
� �Easy Screen (BE2)

SINUMERIK

SINUMERIK 840D sl
Easy Screen (BE2)

Programming Manual

Valid for

Control:
SINUMERIK 840D sl/840DE sl

Software:
CNC software V4.4
SINUMERIK Operate V4.4

09/2011
6FC5397-1DP40-2BA0

Introduction
 1

How do I create a
configuration?

 2

Variables
 3

Programming commands
 4

Graphic and logic elements
 5

"Custom" operating area
 6

PLC softkeys
 7

Reference lists
 A

Legal information

Legal information
Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE
indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation for the specific task, in particular its warning notices and
safety instructions. Qualified personnel are those who, based on their training and experience, are capable of
identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products
Note the following:

WARNING
Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be adhered to. The information in the relevant documentation must be observed.

Trademarks
All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Industry Sector
Postfach 48 48
90026 NÜRNBERG
GERMANY

 order number: 6FC5397-1DP40-0BA0
Ⓟ 01/2011

Copyright © Siemens AG 2010.
Technical data subject to change

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 3

Table of contents

1 Introduction.. 7

1.1 "Easy Screen" range of functions ..7

1.2 Fundamentals of Configuration..9

1.3 Structure of configuration file ...11

1.4 Troubleshooting (log book) ..13

2 How do I create a configuration? ... 15

2.1 Defining start softkeys..15
2.1.1 Functions for start softkeys ..17

2.2 Structure and elements of a dialog ..21
2.2.1 Defining a dialog ..21
2.2.2 Defining dialog properties ..23
2.2.3 Defining dialog elements..27
2.2.4 Example Opening the Dialog ...29
2.2.5 Defining dialogs with multiple columns ..30
2.2.6 Using display images/graphics ..31

2.3 Defining softkey menus..33
2.3.1 Changing softkey properties during runtime ..36
2.3.2 Language-dependent text ..38

2.4 Configuring the online help ..41

3 Variables.. 43

3.1 Defining variables ..43

3.2 Application examples ...45

3.3 Example 1: Assigning the variable type, texts, help display, colors, tooltips...............................47

3.4 Example 2: Assigning the Variable Type, Limits, Attributes, Short Text Position properties49

3.5 Example 3: Assigning the Variable Type, Default, System or User Variable, Input/Output
Field Position properties ..50

3.6 Examples relating to toggle field and image display..51

3.7 Variable parameters...52

3.8 Details on the variable type..55

3.9 Details on the toggle field...59

3.10 Details on the default setting..61

3.11 Details on the position of the short text, position of the input/output field62

3.12 Use of strings ...63

3.13 CURPOS variable ..65

Table of contents

 Easy Screen (BE2)
4 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

3.14 CURVER variable ... 66

3.15 ENTRY variable .. 67

3.16 ERR variable ... 68

3.17 FILE_ERR variable.. 69

3.18 FOC variable ... 71

3.19 S_CHAN variable .. 72

4 Programming commands... 73

4.1 Operators .. 73
4.1.1 Mathematical operators... 73
4.1.2 Bit operators.. 76

4.2 Methods... 78
4.2.1 CHANGE... 78
4.2.2 FOCUS.. 80
4.2.3 LOAD... 81
4.2.4 LOAD GRID .. 82
4.2.5 UNLOAD ... 83
4.2.6 OUTPUT.. 84
4.2.7 PRESS .. 85
4.2.8 Example Version management with OUTPUT blocks .. 86

4.3 Functions... 88
4.3.1 Define block (//B)... 88
4.3.2 Subprogram call (CALL).. 90
4.3.3 Check Variable (CVAR) .. 90
4.3.4 Copy Program file function (CP) ... 92
4.3.5 Delete Program file function (DP) ... 93
4.3.6 Exist Program file function (EP) .. 94
4.3.7 Move Program file function (MP) .. 96
4.3.8 Select Program file function (SP).. 97
4.3.9 Dialog line (DLGL)... 99
4.3.10 Evaluate (EVAL).. 100
4.3.11 Exit dialog (EXIT) .. 101
4.3.12 Exit Loading Softkey (EXITLS) ... 103
4.3.13 Function (FCT) .. 104
4.3.14 Generate code (GC).. 107
4.3.15 Load Array (LA)... 110
4.3.16 Load Block (LB)... 112
4.3.17 Load Mask (LM) .. 113
4.3.18 Load Softkey (LS) ... 115
4.3.19 Read NC/PLC (RNP), Write NC/PLC (WNP).. 116
4.3.20 Multiple Read NC PLC (MRNP).. 118
4.3.21 Register (REG).. 121
4.3.22 RETURN ... 123
4.3.23 Recompile ... 124
4.3.24 Recompile without comment ... 126
4.3.25 Search Forward, Search Backward (SF, SB) ... 128
4.3.26 STRING functions ... 130
4.3.27 PI services... 134

 Table of contents

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 5

5 Graphic and logic elements ... 137

5.1 Line and rectangle ...137

5.2 Defining an array..139
5.2.1 Accessing the value of an array element...140
5.2.2 Example Access to an array element ..142
5.2.3 Scanning the status of an array element ...144

5.3 Table grid (grid)..145
5.3.1 Defining table grids ..147
5.3.2 Defining columns ...148
5.3.3 Focus control in the table grid..149

5.4 Custom widgets..151
5.4.1 Defining custom widgets ..151
5.4.2 Structure of the custom widget library ...152
5.4.3 Structure of the custom widget interface ...153
5.4.4 Interaction between custom widget and dialog..155

6 "Custom" operating area.. 157

6.1 How to activate the "Custom" operating area ..157

6.2 How to configure the "Custom" softkey ...158

6.3 How to configure the "Custom" operating area..160

6.4 Programming example for the "Custom" area ...161

7 PLC softkeys ... 165

7.1 Introduction ..165

A Reference lists... 167

A.1 Lists of start softkeys ...167
A.1.1 List of start softkeys for turning..167
A.1.2 List of start softkeys for milling...169

A.2 List of colors ...171

A.3 List of language codes used in file names...172

A.4 List of accessible system variables..173

 Glossary .. 175

 Index.. 179

Table of contents

 Easy Screen (BE2)
6 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 7

Introduction 1
1.1 "Easy Screen" range of functions

Overview
"Easy Screen" is implemented with an interpreter and configuration files containing
descriptions of the user interfaces.

"Easy Screen" is configured using ASCII files: These configuration files contain the
description of the user interface. The syntax that must be applied in creating these files is
described in the following chapters.

The "Easy Screen" interpreter can be used to create user interfaces that display functional
expansions designed by the machine manufacturer or user, or simply to implement your own
layout on the HMI. Preconfigured user interfaces supplied by Siemens or the machine
manufacturer can be modified or replaced.

Part programs, for example, can be edited on user interfaces created by users. Dialogs can
be created directly on the control system.

Basic configuration
The "Easy Screen" function enables machine manufacturers to configure their own dialogs.
Even with the basic configuration, it is possible to configure 5 screens in the operator menu
tree or for customer-specific cycle dialogs.

Software option
To expand the number of dialogs, you require the following Software option:
"SINUMERIK Operate Runtime license OA Easy Screen"

Supplementary Conditions
The following conditions must be met:

● It is only possible to switch between dialogs within a single operating area.

● User, setting, and machine data are initialized on request.

● User variables may not have the same names as system or PLC variables.

● The dialogs activated by the PLC form a separate operating area (similar to measuring
cycle screens).

● The cycle support (//C ...) is no longer supported by the software.

Introduction
1.1 "Easy Screen" range of functions

 Easy Screen (BE2)
8 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Tools
An additional graphics program is needed to produce graphics/display images.

Use
You can implement the following functions:

1. Display dialogs containing the following elements:

– Softkeys

– Variables

– Texts and Help texts

– Graphics and Help displays

2. Open dialogs by:

– Pressing the (start) softkeys

– Selection from the PLC

3. Restructure dialogs dynamically:

– Edit and delete softkeys

– Define and design variable fields

– Insert, exchange and delete display texts (language-dependent or independent)

– Insert, exchange and delete graphics

4. Initiate operations in response to the following actions:

– Displaying dialogs

– Input values (variables)

– Select a softkey

– Exiting dialogs

5. Data exchange between dialogs

6. Variables

– Read (NC, PLC and user variables)

– Write (NC, PLC and user variables)

– Combine with mathematical, comparison or logic operators

7. Execute functions:

– Subroutines

– File functions

– PI services

8. Apply protection levels according to user classes

 Introduction
 1.2 Fundamentals of Configuration

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 9

1.2 Fundamentals of Configuration

Configuration files
The defining data for new user interfaces are stored in configuration files. These files are
automatically interpreted and the result displayed on the screen. Configuration files are not
stored in the software supplied and must be set up by the user.

 Note

The description can also be explained using comments. A ";" is inserted as comment
character before every explanation.

An ASCII editor (e.g. Notepad or the HMI editor) is used to create configuration files.

 Note

If you create or edit the files, use an editor that supports UTF-8 coding.

Menu tree principle
Several interlinked dialogs create a menu tree. A link exists if you can switch from one dialog
to another. You can use the newly defined horizontal/vertical softkeys in this dialog to call the
preceding or any other dialog.

A menu tree can be created behind each start softkey:

Figure 1-1 Menu tree

Introduction
1.2 Fundamentals of Configuration

 Easy Screen (BE2)
10 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Start softkeys
One or more softkeys (start softkeys), which are used to initiate your own operating
sequences, are defined in one of the specified configuration files.

The loading of a dedicated dialog is associated with a softkey definition or another softkey
menu. These are then used to perform the subsequent actions.

Pressing the start softkey loads the assigned dialog. This will also activate the softkeys
associated with the dialog. Variables will be output to the standard positions unless specific
positions have been configured.

Reverting to the standard application
You can exit the newly created user interfaces and return to the standard application.

You can use the <RECALL> key to close new user interfaces if you have not configured this
key for any other task.

 Note
Calling dialogs in the PLC user program

Dialogs can be selected from the PLC as well as via softkeys: An interface signal is available
in DB19.DBB10 for signal exchange between the PLC → HMI.

Creating a configuration file as ASCII file
Dialogs can contain, for example, the following elements:

● Input/output fields (variables) with

– Short text

– Graphic text

– Text for units

● Screens

● Softkey menus

● Tables

 Introduction
 1.3 Structure of configuration file

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 11

1.3 Structure of configuration file

Overview
Each HMI application has permanent start softkeys, which can be used to access newly
generated dialogs.

Other files:

In the event of "Load a screen form" (LM) or a "Load softkey menu" (LS) call in a
configuration file, a new file name containing the object called can be specified. This makes
it possible to structure the configuration, e.g., all functions in one operating level in a
separate configuration file.

Converting texts from other HMI applications
Procedure to convert a text file with code page coding to text-coding UTF-8:

1. Open the text file on a PG/PC in a text editor.

2. When saving, set the UTF-8 coding (see above "Formatting text files"

The read-in mechanism via code page code is still supported. In order to activate this
mechanism in the easyscreen.ini file, the following entry is required:

[Compatibility]

UseTextCodecs = true

 Note
Constraint

In the supplied version of easyscreen.ini, this entry is not available, therefore, text files with
UTF-8 coding are expected.

If the entry is supplemented, the old mechanism becomes effective again with the following
restriction: It does not function correctly for Asian languages.

Storage location for configuration files
The configuration files are located on the CF card in the /user/sinumerik/hmi/proj directory
and in the add_on and oem directories accordingly.

Introduction
1.3 Structure of configuration file

 Easy Screen (BE2)
12 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Structure of the configuration file
A configuration file consists of the following elements:

1. Description of the start softkeys

2. Definition of dialogs

3. Definition of variables

4. Description of the blocks

5. Definition of a softkey menu

 Note
Sequence

The specified sequence in the configuration file must be maintained.

Example:

//S (START) ; Definition of the start softkey (optional)

....

//END

//M (.....) ; Definition of the dialog

DEF ; Definition of variables

LOAD ; Description of the blocks

...

END_LOAD

UNLOAD

...

END_UNLOAD

...

//END

//S (...) ; Definition of a softkey menu

//END

 Introduction
 1.4 Troubleshooting (log book)

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 13

1.4 Troubleshooting (log book)

Overview
The log book is the easyscreen_log.txt file to which error messages generated by syntax
interpretation are written.

The file easyscreen_log.txt is supplied in the following directory:

/user/sinumerik/hmi/log/

Example:

DEF VAR1 = (R)

DEF VAR2 = (R)

LOAD

VAR1 = VAR2 + 1 ; Error message in log book, as VAR2 has no value

Syntax
The system does not start to interpret syntax until the start softkey has been defined and a
dialog with start and end identifiers as well as a definition line has been configured.

//S(Start)

HS6=("1st screen")

PRESS(HS6)

 LM("Maske1")

END_PRESS

//END

//M(Maske1)

 DEF Var1=(R)

//END

Contents of easyscreen_log.txt
If "Easy Screen" detects errors when interpreting the configuration files, these errors will be
written to the easyscreen_log.txt ASCII file. The file will be deleted each time the HMI is
restarted.

The file indicates:

● The action during which an error occurred

● The line and column number of the first faulty character

● The entire faulty line of the configuration file

Introduction
1.4 Troubleshooting (log book)

 Easy Screen (BE2)
14 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 15

How do I create a configuration? 2
2.1 Defining start softkeys

Dialog-independent softkey
Start softkeys are dialog-independent softkeys which are not called from a dialog, but which
have been configured before the first new dialog. In order to access the start dialog or a start
softkey menu, the start softkey must be defined.

Programming
The definition block for a start softkey is structured as follows:

//S(Start) ;start identifier of start softkey

HS1=(...) ; defining the start softkey: horizontal SK 1

PRESS(HS1) ;method

 LM... ;LM or LS function

END_PRESS ;end of method

//END ;end identifier of start softkey

Permissible positions for start softkeys
The following positions for Easy Screen start softkeys are permissible in the operating areas:

Operating area Position
Machine HSK6
Parameter HSK7
Program HSK6

Measuring cycles: HSK13 and HSK14
Program manager HSK2-8 and HSK12-16, if not assigned to drives.
Diagnostics HSK7
Commissioning HSK7

Start softkeys are configured in special files. The names of these files are stated in the
easyscreen.ini file. They usually have a name which is specific to an operating area (e.g.
startup.com for the Startup area). This does not apply to the machine operating area, where
there are a number of files specific to operating modes (ma_jog.com, ma_auto.com).

How do I create a configuration?
2.1 Defining start softkeys

 Easy Screen (BE2)
16 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

The softkey menu with the start softkeys is called "Start". Existing configurations for start
softkeys can still be used. The function whereby start softkeys are merged with the softkeys
for the respective HMI application (operating area) in the start softkey menu is not supported.
This means that until the first dialog call is made - in other words, the time at which full
functionality becomes available (e.g. execution of PRESS blocks) - menus or softkey menus
can only be replaced by others in their entirety.

Menus for standard applications are given the "easyscreenmode" menu property as part of
their XML configuration. This indicates whether the menu involved permits the use of
Easy Screen start softkeys (= easyscreen) or not (= off):

<SCREEN name="SlEasyScreenTest">

 <FORM ... >

 <PROPERTY ... > ... </PROPERTY>

 </FORM>

 <MENU name="menu_horiz" softkeybar="hu" easyscreenmode="easyscreen" />

 <MENU name="menu_vert" softkeybar="vr" easyscreenmode="off" />

</SCREEN>

Example
Separate start softkey menus can be defined for horizontal and vertical menus. The "MENU"
attribute is used for this purpose.

If a new menu is displayed in an HMI application and this menu permits the use of start
softkeys in accordance with the configuration (easyscreenmode = "easyscreen"), a search
will first be performed for the "MENU" attribute in the configuration of the start softkey menu:

● If a configuration for a start softkey menu with the "MENU" attribute is found and if the
"MENU" attribute contains the name of the menu that is currently being displayed (in the
example: "menu_horiz"), then this start softkey menu is displayed.

Only the horizontal softkeys are taken into account here, as the "menu_horiz" menu
involves a horizontal menu bar.

● Where there is no menu-specific softkey menu for a particular menu (i.e. the "MENU"
attribute is not available), the default start softkey menu will be loaded.

//S(Start)

 MENU="menu_horiz"

 HS2=("Contour",ac6,se3)

 PRESS(HS2)

 LS("Contour")

 END_PRESS

 ...

//END

 How do I create a configuration?
 2.1 Defining start softkeys

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 17

Template for configurations
A detailed description of all permissible positions for start softkeys and their configuration is
located in the easyscreen.ini file in the following directory:

/card/siemens/sinumerik/hmi/cfg

This file is used as a template for your own configurations.

See also
Lists of start softkeys (Page 167)

2.1.1 Functions for start softkeys

Functions for dialog-independent softkeys
Only certain functions can be initiated with start softkeys.

The following functions are permitted:

● The LM function can be used to load another dialog: LM("Identifier"[,"File"])
● The LS function can be used to display another softkey menu: LS("Identifier"[, "File"][,

Merge])
● You can use the "EXIT" function to exit newly configured user interfaces and return to the

standard application.

● You can use the "EXITLS" function to exit the current user interface and load a defined
softkey menu.

How do I create a configuration?
2.1 Defining start softkeys

 Easy Screen (BE2)
18 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

PRESS method
The softkey is defined within the definition block and the "LM" or "LS" function is assigned in
the PRESS method.

If the start softkey definition is designated as a comment (semicolon (;) at beginning of line)
or the configuration file removed, the start softkey will not function.

//S(Start) ; Start identifier

HS6=("1st screen form") ; horizontal SK 6 labeled "1st screen form"

PRESS(HS6) ; PRESS method for horizontal SK 6

 LM("Screen form1") ; Load screen form1 function, where screen form
1 must be defined within the same file.

END_PRESS ; End of PRESS method

HS7=("2nd screen form") ; horizontal SK 7 labeled "2nd screen form"

PRESS(HS7) ; PRESS method for horizontal SK 7

 LM("Screen form2") ; Load screen form2 function, where screen form
2 must be defined within the same file.

END_PRESS ; End of PRESS method

//END ; End identifier of entry block

Example

HS1 = ("new softkey menu")

HS2=("no function")

PRESS(HS1)

 LS("Menu1") ; load new softkey menu

END_PRESS

PRESS (HS2) ; empty PRESS method

END_PRESS

 How do I create a configuration?
 2.1 Defining start softkeys

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 19

Configuration
The names of the files containing the configuration for the start softkey menus are given in
the easyscreen.ini file. The entry can be specific to the operating area, the dialog, or the
screen. For example:

area := SlGfwTest,
dialog := SlGfwTestDialog,
screen := SlEasyScreenTest,

StartFile01 =

startfile := test.com
area := AreaMachine,
dialog := SlMachine,
screen := Jog,

StartFile02 =

startfile := ma_jog.com
area := AreaMachine,
dialog := SlMachine,
screen := Auto,

StartFile03 =

startfile := ma_auto.com
area := AreaProgramManager,
dialog := ,
screen := ,

StartFile04 =

startfile := progman.com
area := AreaProgramEdit,
dialog := ,
screen := ,

StartFile05 =

startfile := aeditor.com
area := AreaStartup,
dialog := SlSuDialog,
screen := ,

StartFile06 =

startfile := test.com

The names given in the systemconfiguration.ini file should be used for "area" and "dialog".
The screen identifiers in the dialog configuration should be used for "screen"; "startfile" refers
to the file in which the start softkey menu (default or menu-specific) is configured.

If a menu-specific start softkey menu is required, an additional name is provided by the
attribute "menu", e.g.:

area := SlGfwTest,
dialog := SlGfwTestDialog,
screen := SlEasyScreenTest,
menu := menu_horiz,

StartFile01 =

startfile := test.com

How do I create a configuration?
2.1 Defining start softkeys

 Easy Screen (BE2)
20 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Various configurations of the start softkeys
Various configurations of the start softkeys are merged. In this case, initially the name of the
file to be interpreted is read-out of easyscreen.ini. A search is made for files with the .com
extension in the following directories:

● /user/sinumerik/hmi/proj/

● /oem/sinumerik/hmi/proj/

● /addon/sinumerik/hmi/proj/

● /siemens/sinumerik/hmi/proj/

The configurations included for the start softkeys are now merged to form a configuration,
i.e. the individual softkeys are compared. If there are two or more configurations for a
softkey, the higher order is always transferred into the merge version.

Softkey menus or dialogs that are possibly included are ignored. If a softkey has a command
without file information e.g. LM ("test"), as the required softkey menu or dialog is contained
in the same file, then the corresponding file name is supplemented in the internal merge
version so that in this case, no changes are required. The merge configuration contained is
then subsequently displayed.

"System" parameter in the easyscreen.ini file
Dialogs can be displayed on different systems.

Default setting: System = 1

If dialogs are based on a value of 0, the value can be adapted by entering the following in
easyscreen.ini:

[SYSTEM]

System = 0

 How do I create a configuration?
 2.2 Structure and elements of a dialog

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 21

2.2 Structure and elements of a dialog

2.2.1 Defining a dialog

Definition
A dialog is part of a user interface consisting of a display line, dialog elements and/or
graphics, an output line for messages and 8 horizontal and 8 vertical softkeys.

Dialog elements are:

● Variables

– Limits/toggle field

– Default setting of variables

● Help display

● Texts

● Attributes

● System or user variable

● Position of short text

● Position of input/output field

● Colors

Dialog properties:

● Header

● Graphic

● Dimension

● System or user variable

● Graphic position

● Attributes

How do I create a configuration?
2.2 Structure and elements of a dialog

 Easy Screen (BE2)
22 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

① Machine status display ("header")
② Dialog element
③ 8 vertical softkeys
④ 8 horizontal softkeys
⑤ Displaying messages
⑥ Graphic
⑦ Dialog
⑧ Header line of the dialog with header and long text
Figure 2-1 Structure of the dialog

Overview
The definition of a dialog (definition block) is basically structured as follows:

Definition block Comment Chapter reference
//M... ;Dialog start identifier
DEF Var1=...
... ;Variables See chapter "Variables"

HS1=(...)
... ;Softkeys See chapter "Softkey menus"

PRESS(HS1)
 LM...
END_PRESS

;Method start identifier
 ;Actions
;Method end identifier

See chapter "Methods"

//END ;Dialog end identifier

Within the dialog definition block, various variables that appear as dialog elements in the
dialog, as well as horizontal and vertical softkeys, are defined first. Different types of actions
are then configured in methods.

 How do I create a configuration?
 2.2 Structure and elements of a dialog

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 23

2.2.2 Defining dialog properties

Description
The properties of the dialog are defined in the start identifier line of the dialog.

① Machine status display ("header")
② Graphic
③ Dialog
④ Header line of the dialog with header and long text

Figure 2-2 Dialog properties

How do I create a configuration?
2.2 Structure and elements of a dialog

 Easy Screen (BE2)
24 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Programming

Syntax: //M(Identifier/[Header]/[Graphic]/[Dimension]/[System or user

variable]/[Graphic position]/[Attributes])
Description: Defines a dialog
Parameters: Identifier Name of the dialog
 Header Dialog header as text or call for text (e.g. $85011) from

a language-specific text file.
 Graphic Graphics file with path in double quotation marks
 Dimension Position and size of the dialog in pixels (distance from

left-hand side, distance from right-hand side, width,
height), in relation to the upper left-hand corner of the
screen. The entries are separated by a comma.

 System or user
variable

System or user variable to which the current cursor
position is assigned. The NC or PLC can be provided
with the cursor position via the system or user variable.
The first variable has the index 1. The order
corresponds to the configuration order of the variables.

 Graphic position Position of the graphic in pixels (distance from left-hand
side, distance from right-hand side), in relation to the
upper left-hand corner of the dialog. The minimum
clearance from the top is 18 pixels. The entries are
separated by a comma.

 Attributes The specifications of the attributes are separated by a
comma.
Possible attributes are:

 CMx Column mode: Column alignment
 CM0Default setting: The column distribution is carried out

separately for each line.
 CM1The column distribution of the line with the most

columns applies to all lines.
 CB CHANGE block: Response when dialog is opened: cb

attributes specified for a variable in a variables definition
take priority over the default setting in the dialog
definition.

 CB0Default setting: All CHANGE blocks associated with the
dialog are processed when it is opened.

 CB1CHANGE blocks are then only processed if the relevant
value changes.

 How do I create a configuration?
 2.2 Structure and elements of a dialog

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 25

Accessing the dialog properties
Read and write access to the following dialog properties is permitted within methods (e.g.
PRESS block).

● Hd = Header

● Hlp = Help display

● Var = System or user variable

Example

Figure 2-3 "Example 2: showing graphic"

How do I create a configuration?
2.2 Structure and elements of a dialog

 Easy Screen (BE2)
26 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

//S(Start)

HS7=("Example", se1, ac7)

PRESS(HS7)

 LM("Mask2")

END_PRESS

//END

//M(Mask2/"Example 2 : showing graphic"/"example.png")

HS1=("new%nHeader")

HS2=("")

HS3=("")

HS4=("")

HS5=("")

HS6=("")

HS7=("")

HS8=("")

VS1=("")

VS2=("")

VS3=("")

VS4=("")

VS5=("")

VS6=("")

VS7=("")

VS8=("")

PRESS(HS1)

 Hd= "new Header"

END_PRESS

...

//END

See also
Programming example for the "Custom" area (Page 161)

 How do I create a configuration?
 2.2 Structure and elements of a dialog

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 27

2.2.3 Defining dialog elements

Dialog element
The term "dialog element" refers to the visible part of a variable, i.e., short text, graphics text,
input/output field and unit text. Dialog elements fill lines in the main body of the dialog. One
or more dialog elements can be defined for each line.

Variable properties
All variables are valid in the active dialog only. Properties are assigned to a variable when it
is defined. The values of dialog properties can be accessed within methods (e.g. a PRESS
block).

① Header line of the dialog with header and long text
② Dialog element
③ Short text
④ Input/output field
⑤ Graphic text
⑥ Text for units
⑦ Main body of the dialog

Figure 2-4 Elements of a dialog

How do I create a configuration?
2.2 Structure and elements of a dialog

 Easy Screen (BE2)
28 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Programming - Overview
The single parameters to be separated by commas are enclosed in round parentheses:

DEF Identifier = Identifier = Name of variable
 Variable type
 /[Limit values or toggle field]
 /[Default]
 /[Texts (Long text, Short text|Image, Graphic text, Units text)]
 /[Attributes]
 /[Help display]
 /[System or user variable]
 /[Position of short text]
 /[Position of I/O field(Left, Top, Width, Height)]
 /[Colors]
 /[online help] (Page 41)

See also
Variable parameters (Page 52)

 How do I create a configuration?
 2.2 Structure and elements of a dialog

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 29

2.2.4 Example Opening the Dialog

Programming
The new "Example" dialog is called via the "Example" start softkey from the "Startup"
operating area:

Figure 2-5 Example: Calling a new dialog

How do I create a configuration?
2.2 Structure and elements of a dialog

 Easy Screen (BE2)
30 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

//S(Start)

HS7=("Example", ac7, se1)

PRESS(HS7)

 LM("Maske1")

END_PRESS

//END

//M(Maske1/"Example")

HS1=("")

HS2=("")

HS3=("")

HS4=("")

HS5=("")

HS6=("")

HS7=("")

HS8=("")

VS1=("")

VS2=("")

VS3=("")

VS4=("")

VS5=("")

VS6=("")

VS7=("")

VS8=("")

... ; Methods

//END

2.2.5 Defining dialogs with multiple columns

Overview
Multiple variables can also be represented in a dialog on one line. In this case, the variables
are all defined in the configuration file on a single definition line.

DEF VAR11 = (S///"Var11"), VAR12 = (I///"Var12")

To make individual variables in the configuration file more legible, the definition lines can be
wrapped after every variables definition and following comma.

 How do I create a configuration?
 2.2 Structure and elements of a dialog

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 31

The key word "DEF" always indicates the beginning of a new line:

DEF Tnr1=(I//1/"","T ",""/wr1///,,10/20,,50),

 TOP1=(I///,"Type="/WR2//"$TC_DP1[1,1]"/80,,30/120,,50),

 TOP2=(R3///,"L1="/WR2//"$TC_DP3[1,1]"/170,,30/210,,70),

 TOP3=(R3///,"L2="/WR2//"$TC_DP4[1,1]"/280,,30/320,,70),

 TOP4=(R3///,"L3="/WR2//"$TC_DP5[1,1]"/390,,30/420,,70)

DEF Tnr2=(I//2/"","T ",""/wr1///,,10/20,,50),

 TOP21=(I///,"Typ="/WR2//"$TC_DP1[2,1]"/80,,30/120,,50),

 TOP22=(R3///,"L1="/WR2//"$TC_DP3[2,1]"/170,,30/210,,70),

 TOP23=(R3///,"L2="/WR2//"$TC_DP4[2,1]"/280,,30/320,,70),

 TOP24=(R3///,"L3="/WR2//"$TC_DP5[2,1]"/390,,30/420,,70)

...

NOTICE
When creating dialogs with multiple columns, the options and limits of the hardware being
used should be taken into consideration in terms of the number of columns and DEF
instructions. A lot of columns can slow down the system.

2.2.6 Using display images/graphics

Use of graphics
There are two display categories:

● Display images/graphics in the graphic area

● Help displays illustrating, for example, individual variables, which are superimposed in the
graphic area.

● More Help displays can be configured instead of short text or an input/output field, which
you position where you like.

How do I create a configuration?
2.2 Structure and elements of a dialog

 Easy Screen (BE2)
32 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Storage locations
First, the relevant resolution directory is searched for the display image corresponding to the
resolution of the connected monitor. If it is not found there, a search is performed for the
display image in the next smaller resolution directory until – if the display image is not found
earlier – directory ico640 is reached:

Search sequence:
/user/sinumerik/hmi/ico/ico<Resolution>
/oem/sinumerik/hmi/ico/ico<Resolution>
/addon/sinumerik/hmi/ico/ico<Resolution>

 Note

Graphics are proportionally positioned for resolutions 640 x 480, 800 x 600 and 1024 x 768
pixels.

 How do I create a configuration?
 2.3 Defining softkey menus

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 33

2.3 Defining softkey menus

Definition
The term softkey menu is used to refer to all the horizontal and vertical softkeys displayed on
a screen form. In addition to the existing softkey menus, it is possible to define other menus,
which partially or completely overwrite the existing menus.

The names of the softkeys are predefined. Not all softkeys need to be assigned.

HSx x 1 - 8, Horizontal softkeys 1 to 8

VSy y 1 - 8, Vertical softkeys 1 to 8

The definition of a softkey menu (softkey menu definition block) is basically structured as
follows:

Definition block Comment Chapter reference
//S... ;Start identifier of softkey menu
HSx=... ;Define softkeys
PRESS(HSx)
 LM...
END_PRESS

;Method start identifier
 ;Actions
;Method end identifier

See chapter "Methods"

//END ;End identifier of softkey menu

Description
Properties are assigned to softkeys during definition of the softkey menu.

How do I create a configuration?
2.3 Defining softkey menus

 Easy Screen (BE2)
34 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Programming

Syntax: //S(Identifier)

...
//END

;Start identifier of softkey menu

;End identifier of softkey menu

Description: Defines softkey menu
Parameters: Identifier Name of softkey menu

Syntax: SK = (Text[, Access level][, Status])
Description: Define softkey
Parameters: SK Softkey, e.g. HS1 to HS8, VS1 to VS8
 Text Enter text
 Display file name "\\my_pic.png"

or via separate text file $85199, e.g. with the
following text in the (language-specific) text file:
85100 0 0 "\\my_pic.png".
The size of image which can be displayed on a
softkey depends on the OP used:

 OP 010:
OP 012:
OP 015:

640 X 480 mm → 25 x 25 pixels
800 X 600 mm → 30 x 30 pixels
1024 X 768 mm → 40 x 40 pixels

 Access level ac0 to ac7 (ac7: default)
 Status se1: visible (default)

se2: disabled (gray text)
se3: displayed (last softkey used)

 Note

Enter %n in the softkey text to create a line break.

A maximum of 2 lines with 9 characters each are available.

 How do I create a configuration?
 2.3 Defining softkey menus

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 35

Assigning access level
Operators can only access information on this and lower access levels. The meanings of the
different access levels are as follows: ac0 is the highest access level and ac7 the lowest.

Security level Locked by range
ac0 Password Siemens
ac1 Password Machine manufacturer
ac2 Password Service
ac3 Password User
ac4 Keylock switch position 3 Programmer, machine setter
ac5 Keylock switch position 2 Qualified operator
ac6 Keylock switch position 1 Trained operator
ac7 Keylock switch position 0 Semi-skilled operator

Example

//S(Menu1) ; Start identifier of softkey menu

HS1=("NEW", ac6, se2) ; Define softkey HS1, assign the label "NEW",
protection level 6, and the status "disabled"

HS2=("\\image1.png") ; Assign a graphic to the softkey

HS3=("Exit")

VS1=("sub screen form")

VS2=($85011, ac7, se2) ; Define softkey VS2, assign the text from the
language file, protection level 1, and the
status "disabled".

VS3=("Cancel", ac1, se3) ; Define softkey VS3, assign the label "Cancel",
protection level 1 and the status
"highlighted".

VS4=("OK", ac6, se1) ; Define softkey VS4, assign the label "OK",
protection level 6 and the status "visible"

VS5=(SOFTKEY_CANCEL,,se1) ; Define cancel standard softkey VS5 and assign
the status "visible"

VS6=(SOFTKEY_OK,,se1) ; Define OK standard softkey VS6 and assign the
status "visible"

VS7=(["\\image1.png","OEM
text"],,se1)

; Define softkey VS7, assign an image, assign the
label "OEM Text" and the status "visible"

VS8=(["\\image1.png",
$83533],,se1)

; Define softkey VS8, assign an image, assign
text from language file and the status
"visible"

How do I create a configuration?
2.3 Defining softkey menus

 Easy Screen (BE2)
36 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

PRESS(HS1) ; Method start identifier

 HS1.st="Calculate" ; Assign a label text to the softkey

...

END_PRESS ; Method end delimiter

PRESS(RECALL) ; Method start identifier

 LM("Screen form21") ; Load dialog

END_PRESS ; Method end delimiter

//END ; Softkey menu end identifier

2.3.1 Changing softkey properties during runtime

Description
The softkey properties Text, Access Level and Status can be changed in the methods during
runtime.

Programming

Syntax: SK.st = "Text"

SK.ac = Access level
SK.se = Status

;Softkey with label
;Softkey with security level
; Softkey with status

Description: Assign properties
Parameters: Text Label text in inverted commas
 Access level Range of values: 0 ... 7
 Status 1:

2:
3:

visible and operator-controllable
disabled (gray text)
displayed (last softkey used)

 How do I create a configuration?
 2.3 Defining softkey menus

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 37

Example

Figure 2-6 Example 3: Graphics and softkeys

//S(Start)

HS7=("Example", ac7, se1)

PRESS(HS7)

 LM("Maske3")

END_PRESS

//END

//M(Maske3/"Example 2: showing graphic"/"example.png")

HS1=("")

HS2=("")

HS3=("")

HS4=("")

HS5=("")

HS6=("")

HS7=("")

HS8=("")

How do I create a configuration?
2.3 Defining softkey menus

 Easy Screen (BE2)
38 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

VS1=("")

VS2=("")

VS3=("")

VS4=("\\sp_ok.png",,SE1)

VS5=(["\\sp_ok_small.png","OEM Text"],,SE1)

VS6=("")

VS7=(SOFTKEY_OK,,SE1)

VS8=(SOFTKEY_CANCEL,,SE1)

PRESS(VS4)

 EXIT

END_PRESS

PRESS(VS5)

 EXIT

END_PRESS

PRESS(VS7)

 EXIT

END_PRESS

PRESS(VS8)

 EXIT

END_PRESS

//END

2.3.2 Language-dependent text

Overview
Language-dependent texts are used for:

● Softkey labels

● Headings

● Help texts

● Any other texts

The language-dependent texts for dialogs are stored in text files.

The text files are stored in the following directories:

● /user/sinumerik/hmi/lng/

● /oem/sinumerik/hmi/lng/

● /addon/sinumerik/hmi/lng/

 How do I create a configuration?
 2.3 Defining softkey menus

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 39

alsc.txt Contains the language-dependent texts for the Siemens standard cycles
almc.txt Contains the language-dependent texts for the manufacturer cycles
aluc.txt Language-dependent user texts

The text files used during program runtime are specified in the easyscreen.ini file:

[LANGUAGEFILES]

LngFile01 = alsc.txt ;->alsc<_xxx>.txt (e.g. alsc_eng.txt)

LngFile02 = user.txt

In this instance, the user.txt file has been chosen as an example of a text file. Any name can
be selected, in principle. Depending on the language of the texts within the file, the relevant
language code must be added using the following syntax:

user.txt → user_xxx.txt (e.g. user_eng.txt)

An underscore followed by the relevant language identifier are added after the name.

See also
List of language codes used in file names (Page 172)

Format of text files
The text files must be saved in UTF-8 format.

If, for example, you use Notepad to generate text files, select "File" → "Save As" and choose
UTF-8 encoding.

How do I create a configuration?
2.3 Defining softkey menus

 Easy Screen (BE2)
40 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Format of a text entry

Syntax: 8xxxx 0 0 "Text"
Description: Assignment between text number and text in the file
Parameters: xxxx 5000 to 9899 Text identification number range reserved

for users. You must assign unique numbers.
 "text" Text that appears in dialog
 %n Control characters in the text for creating a

line break

Parameters 2 and 3 are separated by blanks and act as control characters for alarm text
output. To ensure that the text format is identical to that of the alarm texts, these two
parameters must always be set to zero.

Examples of alarms:

85000 0 0 "Retraction plane"

85001 0 0 "Drilling depth"

85002 0 0 "Pitch"

85003 0 0 "Pocket radius"

 How do I create a configuration?
 2.4 Configuring the online help

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 41

2.4 Configuring the online help

Online help
An online help for the configured dialogs and elements can be created in the HTML format.
The syntax and procedure for the online help is essentially the same as for SINUMERIK
Operate, e.g.:

DEF VAR14 = (I///,"\\ein.png"/al1,cb1,wr2//"DB1.DBB0"////"sinumerik_md_1.html",

"9100")

References
Commissioning Manual "Base software and operating software" (IM9), Chapter "OEM-
specific online help"

See also
Defining dialog elements (Page 27)

How do I create a configuration?
2.4 Configuring the online help

 Easy Screen (BE2)
42 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 43

Variables 3
3.1 Defining variables

Variable value
The most basic property of a variable is its value.

The value of variables can be assigned by means of:

● Default settings when defining variables

● Assignment to a system or user variable

● A method

Programming

Syntax: Identifier.val = Variable value

Identifier = Variable value
Description: Variable value val (value)
Parameters: Identifier: Name of variable
 Variable value: Value of variable
Example: VAR3 = VAR4 + SIN(VAR5)

VAR3.VAL = VAR4 + SIN(VAR5)

Variable status
The "Variable status" property can be used to scan a variable for valid content during
runtime. This property can be read and written with the value FALSE = 0.

Programming

Syntax: Identifier.vld
Description: Variable status vld (validation)
Parameters: Identifier: Name of variable

FALSE =
TRUE =

The result of the scan can be:
invalid value
valid value

Example: IF VAR1.VLD == FALSE
 VAR1 = 84
ENDIF

Variables
3.1 Defining variables

 Easy Screen (BE2)
44 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Variable: Changing properties
The variables are assigned a new value in the notation Identifier.Property = Value when a
change is made. The expression to the right of the equality sign is evaluated and assigned to
the variable or variable property.

Examples:

Identifier.ac = Access level (ac: access level)
Identifier.al = Text alignment (al: alignment)
Identifier.bc = Background color (bc: back color)
Identifier.fc = Foreground color (fc: front color)
Identifier.fs = Font size (fs: font size)
Identifier.gt = Graphic text (gt: graphic text)
Identifier.hlp = Help display (hlp: help)
Identifier.li = Limit (li: limit)
Identifier.lt = long text (lt: long text)
Identifier.max = MAX limits (max: maximum)
Identifier.min = MIN limits (min: minimum)
Identifier.st = short text (st: short text)
Identifier .typ = Variable type (typ: type)
Identifier.ut = Unit text (ut: unit text)
Identifier.val = Variable value (val: value)
Identifier.var = System or user variable (var: variable)
Identifier.vld = Variable status (vld: validation)
Identifier.wr = Input mode (wr: write)

 Variables
 3.2 Application examples

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 45

3.2 Application examples

Help variables
Help variables are internal arithmetic variables. Arithmetic variables are defined like other
variables, but have no other properties apart from variable value and status, i.e. Help
variables are not visible in the dialog. Help variables are of the VARIANT type.

Programming

Syntax: DEF Identifier
Description: Internal arithmetic variables of the VARIANT type
Parameters: Identifier: Name of Help variables

Example DEF OTTO ;Definition of a Help variable

Syntax: Identifier.val = Help variable value

Identifier = Help variable value
Description: A value is assigned to a Help variable in a method.
Parameters: Identifier: Name of Help variables
 Help variable value: Content of the Help variables

Example:

LOAD

 OTTO = "Test"

END_LOAD

;

Assign the value "Test" to the Otto Help
variable.

LOAD

 OTTO = REG[9].VAL

END_LOAD

;

Assign the value of the register to the Otto Help
variable.

Calculation with variables
Variables are calculated every time you exit an IO field (by pressing the ENTER or TOGGLE
key). The calculation is configured in a CHANGE method that is processed every time the
value changes.

You can scan the variable status to ascertain the validity of the value of the variable, e.g.,

Var1 = Var5 + SIN(Var2)

Otto = PI * Var4

Variables
3.2 Application examples

 Easy Screen (BE2)
46 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Addressing system variables indirectly
A system variable can also be addressed indirectly, i.e., as a function of another variable:

PRESS(HS1)

 AXIS=AXIS+1

 WEG.VAR="$AA_DTBW["<<AXIS<<"]" ;Address axis address via variable

END_PRESS

Changing softkey labels
Example

HS3.st = "New Text" ;Change softkey label

 Variables
 3.3 Example 1: Assigning the variable type, texts, help display, colors, tooltips

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 47

3.3 Example 1: Assigning the variable type, texts, help display, colors,
tooltips

Example 1a
Assigning the Variable type, Texts, Help display, and Colors properties

DEF Var1 = (R///,"Actual value",,"mm"//"Var1.png"////8,2)
 Variable Type: REAL
 Limits or entry in the toggle field: none
 Default setting: None
 Texts:
 Long text: None
 Short text: Actual value
 Graphic text: none
 Unit text: mm
 Attributes: None
 Help display: Var1.png
 System or user variable: None
 Position of short text: No data, i.e., default position
 Position of input/output field: No data, i.e., default position
 Colors:
 Foreground color: 8
 Background color: 2

Variables
3.3 Example 1: Assigning the variable type, texts, help display, colors, tooltips

 Easy Screen (BE2)
48 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Example 1b
Assigning tooltips

DEF Var2 = (I//5/"","value","",""," Tooltiptext"/wr2///20,250,50)
 Variable type: INTEGER
 Limits or entry in the toggle field: None
 Default setting: 5
 Texts:
 Short text: Value (possible language text ID)
 Tooltip: Tooltip text
 Attributes:
 Input mode Reading and writing
 Help display: None
 Position of short text:
 Distance from left 20
 Distance from top 250
 Width: 50
 Colors: No data, i.e. default

See also
Variable parameters (Page 52)

 Variables
 3.4 Example 2: Assigning the Variable Type, Limits, Attributes, Short Text Position properties

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 49

3.4 Example 2: Assigning the Variable Type, Limits, Attributes, Short
Text Position properties

Example 2
Assigning the Variable Type, Limits, Attributes, Short Text Position properties

DEF Var2 = (I/0,10///wr1,al1///,,300)
 Variable Type: INTEGER
 Limits or toggle field entries: MIN: 0

MAX: 10

 Default: none
 Texts: none
 Attributes:
 Input mode read-only
 Alignment of short text Right-justified
 Help display: none
 System or user variable: none
 Position of short text:
 Distance from left None
 Distance from top None, i.e., default distance from top left
 Width: 300
 Position of input/output field: No data, i.e., default position
 Colors: No data, i.e., default
 Help: none

See also
Variable parameters (Page 52)

Variables
3.5 Example 3: Assigning the Variable Type, Default, System or User Variable, Input/Output Field Position
properties

 Easy Screen (BE2)
50 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

3.5 Example 3: Assigning the Variable Type, Default, System or User
Variable, Input/Output Field Position properties

Example 3
Assigning the Variable Type, Default, System or User Variable, Input/Output Field Position
properties

DEF Var3 = (R//10////"$R[1]"//300,10,200//)
 Variable Type: REAL
 Limits or toggle field entries: none
 Default setting: 10
 Texts: none
 Attributes: None
 Help display: none
 System or user variable: $R[1] (R-Parameter 1)
 Position of short text: Default position in relation to input/output

field
 Position of input/output field:
 Distance from left 300
 Distance from top 10
 Width: 200
 Colors: No data, i.e. default

See also
Variable parameters (Page 52)

 Variables
 3.6 Examples relating to toggle field and image display

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 51

3.6 Examples relating to toggle field and image display

Example 4
Various entries in the toggle field:

Limits or toggle field entries:
 DEF Var1 = (I/* 0,1,2,3)

DEF Var2 = (S/* "In", "Out")
DEF Var3 = (B/* 1="In", 0="Out")
DEF Var4 = (R/* ARR1)

;1 and 0 are values, "In" and "Out" are displayed.
;ARR1 is the name of an array.

Example 5
Displaying an image instead of a short text: The size and position of the image is defined
under "Position of IO field (left, top, width, height)".

DEF VAR6= (V///,"\\image1.png" ////160,40,50,50)
 Variable type: VARIANT
 Limits or entries in the toggle field: None
 Default setting: None
 Texts:
 Short text: image1.png
 Attributes: None
 Help display: none
 System or user variable: None
 Position of short text:
 Distance from left: 160
 Distance from the top: 40
 Width: 50
 Height: 50
 Position of input/output field: No details
 Colors: No data, i.e. default

Variables
3.7 Variable parameters

 Easy Screen (BE2)
52 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

3.7 Variable parameters

Parameter overview
The following overview provides a brief explanation of the variable parameters. Subsequent
chapters contain a more detailed description.

Parameter Description
Variable type (Page 55) The variable type must be specified.
 R[x]:

I:
S[x]:

C:
B:
V:

REAL (+ digit for the decimal place)
INTEGER
STRING (+ digit for string length)
CHARACTER (individual character)
BOOL
VARIANT

Limits (Page 49) Limit value MIN, limit value MAX
Default setting: Empty
The limit values are separated by a comma. Limits can be specified for types I, C and R
in decimal formats or as characters in the form "A", "F".

Default setting (Page 61) If no default setting has been configured and no system or user variable has been
assigned to the variable, the first element of the toggle field is assigned. If no toggle field
has been defined, there is no default setting, which means the status of the variable is
"not calculated".
Default setting: No default

Toggle field (Page 59) List with predetermined entries in the IO field: The list is initiated by a *; the entries are
separated by a comma. The entries can be assigned a value.
For the toggle field, the entry for the limit is interpreted as a list. If only one * is entered,
a variable toggle field is created.
Default setting: None
The sequence is specified. Instead of a short text, an image can also be displayed.
Default setting: Empty
Long text:
Short text:
Graphic text:
Unit text:

Text in the display line
Name of the dialog element
Text refers to the terms in the graphics
Unit of the dialog element

Texts (Page 47)

Tooltips (Page 47) Serve as brief information in a screen form configuration for
the display and toggle fields. The information is configured via
plain text and language text ID.

 Variables
 3.7 Variable parameters

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 53

Parameter Description
The attributes influence the following properties:
 Input mode
 Access level
 Alignment of short text
 Font size
 Limits
 Response when dialog is opened in terms of CHANGE block
The attributes are separated by commas and appear in any order. The attributes are not
valid for toggle fields. A definition can be made for each component.
Input mode wr0: IO field invisible, short text visible

wr1: Read (no focus possible for input)
wr2: Read and write (line appears in white)
wr3: wr1 with focus
wr4: All variable elements invisible, no focus possible
wr5: The value entered is saved immediately on every keystroke (in
contrast to wr2, where it is only saved when the field is exited or
RETURN is pressed).
Default setting: wr2

Access level Empty: Can always be written
ac0...ac7: Protection levels
If the access level is not adequate, then the first line is displayed in
gray, default setting: ac7

Alignment of
short text

al0: Left-justified
al1: Right-justified
al2: centered
Default setting: al0

Font size fs1: Default font size (8 pt.)
fs2: Double font size
Default setting: fs1
The clearances between the lines is defined. With the default font
size, 16 lines will fit into the dialog. Graphics and unit text can only be
configured in the default font size.

Limits Consequently, it is possible to check whether the values of the
variable are within the MIN and MAX limits specified.
Default setting: Determined by specified limits
li0: No check
li1: Check with respect to min.
li2: Check with respect to max.
li3: Check with respect to min. and max.

Attributes (Page 49)

Behavior when
opening

cb attributes specified for a variable in a variables definition take
priority over the cb default setting in the dialog definition. Multiple
attributes are separated by commas.

Variables
3.7 Variable parameters

 Easy Screen (BE2)
54 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Parameter Description
cb0:

cb1:

The CHANGE block defined for this variable is edited when the
dialog is opened (default setting). Multiple attributes are separated by
commas.
The CHANGE block defined for this variable is then only processed if
the value of the variable changes.

Help display file: Name of the png file
Default setting: Empty

Help display (Page 47)

The name of the Help display file appears in double quotation marks. The display
appears automatically (instead of the previous graphic) if the cursor is positioned on this
variable.

System or user variable
(Page 50)

System or user data from the NC/PLC can be assigned to the variable. The system or
user variable appears in double quotation marks.
Reference: List Manual System Variables, /PGAsl/

Position of short text (Page 62) Position of short text (distance from left, distance from top, width)
The positions are entered in pixels and relate to the upper left-hand corner of the main
body of the dialog. The entries are separated by commas.

Position of input/output field
(Page 62)

Position of input/output field (distance from left, distance from top, width, height)
The positions are entered in pixels and relate to the upper left-hand corner of the main
body of the dialog. The entries are separated by commas. If this position changes, the
positions of the short text, graphic text and unit text also change.

Colors (Page 47) Foreground color, background color: The colors are separated by a comma. Color
settings are only relevant to the input/output field; colors cannot be specified for the
other texts.
Range of values: 1...10
Default setting: Foreground color: Black, background color: white
The default colors of the input/output field are determined by the Write mode:
"wr" indicates write mode.

 Variables
 3.8 Details on the variable type

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 55

3.8 Details on the variable type

Variable type INTEGER
The following extensions for determining the display in the input/output field and the memory
utilization are possible for the "INTEGER" type:

2nd character in the extension data type

Display format
B Binary
D Decimal signed
H hexadecimal
No data Decimal signed

3rd and/or 4th character in the extension data type

Memory utilization
B Byte
W Word
D Double Word
BU Byte, Unsigned
WU Word, Unsigned
DU Double word, Unsigned

Variables
3.8 Details on the variable type

 Easy Screen (BE2)
56 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Sequence of characters in the INTEGER data type
1. "I" Basic INTEGER designation

2. Display format

3. Memory utilization

4. "U" Unsigned

Valid INTEGER type specifications:
IB Integer variable 32 bits in binary notation
IBD Integer variable 32 bits in binary notation
IBW Integer variable 16 bits in binary notation
IBB Integer variable 8 bits in binary notation
I Integer variable 32 bits in decimal notation signed
IDD Integer variable 32 bits in decimal notation signed
IDW Integer variable 16 bits in decimal notation signed
IDB Integer variable 8 bits in decimal notation signed
IDDU Integer variable 32 bits in decimal notation unsigned
IDWU Integer variable 16 bits in decimal notation unsigned
IDBU Integer variable 8 bits in decimal notation unsigned
IH Integer variable 32 bits in hexadecimal notation
IHDU Integer variable 32 bits in hexadecimal notation
IHWU Integer variable 16 bits in hexadecimal notation
IHBU Integer variable 8 bits in hexadecimal notation

VARIANT variable type
The VARIANT variable type is determined by the data type of the last value assignment. It
can be scanned using the ISNUM or ISSTR functions. The VARIANT type is mainly suited to
the purpose of writing either variable names or numerical values to the NC code.

 Variables
 3.8 Details on the variable type

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 57

Programming
The data type of variables can be checked:

Syntax: ISNUM (VAR)
Parameters: VAR Name of the variable whose data type is to be checked.

FALSE =
TRUE =

The result of the scan can be:
not a numerical variable (data type = STRING)
numerical variable (data type = REAL)

Syntax: ISSTR (VAR)
Parameters: VAR Name of the variable whose data type is to be checked.

FALSE =
TRUE =

The result of the scan can be:
numerical variable (data type = REAL)
not a numerical variable (data type = STRING)

Example:
IF ISNUM(VAR1) == TRUE
IF ISSTR(REG[4]+2) == TRUE

The display mode of variables can be changed:

● For INTEGER, the display type can be changed.

B Binary
D Decimal signed
H hexadecimal
unsigned
With the addition of U for Unsigned

● For REAL data types, only the number of places after the decimal point can be changed.

Changing the type is illegal and generates an error message in the easyscreen_log.txt.
file.

Example:

Var1.typ = "IBW"

Var2.typ = "R3"

Variables
3.8 Details on the variable type

 Easy Screen (BE2)
58 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Numerical formats
Numbers can be represented in either binary, decimal, hexadecimal or exponential notation:

Binary B01110110
decimal 123.45
hexadecimal HF1A9
exponential -1.23EX-3
Examples:
 VAR1 = HF1A9

 REG[0]= B01110110

 DEF VAR7 = (R//-1.23EX-3)

 Note

When codes are generated with the "GC" function, only numerical values in decimal or
exponential notation are evaluated, but not those in binary or hexadecimal notation.

See also
Variable parameters (Page 52)

 Variables
 3.9 Details on the toggle field

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 59

3.9 Details on the toggle field

Description
The toggle field extension function can be used to display texts (entries in toggle field) as a
function of NC/PLC variables. A variable, which makes use of a toggle field extension, is
read-only.

Programming

Syntax: DEF identifier =(variable type /+ $text number | *

value="\\image"[,value="\\image2.png"][, ...]
/[Default]
/[Texts(Long text, Short text, Graphic text, Units text)]
/[Attributes]
/[Help display]
/[System or user variable]
/[Position of short text]
/[Position input/output field(Left, Top, Width, Height)]
/[Colors]

Description: When the dialog is opened, the content of text number $85015 is displayed
in the IO field. Default value 15 is entered in system variable DB90.DBB5. If
the value saved in system variable DB90.DBB5 changes, the displayed text
number $(85000 + <DB90.DBB5>) is recalculated in response to every
change.

Parameters: Variable type Type of variables specified in the system or user
variable

 Text number Number (basis) of the language-specific text valid as
the basis number.

 System or user
variable

System or user variable (offset) via which the final
text number (basis + offset) is displayed.

Example: DEF VAR1=(IB/+ $85000/15////"DB90.DBB5")

Variables
3.9 Details on the toggle field

 Easy Screen (BE2)
60 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Variable toggle field
It is possible to assign a variable toggle field to a dialog element, i.e., when the toggle key is
pressed, a value configured in a CHANGE method is assigned to the variable.

An asterisk * is entered in the Limits or Toggle Field property to identify a variable toggle field
when a variable is defined.

Example: DEF VAR1=(S/*)

Toggle-field-dependent displays
The toggle field is overlaid with graphics, which change depending on the value of the
memory byte. If the value of the memory byte is 1, "image1.png" will appear. If it is 2,
"image2.png" will appear.

DEF VAR1=(IDB/*1="\\image1.png",

 2="\\image2.png"//,$85000/wr1//"MB[0]"//160,40,50,50)

The size and position of the image is defined under "Position of IO field (left, top, width,
height)".

See also
Variable parameters (Page 52)

 Variables
 3.10 Details on the default setting

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 61

3.10 Details on the default setting

Overview
A variable can assume various states depending on whether a default value, or a system or
user variable, or both, has been assigned to the variable field (I/O field or toggle field). (Not
calculated: Toggling is not possible until a valid value is assigned to the variable).

Scope of the default settings

If... Then...
Field type Default setting System or user variable Reaction of field type
I/O field yes yes Write default value to system or user variable
 No yes Use system or user variable as default value
 Error yes Not calculated, system or user variable is not written

into/used.
 yes No Default setting
 No No Not calculated
 Error No Not calculated
 yes Error Not calculated
 No Error Not calculated
 Error Error Not calculated
Toggle yes yes Write default value to system or user variable
 No yes Use system or user variable as default value
 Error yes Not calculated,

system or user variable not written/used
 yes No Default setting
 No No Default = first toggle field element
 Error No Not calculated
 yes Error Not calculated
 No Error Not calculated
 Error Error Not calculated

See also
Variable parameters (Page 52)

Variables
3.11 Details on the position of the short text, position of the input/output field

 Easy Screen (BE2)
62 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

3.11 Details on the position of the short text, position of the input/output
field

Overview
The short text and graphic text, as well as the input/output field and unit text, are each
treated like a unit, i.e., position settings for short text apply to the graphic text and settings for
the input/output field and to unit text.

Programming
The configured position entry overwrites the default value, i.e., only one value can be
changed. If no position settings have been configured for subsequent screen form elements,
then the position settings for the preceding screen form element are applied.

If no positions have been specified for any dialog elements, the default setting is applied. By
default, the column width for the short text and input/output field is calculated for each line
based on the number of columns and maximum line width, i.e.,column width = maximum line
width/number of columns.

The width of the graphics and unit text is predefined and optimized to suit the requirements
of programming support. If graphics or unit text has been configured, the width of the short
text or I/O field is reduced accordingly.

The order of short text and I/O field can be reversed by position settings.

See also
Variable parameters (Page 52)

 Variables
 3.12 Use of strings

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 63

3.12 Use of strings

Strings
Strings can be used as part of the configuration. These allow text to be displayed
dynamically or different texts to be chained for the purpose of code generation.

Rules
The following rules must be observed with regard to string variables:

● Logic operations are processed from left to right.

● Nested expressions are solved from the inside outwards.

● No distinction is made between uppercase and lowercase type.

● String variables are generally displayed left justified.

Strings can be deleted simply by assigning a blank string.

Strings can be appended after the equality sign using the operator "<<". Quotation marks (")
in the string are represented by two successive quotation mark symbols. Strings can be
checked for equality in IF instructions.

Variables
3.12 Use of strings

 Easy Screen (BE2)
64 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Example
Default settings for the following examples:

VAR1.VAL = "This is an"

VAR8.VAL = 4

VAR14.VAL = 15

VAR2.VAL = "Error"

$85001 = "This is an"

$85002 = "Alarm text"

Editing strings:

● Chaining of strings:

VAR12.VAL = VAR1 << " Error." ;Result: "This is an error"

● Deleting a variable:

VAR10.VAL = "" ;Result: Blank string

● Setting a variable with a text variable:

VAR11.VAL = VAR1.VAL ;Result: "This is an"

● Data type matching:

VAR13.VAL ="This is the " << (VAR14 - VAR8) << ". error"

 ;Result: "This is the 11th error"

● Treatment of numerical values:

VAR13.VAL = "Error" << VAR14.VAL << ": " << $85001 << $85002

 ;Result: "Error 15: "This is an alarm text"

IF VAR15 == "Error" ;Strings in IF statement

 VAR16 = 18.1234

 ;Result: VAR16 equals 18.1234,

 ;if VAR15 equals "Error".

ENDIF

● Quotation marks within a string:

VAR2="Hello, this is a " Test""

 ;Result: Hello, this is a " Test"

● System or user-variable strings dependent on variable content:

VAR2.Var = "$R[" << VAR8 << "]" ;Result: $R[4]

See also
STRING functions (Page 130)

 Variables
 3.13 CURPOS variable

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 65

3.13 CURPOS variable

Description
Using the CURPOS variable, it is possible to display or manipulate the position of the cursor
in the active input field of the current dialog. The variable indicates how many characters are
located in front of the cursor. If the cursor is located at the start of the input field, then
CURPOS assumes the value of 0. If the value of CURPOS is changed, then the cursor is
positioned at the appropriate location in the input field.

In order to be able to respond to changes in the variable value, it is possible to monitor for
changes using a CHANGE block. If the value of CURPOS changes, then a jump is made to
the CHANGE block and the instructions contained there are executed.

Variables
3.14 CURVER variable

 Easy Screen (BE2)
66 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

3.14 CURVER variable

Description
The CURVER (CURrent VERsion) property allows the programming to be adapted in order
to handle different versions. The CURVER variable is read-only.

 Note

Even if previously recompiled with an older version, the code is automatically generated with
the most recent version. The "GC" command always generates the most recent version. An
additional identifier indicating the generated version is inserted in the user comment of the
generated code in versions > 0.

Rules
The most recent dialog with all its variables is always displayed.

● Variables used previously may not be changed.

● New variables are inserted in the existing (cycle) programming in arbitrary order.

● It is not permissible to delete variables from a dialog from one version to the next.

● The dialog must contain all variables of all versions.

Example

(IF CURVER==1 ...) ; When the code is recompiled, CURVER is
automatically assigned the version of the
recompiled code.

 Variables
 3.15 ENTRY variable

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 67

3.15 ENTRY variable

Description
The ENTRY variable can be used to check by what method a dialog has been called.

Programming

Syntax: ENTRY
Description: The ENTRY variable is a read only variable.
Return Value: The result of the scan can be:
 0 = No programming support
 1 = Programming support (the dialog was called by programming

support)
 2 =Programming support + default setting from the previous dialog

(sub-dialog)
 3 =Programming support + recompilation
 4 =Programming support + recompilation with generated

comments, with # sign
 5 =Programming support + recompilation with generated

comments, without # sign

Example

IF ENTRY == 0

 DLGL("The dialog was not called during programming")

ELSE

 DLGL("The dialog was called during programming")

ENDIF

Variables
3.16 ERR variable

 Easy Screen (BE2)
68 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

3.16 ERR variable

Description
Variable ERR can be used to check whether the preceding lines have been executed
correctly.

Programming

Syntax: ERR
Description: The ERR variable is read-only.
Return Value: The result of the scan can be:
 FALSE =previous line was executed error-free
 TRUE =previous line was not executed error-free

Example

VAR4 = Thread[VAR1,"CDM",3] ; Output value from array

IF ERR == TRUE ; Scan to check whether value has been found
in array

 VAR5 = "Error accessing array"

 ; If the value has not been found in the
array, the value "Error accessing array" is
assigned to the variables.

ELSE

 VAR5 = "All OK" ; ;If the value has been found in the array,
the value "All OK" is assigned to the
variables.

ENDIF

 Variables
 3.17 FILE_ERR variable

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 69

3.17 FILE_ERR variable

Description
Variable FILE_ERR can be used to check whether the preceding GC or CP command has
been executed correctly.

Programming

Syntax: FILE_ERR
Description: The FILE_ERR variable is read-only.
Return Value: Possible results are:
 0 = Operation okay
 1 = Drive/path not available
 2 =Path/file access error
 3 =Drive not ready
 4 =Incorrect file name
 5 =File is already open
 6 =Access denied
 7 =Target path not available or not permitted
 8 =Copy source same as target
 10 =Internal error: FILE_ERR = 10 means that the error cannot be

classified in the other categories.

Variables
3.17 FILE_ERR variable

 Easy Screen (BE2)
70 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Example

CP("D:\source.mpf","E:\target.mpf")

 ; Copy from source.mpf to E:\target.mpf

IF FILE_ERR > 0 ; Scan to ascertain whether error has occurred

 IF FILE_ERR == 1 ; Scan specific error numbers and output
associated error text

 VAR5 = "Drive/path not available"

 ELSE

 IF FILE_ERR == 2

 VAR5 = "Path/file access error"

 ELSE

 IF FILE_ERR == 3

 VAR5 = "Wrong file name"

 ENDIF

 ENDIF

 ENDIF

ELSE

 VAR5 = "All OK" ; If no errors have occurred in CP (or GC),
"All OK" is output

ENDIF

 Variables
 3.18 FOC variable

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 71

3.18 FOC variable

Description
The FOC variable can be used to control the input focus (the current active input/output field)
in a dialog. Responses to cursor left, right, up and down movements, as well as PGUP,
PGDN, are predefined and cannot be modified.

 Note

The FOC function may not be initiated as a result of a navigation event. The cursor position
may only be changed in softkey PRESS blocks, CHANGE blocks, etc.

The FOC function cannot be applied to variables with input mode wr = 0 and wr = 4 or to
Help variables.

Programming

Syntax: FOC
Description: The variable can be read and written.
Return Value: Read The result is the name of the variable to which the FOC

function has been applied.
 Write It is possible to assign either a string or a numerical

value.A string is interpreted as a variable name and a
numerical value as a variable index.

Example

IF FOC == "Var1" ; Read focus

 REG[1] = Var1

ELSE

 REG[1] = Var2

ENDIF

FOC = "Var1" ; The input focus will be assigned to Variable 1.

FOC = 3 ; The input focus will be assigned to the 3rd
dialog element with WR ≥ 2.

Variables
3.19 S_CHAN variable

 Easy Screen (BE2)
72 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

3.19 S_CHAN variable

Description
The S_CHAN variable can be used to determine the number of the current channel for
display or evaluation purposes.

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 73

Programming commands 4
4.1 Operators

Overview
The following operators can be used when programming:

● Mathematical operators

● Relational operators

● Logic (Boolean) operators

● Bit operators

● Trigonometric functions

4.1.1 Mathematical operators

Overview

Mathematical operators Identifier
+ Addition
- Subtraction
* Multiplication
/ Division
MOD Modulo operation
() Parentheses
AND AND operator
OR OR operator
NOT NOT operator
ROUND Round off numbers with decimal places

Example: VAR1.VAL = 45 * (4 + 3)

Programming commands
4.1 Operators

 Easy Screen (BE2)
74 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

ROUND
The ROUND operator is used to round off numbers with up to 12 decimal places during
execution of a dialog configuration. The variable fields cannot accept the decimal places in
the display.

Use
ROUND is controlled by the user with two parameters:

VAR1 = 5,2328543

VAR2 = ROUND(VAR1, 4)

Result: VAR2 = 5,2339

VAR1 contains the number to be rounded. The parameter “4” indicates the number of
decimal places in the result, which is placed in VAR2.

Trigonometric functions

Trigonometric functions Identifier
SIN(x) Sine of x
COS(x) Cosine of x
TAN(x) Tangent of x
ATAN(x, y) Arc tangent of x/y
SQRT(x) Square root of x
ABS(x) Absolute value of x
SDEG(x) Conversion to degrees
SRAD(x) Conversion to radian

 Note

The functions operate with radian measure. The functions SDEG() and SRAD() can be used
for conversion.

Example: VAR1.VAL = SQRT(2)

Constants

Constants
PI 3.14159265358979323846
FALSE 0
TRUE 1

Example: VAR1.VAL = PI

 Programming commands
 4.1 Operators

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 75

Relational operators

Relational operators
== Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Example

IF VAR1.VAL == 1

 VAR2.VAL = TRUE

ENDIF

Conditions
The nesting depth is unlimited.

Condition with a command: IF

...
ENDIF

Condition with two commands: IF
...
ELSE
...
ENDIF

Programming commands
4.1 Operators

 Easy Screen (BE2)
76 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.1.2 Bit operators

Overview

Bit operators Identifier
BOR Bit-serial OR
BXOR Bit-serial XOR
BAND Bit-serial AND
BNOT Bit-serial NOT
SHL Shift bits to left
SHR Shift bits to right

SHL operator
Bits are shifted to the left using the SHL (SHIFT LEFT) operator. You can specify both the
value to be shifted and the number of shift increments directly or via a variable. If the limit of
the data format is reached, the bits are shifted beyond the limit without displaying an error
message.

Use

Syntax: variable = value SHLincrement
Description: Shift Left
Parameters: value value to be shifted
 increment number of shift increments

Example

PRESS(VS1)

 VAR01 = 16 SHL 2 ; Result = 64

 VAR02 = VAR02 SHL VAR04 ; Convert content of VAR02 to 32-bit unsigned , and
shift content to left by number of bits specified
in VAR04. Then convert 32-bit value back to
format of variable VAR02.

END_PRESS

 Programming commands
 4.1 Operators

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 77

SHR operator
Bits are shifted to the RIGHT using the SHR (SHIFT RIGHT) function. You can specify both
the value to be shifted and the number of shift increments directly or via a variable. If the limit
of the data format is reached, the bits are shifted beyond the limit without displaying an error
message.

Use

Syntax: variable = value SHRincrement
Description: Shift Right
Parameters: value value to be shifted
 increment number of shift increments

Example

PRESS(VS1)

 VAR01 = 16 SHR 2 ; Result = 4

 VAR02 = VAR02 SHR VAR04 ; Convert content of VAR02 to 32-bit unsigned ,
and shift content to left by number of bits
specified in VAR04. Then convert 32-bit value
back to format of variable VAR02.

END_PRESS

Programming commands
4.2 Methods

 Easy Screen (BE2)
78 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.2 Methods

Overview
Various types of event (exit input field, actuate softkey) can initiate specific actions in dialogs
and dialog-dependent softkey menus (softkey menus that are called from a newly configured
dialog). These actions are configured in methods.

The following table shows the basic principle used to program a method:

Definition block Comment Chapter reference
PRESS(HS1) ;Method start identifier
LM...
 LS... ;Functions See chapter "Functions"

Var1.st = ... ;Changing properties see chapter "Softkey menu"
and chapter "Dialog elements"

Var2 = Var3 + Var4
...
EXIT

;Calculation with variables See chapter "Defining variables"

END_PRESS ;Method end identifier

4.2.1 CHANGE

Description
CHANGE methods are executed if a variable value changes, i.e., variable calculations that
are performed as soon as a variable value changes are configured within a CHANGE
method.

There are two types of CHANGE method, i.e., element-specific and global:

● The element-specific CHANGE method is executed if the value of a specified variable
changes. If a system or user variable is assigned to a variable, cyclic updating of the
variable value can be configured in a CHANGE method.

● The global CHANGE method is executed if the value of any variable changes and no
element-specific CHANGE method has been configured.

"Element-specific" programming

Syntax: CHANGE(Identifier)

...
END_CHANGE

Description: Changes the value of a specific variable
Parameters: Identifier Name of the variable

 Programming commands
 4.2 Methods

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 79

Example

DEF VAR1=(I//////"DB20.DBB1") ; A system variable is assigned to Var1

CHANGE(VAR1)

 IF VAR1.Val <> 1

 VAR1.st="Tool OK!" ; If the value of the system variable ≠ 1,
the short text of the variable states:
Tool OK!

 otto=1

 ELSE

 VAR1.st="Attention: Error!" ; If the value of the system variable = 1,
the short text of the variable states:
Attention: Error!

 otto=2

 ENDIF

 VAR2.Var=2

END_CHANGE

"Global" programming

Syntax: CHANGE()

...
END_CHANGE

Description: Changes any variable value
Parameters: - None -

Example

CHANGE()

 EXIT ; If any of the variable values change, the dialog will
be terminated.

END_CHANGE

Programming commands
4.2 Methods

 Easy Screen (BE2)
80 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.2.2 FOCUS

Description
The FOCUS method is executed if the focus (cursor) is positioned on another field in the
dialog.

The FOCUS method must not be initiated as a result of a navigation event. The cursor may
only be moved in softkey PRESS blocks, CHANGE blocks, etc. Responses to cursor
movements are are predefined and cannot be modified.

 Note

Within the FOCUS block, it is not possible to select a different variable, nor can a new dialog
be loaded.

Programming

Syntax: FOCUS

...
END_FOCUS

Description: Positions the cursor
Parameters: - None -

Example

FOCUS

 DLGL("The focus has been placed on variable" << FOC << ".) º º

END_FOCUS

 Programming commands
 4.2 Methods

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 81

4.2.3 LOAD

Description
The LOAD method is executed after the variable and softkey definitions (DEF Var1= ...,
HS1= ...) have been interpreted. At this time, the dialog is not yet displayed.

Programming

Syntax: LOAD

...
END_LOAD

Description: Download
Parameters: - None -

Example

LOAD ; Start identifier

 Screen form1.Hd = $85111 ; Assign text for dialog header from language
file

 VAR1.Min = 0 ; Assign MIN variable limit

 VAR1.Max = 1000 ; Assign MAX variable limit

END_LOAD ; End code

See also
Line and rectangle (Page 137)

Programming commands
4.2 Methods

 Easy Screen (BE2)
82 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.2.4 LOAD GRID

Description
The table description can be made available dynamically within the LOAD block using the
LG method.

In order to assign a table using the LG method, the variable must have already been defined
as a grid variable and cross-referenced to an existing, valid table.

Programming

Syntax: LG (Grid name, Variable name [,File name])
Description: Loads a table
Parameters: Grid name Name of the table (grid) in inverted commas
 Variable name Name of the variable to which the table is to be

assigned, in inverted commas
 File name Name of the file in which the table (grid) is defined, in

inverted commas. Only needs to be specified if the
table is not defined within the file that also contains
the definition of the variable

 Programming commands
 4.2 Methods

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 83

4.2.5 UNLOAD

Description
The UNLOAD method is executed before a dialog is unloaded.

Programming

Syntax: UNLOAD

...
END_UNLOAD

Description: Unload
Parameters: - None -

Example

UNLOAD

 REG[1] = VAR1 ; Save variable in register

END_UNLOAD

Programming commands
4.2 Methods

 Easy Screen (BE2)
84 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.2.6 OUTPUT

Description
The OUTPUT method is executed if the "GC" function is called.Variables and Help variables
are configured as an NC code in an OUTPUT method. The individual elements in a code line
are linked by means of blanks.

 Note

The NC code can be generated in an extra file by means of file functions and transferred to
the NC.

Programming

Syntax: OUTPUT (Identifier)

...
END_OUTPUT

Description: Outputs variables in the NC program.
Parameters: Identifier Name of OUTPUT method

Block numbers and skip identifiers
The OUTPUT block must not contain line numbers or skip identifiers if you wish to keep the
line numbers and hide markings directly set with active program support in the parts program
in case of recompilations.

Editor changes in the parts program produce the following response:

Condition Response
Number of blocks remains unchanged. Block numbers are retained.
Number of blocks is reduced. The highest block numbers are canceled.
Number of blocks is increased. New blocks are not numbered.

Example

OUTPUT(CODE1)

 "CYCLE82(" Var1.val "," Var2.val "," Var3.val ","Var4.val "," Var5.val
"," Var6.val ")"

END_OUTPUT

 Programming commands
 4.2 Methods

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 85

4.2.7 PRESS

Description
The PRESS method is executed when the corresponding softkey is pressed.

Programming

Syntax: PRESS(softkey)

...
END_PRESS

Identifiers: Pressing a softkey
Parameters: Softkey Name of softkey: HS1 - HS8 and VS1 - VS8
 RECALL <RECALL> key
 PU Page Up Screen up
 PD Page Down Screen down
 SL Scroll left Cursor left
 SR Scroll right Cursor right
 SU Scroll up Cursor up
 SD Scroll down Cursor down

Example

HS1 = ("another softkey menu")

HS2=("no function")

PRESS(HS1)

 LS("Menu1") ; load another softkey menu

 Var2 = Var3 + Var1

END_PRESS

PRESS (HS2)

END_PRESS

PRESS(PU)

 INDEX = INDEX -7

 CALL("UP1")

END_PRESS

Programming commands
4.2 Methods

 Easy Screen (BE2)
86 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.2.8 Example Version management with OUTPUT blocks

Overview
Additional variables can be added to existing dialogs when expanding the user interface. A
version identifier in parentheses is appended to the additional variables in the definition
following the variable name: (0 = Original, is not written), 1 = Version 1, 2 = Version 2, etc.

Example

DEF var100=(R//1) ; Original, corresponds to Version 0

DEF var101(1)=(S//"Hello") ; Expansion with effect from Version 1

When writing the OUTPUT block, you can specify which variables are written, with reference
to a particular version identifier.

Example

OUTPUT(NC1) ; Only the variables of the original version are
made available in the OUTPUT block.

OUTPUT(NC1,1) ; The variables of the original version and the
expansions with version identifier 1 are made
available in the OUTPUT block

The OUTPUT block for the original version does not need a version identifier, however you
can specify it with 0. OUTPUT(NC1) is equivalent to OUTPUT(NC1,0). Version identifier n in
the OUTPUT block includes all variables of the originals 0, 1, 2, ... up to and including n.

 Programming commands
 4.2 Methods

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 87

Programming with version identifier

//M(XXX) ; Version 0 (default)

DEF var100=(R//1)

DEF var101=(S//"Hello")

DEF TMP

VS8=("GC")

PRESS(VS8)

 GC("NC1")

END_PRESS

OUTPUT(NC1)

var100",,"var101

END_OUTPUT

; ************ Version 1, extended definition ***************

//M(XXX)

DEF var100=(R//1)

DEF var101=(S//"Hello")

DEF var102(1)=(V//"HUGO")

DEF TMP

VS8=("GC")

PRESS(VS8)

 GC("NC1")

END_PRESS

...

OUTPUT(NC1) ; Original and the new version in addition

var100","var101

END_OUTPUT

...

OUTPUT(NC1,1) ; Version 1

var100","var101"," var102

END_OUTPUT

Programming commands
4.3 Functions

 Easy Screen (BE2)
88 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3 Functions

Overview
A variety of functions are available in dialogs and dialog-dependent softkey menus. These
can be activated by specific events (exit input field, actuate softkey) and configured in
methods.

Subroutines
Repeatedly used configuring instructions or others, which define the process for a particular
operation can be configured in subprograms. Subprograms can be loaded into the main
program or other subprograms at any time and executed as often as necessary, i.e., the
instructions they contain do not need to be configured repeatedly. The definition blocks of
the dialogs/softkey menu constitute a main program.

External functions
Additional, user-specific functions can be integrated by means of external functions. The
external functions are stored in a DLL file and identified by an entry in the definition lines of
the configuration file.

PI services
The PI_SERVICE function can be used to start PI Services (Program Invocation Services)
from the PLC in the NC area.

See also
Function (FCT) (Page 104)

PI services (Page 134)

4.3.1 Define block (//B)

Description
In the program file, subprograms are identified by the block identifier //B and terminated with
//END. Several subprograms can be defined under each block identifier.

 Note

The variables used in the subprogram must be defined in the dialog in which the subprogram
is called.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 89

Programming
A block is structured in the following way:

Syntax: //B(Block name)

SUB(Identifier)
END_SUB
[SUB(Identifier)
...
END_SUB]
...
//END

Description: Defines a subprogram
Parameters: Block name Name of block identifier
 Identifier Name of subprogram

Example

//B(PROG1) ; Block start

SUB(UP1) ; Start of subprogram

 ...

 REG[0] = 5 ; Assign value 5 to register 0 

 ...

END_SUB ; End of subprogram

SUB(UP2) ; Start of subprogram

 IF VAR1.val=="Otto"

 VAR1.val="Hans"

 RETURN

 ENDIF

 VAR1.val="Otto"

END_SUB ; End of subprogram

//END ; Block end

Programming commands
4.3 Functions

 Easy Screen (BE2)
90 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.2 Subprogram call (CALL)

Description
The CALL function can be used to call a loaded subprogram from any point in a method.
Subprogram nesting is supported, i.e., you can call a subprogram from another subprogram.

Programming

Syntax: CALL("Identifier")
Description: Subroutine call
Parameters: Identifier Name of subprogram

Example

//M(SCREEN FORM1) 

VAR1 = ...

VAR2 = ...

LOAD

 ...

 LB("PROG1") ; Load block

 ...

END_LOAD

CHANGE()

 ...

 CALL("UP1") ; Call subroutine and execute

 ...

END_CHANGE

...

//END

4.3.3 Check Variable (CVAR)

Description
You can use the CVAR (CheckVariable) function to run a scan to ascertain whether all or
only certain variables or Help variables in a screen form are error-free.

It may be useful to check if variables contain a valid value before an NC code with the GC
function.

A variable is error-free if the state of the variable Identifier.vld = 1.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 91

Programming

Syntax: CVAR(VarN)
Description: Checks variables for valid content
Parameters: VarN List of variables to be checked.

Up to 29 variables, each separated by a comma, can
be checked. A character length of 500 must not be
exceeded.
The result of the scan can be:

 1 =TRUE (all variables have valid content)
 0 =FALSE (at least one variable has invalid content)

Example

IF CVAR == TRUE ; Check all variables

 VS8.SE = 1 ; If all variables are error-free, softkey VS8 is
visible

ELSE

 VS8.SE = 2 ; If a variable has an invalid value, softkey VS8 is
disabled

ENDIF

IF CVAR(”VAR1”, ”VAR2”) ==
TRUE

 ; Check variables VAR1 and VAR2

 DLGL ("VAR1 and VAR2 are
OK")

 ; If the values of VAR1 and VAR2 are error-free,
"VAR1 and VAR2 are OK" appears in the dialog line

ELSE

 DLGL ("VAR1 and VAR2 are not OK")

 ; If the values of VAR1 and VAR2 are invalid, "VAR1
and VAR2 are not OK" appears in the dialog line

ENDIF

Programming commands
4.3 Functions

 Easy Screen (BE2)
92 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.4 Copy Program file function (CP)

Description
The CP (Copy Program) function copies files within the HMI file system or within the NC file
system.

Programming

Syntax: CP("Source file", "Target file")
Description: Copies a file
Parameters: Source file Complete path to the source file
 Target file Complete path data of the target file

The return value can be used to query whether the function was successful:

CP("\MPF.DIR\CFI.MPF","\WKS.DIR\123.WPD\CFI.MPF",VAR1)

Example
Application with return value:

CP("//NC/MPF.DIR/HOHO.MPF","//NC/MPF.DIR/ASLAN.MPF",VAR3)

CP("//NC/MPF.DIR/hoho.MPF",VAR0,VAR3)

CP(VAR4,VAR0,VAR3)

CP("CF_CARD:/mpf.dir/myprog.mdf","//NC/MPF.DIR/HOHO.MPF",VAR3)

CP("//NC/MPF.DIR/HOHO.MPF",
"CF_CARD:/xyz/123.pmf",VAR3)

; xyz must exist

Application without return value:

CP("//NC/MPF.DIR/HOHO.MPF","//NC/MPF.DIR/ASLAN.MPF")

CP("//NC/MPF.DIR/hoho.MPF",VAR0)

CP(VAR4,VAR0)

CP("CF_CARD:/mpf.dir/myprog.mdf","//NC/MPF.DIR/HOHO.MPF")

CP("//NC/MPF.DIR/HOHO.MPF",
"CF_CARD:/xyz/123.mpf")

; xyz must exist

See also
Support of FILE_ERR: FILE_ERR variable (Page 69)

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 93

4.3.5 Delete Program file function (DP)

Description
The DP (Delete Program) function deletes a file from the passive HMI or active NC file
system.

Programming

Syntax: DP("File")
Description: Delete file
Parameters: File Complete path name of file to be deleted

Example
The following data management syntax is used for this function:

 with return value
 DP("//NC/MPF.DIR/XYZ.DIR ", VAR1)

 VAR1 = 0 File was deleted.
 VAR1 = 1 File was not deleted.
 Without return value:
 DP("//NC/MPF.DIR/XYZ.DIR ")

DP("\MPF.DIR\CFI.MPF")

Programming commands
4.3 Functions

 Easy Screen (BE2)
94 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.6 Exist Program file function (EP)

Description
The EP (Exist Program) function checks whether a particular NC program is stored on the
specified path in the NC or HMI file system.

Programming

Syntax: EP("File")
Description: Checks the existence of the NC program
Parameters: File Complete path to the file in the NC or HMI file system
Return Value: Name of a variable to which the result of the scan should be assigned.
 The result of the scan can be:

 M = File is stored on HMI
 N = file is stored on NC
 Blank string = The file neither exists on the HMI nor on

the NC

The EP function can handle the new syntax and the old logic (with adapted Syntax).

The file is directly addressed using a qualifying name:

//NC/MPF.DIR/XYZ.DIR

or

CF_CARD: /MPF.DIR/XYZ.DIR

or

LOC: /MPF.DIR/XYZ.DIR

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 95

New syntax:

EP("//NC/MPF.DIR/XYZ.DIR ", VAR1)

EP("CF_CARD:/MPF.DIR/XYZ.DIR ", VAR1)

EP("LOC:/MPF.DIR/XYZ.DIR ", VAR1)

;with return value:

; VAR1 = 0 File exists.

; VAR1 = 1 File does not exist.

Old syntax:

EP("/MPF.DIR/CFI.MPF", VAR1)

;with return value:

; VAR1 = M File is located in the HMI file system.

; VAR1 = N File is located in the NC file system.

; VAR1 = B File is located in the HMI and NC file system.

Example

EP("\MPF.DIR\CFI.MPF", VAR1) ; Check whether file CFI.MPF exists in the
HMI file system.

IF VAR1 == "M"

 DLGL("File is located in the HMI file system")

ELSE

 IF VAR1 == "N"

 DLGL("File is located in the NC file directory")

 ELSE

 DLGL("File is located neither in the HMI nor in the NC file
directory")

 ENDIF

ENDIF

Programming commands
4.3 Functions

 Easy Screen (BE2)
96 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.7 Move Program file function (MP)

Description
The MP (Move Program) function copies files within the HMI file system or within the NC file
system.

Programming

Syntax: MP("source", "target")
 MP("CF_CARD:/MPF.DIR/MYPROG.MPF","//NC/MPF.DIR")

Description: Move file
Parameters: Source file Complete path data
 Target file Complete path data

Examples

MP("//NC/MPF.DIR/123.MPF","//NC/MPF.DIR/ASLAN.MPF",VAR3) // full paths

MP("//NC/MPF.DIR/123.MPF","//NC/MPF.DIR",VAR3) // target without file names

MP("//NC/MPF.DIR/123.MPF",VAR0,VAR3) // target via variable

MP(VAR4,VAR0,VAR3) // source and target via variable

MP("CF_CARD:/mpf.dir/myprog.mdf","//NC/MPF.DIR/123.MPF",VAR3) // from CF card in NC

MP("//NC/MPF.DIR/HOHO.MPF","CF_CARD:/xyz/123.mpf",VAR3) // from NC in CF card

MP("USB:/mpf.dir/myprog.mdf","//NC/MPF.DIR",VAR3)// // from USB to NC

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 97

4.3.8 Select Program file function (SP)

Description
The SP (Select Program) function selects a file in the active NC file system for execution,
i.e., the file must be loaded into the NC beforehand.

Programming

Syntax: SP("File")
Identifiers: Selecting a program
Parameters: "File" Complete path name of NC file

Example
The following data management syntax is used for this function:

 with return value
 SP("//NC/MPF.DIR/MYPROG.MPF", VAR1)

 VAR1 = 0 File was loaded.
 VAR1 = 1 File was not loaded without return value
 Without return value:
 SP("//NC/MPF.DIR/MYPROG.MPF")

Programming commands
4.3 Functions

 Easy Screen (BE2)
98 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

//M(TestGC/"Code generation:")

DEF VAR1 = (R//1)

DEF VAR2 = (R//2)

DEF D_NAME

LOAD

 VAR1 = 123

 VAR2 = -6

END_LOAD

OUTPUT(CODE1)

 "Cycle123(" VAR1 "," VAR2 ")"

 "M30"

END_OUTPUT

PRESS(VS1)

 D_NAME = "CF_CARD:/MPF.DIR/MESSEN.MPF"

 GC("CODE1",D_NAME) ;Write code from the OUTPUT method to file
CF_CARD:/MPF.DIR/MESSEN.MPF

END_PRESS

PRESS(HS8)

 MP("CF_CARD:/MPF.DIR/MESSEN.MPF","//NC/MPF.DIR") ;Load file into NC

 SP("\MPF.DIR\MESSEN.MPF") ;Select file

END_PRESS

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 99

4.3.9 Dialog line (DLGL)

Description
It is possible to configure short texts (messages or input tips) for output in the dialog line of
the dialog in response to certain situations.

Possible number of characters in the default font size: approx. 50

Programming

Syntax: DLGL("String")
Description: Outputs text in the dialog line
Parameters: String Text, which is displayed in the dialog line

Example

IF Var1 > Var2

 DLGL("Value too large!") ; The text "Value too large!" appears in the dialog
line if variable1 > variable2.

ENDIF

Programming commands
4.3 Functions

 Easy Screen (BE2)
100 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.10 Evaluate (EVAL)

Description
The EVAL function evaluates a transferred expression and then executes it. With this
function, expressions can be programmed during runtime. This can be useful, for example,
for indexed access operations to variables.

Programming

Syntax: EVAL(exp)
Description: Evaluates an expression
Parameters: exp Logic expression

Example

VAR1=(S)

VAR2=(S)

VAR3=(S)

VAR4=(S)

CHANGE()

 REG[7] = EVAL("VAR"<<REG[5]) ; The expression in parentheses produces
VAR3 if the value of REG[5] is equal to 3.
The value of VAR3 is, therefore, assigned
to REG[7].

 IF REG[5] == 1

 REG[7] = VAR1

 ELSE

 IF REG[5] == 2

 REG[7] = VAR2

 ELSE

 IF REG[5] == 3

 REG[7] = VAR3

 ELSE

 IF REG[5] == 4

 REG[7] = VAR4

 ENDIF

 ENDIF

 ENDIF

 ENDIF

END_CHANGE

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 101

4.3.11 Exit dialog (EXIT)

Description
The EXIT function is used to exit a dialog and return to the master dialog. If no master dialog
is found, you will exit the newly configured user interfaces and return to the standard
application.

Programming (without parameters)

Syntax: EXIT
Description: Exits a dialog
Parameters: - None -

Example

PRESS(HS1)

 EXIT

END_PRESS

Description
If the current dialog has been called with a transfer variable, the value of the variables can
be changed and transferred to the output dialog.

The variable values are each assigned to the variables transferred from the output dialog to
the subsequent dialog using the "LM" function. Up to 20 variable values, each separated by
a comma, can be transferred.

 Note

The sequence of variables or variable values must be the same as the sequence of transfer
values programmed for the LM function to preclude assignment errors. Any unspecified
variable values will not be changed when the transfer is made. The modified transfer
variables are immediately valid in the output dialog on execution of the LM function.

Programming commands
4.3 Functions

 Easy Screen (BE2)
102 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Programming with a transfer variable

Syntax: EXIT[(VARx)]
Description: Exits dialog and transfers one or more variables
Parameters: VARx Label variables

Example

//M(Screen form1) 

...

PRESS(HS1)

 LM("SCREEN FORM2","CFI.COM",1, POSX, POSY, DIAMETER)

 ; Interrupt screen form1 and open screen form2.
Transfer variables POSX, POSY and DIAMETER in
doing this.

 DLGL("Screen form2 ended") ; On returning from screen form2, the following
text appears in the dialog line of screen form
1: Screen form2 ended.

END_PRESS

...

//END

//M(Screen form2) 

...

PRESS(HS1)

 EXIT(5, , CALCULATED_DIAMETER)

 ; Exit screen form2 and return to screen form1 in
the line after LM. In doing this, assign the
value 5 to the variable POSX and the value of
the CALCULATED_DIAMETER variable to the DIAMETER
variable. The variable POSY retains its current
value.

END_PRESS

...

//END

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 103

4.3.12 Exit Loading Softkey (EXITLS)

Description
You can use the EXITLS function to exit the current user interface and load a defined softkey
menu.

Programming

Syntax: EXITLS("Softkey menu"[, "Path"])
Description: Exits dialog and loads a softkey menu
Parameters: Softkey menu Name of the softkey menu to be loaded
 Path name Directory path of the softkey menu to be loaded

Example

PRESS(HS1)

 EXITLS("Menu1", "AEDITOR.COM")

END_PRESS

Programming commands
4.3 Functions

 Easy Screen (BE2)
104 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.13 Function (FCT)

Description
The external functions are stored in a DLL file and identified by an entry in the definition lines
of the configuration file.

 Note

The external function must have at least one return parameter.

Programming

Syntax: FCTFunction name = ("File"/Type of return/Types of permanent

parameters/Types of variable parameters)
 FCT InitConnection = ("c:\tmp\xyz.dll"/I/R,I,S/I,S)
Description: An external function can e.g. be called in the LOAD block or in the

PRESS block.
Parameters: Function name Name of external function
 File Complete path to DLL file
 Type of return Data type of the return value
 Type of fixed

parameter
Value parameter

 Type of variable
parameter

Reference parameter

 The data types are separated by commas.

The external function can e.g. be called in the LOAD block or in the PRESS block.

Example:

press(vs4)

RET = InitConnection(VAR1,13,"Servus",VAR2,VAR17)

end_press

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 105

Structure of the external function
The external function must take into account a certain, specific signature:

Syntax: external "C" dllexport void InitConnection (ExtFctStructPtr FctRet,

ExtFctStructPtr FctPar, char cNrFctPar)
Description: DLL export, only when implemented in Windows

Specified and transfer parameters are strictly defined. The actual call
parameters are transferred using the transferred structures.

Parameters: cNrFctPar Number of call parameters = number of structure
elements in FctPar

 FctPar Pointer to a field of structure elements, which
contain the particular call parameter with data type.

 FctRet Pointer to a structure for the function value return
with data type.

Definition of the transfer structure

union CFI_VARIANT

 (

 char b;

 short int i;

 double r;

 char* s;

)

typedef struct ExtFctStructTag

 (

 char cTyp;

 union CFI_VARIANT value;

)ExtFctStruct;

typedef struct ExtFct* ExtFctStructPtr;

Programming commands
4.3 Functions

 Easy Screen (BE2)
106 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

If the external function is to be developed independently of the platform (Windows, Linux),
then it is not permissible to use the keyword __declspec(dllexport). This keyword is only
required under Windows. For instance, the following macro can be used under Qt.

#ifdef Q_WS_WIN

 #define MY_EXPORT __declspec(dllexport)

#else

 #define MY_EXPORT

#endif

The function is declared as follows:

 extern "C" MY_EXPORT void InitConnection

 (ExtFctStructPtr FctRet, ExtFctStructPtr FctPar,char cNrFctPar)

If the screens, configured with Easy Screen, are used on the NCU and PCU/PC, then the
extension of the binary file must be omitted:

 FCT InitConnection = ("xyz"/I/R,I,S/I,S)

When the absolute path information is omitted, Easy Screen first searches for the binary file
in the proj directory.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 107

4.3.14 Generate code (GC)

Description
The GC (Generate Code) function generates NC code from the OUTPUT method.

Programming

Syntax: GC("Identifier"[,"Target file"][,Opt],[Append])
Description: Generate an NC code
Parameters: Identifier Name of OUTPUT block from which code is generated
 Target file Path name of target file for HMI or NC file system

If the target file is not specified (only possible within
programming support system), the code will be written
to the location of the cursor within the file that is
currently open.

 Opt Option for generating comments
 0:(Default setting) Generate code with comment for the

purpose of recompilability.
 1:Do not create comments in the generated code.

Note: This code cannot be recompiled (see also
Recompile without comment (Page 126)).

 Append This parameter is only relevant if a target file is
specified.

 0:(Default setting) If the file already exists, the old content
is deleted.

 1:If the file already exists, the new code is written at the
start of the file.

 2:If the file already exists, the new code is written at the
end of the file.

Programming commands
4.3 Functions

 Easy Screen (BE2)
108 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Example

//M(TestGC/"Code generation:")

DEF VAR1 = (R//1)

DEF VAR2 = (R//2)

DEF D_NAME

LOAD

 VAR1 = 123

 VAR2 = -6

END_LOAD

OUTPUT(CODE1)

 "Cycle123(" VAR1 "," VAR2 ")"

 "M30"

END_OUTPUT

PRESS(VS1)

 D_NAME = "\MPF.DIR\MESSEN.MPF"

 GC("CODE1",D_NAME) ;Write code from OUTPUT method to file
\MPF.DIR\MESSEN.MPF:

Cycle123(123, -6)
M30

END_PRESS

Recompile
● No entry for target file:

The GC function can only be used in the Programming Support system and writes the NC
code to the file currently open in the Editor. Recompilation of the NC code is possible. If
the GC function is configured without a target file being specified under "Easy Screen", an
error message is output when it is executed.

● Entry for target file:

The code generated from the OUTPUT block is transferred to the target file. If the target
file does not already exist, it is set up in the NC file system. If the target file is stored in
the HMI file system, it is stored on the hard disk. User comment lines (information
required to recompile code) are not set up, i.e. the code cannot be recompiled.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 109

Special considerations for target file specification
In principle, there are two different ways of specifying a target file:

● NC notation:/_N_MPF_DIR/_N_MY_FILE_MPF

The file is created in the MPF directory on the NC.

● DOS notation:d:\abc\my_file.txt or \\RemoteRechner\files\my_file.txt

The file is written to the specified directory on the hard disk or on the specified PC,
provided that the directory is available on the hard disk or on a remote PC.

 Note

Invalid variables generate a blank string in generated NC code and an error message in
the log book when they are read.

Special features of recompilation
The GC function cannot be called in sub-dialogs because variables originating from master
dialogs can be used in sub-dialogs. These variables would not, however, be available in
response to a direct call.

When generated code is processed manually with the Editor, the number of characters for
values created by the code generation program must not be changed. Changing these
values would make it impossible to recompile the code.

Remedy:

1. Recompile

2. Make change using the configured dialog. (e. g., 99 → 101)

3. GC

See also
Recompile (Page 124)

Programming commands
4.3 Functions

 Easy Screen (BE2)
110 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.15 Load Array (LA)

Description
The LA (Load Array) function can be used to load an array from another file.

Programming

Syntax: LA(Identifier [, File])
Description: Loads array from file
Parameters: Identifier Name of array to be loaded
 File File in which the array is defined

 Note

If an array in the current configuration file must be replaced by an array from another
configuration file, then both arrays must have the same name.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 111

Example

 ; Extract from file maske.com

DEF VAR2 = (S/*ARR5/"Out"/,"Toggle
field")

PRESS(HS5)

 LA("ARR5","arrayext.com") ; Load array ARR5 from file arrayext.com

 VAR2 = ARR5[0] ; "Above"/"Below"/"Right"/"Left" appears in the
VAR2 toggle field

instead of "Out/In"

END_PRESS

//A(ARR5)

("Out"/"In")

//END

 ; Extract from file arrayext.com

//A(ARR5)

("Above"/"Below"/"Right"/"Left"
)

//END

 Note

Please note that a valid value must be assigned to a variable after the LA function has been
used to assign another array to the toggle field of the variable.

Programming commands
4.3 Functions

 Easy Screen (BE2)
112 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.16 Load Block (LB)

Description
The LB (Load Block) function can be used to load blocks containing subprograms during
runtime. LB should be configured in a LOAD method so that the loaded subprograms can be
called at any time.

 Note

Subprograms can also be defined directly in a dialog so that they do not have to be loaded.

Programming

Syntax: LB("Block name"[,"File"])
Description: Loads subprogram during runtime
Parameters: Block name Name of block identifier
 File Path name of configuration file

Default setting = Current configuration file

Example

LOAD

 LB("PROG1") ; Block "PROG1" is searched for in the current
configuration file and then loaded.

 LB("PROG2","XY.COM") ; Block "PROG2" is searched for in the
configuration file XY.COM and then loaded.

END_LOAD

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 113

4.3.17 Load Mask (LM)

Description
The LM function can be used to load a new dialog.

Master dialog/Sub-dialog
A dialog, which calls another dialog, but is not ended itself, is referred to as a master dialog.
A dialog that is called by a master dialog is referred to as a sub-dialog.

Programming

Syntax: LM("Identifier"[,"File"] [,MSx [, VARx]])
Description: Loads dialog
Parameters: Identifier Name of the dialog to be loaded
 File Path name (HMI file system or NC file system) of the

configuration file, default setting: Current configuration file
 MSx Mode of dialog change
 0:(Default setting) The current dialog disappears; the new

dialog is loaded and displayed. EXIT will send you back to
the standard application. You can use the MSx parameter
to determine whether or not the current dialog should be
terminated when changing dialogs. If the current dialog is
retained, variables can be transferred to the new dialog.
The advantage of the MSx parameter is that the dialogs
do not always need to be reinitialized when they are
changed; instead, the data and layout of the current
dialog are retained and data transfer is made easier.

 1:The current master dialog is interrupted when the LM
function is initiated; the new sub-dialog is loaded and
displayed. EXIT will end the sub-dialog and return to the
point at which the master dialog was interrupted.
In the master dialog, the UNLOAD block is not processed
during the interruption.

 VARx Requirement: MS1
List of variables, which can be transferred from the
master dialog to the sub-dialog. Up to 20 variables, each
separated by a comma, can be transferred.

Programming commands
4.3 Functions

 Easy Screen (BE2)
114 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

 Note

Parameter VARx transfers only the value of the variable in each case, i.e., variables can be
read and written in the sub-dialog, but are not visible in it. Variables can be returned from the
sub-dialog to the master dialog by means of the EXIT function.

Example

PRESS(HS1)

 LM("SCREEN FORM2","CFI.COM",1, POSX, POSY, DIAMETER)

 ; Interrupt screen form1 and open screen form2:
Variables POSX, POSY and DIAMETER are transferred
in doing this.

 DLGL("Screen form2 ended") ; On returning from screen form2, the following text
appears in the dialog line of screen form 1:
Screen form2 ended.

END_PRESS

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 115

4.3.18 Load Softkey (LS)

Description
The LS function can be used to display another softkey menu.

Programming

Syntax: LS("Identifier"[, "File"][, Merge])
Description: Displays softkey menu
Parameters: Identifier Name of softkey menu
 File Path (HMI file system or NC file system) to the

configuration file
Default: Current configuration file

 Merge
 0:All existing softkeys are deleted; the newly configured

softkeys are entered.
 1:Default

Only the newly configured softkeys overwrite the
available softkeys. The other softkeys (= softkeys of the
HMI application) are kept with their functionality and
text.

Example

PRESS(HS4)

 LS("Menu2",,0) ; Menu2 overwrites the existing softkey menu, the
softkeys that are displayed are deleted.

END_PRESS

NOTICE
As long as the interpreter has not displayed a dialog, i.e., no LM function has yet been
processed, only one LS or one LM command, but no other action, can be configured in the
PRESS method of the definition block for the start softkey and the softkey menu.

The LS and LM functions may only be called within a softkey PRESS block and will not
react if navigation keys are pressed (PU, PD, SL, SR, SU, SD).

Programming commands
4.3 Functions

 Easy Screen (BE2)
116 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.19 Read NC/PLC (RNP), Write NC/PLC (WNP)

Description
The RNP (Read NC PLC) command can be used to read NC or PLC variables or machine
data.

Programming

Syntax: RNP ("System or user variable", value)
Description: Reads NC or PLC variable or machine data
Parameters: System or user

variable
Name of NC or PLC variable

 Value Value that is to be written to the system or user
variable.
If the value is a String type, it must be written in
double quotation marks.

Example

VAR2=RNP("$AA_IN[2]") ; Read NC variable

Description
The WNP (Write NC PLC) command can be used to write NC or PLC variables or machine
data.

NC/PLC variables are accessed anew every time the WNP function is executed, i.e.,
NC/PLC access is always executed in a CHANGE method. It is advisable to use this option
in cases where a system or user variable changes value frequently. If an NC/PLC variable is
to be accessed only once, then it must be configured in a LOAD or UNLOAD method.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 117

Programming

Syntax: WNP("System or user variable", value)
Description: Writes NC or PLC variable or machine data
Parameters: System or user variable Name of NC or PLC variable
 Value Value that is to be written to the system or user

variable.
If the value is a String type, it must be written in
double quotation marks.

Example

WNP("DB20.DBB1",1) ; Write PLC variable

Programming commands
4.3 Functions

 Easy Screen (BE2)
118 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.20 Multiple Read NC PLC (MRNP)

Description
This MRNP command can be used to transfer several system or OPI variables in a single
register access. This access method is significantly faster than reading via individual access
attempts. The system or OPI variables must be included within an MRNP command of the
same area.

The areas of the system or OPI variables are organized as follows:

● General NC data ($MN..., $SN.., /nck/...)

● Channel-specific NC data ($MC..., $SC.., /channel/...)

● PLC data (DB..., MB.., /plc/...)

● Axis-specific NC data on the same axis ($MA..., $SA..)

Programming

Syntax: MRNP(Variable name 1*Variable name 2[* ...], Register index)
Description: Reads several variables
Parameters: In the variable names, "*" is the separator. The values are transferred to

register REG[Register index] and those following in the order that the
variable names appear in the command.
The following therefore applies:
The value of the first variable is located in REG[Register index].
The value of the second variable is located in REG[Register index + 1],
etc.

NOTICE
It should be noted that the number of registers is restricted and the list of variables cannot
exceed 500 characters.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 119

Example

MRNP("$R[0]*$R[1]*$R[2]*$R[3]",1) ;The values of variables $R[0] to $R[3] are
written to REG[1] to REG[4].

Reading display machine data:

Display machine data can be read with RNP ($MM...) within the LOAD block.

General read/write access to display machine data is not possible using the "Easy Screen"
function.

 Note

User variables may not have the same names as system or PLC variables.

NC variable
All machine data, setting data and R parameters are available, but only certain system
variables (see also: List of accessible system variables (Page 173)).

All global and channel-specific user variables (GUDs) can be accessed. However, local and
program-global user variables cannot be processed.

Machine data
Global machine data $MN_...
Axis-specific machine data $MA_...
Channel-specific machine data $MC_...

Setting data
Global setting data $SN_...
Axis-specific setting data $SA_...
Channel-specific setting data $SC_...

System variables
R parameter 1 $R[1]

Programming commands
4.3 Functions

 Easy Screen (BE2)
120 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

PLC variable
All PLC data are available.

PLC data
Byte y bit z of data block x DBx.DBXy.z
Byte y of data block x DBx.DBBy
Word y of data block x DBx.DBWy
Double word y v. of data block x DBx.DBDy
Real y of data block x DBx.DBRy
Flag byte x bit y Mx.y
Flag byte x MBx
Flag word x MWx
Flag double word x MDx
Input byte x bit y Ix.y or Ex.y
Input byte x IBx or EBx
Input word x IWx or EWx
Input double word x IDx or EDx
Output byte x bit y Qx.y or Ax.y
Output byte x QBx or ABx
Output word x QWx or AWx
Output double word x QDx or ADx
String y with length z from data block x DBx.DBSy.z

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 121

4.3.21 Register (REG)

Register description
Registers are needed in order to exchange data between different dialogs. Registers are
assigned to each dialog. These are created when the first dialog is loaded and assigned the
value 0 or a blank string.

 Note

Registers may not be used directly in OUTPUT blocks for generating NC code.

Programming

Syntax: REG[x]
Description: Defines register
Parameters: x Register index with x = 0...19;

Type: REAL or STRING = VARIANT
Registers with x ≥ 20 have already been assigned by Siemens.

Description of register value
The assignment of values to registers is configured in a method.

 Note

If a new dialog is generated from an existing dialog by means of the LM function, register
content is automatically transferred to the new dialog at the same time and is available for
further calculations in the second dialog.

Programming

Syntax: Identifier.val = Register value

or
Identifier = Register value

Description:
Parameters: Identifier Name of register
 Register value Value of register

Programming commands
4.3 Functions

 Easy Screen (BE2)
122 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Example

UNLOAD

 REG[0] = VAR1 ; Assign value of variable 1 to register 0

END_UNLOAD

UNLOAD

 REG[9].VAL = 84 ; Assign value 84 to register 9

END_UNLOAD

 ; These registers can then be assigned to local
variables again in a method in the next
dialog.

LOAD

 VAR2 = REG[0]

END_LOAD

Description of register status
The Status property can be used to scan a register for valid content.

One possible use for the register scan function is to ensure that a value is written to a
register only if the relevant dialog is a "master dialog".

Programming

Syntax: Identifier.vld
Description: Status is a read-only property.
Parameters: Identifier Name of register
Return Value: The result of the scan can be:
 FALSE =invalid value
 TRUE =valid value

Example

IF REG[15].VLD == FALSE ; Scan validity of register value

 REG[15] = 84

ENDIF

VAR1 = REG[9].VLD ; Assign the value of the REG[9] status
request to Var1.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 123

4.3.22 RETURN

Description
The RETURN function can be used to prematurely terminate execution of the current
subprogram and to return to the branch point of the last CALL command.

If no RETURN command is configured in the subprogram, the subprogram will run to the end
before returning to the branch point.

Programming

Syntax: RETURN
Description: Returns to the branch point
Parameters: - None -

Example

//B(PROG1) ; Block start

SUB(UP2) ; Start of subprogram

 IF VAR1.val=="Otto"

 VAR1.val="Hans"

 RETURN ; If the variable value = Otto, the value "Hans"
is assigned to the variable, and the subprogram
ends at this point.

 ENDIF

 VAR1.val="Otto" ; If the variable value ≠ Otto, the value "Otto"
is assigned to the variable.

END_SUB ; End of subroutine

//END ; Block end

Programming commands
4.3 Functions

 Easy Screen (BE2)
124 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.23 Recompile

Description
In the programming support system, it is possible to recompile NC code that has been
generated with the GC function and to display the variable values in the input/output field of
the associated entry dialog again.

Programming
Variables from the NC code are transferred to the dialog. At the same time, the variable
values from the NC code are compared with the calculated variable values from the
configuration file. If the values do not coincide, an error message is written to the log book
because values have been changed during NC code generation.

If the NC code contains the same variable several times, it is evaluated at the point where it
last occurs during recompilation. A warning is also written to the log book.

Variables not utilized in NC code during code generation are stored as user comment. The
term "user comment" refers to all information required to recompile codes. User comment
must not be altered.

 Note

The block consisting of NC code and user comment can be recompiled only if it starts at the
beginning of a line.

Examples:

The programm contains the following NC code:

DEF VAR1=(I//101)

OUTPUT(CODE1)

 "X" VAR1 " Y200"

 "X" VAR1 " Y0"

END_OUTPUT

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 125

The following code is then stored in the parts program:

;NCG#TestGC#\cus.dir\aeditor.com#CODE1#1#3#

X101 Y200

X101 Y0

;#END#

The Editor reads the following during recompilation:

X101 Y200

X222 Y0 ; The value for X has been changed in the parts program
(X101 → X222)

The following value is displayed for VAR1 in the input dialog: VAR1 = 222

See also
Generate code (GC) (Page 107)

Programming commands
4.3 Functions

 Easy Screen (BE2)
126 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.24 Recompile without comment

Description
In the programming support system, it is possible to recompile without comments the NC
code that has been generated with the GC function and to display the variable values in the
input/output field of the associated entry dialog again.

Programming
The GC command can be executed in the following way in order to suppress comment lines
that are generated for standard code generation:

GC("CODE1",D_NAME,1)

Normally, the resulting code cannot be recompiled. The following steps are required in order
to be able to recompile the cycle calls generated in this way:

● Expanding the easyscreen.ini

Section [RECOMPILE_INFO_FILES] will be introduced into the easyscreen.ini file. In this
section, all ini files are listed that contain descriptions for cycles recompiled without
comment:

 [RECOMPILE_INFO_FILES]

IniFile01 = cycles1.ini

IniFile02 = cycles2.ini

Several ini files can be specified, whose names can be freely selected.

● Creating an ini file for a cycle description

The ini file with the cycle descriptions is stored under /user or /oem in the directory
/sinumerik/hmi/cfg. A separate section is required for each cycle. The section name
corresponds to the name of the cycle:

[Cycle123]

Mname = TestGC

Dname = testgc.com

OUTPUT = Code1

Anzp = 3

Version = 0

Code_type = 1

Icon = cycle123.png

Desc_Text = This is describing text

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 127

Mname Screen form name
Dname Name of the file in which the screen is defined
OUTPUT Name of the respective output block
Anzp Number of parameters of the screen to be recompiled (all

with DEF-created variables, also help variables)
Version (optional) version specification for cycle
Icon (optional) icon for display in the machining step program,

format *.png
Screen size for corresponding resolution:
640 X 480 mm → 16 x 16 pixels
800 X 600 mm → 20 x 20 pixels
1024 X 768 mm → 26 x 26 pixels
1280 X 1024 mm → 26 x 26 pixels
1280 X 768 mm → 26 x 26 pixels
File loc.: /sinumerik/hmi/ico/ico<resolution>
Note:For resolutions of 1280, the folder for 1024 x 768 mm
used (only suitable for machining step programs).

Desc_Text (optional) Explanation text for display in the machining step
program, max. length of 17 character string (only suitable for
machining step programs)

Programming commands
4.3 Functions

 Easy Screen (BE2)
128 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Example

//M(TestGC/"Code generation:")

DEF VAR1 = (R//1)

DEF VAR2 = (R//2)

DEF D_NAME

LOAD

 VAR1 = 123

 VAR2 = -6

END_LOAD

OUTPUT(CODE1)

 "Cycle123(" VAR1 "," VAR2 ")"

 "M30"

END_OUTPUT

PRESS(VS1)

 D_NAME = "\MPF.DIR\MESSEN.MPF"

 GC("CODE1",D_NAME) ;Write code from OUTPUT method to file
\MPF.DIR\MESSEN.MPF:

Cycle123(123, -6)
M30

END_PRESS

See also
Generate code (GC) (Page 107)

4.3.25 Search Forward, Search Backward (SF, SB)

Description
The SF, SB (Search Forward, Search Backward) function is used to search for a string from
the current cursor position in the NC program currently selected in the Editor and to output
its value.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 129

Programming

Syntax: SF("String")
Identifiers: Search Forward: Search forward from the current cursor position
Syntax: SB("String")
Identifiers: Search Backward: Search backward from the current cursor position
Parameters: String Text to be found

Rules governing text search
● A blank must be inserted before and after the search concept unit, consisting of search

string and its value, in the currently selected NC program.

● The system does not search for concepts within comment text or other strings.

● The value to be output must be a numerical expression. Expressions in the form of
"X1=4+5" are not recognized.

● The system recognizes hexadecimal constants in the form of X1='HFFFF', binary
constants in the form of X1='B10010' and exponential components in the form of X1='-
.5EX-4'.

● The value of a string can be output if it contains the following between string and value:

– Nothing

– Blanks

– Equality sign

Example
The following notations are possible:

X100 Y200

Abc = SB("Y")

; The variable Abc is assigned the value 200

X100 Y 200

Abc = SB("Y")

; The variable Abc is assigned the value 200

X100 Y=200

Abc = SB("Y")

; The variable Abc is assigned the value 200

Programming commands
4.3 Functions

 Easy Screen (BE2)
130 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.26 STRING functions

Overview
The following functions enable strings to be processed:

● Determine length of string

● Find a character in a string

● Extract substring from left

● Extract substring from right

● Extract substring from mid-string

● Replace substring

LEN function: Length of a string

Syntax: LEN(string | varname)
Description: Determines the number of characters in a string
Parameters: string Every valid string expression. NULL is output if

string is blank.
 varname Any valid declared variable name
 Only one of the two parameters is allowed.

Example

DEF VAR01

DEF VAR02

LOAD

 VAR01="HALLO"

 VAR02=LEN(VAR01) ; Result = 5

END_LOAD

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 131

INSTR function: Search for character in string

Syntax: INSTR(Start, String1, String2 [,Direction])
Description: Searches for characters
Parameters: Start Starting position for searching from string1 into

string2. Enter 0 to start searching at the beginning
of string2.

 String1 Character that is being searched for.
 String2 Chain of characters in which the search is being

made
 Direction (optional) Direction in which the search is being made

0: From left to right (default setting)
1: From right to left

 0 is returned if string1 does not occur in string2.

Example

DEF VAR01

DEF VAR02

LOAD

 VAR01="HELLO/WORLD"

 VAR02=INST(1,"/",VAR01) ; Result = 6

END_LOAD

LEFT Function: String from left

Syntax: LEFT(string, length)
Description: LEFT returns a string containing the specified number of characters

starting from the left-hand side of a string.
Parameters: string Character string or variable with the string to be

processed
 length Number of characters that are to be read out

Programming commands
4.3 Functions

 Easy Screen (BE2)
132 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Example

DEF VAR01

DEF VAR02

LOAD

 VAR01="HELLO/WORLD"

 VAR02=LEFT(VAR01,5) ; Result = "HELLO"

END_LOAD

RIGHT function: String from right

Syntax: RIGHT(string, length)
Description: RIGHT returns a string containing the specified number of characters

starting from the right-hand side of a string.
Parameters: string Character string or variable with the string to be

processed
 length Number of characters that are to be read out

Example

DEF VAR01

DEF VAR02

LOAD

 VAR01="HELLO/WORLD"

 VAR02=LEFT(VAR01,4) ; Result = "WORLD"

END_LOAD

MIDS function: String from mid-string

Syntax: MIDS(string, start [, length])
Description: MIDS returns a string containing the specified number of characters

starting at the specified position in the string.
Parameters: string Character string or variable with the string to be

processed
 start Start from where characters are to be read in the string
 length Number of characters that are to be read out

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 133

Example

DEF VAR01

DEF VAR02

LOAD

 VAR01="HELLO/WORLD"

 VAR02=LEFT(VAR01,4,4) ; Result = "LO/W"

END_LOAD

REPLACE Function: Replacing characters

Syntax: REPLACE(string, FindString, ReplaceString [, start [, count]])
Description: The REPLACE function replaces a character/string in a string with

another character/string.
Parameters: string String in which FindString is to be replaced with

ReplaceString.
 FindString String to be replaced
 ReplaceString Replacement string (is used instead of the FindString)
 start Starting position for search and replace operations
 count Number of characters that are to be searched from the

starting position after the FindString.
Return Value:
 string = Blank string Copy of string
 FindString = Blank string Copy of string
 ReplaceString = Blank string Copy of string, in which all occurrences of

FindString are deleted
 start > Len(String) Blank string
 count = 0 Copy of string

See also
Use of strings (Page 63)

Programming commands
4.3 Functions

 Easy Screen (BE2)
134 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

4.3.27 PI services

Description
The PI_SERVICE function can be used to start PI Services (Program Invocation Services)
from the PLC in the NC area.

General programming

Syntax: PI_SERVICE (service, n parameters)
Description: Executes PI service
Parameters: Service PI service identifier
 n parameters List of n parameters of PI Service.

Individual parameters are separated by commas.

Example

PRESS (HS2)

 PI_SERVICE("_N_CREATO",55)

END_PRESS

PRESS(VS4)

 PI_SERVICE("_N_CRCEDN",17,3)

END_PRESS

Starting OEM services
The PI_START command executes a PI service based on OEM documentation.

 Programming commands
 4.3 Functions

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 135

Programming

Syntax: PI_START("Transfer string")
Description: Executes PI service
Parameters: "Transfer string" Unlike the OEM documentation, the transfer string

should be entered in inverted commas.

Example

PI_START("/NC,001,_N_LOGOUT")

 Note

Channel-dependent PI Services always refer to the current channel.

PI services of the tool functions (TO area) always refer to the TO area that is assigned to the
current channel.

Programming commands
4.3 Functions

 Easy Screen (BE2)
136 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 137

Graphic and logic elements 5
5.1 Line and rectangle

Description
Lines and rectangles are configured in the LOAD block:

● Lines are first drawn, then the rectangles and finally the configured control fields or
graphics.

● Transparent rectangles are created by setting the fill color to the system background
color.

LINE element
Programming:

Syntax: LINE (x1,y1,x2,y2,f,s)
Description: Defining a line
Parameters: x1 Start point x-coordinate
 y1 Start point y-coordinate
 x2 End point x-coordinate
 y2 End point y-coordinate
 f Color of the line
 s Line style:

1 = solid
2 = dashed
3 = dotted
4 = dashed and dotted

Graphic and logic elements
5.1 Line and rectangle

 Easy Screen (BE2)
138 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

RECT element
Programming:

Syntax: RECT (x,y,w,h,f1,f2,s)
Description: Defining a rectangle
Parameters: x x-coordinate, top left
 y y-coordinate, top left
 w Width
 h Height
 f1 Color of the border
 f2 Fill color
 s Border style:

1 = solid
2 = dashed
3 = dotted
4 = dashed and dotted

See also
LOAD (Page 81)

 Graphic and logic elements
 5.2 Defining an array

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 139

5.2 Defining an array

Definition
An array can be used to organize data of the same data type stored in the memory in such a
way that it is possible to access the data via an index.

Description
Arrays can be one- or two-dimensional. A one-dimensional array is treated like a two-
dimensional array with just one line or column.

Arrays have start identifier //A and end identifier //END. The number of lines and columns is
optional. An array is structured in the following way:

Programming

Syntax: //A(Identifier)

(a/b...)
(c/d...)
...
//END

Description: Defines array
Parameters: Identifier Name of array
 a, b, c, d Values of array

Values of the STRING type must be enclosed in double
quotation marks.

Example

//A(Thread) ; Size/lead/core diameter

(0.3 / 0.075 / 0.202)

(0.4 / 0.1 / 0.270)

(0.5 / 0.125 / 0.338)

(0.6 / 0.15 / 0.406)

(0.8 / 0.2 / 0.540)

(1.0 / 0.25 / 0.676)

(1.2 / 0.25 / 0.676)

(1.4 / 0.3 / 1.010)

(1.7 / 0.35 / 1.246)

//END

Graphic and logic elements
5.2 Defining an array

 Easy Screen (BE2)
140 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

5.2.1 Accessing the value of an array element

Description
The value of an array access operation can be transferred with property Value (identifier.val).

The line index (line number of the array) and the column index (column number of the array)
each begin at 0. If a line index or column index is outside the array, the value 0 or a blank
string is output and the ERR variable is set to TRUE. The ERR variable is also set to TRUE if
a search concept cannot be found.

Programming

Syntax: Identifier [Z,[M[,C]]].val or

Identifier [Z,[M[,C]]]
Description: Access to one-dimensional array with only one column
Syntax: Identifier [S,[M[,C]]].val] or

Identifier [S,[M[,C]]] or
Description: Access to one-dimensional array with only one line
Syntax: Identifier [Z,S,[M[,C]]].val or

Identifier [Z,S,[M[,C]]]
Description: Access to two-dimensional array
Parameters: Identifier: Name of array
 Z: Line value (line index or search concept) 
 S: Column value (column index or search concept) 
 M: Access mode
 0 Direct
 1 Searches the line, column directly
 2 Searches the column, line directly
 3 Searches
 4 Searches line index
 5 Searches column index
 C: Compare mode
 0 Search concept must be located in the range of

values of the line or column.
 1 Search concept must be located exactly.
Example

VAR1 = MET_G[REG[3],1,0].VAL
;Assign Var1 a value from array
MET_G

 Graphic and logic elements
 5.2 Defining an array

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 141

Access mode
● "Direct" access mode

With "Direct" access mode (M = 0), the array is accessed with the line index in Z and the
column index in S. Compare mode C is not evaluated.

● "Search" access mode

In the case of access mode M = 1, 2 or 3, the search always commences in line 0 or
column 0.

Mode M Line value Z Column value S Output value

0 Line index Column index Value from line Z and
column S

1 Search concept:
Search in column 0

Column index of column
from which value is read

Value from line found and
column S

2 Line index of line from
which return value is read

Search concept:
Search in line 0

Value from line Z and
column found

3 Search concept:
Search in column 0

Search concept:
Search in line 0

Value from line and column
found

4 Search concept:
Search in column S

Column index of search
column

Line index

5 Line index of search line. Search concept:
Search in line Z

Column index

Compare mode
When compare mode C = 0 is used, the content of the search line or search column must be
sorted in ascending order. If the search concept is smaller than the first element or larger
than the last, the value 0 or a blank string is output and the error variable ERR is set to
TRUE.

When compare mode C = 1 is used, the search concept must be found in the search line or
search column. If the search concept cannot be found, the value 0 or an empty string is
output and the error variable ERR is set to TRUE.

Graphic and logic elements
5.2 Defining an array

 Easy Screen (BE2)
142 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

5.2.2 Example Access to an array element

Prerequisite
Two arrays are defined below. These are the basis for the following examples:

//A(Thread)
 (0.3 / 0.075 / 0.202)
 (0.4 / 0.1 / 0.270)
 (0.5 / 0.125 / 0.338)
 (0.6 / 0.15 / 0.406)
 (0.8 / 0.2 / 0.540)
 (1.0 / 0.25 / 0.676)
 (1.2 / 0.25 / 0.676)
 (1.4 / 0.3 / 1.010)
 (1.7 / 0.35 / 1.246)
//END

//A(Array2)
 ("DES" / "PTCH" / "CDM")
 (0.3 / 0.075 / 0.202)
 (0.4 / 0.1 / 0.270)
 (0.5 / 0.125 / 0.338)
 (0.6 / 0.15 / 0.406)
 (0.8 / 0.2 / 0.540)
 (1.0 / 0.25 / 0.676)
 (1.2 / 0.25 / 0.676)
 (1.4 / 0.3 / 1.010)
 (1.7 / 0.35 / 1.246)
//END

 Graphic and logic elements
 5.2 Defining an array

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 143

Examples
● Access mode example 1:

The search concept is in Z. This key is always sought in column 0. The value from
column S is output with the line index of the concept found.

VAR1 = Thread[0.5,1,1] ;VAR1 has the value 0.125

Explanation:

Search for value 0.5 in column 0 of "Thread" array and output the value found in column 1
of the same line.

● Access mode example 2:

The search concept is in S. This concept is always searched for in line 0. The value from
line Z is output with the column index of the concept found:

VAR1 = ARRAY2[3,"PTCH",2] ;VAR1 has the value 0.125

Explanation:

Search for column containing "PTCH" in line 0 of array "Array2". Output the value from
the column found and the line with index 3.

● Access mode example 3:

A search concept is in each of Z and S. The line index is searched for in column 0 with
the concept in Z and the column index in line 0 with the concept in S. The value from the
array is output with the line index and column index found:

VAR1 = ARRAY2[0.6,"PTCH",3] ;VAR1 has the value 0.15

Explanation:

Search for the line with the content 0.6 in column 0 of array "Array2", search for the
column with the content "STG" in line 0 of Array2. Transfer the value from the line and
column found to VAR1.

● Access mode example 4:

The search concept is in Z. S contains the column index of the column in which concept
is being searched for. The line index of the concept found is output:

VAR1 = Thread[0.125,1,4] ;VAR1 has the value 2

Explanation:

Search for value 0.125 in column 1 of array "Thread" and transfer the line index of the
value found to VAR1.

● Access mode example 5:

Z contains the line index of line in which concept is being searched for. The search
concept is in S. The column index of the concept found is output:

VAR1 = Thread[4,0.2,5,1] ;VAR1 has the value 1

Explanation:

Search in line 4 of the "Thread" array for the value 0.2 and transfer the column index of
the value found to VAR1. Comparison mode 1 was selected because the values of line 4
are not sorted in ascending order.

Graphic and logic elements
5.2 Defining an array

 Easy Screen (BE2)
144 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

5.2.3 Scanning the status of an array element

Description
The Status property can be used to run a scan to find out whether an array access operation
is supplying a valid value.

Programming

Syntax: Identifier [Z, S, [M[,C]]].vld
Description: Status is a read-only property.
Parameters: Identifier Name of array
Return Value: FALSE =

TRUE =
invalid value
valid value

Example

DEF MPIT = (R///"MPIT",,"MPIT",""/wr3)

DEF PIT = (R///"PIT",,"PIT",""/wr3)

PRESS(VS1)

 MPIT = 0.6

 IF MET_G[MPIT,0,4,1].VLD == TRUE

 PIT = MET_G[MPIT,1,0].VAL

 REG[4] = PIT

 REG[1] = "OK"

 ELSE

 REG[1] = "ERROR"

 ENDIF

END_PRESS

 Graphic and logic elements
 5.3 Table grid (grid)

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 145

5.3 Table grid (grid)

Definition
In contrast to the array, the values of a table grid (grid) are continually updated. This involves
a tabular representation of the values of system variables that can be addressed using one
block in one channel.

Assignment
A variables definition is assigned to the table-elements definition via a table identifier:

● The variables definition determines the values to be displayed and the definition of table
elements determines the appearance and arrangement on the screen window. The table
grid takes the properties of the IO fields from the variables definition line.

● The visible area of the grid is determined by the width and height of the I/O field. Any
lines or columns than cannot be seen can be displayed by scrolling horizontally and
vertically.

Table identifiers
Identifiers of a table containing NCK/PLC values of the same type, which can be addressed
via a channel block. The table identifier is differentiated from limits or toggle fields by the
addition of a % sign in front of it. The file containing the table description can be specified by
adding a comma after the identifier and then inserting the name of the file.

System or user variable
This parameter remains empty for table grids, because the column definition lines contain
detailed information about the variables to be displayed. The table description can be
provided in a dynamic format.

Graphic and logic elements
5.3 Table grid (grid)

 Easy Screen (BE2)
146 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Description
The variables definition will contain a reference to a table description:

DEF Identifier = Identifier = Name of variable
 Variable type
 /[Limits or toggle field or table identifier]
 /[Default]
 /[Texts (Long text, Short text|Image, Graphic text, Units text)]
 /[Attributes]
 /[Help display]
 /[System or user variable]
 /[Position of short text]
 /[Position input/output field(Left, Top, Width, Height)]
 /[Colors]

See also
Variable parameters (Page 52)

 Graphic and logic elements
 5.3 Table grid (grid)

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 147

5.3.1 Defining table grids

Description
The table block comprises:

● Header

● 1 to n column descriptions

Programming

Syntax: //G(Table identifier/Table type/Number of lines/

[Fixed line attribute],[Fixed column attribute])
Description: Defines table grids
Parameters: Table identifiers The table identifier is used without a leading % sign. It

can only be used once in a dialog.
 Table type 0 (default)Table for PLC or user data (NCK-

and channel-specific data)
 1and others, reserved
 No. of lines Number of lines including header
 The fixed line or fixed column is not scrolled. The

number of columns is the number of columns
configured.

 Fixed line attribute 1:
0:

Active
Not active

 Fixed column
attribute

1:
0:

Active
Not active

Graphic and logic elements
5.3 Table grid (grid)

 Easy Screen (BE2)
148 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

5.3.2 Defining columns

Description
For table grids, it is advisable to use variables with an index. For PLC or NC variables, the
index number with one or more indices is of significance.

The values displayed in a grid can be modified directly by the end user within the restrictions
of the rights granted by the attributes and within any defined limits.

Programming

Syntax: (Type/Limits/Empty/Long text,column header/Attributes/Help display/

System or user variable/Column width/Offset1, Offset2, Offset3)
Description: Defines columns
Parameters: Similar to variables
 Type Data type
 Limits Limit value MIN, limit value MAX
 Long text, column

header

 Attributes
 Help display
 System or user

variable
As variable, PLC or NC variables should be
entered in double quotation marks.

 Column width Entry in pixels.
 Offset The increment sizes to increment each index in

order to fill the column are specified in the
assigned offset parameter:
 Offset1: Step width for the 1st index
 Offset2: Step width for the 2nd index
 Offset3: Step width for the 3rd index

Variable of type STRING
If the variable is a STRING type, then the length must be specified in the type, e.g.:

DEF CHAN STRING [16] TEXT[41]

The column definition for the CHAN variable, therefore, starts, e.g. (S16/...).

 Graphic and logic elements
 5.3 Table grid (grid)

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 149

Column header from text file
The column header can be entered as text or text numbers ($8xxxx) and is not scrolled.

Modifying column properties
The column properties, which can be modified dynamically (written) are:

● Limits (min,max),

● Column header (st),

● Attributes (wr, ac and li),

● Help display (hlp) and

● OPI-Variable (var).

Column properties are modified via the variable identifier in the definition line and the column
index (starting at 1).

Example: VAR1[1].st="Column 1"

Column properties cannot be read in the LOAD block.

The wr, ac and li attributes can be specified for column definitions.

5.3.3 Focus control in the table grid

Description
The Row and Col properties can be used to set and calculate the focus within a table:

● Identifier.Row

● Identifier.Col

Graphic and logic elements
5.3 Table grid (grid)

 Easy Screen (BE2)
150 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Programming
Each cell in a table has the Val and Vld properties.

In order to read and write cell properties, a line and column index must be specified in
addition to the variable identifiers from the definition list.

Syntax: Identifier[Line index, column index].val or

Identifier[Line index, column index]
Description: Val properties
Syntax: Identifier[Line index, column index].vld
Description: Vld properties

Example
Var1[2,3].val=1.203

If the line and column indices are not specified, the indices of the focused cell apply. This
corresponds to:

Var1.Row =2

Var1.Col=3

Var1.val=1.203

 Graphic and logic elements
 5.4 Custom widgets

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 151

5.4 Custom widgets

5.4.1 Defining custom widgets

Description
User-specific display elements are configured in the dialog using a custom widget.

Software option
In order to use custom widgets in dialog boxes, you require the following software
options:
"SINUMERIK HMI sl Runtime OA programming"
"SINUMERIK HMI sl Runtime OA Easy Screen"

Programming

Definition: DEF(name)
Syntax: (W///"","(library name).(class name)"/////a,b,c,d);
Description: W Defining custom widgets
Parameters: Name Custom widget name, freely selectable
 Library name Can be freely selected, name of the dll (Windows)

or (Linux) library file
 Class name Freely selectable, name of the class function from

the previously named library
 a, b, c, d Position and size of the configuration

Example
A custom widget is defined in the dialog configuration in the following way:

DEF Cus = (W///"","slestestcustomwidget.SlEsTestCustomWidget"/////20,20,250,100);

Graphic and logic elements
5.4 Custom widgets

 Easy Screen (BE2)
152 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

5.4.2 Structure of the custom widget library

Description
Essentially, the custom widget library contains a defined class. The name of this class must
be specified in the dialog configuration in addition to the library names. Starting from library
names, Easy Screen accesses a dll file file with the same name, e.g. :

slestestcustomwidget.dll

Programming
The class definition of the dll file should look like this:

#define SLESTESTCUSTOMWIDGET_EXPORT Q_DECL_EXPORT

class SLESTESTCUSTOMWIDGET_EXPORT SlEsTestCustomWidget : public QWidget

{

 Q_OBJECT

....

....

}

 Graphic and logic elements
 5.4 Custom widgets

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 153

5.4.3 Structure of the custom widget interface

Description
The library is supplemented by an interface in order to display the custom widget in the
dialog. This contains macro definitions with which Easy Screen initiates the custom widget.
The interface is available in the form of a cpp file. The file name can be freely selected, e.g.:
sleswidgetfactory.cpp

Programming
The interface is defined as follows:

#include "slestestcustomwidget.h" ; The header file for the relevant

custom widgets is inserted at the
beginning of the file

....
//Makros ; Macro definitions are not changed
....
WIDGET_CLASS_EXPORT(SlEsTestCustom
Widget)

; The relevant custom widget is
declared at the end of the file

Example
Content of the file sleswidgetfactory.cpp for a custom widget with the class name
SlEsTestCustomWidget":

#include <Qt/qglobal.h>

#include "slestestcustomwidget.h"

///

// MAKROS FOR PLUGIN DLL-EXPORT - DO NOT CHANGE

///

#ifndef Q_EXTERN_C

#ifdef __cplusplus

#define Q_EXTERN_C extern "C"

#else

#define Q_EXTERN_C extern

#endif

#endif

Graphic and logic elements
5.4 Custom widgets

 Easy Screen (BE2)
154 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

#define SL_ES_FCT_NAME(PLUGIN) sl_es_create_ ##PLUGIN

#define SL_ES_CUSTOM_WIDGET_PLUGIN_INSTANTIATE(IMPLEMENTATION , PARAM) \

 { \

 IMPLEMENTATION *i = new PARAM; \

 return i; \

 }

#ifdef Q_WS_WIN

ifdef Q_CC_BOR

define EXPORT_SL_ES_CUSTOM_WIDGET_PLUGIN(PLUGIN,PARAM) \

 Q_EXTERN_C __declspec(dllexport) void* \

 __stdcall SL_ES_FCT_NAME(PLUGIN) (QWidget* pParent) \

 SL_ES_CUSTOM_WIDGET_PLUGIN_INSTANTIATE(PLUGIN,PARAM)

else

define EXPORT_SL_ES_CUSTOM_WIDGET_PLUGIN(PLUGIN,PARAM) \

 Q_EXTERN_C __declspec(dllexport) void* SL_ES_FCT_NAME(PLUGIN) \

 (QWidget* pParent) \

 SL_ES_CUSTOM_WIDGET_PLUGIN_INSTANTIATE(PLUGIN,PARAM)

endif

#else

define EXPORT_SL_ES_CUSTOM_WIDGET_PLUGIN(PLUGIN,PARAM) \

 Q_EXTERN_C void* SL_ES_FCT_NAME(PLUGIN) (QWidget* pParent) \

 SL_ES_CUSTOM_WIDGET_PLUGIN_INSTANTIATE(PLUGIN,PARAM)

#endif

#define WIDGET_CLASS_EXPORT(CLASSNAME) \

 EXPORT_SL_ES_CUSTOM_WIDGET_PLUGIN(CLASSNAME,CLASSNAME(pParent))

///

// FOR OEM USER - please declare here your widget classes for export

///

WIDGET_CLASS_EXPORT(SlEsTestCustomWidget)

 Graphic and logic elements
 5.4 Custom widgets

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 155

5.4.4 Interaction between custom widget and dialog

Description
Custom widgets interact with dialog boxes and can display values or manipulate them. Data
is therefore exchanged for the following conditions:

Condition Direction
When starting or recompiling a dialog Dialog → custom widget
When executing the GC command for generating cycle calls Custom widget → Dialog

Programming
The following definitions are necessary for the interaction:

Expansion of the dialog configuration

Definition: DEF (variable)
Syntax: ((type)//5/"","(variable)",""/wr2/)
Variable type: Type Standard input field (no grid or toggle) with any

data type (no W)
Parameters: Variable Any designation of a variable for data exchange
Input mode: wr2 Reading and writing

Example
DEF CUSVAR1 = (R//5/"","CUSVAR1",""/wr2/)

Expansion of the class definition

In the class definition of the custom widgets, a QProperty must be created whose name is
identical to the selected variable of the dialog configuration, e.g.:
Q_PROPERTY(double CUSVAR1 READ cusVar1 WRITE setCusVar1);

Graphic and logic elements
5.4 Custom widgets

 Easy Screen (BE2)
156 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Example

The class definition of the dll file should look like this:

#define SLESTESTCUSTOMWIDGET_EXPORT Q_DECL_EXPORT

class SLESTESTCUSTOMWIDGET_EXPORT SlEsTestCustomWidget : public QWidget

{

 Q_OBJECT

 Q_PROPERTY(double CUSVAR1 READ cusVar1 WRITE setCusVar1);

....

....

}

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 157

"Custom" operating area 6
6.1 How to activate the "Custom" operating area

Activating the "Custom" operating area
The "Custom" operating area is not activated on delivery.

1. First, copy the slamconfig.ini file from the /siemens/sinumerik/hmi/templates directory into
the /siemens/sinumerik/hmi/cfg directory.

2. To activate the "Custom" operating area, the following must be entered:

[Custom]

Visible=True

Result
After activation is complete, the softkey for the "Custom" operating area can be found in the
main menu (F10) on the menu continuation bar on the HSK4 (= default).

The "Custom" operating area displays an empty window covering the entire operating area,
with a configurable header. All horizontal and vertical softkeys can be configured.

"Custom" operating area
6.2 How to configure the "Custom" softkey

 Easy Screen (BE2)
158 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

6.2 How to configure the "Custom" softkey

Configuring the softkey for the "Custom" operating area
The labeling and position of the softkey for the "Custom" operating area are configured in the
slamconfig.ini file.

The following options are available for configuring the start softkey:

1. To replace a softkey label with a language-dependent text, the following must be entered
in the [Custom] section:

TextId=MY_TEXT_ID

TextFile=mytextfile

TextContext=mycontext

In this example, the softkey shows the language-dependent text which was saved with
the text ID "MY_TEXT_ID" in text file mytextfile_xxx.qm under "MyContext" (xxx stands for
language code).

2. To replace a softkey label with a language-neutral text, the following must be entered in
the [Custom] section:

TextId=HELLO

TextFile=<empty>

TextContext=<empty>

In this example, the softkey for the "Custom" operating area displays the text "HELLO" for
every language.

 "Custom" operating area
 6.2 How to configure the "Custom" softkey

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 159

3. An icon can also be displayed on the softkey in addition to the text.

To do this, the following must be entered in the [Custom] section:

Picture=mypicture.png

The softkey then displays the icon from the file mypicture.png. Graphics and bitmaps are
stored at the following path: /oem/sinumerik/hmi/ico/ico<Resolution>. The directory that
corresponds to the display resolution must be used.

4. The position of the softkey can also be set. The following entry in the [Custom] section
can be used to make this setting:

SoftkeyPosition=12

The default is position 12. This corresponds to the HSK4 on the menu continuation bar of
the operating area's menu. Positions 1 - 8 correspond to HSK1 to HSK8 on the menu bar,
positions 9 - 16 to HSK1 to HSK8 on the menu continuation bar.

"Custom" operating area
6.3 How to configure the "Custom" operating area

 Easy Screen (BE2)
160 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

6.3 How to configure the "Custom" operating area

Configuring the softkey for the "Custom" operating area
You need the easyscreen.ini and custom.ini files to configure the operating area. Templates
for both these files are available in the /siemens/sinumerik/hmi/templates directory.

1. First copy the files to the /oem/sinumerik/hmi/cfg directory and make your changes from
there.

2. File easyscreen.ini already contains a definition line for the "Custom" operating area:

;StartFile02 = area := Custom, dialog := SlEsCustomDialog, startfile := custom.com

The ";" at the start of the line represents the comment character. This means the line is
commented out and, as such, not active. To change this, the ";" must be deleted.

The "startfile" attribute in this line is used to define that the entry will refer to the
custom.com project file when the "Custom" operating area is selected.

3. You create the custom.com project file in the /oem/sinumerik/hmi/proj directory. This
contains the relevant configuration, which is created in the same way as the aeditor.com
file of the "Program" operating area. The configured start softkeys are then displayed in
the "Custom" operating area.

4. You configure the language-neutral text for the title bar of the dialog in the custom.ini file.

The following entry is available in the template for this purpose:

[Header]Text=Custom

You can replace this text with a customized one.

5. The template contains the following entry for configuring a start screen for the "Custom"
operating area:

[Picture]Picture=logo.png

Logo.png is the name of the start screen which appears on the "Custom" operating area's
start dialog. Here you can display a company logo, for example, or another image. The
file should be saved in the directory for the corresponding resolution under:
/oem/sinumerik/hmi/ico/ …

 "Custom" operating area
 6.4 Programming example for the "Custom" area

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 161

6.4 Programming example for the "Custom" area

File overview
The following files are required:

● custom.ini

● easyscreen.ini

Programming
Content of the custom.com file:

//S(Start)

HS7=("Start example", se1, ac7)

PRESS(HS7)

LM("Maske4")

END_PRESS

//END

//M(Maske4/"Example: MCP"/"mcp.png")

DEF byte=(I/0/0/"Input byte=0 (default)","Byte
number:",""/wr1,li1///380,40,100/480,40,50)

DEF Feed=(IBB//0/"","Feed override",""/wr1//"EB3"/20,180,100/130,180,100),
Axistop=(B//0/"","Feed stop",""/wr1//"E2.2"/280,180,100/380,180,50/100)

DEF Spin=(IBB//0/"","Spindle override",""/wr1//"EB0"/20,210,100/130,210,100),
spinstop=(B//0/"","Spindle stop",""/wr1//"E2.4"/280,210,100/380,210,50/100)

DEF custom1=(IBB//0/""," User keys 1",""/wr1//"EB7.7"/20,240,100/130,240,100)

DEF custom2=(IBB//0/"","User keys 2",""/wr1//"EB7.5"/20,270,100/130,270,100)

DEF By1

DEF By2

DEF By3

DEF By6

DEF By7

HS1=("Input byte", SE1, AC4)

HS2=("")

HS3=("")

HS4=("")

HS5=("")

HS6=("")

HS7=("")

HS8=("")

VS1=("")

VS2=("")

"Custom" operating area
6.4 Programming example for the "Custom" area

 Easy Screen (BE2)
162 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

VS3=("")

VS4=("")

VS5=("")

VS6=("")

VS7=("Cancel", SE1, AC7)

VS8=("OK", SE1, AC7)

PRESS(VS7)

 EXIT

END_PRESS

PRESS(VS8)

 EXIT

END_PRESS

LOAD

 By1=1

 By2=2

 By3=3

 By6=6

 By7=7

END_LOAD

PRESS(HS1)

 Byte.wr=2

END_PRESS

CHANGE(Byte)

 By1=byte+1

 By2=byte+2

 By3=byte+3

 By6=byte+6

 By7=byte+7

 Feed.VAR="EB"<<By3

 Spin.VAR="EB"<<Byte

 Custom1.VAR="EB"<<By6

 Custom2.VAR="EB"<<By7

 Axisstop.VAR="E"<<By2<<".2"

 Spinstop.VAR="E"<<By2<<".4"

 Byte.wr=1

END_CHANGE

CHANGE(Axis stop)

 IF Axistop==0

 Axistop.BC=9

 ELSE

 "Custom" operating area
 6.4 Programming example for the "Custom" area

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 163

 Axistop.BC=11

 ENDIF

END_CHANGE

CHANGE(Spin stop)

 IF Spinstop==0

 Spinstop.BC=9

 ELSE

 Spinstop.BC=11

 ENDIF

END_CHANGE

//END

Result

Figure 6-1 Example with "Start example" softkey

"Custom" operating area
6.4 Programming example for the "Custom" area

 Easy Screen (BE2)
164 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Figure 6-2 Example with bitmap and text fields

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 165

PLC softkeys 7
7.1 Introduction

Configuration
Description of the procedure:

● The systemconfiguration.ini contains a section [keyconfiguration]. The entry specifies an
action for a special PLC softkey.

● A number is given as an action. An Easy Screen call is involved if the number is greater
than or equal to 100.

● A section for defining the action to be performed must be created in the easyscreen.ini
file. The name of the section is based on the name of the operating area and the dialog
name (see entry under [keyconfiguration] → Area:=..., Dialog:=...) → [<Area>_<Dialog>]
→ e.g. [AreaParameter_SlPaDialog].

● The action numbers (which were given in the systemconfiguration.ini → see Action:=...)
are defined in this section. There are two commands involved:

1. LS("Softkey menu1","param.com") ... Loading a softkey menu

2. LM("Screen form1","param.com") ... Loading a screen form

Selecting softkey menus via PLC softkeys
Easy Screen makes it possible to select Easy Screen softkey menus and Easy Screen
dialogs via PLC softkeys. This can only be done if the "action" attribute to be specified when
configuring the relevant PLC softkeys has a value greater than or equal to 100.

PLC softkeys are configured in the file systemconfiguration.ini in the section
[keyconfiguration]:

[keyconfiguration]

KEY75.1 = Area:=area, Dialog:=dialog, Screen:=screen, Action:= 100,

Cmdline:=cmdline

PLC softkeys
7.1 Introduction

 Easy Screen (BE2)
166 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

The LM and LS commands to be executed upon activation of the relevant PLC softkeys are
configured in the easyscreen.ini file. The names of the sections that are used for the purpose
of configuration are structured as follows:

[areaname_dialogname] The first part of the name "areaname" refers to the operating

area and the second part "dialogname" designates the dialog
to which the commands configured in this section apply.

[AreaParameter_SlPaDialog]
100.screen1 = LS("Softkey1","param.com")
101.screen3 = LM("Screen
form1","param.com")

The names given in the systemconfiguration.ini file for the
operating area and dialog should be used. The dialog does not
have to be specified.
This is particularly true for operating areas which are only
implemented by means of a single dialog. Please refer to the
example on the left.
If "screen1" is displayed in the AreaParameter operating area
implemented by the SlPaDialog dialog, the
"LS("Softkey1","param.com")" command will be executed
when the "action" with the value 100 occurs.

action.screen=Command Both the "action" and "screen" attributes clearly indicate when
the specified command will be executed.
The "screen" information is optional.
The following commands are permissible:
LM (LoadMask)
LS (LoadSoftkeys)

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 167

Reference lists A
A.1 Lists of start softkeys

A.1.1 List of start softkeys for turning

Program operating area for turning

Edit Drilling Turning Contour

turning
Milling Miscellaneou

s
Simulation NC select

HSK1 HSK2 HSK3 HSK4 HSK5 HSK6 HSK7 HSK8
-- -- -- -- Measure

turning
Measure
milling

OEM --

-- HSK10 -- -- HSK13 HSK14 HSK15 --

Turning
The following tables list the possible start softkeys for turning technology. Assignments of
individual start softkeys can differ depending on the particular system. The specified OEM
softkeys are permitted for Easy Screen.

G code start softkeys:

 Drilling Turning Contour turning Milling Miscellaneous
 HSK2 HSK3 HSK4 HSK5 HSK6
VSK1 Centering Stock

removal
Contour -- Face

milling
Contour Settings High

speed
settings

VSK2 Drilling
reaming

Groove Stock removal -- Pocket Path Swivel plane Parallel
axes

VSK3 Deep-hole
drilling

Undercut Stock removal
residual material

-- Multi-edge
spigot

Predrilling Swivel tool --

VSK4 Boring Thread Grooving -- Groove Pocket -- --
VSK5 Thread Parting Grooving residual

material
-- Thread

milling
Pocket
res. mat.

-- --

VSK6 OEM -- Plunge-turning -- Engraving Spigot Subprogram --
VSK7 Positions OEM Plunge turning

residual material
OEM OEM Spigot res.

mat.
-- OEM

VSK8 Repeat
position.

-- >> << Contour
milling

<< >> <<

Reference lists
A.1 Lists of start softkeys

 Easy Screen (BE2)
168 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

ShopTurn start softkeys:

 Drilling Turning Contour turning Milling Miscellaneous
 HSK2 HSK3 HSK4 HSK5 HSK6 HSK10
VSK1 Drilling

centered
Stock
removal

New contour -- Face
milling

New
contour

Settings High
speed
settings

Tool

VSK2 Centering Groove Stock
removal

-- Pocket Path Swivel
plane

Parallel
axes

Straight line

VSK3 Drilling
reaming

Undercut Stock
removal
residual
material

-- Multi-edge
spigot

Predrilling Swivel tool Repeat
progr.

Circle center
point

VSK4 Deep-hole
drilling

Thread Grooving -- Groove Pocket Counterspi
ndle

-- Circle radius

VSK5 Thread Parting Grooving
residual
material

-- Thread
milling

Pocket
res. mat.

Transforma
tions

-- Polar

VSK6 OEM -- Plunge-
turning

-- Engraving Spigot Subprogra
m

-- Approach/retr
act

VSK7 Positions OEM Plunge
turning
residual
material

OEM OEM Spigot res.
mat.

-- OEM --

VSK8 Repeat
position.

-- >> << Contour
milling

<< >> << --

See also
Defining start softkeys (Page 15)

 Reference lists
 A.1 Lists of start softkeys

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 169

A.1.2 List of start softkeys for milling

Program operating area when milling

Edit Drilling Milling Contour

milling
Turning Miscellaneou

s
Simulation NC select

HSK1 HSK2 HSK3 HSK4 HSK5 HSK6 HSK7 HSK8
-- -- -- -- Measure

turning
Measure
milling

OEM --

-- HSK10 -- -- HSK13 HSK14 HSK15 --

Milling
The following tables list the possible start softkeys for milling technology. Assignments of
individual start softkeys can differ depending on the particular system. The specified OEM
softkeys are permitted for Easy Screen.

G code start softkeys:

 Drilling Milling Contour milling Turning Miscellaneous
 HSK2 HSK3 HSK4 HSK5 HSK6
VSK1 Centering Face milling Contour -- Stock

removal
Contour Settings --

VSK2 Drilling
reaming

Pocket Path -- Groove Stock
removal

Swivel plane Parallel
axes

VSK3 Deep-hole
drilling

Multi-edge
spigot

Predrilling -- Undercut Stock
removal
residual
material

Swivel tool --

VSK4 Boring Groove Pocket -- Thread Grooving High speed
settings

--

VSK5 Thread Thread
milling

Pocket res.
mat.

-- Parting Grooving
residual
material

-- --

VSK6 OEM Engraving Spigot -- -- Plunge-
turning

Subprogram --

VSK7 Positions OEM Spigot res.
mat.

OEM OEM Plunge
turning
residual
material

-- OEM

VSK8 Repeat
position.

-- >> << Contour
turning

<< >> <<

Reference lists
A.1 Lists of start softkeys

 Easy Screen (BE2)
170 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

ShopMill start softkeys:

 Drilling Milling Contour milling Turning Miscellaneous Straight line

circle
 HSK2 HSK3 HSK4 HSK5 HSK6 HSK10
VSK1 Centering Face

milling
New contour -- Stock

removal
New
contour

Settings -- Tool

VSK2 Drilling
reaming

Pocket Path -- Groove Stock
removal

Swivel
plane

Parallel
axes

Straight line

VSK3 Deep-hole
drilling

Multi-
edge
spigot

Predrilling -- Undercut Stock
removal
residual
material

Swivel tool Repeat
progr.

Circle center
point

VSK4 Boring Groove Pocket -- Thread Grooving High speed
settings

-- Circle radius

VSK5 Thread Thread
milling

Pocket res.
mat.

-- Parting Grooving
residual
material

Transforma
tions

-- Helix

VSK6 OEM Engravin
g

Spigot -- -- Plunge-
turning

Subprogra
m

-- Polar

VSK7 Positions OEM Spigot res.
mat.

OEM OEM Plunge
turning
residual
material

-- OEM --

VSK8 Repeat
position.

-- >> << Contour
turning

<< >> << --

 Reference lists
 A.2 List of colors

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 171

A.2 List of colors

System colors
A uniform color table is available for configuring dialogs (subset of the respective standard
colors). The color of an element (text, input field, background, etc.) can be selected from the
following options (between 0 and 128).

Index Pictogram Color Color description
1

black

2

orange

3

Dark green

4

Light gray

5

Dark gray

6

Blue

7

Red

8

brown

9

yellow

10

White

128

orange System color active field

129

Light gray Background color

130

Blue Header color (active)

131

black Header font color (active)

Reference lists
A.3 List of language codes used in file names

 Easy Screen (BE2)
172 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

A.3 List of language codes used in file names

Supported languages
Standard languages:

Language Abbreviation in file name
Chinese simplified chs
German deu
English eng
Spanish esp
French fra
Italian ita

Other languages:

Language Abbreviation in file name
Chinese traditional cht
Korean kor
Portuguese (Brazil) ptb

Language Abbreviation in file name
Czech csy
Hungarian hun
Japanese jpn
Polish plk
Russian rus
Swedish sve

Language Abbreviation in file name
Danish dan
Finnish fin
Dutch nld
Romanian rom
Slovakian sky
Turkish trk

 Reference lists
 A.4 List of accessible system variables

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 173

A.4 List of accessible system variables

References
List Manual System Variables/PGAsl/

See also
Multiple Read NC PLC (MRNP) (Page 118)

Reference lists
A.4 List of accessible system variables

 Easy Screen (BE2)
174 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 175

Glossary

Access level
Graduated system of authorization, which makes the accessibility and utilization of functions
on the operator interface dependent on the authorization rights of the user.

Array
An array can be used to organize data of a standard data type stored in the memory in such
a way that it is possible to access the data via an index.

Attribute
Characteristic that assigns specific → Properties to an object (→ Dialog or → Variable).

Column index
Column number of an array

Configuration file
File, which contains definitions and instructions that determine the appearance of → Dialogs
and their → Functions.

Definition lines
Program section in which → Variables and softkeys are defined

Dialog
Display of the → User interface

● Dialog-dependent softkey menu

Softkey menu, which is called from a newly configured dialog.

● Dialog-independent softkeys

Softkeys, which are not called from a dialog, i.e., start softkey and softkey menus, which
the user configures before the first, new dialog.

Editor
ASCII Editor with which characters can be entered in a file and edited.

Glossary

 Easy Screen (BE2)
176 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Event
Any action, which initiates execution of a → Method: Input of characters, actuation of
softkeys, etc.

Group
Reload unit for → Configuration file

Help variable
Internal arithmetic variable to which no → Properties can be assigned and is not, therefore,
visible in the → Dialog.

Hotkeys
6 keys on OP 010, OP 010C and SINUMERIK keyboards with hotkey blocks. Pressing the
keys selects an operating area directly. As an option, 2 additional keys can be configured as
hotkeys.

Input/output field
Also I/O field: for inputting or outputting variable values.

Interpreter
The interpreter automatically converts the defined code from the → Configuration file into a
→ Dialog and controls its use.

Line index
Row number of an array

Menu tree
A group of interlinked → Dialogs

Method
Programmed sequence of operations executed when a corresponding → Event occurs.

Parameter
Parameters are variable elements of the programming syntax and are replaced by other
words/symbols in the → Configuration file.

 Glossary

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 177

PI service
Function which, on an NC, executes a clearly defined operation. PI services can be called
from the PLC and the HMI system.

PLC hard key
PLC hard keys are provided via the PLC interface of the HMI software, just like hotkeys. The
functions triggered by them in the HMI can be configured.

They take the form of MCP keys or evaluations of PLC signal logic operations in the PLC
user program. For this reason, they are referred to as "virtual keys".

Programming support
Provision of → Dialogs to assist programmers in writing → Parts programs with "higher-level"
components

Properties
Characteristics of an object (e.g of a → Variable)

Recompile
NC code sections can be generated in a → Part program from input fields in → Dialogs in the
→ Programming support system. Recompilation is the reverse operation. The input fields
used to generate a selected section of NC code are retrieved from the NC code and
displayed in the original dialog.

Selecting
A program formulated in the NC language, which specifies motion sequences for axes and
various special actions.

Simulation
Simulation of a → Parts program run without movement of the actual machine axes.

Softkey labels
Text/image on the screen, which is assigned to a softkey.

Softkey menu
All horizontal or all vertical softkeys

Start softkey
Softkey with which the first newly created → Dialog is started.

Glossary

 Easy Screen (BE2)
178 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

Toggle field
A list of values in the → Input/output field; check with toggle field: The value input in a field
must be the same as one of the listed values.

User variable
Variables defined by the user in the → Parts program or data block.

Variable
Designation of a memory location, which can be displayed in a → Dialog by assigning
→ Properties and in which input data and the results of arithmetic operations can be entered.

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 179

Index

A
Access level, 35
Alarms

Language code, 172
Array

Access mode, 140
Column index, 140
Compare mode, 140
Definition, 139
Element, 140
Line index, 140
Status, 144

Attributes, 53

B
Background color, 54

C
Colors, 54
Conditions, 75
Configuration file, 9, 11
Configuring PLC softkeys, 165
Constants, 74
Custom widget

Definition, 151
Interaction, 155
Interface, 153
Library, 152

D
Default setting, 52
Defines softkey menu, 33
Dialog

Definition, 21
Definition block, 22
Multiple columns, 30
Properties, 23

Dialog change mode, 113
Dialog element, 27
DLL file, 104

F
File

Copy, 92
Delete, 93
Moving, 96

Focus control, 149
Foreground color, 54
Function

CALL (Subprogram call), 90
CP (Copy Program), 92
CVAR (Check Variable), 90
DLGL (Dialog line), 99
DP (Delete Program), 93
EP (Exist Program), 94
EVAL (Evaluate), 100
EXIT, 101
EXITLS (EXIT Loading Softkey), 103
FCT, 104
GC (Generate code), 107
INSTR (String), 131
LA (Load Array), 110
LB (Load Block), 112
LEFT (strings), 131
LEN (string), 130
LM (Load Mask), 113
LS (Load Softkey), 115
MIDS (strings), 132
MP (Move Program), 96
MRNP (Multiple Read NC PLC), 118
Overview, 88
PI_SERVICE, 134
PI_START, 134
Recompile NC code, 124
Recompile without comment, 126
REPLACE (strings), 133
RETURN (Back), 123
RIGHT (strings), 132
RNP (Read NC PLC Variable), 116
SB (Search Backward), 129
SF (Search Forward), 129
SP (Select Program), 97
WNP (Write NC PLC Variable), 116

Index

 Easy Screen (BE2)
180 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

G
Generate an NC code, 107
Graphic text, 52
Grid → Table grid, 145

H
Help display, 54
Help variable, 45

I
Image as short text, 51
Input mode, 53

L
Language code, 172
Limits, 52
LINE (define line), 137
Long text, 52

M
Machining step support, 126
Master dialog, 113
Menu tree, 9
Method

CHANGE, 78
LOAD, 81
LOAD GRID, 82
OUTPUT, 84
Overview, 78
PRESS, 85
UNLOAD, 83

N
NC variable

Read, 116
Write, 116

Numerical format, 58

O
Online help, 41
Operator

Bit, 76
Mathematical, 73

P
PI services, 88
PLC variable

Read, 116
Write, 116

Position
Input/output field, 54, 62
Short text, 54, 62

R
RECT (defining a rectangle), 138
Registers

Exchanging data, 121
Status, 122
Value, 121

Relational operators, 75

S
Short text, 54, 62
Softkey

Assign properties, 34
Properties, 36

Start softkey, 10, 15
Strings, 63
Sub-dialog, 113
Subprogram, 90

Block identifier, 88
Call, 90
cancel, 123
Variable, 88

System colors, 171
System variable, 46, 54

T
Table grid

Defines columns, 148
Definition, 145
Programming, 147

Text, 52
Text for units, 52
Toggle field, 52, 59
Tooltips, 52
Trigonometric functions, 74

U
User variable, 54

 Index

Easy Screen (BE2)
Programming Manual, 09/2011, 6FC5397-1DP40-2BA0 181

V
Variable

calculating, 45
Change property, 44
Check, 90
CURPOS, 65
CURVER, 66
End, 101
ENTRY, 67
ERR, 68
FILE_ERR, 69
FOC, 71
Parameter, 52
S_CHAN, 72

Variable status, 43
Variable type, 52

INTEGER, 55
VARIANT, 56

Variable value, 43

W
Write mode, 54

Index

 Easy Screen (BE2)
182 Programming Manual, 09/2011, 6FC5397-1DP40-2BA0

