUS

PG/PC

DP dynamic link library (DLL)

Example 2:
Multiboard-/Multi-
User Mode

PROFIBUS CP

PROFIBUS

PG/PC

DP dynamic link library (DLL)

PROFIBUS CP

Windows
application

Windows
application

DP Programming Interface B8976071/03

146

The initialization calls of the DP application could appear as follows:

dpn1_ptr -> reference.board_select = 1;
dpn1_ptr -> reference.access = (DPN_SYS_NOT_CENTRAL) |

(DPN_ROLE_NOT_CENTRAL);
dpn1_ptr -> length = 8; // Index 0 to 7
dpn1_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[3] = DPN_SLV_READ;
dpn1_ptr -> user_data[4] = DPN_SLV_WRITE_READ;
dpn1_ptr -> user_data[5] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[6] = DPN_SLV_NO_ACCESS;
dpn1_ptr -> user_data[7] = DPN_SLV_WRITE_READ;
error = dpn_init (dpn1_ptr);

dpn2_ptr -> reference.board_select = 2;
dpn2_ptr -> reference.access = (DPN_SYS_CENTRAL) |

(DPN_ROLE_CENTRAL);
dpn2_ptr -> length = 4; // Index 0 to 3
dpn2_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn2_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn2_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn2_ptr -> user_data[3] = DPN_SLV_WRITE_READ;
error = dpn_init (dpn2_ptr);
// Here, set the mode of Bus no. 2 using the
// function calls dpn_set_mode()
// and dpn_get_mode(). See Chapter 5 of the DP description

One CP is installed in a computer. Three DP slaves are connected to
the bus and have the L2 addresses 3, 4 and 7. DP slave no. 3 has only
input ports, DP slave no. 4 has only output ports and DP slave no. 7
has both input and output ports.

Two DP Windows applications access the CP.

Following the first dpn_init() function call, the DP master will change
automatically to the OPERATE mode.

The dpn_ptr pointer points to the dpn_interface structure.

Example 3:
Single Board/
Multi-User Mode

PROFIBUS CP

PROFIBUS

PG/PC

DP dynamic link library (DLL)

Windows
application

Windows
application

B8976071/03 DP Programming Interface

147

The initialization calls of the DP applications could appear as follows:

Application 1:

dpn_ptr -> reference.board_select = 1;
dpn_ptr -> reference.access = (DPN_SYS_NOT_CENTRAL) |

(DPN_ROLE_NOT_CENTRAL);
dpn_ptr -> length = 8; // Index 0 to 7
dpn_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[3] = DPN_SLV_READ;
dpn_ptr -> user_data[4] = DPN_SLV_WRITE_READ;
dpn_ptr -> user_data[5] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[6] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[7] = DPN_SLV_READ;
error = dpn_init (dpn_ptr);

Application 2:

dpn_ptr -> reference.board_select = 1;
dpn_ptr -> reference.access = (DPN_SYS_NOT_CENTRAL) |

(DPN_ROLE_NOT_CENTRAL);
dpn_ptr -> length = 8; // Index 0 to 7
dpn_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[3] = DPN_SLV_READ;
dpn_ptr -> user_data[4] = DPN_SLV_READ;
dpn_ptr -> user_data[5] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[6] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[7] = DPN_SLV_WRITE_READ;
error = dpn_init (dpn_ptr);

Remember that the right of access DPN_SLV_WRITE_READ for one
DP slave can only be requested by one of the two DP applications.

DP Programming Interface B8976071/03

148

One CP is installed in a computer. Three DP slaves are connected to
the bus and have the L2 addresses 3, 4 and 7. DP slave no. 3 has only
input ports, DP slave no. 4 has only output ports and DP slave no. 7
has both input and output ports.

Two DP applications access the CP.

In contrast to example number 3, one of the two DP Windows
applications will set the OPERATE mode itself. For this reason, the
identifier (DPN_SYS_CENTRAL | DPN_ROLE_NOT_CENTRAL) is
entered in the reference.access structure element.

The dpn_ptr pointer points to the dpn_interface structure.

The initialization calls of the DP Windows applications could appear as
follows:

Application 1:

dpn_ptr -> reference.board_select = 1;
dpn_ptr -> reference.access = (DPN_SYS_CENTRAL) |

(DPN_ROLE_NOT_CENTRAL);
dpn_ptr -> length = 8; // Index 0 to 7
dpn_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[3] = DPN_SLV_READ;
dpn_ptr -> user_data[4] = DPN_SLV_WRITE_READ;
dpn_ptr -> user_data[5] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[6] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[7] = DPN_SLV_READ;
error = dpn_init (dpn_ptr);

Application 2:

dpn_ptr -> reference.board_select = 1;
dpn_ptr -> reference.access = (DPN_SYS_CENTRAL) |

(DPN_ROLE_CENTRAL);
dpn_ptr -> length = 8; // Index 0 to 7
dpn_ptr -> user_data[0] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[1] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[2] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[3] = DPN_SLV_READ;
dpn_ptr -> user_data[4] = DPN_SLV_READ;
dpn_ptr -> user_data[5] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[6] = DPN_SLV_NO_ACCESS;
dpn_ptr -> user_data[7] = DPN_SLV_WRITE_READ;
error = dpn_init (dpn_ptr);
// Here set the mode using the
// function calls dpn_set_mode()
// and dpn_get_mode().

Example 4:
Single Board/Multi-
User Mode

PROFIBUS CP

PROFIBUS

PG/PC

DP dynamic link library (DLL)

Windows
application

Windows
application

B8976071/03 DP Programming Interface

149

9 Creating Unix Applications

The following Unix variants are supported by the DP library:

➢ Interactive

➢ SCO

➢ Solaris

Remember that these variants have their own special features.

The DP library was compiled under C++. To create UNIX applications,
you therefore require either:

➢ a C++ compiler

or

➢ the library libC.a of the C++ compiler and a standard C
compiler.

Note:
There is no official C++ compiler for the Interactive variant. The
freeware GNU compiler is, however available.

To create DP applications under Windows, you require the following
files from the installation diskette.

Files of the Installation
Diskette

File Name Meaning

FDL Library libfdl.a FDL function prototypes
DP Library libdp.a DP function prototypes
DP Include File dpn_user.h DP-specific declarations and

constants

When compiling the DP application, the define statement DPN_UNIX
must be activated (for example with compiler switches).

This define statement is required by the dpn_user.h include file and
must be provided by the user .

When linking the DP application, make sure that the library is specified
in the order libdp.a - libfdl.a.

Versions of Unix
Supported

Compiler

Libraries and
Include Files
Required

Constants

☞☞

Linker

DP Programming Interface B8976071/03

150

The following example shows a makefile for the DP_Demo program. It
consists of a source file DEMO.C and the necessary libraries.

#---
makefile : DP_Demo
#---

#---
Directives & Variables
#---

.SILENT:

.SUFFIXES: .C .o

CC = CC
LINKER = CC

CFLAGS = -DDPN_UNIX

OBJECTS = demo.o
LIBS = libdp.a libfdl.a
DEMO = DP_Demo

#---
Source Instructions
#---

all: $(DEMO)

$(DEMO): makefile $(OBJECTS) $(LIBS)
echo "creating $@ ..."
$(CC) $(OBJECTS) $(LIBS) -o $(DEMO)
echo "make was successful"

.C.o:
echo "compiling $< ..."
$(CC) $(CFLAGS) -c $<

#---
End
#---

Example: makefile

B8976071/03 Index

151

Index

AUTOCLEAR 19; 56
CLEAR 18
Close functions 32
COML DP 15
Configuration 15
Consistency 17
Control command 22
Control functions 32
CP 5412 (A1) 9
Data control time 27
Data transfer functions 32
database 26
Database functions 32
Diagnostic data 16
Diagnostic messages 15
DIN 19245 1
Distributed I/Os 1
DP 1
DP application 46; 49
DP application environment 54
DP application type 55
DP applications under Windows 137; 149
DP function 49
DP import library 137; 149
DP include file 127; 137; 149
DP library 9; 127; 137; 149
DP master 8
DP master class 1 8
DP master class 2 20
DP slaves 8
dpn_get_mode() 49; 97
dpn_global_crtl() 49
dpn_global_ctrl() 99
dpn_in_slv() 49; 87
dpn_in_slv_m() 49; 90
dpn_init() 49; 50
dpn_interface 33; 38
dpn_interface_m 33; 38
dpn_interface_s 38
dpn_load_bus_par() 49; 63
dpn_out_slv() 49; 77
dpn_out_slv_m() 49; 80
dpn_read_bus_par() 49; 61
dpn_read_cfg() 49; 71

dpn_read_slv() 49; 84
dpn_read_slv_par() 49; 66
dpn_read_sys_info() 49; 75
dpn_reset() 49; 102
dpn_set_mode() 49; 94
dpn_set_slv_state() 49; 69
dpn_slv_diag() 49; 73
dpn_user.h 127; 137; 149
dpn_wd() 49; 58
error_code structure element 36
ET 200B 7
ET 200C 7
ET 200U 7
FREEZE mode 23
Global control 22
Group identification 22
Initialization functions 32
Input data 16
lddpnbc.lib 127
lddpnmsc.lib 127
ldscimsc.lib 127
ldscitc.lib 127
lwdpnbc.dll 137; 149
lwdpnbc.lib 137; 149
Multiboard mode 10
OFFLINE 18
OPERATE 18
Output data 16
Parameter assignment 15
Parameter matrix 40
Poll timeout 27
PROFIBUS DP 1
SCI library 127
Single board mode 10
Single user operation 10
STOP 18
Structure of a slave parameter data record 105
Structure of the bus parameter data record 105
Structure of the configuration data 105
Structure of the diagnostic data 105
Structure of the input and output data 105
SYNC mode 23
Watchdog 27

Index B8976071/03

152

NOTES

B8976071/03 Glossary

153

Glossary

Logical address of a module in S7 systems.

Bus parameters control the data transmission on the bus. Each ->
station on the -> SINEC L2 network must use bus parameters that
match those of other stations.

Part of a -> subnet. Subnets can consist of bus segments and
connectivity devices such as repeaters and bridges.

Communication Function Block: A communication technique for
program-controlled transmission of data from or to a CPU in an S7-
300/400 using special function blocks. These function blocks were
defined based on the IEC 1131-5 draft. The communication partners
can be other modules with communication capabilities in an S7-
300/400, operator stations, PCs or other controllers and computers.

Configuration tool for configuring -> DP masters in -> SINEC L2.

Communications Processor. Module for communication tasks.

Device master data (DMD) contain DP slave descriptions complying
with DIN E 19245 Part 3. Using DMD makes configuration of the -> DP
master and -> DP slaves easier.

Input and output modules used at a distance (distributed) from the CPU
(central processing unit of the controller). The connection between the
programmable controller and the distributed I/Os is established on ->
SINEC L2. The programmable logic controllers do not recognize any
difference between these I/Os and local process inputs and outputs.

DP slaves have a modular design. A -> DP slave has at least one DP
I/O module.

The DP I/O type identifies a -> DP I/O module. The following types
exist:

Input module
Output module
Input/output module

A -> station with master functions in -> SINEC L2 DP. The DP master
controls the exchange of user data with the -> DP slaves assigned to it.

The DP module list contains the modules belonging to a -> DP slave.
You make entries in the DP module list when configuring a -> DP
master with -> COML DP.

Name of a -> DP I/O module entered in the ->DP module list.

Base address

Bus parameters

Bus segment

CFB

COML DP

CP

Device master
data

Distributed I/Os

DP I/O module

DP I/O type

DP master

DP module list

DP module
name

Glossary B8976071/03

154

Type identifier of a -> DP I/O module in the -> device master data of a
-> DP slave complying with DIN E 19245 Part 3.

A -> station with slave functions in -> SINEC L2 DP.

The DP slave catalog contains the device descriptions of -> DP slaves
required for configuring -> DP masters according to the -> DP
standard. The DP slave catalog is available when configuring with ->
COML DP.

A DP slave name is entered in the DP slave list to identify a -> DP
slave in the DP configuration.

SINEC L2 subnet in which only -> distributed I/Os are operated.

A -> DP master and all -> DP slaves with which this DP master
exchanges data.

Software required for the data transfer between applications and the ->
CP.

Enhanced mode under 3.x for personal computers with an Intel 386 or
compatible processor.

Fieldbus Data Link. Layer 2 in -> PROFIBUS.

A message from one PROFIBUS station to another.

A frame header consists of an identifier for the -> frame and the source
and destination address.

A frame trailer consists of a checksum and the end identifier of the ->
frame.

The FREEZE mode is a DP mode in which process data are acquired
at the same time and fetched from all (or a group of) DP slaves. The
time at which the data are acquired is indicated in the FREEZE
command (a synchronization control frame).

A free address area (gap) between two active -> stations is checked
cyclically by the station with the lower -> L2 address to find out whether
or not another station is requesting to enter the logical ring. The cycle
time for this check is as follows:

gap update factor x target rotation time

Intelligent connectivity device that connects different types of local
area -> networks at OSI layer 7.

Collection of data that may be distributed within the programmable
logic controller (for example flags/memory bits or data blocks) to be
transferred using the -> global data technique.

DP module type

DP slave

DP slave
catalog

DP slave name

DP subnet

DP subsystem

Driver

Enhanced mode

FDL

Frame

Frame header

Frame trailer

FREEZE mode

Gap update
factor

Gateway

GD packet

B8976071/03 Glossary

155

A GD group is a group of -> stations that exchange global data with
each other. A -> GD packet is sent to the stations belonging to the GD
group.

Global data (GD) is the name of a communication technique for the
cyclic exchange of limited amounts of data from STEP 7 data areas
between CPUs of the S7-300/400. Transmitted data can be received
by several CPUs at the same time.

Part of the I/O area of SIMATIC S5 PLCs can be used for global data
exchange between SIMATIC S5 PLCs on -> SINEC L2. The main
characteristic of this technique is the cyclic transmission of data that
have changed since the last cycle.

DP slaves can be assigned to one or more groups using a group
identifier. The -> control frames can be addressed to specific groups of
DP slaves using the group identifier.

A -> bus parameter for -> SINEC L2. This specifies the highest -> L2
address (HSA) of an active -> station on the SINEC L2 bus. L2
addresses higher than the highest station address are possible for
passive stations (possible values: HSA 1 to 126).

The L2 address is a unique identifier for a -> station connected to ->
SINEC L2 (PROFIBUS). The L2 address is transferred in the -> frame
to address a -> station.

Least Significant Bit.

An active station in -> SINEC L2 that can send -> frames on its own
initiative when it is in possession of the token.

A -> bus parameter for -> SINEC L2. The maximum station delay
(max. TSDR) specifies the longest interval required by a -> station in
the -> subnet between receiving the last bit of an unacknowledged ->
frame and sending the first bit of the next frame. After sending an
unacknowledged frame, a sender must wait for the max. TSDR to
elapse before sending a further frame.

A -> bus parameter for -> SINEC L2. The minimum station delay (min.
TSDR) specifies the minimum time that the receiver of a -> frame
must wait before sending the acknowledgment or sending a new frame.
The min. TSDR takes into account the longest interval required by a
station in the subnet for receiving an acknowledgment after sending a
frame.

Most Significant Bit.

A network consists of one or more interconnected -> subnets with any
number of -> stations. Several networks can exist side by side. There
is a common -> node table for every -> subnet.

GD group

Global data

Global I/Os

Group identifier

Highest L2
address

L2 address

LSB

Master

Maximum
station delay

Minimum
station delay

MSB

Network

Glossary B8976071/03

156

The node table applies to all -> networks within a -> system. Each
entry in the node table describes the interface between a
programmable logic controller (or any other station) and a -> subnet.
The entries in the subnet are used by the system to locate and
establish connections between stations.

The length of the reserved area at the beginning of a data buffer of the
FDL programming interface.

The process image is a special memory area in the programmable
logic controller. At the start of the cyclic program, the signal states of
the input modules are transferred to the process image of the inputs. At
the end of the cyclic program, the process image of the outputs is
transferred to the output modules

A fieldbus complying with DIN 19245.

DP mode complying with DIN E 19245 Part 3.

PROFIBUS PA is a recommendation of the PROFIBUS users'
organization extending PROFIBUS DIN 19245 to include aspects of
intrinsic safety.

A set of rules governing data transmission. Using these rules, both the
formats of the messages and the data flow during transmission can be
specified.

All the -> masters on -> SINEC L2 (PROFIBUS) form a logical token
ring. Within this token ring, the token is passed on from station to
station. If the transmission of the token is incorrect or if a master is
removed from the ring, this leads to an error when the token is passed
on (the token is not accepted by this station) and the station is
excluded from the ring. The number of exclusions is counted in the
internal token_error_counter. If this counter reaches an upper limit
value, the logical token ring is then reorganized.

Diagnostic software for -> SINEC L2 with which the traffic on the ->
network can be recorded and analyzed.

Synonym for -> bus segment.

Services provided by a communication protocol.

A -> bus parameter for -> SINEC L2. The setup time specifies the
minimum interval on the sender between receiving an acknowledgment
and sending a new call frame.

Siemens Network and Communication. Product name for -> Siemens
networks and network components.

SINEC bus system for industrial applications based on PROFIBUS.

SINEC L2 distributed I/Os. Transmission services complying with
PROFIBUS DIN E 19245 Part 3.

Node table

Offset

Process image

PROFIBUS

PROFIBUS DP

PROFIBUS PA

Protocol

Reorganization
token ring

SCOPE L2

Segment

Services

Setup time

SINEC

SINEC L2

SINEC L2 DP

B8976071/03 Glossary

157

A -> station with master functions in -> SINEC L2 DP.

SINEC L2 Fieldbus Message Specification. Upper sublayer of layer 7
of the ISO/OSI reference model for PROFIBUS.

A bus parameter for -> SINEC L2. The slot time (TSL) is the time
during which the sender of a -> frame waits for the acknowledgment
from the receiver before detecting a timeout.

A station is identified by an -> L2 address in the -> SINEC L2 network.

A subnet is part of a -> network whose -> bus parameters (for example
-> L2 addresses) must be matched. It includes the bus components
and all attached stations. Subnets can, for example, be connected
together by -> gateways to form a network.
A -> system consists of several subnets with unique -> subnet
numbers. A subnet consists of several ->stations with unique -> L2
addresses.

A -> system consists of several -> subnets with unique subnet
numbers.

The SYNC mode is a DP mode in which several or all -> DP slaves
transfer data to their process outputs at a certain time. The time at
which the data is transferred is indicated in the SYNC command (a
control command for synchronization).

All the electrical equipment within a system. A system includes, among
other things, programmable logic controllers, devices for operation and
monitoring, bus systems, field devices, actuators, supply lines.

A -> bus parameter for -> SINEC L2. The token represents the right to
transmit for a -> station on SINEC L2. A station compares the actual
token rotation time it has measured with the target rotation time and
depending on the result can then send high or low priority frames.

Transmission rate on the bus (unit in bits per second). A -> bus
parameter for -> SINEC L2. The set or selected transmission rate
depends on various conditions, for example distance across the
network.

A monitoring time that can be set for a -> DP slave so that it detects
the failure of the -> DP master to which it is assigned.

SINEC L2 DP
master

SINEC L2 FMS

Slot time

Station

Subnet

Subnet number

SYNC mode

System

Target rotation
time

Transmission
rate

Watchdog

Glossary B8976071/03

158

NOTES

❑

