SIEMENS

SINUMERIK Operate

Cycle 800

ADVANCED

Edition 2019.01 Training Manual

SINUMERIK

Cycle 800 ADVANCED

Valid for:

SINUMERIK 828D	SW4.8
SINUMERIK 840D sl	SW4.8

Module Description:

This module introduces CYCLE800. 3+2 swiveling with this CYCLE800 is shown. The respective setting options are discussed.

Module Objective:

After working through this module, you know the CYCLE800 from Siemens with all its input options.

Content:

Introduction

- "CYCLE800" settings
- Swiveling in "JOG"
- "Axis-by-axis" swiveling
- "Spatial angle" swiveling
- "Projection angle" swiveling
- "Direct" swiveling
- "Turn on" tool

Introduction:

This module concerns "CYCLE800".

This simplifies programming for 3+2 axis machining, also called 2½D machining. This is equivalent to working in swiveled planes. If a milling machine has one or two additional rotary axes, an oblique plane can be defined in space and the tool set perpendicular to it.

The "right-hand rule" described in the previous M101 module serves as basis.

The resulting linear and rotary axes are shown in the right-hand graphic using a coordinate cube.

Irrespective of the associated machine kinematics

or whether a combination of both.

The swivel axes are always rotated so that the machining plane is perpendicular to the tool axis for the subsequent machining. The direct programming of rotary axes is a special case.

"CYCLE800" is responsible for this.

Notes:		
M102	Page 4	840D st /828D SINI IMERIK Operate
111102	Tage 4	040D SI /020D SINOMENIN Operate

CYCLE800

This cycle is also a subprogram that accesses data which was commissioned so that the programming and application are optimized and simplified for operators and programmers.

The cycle, however, is not essential for swiveling. Examples without "CYCLE800" were shown in the previous module.

This module shows examples for working with "CYCLE800".

You can use swivel heads or swivel tables to set up and machine oblique planes. Swiveling is possible in JOG mode as well as in AUTOMATIC mode. Swivel operation parameter assignment and programming are facilitated by the clearly laid out graphics.

You can either program all the swivel axes directly on the machine (A, B, C) or you can simply specify the rotations around the geometry axes (X, Y, Z) of the workpiece coordinate system as described in the relevant workpiece drawing. The rotation of the workpiece coordinate system in the program is then automatically converted to a rotation of the relevant swivel axis of the machine during machining.

The swivel axes are always rotated in such a way that the machining plane is perpendicular to the tool axis for machining. The machining plane is then fixed during the machining.

When the axes are swiveled, the active zero points and tool offsets are automatically converted for the swiveled state, resulting in a new coordinate system.

The input screen of "CYCLE800" represents the machine kinematics.

Die Eingabemasken und Möglichkeiten werden anhand der nachfolgenden Beispiele Schritt für Schritt erklärt und praktisch angewendet.

The machining plane is then fixed during the machining.

All this is implemented via "CYCLE800".

The term "CYCLE800" does not appear in ShopMill.

However, because this cycle permits swiveling, it is used completely for this purpose.

Pressing

opens the input screen for swiveling in JOG.

							_	_
· HCT VHL	SIEMENS					01/22/19 9:41 AM	Μ	222 J06
654 Gaarse File № 6. Л. Д. Х 198.688 У							5	<u>C</u> *
2	// Reset		MRD					Ħ
	Machine	Position [mm]		T,F,S			i	তি
	MX1 MY1	0.000 0.000		т				
•	M21 MA1	0.000 0.000°		F 0.00	0			
	M01	0.000-		0.00	0 mm/min	4.0%		
- NC/PLC variables	The T	0.000		S1 0		×	Dev	ala
020304 F 0204				Master Ø		55%	valu	SIC JØS
	B±G54			0	50 .	100	Cot	
	Swivel plane				_		pla	ne
		I	TC	0			Dol	oto
							0-le	evel
AXISLOAD								
+ 100L								
Longth Raden								
> TOOL LIFE								
- PROGRAMRUNTIME								ĸ
Programm Rost Gesand							Ba	ck
R.R.Ob ESR.Bh						>		
	⊲∰ T,S,M 🤔 Se	Meas. workp.	Meas.	Posi- tion	1	Face mill.	21	Swi vel

If no TC (Tool Carrier) that contains the machine kinematics for swiveling is selected, this field remains empty.

Notes:		
M102	Page 6	840D sl /828D SINUMERIK Operate
	9	

Only when a TC is selected does the input screen with the appropriate kinematics open.

The TC, beginning with the name through to the parameterization, is normally commissioned by the manufacturer. This is not the basis this module, but rather of the commissioning.

To simplify understanding, the function of a Tool Carrier as of version 4.8 is described in detail.

opens the Tool Carrier. The name of the TC ("TABLE") is arbitrary. If necessary, several Tool Carriers can also be created, for example, when a replaceable head is used for machining.

Caution:

Alle geänderten Daten sind sofort aktiv.

The complete mathematics of the machine axes are stored in the Tool Carrier.

In addition to the values for the axis measurement, machine-related strategies are also specified in the Tool Carrier. Such strategies are normally made by the machine manufacturer / distributor.

ACT VAL ZERO POINT		SIEMENS	SINUMERIK OPERATE	81/22/19 9:45 AM	2	***
* 2ERU FUINI 654 Cause File %* @ .ft. X 188,689	M:	TOOLCARR - tool carrier (classic)			5	C
Y		Properties (input screen)				
		Select retract			-	000
- Alarms	-9	- Incremental in tool direction	Yes		1	
		- Maximal in tool direction	Yes			
		- Machine axis Z	Yes		_	
	•	- Machine axis Z and then XY	No			
		- Retract position 2	500.000			
NC/PLC variables				1		_
		Select swivel mode				
		- Axis by axis	Yes			
	哈	- Projection angle Yes				
		- Solid angle	No			
		- Rotary axes direct	No			
+ HXISLOHD		Select prefer. direction	Yes default=+			
* 100L	1	Reference axis pref. direction	Rotation axis 2			
Longth Radius		Select tracking	No		>	<
TOOL LIFE	2	ShopMill functions				cel
- PROGRAMRUNTIME	1	Swivel data set change automatically			~	-
Programm Rost Gecand	-	Tool change	automatically		0	ĸ
kikith Eikith		<u>^</u>				
	1	NC PROFIBUS/ memory PROFINET	Machine Trai model ma	isfor- tions	To	ol ement

Notes:		
M102	Page 8	840D sl /828D SINUMERIK Operate

Pressing

opens the screen for swiveling the plane in the "Jog" operating area.

Es können hier unabhängig von einem Programm die Achsen geschwenkt werden.

The axes can be swiveled in two ways.

M102

Swiveling with CYCLE800

This manufacturer-neutral machine tool forms the basis of the 5-axis and the CAM documentation from Siemens.

Task:

The blank for the program example has the dimensions 100x100x52 mm

- \Rightarrow Programming in ShopMill
- \Rightarrow Travel machine to the initial setting
- \Rightarrow Face milling of the workpiece in the initial setting at a height of 50 mm
- \Rightarrow Swivel the workpiece and calculate the required infeed
- \Rightarrow Face milling of the workpiece in the swiveled state
- \Rightarrow Travel machine to the initial setting


```
M102
```

Flow diagram:

M102

M102

face cutting is performed in the initial setting.

the machine with selected swivel data set is in the initial

face milling in the initial setting is programmed.

If there are several Tool Carriers, the most recently programmed one is active.

In "CYCLE800" with ShopMill, the tool - as always in ShopMill - is selected directly in the input screen.

Notes:		
M102	Page 14	840D sl /828D SINUMERIK Operate

The "retract" possibilities are:

TC TABLE T FACEMILL 63 D 1 Betract No		Com-	Explanation
Suivel No Yes Suivel plane 🔄 Z New X0 🔄 XY Y0 T Max	-	No	No retract performed before swiveling.
20 Axis Swivel mode Axis by axis Sequence of axes Y X Z Y 0.000 ° X -15.000 ° Z 0.000 °		Z	Retract in the direction of machine axis Z. The retract length is that selected in the program header.
X1 0.000 Y1 0.000 Z1 0.000		ZXY	Retract in the direction of machine axis Z, and then in X and Y.
Select +		ΜΑΧ	Maximum retract in the tool direction.
		INK	The retract length is entered via an input field in the cycle.
			T ink ZR 100.000

For "Swivel", select "Yes".

This implements physical swiveling on the machine.

Swiveling is not performed for "No".

This is used, for example, when only a position should be calculated, after which a further swiveling follows. This programming is explained in the following examples.

M102

Swiveling is normally performed "axis-by-axis". Consequently, this is used in most examples.

After the rotation, a further movement can be programmed via X1, Y1, Z1.

Ρ	Program header	G54 Block	The swivel cycle is
ė,	Swivel plane	X=0 Y=0 Z=0 Z XY	transferred to the
5	Face milling ∇	T=FACEMILL 63 F=0.125/t V=650m X0=0 Y0=0 Z0=2 Z1=0	program.
₿,	Swivel plane	Y=0 X=-15 Z=0 T=FACEMILL 63 Z XY	
END	End of program		
Note	?S:		

+

After swiveling, the face milling cycle for milling the oblique surface opens again. The start plane **"Z0**" must now be calculated.

The values for the traversal paths are calculated with the angle functions.

- 1 Adjacent (AK)
- 2 Hypotenuse (H)
- 3 Opposite (GK)
- α Angle
- β Angle

Based on the current example, the following calculation results:

The calculation can be performed externally or directly in the input field.

After opening the face milling cycle,

the calculated value can be entered in the input field directly as value

or as calculated formula. The result is then automatically the value for "**Z0**". For the values "**X1**" and "**Y1**", a protrusion of 2 mm is programmed (empirical values).

GK = sin 15 * 100 **20** SIN(15)*100

After machining, the initial setting is programmed and the "TC" deselected via "CYCLE800".

The program is now fully created.

Ρ	Program header		G54 Block	\ominus
ģ,	Swivel plane		X=0 Y=0 Z=0 Z XY	
F	Face milling $ abla$	7	T=FACEMILL 63 F=0.125/t V=650m X0=0 Y0=0 Z0=2 Z1=	=0
ġ,	Swivel plane		Y=0 X=-15 Z=0 T=FACEMILL 63 Z XY	
----	Face milling v	7	T=FACEMILL 63 F=0.125/t V=650m X0=0 Y0=0 Z0=25.88	1
勞	Swivel plane		X=0 Y=0 Z=0 T=ENDMILL_D8 Z	
ġ,	Swivel plane		Z XY TC=0	

END End of program

2nd example, swiveling in programGUIDE

The workpiece for the "1st example" is now created as G-code program.

Task:

The blank for the program example has the dimensions 100x100x52 mm

- \Rightarrow Programming in programGUIDE
- \Rightarrow Travel machine to the initial setting
- \Rightarrow Face milling of the workpiece in the initial setting at a height of 50 mm
- \Rightarrow \Rightarrow Swivel the workpiece and calculate the required infeed
- Face milling of the workpiece in the swiveled state
- \Rightarrow Travel machine to the initial setting

Notes:		
M102	Page 20	840D sl /828D SINUMERIK Operate

After creating a new G-code program,

		New G code program	
T		Mala and MDF	
туре		Main program MPF	· · · · · · · · · · · · · · · · · · ·
Name	EXAMPLE_02		

describe a block structure for this G-code program.

Function	Block name
Start commands	START
Face milling initial setting	FACE_MILLING
Swivel plane	SWIVEL
Mill oblique surfaces	OBLIQUE
End commands	END

After pressing Build group the individual blocks in the program are created.

Notes:		
M102	Page 22	840D sl /828D SINUMERIK Operate

The program header is programmed in the "START" block.

N20 G54 G17 G90 G40 N30 CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, , 1) N40 WORKPIECE(, "C", , "BOX", 64, 2, -50, -80, 0, 0, 100, 100) N50 T="ENDMILL_D32" N60 M6 N70 D1 N80 S5000 M3 N60 H6¶ N70 S2000 F1000 H3¶ N80 End of group

It is important that travel to the "Initial setting" is always programmed before the first machining block with "CYCLE800".

The face milling in the initial setting is programmed in the "FACE_MILLING" block.

N100 G0 X5 Y5 Z5 N110 CYCLE61 (10,1,5,0,0,0,100,100,1,50,0,2000,32,0,1,10) N120 G0 Z200 N120 G0 Z200

The swiveling of the plane defined in the "PL" field is programmed in the "SWIVEL" block.

N160 CYCLE800(2,"TABLE",200000,27,0,0,0,0,15,0,0,0,0,1,,1)

- N	140	SWIVEL	⊢
N	150	CYCLE800(2, "TABLE", 200000, 27, 0, 0, 0, 0, 0, 0, -15, 0, 0, 0, 1, 100, 1)¶	
N	160	End of group	

The oblique surface is programmed in the "OBLIQUE" block.

The "**Z0**" start plane is calculated with the formula programmed directly in the associated input field. The value 105 used here includes the tool protrusion in the calculation. CYCLE61 (100, SIN (15) *105, 1, 0, 100, 0, 0, 100, 5, 5, 0.2, 3000, 21, 0, 1, 11000)

N170 OBLIQUE

N180 CYCLE61(30, 25.881, 5, 0, 0, 0, 102, 102, 3, 50, 0, 2000, 31, 0, 1, 11010)¶ N190 End of group

The program end is programmed in the "END" block.

N210 CYCLE800(2,"TABLE",200000,57,0,0,0,0,0,0,0,0,0,0,1,100,1) N220 CYCLE800(2,"0",200000,57,0,0,0,0,0,0,0,0,0,1,100,1) N230 M30

= <mark>N200 END</mark> N210 CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶ N220 CYCLE800(2, "0", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶ N230 M30¶

⊡

The program is fully programmed.

3rd example, swivelling axis-by-axis

Task:

The blank for the program example has the dimensions 100x100x50 mm

- \Rightarrow Programming in programGUIDE
- \Rightarrow Programming chamfers with "Axis-by-axis swiveling"

After creating a new G-code program,

	New G code program	
Tune	Main program MPF	-
iype		
Name	EXHMPLE_03	

a new block structure for this G-code program is programmed.

Function	Block name
Start commands	START
1st swivel	1_SWIVEL
1st operation	1_CHAMFER
2nd swivel	2_SWIVEL
2nd operation	2_CHAMFER
3rd swivel	3_SWIVEL
3rd operation	3_CHAMFER
4th swivel	4_SWIVEL
4th operation	4_CHAMFER
End commands	END

The "START" block is programmed.

N20 G54 G17 G40 G90

N30 CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)

N40 WORKPIECE(,"C",,"RECTANGLE",0,0,-50,-80,100,100)

N50 T="CUTTER 16" N60 M6

N70 S2000 F1000 M3

1st step: Move the coordinate system from the center to the point where the edge should result. **2nd step:** Always rotate at the center point. **3rd step:** Swivel by 45°.

N220 2_CHAMFER

The second chamfer is programmed in the "2_CHAMFER" block. It corresponds exactly to the first programming for "1_CHAMFER". Only the coordinate system is rotated by "Z".

N230 G0 X8 Y-65 Z100 N240 G0 Z5 N250 G1 Z0 N260 G1 Y65 N270 G0 Z100

N230 G0 X8 Y-65 Z100¶ N240 G0 Z5¶ N250 G1 Z0¶ N260 G1 Y65¶ N270 G0 Z100¶ ■ N280 End of group

The swivel is programmed in the "3_SWIVEL" block.

The third chamfer is programmed in the "3_CHAMFER" block.

N330	G0	X8 Y-65	Z100	= <mark>N3</mark> 2	20	3_CHAMFER	
N340	G0	z5		N33	30	G0 X8 Y-65 Z100¶	
N350	G1	Z0		N34	10	G0 Z5¶	
N360	G1	Y65		N3	50	G1 20¶	
N370	G0	Z100		N3	50		
				100	70		
				N3	0	G0 21001	
				🗆 N38	30	End of group	

The swivel is programmed in the "4_SWIVEL" block.

Notes:

The fourth chamfer is programmed in the "4_CHAMFER" block.

N430	G0	X8	Y-65	Z100
N440	G0	Ζ5		
N450	G1	Ζ0		
N460	G1	Y65	5	
N470	G0	Z1(00	

 N420
 4_CHAMFER

 N430
 G0
 X8
 Y-65
 Z100¶

 N440
 G0
 Z5¶

 N450
 G1
 Z0¶

 N460
 G1
 Y65¶

 N470
 G0
 Z100¶

 N480
 End of group

In the "END" block, "CYCLE800" travels to the initial setting and the Tool Carrier is deselected.

The program is now fully created.

N490	END
N400	CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶
N410	CYCLE800(1, "0", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶
M30¶	

N500 End of group

How the axes are swiveled on the machine is immaterial for this programming.

Only rotations at the axes of the coordinate system are considered.

The control then implements this on the machine.

4th example, swiveling with spatial angle

The **spatial angle** is the three-dimensional counterpart of the normal two-dimensional angle.

With regard to CNC technology, this describes the position of the workpiece coordinate system by the spatially-fixed coordinate system.

This is independent of the actual machine axes.

This has the advantage that the angle values can be taken directly from the drawing. The position is determined by two spatial angles.

The rotation direction of the two spatial angles can also be determined with the "right-hand rule".

- The thumb points in the positive axis direction.
- The bent fingers point in the positive rotation direction.

SINUMERIK converts the spatial angle relative to the associated machine kinematics in the machine axis angle.

-65

M102

Task:

The blank for the program example has the dimensions 100x100x50 mm

- \Rightarrow \Rightarrow Programming in programGUIDE
- The program is programmed on the basis of spatial angles.

After creating a new G-code program,

	New G code program
Туре	Main program MPF 🔹
Name	EXAMPLE_04

describe a block structure for this G-code program.

Function	Block name	
Start commands	START	
1st swivel	1_SWIVEL	
1st operation	1_CHAMFER	-
2nd swivel	2_SWIVEL	
2nd operation	2_CHAMFER	
3rd swivel	3_SWIVEL	
3rd operation	3_CHAMFER	
4th swivel	4_SWIVEL	
4th operation	4_CHAMFER	
End commands	END	

_			
±	C	N10	START
±	C	N90	1_SWIVEL
±	C	N120	1_Chamfer
±		N190	2_SWIVEL
±		N220	2_CHAMFER
±		N290	3_SWIVEL
±		N320	3_CHAMFER
±		N390	4_SWIVEL
±		N420	4_CHAMFER
±		N490	END

The "START" block is programmed.

```
N20 G54 G17 G40 G90
N30 CYCLE800(2,"TABLE",200000,57,0,0,0,0,0,0,0,0,0,0,1,100,1)
N40 WORKPIECE(,"C",,"RECTANGLE",0,0,-50,-80,100,100)
N50 T="CUTTER 16"
N60 M6
N70 S2000 F1000 M3
```

-	N10	START
	N20	G54 G17 G40 G90¶
	N30	CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶
	N40	UORKPIECE(, "C",, "RECTANGLE", 0, 0, -50, -80, 100, 100)¶
	N50	T="CUTTER 16"¶
	N60	M6¶
	N70	S2000 E1000 M31

1st step: Move the coordinate system from the center to the point where the edge should result. **2nd step:** Always rotate at the center point. **3rd step:** Swivel by 45°.

M102

The first chamfer is programmed in the "1_CHAMFER" block.

The second swivel is programmed in the "2_SWIVEL" block.

90.000 °

45.000 °

α β

M102

Swiveling with CYCLE800

The second chamfer is programmed in the "2_CHAMFER" block. It corresponds exactly to the first chamfer.

	- N220 2_Chamfer	
N230 G0 X8 Y-65 Z100	N230 G0 X8 Y-65 Z100¶	
N240 G0 Z5	N240 G0 Z5¶	Ŧ
N250 G1 Z0	N250 G1 Z0¶	
N260 G1 Y65	N260 G1 Y65¶	
N270 G0 Z100	N270 G0 Z100¶	
	N280 End of group	

The swivel is programmed in the "3_SWIVEL" block.

The third chamfer is programmed in the "3_CHAMFER" block.

N330	G0	X8 Y-65	Z100	- <mark>N320</mark>	3_CHAMFER			
N340	G0	Z5		N330	G0 X8 Y-65	Z100¶		
N350	G1	Ζ0		N340	G0 75¶	"		
N360	G1	Y65		11040				
N370	G0	Z100		N350	G1 20¶			
				N360	G1 Y65¶			
				N370	G0 Z100¶			

The swivel is programmed in the "4_SWIVEL" block.

N420 4_CHAMFER N430 G0 X8 Y-65 Z100 N430 G0 X8 Y-65 Z100¶ N440 G0 Z5 N450 G1 Z0 N440 G0 Z5¶ N460 G1 Y65

The fourth chamfer is programmed in the "4_CHAMFER" block.

In the "END" block, "CYCLE800" travels to the initial setting and the Tool Carrier deselected.

The program is now fully created.

N470 G0 Z100

-	N490	END
	N500	CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶
	N510	CYCLE800(1, "0", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶
	N520	M30¶
		-

N450 G1 Z0¶

N460 G1 Y65¶ N470 G0 Z100¶ N480 End of group

5th example, swiveling with projection angle

The blank for the program example has the dimensions 100x100x50 mm

 \Rightarrow Programming in programGUIDE

 \Rightarrow The program is programmed on the basis of projection angles

The projection angle is used for rectangular workpieces.

The projection angle also consists of angles that build on each other.

- - - -

The ang	gles 🕽	Κα	and	Υα	always refer to the non-rotated coordinate system.
The ang	gle	Ζβ	refers	to the rot	otated coordinate system.
Χα		0.000	0		
Υα		0.000	0		
Zβ		0.000	0		

After creating a new G-code program,

	New G code program	
_		_
lype	Main program MPF	
Name	EXAMPLE_05	

describe a block structure for this G-code program.

Function	Block name	
Start commands	START	
1st swivel	1_SWIVEL	
1st operation	1_CHAMFER	
2nd swivel	2_SWIVEL	
2nd operation	2_CHAMFER	
3rd swivel	3_SWIVEL	
3rd operation	3_CHAMFER	
4th swivel	4_SWIVEL	
4th operation	4_CHAMFER	
End commands	END	

±		N10	START
±		N90	1_SWIVEL
±	C	N120	1_Chamfer
+	C	N190	2_SWIVEL
÷	C	N220	2_CHAMFER
±	C	N290	3_SWIVEL
±		N320	3_CHAMFER
±		N390	4_SUIVEL
+	C	N420	4_CHAMFER
÷	C	N490	END
_			

The "START" block is programmed.

N20 G54 G17 G40 G90 N30 CYCLE800(2,"TABLE",200000,57,0,0,0,0,0,0,0,0,0,1,100,1) N40 WORKPIECE(,"C",,"RECTANGLE",0,0,-50,-80,100,100) N50 T="CUTTER 16" N60 M6

N70 S2000 F1000 M3

1st step: Move the coordinate system from the center to the point where the edge should result. **2nd step:** Always rotate at the center point. **3rd step:** Swivel by 45°.

M102

The projection angle is selected in "CYCLE800".

In the first step, move the coordinate cross to the swivel point (chamfer start).

The coordinate cross is then swiveled by 45°.

The first chamfer is programmed in the "1_CHAMFER" block.

N130	G0	X8	Y-65	Z100
N140	G0	Ζ5		
N150	G1	Ζ0		
N160	G1	Y65	5	
N170	G0	Z1(00	

= N120 1_CHAMFER N130 G0 X8 Y-65 Z100¶ N140 G0 Z5¶ N150 G1 Z0¶ N160 G1 Y65¶ N170 G0 Z100¶

The second swivel is programmed in the "2_SWIVEL" block.

The second chamfer is programmed in the "2_CHAMFER" block. It corresponds exactly to the first programming for "1_CHAMFER". N220 2_CHAMFER

N230 G0 X8 Y-65 Z100 N240 G0 Z5 N250 G1 Z0 N260 G1 Y65 N270 G0 Z100

N230 G0 X8 Y-65 Z100¶

N240 G0 Z5¶ N250 G1 Z0¶ N260 G1 Y65¶ N270 G0 Z100¶ N280 End of group

The swivel is programmed in the "3_SWIVEL" block.

The third chamfer is programmed in the "3_CHAMFER" block.

- N330 G0 X8 Y-65 Z100 N340 G0 Z5 N350 G1 Z0 N360 G1 Y65 N370 G0 Z100
- N320 3_CHAMFER N330 G0 X8 Y-65 Z100¶ N340 G0 Z5¶ N350 G1 Z0¶ N360 G1 Y65¶ N370 G0 Z100¶ N380 End of group

The swivel is programmed in the "4_SWIVEL" block.

M102

Swiveling with CYCLE800

 The fourth chamfer is programmed in the "4_CHAMFER" block.

 N430 G0 X8 Y-65 Z100

 N440 G0 Z5

 N450 G1 Z0

 N460 G1 Y65

 N470 G0 Z100

 N480 End of group

In the "END" block, "CYCLE800" travels to the initial setting and the Tool Carrier is deselected.

The program is now fully created.

N490 END N500 CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶ N510 CYCLE800(1, "0", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶ N520 M30¶

6th example, swivelling directly

Example for the projection angle.

Another example for projection angle is listed and described step-by-step.

This example cannot be programmed axis-by-axis with these dimensions, because the second axis rotation already refers to a rotated coordinate system. This is not the case with projection angles. The rotations refer to the projected component edge.

The blank for the program example has the dimensions 100x100x50 mm

⇒ Programming in ShopMill

 \Rightarrow The surface is programmed on the basis of projection angles

Notes:		
M102	Page 40	840D sl /828D SINUMERIK Operate

Drawing:

After creating a new ShopMill program

	New sequential program
Tupe	ShopMill
Name	PROJECTION_ANGLE

and programming the program header,

the swivel is programmed via "CYCLE800".

To improve clarity, the coordinate system on the completed component is shown.

In the first step, the coordinate system is moved by 25 mm in the "Z direction".

"X α " is the angle by which the X axis must be rotated so that the component edge results in the Y/Z plane.

Again, starting from the implicit, non-rotated coordinate cross,

the second projection angle " $Y\alpha$ " is programmed. This is the angle by which the Y axis must be rotated so that the shown component edge results.

The surface can be programmed only via projection angles, but not via axis angles.

6th example, direct swivel

Task:

- The blank for the program example has the dimensions 100x100x50 mm
- \Rightarrow Programming in programGUIDE
- \Rightarrow The program is programmed "directly" with "A-C" kinematics

Drawing:

Вł

After creating a new G-code program,

×

> +

	N	ew G code program	
Tupe		Main program MPF	
Name			
name			

describe a block structure for this G-code program.

Function	Block name
Start commands	START
1st swivel	1_SWIVEL
1st operation	1_CHAMFER
2nd swivel	2_SWIVEL
2nd operation	2_CHAMFER
3rd swivel	3_SWIVEL
3rd operation	3_CHAMFER
4th swivel	4_SWIVEL
4th operation	4_CHAMFER
End commands	END

The "**START**" block is programmed.

```
N20 G54 G17 G40 G90

N30 CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)

N40 WORKPIECE(, "C",, "RECTANGLE", 0, 0, -50, -80, 100, 100)

N50 T="CUTTER 16"

N60 M6

N70 S2000 F1000 M3

- N10 START

N20 G54 G17 G40 G90¶

N30 CYCLE800(2, "TABLE", 200000, 57, 0

N40 UORKPIECE(, "C", "RECTANGLE", 0
```

N20 G54 G17 G40 G90¶ N30 CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶ N40 UORKPIECE(, "C",, "RECTANGLE", 0, 0, -50, -80, 100, 100)¶ N50 T="CUTTER 16"¶ N60 M6¶ N70 S2000 F1000 M3¶

1st step: Move the coordinate system from the center to the point where the edge should result.2nd step: Always rotate at the center point.3rd step: Swivel by 45°.

The projection angle is selected in "CYCLE800"

These machine kinematics are now programmed directly. The program is dependent on the machine kinematics.

The tool axes are rotated so that the first chamfer can then be produced.

The second swivel is programmed in the "2_SWIVEL" block.

The second chamfer is programmed in the "2_CHAMFER" block. It corresponds exactly to the first programming for "1_CHAMFER".

	= 2_Chamfer	
G0 X7 Y-60 Z100	G0 X7 Y-60 Z100¶	
G0 Z5	G0 75¶	
G1 Z0		
G1 Y60	GI 201	-
G0 Z100	G1 Y60¶	
00 2200	G0 Z100¶	

The swivel is programmed in the "3_SWIVEL" block.

PL G17 (XY) TC TABLE Retract L-, 2 Swivel Yes Swivel plane New X0 -40.000 Y0 0.000 Swivel mode directly A -45.000 ° Z 90.000 ° X1 0.000 Y1 0.000 Y1 0.000

M102

Swiveling with CYCLE800

The third chamfer is programmed in the "3_CHAMFER" block.

Y-60	z100		3_0	CHAI	MFER	
5			GØ	X7	Y-60	Z100¶
)			GØ	Z5	T	
50			G1	Z0	Π	
00			G1	Y6(٥¶	
			GØ	Z1 (00¶	
			End	of	group	
	7 Y-60 50 200	7 Y-60 Z100 5 50 50	7 Y-60 Z100 5 50 50	7 Y-60 Z100 3_C 6 GØ 50 G1 .00 G1 GØ End	7 Y-60 Z100 3_CHAI 60 X7 60 Z5 50 G1 Z0 61 Z0 60 C1 Z0 61 Y60 60 C1 C0 61 Z0 60 C1 C0 61 Z0 60 C1 C0 61 Z0 60 C1 C0 60 Z10 60 C1 C0 60 Z10	7 Y-60 Z100 3_CHAMFER 60 X7 Y-60 60 G0 Z5¶ 50 G1 Z0¶ 50 G1 Y60¶ 60 Z100¶ G0 200 G1 Y60¶ G0 Z100¶ End of group

The swivel is programmed in the "4_SWIVEL" block.

The fourth chamfer is programmed in the "4_CHAMFER" block

G0 X7 Y-60 Z100 G0 Z5 G1 Z0 G1 Y60 G0 Z100

-	
Ξ	4_CHAMFER
	G0 X7 Y-60 Z100¶
	G0 Z5¶
	G1 Z0¶
	G1 Y60¶
	G0 Z100¶
	End of group

In the "END" block, "CYCLE800" travels to the initial setting and the Tool Carrier is deselected.

The program is now fully created.

7th example, complex with ShopMill

<u>Task:</u>

The blank for the program example has the dimensions 100x100x52 mm

- \Rightarrow Programming in ShopMill
- \Rightarrow Face milling in the initial setting
- \Rightarrow Milling oblique surface 15°
- \Rightarrow Milling centered circular pocket (roughing, finishing)
- \Rightarrow Milling "1st corner" (roughing, finishing)
- \Rightarrow Milling "2nd corner" (roughing, finishing)
- \Rightarrow Circular pockets (-7°) (roughing)
- \Rightarrow Circular pockets (7°) (roughing)
- \Rightarrow 1st circular pocket on oblique surface (roughing, finishing)
- \Rightarrow 2nd circular pocket on oblique surface (roughing, finishing)

Drawing, 1st view

Drawing, 2nd view

A new program is created.

	New G code program	
T	Main was were MDF	
Туре	Main program MPF	-
Type Name	Main program MPF EXAMPLE_07	

Machine manufacturers can program a different behavior for "CYCLE800".

• <u>New:</u>

Before each tool change, "CYCLE800" must travel to the initial setting. The swivel plane must then be reprogrammed. Example: Centering, drilling, reaming. If no "CYCLE800" is programmed in the initial setting, the tool is switched to the swivel plane.

• Chaining:

After machining in a swivel plane, another cycle in which a tool change is programmed can be called directly. For the tool change, ShopMill travels automatically to the initial setting, changes the tool and swivels in the most-recently programmed plane and continues the program. (Example: roughing circular pocket, finishing circular pocket with two different tools).

Die Umsetzung ist alleine Sache des Maschinenherstellers.

M102

After entering the program header,

travel is made to the initial setting in the next step.

The face cutting in the non-swiveled state follows

M102

A swivel is made on the machining plane of -15°.

The face cutting in the swivel plane follows. A protrusion >100 mm is programmed in "X1" and "Y1" so that no edge remains.

The oblique surface is programmed in the next step. To do this, a swivel is made to a new machining plane.

	TC	Т	AB	LE		
	Т	ENDMILL_D	16			D 1
	Retrac	t Ŀ,Z>	۲Y			
	Swivel				Yes	
	Swivel	plane			Ner	J
	X0	0.0	00			
	Y0	0.0	00			
	Z0	-25.0	00			
	Swivel	mode	A	lxis b	y a	xis
	Seque	nce of axes		Z۷	ΥY	
	Z	-45.0	00	0		
	х	54.7	36	0		
	Y	0.0	00	0		
	X1	0.0	00			
	Y1	0.0	00			
	Z1	0.0	00			
1	Select				+	

The value for "X" is calculated as follows. $(90^{\circ}-35.264^{\circ}=54.736)$

C-C

20.4

The inputs for face milling the surface are then made. Parameter "**Z0**" must be calculated.

Note: (Calculation of the "Z0" parameter) sin α = GK / HP

The values "X0", "X1", "Y0" and "Y1" specify the dimensions of the milling plane.

The inputs for face milling the surface are then made.

Parameter "Z0" must be calculated.

The circular pockets below (-7°) are produced in the next step.

A selection can be made in	Swivel	No
"CYCLE800".	Swivel plane	No
	-	Yes

No swiveling is performed for "**Swivel No**". This swivels to a "theoretical plane" used as basis for the next swiveling.

tabi f

D 1

Yes

Additive

Axis by axis

ΖÝΧ

+

ENDMILL_D8

Ŀ, Z XY

-35.000 35.000 0.000

> 0.000 ° -7.000 0 0.000 0 0.000 0.000

0.000

"CYCLE800" is called again.

A further swivel plane is now programmed additive on the previous theoretical swiveling.

TC

Swivel

Swivel plane

Swivel mode

 Supplement
 Sequence of axes

 Z
 0.0

 Y
 -7.0

 X
 0.0

 X1
 0.0

 Y1
 0.0

Т Retract

X0 Y0 Z0

Z1

Select

The degree (-7) and the position of the first circular pocket are programmed.

~ ~~	וועבו אומווב	A13 1-0 2-0 1-ENDITILL_D0 2 AT
🙇 Su	ivel plane	Additive Z=0 Y=-7 X=0 T=ENDMILL_D8 Z XY

The two circular pockets are programmed.

Notes: M102 Page 58

M102

7°

The circular pockets below (7°) are programmed.

Swivel	No
Swivel plane	No
-	Yes

A swivel is made to the workpiece center.

"CYCLE800" is called again.

A swivel is made "additive" to (7°).

☆ Suivel plane 0dditive 7-0 Y-7 Y-0 T-ENDMULE D8 7 YY

The two circular pockets are programmed.

Die Position der zweiten Kreistasche wird direkt im Zyklus programmiert.

A swivel is made on the first corner.

M102

The circular pocket is programmed in the next step.

A swivel is made to the first corner to produce the circular pocket.

M102

The circular pocket is programmed in the next step.

Die Position der Tasche wird im Zyklus programmiert.

A swivel is made to the initial setting.

8th example, complex with programGUIDE

<u>Task:</u>

The blank for the program example has the dimensions 100x100x52 mm

- \Rightarrow Programming in programGUIDE
- \Rightarrow Face milling in the initial setting
- \Rightarrow Milling oblique surface 15°
- \Rightarrow Milling centered circular pocket (roughing, finishing)
- \Rightarrow Milling "1st corner" (roughing, finishing)
- \Rightarrow Milling "2nd corner" (roughing, finishing)
- \Rightarrow Circular pockets (-7°) (roughing)
- \Rightarrow Circular pockets (7°) (roughing)
- \Rightarrow 1st circular pocket on oblique surface (roughing, finishing)
- \Rightarrow 2nd circular pocket on oblique surface (roughing, finishing)

Drawing, 1st view

Ø

7

С

100

V)

100

¥.

Swiveling with CYCLE800

R

Drawing, 2nd view

С

Υ

в+

Notes:

M102

35,264

20,4

ŕ

C-C

		Aller cleaning a new program, the blocks
Start commands	START	New G code program
Face milling	FACE_MILLING_INITIAL_SETTING	
Swivel by 15°	SWIVEL_PLANE	Type Main program MPF Name EXAMPLE 08
Mill oblique by 15°	MILLING_OBLIQUE	
Swivel by 15°	SWIVEL_PLANE	are programmed.
Milling centered circ. pocket	MILLING_CIRCULAR_POCKET_CENTERED	
Swivel plane 1st corner	SWIVEL_PLANE	
Mill the 1st corner	MILLING_FIRST_CORNER	
Swivel plane 2nd corner	SWIVEL_PLANE	
Mill the 2nd corner	MILLING_SECOND_CORNER	
Swivel plane -7°	SWIVEL_PLANE	
Circular pockets -7°	CIRCULAR_POCKETS7	
Swivel plane 7°	SWIVEL_PLANE	
Circular pocket on 7°	CIRCULAR_POCKETS_7	
Swivel plane 1st corner	SWIVEL_PLANE	
Circular pocket on 1st corner	MILLING_CIRCULAR_POCKET_FIRST_CORNER	
Swivel plane 2nd corner	SWIVEL_PLANE	
Circ. pocket on 2nd corner	MILLING_CIRCULAR_POCKET_SECOND_CORNER	
End commands	END	

The program header in the "START" block is programmed.

```
N20 G54 G17 G40 G90
                                                                                                                                   N10 START
                                                                                                                                   N10 51HH
N20 G54 G17 G40 G90¶
N30 CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶
N40 UORKPIECE(, "C", "BOX", 112, 2, -50, -80, 0, 0, 100, 100)¶
N50 T="FACEMILL G3"¶
N60 M6¶
N70 52000 F1000 M3¶
N30 CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)
N40 WORKPIECE(,"C",,"BOX",112,2,-50,-80,0,0,100,100)
N50 T="FACEMILL 63"
N60 M6
N70 S2000 F1000 M3
                                                                                                                                 N70 S2000 F1000
N80 End of group
```

Face milling in the "FACE_MILLING_INITIAL_SETTING" block is programmed.

Swivel the plane to 15° in the "SWIVEL_PLANE" block.

Notes:		
840D sl /828D SINUMERIK Operate V4.8	Page 67	M102

The face cutting in the swivel plane follows. A protrusion >100 mm is programmed in "X1" and "X2" so that no edge remains.

i	N120	SWIVEL
	N130	CYCLE800(2, "TABLE", 200000, 27, 0, 0, 0, 0, 0, -15, 0, 0, 0, 1, 100, 1)¶
Ì	N140	End of group
i	N150	MILLING_OBLIQUE
	N160	CYCLE61(30, 25.881, 5, 0, 0, 0, 102, 102, 3, 50, 0, 2000, 31, 0, 1, 11010)
ļ	N170	End of group

Swivel to 15° in the "SWIVEL_PLANE" block. A tool call is performed beforehand.

N190 T="ENDMILL_D16" N200 M6 N210 D1 N220 S4000 F1800 M3 N230 CYCLE800(2,"TABLE",200000,27,0,0,0,0,0,0,-15,0,0,0,1,100,1)

The first corner is programmed with the face milling cycles in the "MILLING_FIRST_CORNER" block. Parameter "**Z0**" must be calculated.

Note: (Calculation of the "**Z0**" parameter) sin α = GK / HP

GK = sin 35.264 * 25 ⇒ GK = <u>14.4336</u>

The values "X0", "X1", "Y0" and "Y1" specify the dimensions of the milling plane.

The inputs for the face milling are then made. Parameter "**Z0**" must be calculated.

Note: (Calculation of the "Z0" parameter)

 $\sin \alpha = \frac{GK}{HP}$ $\frac{GK}{GK} = \sin 35.264 * 25$ $\frac{GK}{GK} = \frac{14.4336}{GK}$

No

No Yes

The circular pockets below (-7°) are programmed in the "**SWIVEL_PLANE**" block in the next step.

Swivel

Swivel plane

The selection is made in "CYCLE800".

No physical swiveling is performed for "**Swivel No**". This swivel serves to swivel to a "theoretical plane". The next swivel builds on this.

G17 (XY) TABLE PL TC Retract Ŀ, Z XY Ζ Swivel No Swivel plane New X0 Y0 Z0 0.000 0.000 0.000 Swivel mode Axis by axis
 Sequence of axes

 2
 0.0

 X
 -15.0

 Y
 0.0

 X1
 50.0

 Y1
 51.7

 Z1
 0.0

 Select
 0.0
 ZXY 0.000 ° -15.000 ° 0.000 ° 50.000 51.760 0.000 +

Es wird zuerst auf die Mitte des Werkstücks geschwenkt.

The two circular pockets are programmed with a new tool in the "CIRCULAR_POCKETS_-7°" block.

Die Position der zweiten Kreistasche wird direkt im Zyklus programmiert.

Notes: M102 Page 72 840D sl

M102

The circular pockets below (7°) are programmed.

A swivel is made to the workpiece center.

"CYCLE800" is called again.

A swivel is made "additive" to (7°).

N520 SUIVEL

CYCLE800(2, "TABLE", 220000, 57, 0, 0, 0, -15, 0, 0, 50, 51.76, 0, 0, 100, 1)¶ CYCLE800(2, "TABLE", 200001, 27, 35, 35, 0, 0, 7, 0, 0, 0, 0, 1, 100, 1)¶ N530 Ende Block

The two circular pockets are programmed.

Die Position der zweiten Kreistasche wird direkt im Zyklus porgrammiert.

A swivel is made to the first corner to produce the circular pocket.

Notes:		
M102	Page 74	840D sl /828D SINUMERIK Operate

M102

The circular pocket is programmed in the next step.

A swivel is made to the first corner to produce the circular pocket.

Notes:

20,4

The circular pocket is programmed in the next step.

Die Position der Tasche wird im Zyklus programmiert.

A swivel is made to the initial setting in the **"END"** block.

9th example, cylinder

Task:

....

The blank for the program example has the dimensions Ø40x50 mm

- Programming in programGUIDE \Rightarrow
- \Rightarrow Chamfering with centering drill 90°
- \Rightarrow 12 centerings on chamfer

Flow diagram:

Describe a block structure for this G-code program.

Function	Block name	T START	
Start commands	START	± CHAMFER	
1st chamfering, cylinder	CHAMFER		
Centerings on chamfer	LOOP_CENTERING	🛨 🛄 END	
End	END		

Notes:		
M102	Page 78	840D sl /828D SINUMERIK Operate

The chamfer is programmed with the "Spigot" cycle.

GO XO YO

CYCLE77(100,0,1,,5,40,0,0,0.5,0.1,0.1,1000,1000,0,5,6,5,5.5,100,1,101)

Ξ	CHAMFER 🔁
	GO XO YO¶
	CYCLE77(100, 0, 1, , 5, 40, 0, 0, 0.5, 0.1, 0.1, 1000, 1000, 0, 5, 6, 5, 5.5, 100, 1, 101)¶
	End of group

A mark is programmed first in the "LOOP_CENTERING" block.

MARK1:

		\rightarrow
Notes:		
M102	Page 80	840D sl /828D SINUMERIK Operate

0.000 17.500 2.500

Select

+

The additive offset by 30° and the call how often this rotation within the marks should occur follow.

In the "END" block, "CYCLE800" is programmed again in the initial setting and the "Tool Carrier" is deselected.

ENU	
CYCLE800(2, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 100, 1)¶	
CYCLE800(2, "0", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, , 1)¶	
M30¶	

Das Programm ist fertig erstellt.

10th example, turning on the tool

<u>Task:</u>

The blank for the program example has the dimensions 100x100x20 mm

 \Rightarrow A groove is to be produced with ball mill diameter 8

- \Rightarrow The program is to be programmed in G-code
- \Rightarrow Set the tool in X and Y each by 20°, and retain this position during the subsequent milling
- \Rightarrow Subsequent initial setting

Notes:		

Drawing:

The tool orientation is always perpendicular to the machining plane after swiveling with "CYCLE800".

When machining with a ball mill, it is important that the tool is not perpendicular to the machining plane, because the ball mill does not then cut theoretically, because the speed is zero at the contact point.

The measured point for a ball mill, the so-called "TOOL-CENTER-POINT" (TCP), should always be measured at the ball center point.

Once the ball mill has been measured in this way, it can be swiveled arbitrary at the point or "set". In the simulation, only the external diameter of the tool is represented as cutter.

the tool can be set at the "X" and "Y" axes.

Important:

"CYCLE800" must be called before calling the "Turn-On Tool" cycle. The coordinate system is **not swiveled** during "Turn-On Tool".

Es verändert sich nur die Orientierung des Werkzeugs bezogen zur Werkstückoberfläche.

M102

After creating a new program,

the blocks are programmed.

Function	Block name	
Start commands	START	
Turn-on tool	TURN_ON_TOOL	
Way commands	WAY	+ END
End commands	END	

The program header is programmed in the "START" block.

N10 G17 G64 G94 G90 N20 T="BALL_END_CYL_D8" N30 M6 N40 G90 S8000 F1000 M3 M8 N50 CYCLE800(4,"TABLE",200000,57,0,0,0,0,0,0,0,0,0,1,,1) G54 N70 WORKPIECE(,"",,"BOX",112,0,-20,-80,100,100,0,0)

The tool is then turned on in the "TURN_ON" block

N80 CYCLE800(0, "TABLE", 101, 57, ,, 20, 20, ,, ,, -1, 100, 1)

TURN_ON_TOOL

N80 CYCLE800(0, "TABLE", 101, 57, , , , 20, 20, , , , , -1, 100, 1)¶ End of group

and the positions programmed in the "WAY" block.

The program end is programmed in the "END" block.

```
N140 CYCLE800(4, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, , 1)
N150 CYCLE800(4, "0", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 1, , 1)
M30
```

-	END	
	N140	CYCLE800(4, "TABLE", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, , 1)¶
	N150	CYCLE800(4, "0", 200000, 57, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, , 1)¶
	M30 ¶	

The program is now fully created.

M102: END